code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input="rgb"): """Make a sequential palette that blends from dark to ``color``. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. The ``color`` parameter can be specified in a number of ways, including all options for defining a color in matplotlib and several additional color spaces that are handled by seaborn. You can also use the database of named colors from the XKCD color survey. If you are using the IPython notebook, you can also choose this palette interactively with the :func:`choose_dark_palette` function. Parameters ---------- color : base color for high values hex, rgb-tuple, or html color name n_colors : int, optional number of colors in the palette reverse : bool, optional if True, reverse the direction of the blend as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. input : {'rgb', 'hls', 'husl', xkcd'} Color space to interpret the input color. The first three options apply to tuple inputs and the latter applies to string inputs. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- light_palette : Create a sequential palette with bright low values. diverging_palette : Create a diverging palette with two colors. Examples -------- .. include:: ../docstrings/dark_palette.rst """ rgb = _color_to_rgb(color, input) hue, sat, _ = husl.rgb_to_husl(*rgb) gray_s, gray_l = .15 * sat, 15 gray = _color_to_rgb((hue, gray_s, gray_l), input="husl") colors = [rgb, gray] if reverse else [gray, rgb] return blend_palette(colors, n_colors, as_cmap)
Make a sequential palette that blends from dark to ``color``. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. The ``color`` parameter can be specified in a number of ways, including all options for defining a color in matplotlib and several additional color spaces that are handled by seaborn. You can also use the database of named colors from the XKCD color survey. If you are using the IPython notebook, you can also choose this palette interactively with the :func:`choose_dark_palette` function. Parameters ---------- color : base color for high values hex, rgb-tuple, or html color name n_colors : int, optional number of colors in the palette reverse : bool, optional if True, reverse the direction of the blend as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. input : {'rgb', 'hls', 'husl', xkcd'} Color space to interpret the input color. The first three options apply to tuple inputs and the latter applies to string inputs. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- light_palette : Create a sequential palette with bright low values. diverging_palette : Create a diverging palette with two colors. Examples -------- .. include:: ../docstrings/dark_palette.rst
dark_palette
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input="rgb"): """Make a sequential palette that blends from light to ``color``. The ``color`` parameter can be specified in a number of ways, including all options for defining a color in matplotlib and several additional color spaces that are handled by seaborn. You can also use the database of named colors from the XKCD color survey. If you are using a Jupyter notebook, you can also choose this palette interactively with the :func:`choose_light_palette` function. Parameters ---------- color : base color for high values hex code, html color name, or tuple in `input` space. n_colors : int, optional number of colors in the palette reverse : bool, optional if True, reverse the direction of the blend as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. input : {'rgb', 'hls', 'husl', xkcd'} Color space to interpret the input color. The first three options apply to tuple inputs and the latter applies to string inputs. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- dark_palette : Create a sequential palette with dark low values. diverging_palette : Create a diverging palette with two colors. Examples -------- .. include:: ../docstrings/light_palette.rst """ rgb = _color_to_rgb(color, input) hue, sat, _ = husl.rgb_to_husl(*rgb) gray_s, gray_l = .15 * sat, 95 gray = _color_to_rgb((hue, gray_s, gray_l), input="husl") colors = [rgb, gray] if reverse else [gray, rgb] return blend_palette(colors, n_colors, as_cmap)
Make a sequential palette that blends from light to ``color``. The ``color`` parameter can be specified in a number of ways, including all options for defining a color in matplotlib and several additional color spaces that are handled by seaborn. You can also use the database of named colors from the XKCD color survey. If you are using a Jupyter notebook, you can also choose this palette interactively with the :func:`choose_light_palette` function. Parameters ---------- color : base color for high values hex code, html color name, or tuple in `input` space. n_colors : int, optional number of colors in the palette reverse : bool, optional if True, reverse the direction of the blend as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. input : {'rgb', 'hls', 'husl', xkcd'} Color space to interpret the input color. The first three options apply to tuple inputs and the latter applies to string inputs. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- dark_palette : Create a sequential palette with dark low values. diverging_palette : Create a diverging palette with two colors. Examples -------- .. include:: ../docstrings/light_palette.rst
light_palette
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def diverging_palette(h_neg, h_pos, s=75, l=50, sep=1, n=6, # noqa center="light", as_cmap=False): """Make a diverging palette between two HUSL colors. If you are using the IPython notebook, you can also choose this palette interactively with the :func:`choose_diverging_palette` function. Parameters ---------- h_neg, h_pos : float in [0, 359] Anchor hues for negative and positive extents of the map. s : float in [0, 100], optional Anchor saturation for both extents of the map. l : float in [0, 100], optional Anchor lightness for both extents of the map. sep : int, optional Size of the intermediate region. n : int, optional Number of colors in the palette (if not returning a cmap) center : {"light", "dark"}, optional Whether the center of the palette is light or dark as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- dark_palette : Create a sequential palette with dark values. light_palette : Create a sequential palette with light values. Examples -------- .. include: ../docstrings/diverging_palette.rst """ palfunc = dict(dark=dark_palette, light=light_palette)[center] n_half = int(128 - (sep // 2)) neg = palfunc((h_neg, s, l), n_half, reverse=True, input="husl") pos = palfunc((h_pos, s, l), n_half, input="husl") midpoint = dict(light=[(.95, .95, .95)], dark=[(.133, .133, .133)])[center] mid = midpoint * sep pal = blend_palette(np.concatenate([neg, mid, pos]), n, as_cmap=as_cmap) return pal
Make a diverging palette between two HUSL colors. If you are using the IPython notebook, you can also choose this palette interactively with the :func:`choose_diverging_palette` function. Parameters ---------- h_neg, h_pos : float in [0, 359] Anchor hues for negative and positive extents of the map. s : float in [0, 100], optional Anchor saturation for both extents of the map. l : float in [0, 100], optional Anchor lightness for both extents of the map. sep : int, optional Size of the intermediate region. n : int, optional Number of colors in the palette (if not returning a cmap) center : {"light", "dark"}, optional Whether the center of the palette is light or dark as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- dark_palette : Create a sequential palette with dark values. light_palette : Create a sequential palette with light values. Examples -------- .. include: ../docstrings/diverging_palette.rst
diverging_palette
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def blend_palette(colors, n_colors=6, as_cmap=False, input="rgb"): """Make a palette that blends between a list of colors. Parameters ---------- colors : sequence of colors in various formats interpreted by `input` hex code, html color name, or tuple in `input` space. n_colors : int, optional Number of colors in the palette. as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` Examples -------- .. include: ../docstrings/blend_palette.rst """ colors = [_color_to_rgb(color, input) for color in colors] name = "blend" pal = mpl.colors.LinearSegmentedColormap.from_list(name, colors) if not as_cmap: rgb_array = pal(np.linspace(0, 1, int(n_colors)))[:, :3] # no alpha pal = _ColorPalette(map(tuple, rgb_array)) return pal
Make a palette that blends between a list of colors. Parameters ---------- colors : sequence of colors in various formats interpreted by `input` hex code, html color name, or tuple in `input` space. n_colors : int, optional Number of colors in the palette. as_cmap : bool, optional If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` Examples -------- .. include: ../docstrings/blend_palette.rst
blend_palette
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def xkcd_palette(colors): """Make a palette with color names from the xkcd color survey. See xkcd for the full list of colors: https://xkcd.com/color/rgb/ This is just a simple wrapper around the `seaborn.xkcd_rgb` dictionary. Parameters ---------- colors : list of strings List of keys in the `seaborn.xkcd_rgb` dictionary. Returns ------- palette A list of colors as RGB tuples. See Also -------- crayon_palette : Make a palette with Crayola crayon colors. """ palette = [xkcd_rgb[name] for name in colors] return color_palette(palette, len(palette))
Make a palette with color names from the xkcd color survey. See xkcd for the full list of colors: https://xkcd.com/color/rgb/ This is just a simple wrapper around the `seaborn.xkcd_rgb` dictionary. Parameters ---------- colors : list of strings List of keys in the `seaborn.xkcd_rgb` dictionary. Returns ------- palette A list of colors as RGB tuples. See Also -------- crayon_palette : Make a palette with Crayola crayon colors.
xkcd_palette
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def crayon_palette(colors): """Make a palette with color names from Crayola crayons. Colors are taken from here: https://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors This is just a simple wrapper around the `seaborn.crayons` dictionary. Parameters ---------- colors : list of strings List of keys in the `seaborn.crayons` dictionary. Returns ------- palette A list of colors as RGB tuples. See Also -------- xkcd_palette : Make a palette with named colors from the XKCD color survey. """ palette = [crayons[name] for name in colors] return color_palette(palette, len(palette))
Make a palette with color names from Crayola crayons. Colors are taken from here: https://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors This is just a simple wrapper around the `seaborn.crayons` dictionary. Parameters ---------- colors : list of strings List of keys in the `seaborn.crayons` dictionary. Returns ------- palette A list of colors as RGB tuples. See Also -------- xkcd_palette : Make a palette with named colors from the XKCD color survey.
crayon_palette
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def cubehelix_palette(n_colors=6, start=0, rot=.4, gamma=1.0, hue=0.8, light=.85, dark=.15, reverse=False, as_cmap=False): """Make a sequential palette from the cubehelix system. This produces a colormap with linearly-decreasing (or increasing) brightness. That means that information will be preserved if printed to black and white or viewed by someone who is colorblind. "cubehelix" is also available as a matplotlib-based palette, but this function gives the user more control over the look of the palette and has a different set of defaults. In addition to using this function, it is also possible to generate a cubehelix palette generally in seaborn using a string starting with `ch:` and containing other parameters (e.g. `"ch:s=.25,r=-.5"`). Parameters ---------- n_colors : int Number of colors in the palette. start : float, 0 <= start <= 3 The hue value at the start of the helix. rot : float Rotations around the hue wheel over the range of the palette. gamma : float 0 <= gamma Nonlinearity to emphasize dark (gamma < 1) or light (gamma > 1) colors. hue : float, 0 <= hue <= 1 Saturation of the colors. dark : float 0 <= dark <= 1 Intensity of the darkest color in the palette. light : float 0 <= light <= 1 Intensity of the lightest color in the palette. reverse : bool If True, the palette will go from dark to light. as_cmap : bool If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- choose_cubehelix_palette : Launch an interactive widget to select cubehelix palette parameters. dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. References ---------- Green, D. A. (2011). "A colour scheme for the display of astronomical intensity images". Bulletin of the Astromical Society of India, Vol. 39, p. 289-295. Examples -------- .. include:: ../docstrings/cubehelix_palette.rst """ def get_color_function(p0, p1): # Copied from matplotlib because it lives in private module def color(x): # Apply gamma factor to emphasise low or high intensity values xg = x ** gamma # Calculate amplitude and angle of deviation from the black # to white diagonal in the plane of constant # perceived intensity. a = hue * xg * (1 - xg) / 2 phi = 2 * np.pi * (start / 3 + rot * x) return xg + a * (p0 * np.cos(phi) + p1 * np.sin(phi)) return color cdict = { "red": get_color_function(-0.14861, 1.78277), "green": get_color_function(-0.29227, -0.90649), "blue": get_color_function(1.97294, 0.0), } cmap = mpl.colors.LinearSegmentedColormap("cubehelix", cdict) x = np.linspace(light, dark, int(n_colors)) pal = cmap(x)[:, :3].tolist() if reverse: pal = pal[::-1] if as_cmap: x_256 = np.linspace(light, dark, 256) if reverse: x_256 = x_256[::-1] pal_256 = cmap(x_256) cmap = mpl.colors.ListedColormap(pal_256, "seaborn_cubehelix") return cmap else: return _ColorPalette(pal)
Make a sequential palette from the cubehelix system. This produces a colormap with linearly-decreasing (or increasing) brightness. That means that information will be preserved if printed to black and white or viewed by someone who is colorblind. "cubehelix" is also available as a matplotlib-based palette, but this function gives the user more control over the look of the palette and has a different set of defaults. In addition to using this function, it is also possible to generate a cubehelix palette generally in seaborn using a string starting with `ch:` and containing other parameters (e.g. `"ch:s=.25,r=-.5"`). Parameters ---------- n_colors : int Number of colors in the palette. start : float, 0 <= start <= 3 The hue value at the start of the helix. rot : float Rotations around the hue wheel over the range of the palette. gamma : float 0 <= gamma Nonlinearity to emphasize dark (gamma < 1) or light (gamma > 1) colors. hue : float, 0 <= hue <= 1 Saturation of the colors. dark : float 0 <= dark <= 1 Intensity of the darkest color in the palette. light : float 0 <= light <= 1 Intensity of the lightest color in the palette. reverse : bool If True, the palette will go from dark to light. as_cmap : bool If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- palette list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- choose_cubehelix_palette : Launch an interactive widget to select cubehelix palette parameters. dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. References ---------- Green, D. A. (2011). "A colour scheme for the display of astronomical intensity images". Bulletin of the Astromical Society of India, Vol. 39, p. 289-295. Examples -------- .. include:: ../docstrings/cubehelix_palette.rst
cubehelix_palette
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def _parse_cubehelix_args(argstr): """Turn stringified cubehelix params into args/kwargs.""" if argstr.startswith("ch:"): argstr = argstr[3:] if argstr.endswith("_r"): reverse = True argstr = argstr[:-2] else: reverse = False if not argstr: return [], {"reverse": reverse} all_args = argstr.split(",") args = [float(a.strip(" ")) for a in all_args if "=" not in a] kwargs = [a.split("=") for a in all_args if "=" in a] kwargs = {k.strip(" "): float(v.strip(" ")) for k, v in kwargs} kwarg_map = dict( s="start", r="rot", g="gamma", h="hue", l="light", d="dark", # noqa: E741 ) kwargs = {kwarg_map.get(k, k): v for k, v in kwargs.items()} if reverse: kwargs["reverse"] = True return args, kwargs
Turn stringified cubehelix params into args/kwargs.
