code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def tick_params(self, axis='both', **kwargs):
"""Modify the ticks, tick labels, and gridlines.
Parameters
----------
axis : {'x', 'y', 'both'}
The axis on which to apply the formatting.
kwargs : keyword arguments
Additional keyword arguments to pass to
:meth:`matplotlib.axes.Axes.tick_params`.
Returns
-------
self : Grid instance
Returns self for easy chaining.
"""
for ax in self.figure.axes:
ax.tick_params(axis=axis, **kwargs)
return self
|
Modify the ticks, tick labels, and gridlines.
Parameters
----------
axis : {'x', 'y', 'both'}
The axis on which to apply the formatting.
kwargs : keyword arguments
Additional keyword arguments to pass to
:meth:`matplotlib.axes.Axes.tick_params`.
Returns
-------
self : Grid instance
Returns self for easy chaining.
|
tick_params
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def facet_data(self):
"""Generator for name indices and data subsets for each facet.
Yields
------
(i, j, k), data_ijk : tuple of ints, DataFrame
The ints provide an index into the {row, col, hue}_names attribute,
and the dataframe contains a subset of the full data corresponding
to each facet. The generator yields subsets that correspond with
the self.axes.flat iterator, or self.axes[i, j] when `col_wrap`
is None.
"""
data = self.data
# Construct masks for the row variable
if self.row_names:
row_masks = [data[self._row_var] == n for n in self.row_names]
else:
row_masks = [np.repeat(True, len(self.data))]
# Construct masks for the column variable
if self.col_names:
col_masks = [data[self._col_var] == n for n in self.col_names]
else:
col_masks = [np.repeat(True, len(self.data))]
# Construct masks for the hue variable
if self.hue_names:
hue_masks = [data[self._hue_var] == n for n in self.hue_names]
else:
hue_masks = [np.repeat(True, len(self.data))]
# Here is the main generator loop
for (i, row), (j, col), (k, hue) in product(enumerate(row_masks),
enumerate(col_masks),
enumerate(hue_masks)):
data_ijk = data[row & col & hue & self._not_na]
yield (i, j, k), data_ijk
|
Generator for name indices and data subsets for each facet.
Yields
------
(i, j, k), data_ijk : tuple of ints, DataFrame
The ints provide an index into the {row, col, hue}_names attribute,
and the dataframe contains a subset of the full data corresponding
to each facet. The generator yields subsets that correspond with
the self.axes.flat iterator, or self.axes[i, j] when `col_wrap`
is None.
|
facet_data
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def map(self, func, *args, **kwargs):
"""Apply a plotting function to each facet's subset of the data.
Parameters
----------
func : callable
A plotting function that takes data and keyword arguments. It
must plot to the currently active matplotlib Axes and take a
`color` keyword argument. If faceting on the `hue` dimension,
it must also take a `label` keyword argument.
args : strings
Column names in self.data that identify variables with data to
plot. The data for each variable is passed to `func` in the
order the variables are specified in the call.
kwargs : keyword arguments
All keyword arguments are passed to the plotting function.
Returns
-------
self : object
Returns self.
"""
# If color was a keyword argument, grab it here
kw_color = kwargs.pop("color", None)
# How we use the function depends on where it comes from
func_module = str(getattr(func, "__module__", ""))
# Check for categorical plots without order information
if func_module == "seaborn.categorical":
if "order" not in kwargs:
warning = ("Using the {} function without specifying "
"`order` is likely to produce an incorrect "
"plot.".format(func.__name__))
warnings.warn(warning)
if len(args) == 3 and "hue_order" not in kwargs:
warning = ("Using the {} function without specifying "
"`hue_order` is likely to produce an incorrect "
"plot.".format(func.__name__))
warnings.warn(warning)
# Iterate over the data subsets
for (row_i, col_j, hue_k), data_ijk in self.facet_data():
# If this subset is null, move on
if not data_ijk.values.size:
continue
# Get the current axis
modify_state = not func_module.startswith("seaborn")
ax = self.facet_axis(row_i, col_j, modify_state)
# Decide what color to plot with
kwargs["color"] = self._facet_color(hue_k, kw_color)
# Insert the other hue aesthetics if appropriate
for kw, val_list in self.hue_kws.items():
kwargs[kw] = val_list[hue_k]
# Insert a label in the keyword arguments for the legend
if self._hue_var is not None:
kwargs["label"] = utils.to_utf8(self.hue_names[hue_k])
# Get the actual data we are going to plot with
plot_data = data_ijk[list(args)]
if self._dropna:
plot_data = plot_data.dropna()
plot_args = [v for k, v in plot_data.items()]
# Some matplotlib functions don't handle pandas objects correctly
if func_module.startswith("matplotlib"):
plot_args = [v.values for v in plot_args]
# Draw the plot
self._facet_plot(func, ax, plot_args, kwargs)
# Finalize the annotations and layout
self._finalize_grid(args[:2])
return self
|
Apply a plotting function to each facet's subset of the data.
Parameters
----------
func : callable
A plotting function that takes data and keyword arguments. It
must plot to the currently active matplotlib Axes and take a
`color` keyword argument. If faceting on the `hue` dimension,
it must also take a `label` keyword argument.
args : strings
Column names in self.data that identify variables with data to
plot. The data for each variable is passed to `func` in the
order the variables are specified in the call.
kwargs : keyword arguments
All keyword arguments are passed to the plotting function.
Returns
-------
self : object
Returns self.
|
map
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def map_dataframe(self, func, *args, **kwargs):
"""Like ``.map`` but passes args as strings and inserts data in kwargs.
This method is suitable for plotting with functions that accept a
long-form DataFrame as a `data` keyword argument and access the
data in that DataFrame using string variable names.
Parameters
----------
func : callable
A plotting function that takes data and keyword arguments. Unlike
the `map` method, a function used here must "understand" Pandas
objects. It also must plot to the currently active matplotlib Axes
and take a `color` keyword argument. If faceting on the `hue`
dimension, it must also take a `label` keyword argument.
args : strings
Column names in self.data that identify variables with data to
plot. The data for each variable is passed to `func` in the
order the variables are specified in the call.
kwargs : keyword arguments
All keyword arguments are passed to the plotting function.
Returns
-------
self : object
Returns self.
"""
# If color was a keyword argument, grab it here
kw_color = kwargs.pop("color", None)
# Iterate over the data subsets
for (row_i, col_j, hue_k), data_ijk in self.facet_data():
# If this subset is null, move on
if not data_ijk.values.size:
continue
# Get the current axis
modify_state = not str(func.__module__).startswith("seaborn")
ax = self.facet_axis(row_i, col_j, modify_state)
# Decide what color to plot with
kwargs["color"] = self._facet_color(hue_k, kw_color)
# Insert the other hue aesthetics if appropriate
for kw, val_list in self.hue_kws.items():
kwargs[kw] = val_list[hue_k]
# Insert a label in the keyword arguments for the legend
if self._hue_var is not None:
kwargs["label"] = self.hue_names[hue_k]
# Stick the facet dataframe into the kwargs
if self._dropna:
data_ijk = data_ijk.dropna()
kwargs["data"] = data_ijk
# Draw the plot
self._facet_plot(func, ax, args, kwargs)
# For axis labels, prefer to use positional args for backcompat
# but also extract the x/y kwargs and use if no corresponding arg
axis_labels = [kwargs.get("x", None), kwargs.get("y", None)]
for i, val in enumerate(args[:2]):
axis_labels[i] = val
self._finalize_grid(axis_labels)
return self
|
Like ``.map`` but passes args as strings and inserts data in kwargs.
This method is suitable for plotting with functions that accept a
long-form DataFrame as a `data` keyword argument and access the
data in that DataFrame using string variable names.
Parameters
----------
func : callable
A plotting function that takes data and keyword arguments. Unlike
the `map` method, a function used here must "understand" Pandas
objects. It also must plot to the currently active matplotlib Axes
and take a `color` keyword argument. If faceting on the `hue`
dimension, it must also take a `label` keyword argument.
args : strings
Column names in self.data that identify variables with data to
plot. The data for each variable is passed to `func` in the
order the variables are specified in the call.
kwargs : keyword arguments
All keyword arguments are passed to the plotting function.
Returns
-------
self : object
Returns self.
|
map_dataframe
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def facet_axis(self, row_i, col_j, modify_state=True):
"""Make the axis identified by these indices active and return it."""
# Calculate the actual indices of the axes to plot on
if self._col_wrap is not None:
ax = self.axes.flat[col_j]
else:
ax = self.axes[row_i, col_j]
# Get a reference to the axes object we want, and make it active
if modify_state:
plt.sca(ax)
return ax
|
Make the axis identified by these indices active and return it.
|
facet_axis
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def set_axis_labels(self, x_var=None, y_var=None, clear_inner=True, **kwargs):
"""Set axis labels on the left column and bottom row of the grid."""
if x_var is not None:
self._x_var = x_var
self.set_xlabels(x_var, clear_inner=clear_inner, **kwargs)
if y_var is not None:
self._y_var = y_var
self.set_ylabels(y_var, clear_inner=clear_inner, **kwargs)
return self
|
Set axis labels on the left column and bottom row of the grid.
|
set_axis_labels
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def set_xlabels(self, label=None, clear_inner=True, **kwargs):
"""Label the x axis on the bottom row of the grid."""
if label is None:
label = self._x_var
for ax in self._bottom_axes:
ax.set_xlabel(label, **kwargs)
if clear_inner:
for ax in self._not_bottom_axes:
ax.set_xlabel("")
return self
|
Label the x axis on the bottom row of the grid.
|
set_xlabels
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def set_ylabels(self, label=None, clear_inner=True, **kwargs):
"""Label the y axis on the left column of the grid."""
if label is None:
label = self._y_var
for ax in self._left_axes:
ax.set_ylabel(label, **kwargs)
if clear_inner:
for ax in self._not_left_axes:
ax.set_ylabel("")
return self
|
Label the y axis on the left column of the grid.
|
set_ylabels
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def set_xticklabels(self, labels=None, step=None, **kwargs):
"""Set x axis tick labels of the grid."""
for ax in self.axes.flat:
curr_ticks = ax.get_xticks()
ax.set_xticks(curr_ticks)
if labels is None:
curr_labels = [label.get_text() for label in ax.get_xticklabels()]
if step is not None:
xticks = ax.get_xticks()[::step]
curr_labels = curr_labels[::step]
ax.set_xticks(xticks)
ax.set_xticklabels(curr_labels, **kwargs)
else:
ax.set_xticklabels(labels, **kwargs)
return self
|
Set x axis tick labels of the grid.
|
set_xticklabels
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def set_yticklabels(self, labels=None, **kwargs):
"""Set y axis tick labels on the left column of the grid."""
for ax in self.axes.flat:
curr_ticks = ax.get_yticks()
ax.set_yticks(curr_ticks)
if labels is None:
curr_labels = [label.get_text() for label in ax.get_yticklabels()]
ax.set_yticklabels(curr_labels, **kwargs)
else:
ax.set_yticklabels(labels, **kwargs)
return self
|
Set y axis tick labels on the left column of the grid.
|
set_yticklabels
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def set_titles(self, template=None, row_template=None, col_template=None, **kwargs):
"""Draw titles either above each facet or on the grid margins.
Parameters
----------
template : string
Template for all titles with the formatting keys {col_var} and
{col_name} (if using a `col` faceting variable) and/or {row_var}
and {row_name} (if using a `row` faceting variable).
row_template:
Template for the row variable when titles are drawn on the grid
margins. Must have {row_var} and {row_name} formatting keys.
col_template:
Template for the column variable when titles are drawn on the grid
margins. Must have {col_var} and {col_name} formatting keys.
Returns
-------
self: object
Returns self.
"""
args = dict(row_var=self._row_var, col_var=self._col_var)
kwargs["size"] = kwargs.pop("size", mpl.rcParams["axes.labelsize"])
# Establish default templates
if row_template is None:
row_template = "{row_var} = {row_name}"
if col_template is None:
col_template = "{col_var} = {col_name}"
if template is None:
if self._row_var is None:
template = col_template
elif self._col_var is None:
template = row_template
else:
template = " | ".join([row_template, col_template])
row_template = utils.to_utf8(row_template)
col_template = utils.to_utf8(col_template)
template = utils.to_utf8(template)
if self._margin_titles:
# Remove any existing title texts
for text in self._margin_titles_texts:
text.remove()
self._margin_titles_texts = []
if self.row_names is not None:
# Draw the row titles on the right edge of the grid
for i, row_name in enumerate(self.row_names):
ax = self.axes[i, -1]
args.update(dict(row_name=row_name))
title = row_template.format(**args)
text = ax.annotate(
title, xy=(1.02, .5), xycoords="axes fraction",
rotation=270, ha="left", va="center",
**kwargs
)
self._margin_titles_texts.append(text)
if self.col_names is not None:
# Draw the column titles as normal titles
for j, col_name in enumerate(self.col_names):
args.update(dict(col_name=col_name))
title = col_template.format(**args)
self.axes[0, j].set_title(title, **kwargs)
return self
# Otherwise title each facet with all the necessary information
if (self._row_var is not None) and (self._col_var is not None):
for i, row_name in enumerate(self.row_names):
for j, col_name in enumerate(self.col_names):
args.update(dict(row_name=row_name, col_name=col_name))
title = template.format(**args)
self.axes[i, j].set_title(title, **kwargs)
elif self.row_names is not None and len(self.row_names):
for i, row_name in enumerate(self.row_names):
args.update(dict(row_name=row_name))
title = template.format(**args)
self.axes[i, 0].set_title(title, **kwargs)
elif self.col_names is not None and len(self.col_names):
for i, col_name in enumerate(self.col_names):
args.update(dict(col_name=col_name))
title = template.format(**args)
# Index the flat array so col_wrap works
self.axes.flat[i].set_title(title, **kwargs)
return self
|
Draw titles either above each facet or on the grid margins.
