code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def test_bootstrap(random):
"""Test that bootstrapping gives the right answer in dumb cases."""
a_ones = np.ones(10)
n_boot = 5
out1 = algo.bootstrap(a_ones, n_boot=n_boot)
assert_array_equal(out1, np.ones(n_boot))
out2 = algo.bootstrap(a_ones, n_boot=n_boot, func=np.median)
assert_array_equal(out2, np.ones(n_boot))
|
Test that bootstrapping gives the right answer in dumb cases.
|
test_bootstrap
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_length(random):
"""Test that we get a bootstrap array of the right shape."""
a_norm = np.random.randn(1000)
out = algo.bootstrap(a_norm)
assert len(out) == 10000
n_boot = 100
out = algo.bootstrap(a_norm, n_boot=n_boot)
assert len(out) == n_boot
|
Test that we get a bootstrap array of the right shape.
|
test_bootstrap_length
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_range(random):
"""Test that bootstrapping a random array stays within the right range."""
a_norm = np.random.randn(1000)
amin, amax = a_norm.min(), a_norm.max()
out = algo.bootstrap(a_norm)
assert amin <= out.min()
assert amax >= out.max()
|
Test that bootstrapping a random array stays within the right range.
|
test_bootstrap_range
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_multiarg(random):
"""Test that bootstrap works with multiple input arrays."""
x = np.vstack([[1, 10] for i in range(10)])
y = np.vstack([[5, 5] for i in range(10)])
def f(x, y):
return np.vstack((x, y)).max(axis=0)
out_actual = algo.bootstrap(x, y, n_boot=2, func=f)
out_wanted = np.array([[5, 10], [5, 10]])
assert_array_equal(out_actual, out_wanted)
|
Test that bootstrap works with multiple input arrays.
|
test_bootstrap_multiarg
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_axis(random):
"""Test axis kwarg to bootstrap function."""
x = np.random.randn(10, 20)
n_boot = 100
out_default = algo.bootstrap(x, n_boot=n_boot)
assert out_default.shape == (n_boot,)
out_axis = algo.bootstrap(x, n_boot=n_boot, axis=0)
assert out_axis.shape, (n_boot, x.shape[1])
|
Test axis kwarg to bootstrap function.
|
test_bootstrap_axis
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_seed(random):
"""Test that we can get reproducible resamples by seeding the RNG."""
data = np.random.randn(50)
seed = 42
boots1 = algo.bootstrap(data, seed=seed)
boots2 = algo.bootstrap(data, seed=seed)
assert_array_equal(boots1, boots2)
|
Test that we can get reproducible resamples by seeding the RNG.
|
test_bootstrap_seed
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_ols(random):
"""Test bootstrap of OLS model fit."""
def ols_fit(X, y):
XtXinv = np.linalg.inv(np.dot(X.T, X))
return XtXinv.dot(X.T).dot(y)
X = np.column_stack((np.random.randn(50, 4), np.ones(50)))
w = [2, 4, 0, 3, 5]
y_noisy = np.dot(X, w) + np.random.randn(50) * 20
y_lownoise = np.dot(X, w) + np.random.randn(50)
n_boot = 500
w_boot_noisy = algo.bootstrap(X, y_noisy,
n_boot=n_boot,
func=ols_fit)
w_boot_lownoise = algo.bootstrap(X, y_lownoise,
n_boot=n_boot,
func=ols_fit)
assert w_boot_noisy.shape == (n_boot, 5)
assert w_boot_lownoise.shape == (n_boot, 5)
assert w_boot_noisy.std() > w_boot_lownoise.std()
|
Test bootstrap of OLS model fit.
|
test_bootstrap_ols
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_units(random):
"""Test that results make sense when passing unit IDs to bootstrap."""
data = np.random.randn(50)
ids = np.repeat(range(10), 5)
bwerr = np.random.normal(0, 2, 10)
bwerr = bwerr[ids]
data_rm = data + bwerr
seed = 77
boots_orig = algo.bootstrap(data_rm, seed=seed)
boots_rm = algo.bootstrap(data_rm, units=ids, seed=seed)
assert boots_rm.std() > boots_orig.std()
|
Test that results make sense when passing unit IDs to bootstrap.
|
test_bootstrap_units
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_string_func():
"""Test that named numpy methods are the same as the numpy function."""
x = np.random.randn(100)
res_a = algo.bootstrap(x, func="mean", seed=0)
res_b = algo.bootstrap(x, func=np.mean, seed=0)
assert np.array_equal(res_a, res_b)
res_a = algo.bootstrap(x, func="std", seed=0)
res_b = algo.bootstrap(x, func=np.std, seed=0)
assert np.array_equal(res_a, res_b)
with pytest.raises(AttributeError):
algo.bootstrap(x, func="not_a_method_name")
|
Test that named numpy methods are the same as the numpy function.
|
test_bootstrap_string_func
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def test_bootstrap_reproducibility(random):
"""Test that bootstrapping uses the internal random state."""
data = np.random.randn(50)
boots1 = algo.bootstrap(data, seed=100)
boots2 = algo.bootstrap(data, seed=100)
assert_array_equal(boots1, boots2)
random_state1 = np.random.RandomState(200)
boots1 = algo.bootstrap(data, seed=random_state1)
random_state2 = np.random.RandomState(200)
boots2 = algo.bootstrap(data, seed=random_state2)
assert_array_equal(boots1, boots2)
with pytest.warns(UserWarning):
# Deprecated, remove when removing random_seed
boots1 = algo.bootstrap(data, random_seed=100)
boots2 = algo.bootstrap(data, random_seed=100)
assert_array_equal(boots1, boots2)
|
Test that bootstrapping uses the internal random state.
|
test_bootstrap_reproducibility
|
python
|
mwaskom/seaborn
|
tests/test_algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_algorithms.py
|
BSD-3-Clause
|
def get_contour_coords(c, filter_empty=False):
"""Provide compatability for change in contour artist types."""
if isinstance(c, mpl.collections.LineCollection):
# See https://github.com/matplotlib/matplotlib/issues/20906
return c.get_segments()
elif isinstance(c, (mpl.collections.PathCollection, mpl.contour.QuadContourSet)):
return [
p.vertices[:np.argmax(p.codes) + 1] for p in c.get_paths()
if len(p) or not filter_empty
]
|
Provide compatability for change in contour artist types.
|
get_contour_coords
|
python
|
mwaskom/seaborn
|
tests/test_distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_distributions.py
|
BSD-3-Clause
|
def get_contour_color(c):
"""Provide compatability for change in contour artist types."""
if isinstance(c, mpl.collections.LineCollection):
# See https://github.com/matplotlib/matplotlib/issues/20906
return c.get_color()
elif isinstance(c, (mpl.collections.PathCollection, mpl.contour.QuadContourSet)):
if c.get_facecolor().size:
return c.get_facecolor()
else:
return c.get_edgecolor()
|
Provide compatability for change in contour artist types.
|
get_contour_color
|
python
|
mwaskom/seaborn
|
tests/test_distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_distributions.py
|
BSD-3-Clause
|
def integrate(y, x):
""""Simple numerical integration for testing KDE code."""
y = np.asarray(y)
x = np.asarray(x)
dx = np.diff(x)
return (dx * y[:-1] + dx * y[1:]).sum() / 2
|
"Simple numerical integration for testing KDE code.
|
integrate
|
python
|
mwaskom/seaborn
|
tests/test_distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_distributions.py
|
BSD-3-Clause
|
def example_method(self):
"""An example method.
Parameters
----------
a : str
A method parameter.
"""
|
An example method.
Parameters
----------
a : str
A method parameter.
|
example_method
|
python
|
mwaskom/seaborn
|
tests/test_docstrings.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_docstrings.py
|
BSD-3-Clause
|
def example_func():
"""An example function.
Parameters
----------
a : str
A function parameter.
"""
|
An example function.