_parse_cubehelix_args
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def set_color_codes(palette="deep"): """Change how matplotlib color shorthands are interpreted. Calling this will change how shorthand codes like "b" or "g" are interpreted by matplotlib in subsequent plots. Parameters ---------- palette : {deep, muted, pastel, dark, bright, colorblind} Named seaborn palette to use as the source of colors. See Also -------- set : Color codes can be set through the high-level seaborn style manager. set_palette : Color codes can also be set through the function that sets the matplotlib color cycle. """ if palette == "reset": colors = [ (0., 0., 1.), (0., .5, 0.), (1., 0., 0.), (.75, 0., .75), (.75, .75, 0.), (0., .75, .75), (0., 0., 0.) ] elif not isinstance(palette, str): err = "set_color_codes requires a named seaborn palette" raise TypeError(err) elif palette in SEABORN_PALETTES: if not palette.endswith("6"): palette = palette + "6" colors = SEABORN_PALETTES[palette] + [(.1, .1, .1)] else: err = f"Cannot set colors with palette '{palette}'" raise ValueError(err) for code, color in zip("bgrmyck", colors): rgb = mpl.colors.colorConverter.to_rgb(color) mpl.colors.colorConverter.colors[code] = rgb
Change how matplotlib color shorthands are interpreted. Calling this will change how shorthand codes like "b" or "g" are interpreted by matplotlib in subsequent plots. Parameters ---------- palette : {deep, muted, pastel, dark, bright, colorblind} Named seaborn palette to use as the source of colors. See Also -------- set : Color codes can be set through the high-level seaborn style manager. set_palette : Color codes can also be set through the function that sets the matplotlib color cycle.
set_color_codes
python
mwaskom/seaborn
seaborn/palettes.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
BSD-3-Clause
def set_theme(context="notebook", style="darkgrid", palette="deep", font="sans-serif", font_scale=1, color_codes=True, rc=None): """ Set aspects of the visual theme for all matplotlib and seaborn plots. This function changes the global defaults for all plots using the matplotlib rcParams system. The themeing is decomposed into several distinct sets of parameter values. The options are illustrated in the :doc:`aesthetics <../tutorial/aesthetics>` and :doc:`color palette <../tutorial/color_palettes>` tutorials. Parameters ---------- context : string or dict Scaling parameters, see :func:`plotting_context`. style : string or dict Axes style parameters, see :func:`axes_style`. palette : string or sequence Color palette, see :func:`color_palette`. font : string Font family, see matplotlib font manager. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. color_codes : bool If ``True`` and ``palette`` is a seaborn palette, remap the shorthand color codes (e.g. "b", "g", "r", etc.) to the colors from this palette. rc : dict or None Dictionary of rc parameter mappings to override the above. Examples -------- .. include:: ../docstrings/set_theme.rst """ set_context(context, font_scale) set_style(style, rc={"font.family": font}) set_palette(palette, color_codes=color_codes) if rc is not None: mpl.rcParams.update(rc)
Set aspects of the visual theme for all matplotlib and seaborn plots. This function changes the global defaults for all plots using the matplotlib rcParams system. The themeing is decomposed into several distinct sets of parameter values. The options are illustrated in the :doc:`aesthetics <../tutorial/aesthetics>` and :doc:`color palette <../tutorial/color_palettes>` tutorials. Parameters ---------- context : string or dict Scaling parameters, see :func:`plotting_context`. style : string or dict Axes style parameters, see :func:`axes_style`. palette : string or sequence Color palette, see :func:`color_palette`. font : string Font family, see matplotlib font manager. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. color_codes : bool If ``True`` and ``palette`` is a seaborn palette, remap the shorthand color codes (e.g. "b", "g", "r", etc.) to the colors from this palette. rc : dict or None Dictionary of rc parameter mappings to override the above. Examples -------- .. include:: ../docstrings/set_theme.rst
set_theme
python
mwaskom/seaborn
seaborn/rcmod.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py
BSD-3-Clause
def axes_style(style=None, rc=None): """ Get the parameters that control the general style of the plots. The style parameters control properties like the color of the background and whether a grid is enabled by default. This is accomplished using the matplotlib rcParams system. The options are illustrated in the :doc:`aesthetics tutorial <../tutorial/aesthetics>`. This function can also be used as a context manager to temporarily alter the global defaults. See :func:`set_theme` or :func:`set_style` to modify the global defaults for all plots. Parameters ---------- style : None, dict, or one of {darkgrid, whitegrid, dark, white, ticks} A dictionary of parameters or the name of a preconfigured style. rc : dict, optional Parameter mappings to override the values in the preset seaborn style dictionaries. This only updates parameters that are considered part of the style definition. Examples -------- .. include:: ../docstrings/axes_style.rst """ if style is None: style_dict = {k: mpl.rcParams[k] for k in _style_keys} elif isinstance(style, dict): style_dict = style else: styles = ["white", "dark", "whitegrid", "darkgrid", "ticks"] if style not in styles: raise ValueError(f"style must be one of {', '.join(styles)}") # Define colors here dark_gray = ".15" light_gray = ".8" # Common parameters style_dict = { "figure.facecolor": "white", "axes.labelcolor": dark_gray, "xtick.direction": "out", "ytick.direction": "out", "xtick.color": dark_gray, "ytick.color": dark_gray, "axes.axisbelow": True, "grid.linestyle": "-", "text.color": dark_gray, "font.family": ["sans-serif"], "font.sans-serif": ["Arial", "DejaVu Sans", "Liberation Sans", "Bitstream Vera Sans", "sans-serif"], "lines.solid_capstyle": "round", "patch.edgecolor": "w", "patch.force_edgecolor": True, "image.cmap": "rocket", "xtick.top": False, "ytick.right": False, } # Set grid on or off if "grid" in style: style_dict.update({ "axes.grid": True, }) else: style_dict.update({ "axes.grid": False, }) # Set the color of the background, spines, and grids if style.startswith("dark"): style_dict.update({ "axes.facecolor": "#EAEAF2", "axes.edgecolor": "white", "grid.color": "white", "axes.spines.left": True, "axes.spines.bottom": True, "axes.spines.right": True, "axes.spines.top": True, }) elif style == "whitegrid": style_dict.update({ "axes.facecolor": "white", "axes.edgecolor": light_gray, "grid.color": light_gray, "axes.spines.left": True, "axes.spines.bottom": True, "axes.spines.right": True, "axes.spines.top": True, }) elif style in ["white", "ticks"]: style_dict.update({ "axes.facecolor": "white", "axes.edgecolor": dark_gray, "grid.color": light_gray, "axes.spines.left": True, "axes.spines.bottom": True, "axes.spines.right": True, "axes.spines.top": True, }) # Show or hide the axes ticks if style == "ticks": style_dict.update({ "xtick.bottom": True, "ytick.left": True, }) else: style_dict.update({ "xtick.bottom": False, "ytick.left": False, }) # Remove entries that are not defined in the base list of valid keys # This lets us handle matplotlib <=/> 2.0 style_dict = {k: v for k, v in style_dict.items() if k in _style_keys} # Override these settings with the provided rc dictionary if rc is not None: rc = {k: v for k, v in rc.items() if k in _style_keys} style_dict.update(rc) # Wrap in an _AxesStyle object so this can be used in a with statement style_object = _AxesStyle(style_dict) return style_object
Get the parameters that control the general style of the plots. The style parameters control properties like the color of the background and whether a grid is enabled by default. This is accomplished using the matplotlib rcParams system. The options are illustrated in the :doc:`aesthetics tutorial <../tutorial/aesthetics>`. This function can also be used as a context manager to temporarily alter the global defaults. See :func:`set_theme` or :func:`set_style` to modify the global defaults for all plots. Parameters ---------- style : None, dict, or one of {darkgrid, whitegrid, dark, white, ticks} A dictionary of parameters or the name of a preconfigured style. rc : dict, optional Parameter mappings to override the values in the preset seaborn style dictionaries. This only updates parameters that are considered part of the style definition. Examples -------- .. include:: ../docstrings/axes_style.rst
axes_style
python
mwaskom/seaborn
seaborn/rcmod.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py
BSD-3-Clause
def plotting_context(context=None, font_scale=1, rc=None): """ Get the parameters that control the scaling of plot elements. These parameters correspond to label size, line thickness, etc. For more information, see the :doc:`aesthetics tutorial <../tutorial/aesthetics>`. The base context is "notebook", and the other contexts are "paper", "talk", and "poster", which are version of the notebook parameters scaled by different values. Font elements can also be scaled independently of (but relative to) the other values. This function can also be used as a context manager to temporarily alter the global defaults. See :func:`set_theme` or :func:`set_context` to modify the global defaults for all plots. Parameters ---------- context : None, dict, or one of {paper, notebook, talk, poster} A dictionary of parameters or the name of a preconfigured set. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. rc : dict, optional Parameter mappings to override the values in the preset seaborn context dictionaries. This only updates parameters that are considered part of the context definition. Examples -------- .. include:: ../docstrings/plotting_context.rst """ if context is None: context_dict = {k: mpl.rcParams[k] for k in _context_keys} elif isinstance(context, dict): context_dict = context else: contexts = ["paper", "notebook", "talk", "poster"] if context not in contexts: raise ValueError(f"context must be in {', '.join(contexts)}") # Set up dictionary of default parameters texts_base_context = { "font.size": 12, "axes.labelsize": 12, "axes.titlesize": 12, "xtick.labelsize": 11, "ytick.labelsize": 11, "legend.fontsize": 11, "legend.title_fontsize": 12, } base_context = { "axes.linewidth": 1.25, "grid.linewidth": 1, "lines.linewidth": 1.5, "lines.markersize": 6, "patch.linewidth": 1, "xtick.major.width": 1.25, "ytick.major.width": 1.25, "xtick.minor.width": 1, "ytick.minor.width": 1, "xtick.major.size": 6, "ytick.major.size": 6, "xtick.minor.size": 4, "ytick.minor.size": 4, } base_context.update(texts_base_context) # Scale all the parameters by the same factor depending on the context scaling = dict(paper=.8, notebook=1, talk=1.5, poster=2)[context] context_dict = {k: v * scaling for k, v in base_context.items()} # Now independently scale the fonts font_keys = texts_base_context.keys() font_dict = {k: context_dict[k] * font_scale for k in font_keys} context_dict.update(font_dict) # Override these settings with the provided rc dictionary if rc is not None: rc = {k: v for k, v in rc.items() if k in _context_keys} context_dict.update(rc) # Wrap in a _PlottingContext object so this can be used in a with statement context_object = _PlottingContext(context_dict) return context_object
Get the parameters that control the scaling of plot elements. These parameters correspond to label size, line thickness, etc. For more information, see the :doc:`aesthetics tutorial <../tutorial/aesthetics>`. The base context is "notebook", and the other contexts are "paper", "talk", and "poster", which are version of the notebook parameters scaled by different values. Font elements can also be scaled independently of (but relative to) the other values. This function can also be used as a context manager to temporarily alter the global defaults. See :func:`set_theme` or :func:`set_context` to modify the global defaults for all plots. Parameters ---------- context : None, dict, or one of {paper, notebook, talk, poster} A dictionary of parameters or the name of a preconfigured set. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. rc : dict, optional Parameter mappings to override the values in the preset seaborn context dictionaries. This only updates parameters that are considered part of the context definition. Examples -------- .. include:: ../docstrings/plotting_context.rst
plotting_context
python
mwaskom/seaborn
seaborn/rcmod.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py
BSD-3-Clause
def set_palette(palette, n_colors=None, desat=None, color_codes=False): """Set the matplotlib color cycle using a seaborn palette. Parameters ---------- palette : seaborn color palette | matplotlib colormap | hls | husl Palette definition. Should be something :func:`color_palette` can process. n_colors : int Number of colors in the cycle. The default number of colors will depend on the format of ``palette``, see the :func:`color_palette` documentation for more information. desat : float Proportion to desaturate each color by. color_codes : bool If ``True`` and ``palette`` is a seaborn palette, remap the shorthand color codes (e.g. "b", "g", "r", etc.) to the colors from this palette. See Also -------- color_palette : build a color palette or set the color cycle temporarily in a ``with`` statement. set_context : set parameters to scale plot elements set_style : set the default parameters for figure style """ colors = palettes.color_palette(palette, n_colors, desat) cyl = cycler('color', colors) mpl.rcParams['axes.prop_cycle'] = cyl if color_codes: try: palettes.set_color_codes(palette) except (ValueError, TypeError): pass
Set the matplotlib color cycle using a seaborn palette. Parameters ---------- palette : seaborn color palette | matplotlib colormap | hls | husl Palette definition. Should be something :func:`color_palette` can process. n_colors : int Number of colors in the cycle. The default number of colors will depend on the format of ``palette``, see the :func:`color_palette` documentation for more information. desat : float Proportion to desaturate each color by. color_codes : bool If ``True`` and ``palette`` is a seaborn palette, remap the shorthand color codes (e.g. "b", "g", "r", etc.) to the colors from this palette. See Also -------- color_palette : build a color palette or set the color cycle temporarily in a ``with`` statement. set_context : set parameters to scale plot elements set_style : set the default parameters for figure style
set_palette
python
mwaskom/seaborn
seaborn/rcmod.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/rcmod.py
BSD-3-Clause
def establish_variables(self, data, **kws): """Extract variables from data or use directly.""" self.data = data # Validate the inputs any_strings = any([isinstance(v, str) for v in kws.values()]) if any_strings and data is None: raise ValueError("Must pass `data` if using named variables.") # Set the variables for var, val in kws.items(): if isinstance(val, str): vector = data[val] elif isinstance(val, list): vector = np.asarray(val) else: vector = val if vector is not None and vector.shape != (1,): vector = np.squeeze(vector) if np.ndim(vector) > 1: err = "regplot inputs must be 1d" raise ValueError(err) setattr(self, var, vector)
Extract variables from data or use directly.
establish_variables
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def scatter_data(self): """Data where each observation is a point.""" x_j = self.x_jitter if x_j is None: x = self.x else: x = self.x + np.random.uniform(-x_j, x_j, len(self.x)) y_j = self.y_jitter if y_j is None: y = self.y else: y = self.y + np.random.uniform(-y_j, y_j, len(self.y)) return x, y
Data where each observation is a point.
scatter_data
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def estimate_data(self): """Data with a point estimate and CI for each discrete x value.""" x, y = self.x_discrete, self.y vals = sorted(np.unique(x)) points, cis = [], [] for val in vals: # Get the point estimate of the y variable _y = y[x == val] est = self.x_estimator(_y) points.append(est) # Compute the confidence interval for this estimate if self.x_ci is None: cis.append(None) else: units = None if self.x_ci == "sd": sd = np.std(_y) _ci = est - sd, est + sd else: if self.units is not None: units = self.units[x == val] boots = algo.bootstrap(_y, func=self.x_estimator, n_boot=self.n_boot, units=units, seed=self.seed) _ci = utils.ci(boots, self.x_ci) cis.append(_ci) return vals, points, cis
Data with a point estimate and CI for each discrete x value.
estimate_data
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def _check_statsmodels(self): """Check whether statsmodels is installed if any boolean options require it.""" options = "logistic", "robust", "lowess" err = "`{}=True` requires statsmodels, an optional dependency, to be installed." for option in options: if getattr(self, option) and not _has_statsmodels: raise RuntimeError(err.format(option))
Check whether statsmodels is installed if any boolean options require it.