Parameters
----------
template : string
Template for all titles with the formatting keys {col_var} and
{col_name} (if using a `col` faceting variable) and/or {row_var}
and {row_name} (if using a `row` faceting variable).
row_template:
Template for the row variable when titles are drawn on the grid
margins. Must have {row_var} and {row_name} formatting keys.
col_template:
Template for the column variable when titles are drawn on the grid
margins. Must have {col_var} and {col_name} formatting keys.
Returns
-------
self: object
Returns self.
|
set_titles
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def refline(self, *, x=None, y=None, color='.5', linestyle='--', **line_kws):
"""Add a reference line(s) to each facet.
Parameters
----------
x, y : numeric
Value(s) to draw the line(s) at.
color : :mod:`matplotlib color <matplotlib.colors>`
Specifies the color of the reference line(s). Pass ``color=None`` to
use ``hue`` mapping.
linestyle : str
Specifies the style of the reference line(s).
line_kws : key, value mappings
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
is not None.
Returns
-------
:class:`FacetGrid` instance
Returns ``self`` for easy method chaining.
"""
line_kws['color'] = color
line_kws['linestyle'] = linestyle
if x is not None:
self.map(plt.axvline, x=x, **line_kws)
if y is not None:
self.map(plt.axhline, y=y, **line_kws)
return self
|
Add a reference line(s) to each facet.
Parameters
----------
x, y : numeric
Value(s) to draw the line(s) at.
color : :mod:`matplotlib color <matplotlib.colors>`
Specifies the color of the reference line(s). Pass ``color=None`` to
use ``hue`` mapping.
linestyle : str
Specifies the style of the reference line(s).
line_kws : key, value mappings
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
is not None.
Returns
-------
:class:`FacetGrid` instance
Returns ``self`` for easy method chaining.
|
refline
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def ax(self):
"""The :class:`matplotlib.axes.Axes` when no faceting variables are assigned."""
if self.axes.shape == (1, 1):
return self.axes[0, 0]
else:
err = (
"Use the `.axes` attribute when facet variables are assigned."
)
raise AttributeError(err)
|
The :class:`matplotlib.axes.Axes` when no faceting variables are assigned.
|
ax
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _inner_axes(self):
"""Return a flat array of the inner axes."""
if self._col_wrap is None:
return self.axes[:-1, 1:].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i % self._ncol
and i < (self._ncol * (self._nrow - 1))
and i < (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
|
Return a flat array of the inner axes.
|
_inner_axes
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _left_axes(self):
"""Return a flat array of the left column of axes."""
if self._col_wrap is None:
return self.axes[:, 0].flat
else:
axes = []
for i, ax in enumerate(self.axes):
if not i % self._ncol:
axes.append(ax)
return np.array(axes, object).flat
|
Return a flat array of the left column of axes.
|
_left_axes
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _not_left_axes(self):
"""Return a flat array of axes that aren't on the left column."""
if self._col_wrap is None:
return self.axes[:, 1:].flat
else:
axes = []
for i, ax in enumerate(self.axes):
if i % self._ncol:
axes.append(ax)
return np.array(axes, object).flat
|
Return a flat array of axes that aren't on the left column.
|
_not_left_axes
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _bottom_axes(self):
"""Return a flat array of the bottom row of axes."""
if self._col_wrap is None:
return self.axes[-1, :].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i >= (self._ncol * (self._nrow - 1))
or i >= (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
|
Return a flat array of the bottom row of axes.
|
_bottom_axes
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _not_bottom_axes(self):
"""Return a flat array of axes that aren't on the bottom row."""
if self._col_wrap is None:
return self.axes[:-1, :].flat
else:
axes = []
n_empty = self._nrow * self._ncol - self._n_facets
for i, ax in enumerate(self.axes):
append = (
i < (self._ncol * (self._nrow - 1))
and i < (self._ncol * (self._nrow - 1) - n_empty)
)
if append:
axes.append(ax)
return np.array(axes, object).flat
|
Return a flat array of axes that aren't on the bottom row.
|
_not_bottom_axes
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def __init__(
self, data, *, hue=None, vars=None, x_vars=None, y_vars=None,
hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True,
height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False,
):
"""Initialize the plot figure and PairGrid object.
Parameters
----------
data : DataFrame
Tidy (long-form) dataframe where each column is a variable and
each row is an observation.
hue : string (variable name)
Variable in ``data`` to map plot aspects to different colors. This
variable will be excluded from the default x and y variables.
vars : list of variable names
Variables within ``data`` to use, otherwise use every column with
a numeric datatype.
{x, y}_vars : lists of variable names
Variables within ``data`` to use separately for the rows and
columns of the figure; i.e. to make a non-square plot.
hue_order : list of strings
Order for the levels of the hue variable in the palette
palette : dict or seaborn color palette
Set of colors for mapping the ``hue`` variable. If a dict, keys
should be values in the ``hue`` variable.
hue_kws : dictionary of param -> list of values mapping
Other keyword arguments to insert into the plotting call to let
other plot attributes vary across levels of the hue variable (e.g.
the markers in a scatterplot).
corner : bool
If True, don't add axes to the upper (off-diagonal) triangle of the
grid, making this a "corner" plot.
height : scalar
Height (in inches) of each facet.
aspect : scalar
Aspect * height gives the width (in inches) of each facet.
layout_pad : scalar
Padding between axes; passed to ``fig.tight_layout``.
despine : boolean
Remove the top and right spines from the plots.
dropna : boolean
Drop missing values from the data before plotting.
See Also
--------
pairplot : Easily drawing common uses of :class:`PairGrid`.
FacetGrid : Subplot grid for plotting conditional relationships.
Examples
--------
.. include:: ../docstrings/PairGrid.rst
"""
super().__init__()
data = handle_data_source(data)
# Sort out the variables that define the grid
numeric_cols = self._find_numeric_cols(data)
if hue in numeric_cols:
numeric_cols.remove(hue)
if vars is not None:
x_vars = list(vars)
y_vars = list(vars)
if x_vars is None:
x_vars = numeric_cols
if y_vars is None:
y_vars = numeric_cols
if np.isscalar(x_vars):
x_vars = [x_vars]
if np.isscalar(y_vars):
y_vars = [y_vars]
self.x_vars = x_vars = list(x_vars)
self.y_vars = y_vars = list(y_vars)
self.square_grid = self.x_vars == self.y_vars
if not x_vars:
raise ValueError("No variables found for grid columns.")
if not y_vars:
raise ValueError("No variables found for grid rows.")
# Create the figure and the array of subplots
figsize = len(x_vars) * height * aspect, len(y_vars) * height
with _disable_autolayout():
fig = plt.figure(figsize=figsize)
axes = fig.subplots(len(y_vars), len(x_vars),
sharex="col", sharey="row",
squeeze=False)
# Possibly remove upper axes to make a corner grid
# Note: setting up the axes is usually the most time-intensive part
# of using the PairGrid. We are foregoing the speed improvement that
# we would get by just not setting up the hidden axes so that we can
# avoid implementing fig.subplots ourselves. But worth thinking about.
self._corner = corner
if corner:
hide_indices = np.triu_indices_from(axes, 1)
for i, j in zip(*hide_indices):
axes[i, j].remove()
axes[i, j] = None
self._figure = fig
self.axes = axes
self.data = data
# Save what we are going to do with the diagonal
self.diag_sharey = diag_sharey
self.diag_vars = None
self.diag_axes = None
self._dropna = dropna
# Label the axes
self._add_axis_labels()
# Sort out the hue variable
self._hue_var = hue
if hue is None:
self.hue_names = hue_order = ["_nolegend_"]
self.hue_vals = pd.Series(["_nolegend_"] * len(data),
index=data.index)
else:
# We need hue_order and hue_names because the former is used to control
# the order of drawing and the latter is used to control the order of
# the legend. hue_names can become string-typed while hue_order must
# retain the type of the input data. This is messy but results from
# the fact that PairGrid can implement the hue-mapping logic itself
# (and was originally written exclusively that way) but now can delegate
# to the axes-level functions, while always handling legend creation.
# See GH2307
hue_names = hue_order = categorical_order(data[hue], hue_order)
if dropna:
# Filter NA from the list of unique hue names
hue_names = list(filter(pd.notnull, hue_names))
self.hue_names = hue_names
self.hue_vals = data[hue]
# Additional dict of kwarg -> list of values for mapping the hue var
self.hue_kws = hue_kws if hue_kws is not None else {}
self._orig_palette = palette
self._hue_order = hue_order
self.palette = self._get_palette(data, hue, hue_order, palette)
self._legend_data = {}
# Make the plot look nice
for ax in axes[:-1, :].flat:
if ax is None:
continue
for label in ax.get_xticklabels():
label.set_visible(False)
ax.xaxis.offsetText.set_visible(False)
ax.xaxis.label.set_visible(False)
for ax in axes[:, 1:].flat:
if ax is None:
continue
for label in ax.get_yticklabels():
label.set_visible(False)
ax.yaxis.offsetText.set_visible(False)
ax.yaxis.label.set_visible(False)
self._tight_layout_rect = [.01, .01, .99, .99]
self._tight_layout_pad = layout_pad
self._despine = despine
if despine:
utils.despine(fig=fig)
self.tight_layout(pad=layout_pad)
|
Initialize the plot figure and PairGrid object.
Parameters
----------
data : DataFrame
Tidy (long-form) dataframe where each column is a variable and
each row is an observation.
hue : string (variable name)
Variable in ``data`` to map plot aspects to different colors. This
variable will be excluded from the default x and y variables.
vars : list of variable names
Variables within ``data`` to use, otherwise use every column with
a numeric datatype.
{x, y}_vars : lists of variable names
Variables within ``data`` to use separately for the rows and
columns of the figure; i.e. to make a non-square plot.
hue_order : list of strings
Order for the levels of the hue variable in the palette
palette : dict or seaborn color palette
Set of colors for mapping the ``hue`` variable. If a dict, keys
should be values in the ``hue`` variable.
hue_kws : dictionary of param -> list of values mapping
Other keyword arguments to insert into the plotting call to let
other plot attributes vary across levels of the hue variable (e.g.
the markers in a scatterplot).
corner : bool
If True, don't add axes to the upper (off-diagonal) triangle of the
grid, making this a "corner" plot.
height : scalar
Height (in inches) of each facet.
aspect : scalar
Aspect * height gives the width (in inches) of each facet.
layout_pad : scalar
Padding between axes; passed to ``fig.tight_layout``.
despine : boolean
Remove the top and right spines from the plots.
dropna : boolean
Drop missing values from the data before plotting.
See Also
--------
pairplot : Easily drawing common uses of :class:`PairGrid`.
FacetGrid : Subplot grid for plotting conditional relationships.
Examples
--------
.. include:: ../docstrings/PairGrid.rst
|
__init__
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def map(self, func, **kwargs):
"""Plot with the same function in every subplot.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
row_indices, col_indices = np.indices(self.axes.shape)
indices = zip(row_indices.flat, col_indices.flat)
self._map_bivariate(func, indices, **kwargs)
return self
|
Plot with the same function in every subplot.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
map
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def map_lower(self, func, **kwargs):
"""Plot with a bivariate function on the lower diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
indices = zip(*np.tril_indices_from(self.axes, -1))
self._map_bivariate(func, indices, **kwargs)
return self
|
Plot with a bivariate function on the lower diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
map_lower
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def map_upper(self, func, **kwargs):
"""Plot with a bivariate function on the upper diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
indices = zip(*np.triu_indices_from(self.axes, 1))
self._map_bivariate(func, indices, **kwargs)
return self
|
Plot with a bivariate function on the upper diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
map_upper
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def map_offdiag(self, func, **kwargs):
"""Plot with a bivariate function on the off-diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
if self.square_grid:
self.map_lower(func, **kwargs)
if not self._corner:
self.map_upper(func, **kwargs)
else:
indices = []
for i, (y_var) in enumerate(self.y_vars):
for j, (x_var) in enumerate(self.x_vars):
if x_var != y_var:
indices.append((i, j))
self._map_bivariate(func, indices, **kwargs)
return self
|
Plot with a bivariate function on the off-diagonal subplots.