Parameters
----------
a : str
A function parameter.
|
example_func
|
python
|
mwaskom/seaborn
|
tests/test_docstrings.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_docstrings.py
|
BSD-3-Clause
|
def test_mask_limits(self):
"""Make sure masked cells are not used to calculate extremes"""
kws = self.default_kws.copy()
mask = self.x_norm > 0
kws['mask'] = mask
p = mat._HeatMapper(self.x_norm, **kws)
assert p.vmax == np.ma.array(self.x_norm, mask=mask).max()
assert p.vmin == np.ma.array(self.x_norm, mask=mask).min()
mask = self.x_norm < 0
kws['mask'] = mask
p = mat._HeatMapper(self.x_norm, **kws)
assert p.vmin == np.ma.array(self.x_norm, mask=mask).min()
assert p.vmax == np.ma.array(self.x_norm, mask=mask).max()
|
Make sure masked cells are not used to calculate extremes
|
test_mask_limits
|
python
|
mwaskom/seaborn
|
tests/test_matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_matrix.py
|
BSD-3-Clause
|
def has_verdana():
"""Helper to verify if Verdana font is present"""
# This import is relatively lengthy, so to prevent its import for
# testing other tests in this module not requiring this knowledge,
# import font_manager here
import matplotlib.font_manager as mplfm
try:
verdana_font = mplfm.findfont('Verdana', fallback_to_default=False)
except: # noqa
# if https://github.com/matplotlib/matplotlib/pull/3435
# gets accepted
return False
# otherwise check if not matching the logic for a 'default' one
try:
unlikely_font = mplfm.findfont("very_unlikely_to_exist1234",
fallback_to_default=False)
except: # noqa
# if matched verdana but not unlikely, Verdana must exist
return True
# otherwise -- if they match, must be the same default
return verdana_font != unlikely_font
|
Helper to verify if Verdana font is present
|
has_verdana
|
python
|
mwaskom/seaborn
|
tests/test_rcmod.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_rcmod.py
|
BSD-3-Clause
|
def _network(t=None, url="https://github.com"):
"""
Decorator that will skip a test if `url` is unreachable.
Parameters
----------
t : function, optional
url : str, optional
"""
if t is None:
return lambda x: _network(x, url=url)
def wrapper(*args, **kwargs):
# attempt to connect
try:
f = urlopen(url)
except (OSError, HTTPException):
pytest.skip("No internet connection")
else:
f.close()
return t(*args, **kwargs)
return wrapper
|
Decorator that will skip a test if `url` is unreachable.
Parameters
----------
t : function, optional
url : str, optional
|
_network
|
python
|
mwaskom/seaborn
|
tests/test_utils.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_utils.py
|
BSD-3-Clause
|
def test_to_utf8(s, exp):
"""Test the to_utf8 function: object to string"""
u = utils.to_utf8(s)
assert isinstance(u, str)
assert u == exp
|
Test the to_utf8 function: object to string
|
test_to_utf8
|
python
|
mwaskom/seaborn
|
tests/test_utils.py
|
https://github.com/mwaskom/seaborn/blob/master/tests/test_utils.py
|
BSD-3-Clause
|
def process(self, audio_data, last=False):
"""
Add audio data and process it
params:
audio_data: audio data in numpy array
last: whether this is the last chunk of data
returns:
Processed audio data, returns None if no split point is found
"""
# Add new data to buffer
self.buffer = np.concatenate([self.buffer, audio_data]) if len(self.buffer) > 0 else audio_data
if last:
result = self.buffer
self.buffer = np.array([])
return self._to_wav_bytes(result)
# Find silence boundary
split_point = self._find_silence_boundary(self.buffer)
if split_point is not None:
# Modified: Extend split point to the end of silence
silence_end = self._find_silence_end(split_point)
result = self.buffer[:silence_end]
self.buffer = self.buffer[silence_end:]
return self._to_wav_bytes(result)
return None
|
Add audio data and process it
params:
audio_data: audio data in numpy array
last: whether this is the last chunk of data
returns:
Processed audio data, returns None if no split point is found
|
process
|
python
|
THUDM/GLM-4-Voice
|
audio_process.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/audio_process.py
|
Apache-2.0
|
def _find_silence_boundary(self, audio):
"""
Find the starting point of silence boundary in audio
"""
# Convert audio to decibels
db = librosa.amplitude_to_db(np.abs(audio), ref=np.max)
# Find points below threshold
silence_points = np.where(db < self.threshold_db)[0]
if len(silence_points) == 0:
return None
# Calculate minimum silence samples
min_silence_samples = int(self.min_silence_duration * self.sr)
# Search backwards for continuous silence segment starting point
for i in range(len(silence_points) - min_silence_samples, -1, -1):
if i < 0:
break
if np.all(np.diff(silence_points[i:i+min_silence_samples]) == 1):
return silence_points[i]
return None
|
Find the starting point of silence boundary in audio
|
_find_silence_boundary
|
python
|
THUDM/GLM-4-Voice
|
audio_process.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/audio_process.py
|
Apache-2.0
|
def _find_silence_end(self, start_point):
"""
Find the end point of silence segment
"""
db = librosa.amplitude_to_db(np.abs(self.buffer[start_point:]), ref=np.max)
silence_points = np.where(db >= self.threshold_db)[0]
if len(silence_points) == 0:
return len(self.buffer)
return start_point + silence_points[0]
|
Find the end point of silence segment
|
_find_silence_end
|
python
|
THUDM/GLM-4-Voice
|
audio_process.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/audio_process.py
|
Apache-2.0
|
def __iter__(self):
""" Return an iterator over the source dataset processed by the
given processor.
"""
assert self.source is not None
assert callable(self.f)
return self.f(iter(self.source), *self.args, **self.kw)
|
Return an iterator over the source dataset processed by the
given processor.
|
__iter__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/dataset.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/dataset.py
|
Apache-2.0
|
def sample(self, data):
""" Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
"""
data = list(range(len(data)))
# force datalist even
if self.partition:
if self.shuffle:
random.Random(self.epoch).shuffle(data)
if len(data) < self.world_size:
data = data * math.ceil(self.world_size / len(data))
data = data[:self.world_size]
data = data[self.rank::self.world_size]
if len(data) < self.num_workers:
data = data * math.ceil(self.num_workers / len(data))
data = data[:self.num_workers]
data = data[self.worker_id::self.num_workers]
return data
|
Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
|
sample
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/dataset.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/dataset.py
|
Apache-2.0
|
def Dataset(data_list_file,
data_pipeline,
mode='train',
shuffle=True,
partition=True,
tts_file='',
prompt_utt2data=''):
""" Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shards tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
tokenizer (BaseTokenizer): tokenizer to tokenize
partition(bool): whether to do data partition in terms of rank
"""
assert mode in ['train', 'inference']
lists = read_lists(data_list_file)
# import pdb
# pdb.set_trace()
if mode == 'inference':
with open(tts_file) as f:
tts_data = json.load(f)
utt2lists = read_json_lists(prompt_utt2data)
# filter unnecessary file in inference mode
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
dataset = DataList(lists,shuffle=shuffle,partition=partition)
if mode == 'inference':
# map partial arg tts_data in inference mode
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
for func in data_pipeline:
dataset = Processor(dataset, func, mode=mode)
return dataset
|
Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shards tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
tokenizer (BaseTokenizer): tokenizer to tokenize
partition(bool): whether to do data partition in terms of rank
|
Dataset
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/dataset.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/dataset.py
|
Apache-2.0
|
def parquet_opener(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
url = sample['src']
try:
df = pq.read_table(url).to_pandas()
for i in range(len(df)):
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
continue
sample.update(dict(df.loc[i]))
if mode == 'train':
# NOTE do not return sample directly, must initialize a new dict
yield {**sample}
else:
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
yield {**sample, 'tts_index': index, 'tts_text': text}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
|
parquet_opener
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def cosy_jsonl_opener(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0907.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
|
cosy_jsonl_opener
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def cosy_jsonl_opener_vq0918_nopool(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-nopool.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
# cosy_data = [json.loads(line) for line in f]
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
|
cosy_jsonl_opener_vq0918_nopool
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def cosy_jsonl_opener_vq0918_pool2(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool2.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
|
cosy_jsonl_opener_vq0918_pool2
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def cosy_jsonl_opener_vq0918_pool4(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool4.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
# cosy_data = [json.loads(line) for line in f]
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
|
cosy_jsonl_opener_vq0918_pool4
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def cosy_jsonl_opener_vq0918_pool8(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool8.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
# cosy_data = [json.loads(line) for line in f]
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
|
cosy_jsonl_opener_vq0918_pool8
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def filter(data,
max_length=10240,
min_length=10,
token_max_length=200,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=1,
mode='train'):
""" Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
# sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
# del sample['audio_data']
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
if num_frames < min_length:
continue
if num_frames > max_length:
continue
if len(sample['text_token']) < token_min_length:
continue
if len(sample['text_token']) > token_max_length:
continue
if len(sample['speech_token']) == 0:
continue
if num_frames != 0:
if len(sample['text_token']) / num_frames < min_output_input_ratio:
continue
if len(sample['text_token']) / num_frames > max_output_input_ratio:
continue
yield sample
|
Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
|
filter
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def filter_speech_token(data,
max_length=10240,
min_length=10,
token_max_length=5000,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=30,
mode='train'):
""" Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
# sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
# del sample['audio_data']
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
if num_frames < min_length:
continue
if num_frames > max_length:
continue
if len(sample['speech_token']) < token_min_length:
continue
if len(sample['speech_token']) > token_max_length:
continue
if len(sample['speech_token']) == 0:
continue
if num_frames != 0:
if len(sample['speech_token']) / num_frames < min_output_input_ratio:
continue
if len(sample['speech_token']) / num_frames > max_output_input_ratio:
continue
yield sample
|
Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
|
filter_speech_token
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
""" Resample data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
resample_rate: target resample rate
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'speech' in sample
sample_rate = sample['sample_rate']
waveform = sample['speech']
if sample_rate != resample_rate:
if sample_rate < min_sample_rate:
continue
sample['sample_rate'] = resample_rate
sample['speech'] = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
max_val = sample['speech'].abs().max()
if max_val > 1:
sample['speech'] /= max_val
yield sample
|
Resample data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
resample_rate: target resample rate
Returns:
Iterable[{key, wav, label, sample_rate}]
|
resample
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def compute_fbank(data,
feat_extractor,
mode='train'):
""" Extract fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'speech' in sample
# assert 'utt' in sample
# assert 'text_token' in sample
waveform = sample['speech']
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
sample['speech_feat'] = mat
del sample['speech']
yield sample
|
Extract fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
|
compute_fbank
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def parse_embedding(data, normalize, mode='train'):
""" Parse utt_embedding/spk_embedding
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
if normalize:
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
yield sample
|
Parse utt_embedding/spk_embedding
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
|
parse_embedding
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
""" Decode text to chars or BPE
Inplace operation
Args:
data: Iterable[{key, wav, txt, sample_rate}]
Returns:
Iterable[{key, wav, txt, tokens, label, sample_rate}]
"""
tokenizer = get_tokenizer()
for sample in data:
assert 'text' in sample
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
if mode == 'inference':
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
yield sample
|
Decode text to chars or BPE
Inplace operation
Args:
data: Iterable[{key, wav, txt, sample_rate}]
Returns:
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
tokenize
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def shuffle(data, shuffle_size=10000, mode='train'):
""" Local shuffle the data
Args:
data: Iterable[{key, feat, label}]
shuffle_size: buffer size for shuffle
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= shuffle_size:
random.shuffle(buf)
for x in buf:
yield x
buf = []
# The sample left over
random.shuffle(buf)
for x in buf:
yield x
|
Local shuffle the data
Args:
data: Iterable[{key, feat, label}]
shuffle_size: buffer size for shuffle
Returns:
Iterable[{key, feat, label}]
|
shuffle
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def sort(data, sort_size=500, mode='train'):
""" Sort the data by feature length.