_check_statsmodels
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def fit_fast(self, grid): """Low-level regression and prediction using linear algebra.""" def reg_func(_x, _y): return np.linalg.pinv(_x).dot(_y) X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), grid] yhat = grid.dot(reg_func(X, y)) if self.ci is None: return yhat, None beta_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units, seed=self.seed).T yhat_boots = grid.dot(beta_boots).T return yhat, yhat_boots
Low-level regression and prediction using linear algebra.
fit_fast
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def fit_poly(self, grid, order): """Regression using numpy polyfit for higher-order trends.""" def reg_func(_x, _y): return np.polyval(np.polyfit(_x, _y, order), grid) x, y = self.x, self.y yhat = reg_func(x, y) if self.ci is None: return yhat, None yhat_boots = algo.bootstrap(x, y, func=reg_func, n_boot=self.n_boot, units=self.units, seed=self.seed) return yhat, yhat_boots
Regression using numpy polyfit for higher-order trends.
fit_poly
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def fit_statsmodels(self, grid, model, **kwargs): """More general regression function using statsmodels objects.""" import statsmodels.tools.sm_exceptions as sme X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), grid] def reg_func(_x, _y): err_classes = (sme.PerfectSeparationError,) try: with warnings.catch_warnings(): if hasattr(sme, "PerfectSeparationWarning"): # statsmodels>=0.14.0 warnings.simplefilter("error", sme.PerfectSeparationWarning) err_classes = (*err_classes, sme.PerfectSeparationWarning) yhat = model(_y, _x, **kwargs).fit().predict(grid) except err_classes: yhat = np.empty(len(grid)) yhat.fill(np.nan) return yhat yhat = reg_func(X, y) if self.ci is None: return yhat, None yhat_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units, seed=self.seed) return yhat, yhat_boots
More general regression function using statsmodels objects.
fit_statsmodels
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def fit_lowess(self): """Fit a locally-weighted regression, which returns its own grid.""" from statsmodels.nonparametric.smoothers_lowess import lowess grid, yhat = lowess(self.y, self.x).T return grid, yhat
Fit a locally-weighted regression, which returns its own grid.
fit_lowess
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def fit_logx(self, grid): """Fit the model in log-space.""" X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), np.log(grid)] def reg_func(_x, _y): _x = np.c_[_x[:, 0], np.log(_x[:, 1])] return np.linalg.pinv(_x).dot(_y) yhat = grid.dot(reg_func(X, y)) if self.ci is None: return yhat, None beta_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units, seed=self.seed).T yhat_boots = grid.dot(beta_boots).T return yhat, yhat_boots
Fit the model in log-space.
fit_logx
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def bin_predictor(self, bins): """Discretize a predictor by assigning value to closest bin.""" x = np.asarray(self.x) if np.isscalar(bins): percentiles = np.linspace(0, 100, bins + 2)[1:-1] bins = np.percentile(x, percentiles) else: bins = np.ravel(bins) dist = np.abs(np.subtract.outer(x, bins)) x_binned = bins[np.argmin(dist, axis=1)].ravel() return x_binned, bins
Discretize a predictor by assigning value to closest bin.
bin_predictor
python
mwaskom/seaborn
seaborn/regression.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/regression.py
BSD-3-Clause
def plot(self, ax, kws): """Draw the plot onto an axes, passing matplotlib kwargs.""" # Draw a test plot, using the passed in kwargs. The goal here is to # honor both (a) the current state of the plot cycler and (b) the # specified kwargs on all the lines we will draw, overriding when # relevant with the data semantics. Note that we won't cycle # internally; in other words, if `hue` is not used, all elements will # have the same color, but they will have the color that you would have # gotten from the corresponding matplotlib function, and calling the # function will advance the axes property cycle. kws = normalize_kwargs(kws, mpl.lines.Line2D) kws.setdefault("markeredgewidth", 0.75) kws.setdefault("markeredgecolor", "w") # Set default error kwargs err_kws = self.err_kws.copy() if self.err_style == "band": err_kws.setdefault("alpha", .2) elif self.err_style == "bars": pass elif self.err_style is not None: err = "`err_style` must be 'band' or 'bars', not {}" raise ValueError(err.format(self.err_style)) # Initialize the aggregation object weighted = "weight" in self.plot_data agg = (WeightedAggregator if weighted else EstimateAggregator)( self.estimator, self.errorbar, n_boot=self.n_boot, seed=self.seed, ) # TODO abstract variable to aggregate over here-ish. Better name? orient = self.orient if orient not in {"x", "y"}: err = f"`orient` must be either 'x' or 'y', not {orient!r}." raise ValueError(err) other = {"x": "y", "y": "x"}[orient] # TODO How to handle NA? We don't want NA to propagate through to the # estimate/CI when some values are present, but we would also like # matplotlib to show "gaps" in the line when all values are missing. # This is straightforward absent aggregation, but complicated with it. # If we want to use nas, we need to conditionalize dropna in iter_data. # Loop over the semantic subsets and add to the plot grouping_vars = "hue", "size", "style" for sub_vars, sub_data in self.iter_data(grouping_vars, from_comp_data=True): if self.sort: sort_vars = ["units", orient, other] sort_cols = [var for var in sort_vars if var in self.variables] sub_data = sub_data.sort_values(sort_cols) if ( self.estimator is not None and sub_data[orient].value_counts().max() > 1 ): if "units" in self.variables: # TODO eventually relax this constraint err = "estimator must be None when specifying units" raise ValueError(err) grouped = sub_data.groupby(orient, sort=self.sort) # Could pass as_index=False instead of reset_index, # but that fails on a corner case with older pandas. sub_data = ( grouped .apply(agg, other, **groupby_apply_include_groups(False)) .reset_index() ) else: sub_data[f"{other}min"] = np.nan sub_data[f"{other}max"] = np.nan # Apply inverse axis scaling for var in "xy": _, inv = _get_transform_functions(ax, var) for col in sub_data.filter(regex=f"^{var}"): sub_data[col] = inv(sub_data[col]) # --- Draw the main line(s) if "units" in self.variables: # XXX why not add to grouping variables? lines = [] for _, unit_data in sub_data.groupby("units"): lines.extend(ax.plot(unit_data["x"], unit_data["y"], **kws)) else: lines = ax.plot(sub_data["x"], sub_data["y"], **kws) for line in lines: if "hue" in sub_vars: line.set_color(self._hue_map(sub_vars["hue"])) if "size" in sub_vars: line.set_linewidth(self._size_map(sub_vars["size"])) if "style" in sub_vars: attributes = self._style_map(sub_vars["style"]) if "dashes" in attributes: line.set_dashes(attributes["dashes"]) if "marker" in attributes: line.set_marker(attributes["marker"]) line_color = line.get_color() line_alpha = line.get_alpha() line_capstyle = line.get_solid_capstyle() # --- Draw the confidence intervals if self.estimator is not None and self.errorbar is not None: # TODO handling of orientation will need to happen here if self.err_style == "band": func = {"x": ax.fill_between, "y": ax.fill_betweenx}[orient] func( sub_data[orient], sub_data[f"{other}min"], sub_data[f"{other}max"], color=line_color, **err_kws ) elif self.err_style == "bars": error_param = { f"{other}err": ( sub_data[other] - sub_data[f"{other}min"], sub_data[f"{other}max"] - sub_data[other], ) } ebars = ax.errorbar( sub_data["x"], sub_data["y"], **error_param, linestyle="", color=line_color, alpha=line_alpha, **err_kws ) # Set the capstyle properly on the error bars for obj in ebars.get_children(): if isinstance(obj, mpl.collections.LineCollection): obj.set_capstyle(line_capstyle) # Finalize the axes details self._add_axis_labels(ax) if self.legend: legend_artist = partial(mpl.lines.Line2D, xdata=[], ydata=[]) attrs = {"hue": "color", "size": "linewidth", "style": None} self.add_legend_data(ax, legend_artist, kws, attrs) handles, _ = ax.get_legend_handles_labels() if handles: legend = ax.legend(title=self.legend_title) adjust_legend_subtitles(legend)
Draw the plot onto an axes, passing matplotlib kwargs.
plot
python
mwaskom/seaborn
seaborn/relational.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/relational.py
BSD-3-Clause
def _draw_figure(fig): """Force draw of a matplotlib figure, accounting for back-compat.""" # See https://github.com/matplotlib/matplotlib/issues/19197 for context fig.canvas.draw() if fig.stale: try: fig.draw(fig.canvas.get_renderer()) except AttributeError: pass
Force draw of a matplotlib figure, accounting for back-compat.
_draw_figure
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _default_color(method, hue, color, kws, saturation=1): """If needed, get a default color by using the matplotlib property cycle.""" if hue is not None: # This warning is probably user-friendly, but it's currently triggered # in a FacetGrid context and I don't want to mess with that logic right now # if color is not None: # msg = "`color` is ignored when `hue` is assigned." # warnings.warn(msg) return None kws = kws.copy() kws.pop("label", None) if color is not None: if saturation < 1: color = desaturate(color, saturation) return color elif method.__name__ == "plot": color = normalize_kwargs(kws, mpl.lines.Line2D).get("color") scout, = method([], [], scalex=False, scaley=False, color=color) color = scout.get_color() scout.remove() elif method.__name__ == "scatter": # Matplotlib will raise if the size of x/y don't match s/c, # and the latter might be in the kws dict scout_size = max( np.atleast_1d(kws.get(key, [])).shape[0] for key in ["s", "c", "fc", "facecolor", "facecolors"] ) scout_x = scout_y = np.full(scout_size, np.nan) scout = method(scout_x, scout_y, **kws) facecolors = scout.get_facecolors() if not len(facecolors): # Handle bug in matplotlib <= 3.2 (I think) # This will limit the ability to use non color= kwargs to specify # a color in versions of matplotlib with the bug, but trying to # work out what the user wanted by re-implementing the broken logic # of inspecting the kwargs is probably too brittle. single_color = False else: single_color = np.unique(facecolors, axis=0).shape[0] == 1 # Allow the user to specify an array of colors through various kwargs if "c" not in kws and single_color: color = to_rgb(facecolors[0]) scout.remove() elif method.__name__ == "bar": # bar() needs masked, not empty data, to generate a patch scout, = method([np.nan], [np.nan], **kws) color = to_rgb(scout.get_facecolor()) scout.remove() # Axes.bar adds both a patch and a container method.__self__.containers.pop(-1) elif method.__name__ == "fill_between": kws = normalize_kwargs(kws, mpl.collections.PolyCollection) scout = method([], [], **kws) facecolor = scout.get_facecolor() color = to_rgb(facecolor[0]) scout.remove() if saturation < 1: color = desaturate(color, saturation) return color
If needed, get a default color by using the matplotlib property cycle.
_default_color
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def desaturate(color, prop): """Decrease the saturation channel of a color by some percent. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name prop : float saturation channel of color will be multiplied by this value Returns ------- new_color : rgb tuple desaturated color code in RGB tuple representation """ # Check inputs if not 0 <= prop <= 1: raise ValueError("prop must be between 0 and 1") # Get rgb tuple rep rgb = to_rgb(color) # Short circuit to avoid floating point issues if prop == 1: return rgb # Convert to hls h, l, s = colorsys.rgb_to_hls(*rgb) # Desaturate the saturation channel s *= prop # Convert back to rgb new_color = colorsys.hls_to_rgb(h, l, s) return new_color
Decrease the saturation channel of a color by some percent. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name prop : float saturation channel of color will be multiplied by this value Returns ------- new_color : rgb tuple desaturated color code in RGB tuple representation
desaturate
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def set_hls_values(color, h=None, l=None, s=None): # noqa """Independently manipulate the h, l, or s channels of a color. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name h, l, s : floats between 0 and 1, or None new values for each channel in hls space Returns ------- new_color : rgb tuple new color code in RGB tuple representation """ # Get an RGB tuple representation rgb = to_rgb(color) vals = list(colorsys.rgb_to_hls(*rgb)) for i, val in enumerate([h, l, s]): if val is not None: vals[i] = val rgb = colorsys.hls_to_rgb(*vals) return rgb
Independently manipulate the h, l, or s channels of a color. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name h, l, s : floats between 0 and 1, or None new values for each channel in hls space Returns ------- new_color : rgb tuple new color code in RGB tuple representation
set_hls_values
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def axlabel(xlabel, ylabel, **kwargs): """Grab current axis and label it. DEPRECATED: will be removed in a future version. """ msg = "This function is deprecated and will be removed in a future version" warnings.warn(msg, FutureWarning) ax = plt.gca() ax.set_xlabel(xlabel, **kwargs) ax.set_ylabel(ylabel, **kwargs)
Grab current axis and label it. DEPRECATED: will be removed in a future version.
axlabel
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def get_color_cycle(): """Return the list of colors in the current matplotlib color cycle Parameters ---------- None Returns ------- colors : list List of matplotlib colors in the current cycle, or dark gray if the current color cycle is empty. """ cycler = mpl.rcParams['axes.prop_cycle'] return cycler.by_key()['color'] if 'color' in cycler.keys else [".15"]
Return the list of colors in the current matplotlib color cycle Parameters ---------- None Returns ------- colors : list List of matplotlib colors in the current cycle, or dark gray if the current color cycle is empty.
get_color_cycle
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def move_legend(obj, loc, **kwargs): """ Recreate a plot's legend at a new location. The name is a slight misnomer. Matplotlib legends do not expose public control over their position parameters. So this function creates a new legend, copying over the data from the original object, which is then removed. Parameters ---------- obj : the object with the plot This argument can be either a seaborn or matplotlib object: - :class:`seaborn.FacetGrid` or :class:`seaborn.PairGrid` - :class:`matplotlib.axes.Axes` or :class:`matplotlib.figure.Figure` loc : str or int Location argument, as in :meth:`matplotlib.axes.Axes.legend`. kwargs Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.legend`. Examples -------- .. include:: ../docstrings/move_legend.rst """ # This is a somewhat hackish solution that will hopefully be obviated by # upstream improvements to matplotlib legends that make them easier to # modify after creation. from seaborn.axisgrid import Grid # Avoid circular import # Locate the legend object and a method to recreate the legend if isinstance(obj, Grid): old_legend = obj.legend legend_func = obj.figure.legend elif isinstance(obj, mpl.axes.Axes): old_legend = obj.legend_ legend_func = obj.legend elif isinstance(obj, mpl.figure.Figure): if obj.legends: old_legend = obj.legends[-1] else: old_legend = None legend_func = obj.legend else: err = "`obj` must be a seaborn Grid or matplotlib Axes or Figure instance." raise TypeError(err) if old_legend is None: err = f"{obj} has no legend attached." raise ValueError(err) # Extract the components of the legend we need to reuse # Import here to avoid a circular import from seaborn._compat import get_legend_handles handles = get_legend_handles(old_legend) labels = [t.get_text() for t in old_legend.get_texts()] # Handle the case where the user is trying to override the labels if (new_labels := kwargs.pop("labels", None)) is not None: if len(new_labels) != len(labels): err = "Length of new labels does not match existing legend." raise ValueError(err) labels = new_labels # Extract legend properties that can be passed to the recreation method # (Vexingly, these don't all round-trip) legend_kws = inspect.signature(mpl.legend.Legend).parameters props = {k: v for k, v in old_legend.properties().items() if k in legend_kws} # Delegate default bbox_to_anchor rules to matplotlib props.pop("bbox_to_anchor") # Try to propagate the existing title and font properties; respect new ones too title = props.pop("title") if "title" in kwargs: title.set_text(kwargs.pop("title")) title_kwargs = {k: v for k, v in kwargs.items() if k.startswith("title_")} for key, val in title_kwargs.items(): title.set(**{key[6:]: val}) kwargs.pop(key) # Try to respect the frame visibility kwargs.setdefault("frameon", old_legend.legendPatch.get_visible()) # Remove the old legend and create the new one props.update(kwargs) old_legend.remove() new_legend = legend_func(handles, labels, loc=loc, **props) new_legend.set_title(title.get_text(), title.get_fontproperties()) # Let the Grid object continue to track the correct legend object if isinstance(obj, Grid): obj._legend = new_legend
Recreate a plot's legend at a new location. The name is a slight misnomer. Matplotlib legends do not expose public control over their position parameters. So this function creates a new legend, copying over the data from the original object, which is then removed. Parameters ---------- obj : the object with the plot This argument can be either a seaborn or matplotlib object: - :class:`seaborn.FacetGrid` or :class:`seaborn.PairGrid` - :class:`matplotlib.axes.Axes` or :class:`matplotlib.figure.Figure` loc : str or int Location argument, as in :meth:`matplotlib.axes.Axes.legend`. kwargs Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.legend`. Examples -------- .. include:: ../docstrings/move_legend.rst
move_legend
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _kde_support(data, bw, gridsize, cut, clip): """Establish support for a kernel density estimate.""" support_min = max(data.min() - bw * cut, clip[0]) support_max = min(data.max() + bw * cut, clip[1]) support = np.linspace(support_min, support_max, gridsize) return support
Establish support for a kernel density estimate.