Parameters
----------
func : callable plotting function
Must take x, y arrays as positional arguments and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
map_offdiag
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def map_diag(self, func, **kwargs):
"""Plot with a univariate function on each diagonal subplot.
Parameters
----------
func : callable plotting function
Must take an x array as a positional argument and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
"""
# Add special diagonal axes for the univariate plot
if self.diag_axes is None:
diag_vars = []
diag_axes = []
for i, y_var in enumerate(self.y_vars):
for j, x_var in enumerate(self.x_vars):
if x_var == y_var:
# Make the density axes
diag_vars.append(x_var)
ax = self.axes[i, j]
diag_ax = ax.twinx()
diag_ax.set_axis_off()
diag_axes.append(diag_ax)
# Work around matplotlib bug
# https://github.com/matplotlib/matplotlib/issues/15188
if not plt.rcParams.get("ytick.left", True):
for tick in ax.yaxis.majorTicks:
tick.tick1line.set_visible(False)
# Remove main y axis from density axes in a corner plot
if self._corner:
ax.yaxis.set_visible(False)
if self._despine:
utils.despine(ax=ax, left=True)
# TODO add optional density ticks (on the right)
# when drawing a corner plot?
if self.diag_sharey and diag_axes:
for ax in diag_axes[1:]:
share_axis(diag_axes[0], ax, "y")
self.diag_vars = diag_vars
self.diag_axes = diag_axes
if "hue" not in signature(func).parameters:
return self._map_diag_iter_hue(func, **kwargs)
# Loop over diagonal variables and axes, making one plot in each
for var, ax in zip(self.diag_vars, self.diag_axes):
plot_kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
plot_kwargs["ax"] = ax
else:
plt.sca(ax)
vector = self.data[var]
if self._hue_var is not None:
hue = self.data[self._hue_var]
else:
hue = None
if self._dropna:
not_na = vector.notna()
if hue is not None:
not_na &= hue.notna()
vector = vector[not_na]
if hue is not None:
hue = hue[not_na]
plot_kwargs.setdefault("hue", hue)
plot_kwargs.setdefault("hue_order", self._hue_order)
plot_kwargs.setdefault("palette", self._orig_palette)
func(x=vector, **plot_kwargs)
ax.legend_ = None
self._add_axis_labels()
return self
|
Plot with a univariate function on each diagonal subplot.
Parameters
----------
func : callable plotting function
Must take an x array as a positional argument and draw onto the
"currently active" matplotlib Axes. Also needs to accept kwargs
called ``color`` and ``label``.
|
map_diag
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _map_diag_iter_hue(self, func, **kwargs):
"""Put marginal plot on each diagonal axes, iterating over hue."""
# Plot on each of the diagonal axes
fixed_color = kwargs.pop("color", None)
for var, ax in zip(self.diag_vars, self.diag_axes):
hue_grouped = self.data[var].groupby(self.hue_vals, observed=True)
plot_kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
plot_kwargs["ax"] = ax
else:
plt.sca(ax)
for k, label_k in enumerate(self._hue_order):
# Attempt to get data for this level, allowing for empty
try:
data_k = hue_grouped.get_group(label_k)
except KeyError:
data_k = pd.Series([], dtype=float)
if fixed_color is None:
color = self.palette[k]
else:
color = fixed_color
if self._dropna:
data_k = utils.remove_na(data_k)
if str(func.__module__).startswith("seaborn"):
func(x=data_k, label=label_k, color=color, **plot_kwargs)
else:
func(data_k, label=label_k, color=color, **plot_kwargs)
self._add_axis_labels()
return self
|
Put marginal plot on each diagonal axes, iterating over hue.
|
_map_diag_iter_hue
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _map_bivariate(self, func, indices, **kwargs):
"""Draw a bivariate plot on the indicated axes."""
# This is a hack to handle the fact that new distribution plots don't add
# their artists onto the axes. This is probably superior in general, but
# we'll need a better way to handle it in the axisgrid functions.
from .distributions import histplot, kdeplot
if func is histplot or func is kdeplot:
self._extract_legend_handles = True
kws = kwargs.copy() # Use copy as we insert other kwargs
for i, j in indices:
x_var = self.x_vars[j]
y_var = self.y_vars[i]
ax = self.axes[i, j]
if ax is None: # i.e. we are in corner mode
continue
self._plot_bivariate(x_var, y_var, ax, func, **kws)
self._add_axis_labels()
if "hue" in signature(func).parameters:
self.hue_names = list(self._legend_data)
|
Draw a bivariate plot on the indicated axes.
|
_map_bivariate
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _plot_bivariate(self, x_var, y_var, ax, func, **kwargs):
"""Draw a bivariate plot on the specified axes."""
if "hue" not in signature(func).parameters:
self._plot_bivariate_iter_hue(x_var, y_var, ax, func, **kwargs)
return
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = ax
else:
plt.sca(ax)
if x_var == y_var:
axes_vars = [x_var]
else:
axes_vars = [x_var, y_var]
if self._hue_var is not None and self._hue_var not in axes_vars:
axes_vars.append(self._hue_var)
data = self.data[axes_vars]
if self._dropna:
data = data.dropna()
x = data[x_var]
y = data[y_var]
if self._hue_var is None:
hue = None
else:
hue = data.get(self._hue_var)
if "hue" not in kwargs:
kwargs.update({
"hue": hue, "hue_order": self._hue_order, "palette": self._orig_palette,
})
func(x=x, y=y, **kwargs)
self._update_legend_data(ax)
|
Draw a bivariate plot on the specified axes.
|
_plot_bivariate
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _plot_bivariate_iter_hue(self, x_var, y_var, ax, func, **kwargs):
"""Draw a bivariate plot while iterating over hue subsets."""
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = ax
else:
plt.sca(ax)
if x_var == y_var:
axes_vars = [x_var]
else:
axes_vars = [x_var, y_var]
hue_grouped = self.data.groupby(self.hue_vals, observed=True)
for k, label_k in enumerate(self._hue_order):
kws = kwargs.copy()
# Attempt to get data for this level, allowing for empty
try:
data_k = hue_grouped.get_group(label_k)
except KeyError:
data_k = pd.DataFrame(columns=axes_vars,
dtype=float)
if self._dropna:
data_k = data_k[axes_vars].dropna()
x = data_k[x_var]
y = data_k[y_var]
for kw, val_list in self.hue_kws.items():
kws[kw] = val_list[k]
kws.setdefault("color", self.palette[k])
if self._hue_var is not None:
kws["label"] = label_k
if str(func.__module__).startswith("seaborn"):
func(x=x, y=y, **kws)
else:
func(x, y, **kws)
self._update_legend_data(ax)
|
Draw a bivariate plot while iterating over hue subsets.
|
_plot_bivariate_iter_hue
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _add_axis_labels(self):
"""Add labels to the left and bottom Axes."""
for ax, label in zip(self.axes[-1, :], self.x_vars):
ax.set_xlabel(label)
for ax, label in zip(self.axes[:, 0], self.y_vars):
ax.set_ylabel(label)
|
Add labels to the left and bottom Axes.
|
_add_axis_labels
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _find_numeric_cols(self, data):
"""Find which variables in a DataFrame are numeric."""
numeric_cols = []
for col in data:
if variable_type(data[col]) == "numeric":
numeric_cols.append(col)
return numeric_cols
|
Find which variables in a DataFrame are numeric.
|
_find_numeric_cols
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _inject_kwargs(self, func, kws, params):
"""Add params to kws if they are accepted by func."""
func_params = signature(func).parameters
for key, val in params.items():
if key in func_params:
kws.setdefault(key, val)
|
Add params to kws if they are accepted by func.
|
_inject_kwargs
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def plot(self, joint_func, marginal_func, **kwargs):
"""Draw the plot by passing functions for joint and marginal axes.
This method passes the ``kwargs`` dictionary to both functions. If you
need more control, call :meth:`JointGrid.plot_joint` and
:meth:`JointGrid.plot_marginals` directly with specific parameters.
Parameters
----------
joint_func, marginal_func : callables
Functions to draw the bivariate and univariate plots. See methods
referenced above for information about the required characteristics
of these functions.
kwargs
Additional keyword arguments are passed to both functions.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
self.plot_marginals(marginal_func, **kwargs)
self.plot_joint(joint_func, **kwargs)
return self
|
Draw the plot by passing functions for joint and marginal axes.
This method passes the ``kwargs`` dictionary to both functions. If you
need more control, call :meth:`JointGrid.plot_joint` and
:meth:`JointGrid.plot_marginals` directly with specific parameters.
Parameters
----------
joint_func, marginal_func : callables
Functions to draw the bivariate and univariate plots. See methods
referenced above for information about the required characteristics
of these functions.
kwargs
Additional keyword arguments are passed to both functions.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
plot
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def plot_joint(self, func, **kwargs):
"""Draw a bivariate plot on the joint axes of the grid.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y``. Otherwise,
it must accept ``x`` and ``y`` vectors of data as the first two
positional arguments, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, the function must
accept ``hue`` as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
kwargs = kwargs.copy()
if str(func.__module__).startswith("seaborn"):
kwargs["ax"] = self.ax_joint
else:
plt.sca(self.ax_joint)
if self.hue is not None:
kwargs["hue"] = self.hue
self._inject_kwargs(func, kwargs, self._hue_params)
if str(func.__module__).startswith("seaborn"):
func(x=self.x, y=self.y, **kwargs)
else:
func(self.x, self.y, **kwargs)
return self
|
Draw a bivariate plot on the joint axes of the grid.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y``. Otherwise,
it must accept ``x`` and ``y`` vectors of data as the first two
positional arguments, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, the function must
accept ``hue`` as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
plot_joint
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def plot_marginals(self, func, **kwargs):
"""Draw univariate plots on each marginal axes.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y`` and plot
when only one of them is defined. Otherwise, it must accept a vector
of data as the first positional argument and determine its orientation
using the ``vertical`` parameter, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, it must accept ``hue``
as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
seaborn_func = (
str(func.__module__).startswith("seaborn")
# deprecated distplot has a legacy API, special case it
and not func.__name__ == "distplot"
)
func_params = signature(func).parameters
kwargs = kwargs.copy()
if self.hue is not None:
kwargs["hue"] = self.hue
self._inject_kwargs(func, kwargs, self._hue_params)
if "legend" in func_params:
kwargs.setdefault("legend", False)
if "orientation" in func_params:
# e.g. plt.hist
orient_kw_x = {"orientation": "vertical"}
orient_kw_y = {"orientation": "horizontal"}
elif "vertical" in func_params:
# e.g. sns.distplot (also how did this get backwards?)
orient_kw_x = {"vertical": False}
orient_kw_y = {"vertical": True}
if seaborn_func:
func(x=self.x, ax=self.ax_marg_x, **kwargs)
else:
plt.sca(self.ax_marg_x)
func(self.x, **orient_kw_x, **kwargs)
if seaborn_func:
func(y=self.y, ax=self.ax_marg_y, **kwargs)
else:
plt.sca(self.ax_marg_y)
func(self.y, **orient_kw_y, **kwargs)
self.ax_marg_x.yaxis.get_label().set_visible(False)
self.ax_marg_y.xaxis.get_label().set_visible(False)
return self
|
Draw univariate plots on each marginal axes.
Parameters
----------
func : plotting callable
If a seaborn function, it should accept ``x`` and ``y`` and plot
when only one of them is defined. Otherwise, it must accept a vector
of data as the first positional argument and determine its orientation
using the ``vertical`` parameter, and it must plot on the "current" axes.
If ``hue`` was defined in the class constructor, it must accept ``hue``
as a parameter.
kwargs
Keyword argument are passed to the plotting function.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
plot_marginals
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def refline(
self, *, x=None, y=None, joint=True, marginal=True,
color='.5', linestyle='--', **line_kws
):
"""Add a reference line(s) to joint and/or marginal axes.
Parameters
----------
x, y : numeric
Value(s) to draw the line(s) at.
joint, marginal : bools
Whether to add the reference line(s) to the joint/marginal axes.
color : :mod:`matplotlib color <matplotlib.colors>`
Specifies the color of the reference line(s).
linestyle : str
Specifies the style of the reference line(s).
line_kws : key, value mappings
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
is not None.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
line_kws['color'] = color
line_kws['linestyle'] = linestyle
if x is not None:
if joint:
self.ax_joint.axvline(x, **line_kws)
if marginal:
self.ax_marg_x.axvline(x, **line_kws)
if y is not None:
if joint:
self.ax_joint.axhline(y, **line_kws)
if marginal:
self.ax_marg_y.axhline(y, **line_kws)
return self
|
Add a reference line(s) to joint and/or marginal axes.
