code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def test_torch_to_np(): """Test whether tuples of tensors can be converted to np arrays.""" tup = (torch.zeros(1), torch.zeros(1)) np_out_1, np_out_2 = torch_to_np(tup) assert isinstance(np_out_1, np.ndarray) assert isinstance(np_out_2, np.ndarray)
Test whether tuples of tensors can be converted to np arrays.
test_torch_to_np
python
rlworkgroup/garage
tests/garage/torch/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/test_functions.py
MIT
def test_as_torch_dict(): """Test if dict whose values are tensors can be converted to np arrays.""" dic = {'a': np.zeros(1), 'b': np.ones(1)} as_torch_dict(dic) for dic_value in dic.values(): assert isinstance(dic_value, torch.Tensor)
Test if dict whose values are tensors can be converted to np arrays.
test_as_torch_dict
python
rlworkgroup/garage
tests/garage/torch/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/test_functions.py
MIT
def test_product_of_gaussians(): """Test computing mu, sigma of product of gaussians.""" size = 5 mu = torch.ones(size) sigmas_squared = torch.ones(size) output = product_of_gaussians(mu, sigmas_squared) assert output[0] == 1 assert output[1] == 1 / size
Test computing mu, sigma of product of gaussians.
test_product_of_gaussians
python
rlworkgroup/garage
tests/garage/torch/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/test_functions.py
MIT
def get_actions(self, observations): """Get actions given observations. Args: observations (np.ndarray): Observations from the environment. Has shape :math:`(B, O)`, where :math:`B` is the batch dimension and :math:`O` is the observation dimensionality (at least 2). Returns: tuple: * np.ndarray: Batch of optimal actions. Has shape :math:`(B, 2)`, where :math:`B` is the batch dimension. Optimal action in the environment. * dict[str, np.ndarray]: Agent info (empty). """ return (self.goal[np.newaxis, :].repeat(len(observations), axis=0) - observations[:, :2]), {}
Get actions given observations. Args: observations (np.ndarray): Observations from the environment. Has shape :math:`(B, O)`, where :math:`B` is the batch dimension and :math:`O` is the observation dimensionality (at least 2). Returns: tuple: * np.ndarray: Batch of optimal actions. Has shape :math:`(B, 2)`, where :math:`B` is the batch dimension. Optimal action in the environment. * dict[str, np.ndarray]: Agent info (empty).
get_actions
python
rlworkgroup/garage
tests/garage/torch/algos/test_bc.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_bc.py
MIT
def test_ddpg_pendulum(self): """Test DDPG with Pendulum environment. This environment has a [-3, 3] action_space bound. """ deterministic.set_seed(0) trainer = Trainer(snapshot_config) env = normalize(GymEnv('InvertedPendulum-v2')) policy = DeterministicMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=F.relu, output_nonlinearity=torch.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) sampler = LocalSampler(agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker) algo = DDPG(env_spec=env.spec, policy=policy, qf=qf, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=20, n_train_steps=50, min_buffer_size=int(1e4), exploration_policy=exploration_policy, target_update_tau=1e-2, discount=0.9) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=100) assert last_avg_ret > 10 env.close()
Test DDPG with Pendulum environment. This environment has a [-3, 3] action_space bound.
test_ddpg_pendulum
python
rlworkgroup/garage
tests/garage/torch/algos/test_ddpg.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_ddpg.py
MIT
def setup_method(self): """Setup method which is called before every test.""" self.env = normalize(GymEnv(HalfCheetahDirEnv(), max_episode_length=100), expected_action_scale=10.) task_sampler = SetTaskSampler(lambda: normalize( GymEnv(HalfCheetahDirEnv()), expected_action_scale=10.)) self.policy = GaussianMLPPolicy( env_spec=self.env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=torch.tanh, output_nonlinearity=None, ) self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec, hidden_sizes=(32, 32)) self.algo = MAMLPPO(env=self.env, policy=self.policy, sampler=None, task_sampler=task_sampler, value_function=self.value_function, meta_batch_size=5, discount=0.99, gae_lambda=1., inner_lr=0.1, num_grad_updates=1)
Setup method which is called before every test.
setup_method
python
rlworkgroup/garage
tests/garage/torch/algos/test_maml.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_maml.py
MIT
def _test_params(v, m): """Test if all parameters of a module equal to a value.""" if isinstance(m, torch.nn.Linear): assert torch.all(torch.eq(m.weight.data, v)) assert torch.all(torch.eq(m.bias.data, v))
Test if all parameters of a module equal to a value.
_test_params
python
rlworkgroup/garage
tests/garage/torch/algos/test_maml.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_maml.py
MIT
def test_get_exploration_policy(self): """Test if an independent copy of policy is returned.""" self.policy.apply(partial(self._set_params, 0.1)) adapt_policy = self.algo.get_exploration_policy() adapt_policy.apply(partial(self._set_params, 0.2)) # Old policy should remain untouched self.policy.apply(partial(self._test_params, 0.1)) adapt_policy.apply(partial(self._test_params, 0.2))
Test if an independent copy of policy is returned.
test_get_exploration_policy
python
rlworkgroup/garage
tests/garage/torch/algos/test_maml.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_maml.py
MIT
def test_adapt_policy(self): """Test if policy can adapt to samples.""" worker = WorkerFactory(seed=100, max_episode_length=100) sampler = LocalSampler.from_worker_factory(worker, self.policy, self.env) self.policy.apply(partial(self._set_params, 0.1)) adapt_policy = self.algo.get_exploration_policy() eps = sampler.obtain_samples(0, 100, adapt_policy) self.algo.adapt_policy(adapt_policy, eps) # Old policy should remain untouched self.policy.apply(partial(self._test_params, 0.1)) # Adapted policy should not be identical to old policy for v1, v2 in zip(adapt_policy.parameters(), self.policy.parameters()): if v1.data.ne(v2.data).sum() > 0: break else: pytest.fail('Parameters of adapted policy should not be ' 'identical to the old policy.')
Test if policy can adapt to samples.
test_adapt_policy
python
rlworkgroup/garage
tests/garage/torch/algos/test_maml.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_maml.py
MIT
def setup_method(self): """Setup method which is called before every test.""" self.env = normalize(GymEnv(HalfCheetahDirEnv(), max_episode_length=100), expected_action_scale=10.) self.task_sampler = SetTaskSampler( HalfCheetahDirEnv, wrapper=lambda env, _: normalize(GymEnv(env, max_episode_length=100), expected_action_scale=10.)) self.policy = GaussianMLPPolicy( env_spec=self.env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=torch.tanh, output_nonlinearity=None, ) self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec, hidden_sizes=(32, 32)) self.sampler = LocalSampler( agents=self.policy, envs=self.env, max_episode_length=self.env.spec.max_episode_length)
Setup method which is called before every test.
setup_method
python
rlworkgroup/garage
tests/garage/torch/algos/test_maml_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_maml_ppo.py
MIT
def test_maml_trpo_dummy_named_env(): """Test with dummy environment that has env_name.""" env = normalize(GymEnv(DummyMultiTaskBoxEnv(), max_episode_length=100), expected_action_scale=10.) policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=torch.tanh, output_nonlinearity=None, ) value_function = GaussianMLPValueFunction(env_spec=env.spec, hidden_sizes=(32, 32)) task_sampler = SetTaskSampler( DummyMultiTaskBoxEnv, wrapper=lambda env, _: normalize(GymEnv(env, max_episode_length=100), expected_action_scale=10.)) episodes_per_task = 2 max_episode_length = env.spec.max_episode_length sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length) trainer = Trainer(snapshot_config) algo = MAMLTRPO(env=env, policy=policy, sampler=sampler, task_sampler=task_sampler, value_function=value_function, meta_batch_size=5, discount=0.99, gae_lambda=1., inner_lr=0.1, num_grad_updates=1) trainer.setup(algo, env) trainer.train(n_epochs=2, batch_size=episodes_per_task * max_episode_length)
Test with dummy environment that has env_name.
test_maml_trpo_dummy_named_env
python
rlworkgroup/garage
tests/garage/torch/algos/test_maml_trpo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_maml_trpo.py
MIT
def setup_method(self): """Setup method which is called before every test.""" max_episode_length = 100 self.env = normalize(GymEnv(HalfCheetahDirEnv(), max_episode_length=max_episode_length), expected_action_scale=10.) self.task_sampler = SetTaskSampler( HalfCheetahDirEnv, wrapper=lambda env, _: normalize(GymEnv( env, max_episode_length=max_episode_length), expected_action_scale=10.)) self.policy = GaussianMLPPolicy( env_spec=self.env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=torch.tanh, output_nonlinearity=None, ) self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec, hidden_sizes=(32, 32))
Setup method which is called before every test.