Sort is used after shuffle and before batch, so we can group
utts with similar lengths into a batch, and `sort_size` should
be less than `shuffle_size`
Args:
data: Iterable[{key, feat, label}]
sort_size: buffer size for sort
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= sort_size:
buf.sort(key=lambda x: x['speech_feat'].size(0))
for x in buf:
yield x
buf = []
# The sample left over
buf.sort(key=lambda x: x['speech_feat'].size(0))
for x in buf:
yield x
|
Sort the data by feature length.
Sort is used after shuffle and before batch, so we can group
utts with similar lengths into a batch, and `sort_size` should
be less than `shuffle_size`
Args:
data: Iterable[{key, feat, label}]
sort_size: buffer size for sort
Returns:
Iterable[{key, feat, label}]
|
sort
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def static_batch(data, batch_size=16):
""" Static batch the data by `batch_size`
Args:
data: Iterable[{key, feat, label}]
batch_size: batch size
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= batch_size:
yield buf
buf = []
if len(buf) > 0:
yield buf
|
Static batch the data by `batch_size`
Args:
data: Iterable[{key, feat, label}]
batch_size: batch size
Returns:
Iterable[List[{key, feat, label}]]
|
static_batch
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
""" Dynamic batch the data until the total frames in batch
reach `max_frames_in_batch`
Args:
data: Iterable[{key, feat, label}]
max_frames_in_batch: max_frames in one batch
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
longest_frames = 0
for sample in data:
assert 'speech_feat' in sample
assert isinstance(sample['speech_feat'], torch.Tensor)
new_sample_frames = sample['speech_feat'].size(0)
longest_frames = max(longest_frames, new_sample_frames)
frames_after_padding = longest_frames * (len(buf) + 1)
if frames_after_padding > max_frames_in_batch:
yield buf
buf = [sample]
longest_frames = new_sample_frames
else:
buf.append(sample)
if len(buf) > 0:
yield buf
|
Dynamic batch the data until the total frames in batch
reach `max_frames_in_batch`
Args:
data: Iterable[{key, feat, label}]
max_frames_in_batch: max_frames in one batch
Returns:
Iterable[List[{key, feat, label}]]
|
dynamic_batch
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def padding(data, use_spk_embedding, mode='train'):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
dtype=torch.int32)
order = torch.argsort(speech_feat_len, descending=True)
utts = [sample[i]['utt'] for i in order]
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
speech_token = pad_sequence(speech_token,
batch_first=True,
padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
speech_feat = pad_sequence(speech_feat,
batch_first=True,
padding_value=0)
text = [sample[i]['text'] for i in order]
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
batch = {
"utts": utts,
"speech_token": speech_token,
"speech_token_len": speech_token_len,
"speech_feat": speech_feat,
"speech_feat_len": speech_feat_len,
"text": text,
"text_token": text_token,
"text_token_len": text_token_len,
"utt_embedding": utt_embedding,
"spk_embedding": spk_embedding,
}
if mode == 'inference':
tts_text = [sample[i]['tts_text'] for i in order]
tts_index = [sample[i]['tts_index'] for i in order]
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
batch.update({'tts_text': tts_text,
'tts_index': tts_index,
'tts_text_token': tts_text_token,
'tts_text_token_len': tts_text_token_len})
if use_spk_embedding is True:
batch["embedding"] = batch["spk_embedding"]
else:
batch["embedding"] = batch["utt_embedding"]
yield batch
|
Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
padding
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def padding_speech_token(data, use_spk_embedding, mode='train'):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
dtype=torch.int32)
order = torch.argsort(speech_feat_len, descending=True)
# utts = [sample[i]['utt'] for i in order]
# speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
try:
speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
speech_token = pad_sequence(speech_token,
batch_first=True,
padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
speech_feat = pad_sequence(speech_feat,
batch_first=True,
padding_value=0)
batch = {
"speech_token": speech_token,
"speech_token_len": speech_token_len,
"speech_feat": speech_feat,
"speech_feat_len": speech_feat_len,
}
if mode == 'inference':
tts_text = [sample[i]['tts_text'] for i in order]
tts_index = [sample[i]['tts_index'] for i in order]
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
batch.update({'tts_text': tts_text,
'tts_index': tts_index,
'tts_text_token': tts_text_token,
'tts_text_token_len': tts_text_token_len})
# if use_spk_embedding is True:
# batch["embedding"] = batch["spk_embedding"]
# else:
# batch["embedding"] = batch["utt_embedding"]
batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
yield batch
except Exception as ex:
logging.warning(' ex info {}'.format(ex))
# assert False
|
Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
padding_speech_token
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def padding_speech_token_spk(data, use_spk_embedding, mode='train'):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
dtype=torch.int32)
order = torch.argsort(speech_feat_len, descending=True)
# utts = [sample[i]['utt'] for i in order]
# speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
try:
speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
speech_token = pad_sequence(speech_token,
batch_first=True,
padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
speech_feat = pad_sequence(speech_feat,
batch_first=True,
padding_value=0)
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
batch = {
"speech_token": speech_token,
"speech_token_len": speech_token_len,
"speech_feat": speech_feat,
"speech_feat_len": speech_feat_len,
"spk_embedding": spk_embedding,
}
if mode == 'inference':
tts_text = [sample[i]['tts_text'] for i in order]
tts_index = [sample[i]['tts_index'] for i in order]
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
batch.update({'tts_text': tts_text,
'tts_index': tts_index,
'tts_text_token': tts_text_token,
'tts_text_token_len': tts_text_token_len})
# if use_spk_embedding is True:
# batch["embedding"] = batch["spk_embedding"]
# else:
# batch["embedding"] = batch["utt_embedding"]
# batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
batch["embedding"] = batch["spk_embedding"]
yield batch
except Exception as ex:
logging.warning(' ex info {}'.format(ex))
# assert False
|
Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
padding_speech_token_spk
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/dataset/processor.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/dataset/processor.py
|
Apache-2.0
|
def __init__(
self,
in_channels,
out_channels,
channels=(256, 256),
dropout=0.05,
attention_head_dim=64,
n_blocks=1,
num_mid_blocks=2,
num_heads=4,
act_fn="snake",
):
"""
This decoder requires an input with the same shape of the target. So, if your text content
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
"""
super().__init__()
channels = tuple(channels)
self.in_channels = in_channels
self.out_channels = out_channels
self.time_embeddings = SinusoidalPosEmb(in_channels)
time_embed_dim = channels[0] * 4
self.time_mlp = TimestepEmbedding(
in_channels=in_channels,
time_embed_dim=time_embed_dim,
act_fn="silu",
)
self.down_blocks = nn.ModuleList([])
self.mid_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
output_channel = in_channels
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
input_channel = output_channel
output_channel = channels[i]
is_last = i == len(channels) - 1
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
downsample = (
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
for i in range(num_mid_blocks):
input_channel = channels[-1]
out_channels = channels[-1]
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
channels = channels[::-1] + (channels[0],)
for i in range(len(channels) - 1):
input_channel = channels[i] * 2
output_channel = channels[i + 1]
is_last = i == len(channels) - 2
resnet = ResnetBlock1D(
dim=input_channel,
dim_out=output_channel,
time_emb_dim=time_embed_dim,
)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
upsample = (
Upsample1D(output_channel, use_conv_transpose=True)
if not is_last
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
self.final_block = Block1D(channels[-1], channels[-1])
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
self.initialize_weights()
|
This decoder requires an input with the same shape of the target. So, if your text content
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/decoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/decoder.py
|
Apache-2.0
|
def forward(self, x, mask, mu, t, spks=None, cond=None):
"""Forward pass of the UNet1DConditional model.