_kde_support
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def ci(a, which=95, axis=None): """Return a percentile range from an array of values.""" p = 50 - which / 2, 50 + which / 2 return np.nanpercentile(a, p, axis)
Return a percentile range from an array of values.
ci
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def get_dataset_names(): """Report available example datasets, useful for reporting issues. Requires an internet connection. """ with urlopen(DATASET_NAMES_URL) as resp: txt = resp.read() dataset_names = [name.strip() for name in txt.decode().split("\n")] return list(filter(None, dataset_names))
Report available example datasets, useful for reporting issues. Requires an internet connection.
get_dataset_names
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def get_data_home(data_home=None): """Return a path to the cache directory for example datasets. This directory is used by :func:`load_dataset`. If the ``data_home`` argument is not provided, it will use a directory specified by the `SEABORN_DATA` environment variable (if it exists) or otherwise default to an OS-appropriate user cache location. """ if data_home is None: data_home = os.environ.get("SEABORN_DATA", user_cache_dir("seaborn")) data_home = os.path.expanduser(data_home) if not os.path.exists(data_home): os.makedirs(data_home) return data_home
Return a path to the cache directory for example datasets. This directory is used by :func:`load_dataset`. If the ``data_home`` argument is not provided, it will use a directory specified by the `SEABORN_DATA` environment variable (if it exists) or otherwise default to an OS-appropriate user cache location.
get_data_home
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def load_dataset(name, cache=True, data_home=None, **kws): """Load an example dataset from the online repository (requires internet). This function provides quick access to a small number of example datasets that are useful for documenting seaborn or generating reproducible examples for bug reports. It is not necessary for normal usage. Note that some of the datasets have a small amount of preprocessing applied to define a proper ordering for categorical variables. Use :func:`get_dataset_names` to see a list of available datasets. Parameters ---------- name : str Name of the dataset (``{name}.csv`` on https://github.com/mwaskom/seaborn-data). cache : boolean, optional If True, try to load from the local cache first, and save to the cache if a download is required. data_home : string, optional The directory in which to cache data; see :func:`get_data_home`. kws : keys and values, optional Additional keyword arguments are passed to passed through to :func:`pandas.read_csv`. Returns ------- df : :class:`pandas.DataFrame` Tabular data, possibly with some preprocessing applied. """ # A common beginner mistake is to assume that one's personal data needs # to be passed through this function to be usable with seaborn. # Let's provide a more helpful error than you would otherwise get. if isinstance(name, pd.DataFrame): err = ( "This function accepts only strings (the name of an example dataset). " "You passed a pandas DataFrame. If you have your own dataset, " "it is not necessary to use this function before plotting." ) raise TypeError(err) url = f"{DATASET_SOURCE}/{name}.csv" if cache: cache_path = os.path.join(get_data_home(data_home), os.path.basename(url)) if not os.path.exists(cache_path): if name not in get_dataset_names(): raise ValueError(f"'{name}' is not one of the example datasets.") urlretrieve(url, cache_path) full_path = cache_path else: full_path = url df = pd.read_csv(full_path, **kws) if df.iloc[-1].isnull().all(): df = df.iloc[:-1] # Set some columns as a categorical type with ordered levels if name == "tips": df["day"] = pd.Categorical(df["day"], ["Thur", "Fri", "Sat", "Sun"]) df["sex"] = pd.Categorical(df["sex"], ["Male", "Female"]) df["time"] = pd.Categorical(df["time"], ["Lunch", "Dinner"]) df["smoker"] = pd.Categorical(df["smoker"], ["Yes", "No"]) elif name == "flights": months = df["month"].str[:3] df["month"] = pd.Categorical(months, months.unique()) elif name == "exercise": df["time"] = pd.Categorical(df["time"], ["1 min", "15 min", "30 min"]) df["kind"] = pd.Categorical(df["kind"], ["rest", "walking", "running"]) df["diet"] = pd.Categorical(df["diet"], ["no fat", "low fat"]) elif name == "titanic": df["class"] = pd.Categorical(df["class"], ["First", "Second", "Third"]) df["deck"] = pd.Categorical(df["deck"], list("ABCDEFG")) elif name == "penguins": df["sex"] = df["sex"].str.title() elif name == "diamonds": df["color"] = pd.Categorical( df["color"], ["D", "E", "F", "G", "H", "I", "J"], ) df["clarity"] = pd.Categorical( df["clarity"], ["IF", "VVS1", "VVS2", "VS1", "VS2", "SI1", "SI2", "I1"], ) df["cut"] = pd.Categorical( df["cut"], ["Ideal", "Premium", "Very Good", "Good", "Fair"], ) elif name == "taxis": df["pickup"] = pd.to_datetime(df["pickup"]) df["dropoff"] = pd.to_datetime(df["dropoff"]) elif name == "seaice": df["Date"] = pd.to_datetime(df["Date"]) elif name == "dowjones": df["Date"] = pd.to_datetime(df["Date"]) return df
Load an example dataset from the online repository (requires internet). This function provides quick access to a small number of example datasets that are useful for documenting seaborn or generating reproducible examples for bug reports. It is not necessary for normal usage. Note that some of the datasets have a small amount of preprocessing applied to define a proper ordering for categorical variables. Use :func:`get_dataset_names` to see a list of available datasets. Parameters ---------- name : str Name of the dataset (``{name}.csv`` on https://github.com/mwaskom/seaborn-data). cache : boolean, optional If True, try to load from the local cache first, and save to the cache if a download is required. data_home : string, optional The directory in which to cache data; see :func:`get_data_home`. kws : keys and values, optional Additional keyword arguments are passed to passed through to :func:`pandas.read_csv`. Returns ------- df : :class:`pandas.DataFrame` Tabular data, possibly with some preprocessing applied.
load_dataset
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def axis_ticklabels_overlap(labels): """Return a boolean for whether the list of ticklabels have overlaps. Parameters ---------- labels : list of matplotlib ticklabels Returns ------- overlap : boolean True if any of the labels overlap. """ if not labels: return False try: bboxes = [l.get_window_extent() for l in labels] overlaps = [b.count_overlaps(bboxes) for b in bboxes] return max(overlaps) > 1 except RuntimeError: # Issue on macos backend raises an error in the above code return False
Return a boolean for whether the list of ticklabels have overlaps. Parameters ---------- labels : list of matplotlib ticklabels Returns ------- overlap : boolean True if any of the labels overlap.
axis_ticklabels_overlap
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def locator_to_legend_entries(locator, limits, dtype): """Return levels and formatted levels for brief numeric legends.""" raw_levels = locator.tick_values(*limits).astype(dtype) # The locator can return ticks outside the limits, clip them here raw_levels = [l for l in raw_levels if l >= limits[0] and l <= limits[1]] class dummy_axis: def get_view_interval(self): return limits if isinstance(locator, mpl.ticker.LogLocator): formatter = mpl.ticker.LogFormatter() else: formatter = mpl.ticker.ScalarFormatter() # Avoid having an offset/scientific notation which we don't currently # have any way of representing in the legend formatter.set_useOffset(False) formatter.set_scientific(False) formatter.axis = dummy_axis() formatted_levels = formatter.format_ticks(raw_levels) return raw_levels, formatted_levels
Return levels and formatted levels for brief numeric legends.
locator_to_legend_entries
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def relative_luminance(color): """Calculate the relative luminance of a color according to W3C standards Parameters ---------- color : matplotlib color or sequence of matplotlib colors Hex code, rgb-tuple, or html color name. Returns ------- luminance : float(s) between 0 and 1 """ rgb = mpl.colors.colorConverter.to_rgba_array(color)[:, :3] rgb = np.where(rgb <= .03928, rgb / 12.92, ((rgb + .055) / 1.055) ** 2.4) lum = rgb.dot([.2126, .7152, .0722]) try: return lum.item() except ValueError: return lum
Calculate the relative luminance of a color according to W3C standards Parameters ---------- color : matplotlib color or sequence of matplotlib colors Hex code, rgb-tuple, or html color name. Returns ------- luminance : float(s) between 0 and 1
relative_luminance
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def to_utf8(obj): """Return a string representing a Python object. Strings (i.e. type ``str``) are returned unchanged. Byte strings (i.e. type ``bytes``) are returned as UTF-8-decoded strings. For other objects, the method ``__str__()`` is called, and the result is returned as a string. Parameters ---------- obj : object Any Python object Returns ------- s : str UTF-8-decoded string representation of ``obj`` """ if isinstance(obj, str): return obj try: return obj.decode(encoding="utf-8") except AttributeError: # obj is not bytes-like return str(obj)
Return a string representing a Python object. Strings (i.e. type ``str``) are returned unchanged. Byte strings (i.e. type ``bytes``) are returned as UTF-8-decoded strings. For other objects, the method ``__str__()`` is called, and the result is returned as a string. Parameters ---------- obj : object Any Python object Returns ------- s : str UTF-8-decoded string representation of ``obj``
to_utf8
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _check_argument(param, options, value, prefix=False): """Raise if value for param is not in options.""" if prefix and value is not None: failure = not any(value.startswith(p) for p in options if isinstance(p, str)) else: failure = value not in options if failure: raise ValueError( f"The value for `{param}` must be one of {options}, " f"but {repr(value)} was passed." ) return value
Raise if value for param is not in options.
_check_argument
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _assign_default_kwargs(kws, call_func, source_func): """Assign default kwargs for call_func using values from source_func.""" # This exists so that axes-level functions and figure-level functions can # both call a Plotter method while having the default kwargs be defined in # the signature of the axes-level function. # An alternative would be to have a decorator on the method that sets its # defaults based on those defined in the axes-level function. # Then the figure-level function would not need to worry about defaults. # I am not sure which is better. needed = inspect.signature(call_func).parameters defaults = inspect.signature(source_func).parameters for param in needed: if param in defaults and param not in kws: kws[param] = defaults[param].default return kws
Assign default kwargs for call_func using values from source_func.
_assign_default_kwargs
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def adjust_legend_subtitles(legend): """ Make invisible-handle "subtitles" entries look more like titles. Note: This function is not part of the public API and may be changed or removed. """ # Legend title not in rcParams until 3.0 font_size = plt.rcParams.get("legend.title_fontsize", None) hpackers = legend.findobj(mpl.offsetbox.VPacker)[0].get_children() for hpack in hpackers: draw_area, text_area = hpack.get_children() handles = draw_area.get_children() if not all(artist.get_visible() for artist in handles): draw_area.set_width(0) for text in text_area.get_children(): if font_size is not None: text.set_size(font_size)
Make invisible-handle "subtitles" entries look more like titles. Note: This function is not part of the public API and may be changed or removed.
adjust_legend_subtitles
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _deprecate_ci(errorbar, ci): """ Warn on usage of ci= and convert to appropriate errorbar= arg. ci was deprecated when errorbar was added in 0.12. It should not be removed completely for some time, but it can be moved out of function definitions (and extracted from kwargs) after one cycle. """ if ci is not deprecated and ci != "deprecated": if ci is None: errorbar = None elif ci == "sd": errorbar = "sd" else: errorbar = ("ci", ci) msg = ( "\n\nThe `ci` parameter is deprecated. " f"Use `errorbar={repr(errorbar)}` for the same effect.\n" ) warnings.warn(msg, FutureWarning, stacklevel=3) return errorbar
Warn on usage of ci= and convert to appropriate errorbar= arg. ci was deprecated when errorbar was added in 0.12. It should not be removed completely for some time, but it can be moved out of function definitions (and extracted from kwargs) after one cycle.
_deprecate_ci
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _get_transform_functions(ax, axis): """Return the forward and inverse transforms for a given axis.""" axis_obj = getattr(ax, f"{axis}axis") transform = axis_obj.get_transform() return transform.transform, transform.inverted().transform
Return the forward and inverse transforms for a given axis.
_get_transform_functions
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _disable_autolayout(): """Context manager for preventing rc-controlled auto-layout behavior.""" # This is a workaround for an issue in matplotlib, for details see # https://github.com/mwaskom/seaborn/issues/2914 # The only affect of this rcParam is to set the default value for # layout= in plt.figure, so we could just do that instead. # But then we would need to own the complexity of the transition # from tight_layout=True -> layout="tight". This seems easier, # but can be removed when (if) that is simpler on the matplotlib side, # or if the layout algorithms are improved to handle figure legends. orig_val = mpl.rcParams["figure.autolayout"] try: mpl.rcParams["figure.autolayout"] = False yield finally: mpl.rcParams["figure.autolayout"] = orig_val
Context manager for preventing rc-controlled auto-layout behavior.
_disable_autolayout
python
mwaskom/seaborn
seaborn/utils.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/utils.py
BSD-3-Clause
def _init_mutable_colormap(): """Create a matplotlib colormap that will be updated by the widgets.""" greys = color_palette("Greys", 256) cmap = LinearSegmentedColormap.from_list("interactive", greys) cmap._init() cmap._set_extremes() return cmap
Create a matplotlib colormap that will be updated by the widgets.
_init_mutable_colormap
python
mwaskom/seaborn
seaborn/widgets.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/widgets.py
BSD-3-Clause
def choose_colorbrewer_palette(data_type, as_cmap=False): """Select a palette from the ColorBrewer set. These palettes are built into matplotlib and can be used by name in many seaborn functions, or by passing the object returned by this function. Parameters ---------- data_type : {'sequential', 'diverging', 'qualitative'} This describes the kind of data you want to visualize. See the seaborn color palette docs for more information about how to choose this value. Note that you can pass substrings (e.g. 'q' for 'qualitative. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. diverging_palette : Create a diverging palette from selected colors. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ if data_type.startswith("q") and as_cmap: raise ValueError("Qualitative palettes cannot be colormaps.") pal = [] if as_cmap: cmap = _init_mutable_colormap() if data_type.startswith("s"): opts = ["Greys", "Reds", "Greens", "Blues", "Oranges", "Purples", "BuGn", "BuPu", "GnBu", "OrRd", "PuBu", "PuRd", "RdPu", "YlGn", "PuBuGn", "YlGnBu", "YlOrBr", "YlOrRd"] variants = ["regular", "reverse", "dark"] @interact def choose_sequential(name=opts, n=(2, 18), desat=FloatSlider(min=0, max=1, value=1), variant=variants): if variant == "reverse": name += "_r" elif variant == "dark": name += "_d" if as_cmap: colors = color_palette(name, 256, desat) _update_lut(cmap, np.c_[colors, np.ones(256)]) _show_cmap(cmap) else: pal[:] = color_palette(name, n, desat) palplot(pal) elif data_type.startswith("d"): opts = ["RdBu", "RdGy", "PRGn", "PiYG", "BrBG", "RdYlBu", "RdYlGn", "Spectral"] variants = ["regular", "reverse"] @interact def choose_diverging(name=opts, n=(2, 16), desat=FloatSlider(min=0, max=1, value=1), variant=variants): if variant == "reverse": name += "_r" if as_cmap: colors = color_palette(name, 256, desat) _update_lut(cmap, np.c_[colors, np.ones(256)]) _show_cmap(cmap) else: pal[:] = color_palette(name, n, desat) palplot(pal) elif data_type.startswith("q"): opts = ["Set1", "Set2", "Set3", "Paired", "Accent", "Pastel1", "Pastel2", "Dark2"] @interact def choose_qualitative(name=opts, n=(2, 16), desat=FloatSlider(min=0, max=1, value=1)): pal[:] = color_palette(name, n, desat) palplot(pal) if as_cmap: return cmap return pal
Select a palette from the ColorBrewer set. These palettes are built into matplotlib and can be used by name in many seaborn functions, or by passing the object returned by this function. Parameters ---------- data_type : {'sequential', 'diverging', 'qualitative'} This describes the kind of data you want to visualize. See the seaborn color palette docs for more information about how to choose this value. Note that you can pass substrings (e.g. 'q' for 'qualitative. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. diverging_palette : Create a diverging palette from selected colors. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system.