setup_method
python
rlworkgroup/garage
tests/garage/torch/algos/test_maml_vpg.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_maml_vpg.py
MIT
def test_mtsac_get_log_alpha(monkeypatch): """Check that the private function _get_log_alpha functions correctly. MTSAC uses disentangled alphas, meaning that """ env_names = ['CartPole-v0', 'CartPole-v1'] task_envs = [GymEnv(name, max_episode_length=100) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 2 mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, sampler=None, gradient_steps_per_itr=150, eval_env=[env], env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=5, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size) monkeypatch.setattr(mtsac, '_log_alpha', torch.Tensor([1., 2.])) for i, _ in enumerate(env_names): obs = torch.Tensor([env.reset()[0]] * buffer_batch_size) log_alpha = mtsac._get_log_alpha(dict(observation=obs)) assert (log_alpha == torch.Tensor([i + 1, i + 1])).all().item() assert log_alpha.size() == torch.Size([mtsac._buffer_batch_size])
Check that the private function _get_log_alpha functions correctly. MTSAC uses disentangled alphas, meaning that
test_mtsac_get_log_alpha
python
rlworkgroup/garage
tests/garage/torch/algos/test_mtsac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_mtsac.py
MIT
def test_mtsac_get_log_alpha_incorrect_num_tasks(monkeypatch): """Check that if the num_tasks passed does not match the number of tasks in the environment, then the algorithm should raise an exception. MTSAC uses disentangled alphas, meaning that """ env_names = ['CartPole-v0', 'CartPole-v1'] task_envs = [GymEnv(name, max_episode_length=150) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) buffer_batch_size = 2 mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, sampler=None, gradient_steps_per_itr=150, eval_env=[env], env_spec=env.spec, num_tasks=4, steps_per_epoch=5, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size) monkeypatch.setattr(mtsac, '_log_alpha', torch.Tensor([1., 2.])) error_string = ('The number of tasks in the environment does ' 'not match self._num_tasks. Are you sure that you passed ' 'The correct number of tasks?') obs = torch.Tensor([env.reset()[0]] * buffer_batch_size) with pytest.raises(ValueError, match=error_string): mtsac._get_log_alpha(dict(observation=obs))
Check that if the num_tasks passed does not match the number of tasks in the environment, then the algorithm should raise an exception. MTSAC uses disentangled alphas, meaning that
test_mtsac_get_log_alpha_incorrect_num_tasks
python
rlworkgroup/garage
tests/garage/torch/algos/test_mtsac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_mtsac.py
MIT
def test_mtsac_inverted_double_pendulum(): """Performance regression test of MTSAC on 2 InvDoublePendulum envs.""" env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2'] task_envs = [GymEnv(name, max_episode_length=100) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) test_envs = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) trainer = Trainer(snapshot_config=snapshot_config) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 128 sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker) mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, sampler=sampler, gradient_steps_per_itr=100, eval_env=[test_envs], env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=5, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size) trainer.setup(mtsac, env) ret = trainer.train(n_epochs=8, batch_size=128, plot=False) assert ret > 0
Performance regression test of MTSAC on 2 InvDoublePendulum envs.
test_mtsac_inverted_double_pendulum
python
rlworkgroup/garage
tests/garage/torch/algos/test_mtsac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_mtsac.py
MIT
def test_to(): """Test the torch function that moves modules to GPU. Test that the policy and qfunctions are moved to gpu if gpu is available. """ env_names = ['CartPole-v0', 'CartPole-v1'] task_envs = [GymEnv(name, max_episode_length=100) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[1, 1], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 2 mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, sampler=None, gradient_steps_per_itr=150, eval_env=[env], env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=5, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size) set_gpu_mode(torch.cuda.is_available()) mtsac.to() device = global_device() for param in mtsac._qf1.parameters(): assert param.device == device for param in mtsac._qf2.parameters(): assert param.device == device for param in mtsac._qf2.parameters(): assert param.device == device for param in mtsac.policy.parameters(): assert param.device == device assert mtsac._log_alpha.device == device
Test the torch function that moves modules to GPU. Test that the policy and qfunctions are moved to gpu if gpu is available.
test_to
python
rlworkgroup/garage
tests/garage/torch/algos/test_mtsac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_mtsac.py
MIT
def test_fixed_alpha(): """Test if using fixed_alpha ensures that alpha is non differentiable.""" env_names = ['InvertedDoublePendulum-v2', 'InvertedDoublePendulum-v2'] task_envs = [GymEnv(name, max_episode_length=100) for name in env_names] env = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) test_envs = MultiEnvWrapper(task_envs, sample_strategy=round_robin_strategy) deterministic.set_seed(0) trainer = Trainer(snapshot_config=snapshot_config) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) num_tasks = 2 buffer_batch_size = 128 sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker) mtsac = MTSAC(policy=policy, qf1=qf1, qf2=qf2, sampler=sampler, gradient_steps_per_itr=100, eval_env=[test_envs], env_spec=env.spec, num_tasks=num_tasks, steps_per_epoch=1, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=buffer_batch_size, fixed_alpha=np.exp(0.5)) if torch.cuda.is_available(): set_gpu_mode(True) else: set_gpu_mode(False) mtsac.to() assert torch.allclose(torch.Tensor([0.5] * num_tasks), mtsac._log_alpha.to('cpu')) trainer.setup(mtsac, env) trainer.train(n_epochs=1, batch_size=128, plot=False) assert torch.allclose(torch.Tensor([0.5] * num_tasks), mtsac._log_alpha.to('cpu')) assert not mtsac._use_automatic_entropy_tuning
Test if using fixed_alpha ensures that alpha is non differentiable.
test_fixed_alpha
python
rlworkgroup/garage
tests/garage/torch/algos/test_mtsac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_mtsac.py
MIT
def setup_method(self): """Setup method which is called before every test.""" self.env = normalize( GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) self.policy = GaussianMLPPolicy( env_spec=self.env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=torch.tanh, output_nonlinearity=None, ) self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec)
Setup method which is called before every test.
setup_method
python
rlworkgroup/garage
tests/garage/torch/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_ppo.py
MIT
def __call__(self, observation): """Dummy forward operation. Returns a dummy distribution.""" action = torch.Tensor([self._action]) return _MockDistribution(action), {}
Dummy forward operation. Returns a dummy distribution.
__call__
python
rlworkgroup/garage
tests/garage/torch/algos/test_sac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_sac.py
MIT
def test_sac_inverted_double_pendulum(): """Test Sac performance on inverted pendulum.""" # pylint: disable=unexpected-keyword-arg env = normalize(GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) trainer = Trainer(snapshot_config=snapshot_config) sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker) sac = SAC(env_spec=env.spec, policy=policy, qf1=qf1, qf2=qf2, sampler=sampler, gradient_steps_per_itr=100, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=64, reward_scale=1., steps_per_epoch=2) trainer.setup(sac, env) if torch.cuda.is_available(): set_gpu_mode(True) else: set_gpu_mode(False) sac.to() ret = trainer.train(n_epochs=12, batch_size=200, plot=False) # check that automatic entropy tuning is used assert sac._use_automatic_entropy_tuning # assert that there was a gradient properly connected to alpha # this doesn't verify that the path from the temperature objective is # correct. assert not torch.allclose(torch.Tensor([1.]), sac._log_alpha.to('cpu')) # check that policy is learning beyond predecided threshold assert ret > 80
Test Sac performance on inverted pendulum.
test_sac_inverted_double_pendulum
python
rlworkgroup/garage
tests/garage/torch/algos/test_sac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_sac.py
MIT
def test_fixed_alpha(): """Test if using fixed_alpha ensures that alpha is non differentiable.""" # pylint: disable=unexpected-keyword-arg env = normalize(GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) trainer = Trainer(snapshot_config=snapshot_config) sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker) sac = SAC(env_spec=env.spec, policy=policy, qf1=qf1, qf2=qf2, sampler=sampler, gradient_steps_per_itr=100, replay_buffer=replay_buffer, min_buffer_size=100, target_update_tau=5e-3, discount=0.99, buffer_batch_size=64, reward_scale=1., steps_per_epoch=1, fixed_alpha=np.exp(0.5)) trainer.setup(sac, env) sac.to() trainer.train(n_epochs=1, batch_size=100, plot=False) assert torch.allclose(torch.Tensor([0.5]), sac._log_alpha.cpu()) assert not sac._use_automatic_entropy_tuning
Test if using fixed_alpha ensures that alpha is non differentiable.
test_fixed_alpha
python
rlworkgroup/garage
tests/garage/torch/algos/test_sac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_sac.py
MIT
def test_sac_to(): """Test moving Sac between CPU and GPU.""" env = normalize(GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) deterministic.set_seed(0) policy = TanhGaussianMLPPolicy( env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=torch.nn.ReLU, output_nonlinearity=None, min_std=np.exp(-20.), max_std=np.exp(2.), ) qf1 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) qf2 = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[32, 32], hidden_nonlinearity=F.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) trainer = Trainer(snapshot_config=snapshot_config) sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, worker_class=FragmentWorker) sac = SAC(env_spec=env.spec, policy=policy, qf1=qf1, qf2=qf2, sampler=sampler, gradient_steps_per_itr=100, replay_buffer=replay_buffer, min_buffer_size=1e3, target_update_tau=5e-3, discount=0.99, buffer_batch_size=64, reward_scale=1., steps_per_epoch=2) trainer.setup(sac, env) if torch.cuda.is_available(): set_gpu_mode(True) else: set_gpu_mode(False) sac.to() trainer.setup(algo=sac, env=env) trainer.train(n_epochs=1, batch_size=100) log_alpha = torch.clone(sac._log_alpha).cpu() set_gpu_mode(False) sac.to() assert torch.allclose(log_alpha, sac._log_alpha)
Test moving Sac between CPU and GPU.
test_sac_to
python
rlworkgroup/garage
tests/garage/torch/algos/test_sac.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_sac.py
MIT
def setup_method(self): """Setup method which is called before every test.""" self.env = normalize( GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) self.policy = GaussianMLPPolicy( env_spec=self.env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=torch.tanh, output_nonlinearity=None, ) self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec)
Setup method which is called before every test.