Args:
x (torch.Tensor): shape (batch_size, in_channels, time)
mask (_type_): shape (batch_size, 1, time)
t (_type_): shape (batch_size)
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
cond (_type_, optional): placeholder for future use. Defaults to None.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
_type_: _description_
"""
t = self.time_embeddings(t)
t = self.time_mlp(t)
x = pack([x, mu], "b * t")[0]
if spks is not None:
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
x = pack([x, spks], "b * t")[0]
if cond is not None:
x = pack([x, cond], "b * t")[0]
hiddens = []
masks = [mask]
for resnet, transformer_blocks, downsample in self.down_blocks:
mask_down = masks[-1]
x = resnet(x, mask_down, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
hiddens.append(x) # Save hidden states for skip connections
x = downsample(x * mask_down)
masks.append(mask_down[:, :, ::2])
masks = masks[:-1]
mask_mid = masks[-1]
for resnet, transformer_blocks in self.mid_blocks:
x = resnet(x, mask_mid, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
for resnet, transformer_blocks, upsample in self.up_blocks:
mask_up = masks.pop()
skip = hiddens.pop()
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
x = resnet(x, mask_up, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
x = upsample(x * mask_up)
x = self.final_block(x, mask_up)
output = self.final_proj(x * mask_up)
return output * mask
|
Forward pass of the UNet1DConditional model.
Args:
x (torch.Tensor): shape (batch_size, in_channels, time)
mask (_type_): shape (batch_size, 1, time)
t (_type_): shape (batch_size)
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
cond (_type_, optional): placeholder for future use. Defaults to None.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
_type_: _description_
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/decoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/decoder.py
|
Apache-2.0
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
torch.manual_seed(42)
z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/flow_matching.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/flow_matching.py
|
Apache-2.0
|
def solve_euler(self, x, t_span, mu, mask, spks, cond):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
for step in range(1, len(t_span)):
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
# Classifier-Free Guidance inference introduced in VoiceBox
if self.inference_cfg_rate > 0:
cfg_dphi_dt = self.estimator(
x, mask,
torch.zeros_like(mu), t,
torch.zeros_like(spks) if spks is not None else None,
torch.zeros_like(cond)
)
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
self.inference_cfg_rate * cfg_dphi_dt)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]
|
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
|
solve_euler
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/flow_matching.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/flow_matching.py
|
Apache-2.0
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
shape: (batch_size, spk_emb_dim)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
b, _, t = mu.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine':
t = 1 - torch.cos(t * 0.5 * torch.pi)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
if self.training_cfg_rate > 0:
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
mu = mu * cfg_mask.view(-1, 1, 1)
spks = spks * cfg_mask.view(-1, 1)
cond = cond * cfg_mask.view(-1, 1, 1)
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
return loss, y
|
Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
shape: (batch_size, spk_emb_dim)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
|
compute_loss
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/flow_matching.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/flow_matching.py
|
Apache-2.0
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/flow_matching_dit.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/flow_matching_dit.py
|
Apache-2.0
|
def solve_euler(self, x, t_span, mu, mask, spks, cond):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise torch.Size([1, 80, 621])
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
cfg_dropout_prob = 0.1
cfg_scale = 1.0
# cfg_dropout_prob = 0.0
# cfg_scale = 3.0
for step in range(1, len(t_span)):
# dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
# pdb.set_trace()
dphi_dt = self.estimator(x, # [bs, 80, 229]
t[None], # (bs,)
global_embed=spks,
input_concat_cond=mu,
mask=mask[0], # [bs, 229]
cfg_dropout_prob=cfg_dropout_prob, cfg_scale=cfg_scale)
# Classifier-Free Guidance inference introduced in VoiceBox
if self.inference_cfg_rate > 0:
# cfg_dphi_dt = self.estimator(
# x, mask,
# torch.zeros_like(mu), t,
# torch.zeros_like(spks) if spks is not None else None,
# torch.zeros_like(cond)
# )
cfg_dphi_dt = self.estimator(x, # [bs, 80, 229]
t[None], # (bs,)
global_embed=torch.zeros_like(spks) if spks is not None else None,
input_concat_cond=torch.zeros_like(mu),
mask=mask[0], # [bs, 229]
cfg_dropout_prob=cfg_dropout_prob, cfg_scale=cfg_scale)
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
self.inference_cfg_rate * cfg_dphi_dt)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]
|
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise torch.Size([1, 80, 621])
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
|
solve_euler
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/flow_matching_dit.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/flow_matching_dit.py
|
Apache-2.0
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
shape: (batch_size, spk_emb_dim)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
b, _, t = mu.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine':
t = 1 - torch.cos(t * 0.5 * torch.pi)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
if self.training_cfg_rate > 0:
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
mu = mu * cfg_mask.view(-1, 1, 1)
spks = spks * cfg_mask.view(-1, 1)
cond = cond * cfg_mask.view(-1, 1, 1)
# pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
pred = self.estimator(y, # [bs, 80, 229]
t.squeeze(1, 2), # (bs,)
global_embed=spks,
input_concat_cond=mu,
mask=mask.squeeze(1), # [bs, 229]
cfg_dropout_prob=0.1)
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
return loss, y
|
Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
shape: (batch_size, spk_emb_dim)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
|
compute_loss
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/flow_matching_dit.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/flow_matching_dit.py
|
Apache-2.0
|
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
"""Pad for a convolution to make sure that the last window is full.
Extra padding is added at the end. This is required to ensure that we can rebuild
an output of the same length, as otherwise, even with padding, some time steps
might get removed.
For instance, with total padding = 4, kernel size = 4, stride = 2:
0 0 1 2 3 4 5 0 0 # (0s are padding)
1 2 3 # (output frames of a convolution, last 0 is never used)
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
1 2 3 4 # once you removed padding, we are missing one time step !
"""
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
return F.pad(x, (0, extra_padding))
|
Pad for a convolution to make sure that the last window is full.
Extra padding is added at the end. This is required to ensure that we can rebuild
an output of the same length, as otherwise, even with padding, some time steps
might get removed.
For instance, with total padding = 4, kernel size = 4, stride = 2:
0 0 1 2 3 4 5 0 0 # (0s are padding)
1 2 3 # (output frames of a convolution, last 0 is never used)
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
1 2 3 4 # once you removed padding, we are missing one time step !
|
pad_for_conv1d
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/adp.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/adp.py
|
Apache-2.0
|
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happen.