Parameters
----------
x, y : numeric
Value(s) to draw the line(s) at.
joint, marginal : bools
Whether to add the reference line(s) to the joint/marginal axes.
color : :mod:`matplotlib color <matplotlib.colors>`
Specifies the color of the reference line(s).
linestyle : str
Specifies the style of the reference line(s).
line_kws : key, value mappings
Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.axvline`
when ``x`` is not None and :meth:`matplotlib.axes.Axes.axhline` when ``y``
is not None.
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
refline
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def set_axis_labels(self, xlabel="", ylabel="", **kwargs):
"""Set axis labels on the bivariate axes.
Parameters
----------
xlabel, ylabel : strings
Label names for the x and y variables.
kwargs : key, value mappings
Other keyword arguments are passed to the following functions:
- :meth:`matplotlib.axes.Axes.set_xlabel`
- :meth:`matplotlib.axes.Axes.set_ylabel`
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
"""
self.ax_joint.set_xlabel(xlabel, **kwargs)
self.ax_joint.set_ylabel(ylabel, **kwargs)
return self
|
Set axis labels on the bivariate axes.
Parameters
----------
xlabel, ylabel : strings
Label names for the x and y variables.
kwargs : key, value mappings
Other keyword arguments are passed to the following functions:
- :meth:`matplotlib.axes.Axes.set_xlabel`
- :meth:`matplotlib.axes.Axes.set_ylabel`
Returns
-------
:class:`JointGrid` instance
Returns ``self`` for easy method chaining.
|
set_axis_labels
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def pairplot(
data, *,
hue=None, hue_order=None, palette=None,
vars=None, x_vars=None, y_vars=None,
kind="scatter", diag_kind="auto", markers=None,
height=2.5, aspect=1, corner=False, dropna=False,
plot_kws=None, diag_kws=None, grid_kws=None, size=None,
):
"""Plot pairwise relationships in a dataset.
By default, this function will create a grid of Axes such that each numeric
variable in ``data`` will by shared across the y-axes across a single row and
the x-axes across a single column. The diagonal plots are treated
differently: a univariate distribution plot is drawn to show the marginal
distribution of the data in each column.
It is also possible to show a subset of variables or plot different
variables on the rows and columns.
This is a high-level interface for :class:`PairGrid` that is intended to
make it easy to draw a few common styles. You should use :class:`PairGrid`
directly if you need more flexibility.
Parameters
----------
data : `pandas.DataFrame`
Tidy (long-form) dataframe where each column is a variable and
each row is an observation.
hue : name of variable in ``data``
Variable in ``data`` to map plot aspects to different colors.
hue_order : list of strings
Order for the levels of the hue variable in the palette
palette : dict or seaborn color palette
Set of colors for mapping the ``hue`` variable. If a dict, keys
should be values in the ``hue`` variable.
vars : list of variable names
Variables within ``data`` to use, otherwise use every column with
a numeric datatype.
{x, y}_vars : lists of variable names
Variables within ``data`` to use separately for the rows and
columns of the figure; i.e. to make a non-square plot.
kind : {'scatter', 'kde', 'hist', 'reg'}
Kind of plot to make.
diag_kind : {'auto', 'hist', 'kde', None}
Kind of plot for the diagonal subplots. If 'auto', choose based on
whether or not ``hue`` is used.
markers : single matplotlib marker code or list
Either the marker to use for all scatterplot points or a list of markers
with a length the same as the number of levels in the hue variable so that
differently colored points will also have different scatterplot
markers.
height : scalar
Height (in inches) of each facet.
aspect : scalar
Aspect * height gives the width (in inches) of each facet.
corner : bool
If True, don't add axes to the upper (off-diagonal) triangle of the
grid, making this a "corner" plot.
dropna : boolean
Drop missing values from the data before plotting.
{plot, diag, grid}_kws : dicts
Dictionaries of keyword arguments. ``plot_kws`` are passed to the
bivariate plotting function, ``diag_kws`` are passed to the univariate
plotting function, and ``grid_kws`` are passed to the :class:`PairGrid`
constructor.
Returns
-------
grid : :class:`PairGrid`
Returns the underlying :class:`PairGrid` instance for further tweaking.
See Also
--------
PairGrid : Subplot grid for more flexible plotting of pairwise relationships.
JointGrid : Grid for plotting joint and marginal distributions of two variables.
Examples
--------
.. include:: ../docstrings/pairplot.rst
"""
# Avoid circular import
from .distributions import histplot, kdeplot
# Handle deprecations
if size is not None:
height = size
msg = ("The `size` parameter has been renamed to `height`; "
"please update your code.")
warnings.warn(msg, UserWarning)
if not isinstance(data, pd.DataFrame):
raise TypeError(
f"'data' must be pandas DataFrame object, not: {type(data)}")
plot_kws = {} if plot_kws is None else plot_kws.copy()
diag_kws = {} if diag_kws is None else diag_kws.copy()
grid_kws = {} if grid_kws is None else grid_kws.copy()
# Resolve "auto" diag kind
if diag_kind == "auto":
if hue is None:
diag_kind = "kde" if kind == "kde" else "hist"
else:
diag_kind = "hist" if kind == "hist" else "kde"
# Set up the PairGrid
grid_kws.setdefault("diag_sharey", diag_kind == "hist")
grid = PairGrid(data, vars=vars, x_vars=x_vars, y_vars=y_vars, hue=hue,
hue_order=hue_order, palette=palette, corner=corner,
height=height, aspect=aspect, dropna=dropna, **grid_kws)
# Add the markers here as PairGrid has figured out how many levels of the
# hue variable are needed and we don't want to duplicate that process
if markers is not None:
if kind == "reg":
# Needed until regplot supports style
if grid.hue_names is None:
n_markers = 1
else:
n_markers = len(grid.hue_names)
if not isinstance(markers, list):
markers = [markers] * n_markers
if len(markers) != n_markers:
raise ValueError("markers must be a singleton or a list of "
"markers for each level of the hue variable")
grid.hue_kws = {"marker": markers}
elif kind == "scatter":
if isinstance(markers, str):
plot_kws["marker"] = markers
elif hue is not None:
plot_kws["style"] = data[hue]
plot_kws["markers"] = markers
# Draw the marginal plots on the diagonal
diag_kws = diag_kws.copy()
diag_kws.setdefault("legend", False)
if diag_kind == "hist":
grid.map_diag(histplot, **diag_kws)
elif diag_kind == "kde":
diag_kws.setdefault("fill", True)
diag_kws.setdefault("warn_singular", False)
grid.map_diag(kdeplot, **diag_kws)
# Maybe plot on the off-diagonals
if diag_kind is not None:
plotter = grid.map_offdiag
else:
plotter = grid.map
if kind == "scatter":
from .relational import scatterplot # Avoid circular import
plotter(scatterplot, **plot_kws)
elif kind == "reg":
from .regression import regplot # Avoid circular import
plotter(regplot, **plot_kws)
elif kind == "kde":
from .distributions import kdeplot # Avoid circular import
plot_kws.setdefault("warn_singular", False)
plotter(kdeplot, **plot_kws)
elif kind == "hist":
from .distributions import histplot # Avoid circular import
plotter(histplot, **plot_kws)
# Add a legend
if hue is not None:
grid.add_legend()
grid.tight_layout()
return grid
|
Plot pairwise relationships in a dataset.
By default, this function will create a grid of Axes such that each numeric
variable in ``data`` will by shared across the y-axes across a single row and
the x-axes across a single column. The diagonal plots are treated
differently: a univariate distribution plot is drawn to show the marginal
distribution of the data in each column.
It is also possible to show a subset of variables or plot different
variables on the rows and columns.
This is a high-level interface for :class:`PairGrid` that is intended to
make it easy to draw a few common styles. You should use :class:`PairGrid`
directly if you need more flexibility.
Parameters
----------
data : `pandas.DataFrame`
Tidy (long-form) dataframe where each column is a variable and
each row is an observation.
hue : name of variable in ``data``
Variable in ``data`` to map plot aspects to different colors.
hue_order : list of strings
Order for the levels of the hue variable in the palette
palette : dict or seaborn color palette
Set of colors for mapping the ``hue`` variable. If a dict, keys
should be values in the ``hue`` variable.
vars : list of variable names
Variables within ``data`` to use, otherwise use every column with
a numeric datatype.
{x, y}_vars : lists of variable names
Variables within ``data`` to use separately for the rows and
columns of the figure; i.e. to make a non-square plot.
kind : {'scatter', 'kde', 'hist', 'reg'}
Kind of plot to make.
diag_kind : {'auto', 'hist', 'kde', None}
Kind of plot for the diagonal subplots. If 'auto', choose based on
whether or not ``hue`` is used.
markers : single matplotlib marker code or list
Either the marker to use for all scatterplot points or a list of markers
with a length the same as the number of levels in the hue variable so that
differently colored points will also have different scatterplot
markers.
height : scalar
Height (in inches) of each facet.
aspect : scalar
Aspect * height gives the width (in inches) of each facet.
corner : bool
If True, don't add axes to the upper (off-diagonal) triangle of the
grid, making this a "corner" plot.
dropna : boolean
Drop missing values from the data before plotting.
{plot, diag, grid}_kws : dicts
Dictionaries of keyword arguments. ``plot_kws`` are passed to the
bivariate plotting function, ``diag_kws`` are passed to the univariate
plotting function, and ``grid_kws`` are passed to the :class:`PairGrid`
constructor.
Returns
-------
grid : :class:`PairGrid`
Returns the underlying :class:`PairGrid` instance for further tweaking.
See Also
--------
PairGrid : Subplot grid for more flexible plotting of pairwise relationships.
JointGrid : Grid for plotting joint and marginal distributions of two variables.
Examples
--------
.. include:: ../docstrings/pairplot.rst
|
pairplot
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _hue_backcompat(self, color, palette, hue_order, force_hue=False):
"""Implement backwards compatibility for hue parametrization.
Note: the force_hue parameter is used so that functions can be shown to
pass existing tests during refactoring and then tested for new behavior.
It can be removed after completion of the work.
"""
# The original categorical functions applied a palette to the categorical axis
# by default. We want to require an explicit hue mapping, to be more consistent
# with how things work elsewhere now. I don't think there's any good way to
# do this gently -- because it's triggered by the default value of hue=None,
# users would always get a warning, unless we introduce some sentinel "default"
# argument for this change. That's possible, but asking users to set `hue=None`
# on every call is annoying.
# We are keeping the logic for implementing the old behavior in with the current
# system so that (a) we can punt on that decision and (b) we can ensure that
# refactored code passes old tests.
default_behavior = color is None or palette is not None
if force_hue and "hue" not in self.variables and default_behavior:
self._redundant_hue = True
self.plot_data["hue"] = self.plot_data[self.orient]
self.variables["hue"] = self.variables[self.orient]
self.var_types["hue"] = "categorical"
hue_order = self.var_levels[self.orient]
# Because we convert the categorical axis variable to string,
# we need to update a dictionary palette too
if isinstance(palette, dict):
palette = {str(k): v for k, v in palette.items()}
else:
if "hue" in self.variables:
redundant = (self.plot_data["hue"] == self.plot_data[self.orient]).all()
else:
redundant = False
self._redundant_hue = redundant
# Previously, categorical plots had a trick where color= could seed the palette.
# Because that's an explicit parameterization, we are going to give it one
# release cycle with a warning before removing.
if "hue" in self.variables and palette is None and color is not None:
if not isinstance(color, str):
color = mpl.colors.to_hex(color)
palette = f"dark:{color}"
msg = (
"\n\nSetting a gradient palette using color= is deprecated and will be "
f"removed in v0.14.0. Set `palette='{palette}'` for the same effect.\n"
)
warnings.warn(msg, FutureWarning, stacklevel=3)
return palette, hue_order
|
Implement backwards compatibility for hue parametrization.
Note: the force_hue parameter is used so that functions can be shown to
pass existing tests during refactoring and then tested for new behavior.
It can be removed after completion of the work.
|
_hue_backcompat
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _palette_without_hue_backcompat(self, palette, hue_order):
"""Provide one cycle where palette= implies hue= when not provided"""
if "hue" not in self.variables and palette is not None:
msg = (
"\n\nPassing `palette` without assigning `hue` is deprecated "
f"and will be removed in v0.14.0. Assign the `{self.orient}` variable "
"to `hue` and set `legend=False` for the same effect.\n"
)
warnings.warn(msg, FutureWarning, stacklevel=3)
self.legend = False
self.plot_data["hue"] = self.plot_data[self.orient]
self.variables["hue"] = self.variables.get(self.orient)
self.var_types["hue"] = self.var_types.get(self.orient)
hue_order = self.var_levels.get(self.orient)
self._var_levels.pop("hue", None)
return hue_order
|
Provide one cycle where palette= implies hue= when not provided
|
_palette_without_hue_backcompat
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _point_kwargs_backcompat(self, scale, join, kwargs):
"""Provide two cycles where scale= and join= work, but redirect to kwargs."""
if scale is not deprecated:
lw = mpl.rcParams["lines.linewidth"] * 1.8 * scale
mew = lw * .75
ms = lw * 2
msg = (
"\n\n"
"The `scale` parameter is deprecated and will be removed in v0.15.0. "
"You can now control the size of each plot element using matplotlib "
"`Line2D` parameters (e.g., `linewidth`, `markersize`, etc.)."