setup_method
python
rlworkgroup/garage
tests/garage/torch/algos/test_trpo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_trpo.py
MIT
def setup_method(self): """Setup method which is called before every test.""" self._env = GymEnv('InvertedDoublePendulum-v2', max_episode_length=100) self._trainer = Trainer(snapshot_config) self._policy = GaussianMLPPolicy(env_spec=self._env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=torch.tanh, output_nonlinearity=None) self._sampler = LocalSampler( agents=self._policy, envs=self._env, max_episode_length=self._env.spec.max_episode_length) self._params = { 'env_spec': self._env.spec, 'policy': self._policy, 'value_function': GaussianMLPValueFunction(env_spec=self._env.spec), 'sampler': self._sampler, 'discount': 0.99, }
Setup method which is called before every test.
setup_method
python
rlworkgroup/garage
tests/garage/torch/algos/test_vpg.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_vpg.py
MIT
def test_invalid_entropy_config(self, algo_param, error, msg): """Test VPG with invalid entropy config.""" self._params.update(algo_param) with pytest.raises(error, match=msg): VPG(**self._params)
Test VPG with invalid entropy config.
test_invalid_entropy_config
python
rlworkgroup/garage
tests/garage/torch/algos/test_vpg.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/algos/test_vpg.py
MIT
def test_tanh_normal_bounds(self): """Test to make sure the tanh_normal dist obeys the bounds (-1,1).""" mean = torch.ones(1) * 100 std = torch.ones(1) * 100 dist = TanhNormal(mean, std) assert dist.mean <= 1. del dist mean = torch.ones(1) * -100 std = torch.ones(1) * 100 dist = TanhNormal(mean, std) assert dist.mean >= -1.
Test to make sure the tanh_normal dist obeys the bounds (-1,1).
test_tanh_normal_bounds
python
rlworkgroup/garage
tests/garage/torch/distributions/test_tanh_normal_dist.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/distributions/test_tanh_normal_dist.py
MIT
def test_tanh_normal_rsample(self): """Test the bounds of the tanh_normal rsample function.""" mean = torch.zeros(1) std = torch.ones(1) dist = TanhNormal(mean, std) sample = dist.rsample() pre_tanh_action, action = dist.rsample_with_pre_tanh_value() assert (pre_tanh_action.tanh() == action).all() assert -1 <= action <= 1. assert -1 <= sample <= 1. del dist
Test the bounds of the tanh_normal rsample function.
test_tanh_normal_rsample
python
rlworkgroup/garage
tests/garage/torch/distributions/test_tanh_normal_dist.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/distributions/test_tanh_normal_dist.py
MIT
def test_tanh_normal_log_prob(self): """Verify the correctnes of the tanh_normal log likelihood function.""" mean = torch.zeros(1) std = torch.ones(1) dist = TanhNormal(mean, std) pre_tanh_action = torch.Tensor([[2.0960]]) action = pre_tanh_action.tanh() log_prob = dist.log_prob(action, pre_tanh_action) log_prob_approx = dist.log_prob(action) assert torch.allclose(log_prob, torch.Tensor([-0.2798519])) assert torch.allclose(log_prob_approx, torch.Tensor([-0.2798185])) del dist
Verify the correctnes of the tanh_normal log likelihood function.
test_tanh_normal_log_prob
python
rlworkgroup/garage
tests/garage/torch/distributions/test_tanh_normal_dist.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/distributions/test_tanh_normal_dist.py
MIT
def test_tanh_normal_expand(self): """Test for expand function. Checks whether expand returns a distribution that has potentially a different batch size from the already existing distribution. """ mean = torch.zeros(1) std = torch.ones(1) dist = TanhNormal(mean, std) new_dist = dist.expand((2, )) sample = new_dist.sample() assert sample.shape == torch.Size((2, 1))
Test for expand function. Checks whether expand returns a distribution that has potentially a different batch size from the already existing distribution.
test_tanh_normal_expand
python
rlworkgroup/garage
tests/garage/torch/distributions/test_tanh_normal_dist.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/distributions/test_tanh_normal_dist.py
MIT
def test_tanh_normal_repr(self): """Test that the repr function outputs the class name.""" mean = torch.zeros(1) std = torch.ones(1) dist = TanhNormal(mean, std) assert repr(dist) == 'TanhNormal'
Test that the repr function outputs the class name.
test_tanh_normal_repr
python
rlworkgroup/garage
tests/garage/torch/distributions/test_tanh_normal_dist.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/distributions/test_tanh_normal_dist.py
MIT
def test_tanh_normal_log_prob_of_clipped_action(self): """Verify that clipped actions still have a valid log probability.""" mean = torch.zeros(2) std = torch.ones(2) dist = TanhNormal(mean, std) action = torch.Tensor([[1., -1.]]) log_prob_approx = dist.log_prob(action) assert torch.isfinite(log_prob_approx) assert log_prob_approx < -20 del dist
Verify that clipped actions still have a valid log probability.
test_tanh_normal_log_prob_of_clipped_action
python
rlworkgroup/garage
tests/garage/torch/distributions/test_tanh_normal_dist.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/distributions/test_tanh_normal_dist.py
MIT
def test_output_values(self, kernel_sizes, hidden_channels, strides, paddings): """Test output values from CNNBaseModule. Args: kernel_sizes (tuple[int]): Kernel sizes. hidden_channels (tuple[int]): hidden channels. strides (tuple[int]): strides. paddings (tuple[int]): value of zero-padding. """ module_with_nonlinear_function_and_module = CNNModule( self.input_spec, image_format='NCHW', hidden_channels=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_nonlinearity=torch.relu, hidden_w_init=nn.init.xavier_uniform_) module_with_nonlinear_module_instance_and_function = CNNModule( self.input_spec, image_format='NCHW', hidden_channels=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_nonlinearity=nn.ReLU(), hidden_w_init=nn.init.xavier_uniform_) output1 = module_with_nonlinear_function_and_module(self.input) output2 = module_with_nonlinear_module_instance_and_function( self.input) current_size = self.input_width for (filter_size, stride, padding) in zip(kernel_sizes, strides, paddings): # padding = float((filter_size - 1) / 2) # P = (F - 1) /2 current_size = int( (current_size - filter_size + padding * 2) / stride) + 1 # conv formula = ((W - F + 2P) / S) + 1 flatten_shape = current_size * current_size * hidden_channels[-1] expected_output = torch.zeros((self.batch_size, flatten_shape)) assert np.array_equal(torch.all(torch.eq(output1, expected_output)), True) assert np.array_equal(torch.all(torch.eq(output2, expected_output)), True)
Test output values from CNNBaseModule. Args: kernel_sizes (tuple[int]): Kernel sizes. hidden_channels (tuple[int]): hidden channels. strides (tuple[int]): strides. paddings (tuple[int]): value of zero-padding.
test_output_values
python
rlworkgroup/garage
tests/garage/torch/modules/test_cnn_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_cnn_module.py
MIT
def test_output_values_with_unequal_stride_with_padding( self, hidden_channels, kernel_sizes, strides, paddings): """Test output values with unequal stride and padding from CNNModule. Args: kernel_sizes (tuple[int]): Kernel sizes. hidden_channels (tuple[int]): hidden channels. strides (tuple[int]): strides. paddings (tuple[int]): value of zero-padding. """ model = CNNModule(self.input_spec, image_format='NCHW', hidden_channels=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_nonlinearity=torch.relu, hidden_w_init=nn.init.xavier_uniform_) output = model(self.input) current_size = self.input_width for (filter_size, stride, padding) in zip(kernel_sizes, strides, paddings): # padding = float((filter_size - 1) / 2) # P = (F - 1) /2 current_size = int( (current_size - filter_size + padding * 2) / stride) + 1 # conv formula = ((W - F + 2P) / S) + 1 flatten_shape = current_size * current_size * hidden_channels[-1] expected_output = torch.zeros((self.batch_size, flatten_shape)) assert np.array_equal(torch.all(torch.eq(output, expected_output)), True)
Test output values with unequal stride and padding from CNNModule. Args: kernel_sizes (tuple[int]): Kernel sizes. hidden_channels (tuple[int]): hidden channels. strides (tuple[int]): strides. paddings (tuple[int]): value of zero-padding.
test_output_values_with_unequal_stride_with_padding
python
rlworkgroup/garage
tests/garage/torch/modules/test_cnn_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_cnn_module.py
MIT
def test_is_pickleable(self, hidden_channels, kernel_sizes, strides): """Check CNNModule is pickeable. Args: hidden_channels (tuple[int]): hidden channels. kernel_sizes (tuple[int]): Kernel sizes. strides (tuple[int]): strides. """ model = CNNModule(self.input_spec, image_format='NCHW', hidden_channels=hidden_channels, kernel_sizes=kernel_sizes, strides=strides) output1 = model(self.input) h = pickle.dumps(model) model_pickled = pickle.loads(h) output2 = model_pickled(self.input) assert np.array_equal(torch.all(torch.eq(output1, output2)), True)
Check CNNModule is pickeable. Args: hidden_channels (tuple[int]): hidden channels. kernel_sizes (tuple[int]): Kernel sizes. strides (tuple[int]): strides.