choose_colorbrewer_palette
python
mwaskom/seaborn
seaborn/widgets.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/widgets.py
BSD-3-Clause
def choose_dark_palette(input="husl", as_cmap=False): """Launch an interactive widget to create a dark sequential palette. This corresponds with the :func:`dark_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- input : {'husl', 'hls', 'rgb'} Color space for defining the seed value. Note that the default is different than the default input for :func:`dark_palette`. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ pal = [] if as_cmap: cmap = _init_mutable_colormap() if input == "rgb": @interact def choose_dark_palette_rgb(r=(0., 1.), g=(0., 1.), b=(0., 1.), n=(3, 17)): color = r, g, b if as_cmap: colors = dark_palette(color, 256, input="rgb") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = dark_palette(color, n, input="rgb") palplot(pal) elif input == "hls": @interact def choose_dark_palette_hls(h=(0., 1.), l=(0., 1.), # noqa: E741 s=(0., 1.), n=(3, 17)): color = h, l, s if as_cmap: colors = dark_palette(color, 256, input="hls") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = dark_palette(color, n, input="hls") palplot(pal) elif input == "husl": @interact def choose_dark_palette_husl(h=(0, 359), s=(0, 99), l=(0, 99), # noqa: E741 n=(3, 17)): color = h, s, l if as_cmap: colors = dark_palette(color, 256, input="husl") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = dark_palette(color, n, input="husl") palplot(pal) if as_cmap: return cmap return pal
Launch an interactive widget to create a dark sequential palette. This corresponds with the :func:`dark_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- input : {'husl', 'hls', 'rgb'} Color space for defining the seed value. Note that the default is different than the default input for :func:`dark_palette`. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system.
choose_dark_palette
python
mwaskom/seaborn
seaborn/widgets.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/widgets.py
BSD-3-Clause
def choose_light_palette(input="husl", as_cmap=False): """Launch an interactive widget to create a light sequential palette. This corresponds with the :func:`light_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- input : {'husl', 'hls', 'rgb'} Color space for defining the seed value. Note that the default is different than the default input for :func:`light_palette`. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- light_palette : Create a sequential palette with bright low values. dark_palette : Create a sequential palette with dark low values. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ pal = [] if as_cmap: cmap = _init_mutable_colormap() if input == "rgb": @interact def choose_light_palette_rgb(r=(0., 1.), g=(0., 1.), b=(0., 1.), n=(3, 17)): color = r, g, b if as_cmap: colors = light_palette(color, 256, input="rgb") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = light_palette(color, n, input="rgb") palplot(pal) elif input == "hls": @interact def choose_light_palette_hls(h=(0., 1.), l=(0., 1.), # noqa: E741 s=(0., 1.), n=(3, 17)): color = h, l, s if as_cmap: colors = light_palette(color, 256, input="hls") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = light_palette(color, n, input="hls") palplot(pal) elif input == "husl": @interact def choose_light_palette_husl(h=(0, 359), s=(0, 99), l=(0, 99), # noqa: E741 n=(3, 17)): color = h, s, l if as_cmap: colors = light_palette(color, 256, input="husl") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = light_palette(color, n, input="husl") palplot(pal) if as_cmap: return cmap return pal
Launch an interactive widget to create a light sequential palette. This corresponds with the :func:`light_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- input : {'husl', 'hls', 'rgb'} Color space for defining the seed value. Note that the default is different than the default input for :func:`light_palette`. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- light_palette : Create a sequential palette with bright low values. dark_palette : Create a sequential palette with dark low values. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system.
choose_light_palette
python
mwaskom/seaborn
seaborn/widgets.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/widgets.py
BSD-3-Clause
def choose_diverging_palette(as_cmap=False): """Launch an interactive widget to choose a diverging color palette. This corresponds with the :func:`diverging_palette` function. This kind of palette is good for data that range between interesting low values and interesting high values with a meaningful midpoint. (For example, change scores relative to some baseline value). Requires IPython 2+ and must be used in the notebook. Parameters ---------- as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- diverging_palette : Create a diverging color palette or colormap. choose_colorbrewer_palette : Interactively choose palettes from the colorbrewer set, including diverging palettes. """ pal = [] if as_cmap: cmap = _init_mutable_colormap() @interact def choose_diverging_palette( h_neg=IntSlider(min=0, max=359, value=220), h_pos=IntSlider(min=0, max=359, value=10), s=IntSlider(min=0, max=99, value=74), l=IntSlider(min=0, max=99, value=50), # noqa: E741 sep=IntSlider(min=1, max=50, value=10), n=(2, 16), center=["light", "dark"] ): if as_cmap: colors = diverging_palette(h_neg, h_pos, s, l, sep, 256, center) _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = diverging_palette(h_neg, h_pos, s, l, sep, n, center) palplot(pal) if as_cmap: return cmap return pal
Launch an interactive widget to choose a diverging color palette. This corresponds with the :func:`diverging_palette` function. This kind of palette is good for data that range between interesting low values and interesting high values with a meaningful midpoint. (For example, change scores relative to some baseline value). Requires IPython 2+ and must be used in the notebook. Parameters ---------- as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- diverging_palette : Create a diverging color palette or colormap. choose_colorbrewer_palette : Interactively choose palettes from the colorbrewer set, including diverging palettes.
choose_diverging_palette
python
mwaskom/seaborn
seaborn/widgets.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/widgets.py
BSD-3-Clause
def choose_cubehelix_palette(as_cmap=False): """Launch an interactive widget to create a sequential cubehelix palette. This corresponds with the :func:`cubehelix_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. The cubehelix system allows the palette to have more hue variance across the range, which can be helpful for distinguishing a wider range of values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ pal = [] if as_cmap: cmap = _init_mutable_colormap() @interact def choose_cubehelix(n_colors=IntSlider(min=2, max=16, value=9), start=FloatSlider(min=0, max=3, value=0), rot=FloatSlider(min=-1, max=1, value=.4), gamma=FloatSlider(min=0, max=5, value=1), hue=FloatSlider(min=0, max=1, value=.8), light=FloatSlider(min=0, max=1, value=.85), dark=FloatSlider(min=0, max=1, value=.15), reverse=False): if as_cmap: colors = cubehelix_palette(256, start, rot, gamma, hue, light, dark, reverse) _update_lut(cmap, np.c_[colors, np.ones(256)]) _show_cmap(cmap) else: pal[:] = cubehelix_palette(n_colors, start, rot, gamma, hue, light, dark, reverse) palplot(pal) if as_cmap: return cmap return pal
Launch an interactive widget to create a sequential cubehelix palette. This corresponds with the :func:`cubehelix_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. The cubehelix system allows the palette to have more hue variance across the range, which can be helpful for distinguishing a wider range of values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- cubehelix_palette : Create a sequential palette or colormap using the cubehelix system.
choose_cubehelix_palette
python
mwaskom/seaborn
seaborn/widgets.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/widgets.py
BSD-3-Clause
def _check_list_length(self, levels, values, variable): """Input check when values are provided as a list.""" # Copied from _core/properties; eventually will be replaced for that. message = "" if len(levels) > len(values): message = " ".join([ f"\nThe {variable} list has fewer values ({len(values)})", f"than needed ({len(levels)}) and will cycle, which may", "produce an uninterpretable plot." ]) values = [x for _, x in zip(levels, itertools.cycle(values))] elif len(values) > len(levels): message = " ".join([ f"The {variable} list has more values ({len(values)})", f"than needed ({len(levels)}), which may not be intended.", ]) values = values[:len(levels)] if message: warnings.warn(message, UserWarning, stacklevel=6) return values
Input check when values are provided as a list.
_check_list_length
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def __call__(self, key, *args, **kwargs): """Get the attribute(s) values for the data key.""" if isinstance(key, (list, np.ndarray, pd.Series)): return [self._lookup_single(k, *args, **kwargs) for k in key] else: return self._lookup_single(key, *args, **kwargs)
Get the attribute(s) values for the data key.
__call__
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def __init__( self, plotter, palette=None, order=None, norm=None, saturation=1, ): """Map the levels of the `hue` variable to distinct colors. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data.get("hue", pd.Series(dtype=float)) if isinstance(palette, np.ndarray): msg = ( "Numpy array is not a supported type for `palette`. " "Please convert your palette to a list. " "This will become an error in v0.14" ) warnings.warn(msg, stacklevel=4) palette = palette.tolist() if data.isna().all(): if palette is not None: msg = "Ignoring `palette` because no `hue` variable has been assigned." warnings.warn(msg, stacklevel=4) else: map_type = self.infer_map_type( palette, norm, plotter.input_format, plotter.var_types["hue"] ) # Our goal is to end up with a dictionary mapping every unique # value in `data` to a color. We will also keep track of the # metadata about this mapping we will need for, e.g., a legend # --- Option 1: numeric mapping with a matplotlib colormap if map_type == "numeric": data = pd.to_numeric(data) levels, lookup_table, norm, cmap = self.numeric_mapping( data, palette, norm, ) # --- Option 2: categorical mapping using seaborn palette elif map_type == "categorical": cmap = norm = None levels, lookup_table = self.categorical_mapping( data, palette, order, ) # --- Option 3: datetime mapping else: # TODO this needs actual implementation cmap = norm = None levels, lookup_table = self.categorical_mapping( # Casting data to list to handle differences in the way # pandas and numpy represent datetime64 data list(data), palette, order, ) self.saturation = saturation self.map_type = map_type self.lookup_table = lookup_table self.palette = palette self.levels = levels self.norm = norm self.cmap = cmap
Map the levels of the `hue` variable to distinct colors. Parameters ---------- # TODO add generic parameters
__init__
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _lookup_single(self, key): """Get the color for a single value, using colormap to interpolate.""" try: # Use a value that's in the original data vector value = self.lookup_table[key] except KeyError: if self.norm is None: # Currently we only get here in scatterplot with hue_order, # because scatterplot does not consider hue a grouping variable # So unused hue levels are in the data, but not the lookup table return (0, 0, 0, 0) # Use the colormap to interpolate between existing datapoints # (e.g. in the context of making a continuous legend) try: normed = self.norm(key) except TypeError as err: if np.isnan(key): value = (0, 0, 0, 0) else: raise err else: if np.ma.is_masked(normed): normed = np.nan value = self.cmap(normed) if self.saturation < 1: value = desaturate(value, self.saturation) return value
Get the color for a single value, using colormap to interpolate.
_lookup_single
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def infer_map_type(self, palette, norm, input_format, var_type): """Determine how to implement the mapping.""" if palette in QUAL_PALETTES: map_type = "categorical" elif norm is not None: map_type = "numeric" elif isinstance(palette, (dict, list)): map_type = "categorical" elif input_format == "wide": map_type = "categorical" else: map_type = var_type return map_type
Determine how to implement the mapping.
infer_map_type
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def categorical_mapping(self, data, palette, order): """Determine colors when the hue mapping is categorical.""" # -- Identify the order and name of the levels levels = categorical_order(data, order) n_colors = len(levels) # -- Identify the set of colors to use if isinstance(palette, dict): missing = set(levels) - set(palette) if any(missing): err = "The palette dictionary is missing keys: {}" raise ValueError(err.format(missing)) lookup_table = palette else: if palette is None: if n_colors <= len(get_color_cycle()): colors = color_palette(None, n_colors) else: colors = color_palette("husl", n_colors) elif isinstance(palette, list): colors = self._check_list_length(levels, palette, "palette") else: colors = color_palette(palette, n_colors) lookup_table = dict(zip(levels, colors)) return levels, lookup_table
Determine colors when the hue mapping is categorical.
categorical_mapping
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def numeric_mapping(self, data, palette, norm): """Determine colors when the hue variable is quantitative.""" if isinstance(palette, dict): # The presence of a norm object overrides a dictionary of hues # in specifying a numeric mapping, so we need to process it here. levels = list(sorted(palette)) colors = [palette[k] for k in sorted(palette)] cmap = mpl.colors.ListedColormap(colors) lookup_table = palette.copy() else: # The levels are the sorted unique values in the data levels = list(np.sort(remove_na(data.unique()))) # --- Sort out the colormap to use from the palette argument # Default numeric palette is our default cubehelix palette # TODO do we want to do something complicated to ensure contrast? palette = "ch:" if palette is None else palette if isinstance(palette, mpl.colors.Colormap): cmap = palette else: cmap = color_palette(palette, as_cmap=True) # Now sort out the data normalization if norm is None: norm = mpl.colors.Normalize() elif isinstance(norm, tuple): norm = mpl.colors.Normalize(*norm) elif not isinstance(norm, mpl.colors.Normalize): err = "``hue_norm`` must be None, tuple, or Normalize object." raise ValueError(err) if not norm.scaled(): norm(np.asarray(data.dropna())) lookup_table = dict(zip(levels, cmap(norm(levels)))) return levels, lookup_table, norm, cmap
Determine colors when the hue variable is quantitative.
numeric_mapping
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def __init__( self, plotter, sizes=None, order=None, norm=None, ): """Map the levels of the `size` variable to distinct values. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data.get("size", pd.Series(dtype=float)) if data.notna().any(): map_type = self.infer_map_type( norm, sizes, plotter.var_types["size"] ) # --- Option 1: numeric mapping if map_type == "numeric": levels, lookup_table, norm, size_range = self.numeric_mapping( data, sizes, norm, ) # --- Option 2: categorical mapping elif map_type == "categorical": levels, lookup_table = self.categorical_mapping( data, sizes, order, ) size_range = None # --- Option 3: datetime mapping # TODO this needs an actual implementation else: levels, lookup_table = self.categorical_mapping( # Casting data to list to handle differences in the way # pandas and numpy represent datetime64 data list(data), sizes, order, ) size_range = None self.map_type = map_type self.levels = levels self.norm = norm self.sizes = sizes self.size_range = size_range self.lookup_table = lookup_table
Map the levels of the `size` variable to distinct values. Parameters ---------- # TODO add generic parameters
__init__
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def __init__(self, plotter, markers=None, dashes=None, order=None): """Map the levels of the `style` variable to distinct values. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data.get("style", pd.Series(dtype=float)) if data.notna().any(): # Cast to list to handle numpy/pandas datetime quirks if variable_type(data) == "datetime": data = list(data) # Find ordered unique values levels = categorical_order(data, order) markers = self._map_attributes( markers, levels, unique_markers(len(levels)), "markers", ) dashes = self._map_attributes( dashes, levels, unique_dashes(len(levels)), "dashes", ) # Build the paths matplotlib will use to draw the markers paths = {} filled_markers = [] for k, m in markers.items(): if not isinstance(m, mpl.markers.MarkerStyle): m = mpl.markers.MarkerStyle(m) paths[k] = m.get_path().transformed(m.get_transform()) filled_markers.append(m.is_filled()) # Mixture of filled and unfilled markers will show line art markers # in the edge color, which defaults to white. This can be handled, # but there would be additional complexity with specifying the # weight of the line art markers without overwhelming the filled # ones with the edges. So for now, we will disallow mixtures. if any(filled_markers) and not all(filled_markers): err = "Filled and line art markers cannot be mixed" raise ValueError(err) lookup_table = {} for key in levels: lookup_table[key] = {} if markers: lookup_table[key]["marker"] = markers[key] lookup_table[key]["path"] = paths[key] if dashes: lookup_table[key]["dashes"] = dashes[key] self.levels = levels self.lookup_table = lookup_table
Map the levels of the `style` variable to distinct values. Parameters ---------- # TODO add generic parameters
__init__
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _lookup_single(self, key, attr=None): """Get attribute(s) for a given data point.""" if attr is None: value = self.lookup_table[key] else: value = self.lookup_table[key][attr] return value
Get attribute(s) for a given data point.
_lookup_single
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _map_attributes(self, arg, levels, defaults, attr): """Handle the specification for a given style attribute.""" if arg is True: lookup_table = dict(zip(levels, defaults)) elif isinstance(arg, dict): missing = set(levels) - set(arg) if missing: err = f"These `{attr}` levels are missing values: {missing}" raise ValueError(err) lookup_table = arg elif isinstance(arg, Sequence): arg = self._check_list_length(levels, arg, attr) lookup_table = dict(zip(levels, arg)) elif arg: err = f"This `{attr}` argument was not understood: {arg}" raise ValueError(err) else: lookup_table = {} return lookup_table
Handle the specification for a given style attribute.