"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
|
Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happen.
|
pad1d
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/adp.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/adp.py
|
Apache-2.0
|
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left: end]
|
Remove padding from x, handling properly zero padding. Only for 1d!
|
unpad1d
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/adp.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/adp.py
|
Apache-2.0
|
def get_channels(
self, channels_list: Optional[Sequence[Tensor]] = None, layer: int = 0
) -> Optional[Tensor]:
"""Gets context channels at `layer` and checks that shape is correct"""
use_context_channels = self.use_context_channels and self.has_context[layer]
if not use_context_channels:
return None
assert exists(channels_list), "Missing context"
# Get channels index (skipping zero channel contexts)
channels_id = self.channels_ids[layer]
# Get channels
channels = channels_list[channels_id]
message = f"Missing context for layer {layer} at index {channels_id}"
assert exists(channels), message
# Check channels
num_channels = self.context_channels[layer]
message = f"Expected context with {num_channels} channels at idx {channels_id}"
assert channels.shape[1] == num_channels, message
# STFT channels if requested
channels = self.stft.encode1d(channels) if self.use_stft_context else channels # type: ignore # noqa
return channels
|
Gets context channels at `layer` and checks that shape is correct
|
get_channels
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/adp.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/adp.py
|
Apache-2.0
|
def get_mapping(
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
) -> Optional[Tensor]:
"""Combines context time features and features into mapping"""
items, mapping = [], None
# Compute time features
if self.use_context_time:
assert_message = "use_context_time=True but no time features provided"
assert exists(time), assert_message
items += [self.to_time(time)]
# Compute features
if self.use_context_features:
assert_message = "context_features exists but no features provided"
assert exists(features), assert_message
items += [self.to_features(features)]
# Compute joint mapping
if self.use_context_time or self.use_context_features:
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
mapping = self.to_mapping(mapping)
return mapping
|
Combines context time features and features into mapping
|
get_mapping
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/adp.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/adp.py
|
Apache-2.0
|
def sample_discrete_euler(model, x, steps, sigma_max=1, **extra_args):
"""Draws samples from a model given starting noise. Euler method"""
# Make tensor of ones to broadcast the single t values
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(sigma_max, 0, steps + 1)
#alphas, sigmas = 1-t, t
for t_curr, t_prev in tqdm(zip(t[:-1], t[1:])):
# Broadcast the current timestep to the correct shape
t_curr_tensor = t_curr * torch.ones(
(x.shape[0],), dtype=x.dtype, device=x.device
)
dt = t_prev - t_curr # we solve backwards in our formulation
x = x + dt * model(x, t_curr_tensor, **extra_args) #.denoise(x, denoiser, t_curr_tensor, cond, uc)
# If we are on the last timestep, output the denoised image
return x
|
Draws samples from a model given starting noise. Euler method
|
sample_discrete_euler
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/sampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/sampling.py
|
Apache-2.0
|
def sample(model, x, steps, eta, **extra_args):
"""Draws samples from a model given starting noise. v-diffusion"""
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(1, 0, steps + 1)[:-1]
alphas, sigmas = get_alphas_sigmas(t)
# The sampling loop
for i in trange(steps):
# Get the model output (v, the predicted velocity)
with torch.cuda.amp.autocast():
v = model(x, ts * t[i], **extra_args).float()
# Predict the noise and the denoised image
pred = x * alphas[i] - v * sigmas[i]
eps = x * sigmas[i] + v * alphas[i]
# If we are not on the last timestep, compute the noisy image for the
# next timestep.
if i < steps - 1:
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
# Recombine the predicted noise and predicted denoised image in the
# correct proportions for the next step
x = pred * alphas[i + 1] + eps * adjusted_sigma
# Add the correct amount of fresh noise
if eta:
x += torch.randn_like(x) * ddim_sigma
# If we are on the last timestep, output the denoised image
return pred
|
Draws samples from a model given starting noise. v-diffusion
|
sample
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/sampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/sampling.py
|
Apache-2.0
|
def __init__(self, dim, bias=False, fix_scale=False):
"""
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
"""
super().__init__()
if fix_scale:
self.register_buffer("gamma", torch.ones(dim))
else:
self.gamma = nn.Parameter(torch.ones(dim))
if bias:
self.beta = nn.Parameter(torch.zeros(dim))
else:
self.register_buffer("beta", torch.zeros(dim))
|
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/transformer.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/transformer.py
|
Apache-2.0
|
def __init__(self, dim, bias=False, fix_scale=False):
"""
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
"""
super().__init__()
if fix_scale:
self.register_buffer("gamma", torch.ones(dim))
else:
self.gamma = nn.Parameter(torch.ones(dim))
if bias:
self.beta = nn.Parameter(torch.zeros(dim))
else:
self.register_buffer("beta", torch.zeros(dim))
|
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/flow/stable/transformer_use_mask.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/flow/stable/transformer_use_mask.py
|
Apache-2.0
|
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
sine_wavs = sine_wavs.transpose(1, 2)
uv = uv.transpose(1, 2)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/hifigan/generator.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/hifigan/generator.py
|
Apache-2.0
|
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
'''
super(Snake, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
|
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/activation.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/activation.py
|
Apache-2.0
|
def forward_qkv(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
return q, k, v
|
Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
|
forward_qkv
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/attention.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/attention.py
|
Apache-2.0
|
def forward_attention(
self,
value: torch.Tensor,
scores: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
) -> torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
# 1st chunk to ease the onnx export.]
# 2. pytorch training
if mask.size(2) > 0: # time2 > 0
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
# For last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0) # (batch, head, time1, time2)
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
# 1. onnx(16/-1, -1/-1, 16/0)
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
|
Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
|
forward_attention
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/attention.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/attention.py
|
Apache-2.0
|
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
CosyVoice.
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask), new_cache
|
Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
CosyVoice.
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/attention.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/attention.py
|
Apache-2.0
|
def rel_shift(self, x):
"""Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[
:, :, :, : x.size(-1) // 2 + 1
] # only keep the positions from 0 to time2
return x
|
Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
|
rel_shift
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/attention.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/attention.py
|
Apache-2.0
|
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
if matrix_ac.shape != matrix_bd.shape:
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask), new_cache
|
Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/attention.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/attention.py
|
Apache-2.0
|
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
"""Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device,
dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0],
x.size()[1],
x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[
:, :, :, : x.size(-1) // 2 + 1
] # only keep the positions from 0 to time2
return x
|
Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
|
rel_shift
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/attention.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/attention.py
|
Apache-2.0
|
def __init__(self,
channels: int,
kernel_size: int = 15,
activation: nn.Module = nn.ReLU(),
norm: str = "batch_norm",
causal: bool = False,
bias: bool = True):
"""Construct an ConvolutionModule object.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernel size of conv layers.
causal (int): Whether use causal convolution or not
"""
super().__init__()
self.pointwise_conv1 = nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
# self.lorder is used to distinguish if it's a causal convolution,
# if self.lorder > 0: it's a causal convolution, the input will be
# padded with self.lorder frames on the left in forward.
# else: it's a symmetrical convolution
if causal:
padding = 0
self.lorder = kernel_size - 1
else:
# kernel_size should be an odd number for none causal convolution
assert (kernel_size - 1) % 2 == 0
padding = (kernel_size - 1) // 2
self.lorder = 0
self.depthwise_conv = nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=padding,
groups=channels,
bias=bias,
)
assert norm in ['batch_norm', 'layer_norm']
if norm == "batch_norm":
self.use_layer_norm = False
self.norm = nn.BatchNorm1d(channels)
else:
self.use_layer_norm = True
self.norm = nn.LayerNorm(channels)
self.pointwise_conv2 = nn.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.activation = activation
|
Construct an ConvolutionModule object.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernel size of conv layers.
causal (int): Whether use causal convolution or not
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/convolution.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/convolution.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
cache: torch.Tensor = torch.zeros((0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
(0, 0, 0) means fake mask.
cache (torch.Tensor): left context cache, it is only
used in causal convolution (#batch, channels, cache_t),
(0, 0, 0) meas fake cache.
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2) # (#batch, channels, time)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
if self.lorder > 0:
if cache.size(2) == 0: # cache_t == 0
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
else:
assert cache.size(0) == x.size(0) # equal batch
assert cache.size(1) == x.size(1) # equal channel
x = torch.cat((cache, x), dim=2)
assert (x.size(2) > self.lorder)
new_cache = x[:, :, -self.lorder:]
else:
# It's better we just return None if no cache is required,
# However, for JIT export, here we just fake one tensor instead of
# None.
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.activation(self.norm(x))
if self.use_layer_norm:
x = x.transpose(1, 2)
x = self.pointwise_conv2(x)
# mask batch padding
if mask_pad.size(2) > 0: # time > 0
x.masked_fill_(~mask_pad, 0.0)
return x.transpose(1, 2), new_cache
|
Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
(0, 0, 0) means fake mask.
cache (torch.Tensor): left context cache, it is only
used in causal convolution (#batch, channels, cache_t),
(0, 0, 0) meas fake cache.