test_is_pickleable
python
rlworkgroup/garage
tests/garage/torch/modules/test_cnn_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_cnn_module.py
MIT
def test_no_head_invalid_settings(self, hidden_nonlinear): """Check CNNModule throws exception with invalid non-linear functions. Args: hidden_nonlinear (callable or torch.nn.Module): Non-linear functions for hidden layers. """ expected_msg = 'Non linear function .* is not supported' with pytest.raises(ValueError, match=expected_msg): CNNModule(self.input_spec, image_format='NCHW', hidden_channels=(32, ), kernel_sizes=(3, ), strides=(1, ), hidden_nonlinearity=hidden_nonlinear)
Check CNNModule throws exception with invalid non-linear functions. Args: hidden_nonlinear (callable or torch.nn.Module): Non-linear functions for hidden layers.
test_no_head_invalid_settings
python
rlworkgroup/garage
tests/garage/torch/modules/test_cnn_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_cnn_module.py
MIT
def test_output_values(self, input_dim, output_dim, hidden_sizes): """Test output values from MLPModule. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. """ input_val = torch.ones([1, input_dim], dtype=torch.float32) module_with_nonlinear_function_and_module = MLPModule( input_dim=input_dim, output_dim=output_dim, hidden_nonlinearity=torch.relu, hidden_sizes=hidden_sizes, hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_, output_nonlinearity=torch.nn.ReLU) module_with_nonlinear_module_instance_and_function = MLPModule( input_dim=input_dim, output_dim=output_dim, hidden_nonlinearity=torch.nn.ReLU(), hidden_sizes=hidden_sizes, hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_, output_nonlinearity=torch.relu) output1 = module_with_nonlinear_function_and_module(input_val) output2 = module_with_nonlinear_module_instance_and_function(input_val) expected_output = torch.full([1, output_dim], fill_value=5 * np.prod(hidden_sizes), dtype=torch.float32) assert torch.all(torch.eq(expected_output, output1)) assert torch.all(torch.eq(expected_output, output2))
Test output values from MLPModule. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers.
test_output_values
python
rlworkgroup/garage
tests/garage/torch/modules/test_mlp_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_mlp_module.py
MIT
def test_is_pickleable(self, input_dim, output_dim, hidden_sizes): """Check MLPModule is pickeable. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. """ input_val = torch.ones([1, input_dim], dtype=torch.float32) module = MLPModule(input_dim=input_dim, output_dim=output_dim, hidden_nonlinearity=torch.relu, hidden_sizes=hidden_sizes, hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_, output_nonlinearity=torch.nn.ReLU) output1 = module(input_val) h = pickle.dumps(module) model_pickled = pickle.loads(h) output2 = model_pickled(input_val) assert np.array_equal(torch.all(torch.eq(output1, output2)), True)
Check MLPModule is pickeable. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers.
test_is_pickleable
python
rlworkgroup/garage
tests/garage/torch/modules/test_mlp_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_mlp_module.py
MIT
def test_no_head_invalid_settings(self, hidden_nonlinear, output_nonlinear): """Check MLPModule throws exception with invalid non-linear functions. Args: hidden_nonlinear (callable or torch.nn.Module): Non-linear functions for hidden layers. output_nonlinear (callable or torch.nn.Module): Non-linear functions for output layer. """ expected_msg = 'Non linear function .* is not supported' with pytest.raises(ValueError, match=expected_msg): MLPModule(input_dim=3, output_dim=5, hidden_sizes=(2, 3), hidden_nonlinearity=hidden_nonlinear, output_nonlinearity=output_nonlinear)
Check MLPModule throws exception with invalid non-linear functions. Args: hidden_nonlinear (callable or torch.nn.Module): Non-linear functions for hidden layers. output_nonlinear (callable or torch.nn.Module): Non-linear functions for output layer.
test_no_head_invalid_settings
python
rlworkgroup/garage
tests/garage/torch/modules/test_mlp_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_mlp_module.py
MIT
def test_mlp_with_learnable_non_linear_function(self): """Test MLPModule with learnable non-linear functions.""" input_dim, output_dim, hidden_sizes = 1, 1, (3, 2) input_val = -torch.ones([1, input_dim], dtype=torch.float32) module = MLPModule(input_dim=input_dim, output_dim=output_dim, hidden_nonlinearity=torch.nn.PReLU(init=10.), hidden_sizes=hidden_sizes, hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_, output_nonlinearity=torch.nn.PReLU(init=1.)) output = module(input_val) output.sum().backward() for tt in module.parameters(): assert torch.all(torch.ne(tt.grad, 0))
Test MLPModule with learnable non-linear functions.
test_mlp_with_learnable_non_linear_function
python
rlworkgroup/garage
tests/garage/torch/modules/test_mlp_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_mlp_module.py
MIT
def test_multi_headed_mlp_module(input_dim, output_dim, hidden_sizes, output_w_init_vals, n_heads): """Test Multi-headed MLPModule. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. output_w_init_vals (list[int]): Init values for output weights. n_heads (int): Number of output layers. """ module = MultiHeadedMLPModule(n_heads=n_heads, input_dim=input_dim, output_dims=output_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=None, hidden_w_init=nn.init.ones_, output_nonlinearities=None, output_w_inits=list( map(_helper_make_inits, output_w_init_vals))) input_value = torch.ones(input_dim) outputs = module(input_value) if len(output_w_init_vals) == 1: output_w_init_vals = list(output_w_init_vals) * n_heads if len(output_dim) == 1: output_dim = list(output_dim) * n_heads for i, output in enumerate(outputs): expected = input_dim * torch.Tensor(hidden_sizes).prod() expected *= output_w_init_vals[i] assert torch.equal( output, torch.full((output_dim[i], ), expected, dtype=torch.float))
Test Multi-headed MLPModule. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. output_w_init_vals (list[int]): Init values for output weights. n_heads (int): Number of output layers.
test_multi_headed_mlp_module
python
rlworkgroup/garage
tests/garage/torch/modules/test_multi_headed_mlp_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_multi_headed_mlp_module.py
MIT
def test_multi_headed_mlp_module_with_layernorm(input_dim, output_dim, hidden_sizes, output_w_init_vals, n_heads): """Test Multi-headed MLPModule with layer normalization. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. output_w_init_vals (list[int]): Init values for output weights. n_heads (int): Number of output layers. """ module = MultiHeadedMLPModule(n_heads=n_heads, input_dim=input_dim, output_dims=output_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=None, layer_normalization=True, hidden_w_init=nn.init.ones_, output_nonlinearities=None, output_w_inits=list( map(_helper_make_inits, output_w_init_vals))) input_value = torch.ones(input_dim) outputs = module(input_value) if len(output_w_init_vals) == 1: output_w_init_vals = list(output_w_init_vals) * n_heads if len(output_dim) == 1: output_dim = list(output_dim) * n_heads for i, output in enumerate(outputs): expected = input_dim * torch.Tensor(hidden_sizes).prod() expected *= output_w_init_vals[i] assert torch.equal(output, torch.zeros(output_dim[i]))
Test Multi-headed MLPModule with layer normalization. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. output_w_init_vals (list[int]): Init values for output weights. n_heads (int): Number of output layers.
test_multi_headed_mlp_module_with_layernorm
python
rlworkgroup/garage
tests/garage/torch/modules/test_multi_headed_mlp_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_multi_headed_mlp_module.py
MIT
def test_invalid_settings(input_dim, output_dim, hidden_sizes, n_heads, nonlinearity, w_init, b_init): """Test Multi-headed MLPModule with invalid parameters. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. n_heads (int): Number of output layers. nonlinearity (callable or torch.nn.Module): Non-linear functions for output layers w_init (list[callable]): Initializer function for the weight in output layer. b_init (list[callable]): Initializer function for the bias in output layer. """ expected_msg_template = ('should be either an integer or a collection of ' 'length n_heads') with pytest.raises(ValueError, match=expected_msg_template): MultiHeadedMLPModule(n_heads=n_heads, input_dim=input_dim, output_dims=output_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=None, hidden_w_init=nn.init.ones_, output_nonlinearities=nonlinearity, output_w_inits=list( map(_helper_make_inits, w_init)), output_b_inits=b_init)
Test Multi-headed MLPModule with invalid parameters. Args: input_dim (int): Input dimension. output_dim (int): Ouput dimension. hidden_sizes (list[int]): Size of hidden layers. n_heads (int): Number of output layers. nonlinearity (callable or torch.nn.Module): Non-linear functions for output layers w_init (list[callable]): Initializer function for the weight in output layer. b_init (list[callable]): Initializer function for the bias in output layer.
test_invalid_settings
python
rlworkgroup/garage
tests/garage/torch/modules/test_multi_headed_mlp_module.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/modules/test_multi_headed_mlp_module.py
MIT
def test_differentiable_sgd(): """Test second order derivative after taking optimization step.""" policy = torch.nn.Linear(10, 10, bias=False) lr = 0.01 diff_sgd = DifferentiableSGD(policy, lr=lr) named_theta = dict(policy.named_parameters()) theta = list(named_theta.values())[0] meta_loss = torch.sum(theta**2) meta_loss.backward(create_graph=True) diff_sgd.step() theta_prime = list(policy.parameters())[0] loss = torch.sum(theta_prime**2) update_module_params(policy, named_theta) diff_sgd.zero_grad() loss.backward() result = theta.grad dtheta_prime = 1 - 2 * lr # dtheta_prime/dtheta dloss = 2 * theta_prime # dloss/dtheta_prime expected_result = dloss * dtheta_prime # dloss/dtheta assert torch.allclose(result, expected_result)
Test second order derivative after taking optimization step.