"\n"
)
warnings.warn(msg, stacklevel=3)
kwargs.update(linewidth=lw, markeredgewidth=mew, markersize=ms)
if join is not deprecated:
msg = (
"\n\n"
"The `join` parameter is deprecated and will be removed in v0.15.0."
)
if not join:
msg += (
" You can remove the line between points with `linestyle='none'`."
)
kwargs.update(linestyle="")
msg += "\n"
warnings.warn(msg, stacklevel=3)
|
Provide two cycles where scale= and join= work, but redirect to kwargs.
|
_point_kwargs_backcompat
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _err_kws_backcompat(self, err_kws, errcolor, errwidth, capsize):
"""Provide two cycles where existing signature-level err_kws are handled."""
def deprecate_err_param(name, key, val):
if val is deprecated:
return
suggest = f"err_kws={{'{key}': {val!r}}}"
msg = (
f"\n\nThe `{name}` parameter is deprecated. And will be removed "
f"in v0.15.0. Pass `{suggest}` instead.\n"
)
warnings.warn(msg, FutureWarning, stacklevel=4)
err_kws[key] = val
if errcolor is not None:
deprecate_err_param("errcolor", "color", errcolor)
deprecate_err_param("errwidth", "linewidth", errwidth)
if capsize is None:
capsize = 0
msg = (
"\n\nPassing `capsize=None` is deprecated and will be removed "
"in v0.15.0. Pass `capsize=0` to disable caps.\n"
)
warnings.warn(msg, FutureWarning, stacklevel=3)
return err_kws, capsize
|
Provide two cycles where existing signature-level err_kws are handled.
|
_err_kws_backcompat
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _violin_scale_backcompat(self, scale, scale_hue, density_norm, common_norm):
"""Provide two cycles of backcompat for scale kwargs"""
if scale is not deprecated:
density_norm = scale
msg = (
"\n\nThe `scale` parameter has been renamed and will be removed "
f"in v0.15.0. Pass `density_norm={scale!r}` for the same effect."
)
warnings.warn(msg, FutureWarning, stacklevel=3)
if scale_hue is not deprecated:
common_norm = scale_hue
msg = (
"\n\nThe `scale_hue` parameter has been replaced and will be removed "
f"in v0.15.0. Pass `common_norm={not scale_hue}` for the same effect."
)
warnings.warn(msg, FutureWarning, stacklevel=3)
return density_norm, common_norm
|
Provide two cycles of backcompat for scale kwargs
|
_violin_scale_backcompat
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _violin_bw_backcompat(self, bw, bw_method):
"""Provide two cycles of backcompat for violin bandwidth parameterization."""
if bw is not deprecated:
bw_method = bw
msg = dedent(f"""\n
The `bw` parameter is deprecated in favor of `bw_method`/`bw_adjust`.
Setting `bw_method={bw!r}`, but please see docs for the new parameters
and update your code. This will become an error in seaborn v0.15.0.
""")
warnings.warn(msg, FutureWarning, stacklevel=3)
return bw_method
|
Provide two cycles of backcompat for violin bandwidth parameterization.
|
_violin_bw_backcompat
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _boxen_scale_backcompat(self, scale, width_method):
"""Provide two cycles of backcompat for scale kwargs"""
if scale is not deprecated:
width_method = scale
msg = (
"\n\nThe `scale` parameter has been renamed to `width_method` and "
f"will be removed in v0.15. Pass `width_method={scale!r}"
)
if scale == "area":
msg += ", but note that the result for 'area' will appear different."
else:
msg += " for the same effect."
warnings.warn(msg, FutureWarning, stacklevel=3)
return width_method
|
Provide two cycles of backcompat for scale kwargs
|
_boxen_scale_backcompat
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _complement_color(self, color, base_color, hue_map):
"""Allow a color to be set automatically using a basis of comparison."""
if color == "gray":
msg = (
'Use "auto" to set automatic grayscale colors. From v0.14.0, '
'"gray" will default to matplotlib\'s definition.'
)
warnings.warn(msg, FutureWarning, stacklevel=3)
color = "auto"
elif color is None or color is default:
color = "auto"
if color != "auto":
return color
if hue_map.lookup_table is None:
if base_color is None:
return None
basis = [mpl.colors.to_rgb(base_color)]
else:
basis = [mpl.colors.to_rgb(c) for c in hue_map.lookup_table.values()]
unique_colors = np.unique(basis, axis=0)
light_vals = [rgb_to_hls(*rgb[:3])[1] for rgb in unique_colors]
lum = min(light_vals) * .6
return (lum, lum, lum)
|
Allow a color to be set automatically using a basis of comparison.
|
_complement_color
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _map_prop_with_hue(self, name, value, fallback, plot_kws):
"""Support pointplot behavior of modifying the marker/linestyle with hue."""
if value is default:
value = plot_kws.pop(name, fallback)
if "hue" in self.variables:
levels = self._hue_map.levels
if isinstance(value, list):
mapping = {k: v for k, v in zip(levels, value)}
else:
mapping = {k: value for k in levels}
else:
mapping = {None: value}
return mapping
|
Support pointplot behavior of modifying the marker/linestyle with hue.
|
_map_prop_with_hue
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _dodge_needed(self):
"""Return True when use of `hue` would cause overlaps."""
groupers = list({self.orient, "col", "row"} & set(self.variables))
if "hue" in self.variables:
orient = self.plot_data[groupers].value_counts()
paired = self.plot_data[[*groupers, "hue"]].value_counts()
return orient.size != paired.size
return False
|
Return True when use of `hue` would cause overlaps.
|
_dodge_needed
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _dodge(self, keys, data):
"""Apply a dodge transform to coordinates in place."""
if "hue" not in self.variables:
# Short-circuit if hue variable was not assigned
# We could potentially warn when hue=None, dodge=True, user may be confused
# But I think it's fine to just treat it as a no-op.
return
hue_idx = self._hue_map.levels.index(keys["hue"])
n = len(self._hue_map.levels)
data["width"] /= n
full_width = data["width"] * n
offset = data["width"] * hue_idx + data["width"] / 2 - full_width / 2
data[self.orient] += offset
|
Apply a dodge transform to coordinates in place.
|
_dodge
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _invert_scale(self, ax, data, vars=("x", "y")):
"""Undo scaling after computation so data are plotted correctly."""
for var in vars:
_, inv = _get_transform_functions(ax, var[0])
if var == self.orient and "width" in data:
hw = data["width"] / 2
data["edge"] = inv(data[var] - hw)
data["width"] = inv(data[var] + hw) - data["edge"].to_numpy()
for suf in ["", "min", "max"]:
if (col := f"{var}{suf}") in data:
data[col] = inv(data[col])
|
Undo scaling after computation so data are plotted correctly.
|
_invert_scale
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _native_width(self):
"""Return unit of width separating categories on native numeric scale."""
# Categorical data always have a unit width
if self.var_types[self.orient] == "categorical":
return 1
# Otherwise, define the width as the smallest space between observations
unique_values = np.unique(self.comp_data[self.orient])
if len(unique_values) > 1:
native_width = np.nanmin(np.diff(unique_values))
else:
native_width = 1
return native_width
|
Return unit of width separating categories on native numeric scale.
|
_native_width
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def _nested_offsets(self, width, dodge):
"""Return offsets for each hue level for dodged plots."""
offsets = None
if "hue" in self.variables and self._hue_map.levels is not None:
n_levels = len(self._hue_map.levels)
if dodge:
each_width = width / n_levels
offsets = np.linspace(0, width - each_width, n_levels)
offsets -= offsets.mean()
else:
offsets = np.zeros(n_levels)
return offsets
|
Return offsets for each hue level for dodged plots.
|
_nested_offsets
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def __call__(self, points, center):
"""Swarm `points`, a PathCollection, around the `center` position."""
# Convert from point size (area) to diameter
ax = points.axes
dpi = ax.figure.dpi
# Get the original positions of the points
orig_xy_data = points.get_offsets()
# Reset the categorical positions to the center line
cat_idx = 1 if self.orient == "y" else 0
orig_xy_data[:, cat_idx] = center
# Transform the data coordinates to point coordinates.
# We'll figure out the swarm positions in the latter
# and then convert back to data coordinates and replot
orig_x_data, orig_y_data = orig_xy_data.T
orig_xy = ax.transData.transform(orig_xy_data)
# Order the variables so that x is the categorical axis
if self.orient == "y":
orig_xy = orig_xy[:, [1, 0]]
# Add a column with each point's radius
sizes = points.get_sizes()
if sizes.size == 1:
sizes = np.repeat(sizes, orig_xy.shape[0])
edge = points.get_linewidth().item()
radii = (np.sqrt(sizes) + edge) / 2 * (dpi / 72)
orig_xy = np.c_[orig_xy, radii]
# Sort along the value axis to facilitate the beeswarm
sorter = np.argsort(orig_xy[:, 1])
orig_xyr = orig_xy[sorter]
# Adjust points along the categorical axis to prevent overlaps
new_xyr = np.empty_like(orig_xyr)
new_xyr[sorter] = self.beeswarm(orig_xyr)
# Transform the point coordinates back to data coordinates
if self.orient == "y":
new_xy = new_xyr[:, [1, 0]]
else:
new_xy = new_xyr[:, :2]
new_x_data, new_y_data = ax.transData.inverted().transform(new_xy).T
# Add gutters
t_fwd, t_inv = _get_transform_functions(ax, self.orient)
if self.orient == "y":
self.add_gutters(new_y_data, center, t_fwd, t_inv)
else:
self.add_gutters(new_x_data, center, t_fwd, t_inv)
# Reposition the points so they do not overlap
if self.orient == "y":
points.set_offsets(np.c_[orig_x_data, new_y_data])
else:
points.set_offsets(np.c_[new_x_data, orig_y_data])
|
Swarm `points`, a PathCollection, around the `center` position.
|
__call__
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def beeswarm(self, orig_xyr):
"""Adjust x position of points to avoid overlaps."""
# In this method, `x` is always the categorical axis
# Center of the swarm, in point coordinates
midline = orig_xyr[0, 0]
# Start the swarm with the first point
swarm = np.atleast_2d(orig_xyr[0])
# Loop over the remaining points
for xyr_i in orig_xyr[1:]:
# Find the points in the swarm that could possibly
# overlap with the point we are currently placing
neighbors = self.could_overlap(xyr_i, swarm)
# Find positions that would be valid individually
# with respect to each of the swarm neighbors
candidates = self.position_candidates(xyr_i, neighbors)
# Sort candidates by their centrality
offsets = np.abs(candidates[:, 0] - midline)
candidates = candidates[np.argsort(offsets)]
# Find the first candidate that does not overlap any neighbors
new_xyr_i = self.first_non_overlapping_candidate(candidates, neighbors)
# Place it into the swarm
swarm = np.vstack([swarm, new_xyr_i])
return swarm
|
Adjust x position of points to avoid overlaps.
|
beeswarm
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def could_overlap(self, xyr_i, swarm):
"""Return a list of all swarm points that could overlap with target."""
# Because we work backwards through the swarm and can short-circuit,
# the for-loop is faster than vectorization
_, y_i, r_i = xyr_i
neighbors = []
for xyr_j in reversed(swarm):
_, y_j, r_j = xyr_j
if (y_i - y_j) < (r_i + r_j):
neighbors.append(xyr_j)
else:
break
return np.array(neighbors)[::-1]
|
Return a list of all swarm points that could overlap with target.
|
could_overlap
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def position_candidates(self, xyr_i, neighbors):
"""Return a list of coordinates that might be valid by adjusting x."""
candidates = [xyr_i]
x_i, y_i, r_i = xyr_i
left_first = True
for x_j, y_j, r_j in neighbors:
dy = y_i - y_j
dx = np.sqrt(max((r_i + r_j) ** 2 - dy ** 2, 0)) * 1.05
cl, cr = (x_j - dx, y_i, r_i), (x_j + dx, y_i, r_i)
if left_first:
new_candidates = [cl, cr]
else:
new_candidates = [cr, cl]
candidates.extend(new_candidates)
left_first = not left_first
return np.array(candidates)
|
Return a list of coordinates that might be valid by adjusting x.
|
position_candidates
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def first_non_overlapping_candidate(self, candidates, neighbors):
"""Find the first candidate that does not overlap with the swarm."""
# If we have no neighbors, all candidates are good.
if len(neighbors) == 0:
return candidates[0]
neighbors_x = neighbors[:, 0]
neighbors_y = neighbors[:, 1]
neighbors_r = neighbors[:, 2]
for xyr_i in candidates:
x_i, y_i, r_i = xyr_i
dx = neighbors_x - x_i
dy = neighbors_y - y_i
sq_distances = np.square(dx) + np.square(dy)
sep_needed = np.square(neighbors_r + r_i)
# Good candidate does not overlap any of neighbors which means that
# squared distance between candidate and any of the neighbors has
# to be at least square of the summed radii
good_candidate = np.all(sq_distances >= sep_needed)
if good_candidate:
return xyr_i
raise RuntimeError(
"No non-overlapping candidates found. This should not happen."