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/convolution.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/convolution.py
|
Apache-2.0
|
def forward(
self,
memory: torch.Tensor,
memory_mask: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
r_ys_in_pad: torch.Tensor = torch.empty(0),
reverse_weight: float = 0.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
ys_in_lens: input lengths of this batch (batch)
r_ys_in_pad: not used in transformer decoder, in order to unify api
with bidirectional decoder
reverse_weight: not used in transformer decoder, in order to unify
api with bidirectional decode
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out,
vocab_size) if use_output_layer is True,
torch.tensor(0.0), in order to unify api with bidirectional decoder
olens: (batch, )
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
"""
tgt = ys_in_pad
maxlen = tgt.size(1)
# tgt_mask: (B, 1, L)
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
tgt_mask = tgt_mask.to(tgt.device)
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1),
device=tgt_mask.device).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask & m
x, _ = self.embed(tgt)
if self.gradient_checkpointing and self.training:
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
memory_mask)
else:
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
if self.normalize_before:
x = self.after_norm(x)
if self.use_output_layer:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
return x, torch.tensor(0.0), olens
|
Forward decoder.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
ys_in_lens: input lengths of this batch (batch)
r_ys_in_pad: not used in transformer decoder, in order to unify api
with bidirectional decoder
reverse_weight: not used in transformer decoder, in order to unify
api with bidirectional decode
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out,
vocab_size) if use_output_layer is True,
torch.tensor(0.0), in order to unify api with bidirectional decoder
olens: (batch, )
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/decoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/decoder.py
|
Apache-2.0
|
def forward_one_step(
self,
memory: torch.Tensor,
memory_mask: torch.Tensor,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
cache: Optional[List[torch.Tensor]] = None,
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward one step.
This is only used for decoding.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
x, _ = self.embed(tgt)
new_cache = []
for i, decoder in enumerate(self.decoders):
if cache is None:
c = None
else:
c = cache[i]
x, tgt_mask, memory, memory_mask = decoder(x,
tgt_mask,
memory,
memory_mask,
cache=c)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.use_output_layer:
y = torch.log_softmax(self.output_layer(y), dim=-1)
return y, new_cache
|
Forward one step.
This is only used for decoding.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
|
forward_one_step
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/decoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/decoder.py
|
Apache-2.0
|
def tie_or_clone_weights(self, jit_mode: bool = True):
"""Tie or clone module weights (between word_emb and output_layer)
depending of whether we are using TorchScript or not"""
if not self.use_output_layer:
return
if jit_mode:
logging.info("clone emb.weight to output.weight")
self.output_layer.weight = torch.nn.Parameter(
self.embed[0].weight.clone())
else:
logging.info("tie emb.weight with output.weight")
self.output_layer.weight = self.embed[0].weight
if getattr(self.output_layer, "bias", None) is not None:
self.output_layer.bias.data = torch.nn.functional.pad(
self.output_layer.bias.data,
(
0,
self.output_layer.weight.shape[0] -
self.output_layer.bias.shape[0],
),
"constant",
0,
)
|
Tie or clone module weights (between word_emb and output_layer)
depending of whether we are using TorchScript or not
|
tie_or_clone_weights
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/decoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/decoder.py
|
Apache-2.0
|
def forward(
self,
memory: torch.Tensor,
memory_mask: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
r_ys_in_pad: torch.Tensor,
reverse_weight: float = 0.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Forward decoder.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
ys_in_lens: input lengths of this batch (batch)
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
used for right to left decoder
reverse_weight: used for right to left decoder
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out,
vocab_size) if use_output_layer is True,
r_x: x: decoded token score (right to left decoder)
before softmax (batch, maxlen_out, vocab_size)
if use_output_layer is True,
olens: (batch, )
"""
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
ys_in_lens)
r_x = torch.tensor(0.0)
if reverse_weight > 0.0:
r_x, _, olens = self.right_decoder(memory, memory_mask,
r_ys_in_pad, ys_in_lens)
return l_x, r_x, olens
|
Forward decoder.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
ys_in_lens: input lengths of this batch (batch)
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
used for right to left decoder
reverse_weight: used for right to left decoder
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out,
vocab_size) if use_output_layer is True,
r_x: x: decoded token score (right to left decoder)
before softmax (batch, maxlen_out, vocab_size)
if use_output_layer is True,
olens: (batch, )
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/decoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/decoder.py
|
Apache-2.0
|
def forward_one_step(
self,
memory: torch.Tensor,
memory_mask: torch.Tensor,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
cache: Optional[List[torch.Tensor]] = None,
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward one step.
This is only used for decoding.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
tgt_mask, cache)
|
Forward one step.
This is only used for decoding.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
|
forward_one_step
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/decoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/decoder.py
|
Apache-2.0
|
def forward(
self,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
memory: torch.Tensor,
memory_mask: torch.Tensor,
cache: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor
(#batch, maxlen_out).
memory (torch.Tensor): Encoded memory
(#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask
(#batch, maxlen_in).
cache (torch.Tensor): cached tensors.
(#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt_q = tgt
tgt_q_mask = tgt_mask
else:
# compute only the last frame query keeping dim: max_time_out -> 1
assert cache.shape == (
tgt.shape[0],
tgt.shape[1] - 1,
self.size,
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
tgt_q = tgt[:, -1:, :]
residual = residual[:, -1:, :]
tgt_q_mask = tgt_mask[:, -1:, :]
x = residual + self.dropout(
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
if not self.normalize_before:
x = self.norm1(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.dropout(
self.src_attn(x, memory, memory, memory_mask)[0])
if not self.normalize_before:
x = self.norm2(x)
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm3(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, tgt_mask, memory, memory_mask
|
Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor
(#batch, maxlen_out).
memory (torch.Tensor): Encoded memory
(#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask
(#batch, maxlen_in).
cache (torch.Tensor): cached tensors.
(#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/decoder_layer.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/decoder_layer.py
|
Apache-2.0
|
def forward(self,
x: torch.Tensor,
offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""Add positional encoding.
Args:
x (torch.Tensor): Input. Its shape is (batch, time, ...)
offset (int, torch.tensor): position offset
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
torch.Tensor: for compatibility to RelPositionalEncoding
"""
self.pe = self.pe.to(x.device)
pos_emb = self.position_encoding(offset, x.size(1), False)
x = x * self.xscale + pos_emb
return self.dropout(x), self.dropout(pos_emb)
|
Add positional encoding.
Args:
x (torch.Tensor): Input. Its shape is (batch, time, ...)
offset (int, torch.tensor): position offset
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
torch.Tensor: for compatibility to RelPositionalEncoding
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/embedding.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/embedding.py
|
Apache-2.0
|
def position_encoding(self,
offset: Union[int, torch.Tensor],
size: int,
apply_dropout: bool = True) -> torch.Tensor:
""" For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int or torch.tensor): start offset
size (int): required size of position encoding
Returns:
torch.Tensor: Corresponding encoding
"""
# How to subscript a Union type:
# https://github.com/pytorch/pytorch/issues/69434
if isinstance(offset, int):
assert offset + size <= self.max_len
pos_emb = self.pe[:, offset:offset + size]
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
assert offset + size <= self.max_len
pos_emb = self.pe[:, offset:offset + size]
else: # for batched streaming decoding on GPU
assert torch.max(offset) + size <= self.max_len
index = offset.unsqueeze(1) + \
torch.arange(0, size).to(offset.device) # B X T
flag = index > 0
# remove negative offset
index = index * flag
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
if apply_dropout:
pos_emb = self.dropout(pos_emb)
return pos_emb
|
For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int or torch.tensor): start offset
size (int): required size of position encoding
Returns:
torch.Tensor: Corresponding encoding
|
position_encoding
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/embedding.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/embedding.py
|
Apache-2.0
|
def forward(self,
x: torch.Tensor,
offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""Compute positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Positional embedding tensor (1, time, `*`).
"""
self.pe = self.pe.to(x.device)
x = x * self.xscale
pos_emb = self.position_encoding(offset, x.size(1), False)
return self.dropout(x), self.dropout(pos_emb)
|
Compute positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/embedding.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/embedding.py
|
Apache-2.0
|
def forward(self,
x: torch.Tensor,
offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
""" Just return zero vector for interface compatibility
"""
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
return self.dropout(x), pos_emb
|
Just return zero vector for interface compatibility
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/embedding.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/embedding.py
|
Apache-2.0
|
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
return self.dropout(x), self.dropout(pos_emb)
|
Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/embedding.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/embedding.py
|
Apache-2.0
|
def position_encoding(self,
offset: Union[int, torch.Tensor],
size: int) -> torch.Tensor:
""" For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int or torch.tensor): start offset
size (int): required size of position encoding
Returns:
torch.Tensor: Corresponding encoding
"""
pos_emb = self.pe[
:,
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
]
return pos_emb
|
For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int or torch.tensor): start offset
size (int): required size of position encoding
Returns:
torch.Tensor: Corresponding encoding
|
position_encoding
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/embedding.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/embedding.py
|
Apache-2.0
|
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "abs_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
gradient_checkpointing: bool = False,
):
"""
Args:
input_size (int): input dim
output_size (int): dimension of attention
attention_heads (int): the number of heads of multi head attention
linear_units (int): the hidden units number of position-wise feed
forward
num_blocks (int): the number of decoder blocks
dropout_rate (float): dropout rate
attention_dropout_rate (float): dropout rate in attention
positional_dropout_rate (float): dropout rate after adding
positional encoding
input_layer (str): input layer type.
optional [linear, conv2d, conv2d6, conv2d8]
pos_enc_layer_type (str): Encoder positional encoding layer type.