test_differentiable_sgd
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_differentiable_sgd.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_differentiable_sgd.py
MIT
def test_line_search_should_stop(self): """Test if line search stops when loss is decreasing, and constraint is satisfied.""" # noqa: E501 p1 = torch.tensor([0.1]) p2 = torch.tensor([0.1]) params = [p1, p2] optimizer = ConjugateGradientOptimizer(params, 0.01) expected_num_steps = 1 loss_calls = 0 first_time = True def f_loss(): nonlocal loss_calls, first_time if first_time: first_time = False else: loss_calls += 1 return -torch.tensor(loss_calls) kl_calls = 0 def f_constrint(): nonlocal kl_calls kl_calls += 1 return -torch.tensor(kl_calls) descent_step = torch.tensor([0.05, 0.05]) optimizer._backtracking_line_search(params, descent_step, f_loss, f_constrint) assert loss_calls == expected_num_steps assert kl_calls == expected_num_steps
Test if line search stops when loss is decreasing, and constraint is satisfied.
test_line_search_should_stop
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_line_search_step_size_should_decrease(self): """Line search step size should always decrease.""" p1 = torch.tensor([0.1]) p2 = torch.tensor([0.1]) params = [p1, p2] optimizer = ConjugateGradientOptimizer(params, 0.01) p1_history = [] p2_history = [] loss = 0 first_time = True def f_loss(): nonlocal loss, first_time if first_time: first_time = False else: p1_history.append(p1.clone()) p2_history.append(p2.clone()) loss += 1 return torch.tensor(loss) def f_constrint(): return torch.tensor(0) descent_step = torch.tensor([0.05, 0.05]) optimizer._backtracking_line_search(params, descent_step, f_loss, f_constrint) p1_steps = [] p2_steps = [] for i in range(len(p1_history) - 1): p1_steps.append(p1_history[i + 1] - p1_history[i]) p2_steps.append(p2_history[i + 1] - p2_history[i]) for i in range(len(p1_steps) - 1): assert p1_steps[i] > p1_steps[i + 1] assert p2_steps[i] > p2_steps[i + 1]
Line search step size should always decrease.
test_line_search_step_size_should_decrease
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_cg(): """Solve Ax = b using Conjugate gradient method.""" a = np.linspace(-np.pi, np.pi, 25).reshape((5, 5)) a = a.T.dot(a) # make sure a is positive semi-definite def hvp(v): return torch.tensor(a.dot(v)) b = torch.tensor(np.linspace(-np.pi, np.pi, 5)) x = _conjugate_gradient(hvp, b, 5) assert np.allclose(a.dot(x), b)
Solve Ax = b using Conjugate gradient method.
test_cg
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_hessian_vector_product(): """Test Hessian-vector product for a function with one variable.""" a = torch.tensor([5.0]) x = torch.tensor([10.0], requires_grad=True) def f(): return a * (x**2) expected_hessian = 2 * a vector = torch.tensor([10.0]) expected_hvp = (expected_hessian * vector).detach() f_Ax = _build_hessian_vector_product(f, [x]) computed_hvp = f_Ax(vector).detach() assert np.allclose(computed_hvp, expected_hvp)
Test Hessian-vector product for a function with one variable.
test_hessian_vector_product
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_hessian_vector_product_2x2(a_val, b_val, x_val, y_val, vector): """Test for a function with two variables.""" obs = [torch.tensor([a_val]), torch.tensor([b_val])] vector = torch.tensor([vector]) x = torch.tensor(x_val, requires_grad=True) y = torch.tensor(y_val, requires_grad=True) def f(): a, b = obs[0], obs[1] return a * (x**2) + b * (y**2) expected_hessian = compute_hessian(f(), [x, y]) expected_hvp = torch.mm(vector, expected_hessian).detach() f_Ax = _build_hessian_vector_product(f, [x, y]) hvp = f_Ax(vector[0]).detach() assert np.allclose(hvp, expected_hvp, atol=1e-6)
Test for a function with two variables.
test_hessian_vector_product_2x2
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_hessian_vector_product_2x2_non_diagonal(a_val, b_val, x_val, y_val, vector): """Test for a function with two variables and non-diagonal Hessian.""" obs = [torch.tensor([a_val]), torch.tensor([b_val])] vector = torch.tensor([vector]) x = torch.tensor([x_val], requires_grad=True) y = torch.tensor([y_val], requires_grad=True) def f(): a, b = obs[0], obs[1] kl = a * (x**3) + b * (y**3) + (x**2) * y + (y**2) * x return kl expected_hessian = compute_hessian(f(), [x, y]) expected_hvp = torch.mm(vector, expected_hessian).detach() f_Ax = _build_hessian_vector_product(f, [x, y]) hvp = f_Ax(vector[0]).detach() assert np.allclose(hvp, expected_hvp)
Test for a function with two variables and non-diagonal Hessian.
test_hessian_vector_product_2x2_non_diagonal
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def compute_hessian(f, params): """Compute hessian matrix of given function.""" h = [] for i in params: h_i = [] for j in params: grad = torch.autograd.grad(f, j, create_graph=True) h_ij = torch.autograd.grad(grad, i, allow_unused=True, retain_graph=True) h_ij = (torch.tensor(0.), ) if h_ij[0] is None else h_ij h_i.append(h_ij[0]) h_i = torch.stack(h_i) h.append(h_i) h = torch.stack(h) h = h.reshape((len(params), len(params))) return h
Compute hessian matrix of given function.
compute_hessian
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_pickle_round_trip(): """Test that pickling works as one would normally expect.""" # pylint: disable=protected-access p1 = torch.tensor([0.1]) p2 = torch.tensor([0.1]) params = [p1, p2] optimizer = ConjugateGradientOptimizer(params, 0.01) optimizer_pickled = pickle.dumps(optimizer) optimizer2 = pickle.loads(optimizer_pickled) assert optimizer._max_constraint_value == optimizer2._max_constraint_value assert optimizer._cg_iters == optimizer2._cg_iters assert optimizer._max_backtracks == optimizer2._max_backtracks assert optimizer._backtrack_ratio == optimizer2._backtrack_ratio assert optimizer._hvp_reg_coeff == optimizer2._hvp_reg_coeff assert optimizer._accept_violation == optimizer2._accept_violation
Test that pickling works as one would normally expect.
test_pickle_round_trip
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_unpickle_empty_state(): """Test that pickling works as one would normally expect.""" # pylint: disable=protected-access p1 = torch.tensor([0.1]) p2 = torch.tensor([0.1]) params = [p1, p2] optimizer = BrokenPicklingConjugateGradientOptimizer(params, 0.02) optimizer_pickled = pickle.dumps(optimizer) optimizer2 = pickle.loads(optimizer_pickled) assert optimizer2._max_constraint_value == 0.01 # These asserts only pass because they contain the default values. assert optimizer._cg_iters == optimizer2._cg_iters assert optimizer._max_backtracks == optimizer2._max_backtracks assert optimizer._backtrack_ratio == optimizer2._backtrack_ratio assert optimizer._hvp_reg_coeff == optimizer2._hvp_reg_coeff assert optimizer._accept_violation == optimizer2._accept_violation
Test that pickling works as one would normally expect.
test_unpickle_empty_state
python
rlworkgroup/garage
tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/optimizers/test_torch_conjugate_gradient_optimizer.py
MIT
def test_get_action_img_obs(self, hidden_channels, kernel_sizes, strides, hidden_sizes): """Test get_action function with akro.Image observation space.""" env = GymEnv(DummyDiscretePixelEnv(), is_image=True) policy = CategoricalCNNPolicy(env_spec=env.spec, image_format='NHWC', kernel_sizes=kernel_sizes, hidden_channels=hidden_channels, strides=strides, hidden_sizes=hidden_sizes) env.reset() obs = env.step(1).observation action, _ = policy.get_action(obs) assert env.action_space.contains(action)
Test get_action function with akro.Image observation space.
test_get_action_img_obs
python
rlworkgroup/garage
tests/garage/torch/policies/test_categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_categorical_cnn_policy.py
MIT
def test_get_actions(self, hidden_channels, kernel_sizes, strides, hidden_sizes): """Test get_actions function with akro.Image observation space.""" env = GymEnv(DummyDiscretePixelEnv(), is_image=True) policy = CategoricalCNNPolicy(env_spec=env.spec, image_format='NHWC', kernel_sizes=kernel_sizes, hidden_channels=hidden_channels, strides=strides, hidden_sizes=hidden_sizes) env.reset() obs = env.step(1).observation actions, _ = policy.get_actions([obs, obs, obs]) for action in actions: assert env.action_space.contains(action) torch_obs = torch.Tensor(obs) actions, _ = policy.get_actions([torch_obs, torch_obs, torch_obs]) for action in actions: assert env.action_space.contains(action)
Test get_actions function with akro.Image observation space.
test_get_actions
python
rlworkgroup/garage
tests/garage/torch/policies/test_categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_categorical_cnn_policy.py
MIT
def test_does_not_support_dict_obs_space(self): """Test that policy raises error if passed a dict obs space.""" env = GymEnv(DummyDictEnv(act_space_type='discrete')) with pytest.raises(ValueError, match=('CNN policies do not support ' 'with akro.Dict observation spaces.')): CategoricalCNNPolicy(env_spec=env.spec, image_format='NHWC', kernel_sizes=(3, ), hidden_channels=(3, ))
Test that policy raises error if passed a dict obs space.