)
|
Find the first candidate that does not overlap with the swarm.
|
first_non_overlapping_candidate
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def add_gutters(self, points, center, trans_fwd, trans_inv):
"""Stop points from extending beyond their territory."""
half_width = self.width / 2
low_gutter = trans_inv(trans_fwd(center) - half_width)
off_low = points < low_gutter
if off_low.any():
points[off_low] = low_gutter
high_gutter = trans_inv(trans_fwd(center) + half_width)
off_high = points > high_gutter
if off_high.any():
points[off_high] = high_gutter
gutter_prop = (off_high + off_low).sum() / len(points)
if gutter_prop > self.warn_thresh:
msg = (
"{:.1%} of the points cannot be placed; you may want "
"to decrease the size of the markers or use stripplot."
).format(gutter_prop)
warnings.warn(msg, UserWarning)
return points
|
Stop points from extending beyond their territory.
|
add_gutters
|
python
|
mwaskom/seaborn
|
seaborn/categorical.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/categorical.py
|
BSD-3-Clause
|
def univariate(self):
"""Return True if only x or y are used."""
# TODO this could go down to core, but putting it here now.
# We'd want to be conceptually clear that univariate only applies
# to x/y and not to other semantics, which can exist.
# We haven't settled on a good conceptual name for x/y.
return bool({"x", "y"} - set(self.variables))
|
Return True if only x or y are used.
|
univariate
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def data_variable(self):
"""Return the variable with data for univariate plots."""
# TODO This could also be in core, but it should have a better name.
if not self.univariate:
raise AttributeError("This is not a univariate plot")
return {"x", "y"}.intersection(self.variables).pop()
|
Return the variable with data for univariate plots.
|
data_variable
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def has_xy_data(self):
"""Return True at least one of x or y is defined."""
# TODO see above points about where this should go
return bool({"x", "y"} & set(self.variables))
|
Return True at least one of x or y is defined.
|
has_xy_data
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _add_legend(
self,
ax_obj, artist, fill, element, multiple, alpha, artist_kws, legend_kws,
):
"""Add artists that reflect semantic mappings and put then in a legend."""
# TODO note that this doesn't handle numeric mappings like the relational plots
handles = []
labels = []
for level in self._hue_map.levels:
color = self._hue_map(level)
kws = self._artist_kws(
artist_kws, fill, element, multiple, color, alpha
)
# color gets added to the kws to workaround an issue with barplot's color
# cycle integration but it causes problems in this context where we are
# setting artist properties directly, so pop it off here
if "facecolor" in kws:
kws.pop("color", None)
handles.append(artist(**kws))
labels.append(level)
if isinstance(ax_obj, mpl.axes.Axes):
ax_obj.legend(handles, labels, title=self.variables["hue"], **legend_kws)
else: # i.e. a FacetGrid. TODO make this better
legend_data = dict(zip(labels, handles))
ax_obj.add_legend(
legend_data,
title=self.variables["hue"],
label_order=self.var_levels["hue"],
**legend_kws
)
|
Add artists that reflect semantic mappings and put then in a legend.
|
_add_legend
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _artist_kws(self, kws, fill, element, multiple, color, alpha):
"""Handle differences between artists in filled/unfilled plots."""
kws = kws.copy()
if fill:
kws = normalize_kwargs(kws, mpl.collections.PolyCollection)
kws.setdefault("facecolor", to_rgba(color, alpha))
if element == "bars":
# Make bar() interface with property cycle correctly
# https://github.com/matplotlib/matplotlib/issues/19385
kws["color"] = "none"
if multiple in ["stack", "fill"] or element == "bars":
kws.setdefault("edgecolor", mpl.rcParams["patch.edgecolor"])
else:
kws.setdefault("edgecolor", to_rgba(color, 1))
elif element == "bars":
kws["facecolor"] = "none"
kws["edgecolor"] = to_rgba(color, alpha)
else:
kws["color"] = to_rgba(color, alpha)
return kws
|
Handle differences between artists in filled/unfilled plots.
|
_artist_kws
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _quantile_to_level(self, data, quantile):
"""Return data levels corresponding to quantile cuts of mass."""
isoprop = np.asarray(quantile)
values = np.ravel(data)
sorted_values = np.sort(values)[::-1]
normalized_values = np.cumsum(sorted_values) / values.sum()
idx = np.searchsorted(normalized_values, 1 - isoprop)
levels = np.take(sorted_values, idx, mode="clip")
return levels
|
Return data levels corresponding to quantile cuts of mass.
|
_quantile_to_level
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _cmap_from_color(self, color):
"""Return a sequential colormap given a color seed."""
# Like so much else here, this is broadly useful, but keeping it
# in this class to signify that I haven't thought overly hard about it...
r, g, b, _ = to_rgba(color)
h, s, _ = husl.rgb_to_husl(r, g, b)
xx = np.linspace(-1, 1, int(1.15 * 256))[:256]
ramp = np.zeros((256, 3))
ramp[:, 0] = h
ramp[:, 1] = s * np.cos(xx)
ramp[:, 2] = np.linspace(35, 80, 256)
colors = np.clip([husl.husl_to_rgb(*hsl) for hsl in ramp], 0, 1)
return mpl.colors.ListedColormap(colors[::-1])
|
Return a sequential colormap given a color seed.
|
_cmap_from_color
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _default_discrete(self):
"""Find default values for discrete hist estimation based on variable type."""
if self.univariate:
discrete = self.var_types[self.data_variable] == "categorical"
else:
discrete_x = self.var_types["x"] == "categorical"
discrete_y = self.var_types["y"] == "categorical"
discrete = discrete_x, discrete_y
return discrete
|
Find default values for discrete hist estimation based on variable type.
|
_default_discrete
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _resolve_multiple(self, curves, multiple):
"""Modify the density data structure to handle multiple densities."""
# Default baselines have all densities starting at 0
baselines = {k: np.zeros_like(v) for k, v in curves.items()}
# TODO we should have some central clearinghouse for checking if any
# "grouping" (terminnology?) semantics have been assigned
if "hue" not in self.variables:
return curves, baselines
if multiple in ("stack", "fill"):
# Setting stack or fill means that the curves share a
# support grid / set of bin edges, so we can make a dataframe
# Reverse the column order to plot from top to bottom
curves = pd.DataFrame(curves).iloc[:, ::-1]
# Find column groups that are nested within col/row variables
column_groups = {}
for i, keyd in enumerate(map(dict, curves.columns)):
facet_key = keyd.get("col", None), keyd.get("row", None)
column_groups.setdefault(facet_key, [])
column_groups[facet_key].append(i)
baselines = curves.copy()
for col_idxs in column_groups.values():
cols = curves.columns[col_idxs]
norm_constant = curves[cols].sum(axis="columns")
# Take the cumulative sum to stack
curves[cols] = curves[cols].cumsum(axis="columns")
# Normalize by row sum to fill
if multiple == "fill":
curves[cols] = curves[cols].div(norm_constant, axis="index")
# Define where each segment starts
baselines[cols] = curves[cols].shift(1, axis=1).fillna(0)
if multiple == "dodge":
# Account for the unique semantic (non-faceting) levels
# This will require rethiniking if we add other semantics!
hue_levels = self.var_levels["hue"]
n = len(hue_levels)
f_fwd, f_inv = self._get_scale_transforms(self.data_variable)
for key in curves:
level = dict(key)["hue"]
hist = curves[key].reset_index(name="heights")
level_idx = hue_levels.index(level)
a = f_fwd(hist["edges"])
b = f_fwd(hist["edges"] + hist["widths"])
w = (b - a) / n
new_min = f_inv(a + level_idx * w)
new_max = f_inv(a + (level_idx + 1) * w)
hist["widths"] = new_max - new_min
hist["edges"] = new_min
curves[key] = hist.set_index(["edges", "widths"])["heights"]
return curves, baselines
|
Modify the density data structure to handle multiple densities.
|
_resolve_multiple
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _freedman_diaconis_bins(a):
"""Calculate number of hist bins using Freedman-Diaconis rule."""
# From https://stats.stackexchange.com/questions/798/
a = np.asarray(a)
if len(a) < 2:
return 1
iqr = np.subtract.reduce(np.nanpercentile(a, [75, 25]))
h = 2 * iqr / (len(a) ** (1 / 3))
# fall back to sqrt(a) bins if iqr is 0
if h == 0:
return int(np.sqrt(a.size))
else:
return int(np.ceil((a.max() - a.min()) / h))
|
Calculate number of hist bins using Freedman-Diaconis rule.
|
_freedman_diaconis_bins
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def distplot(a=None, bins=None, hist=True, kde=True, rug=False, fit=None,
hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None,
color=None, vertical=False, norm_hist=False, axlabel=None,
label=None, ax=None, x=None):
"""
DEPRECATED
This function has been deprecated and will be removed in seaborn v0.14.0.
It has been replaced by :func:`histplot` and :func:`displot`, two functions
with a modern API and many more capabilities.
For a guide to updating, please see this notebook:
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
"""
if kde and not hist:
axes_level_suggestion = (
"`kdeplot` (an axes-level function for kernel density plots)"
)
else:
axes_level_suggestion = (
"`histplot` (an axes-level function for histograms)"
)
msg = textwrap.dedent(f"""
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or {axes_level_suggestion}.
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
""")
warnings.warn(msg, UserWarning, stacklevel=2)
if ax is None:
ax = plt.gca()
# Intelligently label the support axis
label_ax = bool(axlabel)
if axlabel is None and hasattr(a, "name"):
axlabel = a.name
if axlabel is not None:
label_ax = True
# Support new-style API
if x is not None:
a = x
# Make a a 1-d float array
a = np.asarray(a, float)
if a.ndim > 1:
a = a.squeeze()
# Drop null values from array
a = remove_na(a)
# Decide if the hist is normed
norm_hist = norm_hist or kde or (fit is not None)
# Handle dictionary defaults
hist_kws = {} if hist_kws is None else hist_kws.copy()
kde_kws = {} if kde_kws is None else kde_kws.copy()
rug_kws = {} if rug_kws is None else rug_kws.copy()
fit_kws = {} if fit_kws is None else fit_kws.copy()
# Get the color from the current color cycle
if color is None:
if vertical:
line, = ax.plot(0, a.mean())
else:
line, = ax.plot(a.mean(), 0)
color = line.get_color()
line.remove()
# Plug the label into the right kwarg dictionary
if label is not None:
if hist:
hist_kws["label"] = label
elif kde:
kde_kws["label"] = label
elif rug:
rug_kws["label"] = label
elif fit:
fit_kws["label"] = label
if hist:
if bins is None:
bins = min(_freedman_diaconis_bins(a), 50)
hist_kws.setdefault("alpha", 0.4)
hist_kws.setdefault("density", norm_hist)
orientation = "horizontal" if vertical else "vertical"
hist_color = hist_kws.pop("color", color)
ax.hist(a, bins, orientation=orientation,
color=hist_color, **hist_kws)
if hist_color != color:
hist_kws["color"] = hist_color
axis = "y" if vertical else "x"
if kde:
kde_color = kde_kws.pop("color", color)
kdeplot(**{axis: a}, ax=ax, color=kde_color, **kde_kws)
if kde_color != color:
kde_kws["color"] = kde_color
if rug:
rug_color = rug_kws.pop("color", color)
rugplot(**{axis: a}, ax=ax, color=rug_color, **rug_kws)
if rug_color != color:
rug_kws["color"] = rug_color
if fit is not None:
def pdf(x):
return fit.pdf(x, *params)
fit_color = fit_kws.pop("color", "#282828")
gridsize = fit_kws.pop("gridsize", 200)
cut = fit_kws.pop("cut", 3)
clip = fit_kws.pop("clip", (-np.inf, np.inf))
bw = gaussian_kde(a).scotts_factor() * a.std(ddof=1)
x = _kde_support(a, bw, gridsize, cut, clip)
params = fit.fit(a)
y = pdf(x)
if vertical:
x, y = y, x
ax.plot(x, y, color=fit_color, **fit_kws)
if fit_color != "#282828":
fit_kws["color"] = fit_color
if label_ax:
if vertical:
ax.set_ylabel(axlabel)
else:
ax.set_xlabel(axlabel)
return ax
|
DEPRECATED
This function has been deprecated and will be removed in seaborn v0.14.0.
It has been replaced by :func:`histplot` and :func:`displot`, two functions
with a modern API and many more capabilities.