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
normalize_before (bool):
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
static_chunk_size (int): chunk size for static chunk training and
decoding
use_dynamic_chunk (bool): whether use dynamic chunk size for
training or not, You can only use fixed chunk(chunk_size > 0)
or dyanmic chunk size(use_dynamic_chunk = True)
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
dynamic chunk training
key_bias: whether use bias in attention.linear_k, False for whisper models.
gradient_checkpointing: rerunning a forward-pass segment for each
checkpointed segment during backward.
"""
super().__init__()
self._output_size = output_size
self.global_cmvn = global_cmvn
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
input_size,
output_size,
dropout_rate,
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
positional_dropout_rate),
)
self.normalize_before = normalize_before
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk
self.gradient_checkpointing = gradient_checkpointing
|
Args:
input_size (int): input dim
output_size (int): dimension of attention
attention_heads (int): the number of heads of multi head attention
linear_units (int): the hidden units number of position-wise feed
forward
num_blocks (int): the number of decoder blocks
dropout_rate (float): dropout rate
attention_dropout_rate (float): dropout rate in attention
positional_dropout_rate (float): dropout rate after adding
positional encoding
input_layer (str): input layer type.
optional [linear, conv2d, conv2d6, conv2d8]
pos_enc_layer_type (str): Encoder positional encoding layer type.
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
normalize_before (bool):
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
static_chunk_size (int): chunk size for static chunk training and
decoding
use_dynamic_chunk (bool): whether use dynamic chunk size for
training or not, You can only use fixed chunk(chunk_size > 0)
or dyanmic chunk size(use_dynamic_chunk = True)
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
dynamic chunk training
key_bias: whether use bias in attention.linear_k, False for whisper models.
gradient_checkpointing: rerunning a forward-pass segment for each
checkpointed segment during backward.
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/encoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/encoder.py
|
Apache-2.0
|
def forward(
self,
xs: torch.Tensor,
xs_lens: torch.Tensor,
decoding_chunk_size: int = 0,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
"""
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
if self.global_cmvn is not None:
xs = self.global_cmvn(xs)
xs, pos_emb, masks = self.embed(xs, masks)
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(xs, masks,
self.use_dynamic_chunk,
self.use_dynamic_left_chunk,
decoding_chunk_size,
self.static_chunk_size,
num_decoding_left_chunks)
if self.gradient_checkpointing and self.training:
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
mask_pad)
else:
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
if self.normalize_before:
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks
|
Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/encoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/encoder.py
|
Apache-2.0
|
def forward_chunk(
self,
xs: torch.Tensor,
offset: int,
required_cache_size: int,
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
""" Forward just one chunk
Args:
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
where `time == (chunk_size - 1) * subsample_rate + \
subsample.right_context + 1`
offset (int): current offset in encoder output time stamp
required_cache_size (int): cache size required for next chunk
compuation
>=0: actual cache size
<0: means all history cache is required
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
transformer/conformer attention, with shape
(elayers, head, cache_t1, d_k * 2), where
`head * d_k == hidden-dim` and
`cache_t1 == chunk_size * num_decoding_left_chunks`.
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
(elayers, b=1, hidden-dim, cache_t2), where
`cache_t2 == cnn.lorder - 1`
Returns:
torch.Tensor: output of current input xs,
with shape (b=1, chunk_size, hidden-dim).
torch.Tensor: new attention cache required for next chunk, with
dynamic shape (elayers, head, ?, d_k * 2)
depending on required_cache_size.
torch.Tensor: new conformer cnn cache required for next chunk, with
same shape as the original cnn_cache.
"""
assert xs.size(0) == 1
# tmp_masks is just for interface compatibility
tmp_masks = torch.ones(1,
xs.size(1),
device=xs.device,
dtype=torch.bool)
tmp_masks = tmp_masks.unsqueeze(1)
if self.global_cmvn is not None:
xs = self.global_cmvn(xs)
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
chunk_size = xs.size(1)
attention_key_size = cache_t1 + chunk_size
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
size=attention_key_size)
if required_cache_size < 0:
next_cache_start = 0
elif required_cache_size == 0:
next_cache_start = attention_key_size
else:
next_cache_start = max(attention_key_size - required_cache_size, 0)
r_att_cache = []
r_cnn_cache = []
for i, layer in enumerate(self.encoders):
# NOTE(xcsong): Before layer.forward
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
xs, _, new_att_cache, new_cnn_cache = layer(
xs,
att_mask,
pos_emb,
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
# NOTE(xcsong): After layer.forward
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
if self.normalize_before:
xs = self.after_norm(xs)
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
# ? may be larger than cache_t1, it depends on required_cache_size
r_att_cache = torch.cat(r_att_cache, dim=0)
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
return (xs, r_att_cache, r_cnn_cache)
|
Forward just one chunk
Args:
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
where `time == (chunk_size - 1) * subsample_rate + subsample.right_context + 1`
offset (int): current offset in encoder output time stamp
required_cache_size (int): cache size required for next chunk
compuation
>=0: actual cache size
<0: means all history cache is required
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
transformer/conformer attention, with shape
(elayers, head, cache_t1, d_k * 2), where
`head * d_k == hidden-dim` and
`cache_t1 == chunk_size * num_decoding_left_chunks`.
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
(elayers, b=1, hidden-dim, cache_t2), where
`cache_t2 == cnn.lorder - 1`
Returns:
torch.Tensor: output of current input xs,
with shape (b=1, chunk_size, hidden-dim).
torch.Tensor: new attention cache required for next chunk, with
dynamic shape (elayers, head, ?, d_k * 2)
depending on required_cache_size.
torch.Tensor: new conformer cnn cache required for next chunk, with
same shape as the original cnn_cache.
|
forward_chunk
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/encoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/encoder.py
|
Apache-2.0
|
def forward_chunk_by_chunk(
self,
xs: torch.Tensor,
decoding_chunk_size: int,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
""" Forward input chunk by chunk with chunk_size like a streaming
fashion
Here we should pay special attention to computation cache in the
streaming style forward chunk by chunk. Three things should be taken
into account for computation in the current network:
1. transformer/conformer encoder layers output cache
2. convolution in conformer
3. convolution in subsampling
However, we don't implement subsampling cache for:
1. We can control subsampling module to output the right result by
overlapping input instead of cache left context, even though it
wastes some computation, but subsampling only takes a very
small fraction of computation in the whole model.
2. Typically, there are several covolution layers with subsampling
in subsampling module, it is tricky and complicated to do cache
with different convolution layers with different subsampling
rate.
3. Currently, nn.Sequential is used to stack all the convolution
layers in subsampling, we need to rewrite it to make it work
with cache, which is not prefered.
Args:
xs (torch.Tensor): (1, max_len, dim)
chunk_size (int): decoding chunk size
"""
assert decoding_chunk_size > 0
# The model is trained by static or dynamic chunk
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
subsampling = self.embed.subsampling_rate
context = self.embed.right_context + 1 # Add current frame
stride = subsampling * decoding_chunk_size
decoding_window = (decoding_chunk_size - 1) * subsampling + context
num_frames = xs.size(1)
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
outputs = []
offset = 0
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
# Feed forward overlap input step by step
for cur in range(0, num_frames - context + 1, stride):
end = min(cur + decoding_window, num_frames)
chunk_xs = xs[:, cur:end, :]
(y, att_cache,
cnn_cache) = self.forward_chunk(chunk_xs, offset,
required_cache_size, att_cache,
cnn_cache)
outputs.append(y)
offset += y.size(1)
ys = torch.cat(outputs, 1)
masks = torch.ones((1, 1, ys.size(1)),
device=ys.device,
dtype=torch.bool)
return ys, masks
|
Forward input chunk by chunk with chunk_size like a streaming
fashion
Here we should pay special attention to computation cache in the
streaming style forward chunk by chunk. Three things should be taken
into account for computation in the current network:
1. transformer/conformer encoder layers output cache
2. convolution in conformer
3. convolution in subsampling
However, we don't implement subsampling cache for:
1. We can control subsampling module to output the right result by
overlapping input instead of cache left context, even though it
wastes some computation, but subsampling only takes a very
small fraction of computation in the whole model.
2. Typically, there are several covolution layers with subsampling
in subsampling module, it is tricky and complicated to do cache
with different convolution layers with different subsampling
rate.
3. Currently, nn.Sequential is used to stack all the convolution
layers in subsampling, we need to rewrite it to make it work
with cache, which is not prefered.