test_does_not_support_dict_obs_space
python
rlworkgroup/garage
tests/garage/torch/policies/test_categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_categorical_cnn_policy.py
MIT
def test_invalid_action_spaces(self): """Test that policy raises error if passed a box obs space.""" env = GymEnv(DummyDictEnv(act_space_type='box')) with pytest.raises(ValueError): CategoricalCNNPolicy(env_spec=env.spec, image_format='NHWC', kernel_sizes=(3, ), hidden_channels=(3, ))
Test that policy raises error if passed a box obs space.
test_invalid_action_spaces
python
rlworkgroup/garage
tests/garage/torch/policies/test_categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_categorical_cnn_policy.py
MIT
def test_obs_unflattened(self, hidden_channels, kernel_sizes, strides, hidden_sizes): """Test if a flattened image obs is passed to get_action then it is unflattened. """ env = GymEnv(DummyDiscretePixelEnv(), is_image=True) env.reset() policy = CategoricalCNNPolicy(env_spec=env.spec, image_format='NHWC', kernel_sizes=kernel_sizes, hidden_channels=hidden_channels, strides=strides, hidden_sizes=hidden_sizes) obs = env.observation_space.sample() action, _ = policy.get_action(env.observation_space.flatten(obs)) env.step(action)
Test if a flattened image obs is passed to get_action then it is unflattened.
test_obs_unflattened
python
rlworkgroup/garage
tests/garage/torch/policies/test_categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_categorical_cnn_policy.py
MIT
def test_get_action_dict_space(self): """Test if observations from dict obs spaces are properly flattened.""" env = GymEnv(DummyDictEnv(obs_space_type='box', act_space_type='box')) policy = DeterministicMLPPolicy(env_spec=env.spec, hidden_nonlinearity=None, hidden_sizes=(1, ), hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) obs = env.reset()[0] action, _ = policy.get_action(obs) assert env.action_space.shape == action.shape actions, _ = policy.get_actions(np.array([obs, obs])) for action in actions: assert env.action_space.shape == action.shape
Test if observations from dict obs spaces are properly flattened.
test_get_action_dict_space
python
rlworkgroup/garage
tests/garage/torch/policies/test_deterministic_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_deterministic_mlp_policy.py
MIT
def test_obs_unflattened(self, kernel_sizes, hidden_channels, strides, paddings): """Test if a flattened image obs is passed to get_action then it is unflattened. """ env = GymEnv(DummyDiscretePixelEnv()) env.reset() policy = DiscreteCNNPolicy(env_spec=env.spec, image_format='NHWC', hidden_channels=hidden_channels, kernel_sizes=kernel_sizes, strides=strides, paddings=paddings, padding_mode='zeros', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) obs = env.observation_space.sample() action, _ = policy.get_action(env.observation_space.flatten(obs)) env.step(action[0])
Test if a flattened image obs is passed to get_action then it is unflattened.
test_obs_unflattened
python
rlworkgroup/garage
tests/garage/torch/policies/test_discrete_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_discrete_cnn_policy.py
MIT
def test_get_action_dict_space(self): """Test if observations from dict obs spaces are properly flattened.""" env = GymEnv(DummyDictEnv(obs_space_type='box', act_space_type='box')) policy = GaussianMLPPolicy(env_spec=env.spec, hidden_nonlinearity=None, hidden_sizes=(1, ), hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) obs = env.reset()[0] action, _ = policy.get_action(obs) assert env.action_space.shape == action.shape actions, _ = policy.get_actions(np.array([obs, obs])) for action in actions: assert env.action_space.shape == action.shape actions, _ = policy.get_actions(np.array([obs, obs])) for action in actions: assert env.action_space.shape == action.shape
Test if observations from dict obs spaces are properly flattened.
test_get_action_dict_space
python
rlworkgroup/garage
tests/garage/torch/policies/test_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_gaussian_mlp_policy.py
MIT
def test_get_action(self, hidden_sizes): """Test Tanh Gaussian Policy get action function.""" env_spec = GymEnv(DummyBoxEnv()) obs_dim = env_spec.observation_space.flat_dim act_dim = env_spec.action_space.flat_dim obs = torch.ones(obs_dim, dtype=torch.float32).unsqueeze(0) init_std = 2. policy = TanhGaussianMLPPolicy(env_spec=env_spec, hidden_sizes=hidden_sizes, init_std=init_std, hidden_nonlinearity=None, std_parameterization='exp', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) expected_mean = torch.full((act_dim, ), 1.0, dtype=torch.float) action, prob = policy.get_action(obs) assert np.allclose(prob['mean'], expected_mean.numpy(), rtol=1e-3) assert action.shape == (act_dim, )
Test Tanh Gaussian Policy get action function.
test_get_action
python
rlworkgroup/garage
tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
MIT
def test_get_action_np(self, hidden_sizes): """Test Policy get action function with numpy inputs.""" env_spec = GymEnv(DummyBoxEnv()) obs_dim = env_spec.observation_space.flat_dim act_dim = env_spec.action_space.flat_dim obs = np.ones((obs_dim, ), dtype=np.float32) init_std = 2. policy = TanhGaussianMLPPolicy(env_spec=env_spec, hidden_sizes=hidden_sizes, init_std=init_std, hidden_nonlinearity=None, std_parameterization='exp', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) expected_mean = torch.full((act_dim, ), 1.0, dtype=torch.float) action, prob = policy.get_action(obs) assert np.allclose(prob['mean'], expected_mean.numpy(), rtol=1e-3) assert action.shape == (act_dim, )
Test Policy get action function with numpy inputs.
test_get_action_np
python
rlworkgroup/garage
tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
MIT
def test_get_actions(self, batch_size, hidden_sizes): """Test Tanh Gaussian Policy get actions function.""" env_spec = GymEnv(DummyBoxEnv()) obs_dim = env_spec.observation_space.flat_dim act_dim = env_spec.action_space.flat_dim obs = torch.ones([batch_size, obs_dim], dtype=torch.float32) init_std = 2. policy = TanhGaussianMLPPolicy(env_spec=env_spec, hidden_sizes=hidden_sizes, init_std=init_std, hidden_nonlinearity=None, std_parameterization='exp', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) expected_mean = torch.full([batch_size, act_dim], 1.0, dtype=torch.float) action, prob = policy.get_actions(obs) assert np.allclose(prob['mean'], expected_mean.numpy(), rtol=1e-3) assert action.shape == (batch_size, act_dim)
Test Tanh Gaussian Policy get actions function.
test_get_actions
python
rlworkgroup/garage
tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
MIT
def test_get_actions_np(self, batch_size, hidden_sizes): """Test get actions with np.ndarray inputs.""" env_spec = GymEnv(DummyBoxEnv()) obs_dim = env_spec.observation_space.flat_dim act_dim = env_spec.action_space.flat_dim obs = np.ones((batch_size, obs_dim), dtype=np.float32) init_std = 2. policy = TanhGaussianMLPPolicy(env_spec=env_spec, hidden_sizes=hidden_sizes, init_std=init_std, hidden_nonlinearity=None, std_parameterization='exp', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) expected_mean = torch.full([batch_size, act_dim], 1.0, dtype=torch.float) action, prob = policy.get_actions(obs) assert np.allclose(prob['mean'], expected_mean.numpy(), rtol=1e-3) assert action.shape == (batch_size, act_dim)
Test get actions with np.ndarray inputs.
test_get_actions_np
python
rlworkgroup/garage
tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
MIT
def test_is_pickleable(self, batch_size, hidden_sizes): """Test if policy is unchanged after pickling.""" env_spec = GymEnv(DummyBoxEnv()) obs_dim = env_spec.observation_space.flat_dim obs = torch.ones([batch_size, obs_dim], dtype=torch.float32) init_std = 2. policy = TanhGaussianMLPPolicy(env_spec=env_spec, hidden_sizes=hidden_sizes, init_std=init_std, hidden_nonlinearity=None, std_parameterization='exp', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) output1_action, output1_prob = policy.get_actions(obs) p = pickle.dumps(policy) policy_pickled = pickle.loads(p) output2_action, output2_prob = policy_pickled.get_actions(obs) assert np.allclose(output2_prob['mean'], output1_prob['mean'], rtol=1e-3) assert output1_action.shape == output2_action.shape
Test if policy is unchanged after pickling.
test_is_pickleable
python
rlworkgroup/garage
tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
MIT
def test_to(self): """Test Tanh Gaussian Policy can be moved to cpu.""" env_spec = GymEnv(DummyBoxEnv()) init_std = 2. policy = TanhGaussianMLPPolicy(env_spec=env_spec, hidden_sizes=(1, ), init_std=init_std, hidden_nonlinearity=None, std_parameterization='exp', hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) if torch.cuda.is_available(): policy.to(torch.device('cuda:0')) assert str(next(policy.parameters()).device) == 'cuda:0' else: policy.to(None) assert str(next(policy.parameters()).device) == 'cpu'
Test Tanh Gaussian Policy can be moved to cpu.