For a guide to updating, please see this notebook:
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
|
distplot
|
python
|
mwaskom/seaborn
|
seaborn/distributions.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py
|
BSD-3-Clause
|
def _index_to_label(index):
"""Convert a pandas index or multiindex to an axis label."""
if isinstance(index, pd.MultiIndex):
return "-".join(map(to_utf8, index.names))
else:
return index.name
|
Convert a pandas index or multiindex to an axis label.
|
_index_to_label
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _index_to_ticklabels(index):
"""Convert a pandas index or multiindex into ticklabels."""
if isinstance(index, pd.MultiIndex):
return ["-".join(map(to_utf8, i)) for i in index.values]
else:
return index.values
|
Convert a pandas index or multiindex into ticklabels.
|
_index_to_ticklabels
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _convert_colors(colors):
"""Convert either a list of colors or nested lists of colors to RGB."""
to_rgb = mpl.colors.to_rgb
try:
to_rgb(colors[0])
# If this works, there is only one level of colors
return list(map(to_rgb, colors))
except ValueError:
# If we get here, we have nested lists
return [list(map(to_rgb, color_list)) for color_list in colors]
|
Convert either a list of colors or nested lists of colors to RGB.
|
_convert_colors
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _matrix_mask(data, mask):
"""Ensure that data and mask are compatible and add missing values.
Values will be plotted for cells where ``mask`` is ``False``.
``data`` is expected to be a DataFrame; ``mask`` can be an array or
a DataFrame.
"""
if mask is None:
mask = np.zeros(data.shape, bool)
if isinstance(mask, pd.DataFrame):
# For DataFrame masks, ensure that semantic labels match data
if not mask.index.equals(data.index) \
and mask.columns.equals(data.columns):
err = "Mask must have the same index and columns as data."
raise ValueError(err)
elif hasattr(mask, "__array__"):
mask = np.asarray(mask)
# For array masks, ensure that shape matches data then convert
if mask.shape != data.shape:
raise ValueError("Mask must have the same shape as data.")
mask = pd.DataFrame(mask,
index=data.index,
columns=data.columns,
dtype=bool)
# Add any cells with missing data to the mask
# This works around an issue where `plt.pcolormesh` doesn't represent
# missing data properly
mask = mask | pd.isnull(data)
return mask
|
Ensure that data and mask are compatible and add missing values.
Values will be plotted for cells where ``mask`` is ``False``.
``data`` is expected to be a DataFrame; ``mask`` can be an array or
a DataFrame.
|
_matrix_mask
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _determine_cmap_params(self, plot_data, vmin, vmax,
cmap, center, robust):
"""Use some heuristics to set good defaults for colorbar and range."""
# plot_data is a np.ma.array instance
calc_data = plot_data.astype(float).filled(np.nan)
if vmin is None:
if robust:
vmin = np.nanpercentile(calc_data, 2)
else:
vmin = np.nanmin(calc_data)
if vmax is None:
if robust:
vmax = np.nanpercentile(calc_data, 98)
else:
vmax = np.nanmax(calc_data)
self.vmin, self.vmax = vmin, vmax
# Choose default colormaps if not provided
if cmap is None:
if center is None:
self.cmap = cm.rocket
else:
self.cmap = cm.icefire
elif isinstance(cmap, str):
self.cmap = get_colormap(cmap)
elif isinstance(cmap, list):
self.cmap = mpl.colors.ListedColormap(cmap)
else:
self.cmap = cmap
# Recenter a divergent colormap
if center is not None:
# Copy bad values
# in mpl<3.2 only masked values are honored with "bad" color spec
# (see https://github.com/matplotlib/matplotlib/pull/14257)
bad = self.cmap(np.ma.masked_invalid([np.nan]))[0]
# under/over values are set for sure when cmap extremes
# do not map to the same color as +-inf
under = self.cmap(-np.inf)
over = self.cmap(np.inf)
under_set = under != self.cmap(0)
over_set = over != self.cmap(self.cmap.N - 1)
vrange = max(vmax - center, center - vmin)
normlize = mpl.colors.Normalize(center - vrange, center + vrange)
cmin, cmax = normlize([vmin, vmax])
cc = np.linspace(cmin, cmax, 256)
self.cmap = mpl.colors.ListedColormap(self.cmap(cc))
self.cmap.set_bad(bad)
if under_set:
self.cmap.set_under(under)
if over_set:
self.cmap.set_over(over)
|
Use some heuristics to set good defaults for colorbar and range.
|
_determine_cmap_params
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _annotate_heatmap(self, ax, mesh):
"""Add textual labels with the value in each cell."""
mesh.update_scalarmappable()
height, width = self.annot_data.shape
xpos, ypos = np.meshgrid(np.arange(width) + .5, np.arange(height) + .5)
for x, y, m, color, val in zip(xpos.flat, ypos.flat,
mesh.get_array().flat, mesh.get_facecolors(),
self.annot_data.flat):
if m is not np.ma.masked:
lum = relative_luminance(color)
text_color = ".15" if lum > .408 else "w"
annotation = ("{:" + self.fmt + "}").format(val)
text_kwargs = dict(color=text_color, ha="center", va="center")
text_kwargs.update(self.annot_kws)
ax.text(x, y, annotation, **text_kwargs)
|
Add textual labels with the value in each cell.
|
_annotate_heatmap
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _skip_ticks(self, labels, tickevery):
"""Return ticks and labels at evenly spaced intervals."""
n = len(labels)
if tickevery == 0:
ticks, labels = [], []
elif tickevery == 1:
ticks, labels = np.arange(n) + .5, labels
else:
start, end, step = 0, n, tickevery
ticks = np.arange(start, end, step) + .5
labels = labels[start:end:step]
return ticks, labels
|
Return ticks and labels at evenly spaced intervals.
|
_skip_ticks
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _auto_ticks(self, ax, labels, axis):
"""Determine ticks and ticklabels that minimize overlap."""
transform = ax.figure.dpi_scale_trans.inverted()
bbox = ax.get_window_extent().transformed(transform)
size = [bbox.width, bbox.height][axis]
axis = [ax.xaxis, ax.yaxis][axis]
tick, = axis.set_ticks([0])
fontsize = tick.label1.get_size()
max_ticks = int(size // (fontsize / 72))
if max_ticks < 1:
return [], []
tick_every = len(labels) // max_ticks + 1
tick_every = 1 if tick_every == 0 else tick_every
ticks, labels = self._skip_ticks(labels, tick_every)
return ticks, labels
|
Determine ticks and ticklabels that minimize overlap.
|
_auto_ticks
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def plot(self, ax, cax, kws):
"""Draw the heatmap on the provided Axes."""
# Remove all the Axes spines
despine(ax=ax, left=True, bottom=True)
# setting vmin/vmax in addition to norm is deprecated
# so avoid setting if norm is set
if kws.get("norm") is None:
kws.setdefault("vmin", self.vmin)
kws.setdefault("vmax", self.vmax)
# Draw the heatmap
mesh = ax.pcolormesh(self.plot_data, cmap=self.cmap, **kws)
# Set the axis limits
ax.set(xlim=(0, self.data.shape[1]), ylim=(0, self.data.shape[0]))
# Invert the y axis to show the plot in matrix form
ax.invert_yaxis()
# Possibly add a colorbar
if self.cbar:
cb = ax.figure.colorbar(mesh, cax, ax, **self.cbar_kws)
cb.outline.set_linewidth(0)
# If rasterized is passed to pcolormesh, also rasterize the
# colorbar to avoid white lines on the PDF rendering
if kws.get('rasterized', False):
cb.solids.set_rasterized(True)
# Add row and column labels
if isinstance(self.xticks, str) and self.xticks == "auto":
xticks, xticklabels = self._auto_ticks(ax, self.xticklabels, 0)
else:
xticks, xticklabels = self.xticks, self.xticklabels
if isinstance(self.yticks, str) and self.yticks == "auto":
yticks, yticklabels = self._auto_ticks(ax, self.yticklabels, 1)
else:
yticks, yticklabels = self.yticks, self.yticklabels
ax.set(xticks=xticks, yticks=yticks)
xtl = ax.set_xticklabels(xticklabels)
ytl = ax.set_yticklabels(yticklabels, rotation="vertical")
plt.setp(ytl, va="center") # GH2484
# Possibly rotate them if they overlap
_draw_figure(ax.figure)
if axis_ticklabels_overlap(xtl):
plt.setp(xtl, rotation="vertical")
if axis_ticklabels_overlap(ytl):
plt.setp(ytl, rotation="horizontal")
# Add the axis labels
ax.set(xlabel=self.xlabel, ylabel=self.ylabel)
# Annotate the cells with the formatted values
if self.annot:
self._annotate_heatmap(ax, mesh)
|
Draw the heatmap on the provided Axes.
|
plot
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def heatmap(
data, *,
vmin=None, vmax=None, cmap=None, center=None, robust=False,
annot=None, fmt=".2g", annot_kws=None,
linewidths=0, linecolor="white",
cbar=True, cbar_kws=None, cbar_ax=None,
square=False, xticklabels="auto", yticklabels="auto",
mask=None, ax=None,
**kwargs
):
"""Plot rectangular data as a color-encoded matrix.
This is an Axes-level function and will draw the heatmap into the
currently-active Axes if none is provided to the ``ax`` argument. Part of
this Axes space will be taken and used to plot a colormap, unless ``cbar``
is False or a separate Axes is provided to ``cbar_ax``.
Parameters
----------
data : rectangular dataset
2D dataset that can be coerced into an ndarray. If a Pandas DataFrame
is provided, the index/column information will be used to label the
columns and rows.
vmin, vmax : floats, optional
Values to anchor the colormap, otherwise they are inferred from the
data and other keyword arguments.
cmap : matplotlib colormap name or object, or list of colors, optional
The mapping from data values to color space. If not provided, the
default will depend on whether ``center`` is set.
center : float, optional
The value at which to center the colormap when plotting divergent data.
Using this parameter will change the default ``cmap`` if none is
specified.
robust : bool, optional
If True and ``vmin`` or ``vmax`` are absent, the colormap range is
computed with robust quantiles instead of the extreme values.
annot : bool or rectangular dataset, optional
If True, write the data value in each cell. If an array-like with the
same shape as ``data``, then use this to annotate the heatmap instead
of the data. Note that DataFrames will match on position, not index.
fmt : str, optional
String formatting code to use when adding annotations.
annot_kws : dict of key, value mappings, optional
Keyword arguments for :meth:`matplotlib.axes.Axes.text` when ``annot``
is True.
linewidths : float, optional
Width of the lines that will divide each cell.
linecolor : color, optional
Color of the lines that will divide each cell.
cbar : bool, optional
Whether to draw a colorbar.
cbar_kws : dict of key, value mappings, optional
Keyword arguments for :meth:`matplotlib.figure.Figure.colorbar`.
cbar_ax : matplotlib Axes, optional
Axes in which to draw the colorbar, otherwise take space from the
main Axes.
square : bool, optional
If True, set the Axes aspect to "equal" so each cell will be
square-shaped.
xticklabels, yticklabels : "auto", bool, list-like, or int, optional
If True, plot the column names of the dataframe. If False, don't plot
the column names. If list-like, plot these alternate labels as the
xticklabels. If an integer, use the column names but plot only every
n label. If "auto", try to densely plot non-overlapping labels.
mask : bool array or DataFrame, optional
If passed, data will not be shown in cells where ``mask`` is True.
Cells with missing values are automatically masked.
ax : matplotlib Axes, optional
Axes in which to draw the plot, otherwise use the currently-active
Axes.
kwargs : other keyword arguments
All other keyword arguments are passed to
:meth:`matplotlib.axes.Axes.pcolormesh`.
Returns
-------
ax : matplotlib Axes
Axes object with the heatmap.
See Also
--------
clustermap : Plot a matrix using hierarchical clustering to arrange the
rows and columns.
Examples
--------
.. include:: ../docstrings/heatmap.rst
"""
# Initialize the plotter object
plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,
annot_kws, cbar, cbar_kws, xticklabels,
yticklabels, mask)
# Add the pcolormesh kwargs here
kwargs["linewidths"] = linewidths
kwargs["edgecolor"] = linecolor
# Draw the plot and return the Axes
if ax is None:
ax = plt.gca()
if square:
ax.set_aspect("equal")
plotter.plot(ax, cbar_ax, kwargs)
return ax
|
Plot rectangular data as a color-encoded matrix.
This is an Axes-level function and will draw the heatmap into the
currently-active Axes if none is provided to the ``ax`` argument. Part of
this Axes space will be taken and used to plot a colormap, unless ``cbar``
is False or a separate Axes is provided to ``cbar_ax``.
Parameters
----------
data : rectangular dataset
2D dataset that can be coerced into an ndarray. If a Pandas DataFrame
is provided, the index/column information will be used to label the
columns and rows.
vmin, vmax : floats, optional
Values to anchor the colormap, otherwise they are inferred from the
data and other keyword arguments.
cmap : matplotlib colormap name or object, or list of colors, optional
The mapping from data values to color space. If not provided, the
default will depend on whether ``center`` is set.
center : float, optional
The value at which to center the colormap when plotting divergent data.