_map_attributes
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def var_levels(self): """Property interface to ordered list of variables levels. Each time it's accessed, it updates the var_levels dictionary with the list of levels in the current semantic mappers. But it also allows the dictionary to persist, so it can be used to set levels by a key. This is used to track the list of col/row levels using an attached FacetGrid object, but it's kind of messy and ideally fixed by improving the faceting logic so it interfaces better with the modern approach to tracking plot variables. """ for var in self.variables: if (map_obj := getattr(self, f"_{var}_map", None)) is not None: self._var_levels[var] = map_obj.levels return self._var_levels
Property interface to ordered list of variables levels. Each time it's accessed, it updates the var_levels dictionary with the list of levels in the current semantic mappers. But it also allows the dictionary to persist, so it can be used to set levels by a key. This is used to track the list of col/row levels using an attached FacetGrid object, but it's kind of messy and ideally fixed by improving the faceting logic so it interfaces better with the modern approach to tracking plot variables.
var_levels
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def assign_variables(self, data=None, variables={}): """Define plot variables, optionally using lookup from `data`.""" x = variables.get("x", None) y = variables.get("y", None) if x is None and y is None: self.input_format = "wide" frame, names = self._assign_variables_wideform(data, **variables) else: # When dealing with long-form input, use the newer PlotData # object (internal but introduced for the objects interface) # to centralize / standardize data consumption logic. self.input_format = "long" plot_data = PlotData(data, variables) frame = plot_data.frame names = plot_data.names self.plot_data = frame self.variables = names self.var_types = { v: variable_type( frame[v], boolean_type="numeric" if v in "xy" else "categorical" ) for v in names } return self
Define plot variables, optionally using lookup from `data`.
assign_variables
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _assign_variables_wideform(self, data=None, **kwargs): """Define plot variables given wide-form data. Parameters ---------- data : flat vector or collection of vectors Data can be a vector or mapping that is coerceable to a Series or a sequence- or mapping-based collection of such vectors, or a rectangular numpy array, or a Pandas DataFrame. kwargs : variable -> data mappings Behavior with keyword arguments is currently undefined. Returns ------- plot_data : :class:`pandas.DataFrame` Long-form data object mapping seaborn variables (x, y, hue, ...) to data vectors. variables : dict Keys are defined seaborn variables; values are names inferred from the inputs (or None when no name can be determined). """ # Raise if semantic or other variables are assigned in wide-form mode assigned = [k for k, v in kwargs.items() if v is not None] if any(assigned): s = "s" if len(assigned) > 1 else "" err = f"The following variable{s} cannot be assigned with wide-form data: " err += ", ".join(f"`{v}`" for v in assigned) raise ValueError(err) # Determine if the data object actually has any data in it empty = data is None or not len(data) # Then, determine if we have "flat" data (a single vector) if isinstance(data, dict): values = data.values() else: values = np.atleast_1d(np.asarray(data, dtype=object)) flat = not any( isinstance(v, Iterable) and not isinstance(v, (str, bytes)) for v in values ) if empty: # Make an object with the structure of plot_data, but empty plot_data = pd.DataFrame() variables = {} elif flat: # Handle flat data by converting to pandas Series and using the # index and/or values to define x and/or y # (Could be accomplished with a more general to_series() interface) flat_data = pd.Series(data).copy() names = { "@values": flat_data.name, "@index": flat_data.index.name } plot_data = {} variables = {} for var in ["x", "y"]: if var in self.flat_structure: attr = self.flat_structure[var] plot_data[var] = getattr(flat_data, attr[1:]) variables[var] = names[self.flat_structure[var]] plot_data = pd.DataFrame(plot_data) else: # Otherwise assume we have some collection of vectors. # Handle Python sequences such that entries end up in the columns, # not in the rows, of the intermediate wide DataFrame. # One way to accomplish this is to convert to a dict of Series. if isinstance(data, Sequence): data_dict = {} for i, var in enumerate(data): key = getattr(var, "name", i) # TODO is there a safer/more generic way to ensure Series? # sort of like np.asarray, but for pandas? data_dict[key] = pd.Series(var) data = data_dict # Pandas requires that dict values either be Series objects # or all have the same length, but we want to allow "ragged" inputs if isinstance(data, Mapping): data = {key: pd.Series(val) for key, val in data.items()} # Otherwise, delegate to the pandas DataFrame constructor # This is where we'd prefer to use a general interface that says # "give me this data as a pandas DataFrame", so we can accept # DataFrame objects from other libraries wide_data = pd.DataFrame(data, copy=True) # At this point we should reduce the dataframe to numeric cols numeric_cols = [ k for k, v in wide_data.items() if variable_type(v) == "numeric" ] wide_data = wide_data[numeric_cols] # Now melt the data to long form melt_kws = {"var_name": "@columns", "value_name": "@values"} use_index = "@index" in self.wide_structure.values() if use_index: melt_kws["id_vars"] = "@index" try: orig_categories = wide_data.columns.categories orig_ordered = wide_data.columns.ordered wide_data.columns = wide_data.columns.add_categories("@index") except AttributeError: category_columns = False else: category_columns = True wide_data["@index"] = wide_data.index.to_series() plot_data = wide_data.melt(**melt_kws) if use_index and category_columns: plot_data["@columns"] = pd.Categorical(plot_data["@columns"], orig_categories, orig_ordered) # Assign names corresponding to plot semantics for var, attr in self.wide_structure.items(): plot_data[var] = plot_data[attr] # Define the variable names variables = {} for var, attr in self.wide_structure.items(): obj = getattr(wide_data, attr[1:]) variables[var] = getattr(obj, "name", None) # Remove redundant columns from plot_data plot_data = plot_data[list(variables)] return plot_data, variables
Define plot variables given wide-form data. Parameters ---------- data : flat vector or collection of vectors Data can be a vector or mapping that is coerceable to a Series or a sequence- or mapping-based collection of such vectors, or a rectangular numpy array, or a Pandas DataFrame. kwargs : variable -> data mappings Behavior with keyword arguments is currently undefined. Returns ------- plot_data : :class:`pandas.DataFrame` Long-form data object mapping seaborn variables (x, y, hue, ...) to data vectors. variables : dict Keys are defined seaborn variables; values are names inferred from the inputs (or None when no name can be determined).
_assign_variables_wideform
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def iter_data( self, grouping_vars=None, *, reverse=False, from_comp_data=False, by_facet=True, allow_empty=False, dropna=True, ): """Generator for getting subsets of data defined by semantic variables. Also injects "col" and "row" into grouping semantics. Parameters ---------- grouping_vars : string or list of strings Semantic variables that define the subsets of data. reverse : bool If True, reverse the order of iteration. from_comp_data : bool If True, use self.comp_data rather than self.plot_data by_facet : bool If True, add faceting variables to the set of grouping variables. allow_empty : bool If True, yield an empty dataframe when no observations exist for combinations of grouping variables. dropna : bool If True, remove rows with missing data. Yields ------ sub_vars : dict Keys are semantic names, values are the level of that semantic. sub_data : :class:`pandas.DataFrame` Subset of ``plot_data`` for this combination of semantic values. """ # TODO should this default to using all (non x/y?) semantics? # or define grouping vars somewhere? if grouping_vars is None: grouping_vars = [] elif isinstance(grouping_vars, str): grouping_vars = [grouping_vars] elif isinstance(grouping_vars, tuple): grouping_vars = list(grouping_vars) # Always insert faceting variables if by_facet: facet_vars = {"col", "row"} grouping_vars.extend( facet_vars & set(self.variables) - set(grouping_vars) ) # Reduce to the semantics used in this plot grouping_vars = [var for var in grouping_vars if var in self.variables] if from_comp_data: data = self.comp_data else: data = self.plot_data if dropna: data = data.dropna() levels = self.var_levels.copy() if from_comp_data: for axis in {"x", "y"} & set(grouping_vars): converter = self.converters[axis].iloc[0] if self.var_types[axis] == "categorical": if self._var_ordered[axis]: # If the axis is ordered, then the axes in a possible # facet grid are by definition "shared", or there is a # single axis with a unique cat -> idx mapping. # So we can just take the first converter object. levels[axis] = converter.convert_units(levels[axis]) else: # Otherwise, the mappings may not be unique, but we can # use the unique set of index values in comp_data. levels[axis] = np.sort(data[axis].unique()) else: transform = converter.get_transform().transform levels[axis] = transform(converter.convert_units(levels[axis])) if grouping_vars: grouped_data = data.groupby( grouping_vars, sort=False, as_index=False, observed=False, ) grouping_keys = [] for var in grouping_vars: key = levels.get(var) grouping_keys.append([] if key is None else key) iter_keys = itertools.product(*grouping_keys) if reverse: iter_keys = reversed(list(iter_keys)) for key in iter_keys: pd_key = ( key[0] if len(key) == 1 and _version_predates(pd, "2.2.0") else key ) try: data_subset = grouped_data.get_group(pd_key) except KeyError: # XXX we are adding this to allow backwards compatibility # with the empty artists that old categorical plots would # add (before 0.12), which we may decide to break, in which # case this option could be removed data_subset = data.loc[[]] if data_subset.empty and not allow_empty: continue sub_vars = dict(zip(grouping_vars, key)) yield sub_vars, data_subset.copy() else: yield {}, data.copy()
Generator for getting subsets of data defined by semantic variables. Also injects "col" and "row" into grouping semantics. Parameters ---------- grouping_vars : string or list of strings Semantic variables that define the subsets of data. reverse : bool If True, reverse the order of iteration. from_comp_data : bool If True, use self.comp_data rather than self.plot_data by_facet : bool If True, add faceting variables to the set of grouping variables. allow_empty : bool If True, yield an empty dataframe when no observations exist for combinations of grouping variables. dropna : bool If True, remove rows with missing data. Yields ------ sub_vars : dict Keys are semantic names, values are the level of that semantic. sub_data : :class:`pandas.DataFrame` Subset of ``plot_data`` for this combination of semantic values.
iter_data
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def comp_data(self): """Dataframe with numeric x and y, after unit conversion and log scaling.""" if not hasattr(self, "ax"): # Probably a good idea, but will need a bunch of tests updated # Most of these tests should just use the external interface # Then this can be re-enabled. # raise AttributeError("No Axes attached to plotter") return self.plot_data if not hasattr(self, "_comp_data"): comp_data = ( self.plot_data .copy(deep=False) .drop(["x", "y"], axis=1, errors="ignore") ) for var in "yx": if var not in self.variables: continue parts = [] grouped = self.plot_data[var].groupby(self.converters[var], sort=False) for converter, orig in grouped: orig = orig.mask(orig.isin([np.inf, -np.inf]), np.nan) orig = orig.dropna() if var in self.var_levels: # TODO this should happen in some centralized location # it is similar to GH2419, but more complicated because # supporting `order` in categorical plots is tricky orig = orig[orig.isin(self.var_levels[var])] comp = pd.to_numeric(converter.convert_units(orig)).astype(float) transform = converter.get_transform().transform parts.append(pd.Series(transform(comp), orig.index, name=orig.name)) if parts: comp_col = pd.concat(parts) else: comp_col = pd.Series(dtype=float, name=var) comp_data.insert(0, var, comp_col) self._comp_data = comp_data return self._comp_data
Dataframe with numeric x and y, after unit conversion and log scaling.
comp_data
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _get_axes(self, sub_vars): """Return an Axes object based on existence of row/col variables.""" row = sub_vars.get("row", None) col = sub_vars.get("col", None) if row is not None and col is not None: return self.facets.axes_dict[(row, col)] elif row is not None: return self.facets.axes_dict[row] elif col is not None: return self.facets.axes_dict[col] elif self.ax is None: return self.facets.ax else: return self.ax
Return an Axes object based on existence of row/col variables.
_get_axes
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _attach( self, obj, allowed_types=None, log_scale=None, ): """Associate the plotter with an Axes manager and initialize its units. Parameters ---------- obj : :class:`matplotlib.axes.Axes` or :class:'FacetGrid` Structural object that we will eventually plot onto. allowed_types : str or list of str If provided, raise when either the x or y variable does not have one of the declared seaborn types. log_scale : bool, number, or pair of bools or numbers If not False, set the axes to use log scaling, with the given base or defaulting to 10. If a tuple, interpreted as separate arguments for the x and y axes. """ from .axisgrid import FacetGrid if isinstance(obj, FacetGrid): self.ax = None self.facets = obj ax_list = obj.axes.flatten() if obj.col_names is not None: self.var_levels["col"] = obj.col_names if obj.row_names is not None: self.var_levels["row"] = obj.row_names else: self.ax = obj self.facets = None ax_list = [obj] # Identify which "axis" variables we have defined axis_variables = set("xy").intersection(self.variables) # -- Verify the types of our x and y variables here. # This doesn't really make complete sense being here here, but it's a fine # place for it, given the current system. # (Note that for some plots, there might be more complicated restrictions) # e.g. the categorical plots have their own check that as specific to the # non-categorical axis. if allowed_types is None: allowed_types = ["numeric", "datetime", "categorical"] elif isinstance(allowed_types, str): allowed_types = [allowed_types] for var in axis_variables: var_type = self.var_types[var] if var_type not in allowed_types: err = ( f"The {var} variable is {var_type}, but one of " f"{allowed_types} is required" ) raise TypeError(err) # -- Get axis objects for each row in plot_data for type conversions and scaling facet_dim = {"x": "col", "y": "row"} self.converters = {} for var in axis_variables: other_var = {"x": "y", "y": "x"}[var] converter = pd.Series(index=self.plot_data.index, name=var, dtype=object) share_state = getattr(self.facets, f"_share{var}", True) # Simplest cases are that we have a single axes, all axes are shared, # or sharing is only on the orthogonal facet dimension. In these cases, # all datapoints get converted the same way, so use the first axis if share_state is True or share_state == facet_dim[other_var]: converter.loc[:] = getattr(ax_list[0], f"{var}axis") else: # Next simplest case is when no axes are shared, and we can # use the axis objects within each facet if share_state is False: for axes_vars, axes_data in self.iter_data(): ax = self._get_axes(axes_vars) converter.loc[axes_data.index] = getattr(ax, f"{var}axis") # In the more complicated case, the axes are shared within each # "file" of the facetgrid. In that case, we need to subset the data # for that file and assign it the first axis in the slice of the grid else: names = getattr(self.facets, f"{share_state}_names") for i, level in enumerate(names): idx = (i, 0) if share_state == "row" else (0, i) axis = getattr(self.facets.axes[idx], f"{var}axis") converter.loc[self.plot_data[share_state] == level] = axis # Store the converter vector, which we use elsewhere (e.g comp_data) self.converters[var] = converter # Now actually update the matplotlib objects to do the conversion we want grouped = self.plot_data[var].groupby(self.converters[var], sort=False) for converter, seed_data in grouped: if self.var_types[var] == "categorical": if self._var_ordered[var]: order = self.var_levels[var] else: order = None seed_data = categorical_order(seed_data, order) converter.update_units(seed_data) # -- Set numerical axis scales # First unpack the log_scale argument if log_scale is None: scalex = scaley = False else: # Allow single value or x, y tuple try: scalex, scaley = log_scale except TypeError: scalex = log_scale if self.var_types.get("x") == "numeric" else False scaley = log_scale if self.var_types.get("y") == "numeric" else False # Now use it for axis, scale in zip("xy", (scalex, scaley)): if scale: for ax in ax_list: set_scale = getattr(ax, f"set_{axis}scale") if scale is True: set_scale("log", nonpositive="mask") else: set_scale("log", base=scale, nonpositive="mask") # For categorical y, we want the "first" level to be at the top of the axis if self.var_types.get("y", None) == "categorical": for ax in ax_list: ax.yaxis.set_inverted(True) # TODO -- Add axes labels
Associate the plotter with an Axes manager and initialize its units. Parameters ---------- obj : :class:`matplotlib.axes.Axes` or :class:'FacetGrid` Structural object that we will eventually plot onto. allowed_types : str or list of str If provided, raise when either the x or y variable does not have one of the declared seaborn types. log_scale : bool, number, or pair of bools or numbers If not False, set the axes to use log scaling, with the given base or defaulting to 10. If a tuple, interpreted as separate arguments for the x and y axes.