test_to
python
rlworkgroup/garage
tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
MIT
def test_get_action_dict_space(self): """Test if observations from dict obs spaces are properly flattened.""" env = GymEnv(DummyDictEnv(obs_space_type='box', act_space_type='box')) policy = TanhGaussianMLPPolicy(env_spec=env.spec, hidden_nonlinearity=None, hidden_sizes=(1, ), hidden_w_init=nn.init.ones_, output_w_init=nn.init.ones_) obs = env.reset()[0] action, _ = policy.get_action(obs) assert env.action_space.shape == action.shape actions, _ = policy.get_actions(np.array([obs, obs])) for action in actions: assert env.action_space.shape == action.shape
Test if observations from dict obs spaces are properly flattened.
test_get_action_dict_space
python
rlworkgroup/garage
tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/policies/test_tanh_gaussian_mlp_policy.py
MIT
def enumerate_algo_examples(): """Return a list of paths for all algo examples. Returns: List[str]: list of path strings """ exclude = NON_ALGO_EXAMPLES + LONG_RUNNING_EXAMPLES all_examples = EXAMPLES_ROOT_DIR.glob('**/*.py') return [str(e) for e in all_examples if e not in exclude]
Return a list of paths for all algo examples. Returns: List[str]: list of path strings
enumerate_algo_examples
python
rlworkgroup/garage
tests/integration_tests/test_examples.py
https://github.com/rlworkgroup/garage/blob/master/tests/integration_tests/test_examples.py
MIT
def test_algo_examples(filepath): """Test algo examples. Args: filepath (str): path string of example """ env = os.environ.copy() env['GARAGE_EXAMPLE_TEST_N_EPOCHS'] = '1' # Don't use check=True, since that causes subprocess to throw an error # in case of failure before the assertion is evaluated assert subprocess.run([filepath], check=False, env=env).returncode == 0
Test algo examples. Args: filepath (str): path string of example
test_algo_examples
python
rlworkgroup/garage
tests/integration_tests/test_examples.py
https://github.com/rlworkgroup/garage/blob/master/tests/integration_tests/test_examples.py
MIT
def test_dqn_pong(): """Test tf/dqn_pong.py with reduced replay buffer size. This is to reduced memory consumption. """ env = os.environ.copy() env['GARAGE_EXAMPLE_TEST_N_EPOCHS'] = '1' assert subprocess.run([ EXAMPLES_ROOT_DIR / 'tf/dqn_pong.py', '--buffer_size', '5', '--max_episode_length', '5' ], check=False, env=env).returncode == 0
Test tf/dqn_pong.py with reduced replay buffer size. This is to reduced memory consumption.
test_dqn_pong
python
rlworkgroup/garage
tests/integration_tests/test_examples.py
https://github.com/rlworkgroup/garage/blob/master/tests/integration_tests/test_examples.py
MIT
def test_dqn_atari(): """Test torch/dqn_atari.py with reduced replay buffer size. This is to reduced memory consumption. """ env = os.environ.copy() env['GARAGE_EXAMPLE_TEST_N_EPOCHS'] = '1' assert subprocess.run([ EXAMPLES_ROOT_DIR / 'torch/dqn_atari.py', 'Pong', '--buffer_size', '1', '--max_episode_length', '1' ], check=False, env=env).returncode == 0
Test torch/dqn_atari.py with reduced replay buffer size. This is to reduced memory consumption.
test_dqn_atari
python
rlworkgroup/garage
tests/integration_tests/test_examples.py
https://github.com/rlworkgroup/garage/blob/master/tests/integration_tests/test_examples.py
MIT
def test_ppo_memorize_digits(): """Test tf/ppo_memorize_digits.py with reduced batch size. This is to reduced memory consumption. """ env = os.environ.copy() env['GARAGE_EXAMPLE_TEST_N_EPOCHS'] = '1' command = [ EXAMPLES_ROOT_DIR / 'tf/ppo_memorize_digits.py', '--batch_size', '4', '--max_episode_length', '5' ] assert subprocess.run(command, check=False, env=env).returncode == 0
Test tf/ppo_memorize_digits.py with reduced batch size. This is to reduced memory consumption.
test_ppo_memorize_digits
python
rlworkgroup/garage
tests/integration_tests/test_examples.py
https://github.com/rlworkgroup/garage/blob/master/tests/integration_tests/test_examples.py
MIT
def test_trpo_cubecrash(): """Test tf/trpo_cubecrash.py with reduced batch size. This is to reduced memory consumption. """ env = os.environ.copy() env['GARAGE_EXAMPLE_TEST_N_EPOCHS'] = '1' assert subprocess.run([ EXAMPLES_ROOT_DIR / 'tf/trpo_cubecrash.py', '--batch_size', '4', '--max_episode_length', '5' ], check=False, env=env).returncode == 0
Test tf/trpo_cubecrash.py with reduced batch size. This is to reduced memory consumption.
test_trpo_cubecrash
python
rlworkgroup/garage
tests/integration_tests/test_examples.py
https://github.com/rlworkgroup/garage/blob/master/tests/integration_tests/test_examples.py
MIT
def interrupt_experiment(experiment_script, lifecycle_stage): """Interrupt the experiment and verify no children processes remain.""" args = ['python', experiment_script] # The pre-executed function setpgrp allows to create a process group # so signals are propagated to all the process in the group. proc = subprocess.Popen(args, preexec_fn=os.setpgrp) launcher_proc = psutil.Process(proc.pid) # This socket connects with the client in the algorithm, so we're # notified of the different stages in the experiment lifecycle. address = ('localhost', 6000) listener = Listener(address) conn = listener.accept() while True: msg = conn.recv() if msg == lifecycle_stage: # Notice that we're asking for the children of the launcher, not # the children of this test script, since there could be other # children processes attached to the process running this test # that are not part of the launcher. children = launcher_proc.children(recursive=True) # Remove the semaphore tracker from the list of children, since # we cannot stop its execution. for child in children: if any([ 'multiprocessing.semaphore_tracker' in cmd for cmd in child.cmdline() ]): children.remove(child) # We append the launcher to the list of children so later we can # check it has died. children.append(launcher_proc) pgrp = os.getpgid(proc.pid) os.killpg(pgrp, signal.SIGINT) conn.close() break listener.close() # Once the signal has been sent, all children should die _, alive = psutil.wait_procs(children, timeout=6) # If any, notify the zombie and sleeping processes and fail the test clean_exit = True error_msg = '' for child in alive: error_msg += ( str(child.as_dict(attrs=['pid', 'name', 'status', 'cmdline'])) + '\n') clean_exit = False error_msg = ("These processes didn't die during %s:\n" % (lifecycle_stage) + error_msg) for child in alive: os.kill(child.pid, signal.SIGINT) assert clean_exit, error_msg
Interrupt the experiment and verify no children processes remain.
interrupt_experiment
python
rlworkgroup/garage
tests/integration_tests/test_sigint.py
https://github.com/rlworkgroup/garage/blob/master/tests/integration_tests/test_sigint.py
MIT
def writeFrame(self, data): """Write the received frame to a temp image file. Return the image file.""" cachename = CACHE_FILE_NAME + str(self.sessionId) + CACHE_FILE_EXT file = open(cachename, "wb") file.write(data) file.close() return cachename
Write the received frame to a temp image file. Return the image file.
writeFrame
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def updateMovie(self, imageFile): """Update the image file as video frame in the GUI.""" photo = ImageTk.PhotoImage(Image.open(imageFile)) self.label.configure(image = photo, height=288) self.label.image = photo
Update the image file as video frame in the GUI.
updateMovie
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def connectToServer(self): """Connect to the Server. Start a new RTSP/TCP session.""" self.rtspSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: self.rtspSocket.connect((self.serverAddr, self.serverPort)) except: tkMessageBox.showwarning('Connection Failed', 'Connection to \'%s\' failed.' %self.serverAddr)
Connect to the Server. Start a new RTSP/TCP session.
connectToServer
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def sendRtspRequest(self, requestCode): """Send RTSP request to the server.""" # Setup request if requestCode == self.SETUP and self.state == self.INIT: threading.Thread(target=self.recvRtspReply).start() # Update RTSP sequence number. self.rtspSeq += 1 # Write the RTSP request to be sent. request = 'SETUP ' + self.fileName + ' RTSP/1.0\nCSeq: ' + str(self.rtspSeq) + '\nTransport: RTP/UDP; client_port= ' + str(self.rtpPort) # Keep track of the sent request. self.requestSent = self.SETUP # Play request elif requestCode == self.PLAY and self.state == self.READY: self.rtspSeq += 1 request = 'PLAY ' + self.fileName + ' RTSP/1.0\nCSeq: ' + str(self.rtspSeq) + '\nSession: ' + str(self.sessionId) self.requestSent = self.PLAY # Pause request elif requestCode == self.PAUSE and self.state == self.PLAYING: self.rtspSeq += 1 request = 'PAUSE ' + self.fileName + ' RTSP/1.0\nCSeq: ' + str(self.rtspSeq) + '\nSession: ' + str(self.sessionId) self.requestSent = self.PAUSE # Teardown request elif requestCode == self.TEARDOWN and not self.state == self.INIT: self.rtspSeq += 1 request = 'TEARDOWN ' + self.fileName + ' RTSP/1.0\nCSeq: ' + str(self.rtspSeq) + '\nSession: ' + str(self.sessionId) self.requestSent = self.TEARDOWN else: return # Send the RTSP request using rtspSocket. self.rtspSocket.send(request.encode()) print('\nData sent:\n' + request)
Send RTSP request to the server.