Args:
xs (torch.Tensor): (1, max_len, dim)
chunk_size (int): decoding chunk size
|
forward_chunk_by_chunk
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/encoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/encoder.py
|
Apache-2.0
|
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "abs_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
key_bias: bool = True,
selfattention_layer_type: str = "selfattn",
activation_type: str = "relu",
gradient_checkpointing: bool = False,
):
""" Construct TransformerEncoder
See Encoder for the meaning of each parameter.
"""
super().__init__(input_size, output_size, attention_heads,
linear_units, num_blocks, dropout_rate,
positional_dropout_rate, attention_dropout_rate,
input_layer, pos_enc_layer_type, normalize_before,
static_chunk_size, use_dynamic_chunk, global_cmvn,
use_dynamic_left_chunk, gradient_checkpointing)
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
self.encoders = torch.nn.ModuleList([
TransformerEncoderLayer(
output_size,
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
output_size,
attention_dropout_rate,
key_bias),
PositionwiseFeedForward(output_size, linear_units,
dropout_rate, activation),
dropout_rate, normalize_before) for _ in range(num_blocks)
])
|
Construct TransformerEncoder
See Encoder for the meaning of each parameter.
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/encoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/encoder.py
|
Apache-2.0
|
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "rel_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
positionwise_conv_kernel_size: int = 1,
macaron_style: bool = True,
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = True,
cnn_module_kernel: int = 15,
causal: bool = False,
cnn_module_norm: str = "batch_norm",
key_bias: bool = True,
gradient_checkpointing: bool = False,
):
"""Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
key_bias: whether use bias in attention.linear_k, False for whisper models.
"""
super().__init__(input_size, output_size, attention_heads,
linear_units, num_blocks, dropout_rate,
positional_dropout_rate, attention_dropout_rate,
input_layer, pos_enc_layer_type, normalize_before,
static_chunk_size, use_dynamic_chunk, global_cmvn,
use_dynamic_left_chunk, gradient_checkpointing)
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
# self-attention module definition
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
key_bias,
)
# feed-forward module definition
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
# convolution module definition
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
*encoder_selfattn_layer_args),
PositionwiseFeedForward(*positionwise_layer_args),
PositionwiseFeedForward(
*positionwise_layer_args) if macaron_style else None,
ConvolutionModule(
*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
) for _ in range(num_blocks)
])
|
Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/encoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/encoder.py
|
Apache-2.0
|
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: str = "conv2d",
pos_enc_layer_type: str = "rel_pos",
normalize_before: bool = True,
static_chunk_size: int = 0,
use_dynamic_chunk: bool = False,
global_cmvn: torch.nn.Module = None,
use_dynamic_left_chunk: bool = False,
positionwise_conv_kernel_size: int = 1,
macaron_style: bool = True,
selfattention_layer_type: str = "rel_selfattn",
activation_type: str = "swish",
use_cnn_module: bool = True,
cnn_module_kernel: int = 15,
causal: bool = False,
cnn_module_norm: str = "batch_norm",
key_bias: bool = True,
gradient_checkpointing: bool = False,
block_size=25,
):
"""Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
key_bias: whether use bias in attention.linear_k, False for whisper models.
"""
super().__init__(input_size, output_size, attention_heads,
linear_units, num_blocks, dropout_rate,
positional_dropout_rate, attention_dropout_rate,
input_layer, pos_enc_layer_type, normalize_before,
static_chunk_size, use_dynamic_chunk, global_cmvn,
use_dynamic_left_chunk, gradient_checkpointing)
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
# self-attention module definition
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
key_bias,
block_size,
)
# feed-forward module definition
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
activation,
)
# convolution module definition
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
*encoder_selfattn_layer_args),
PositionwiseFeedForward(*positionwise_layer_args),
PositionwiseFeedForward(
*positionwise_layer_args) if macaron_style else None,
ConvolutionModule(
*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
) for _ in range(num_blocks)
])
self.block_size=block_size
|
Construct ConformerEncoder
Args:
input_size to use_dynamic_chunk, see in BaseEncoder
positionwise_conv_kernel_size (int): Kernel size of positionwise
conv1d layer.
macaron_style (bool): Whether to use macaron style for
positionwise layer.
selfattention_layer_type (str): Encoder attention layer type,
the parameter has no effect now, it's just for configure
compatibility.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
causal (bool): whether to use causal convolution or not.
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
__init__
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/encoder.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/encoder.py
|
Apache-2.0
|
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Compute loss between x and target.
The model outputs and data labels tensors are flatten to
(batch*seqlen, class) shape and a mask is applied to the
padding part which should not be calculated for loss.
Args:
x (torch.Tensor): prediction (batch, seqlen, class)
target (torch.Tensor):
target signal masked with self.padding_id (batch, seqlen)
Returns:
loss (torch.Tensor) : The KL loss, scalar float value
"""
assert x.size(2) == self.size
batch_size = x.size(0)
x = x.view(-1, self.size)
target = target.view(-1)
# use zeros_like instead of torch.no_grad() for true_dist,
# since no_grad() can not be exported by JIT
true_dist = torch.zeros_like(x)
true_dist.fill_(self.smoothing / (self.size - 1))
ignore = target == self.padding_idx # (B,)
total = len(target) - ignore.sum().item()
target = target.masked_fill(ignore, 0) # avoid -1 index
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
denom = total if self.normalize_length else batch_size
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
Compute loss between x and target.
The model outputs and data labels tensors are flatten to
(batch*seqlen, class) shape and a mask is applied to the
padding part which should not be calculated for loss.
Args:
x (torch.Tensor): prediction (batch, seqlen, class)
target (torch.Tensor):
target signal masked with self.padding_id (batch, seqlen)
Returns:
loss (torch.Tensor) : The KL loss, scalar float value
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/label_smoothing_loss.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/label_smoothing_loss.py
|
Apache-2.0
|
def forward(self, xs: torch.Tensor) -> torch.Tensor:
"""Foward function.
Args:
xs: input tensor (B, L, D)
Returns:
output tensor, (B, L, D)
"""
B, L, D = xs.size(
) # batch size, sequence length, embedding dimension (idim)
xs = xs.view(-1, D) # (B*L, D)
router = self.gate(xs) # (B*L, n_expert)
logits, indices = torch.topk(
router, self.n_expert_per_token
) # probs:(B*L, n_expert), indices: (B*L, n_expert)
weights = torch.nn.functional.softmax(
logits, dim=1,
dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
output = torch.zeros_like(xs) # (B*L, D)
for i, expert in enumerate(self.experts):
mask = indices == i
batch_idx, ith_expert = torch.where(mask)
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
xs[batch_idx])
return output.view(B, L, D)
|
Foward function.
Args:
xs: input tensor (B, L, D)
Returns:
output tensor, (B, L, D)
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/positionwise_feed_forward.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/positionwise_feed_forward.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
"""
x = self.embed(x)
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask
|
Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/subsampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/subsampling.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
"""
x = self.out(x)
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask
|
Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/subsampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/subsampling.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 2.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 2.
torch.Tensor: positional encoding
"""
time = x.size(1)
x = x.transpose(1, 2) # (b, f, t)
x = self.conv(x)
x = x.transpose(1, 2) # (b, t, f)
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
|
Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 2.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 2.
torch.Tensor: positional encoding
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/subsampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/subsampling.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 4.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 4.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c=1, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 4.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 4.
torch.Tensor: positional encoding
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/subsampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/subsampling.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 6.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 6.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 6.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 6.
torch.Tensor: positional encoding
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/subsampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/subsampling.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 8.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 8.
torch.Tensor: positional encoding
"""
x = x.unsqueeze(1) # (b, c, t, f)
x = self.conv(x)
b, c, t, f = x.size()
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
Subsample x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: Subsampled tensor (#batch, time', odim),
where time' = time // 8.
torch.Tensor: Subsampled mask (#batch, 1, time'),
where time' = time // 8.
torch.Tensor: positional encoding
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/subsampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/subsampling.py
|
Apache-2.0
|
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
"""
x = self.out(x)
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask
|
Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
|
forward
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/transformer/subsampling.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/transformer/subsampling.py
|
Apache-2.0
|
def pad_list(xs: List[torch.Tensor], pad_value: int):
"""Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
"""
max_len = max([len(item) for item in xs])
batchs = len(xs)
ndim = xs[0].ndim
if ndim == 1:
pad_res = torch.zeros(batchs,
max_len,
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 2:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 3:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
xs[0].shape[2],
dtype=xs[0].dtype,
device=xs[0].device)
else:
raise ValueError(f"Unsupported ndim: {ndim}")
pad_res.fill_(pad_value)
for i in range(batchs):
pad_res[i, :len(xs[i])] = xs[i]
return pad_res
|
Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
|
pad_list
|
python
|
THUDM/GLM-4-Voice
|
cosyvoice/utils/common.py
|
https://github.com/THUDM/GLM-4-Voice/blob/master/cosyvoice/utils/common.py
|
Apache-2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.