_attach
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _get_scale_transforms(self, axis): """Return a function implementing the scale transform (or its inverse).""" if self.ax is None: axis_list = [getattr(ax, f"{axis}axis") for ax in self.facets.axes.flat] scales = {axis.get_scale() for axis in axis_list} if len(scales) > 1: # It is a simplifying assumption that faceted axes will always have # the same scale (even if they are unshared and have distinct limits). # Nothing in the seaborn API allows you to create a FacetGrid with # a mixture of scales, although it's possible via matplotlib. # This is constraining, but no more so than previous behavior that # only (properly) handled log scales, and there are some places where # it would be much too complicated to use axes-specific transforms. err = "Cannot determine transform with mixed scales on faceted axes." raise RuntimeError(err) transform_obj = axis_list[0].get_transform() else: # This case is more straightforward transform_obj = getattr(self.ax, f"{axis}axis").get_transform() return transform_obj.transform, transform_obj.inverted().transform
Return a function implementing the scale transform (or its inverse).
_get_scale_transforms
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _add_axis_labels(self, ax, default_x="", default_y=""): """Add axis labels if not present, set visibility to match ticklabels.""" # TODO ax could default to None and use attached axes if present # but what to do about the case of facets? Currently using FacetGrid's # set_axis_labels method, which doesn't add labels to the interior even # when the axes are not shared. Maybe that makes sense? if not ax.get_xlabel(): x_visible = any(t.get_visible() for t in ax.get_xticklabels()) ax.set_xlabel(self.variables.get("x", default_x), visible=x_visible) if not ax.get_ylabel(): y_visible = any(t.get_visible() for t in ax.get_yticklabels()) ax.set_ylabel(self.variables.get("y", default_y), visible=y_visible)
Add axis labels if not present, set visibility to match ticklabels.
_add_axis_labels
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def add_legend_data( self, ax, func, common_kws=None, attrs=None, semantic_kws=None, ): """Add labeled artists to represent the different plot semantics.""" verbosity = self.legend if isinstance(verbosity, str) and verbosity not in ["auto", "brief", "full"]: err = "`legend` must be 'auto', 'brief', 'full', or a boolean." raise ValueError(err) elif verbosity is True: verbosity = "auto" keys = [] legend_kws = {} common_kws = {} if common_kws is None else common_kws.copy() semantic_kws = {} if semantic_kws is None else semantic_kws.copy() # Assign a legend title if there is only going to be one sub-legend, # otherwise, subtitles will be inserted into the texts list with an # invisible handle (which is a hack) titles = { title for title in (self.variables.get(v, None) for v in ["hue", "size", "style"]) if title is not None } title = "" if len(titles) != 1 else titles.pop() title_kws = dict( visible=False, color="w", s=0, linewidth=0, marker="", dashes="" ) def update(var_name, val_name, **kws): key = var_name, val_name if key in legend_kws: legend_kws[key].update(**kws) else: keys.append(key) legend_kws[key] = dict(**kws) if attrs is None: attrs = {"hue": "color", "size": ["linewidth", "s"], "style": None} for var, names in attrs.items(): self._update_legend_data( update, var, verbosity, title, title_kws, names, semantic_kws.get(var), ) legend_data = {} legend_order = [] # Don't allow color=None so we can set a neutral color for size/style legends if common_kws.get("color", False) is None: common_kws.pop("color") for key in keys: _, label = key kws = legend_kws[key] level_kws = {} use_attrs = [ *self._legend_attributes, *common_kws, *[attr for var_attrs in semantic_kws.values() for attr in var_attrs], ] for attr in use_attrs: if attr in kws: level_kws[attr] = kws[attr] artist = func(label=label, **{"color": ".2", **common_kws, **level_kws}) if _version_predates(mpl, "3.5.0"): if isinstance(artist, mpl.lines.Line2D): ax.add_line(artist) elif isinstance(artist, mpl.patches.Patch): ax.add_patch(artist) elif isinstance(artist, mpl.collections.Collection): ax.add_collection(artist) else: ax.add_artist(artist) legend_data[key] = artist legend_order.append(key) self.legend_title = title self.legend_data = legend_data self.legend_order = legend_order
Add labeled artists to represent the different plot semantics.
add_legend_data
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def _update_legend_data( self, update, var, verbosity, title, title_kws, attr_names, other_props, ): """Generate legend tick values and formatted labels.""" brief_ticks = 6 mapper = getattr(self, f"_{var}_map", None) if mapper is None: return brief = mapper.map_type == "numeric" and ( verbosity == "brief" or (verbosity == "auto" and len(mapper.levels) > brief_ticks) ) if brief: if isinstance(mapper.norm, mpl.colors.LogNorm): locator = mpl.ticker.LogLocator(numticks=brief_ticks) else: locator = mpl.ticker.MaxNLocator(nbins=brief_ticks) limits = min(mapper.levels), max(mapper.levels) levels, formatted_levels = locator_to_legend_entries( locator, limits, self.plot_data[var].infer_objects().dtype ) elif mapper.levels is None: levels = formatted_levels = [] else: levels = formatted_levels = mapper.levels if not title and self.variables.get(var, None) is not None: update((self.variables[var], "title"), self.variables[var], **title_kws) other_props = {} if other_props is None else other_props for level, formatted_level in zip(levels, formatted_levels): if level is not None: attr = mapper(level) if isinstance(attr_names, list): attr = {name: attr for name in attr_names} elif attr_names is not None: attr = {attr_names: attr} attr.update({k: v[level] for k, v in other_props.items() if level in v}) update(self.variables[var], formatted_level, **attr)
Generate legend tick values and formatted labels.
_update_legend_data
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def scale_categorical(self, axis, order=None, formatter=None): """ Enforce categorical (fixed-scale) rules for the data on given axis. Parameters ---------- axis : "x" or "y" Axis of the plot to operate on. order : list Order that unique values should appear in. formatter : callable Function mapping values to a string representation. Returns ------- self """ # This method both modifies the internal representation of the data # (converting it to string) and sets some attributes on self. It might be # a good idea to have a separate object attached to self that contains the # information in those attributes (i.e. whether to enforce variable order # across facets, the order to use) similar to the SemanticMapping objects # we have for semantic variables. That object could also hold the converter # objects that get used, if we can decouple those from an existing axis # (cf. https://github.com/matplotlib/matplotlib/issues/19229). # There are some interactions with faceting information that would need # to be thought through, since the converts to use depend on facets. # If we go that route, these methods could become "borrowed" methods similar # to what happens with the alternate semantic mapper constructors, although # that approach is kind of fussy and confusing. # TODO this method could also set the grid state? Since we like to have no # grid on the categorical axis by default. Again, a case where we'll need to # store information until we use it, so best to have a way to collect the # attributes that this method sets. # TODO if we are going to set visual properties of the axes with these methods, # then we could do the steps currently in CategoricalPlotter._adjust_cat_axis # TODO another, and distinct idea, is to expose a cut= param here _check_argument("axis", ["x", "y"], axis) # Categorical plots can be "univariate" in which case they get an anonymous # category label on the opposite axis. if axis not in self.variables: self.variables[axis] = None self.var_types[axis] = "categorical" self.plot_data[axis] = "" # If the "categorical" variable has a numeric type, sort the rows so that # the default result from categorical_order has those values sorted after # they have been coerced to strings. The reason for this is so that later # we can get facet-wise orders that are correct. # XXX Should this also sort datetimes? # It feels more consistent, but technically will be a default change # If so, should also change categorical_order to behave that way if self.var_types[axis] == "numeric": self.plot_data = self.plot_data.sort_values(axis, kind="mergesort") # Now get a reference to the categorical data vector and remove na values cat_data = self.plot_data[axis].dropna() # Get the initial categorical order, which we do before string # conversion to respect the original types of the order list. # Track whether the order is given explicitly so that we can know # whether or not to use the order constructed here downstream self._var_ordered[axis] = order is not None or cat_data.dtype.name == "category" order = pd.Index(categorical_order(cat_data, order), name=axis) # Then convert data to strings. This is because in matplotlib, # "categorical" data really mean "string" data, so doing this artists # will be drawn on the categorical axis with a fixed scale. # TODO implement formatter here; check that it returns strings? if formatter is not None: cat_data = cat_data.map(formatter) order = order.map(formatter) else: cat_data = cat_data.astype(str) order = order.astype(str) # Update the levels list with the type-converted order variable self.var_levels[axis] = order # Now ensure that seaborn will use categorical rules internally self.var_types[axis] = "categorical" # Put the string-typed categorical vector back into the plot_data structure self.plot_data[axis] = cat_data return self
Enforce categorical (fixed-scale) rules for the data on given axis. Parameters ---------- axis : "x" or "y" Axis of the plot to operate on. order : list Order that unique values should appear in. formatter : callable Function mapping values to a string representation. Returns ------- self
scale_categorical
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def variable_type(vector, boolean_type="numeric"): """ Determine whether a vector contains numeric, categorical, or datetime data. This function differs from the pandas typing API in two ways: - Python sequences or object-typed PyData objects are considered numeric if all of their entries are numeric. - String or mixed-type data are considered categorical even if not explicitly represented as a :class:`pandas.api.types.CategoricalDtype`. Parameters ---------- vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence Input data to test. boolean_type : 'numeric' or 'categorical' Type to use for vectors containing only 0s and 1s (and NAs). Returns ------- var_type : 'numeric', 'categorical', or 'datetime' Name identifying the type of data in the vector. """ vector = pd.Series(vector) # If a categorical dtype is set, infer categorical if isinstance(vector.dtype, pd.CategoricalDtype): return VariableType("categorical") # Special-case all-na data, which is always "numeric" if pd.isna(vector).all(): return VariableType("numeric") # At this point, drop nans to simplify further type inference vector = vector.dropna() # Special-case binary/boolean data, allow caller to determine # This triggers a numpy warning when vector has strings/objects # https://github.com/numpy/numpy/issues/6784 # Because we reduce with .all(), we are agnostic about whether the # comparison returns a scalar or vector, so we will ignore the warning. # It triggers a separate DeprecationWarning when the vector has datetimes: # https://github.com/numpy/numpy/issues/13548 # This is considered a bug by numpy and will likely go away. with warnings.catch_warnings(): warnings.simplefilter( action='ignore', category=(FutureWarning, DeprecationWarning) ) try: if np.isin(vector, [0, 1]).all(): return VariableType(boolean_type) except TypeError: # .isin comparison is not guaranteed to be possible under NumPy # casting rules, depending on the (unknown) dtype of 'vector' pass # Defer to positive pandas tests if pd.api.types.is_numeric_dtype(vector): return VariableType("numeric") if pd.api.types.is_datetime64_dtype(vector): return VariableType("datetime") # --- If we get to here, we need to check the entries # Check for a collection where everything is a number def all_numeric(x): for x_i in x: if not isinstance(x_i, Number): return False return True if all_numeric(vector): return VariableType("numeric") # Check for a collection where everything is a datetime def all_datetime(x): for x_i in x: if not isinstance(x_i, (datetime, np.datetime64)): return False return True if all_datetime(vector): return VariableType("datetime") # Otherwise, our final fallback is to consider things categorical return VariableType("categorical")
Determine whether a vector contains numeric, categorical, or datetime data. This function differs from the pandas typing API in two ways: - Python sequences or object-typed PyData objects are considered numeric if all of their entries are numeric. - String or mixed-type data are considered categorical even if not explicitly represented as a :class:`pandas.api.types.CategoricalDtype`. Parameters ---------- vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence Input data to test. boolean_type : 'numeric' or 'categorical' Type to use for vectors containing only 0s and 1s (and NAs). Returns ------- var_type : 'numeric', 'categorical', or 'datetime' Name identifying the type of data in the vector.
variable_type
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def infer_orient(x=None, y=None, orient=None, require_numeric=True): """Determine how the plot should be oriented based on the data. For historical reasons, the convention is to call a plot "horizontally" or "vertically" oriented based on the axis representing its dependent variable. Practically, this is used when determining the axis for numerical aggregation. Parameters ---------- x, y : Vector data or None Positional data vectors for the plot. orient : string or None Specified orientation. If not None, can be "x" or "y", or otherwise must start with "v" or "h". require_numeric : bool If set, raise when the implied dependent variable is not numeric. Returns ------- orient : "x" or "y" Raises ------ ValueError: When `orient` is an unknown string. TypeError: When dependent variable is not numeric, with `require_numeric` """ x_type = None if x is None else variable_type(x) y_type = None if y is None else variable_type(y) nonnumeric_dv_error = "{} orientation requires numeric `{}` variable." single_var_warning = "{} orientation ignored with only `{}` specified." if x is None: if str(orient).startswith("h"): warnings.warn(single_var_warning.format("Horizontal", "y")) if require_numeric and y_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Vertical", "y")) return "x" elif y is None: if str(orient).startswith("v"): warnings.warn(single_var_warning.format("Vertical", "x")) if require_numeric and x_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Horizontal", "x")) return "y" elif str(orient).startswith("v") or orient == "x": if require_numeric and y_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Vertical", "y")) return "x" elif str(orient).startswith("h") or orient == "y": if require_numeric and x_type != "numeric": raise TypeError(nonnumeric_dv_error.format("Horizontal", "x")) return "y" elif orient is not None: err = ( "`orient` must start with 'v' or 'h' or be None, " f"but `{repr(orient)}` was passed." ) raise ValueError(err) elif x_type != "categorical" and y_type == "categorical": return "y" elif x_type != "numeric" and y_type == "numeric": return "x" elif x_type == "numeric" and y_type != "numeric": return "y" elif require_numeric and "numeric" not in (x_type, y_type): err = "Neither the `x` nor `y` variable appears to be numeric." raise TypeError(err) else: return "x"
Determine how the plot should be oriented based on the data. For historical reasons, the convention is to call a plot "horizontally" or "vertically" oriented based on the axis representing its dependent variable. Practically, this is used when determining the axis for numerical aggregation. Parameters ---------- x, y : Vector data or None Positional data vectors for the plot. orient : string or None Specified orientation. If not None, can be "x" or "y", or otherwise must start with "v" or "h". require_numeric : bool If set, raise when the implied dependent variable is not numeric. Returns ------- orient : "x" or "y" Raises ------ ValueError: When `orient` is an unknown string. TypeError: When dependent variable is not numeric, with `require_numeric`
infer_orient
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def unique_dashes(n): """Build an arbitrarily long list of unique dash styles for lines. Parameters ---------- n : int Number of unique dash specs to generate. Returns ------- dashes : list of strings or tuples Valid arguments for the ``dashes`` parameter on :class:`matplotlib.lines.Line2D`. The first spec is a solid line (``""``), the remainder are sequences of long and short dashes. """ # Start with dash specs that are well distinguishable dashes = [ "", (4, 1.5), (1, 1), (3, 1.25, 1.5, 1.25), (5, 1, 1, 1), ] # Now programmatically build as many as we need p = 3 while len(dashes) < n: # Take combinations of long and short dashes a = itertools.combinations_with_replacement([3, 1.25], p) b = itertools.combinations_with_replacement([4, 1], p) # Interleave the combinations, reversing one of the streams segment_list = itertools.chain(*zip( list(a)[1:-1][::-1], list(b)[1:-1] )) # Now insert the gaps for segments in segment_list: gap = min(segments) spec = tuple(itertools.chain(*((seg, gap) for seg in segments))) dashes.append(spec) p += 1 return dashes[:n]
Build an arbitrarily long list of unique dash styles for lines. Parameters ---------- n : int Number of unique dash specs to generate. Returns ------- dashes : list of strings or tuples Valid arguments for the ``dashes`` parameter on :class:`matplotlib.lines.Line2D`. The first spec is a solid line (``""``), the remainder are sequences of long and short dashes.