sendRtspRequest
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def recvRtspReply(self): """Receive RTSP reply from the server.""" while True: reply = self.rtspSocket.recv(1024) if reply: self.parseRtspReply(reply.decode("utf-8")) # Close the RTSP socket upon requesting Teardown if self.requestSent == self.TEARDOWN: self.rtspSocket.shutdown(socket.SHUT_RDWR) self.rtspSocket.close() break
Receive RTSP reply from the server.
recvRtspReply
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def parseRtspReply(self, data): """Parse the RTSP reply from the server.""" lines = str(data).split('\n') seqNum = int(lines[1].split(' ')[1]) # Process only if the server reply's sequence number is the same as the request's if seqNum == self.rtspSeq: session = int(lines[2].split(' ')[1]) # New RTSP session ID if self.sessionId == 0: self.sessionId = session # Process only if the session ID is the same if self.sessionId == session: if int(lines[0].split(' ')[1]) == 200: if self.requestSent == self.SETUP: # Update RTSP state. self.state = self.READY # Open RTP port. self.openRtpPort() elif self.requestSent == self.PLAY: self.state = self.PLAYING elif self.requestSent == self.PAUSE: self.state = self.READY # The play thread exits. A new thread is created on resume. self.playEvent.set() elif self.requestSent == self.TEARDOWN: self.state = self.INIT # Flag the teardownAcked to close the socket. self.teardownAcked = 1
Parse the RTSP reply from the server.
parseRtspReply
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def openRtpPort(self): """Open RTP socket binded to a specified port.""" # Create a new datagram socket to receive RTP packets from the server self.rtpSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Set the timeout value of the socket to 0.5sec self.rtpSocket.settimeout(0.5) try: # Bind the socket to the address using the RTP port given by the client user self.rtpSocket.bind(("", self.rtpPort)) except: tkMessageBox.showwarning('Unable to Bind', 'Unable to bind PORT=%d' %self.rtpPort)
Open RTP socket binded to a specified port.
openRtpPort
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def handler(self): """Handler on explicitly closing the GUI window.""" self.pauseMovie() if tkMessageBox.askokcancel("Quit?", "Are you sure you want to quit?"): self.exitClient() else: # When the user presses cancel, resume playing. self.playMovie()
Handler on explicitly closing the GUI window.
handler
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/Client.py
MIT
def encode(self, version, padding, extension, cc, seqnum, marker, pt, ssrc, payload): """Encode the RTP packet with header fields and payload.""" timestamp = int(time()) header = bytearray(HEADER_SIZE) # Fill the header bytearray with RTP header fields header[0] = (version << 6) | (padding << 5) | (extension << 4) | cc header[1] = (marker << 7) | pt header[2] = (seqnum >> 8) & 255 #upper bits header[3] = seqnum & 255 header[4] = timestamp >> 24 & 255 header[5] = timestamp >> 16 & 255 header[6] = timestamp >> 8 & 255 header[7] = timestamp & 255 header[8] = ssrc >> 24 & 255 header[9] = ssrc >> 16 & 255 header[10] = ssrc >> 8 & 255 header[11] = ssrc & 255 self.header = header # Get the payload from the argument self.payload = payload
Encode the RTP packet with header fields and payload.
encode
python
moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES
Resource/7th-Python-Solution/Solutions/StreamingVideo/RtpPacket.py
https://github.com/moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES/blob/master/Resource/7th-Python-Solution/Solutions/StreamingVideo/RtpPacket.py
MIT
def __init__(self, tileSize=256): '''Initialize the TMS Global Mercator pyramid''' self.tileSize = tileSize self.initialResolution = 2 * math.pi * 6378137 / self.tileSize # 156543.03392804062 for tileSize 256 pixels self.originShift = 2 * math.pi * 6378137 / 2.0 # 20037508.342789244
Initialize the TMS Global Mercator pyramid
__init__
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def LatLonToMeters(self, lat, lon): '''Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913''' mx = lon * self.originShift / 180.0 my = math.log(math.tan((90 + lat) * math.pi / 360.0)) \ / (math.pi / 180.0) my = my * self.originShift / 180.0 return (mx, my)
Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913
LatLonToMeters
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def MetersToLatLon(self, mx, my): '''Converts XY point from Spherical Mercator EPSG:900913 to lat/lon in WGS84 Datum''' lon = mx / self.originShift * 180.0 lat = my / self.originShift * 180.0 lat = 180 / math.pi * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) return (lat, lon)
Converts XY point from Spherical Mercator EPSG:900913 to lat/lon in WGS84 Datum
MetersToLatLon
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def PixelsToMeters( self, px, py, zoom, ): '''Converts pixel coordinates in given zoom level of pyramid to EPSG:900913''' res = self.Resolution(zoom) mx = px * res - self.originShift my = py * res - self.originShift return (mx, my)
Converts pixel coordinates in given zoom level of pyramid to EPSG:900913
PixelsToMeters
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def MetersToPixels( self, mx, my, zoom, ): '''Converts EPSG:900913 to pyramid pixel coordinates in given zoom level''' res = self.Resolution(zoom) px = (mx + self.originShift) / res py = (my + self.originShift) / res return (px, py)
Converts EPSG:900913 to pyramid pixel coordinates in given zoom level
MetersToPixels
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def PixelsToTile(self, px, py): '''Returns a tile covering region in given pixel coordinates''' tx = int(math.ceil(px / float(self.tileSize)) - 1) ty = int(math.ceil(py / float(self.tileSize)) - 1) return (tx, ty)
Returns a tile covering region in given pixel coordinates
PixelsToTile
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def PixelsToRaster( self, px, py, zoom, ): '''Move the origin of pixel coordinates to top-left corner''' mapSize = self.tileSize << zoom return (px, mapSize - py)
Move the origin of pixel coordinates to top-left corner
PixelsToRaster
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def MetersToTile( self, mx, my, zoom, ): '''Returns tile for given mercator coordinates''' (px, py) = self.MetersToPixels(mx, my, zoom) return self.PixelsToTile(px, py)
Returns tile for given mercator coordinates
MetersToTile
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def TileBounds( self, tx, ty, zoom, ): '''Returns bounds of the given tile in EPSG:900913 coordinates''' (minx, miny) = self.PixelsToMeters(tx * self.tileSize, ty * self.tileSize, zoom) (maxx, maxy) = self.PixelsToMeters((tx + 1) * self.tileSize, (ty + 1) * self.tileSize, zoom) return (minx, miny, maxx, maxy)
Returns bounds of the given tile in EPSG:900913 coordinates
TileBounds
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def TileLatLonBounds( self, tx, ty, zoom, ): '''Returns bounds of the given tile in latutude/longitude using WGS84 datum''' bounds = self.TileBounds(tx, ty, zoom) (minLat, minLon) = self.MetersToLatLon(bounds[0], bounds[1]) (maxLat, maxLon) = self.MetersToLatLon(bounds[2], bounds[3]) return (minLat, minLon, maxLat, maxLon)
Returns bounds of the given tile in latutude/longitude using WGS84 datum
TileLatLonBounds
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def Resolution(self, zoom): '''Resolution (meters/pixel) for given zoom level (measured at Equator)''' # return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom) return self.initialResolution / 2 ** zoom
Resolution (meters/pixel) for given zoom level (measured at Equator)
Resolution
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def ZoomForPixelSize(self, pixelSize): '''Maximal scaledown zoom of the pyramid closest to the pixelSize.''' for i in range(MAXZOOMLEVEL): if pixelSize > self.Resolution(i): if i != 0: return i - 1 else: return 0 # We don't want to scale up
Maximal scaledown zoom of the pyramid closest to the pixelSize.
ZoomForPixelSize
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def GoogleTile( self, tx, ty, zoom, ): '''Converts TMS tile coordinates to Google Tile coordinates''' # coordinate origin is moved from bottom-left to top-left corner of the extent return (tx, 2 ** zoom - 1 - ty)
Converts TMS tile coordinates to Google Tile coordinates
GoogleTile
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def QuadTree( self, tx, ty, zoom, ): '''Converts TMS tile coordinates to Microsoft QuadTree''' quadKey = '' ty = 2 ** zoom - 1 - ty for i in range(zoom, 0, -1): digit = 0 mask = 1 << i - 1 if tx & mask != 0: digit += 1 if ty & mask != 0: digit += 2 quadKey += str(digit) return quadKey
Converts TMS tile coordinates to Microsoft QuadTree
QuadTree
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def LonLatToPixels( self, lon, lat, zoom, ): '''Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid''' res = self.resFact / 2 ** zoom px = (180 + lon) / res py = (90 + lat) / res return (px, py)
Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid
LonLatToPixels
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def PixelsToTile(self, px, py): '''Returns coordinates of the tile covering region in pixel coordinates''' tx = int(math.ceil(px / float(self.tileSize)) - 1) ty = int(math.ceil(py / float(self.tileSize)) - 1) return (tx, ty)
Returns coordinates of the tile covering region in pixel coordinates
PixelsToTile
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT
def LonLatToTile( self, lon, lat, zoom, ): '''Returns the tile for zoom which covers given lon/lat coordinates''' (px, py) = self.LonLatToPixels(lon, lat, zoom) return self.PixelsToTile(px, py)
Returns the tile for zoom which covers given lon/lat coordinates
LonLatToTile
python
commenthol/gdal2tiles-leaflet
gdal2tiles-multiprocess.py
https://github.com/commenthol/gdal2tiles-leaflet/blob/master/gdal2tiles-multiprocess.py
MIT