unique_dashes
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def unique_markers(n): """Build an arbitrarily long list of unique marker styles for points. Parameters ---------- n : int Number of unique marker specs to generate. Returns ------- markers : list of string or tuples Values for defining :class:`matplotlib.markers.MarkerStyle` objects. All markers will be filled. """ # Start with marker specs that are well distinguishable markers = [ "o", "X", (4, 0, 45), "P", (4, 0, 0), (4, 1, 0), "^", (4, 1, 45), "v", ] # Now generate more from regular polygons of increasing order s = 5 while len(markers) < n: a = 360 / (s + 1) / 2 markers.extend([ (s + 1, 1, a), (s + 1, 0, a), (s, 1, 0), (s, 0, 0), ]) s += 1 # Convert to MarkerStyle object, using only exactly what we need # markers = [mpl.markers.MarkerStyle(m) for m in markers[:n]] return markers[:n]
Build an arbitrarily long list of unique marker styles for points. Parameters ---------- n : int Number of unique marker specs to generate. Returns ------- markers : list of string or tuples Values for defining :class:`matplotlib.markers.MarkerStyle` objects. All markers will be filled.
unique_markers
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def categorical_order(vector, order=None): """Return a list of unique data values. Determine an ordered list of levels in ``values``. Parameters ---------- vector : list, array, Categorical, or Series Vector of "categorical" values order : list-like, optional Desired order of category levels to override the order determined from the ``values`` object. Returns ------- order : list Ordered list of category levels not including null values. """ if order is None: if hasattr(vector, "categories"): order = vector.categories else: try: order = vector.cat.categories except (TypeError, AttributeError): order = pd.Series(vector).unique() if variable_type(vector) == "numeric": order = np.sort(order) order = filter(pd.notnull, order) return list(order)
Return a list of unique data values. Determine an ordered list of levels in ``values``. Parameters ---------- vector : list, array, Categorical, or Series Vector of "categorical" values order : list-like, optional Desired order of category levels to override the order determined from the ``values`` object. Returns ------- order : list Ordered list of category levels not including null values.
categorical_order
python
mwaskom/seaborn
seaborn/_base.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_base.py
BSD-3-Clause
def get_colormap(name): """Handle changes to matplotlib colormap interface in 3.6.""" try: return mpl.colormaps[name] except AttributeError: return mpl.cm.get_cmap(name)
Handle changes to matplotlib colormap interface in 3.6.
get_colormap
python
mwaskom/seaborn
seaborn/_compat.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_compat.py
BSD-3-Clause
def register_colormap(name, cmap): """Handle changes to matplotlib colormap interface in 3.6.""" try: if name not in mpl.colormaps: mpl.colormaps.register(cmap, name=name) except AttributeError: mpl.cm.register_cmap(name, cmap)
Handle changes to matplotlib colormap interface in 3.6.
register_colormap
python
mwaskom/seaborn
seaborn/_compat.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_compat.py
BSD-3-Clause
def set_layout_engine( fig: Figure, engine: Literal["constrained", "compressed", "tight", "none"], ) -> None: """Handle changes to auto layout engine interface in 3.6""" if hasattr(fig, "set_layout_engine"): fig.set_layout_engine(engine) else: # _version_predates(mpl, 3.6) if engine == "tight": fig.set_tight_layout(True) # type: ignore # predates typing elif engine == "constrained": fig.set_constrained_layout(True) # type: ignore elif engine == "none": fig.set_tight_layout(False) # type: ignore fig.set_constrained_layout(False) # type: ignore
Handle changes to auto layout engine interface in 3.6
set_layout_engine
python
mwaskom/seaborn
seaborn/_compat.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_compat.py
BSD-3-Clause
def get_layout_engine(fig: Figure) -> mpl.layout_engine.LayoutEngine | None: """Handle changes to auto layout engine interface in 3.6""" if hasattr(fig, "get_layout_engine"): return fig.get_layout_engine() else: # _version_predates(mpl, 3.6) return None
Handle changes to auto layout engine interface in 3.6
get_layout_engine
python
mwaskom/seaborn
seaborn/_compat.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_compat.py
BSD-3-Clause
def share_axis(ax0, ax1, which): """Handle changes to post-hoc axis sharing.""" if _version_predates(mpl, "3.5"): group = getattr(ax0, f"get_shared_{which}_axes")() group.join(ax1, ax0) else: getattr(ax1, f"share{which}")(ax0)
Handle changes to post-hoc axis sharing.
share_axis
python
mwaskom/seaborn
seaborn/_compat.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_compat.py
BSD-3-Clause
def __init__(self, comp_dict, strip_whitespace=True): """Read entries from a dict, optionally stripping outer whitespace.""" if strip_whitespace: entries = {} for key, val in comp_dict.items(): m = re.match(self.regexp, val) if m is None: entries[key] = val else: entries[key] = m.group(1) else: entries = comp_dict.copy() self.entries = entries
Read entries from a dict, optionally stripping outer whitespace.
__init__
python
mwaskom/seaborn
seaborn/_docstrings.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_docstrings.py
BSD-3-Clause
def __getattr__(self, attr): """Provide dot access to entries for clean raw docstrings.""" if attr in self.entries: return self.entries[attr] else: try: return self.__getattribute__(attr) except AttributeError as err: # If Python is run with -OO, it will strip docstrings and our lookup # from self.entries will fail. We check for __debug__, which is actually # set to False by -O (it is True for normal execution). # But we only want to see an error when building the docs; # not something users should see, so this slight inconsistency is fine. if __debug__: raise err else: pass
Provide dot access to entries for clean raw docstrings.
__getattr__
python
mwaskom/seaborn
seaborn/_docstrings.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_docstrings.py
BSD-3-Clause
def from_function_params(cls, func): """Use the numpydoc parser to extract components from existing func.""" params = NumpyDocString(pydoc.getdoc(func))["Parameters"] comp_dict = {} for p in params: name = p.name type = p.type desc = "\n ".join(p.desc) comp_dict[name] = f"{name} : {type}\n {desc}" return cls(comp_dict)
Use the numpydoc parser to extract components from existing func.
from_function_params
python
mwaskom/seaborn
seaborn/_docstrings.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_docstrings.py
BSD-3-Clause
def _define_support_grid(self, x, bw, cut, clip, gridsize): """Create the grid of evaluation points depending for vector x.""" clip_lo = -np.inf if clip[0] is None else clip[0] clip_hi = +np.inf if clip[1] is None else clip[1] gridmin = max(x.min() - bw * cut, clip_lo) gridmax = min(x.max() + bw * cut, clip_hi) return np.linspace(gridmin, gridmax, gridsize)
Create the grid of evaluation points depending for vector x.
_define_support_grid
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def define_support(self, x1, x2=None, weights=None, cache=True): """Create the evaluation grid for a given data set.""" if x2 is None: support = self._define_support_univariate(x1, weights) else: support = self._define_support_bivariate(x1, x2, weights) if cache: self.support = support return support
Create the evaluation grid for a given data set.
define_support
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def _fit(self, fit_data, weights=None): """Fit the scipy kde while adding bw_adjust logic and version check.""" fit_kws = {"bw_method": self.bw_method} if weights is not None: fit_kws["weights"] = weights kde = gaussian_kde(fit_data, **fit_kws) kde.set_bandwidth(kde.factor * self.bw_adjust) return kde
Fit the scipy kde while adding bw_adjust logic and version check.
_fit
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def _eval_univariate(self, x, weights=None): """Fit and evaluate a univariate on univariate data.""" support = self.support if support is None: support = self.define_support(x, cache=False) kde = self._fit(x, weights) if self.cumulative: s_0 = support[0] density = np.array([ kde.integrate_box_1d(s_0, s_i) for s_i in support ]) else: density = kde(support) return density, support
Fit and evaluate a univariate on univariate data.
_eval_univariate
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def _eval_bivariate(self, x1, x2, weights=None): """Fit and evaluate a univariate on bivariate data.""" support = self.support if support is None: support = self.define_support(x1, x2, cache=False) kde = self._fit([x1, x2], weights) if self.cumulative: grid1, grid2 = support density = np.zeros((grid1.size, grid2.size)) p0 = grid1.min(), grid2.min() for i, xi in enumerate(grid1): for j, xj in enumerate(grid2): density[i, j] = kde.integrate_box(p0, (xi, xj)) else: xx1, xx2 = np.meshgrid(*support) density = kde([xx1.ravel(), xx2.ravel()]).reshape(xx1.shape) return density, support
Fit and evaluate a univariate on bivariate data.
_eval_bivariate
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def __call__(self, x1, x2=None, weights=None): """Fit and evaluate on univariate or bivariate data.""" if x2 is None: return self._eval_univariate(x1, weights) else: return self._eval_bivariate(x1, x2, weights)
Fit and evaluate on univariate or bivariate data.
__call__
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def __init__( self, stat="count", bins="auto", binwidth=None, binrange=None, discrete=False, cumulative=False, ): """Initialize the estimator with its parameters. Parameters ---------- stat : str Aggregate statistic to compute in each bin. - `count`: show the number of observations in each bin - `frequency`: show the number of observations divided by the bin width - `probability` or `proportion`: normalize such that bar heights sum to 1 - `percent`: normalize such that bar heights sum to 100 - `density`: normalize such that the total area of the histogram equals 1 bins : str, number, vector, or a pair of such values Generic bin parameter that can be the name of a reference rule, the number of bins, or the breaks of the bins. Passed to :func:`numpy.histogram_bin_edges`. binwidth : number or pair of numbers Width of each bin, overrides ``bins`` but can be used with ``binrange``. binrange : pair of numbers or a pair of pairs Lowest and highest value for bin edges; can be used either with ``bins`` or ``binwidth``. Defaults to data extremes. discrete : bool or pair of bools If True, set ``binwidth`` and ``binrange`` such that bin edges cover integer values in the dataset. cumulative : bool If True, return the cumulative statistic. """ stat_choices = [ "count", "frequency", "density", "probability", "proportion", "percent", ] _check_argument("stat", stat_choices, stat) self.stat = stat self.bins = bins self.binwidth = binwidth self.binrange = binrange self.discrete = discrete self.cumulative = cumulative self.bin_kws = None
Initialize the estimator with its parameters. Parameters ---------- stat : str Aggregate statistic to compute in each bin. - `count`: show the number of observations in each bin - `frequency`: show the number of observations divided by the bin width - `probability` or `proportion`: normalize such that bar heights sum to 1 - `percent`: normalize such that bar heights sum to 100 - `density`: normalize such that the total area of the histogram equals 1 bins : str, number, vector, or a pair of such values Generic bin parameter that can be the name of a reference rule, the number of bins, or the breaks of the bins. Passed to :func:`numpy.histogram_bin_edges`. binwidth : number or pair of numbers Width of each bin, overrides ``bins`` but can be used with ``binrange``. binrange : pair of numbers or a pair of pairs Lowest and highest value for bin edges; can be used either with ``bins`` or ``binwidth``. Defaults to data extremes. discrete : bool or pair of bools If True, set ``binwidth`` and ``binrange`` such that bin edges cover integer values in the dataset. cumulative : bool If True, return the cumulative statistic.
__init__
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def _define_bin_edges(self, x, weights, bins, binwidth, binrange, discrete): """Inner function that takes bin parameters as arguments.""" if binrange is None: start, stop = x.min(), x.max() else: start, stop = binrange if discrete: bin_edges = np.arange(start - .5, stop + 1.5) elif binwidth is not None: step = binwidth bin_edges = np.arange(start, stop + step, step) # Handle roundoff error (maybe there is a less clumsy way?) if bin_edges.max() < stop or len(bin_edges) < 2: bin_edges = np.append(bin_edges, bin_edges.max() + step) else: bin_edges = np.histogram_bin_edges( x, bins, binrange, weights, ) return bin_edges
Inner function that takes bin parameters as arguments.
_define_bin_edges
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def define_bin_params(self, x1, x2=None, weights=None, cache=True): """Given data, return numpy.histogram parameters to define bins.""" if x2 is None: bin_edges = self._define_bin_edges( x1, weights, self.bins, self.binwidth, self.binrange, self.discrete, ) if isinstance(self.bins, (str, Number)): n_bins = len(bin_edges) - 1 bin_range = bin_edges.min(), bin_edges.max() bin_kws = dict(bins=n_bins, range=bin_range) else: bin_kws = dict(bins=bin_edges) else: bin_edges = [] for i, x in enumerate([x1, x2]): # Resolve out whether bin parameters are shared # or specific to each variable bins = self.bins if not bins or isinstance(bins, (str, Number)): pass elif isinstance(bins[i], str): bins = bins[i] elif len(bins) == 2: bins = bins[i] binwidth = self.binwidth if binwidth is None: pass elif not isinstance(binwidth, Number): binwidth = binwidth[i] binrange = self.binrange if binrange is None: pass elif not isinstance(binrange[0], Number): binrange = binrange[i] discrete = self.discrete if not isinstance(discrete, bool): discrete = discrete[i] # Define the bins for this variable bin_edges.append(self._define_bin_edges( x, weights, bins, binwidth, binrange, discrete, )) bin_kws = dict(bins=tuple(bin_edges)) if cache: self.bin_kws = bin_kws return bin_kws
Given data, return numpy.histogram parameters to define bins.
define_bin_params
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def _eval_bivariate(self, x1, x2, weights): """Inner function for histogram of two variables.""" bin_kws = self.bin_kws if bin_kws is None: bin_kws = self.define_bin_params(x1, x2, cache=False) density = self.stat == "density" hist, *bin_edges = np.histogram2d( x1, x2, **bin_kws, weights=weights, density=density ) area = np.outer( np.diff(bin_edges[0]), np.diff(bin_edges[1]), ) if self.stat == "probability" or self.stat == "proportion": hist = hist.astype(float) / hist.sum() elif self.stat == "percent": hist = hist.astype(float) / hist.sum() * 100 elif self.stat == "frequency": hist = hist.astype(float) / area if self.cumulative: if self.stat in ["density", "frequency"]: hist = (hist * area).cumsum(axis=0).cumsum(axis=1) else: hist = hist.cumsum(axis=0).cumsum(axis=1) return hist, bin_edges
Inner function for histogram of two variables.
_eval_bivariate
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def _eval_univariate(self, x, weights): """Inner function for histogram of one variable.""" bin_kws = self.bin_kws if bin_kws is None: bin_kws = self.define_bin_params(x, weights=weights, cache=False) density = self.stat == "density" hist, bin_edges = np.histogram( x, **bin_kws, weights=weights, density=density, ) if self.stat == "probability" or self.stat == "proportion": hist = hist.astype(float) / hist.sum() elif self.stat == "percent": hist = hist.astype(float) / hist.sum() * 100 elif self.stat == "frequency": hist = hist.astype(float) / np.diff(bin_edges) if self.cumulative: if self.stat in ["density", "frequency"]: hist = (hist * np.diff(bin_edges)).cumsum() else: hist = hist.cumsum() return hist, bin_edges
Inner function for histogram of one variable.
_eval_univariate
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause
def __call__(self, x1, x2=None, weights=None): """Count the occurrences in each bin, maybe normalize.""" if x2 is None: return self._eval_univariate(x1, weights) else: return self._eval_bivariate(x1, x2, weights)
Count the occurrences in each bin, maybe normalize.
__call__
python
mwaskom/seaborn
seaborn/_statistics.py
https://github.com/mwaskom/seaborn/blob/master/seaborn/_statistics.py
BSD-3-Clause