Using this parameter will change the default ``cmap`` if none is
specified.
robust : bool, optional
If True and ``vmin`` or ``vmax`` are absent, the colormap range is
computed with robust quantiles instead of the extreme values.
annot : bool or rectangular dataset, optional
If True, write the data value in each cell. If an array-like with the
same shape as ``data``, then use this to annotate the heatmap instead
of the data. Note that DataFrames will match on position, not index.
fmt : str, optional
String formatting code to use when adding annotations.
annot_kws : dict of key, value mappings, optional
Keyword arguments for :meth:`matplotlib.axes.Axes.text` when ``annot``
is True.
linewidths : float, optional
Width of the lines that will divide each cell.
linecolor : color, optional
Color of the lines that will divide each cell.
cbar : bool, optional
Whether to draw a colorbar.
cbar_kws : dict of key, value mappings, optional
Keyword arguments for :meth:`matplotlib.figure.Figure.colorbar`.
cbar_ax : matplotlib Axes, optional
Axes in which to draw the colorbar, otherwise take space from the
main Axes.
square : bool, optional
If True, set the Axes aspect to "equal" so each cell will be
square-shaped.
xticklabels, yticklabels : "auto", bool, list-like, or int, optional
If True, plot the column names of the dataframe. If False, don't plot
the column names. If list-like, plot these alternate labels as the
xticklabels. If an integer, use the column names but plot only every
n label. If "auto", try to densely plot non-overlapping labels.
mask : bool array or DataFrame, optional
If passed, data will not be shown in cells where ``mask`` is True.
Cells with missing values are automatically masked.
ax : matplotlib Axes, optional
Axes in which to draw the plot, otherwise use the currently-active
Axes.
kwargs : other keyword arguments
All other keyword arguments are passed to
:meth:`matplotlib.axes.Axes.pcolormesh`.
Returns
-------
ax : matplotlib Axes
Axes object with the heatmap.
See Also
--------
clustermap : Plot a matrix using hierarchical clustering to arrange the
rows and columns.
Examples
--------
.. include:: ../docstrings/heatmap.rst
|
heatmap
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def __init__(self, data, linkage, metric, method, axis, label, rotate):
"""Plot a dendrogram of the relationships between the columns of data
Parameters
----------
data : pandas.DataFrame
Rectangular data
"""
self.axis = axis
if self.axis == 1:
data = data.T
if isinstance(data, pd.DataFrame):
array = data.values
else:
array = np.asarray(data)
data = pd.DataFrame(array)
self.array = array
self.data = data
self.shape = self.data.shape
self.metric = metric
self.method = method
self.axis = axis
self.label = label
self.rotate = rotate
if linkage is None:
self.linkage = self.calculated_linkage
else:
self.linkage = linkage
self.dendrogram = self.calculate_dendrogram()
# Dendrogram ends are always at multiples of 5, who knows why
ticks = 10 * np.arange(self.data.shape[0]) + 5
if self.label:
ticklabels = _index_to_ticklabels(self.data.index)
ticklabels = [ticklabels[i] for i in self.reordered_ind]
if self.rotate:
self.xticks = []
self.yticks = ticks
self.xticklabels = []
self.yticklabels = ticklabels
self.ylabel = _index_to_label(self.data.index)
self.xlabel = ''
else:
self.xticks = ticks
self.yticks = []
self.xticklabels = ticklabels
self.yticklabels = []
self.ylabel = ''
self.xlabel = _index_to_label(self.data.index)
else:
self.xticks, self.yticks = [], []
self.yticklabels, self.xticklabels = [], []
self.xlabel, self.ylabel = '', ''
self.dependent_coord = self.dendrogram['dcoord']
self.independent_coord = self.dendrogram['icoord']
|
Plot a dendrogram of the relationships between the columns of data
Parameters
----------
data : pandas.DataFrame
Rectangular data
|
__init__
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def plot(self, ax, tree_kws):
"""Plots a dendrogram of the similarities between data on the axes
Parameters
----------
ax : matplotlib.axes.Axes
Axes object upon which the dendrogram is plotted
"""
tree_kws = {} if tree_kws is None else tree_kws.copy()
tree_kws.setdefault("linewidths", .5)
tree_kws.setdefault("colors", tree_kws.pop("color", (.2, .2, .2)))
if self.rotate and self.axis == 0:
coords = zip(self.dependent_coord, self.independent_coord)
else:
coords = zip(self.independent_coord, self.dependent_coord)
lines = LineCollection([list(zip(x, y)) for x, y in coords],
**tree_kws)
ax.add_collection(lines)
number_of_leaves = len(self.reordered_ind)
max_dependent_coord = max(map(max, self.dependent_coord))
if self.rotate:
ax.yaxis.set_ticks_position('right')
# Constants 10 and 1.05 come from
# `scipy.cluster.hierarchy._plot_dendrogram`
ax.set_ylim(0, number_of_leaves * 10)
ax.set_xlim(0, max_dependent_coord * 1.05)
ax.invert_xaxis()
ax.invert_yaxis()
else:
# Constants 10 and 1.05 come from
# `scipy.cluster.hierarchy._plot_dendrogram`
ax.set_xlim(0, number_of_leaves * 10)
ax.set_ylim(0, max_dependent_coord * 1.05)
despine(ax=ax, bottom=True, left=True)
ax.set(xticks=self.xticks, yticks=self.yticks,
xlabel=self.xlabel, ylabel=self.ylabel)
xtl = ax.set_xticklabels(self.xticklabels)
ytl = ax.set_yticklabels(self.yticklabels, rotation='vertical')
# Force a draw of the plot to avoid matplotlib window error
_draw_figure(ax.figure)
if len(ytl) > 0 and axis_ticklabels_overlap(ytl):
plt.setp(ytl, rotation="horizontal")
if len(xtl) > 0 and axis_ticklabels_overlap(xtl):
plt.setp(xtl, rotation="vertical")
return self
|
Plots a dendrogram of the similarities between data on the axes
Parameters
----------
ax : matplotlib.axes.Axes
Axes object upon which the dendrogram is plotted
|
plot
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def dendrogram(
data, *,
linkage=None, axis=1, label=True, metric='euclidean',
method='average', rotate=False, tree_kws=None, ax=None
):
"""Draw a tree diagram of relationships within a matrix
Parameters
----------
data : pandas.DataFrame
Rectangular data
linkage : numpy.array, optional
Linkage matrix
axis : int, optional
Which axis to use to calculate linkage. 0 is rows, 1 is columns.
label : bool, optional
If True, label the dendrogram at leaves with column or row names
metric : str, optional
Distance metric. Anything valid for scipy.spatial.distance.pdist
method : str, optional
Linkage method to use. Anything valid for
scipy.cluster.hierarchy.linkage
rotate : bool, optional
When plotting the matrix, whether to rotate it 90 degrees
counter-clockwise, so the leaves face right
tree_kws : dict, optional
Keyword arguments for the ``matplotlib.collections.LineCollection``
that is used for plotting the lines of the dendrogram tree.
ax : matplotlib axis, optional
Axis to plot on, otherwise uses current axis
Returns
-------
dendrogramplotter : _DendrogramPlotter
A Dendrogram plotter object.
Notes
-----
Access the reordered dendrogram indices with
dendrogramplotter.reordered_ind
"""
if _no_scipy:
raise RuntimeError("dendrogram requires scipy to be installed")
plotter = _DendrogramPlotter(data, linkage=linkage, axis=axis,
metric=metric, method=method,
label=label, rotate=rotate)
if ax is None:
ax = plt.gca()
return plotter.plot(ax=ax, tree_kws=tree_kws)
|
Draw a tree diagram of relationships within a matrix
Parameters
----------
data : pandas.DataFrame
Rectangular data
linkage : numpy.array, optional
Linkage matrix
axis : int, optional
Which axis to use to calculate linkage. 0 is rows, 1 is columns.
label : bool, optional
If True, label the dendrogram at leaves with column or row names
metric : str, optional
Distance metric. Anything valid for scipy.spatial.distance.pdist
method : str, optional
Linkage method to use. Anything valid for
scipy.cluster.hierarchy.linkage
rotate : bool, optional
When plotting the matrix, whether to rotate it 90 degrees
counter-clockwise, so the leaves face right
tree_kws : dict, optional
Keyword arguments for the ``matplotlib.collections.LineCollection``
that is used for plotting the lines of the dendrogram tree.
ax : matplotlib axis, optional
Axis to plot on, otherwise uses current axis
Returns
-------
dendrogramplotter : _DendrogramPlotter
A Dendrogram plotter object.
Notes
-----
Access the reordered dendrogram indices with
dendrogramplotter.reordered_ind
|
dendrogram
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def __init__(self, data, pivot_kws=None, z_score=None, standard_scale=None,
figsize=None, row_colors=None, col_colors=None, mask=None,
dendrogram_ratio=None, colors_ratio=None, cbar_pos=None):
"""Grid object for organizing clustered heatmap input on to axes"""
if _no_scipy:
raise RuntimeError("ClusterGrid requires scipy to be available")
if isinstance(data, pd.DataFrame):
self.data = data
else:
self.data = pd.DataFrame(data)
self.data2d = self.format_data(self.data, pivot_kws, z_score,
standard_scale)
self.mask = _matrix_mask(self.data2d, mask)
self._figure = plt.figure(figsize=figsize)
self.row_colors, self.row_color_labels = \
self._preprocess_colors(data, row_colors, axis=0)
self.col_colors, self.col_color_labels = \
self._preprocess_colors(data, col_colors, axis=1)
try:
row_dendrogram_ratio, col_dendrogram_ratio = dendrogram_ratio
except TypeError:
row_dendrogram_ratio = col_dendrogram_ratio = dendrogram_ratio
try:
row_colors_ratio, col_colors_ratio = colors_ratio
except TypeError:
row_colors_ratio = col_colors_ratio = colors_ratio
width_ratios = self.dim_ratios(self.row_colors,
row_dendrogram_ratio,
row_colors_ratio)
height_ratios = self.dim_ratios(self.col_colors,
col_dendrogram_ratio,
col_colors_ratio)
nrows = 2 if self.col_colors is None else 3
ncols = 2 if self.row_colors is None else 3
self.gs = gridspec.GridSpec(nrows, ncols,
width_ratios=width_ratios,
height_ratios=height_ratios)
self.ax_row_dendrogram = self._figure.add_subplot(self.gs[-1, 0])
self.ax_col_dendrogram = self._figure.add_subplot(self.gs[0, -1])
self.ax_row_dendrogram.set_axis_off()
self.ax_col_dendrogram.set_axis_off()
self.ax_row_colors = None
self.ax_col_colors = None
if self.row_colors is not None:
self.ax_row_colors = self._figure.add_subplot(
self.gs[-1, 1])
if self.col_colors is not None:
self.ax_col_colors = self._figure.add_subplot(
self.gs[1, -1])
self.ax_heatmap = self._figure.add_subplot(self.gs[-1, -1])
if cbar_pos is None:
self.ax_cbar = self.cax = None
else:
# Initialize the colorbar axes in the gridspec so that tight_layout
# works. We will move it where it belongs later. This is a hack.
self.ax_cbar = self._figure.add_subplot(self.gs[0, 0])
self.cax = self.ax_cbar # Backwards compatibility
self.cbar_pos = cbar_pos
self.dendrogram_row = None
self.dendrogram_col = None
|
Grid object for organizing clustered heatmap input on to axes
|
__init__
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def _preprocess_colors(self, data, colors, axis):
"""Preprocess {row/col}_colors to extract labels and convert colors."""
labels = None
if colors is not None:
if isinstance(colors, (pd.DataFrame, pd.Series)):
# If data is unindexed, raise
if (not hasattr(data, "index") and axis == 0) or (
not hasattr(data, "columns") and axis == 1
):
axis_name = "col" if axis else "row"
msg = (f"{axis_name}_colors indices can't be matched with data "
f"indices. Provide {axis_name}_colors as a non-indexed "
"datatype, e.g. by using `.to_numpy()``")
raise TypeError(msg)
# Ensure colors match data indices
if axis == 0:
colors = colors.reindex(data.index)
else:
colors = colors.reindex(data.columns)
# Replace na's with white color
# TODO We should set these to transparent instead
colors = colors.astype(object).fillna('white')
# Extract color values and labels from frame/series
if isinstance(colors, pd.DataFrame):
labels = list(colors.columns)
colors = colors.T.values
else:
if colors.name is None:
labels = [""]
else:
labels = [colors.name]
colors = colors.values
colors = _convert_colors(colors)
return colors, labels
|
Preprocess {row/col}_colors to extract labels and convert colors.
|
_preprocess_colors
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def format_data(self, data, pivot_kws, z_score=None,
standard_scale=None):
"""Extract variables from data or use directly."""
# Either the data is already in 2d matrix format, or need to do a pivot
if pivot_kws is not None:
data2d = data.pivot(**pivot_kws)
else:
data2d = data
if z_score is not None and standard_scale is not None:
raise ValueError(
'Cannot perform both z-scoring and standard-scaling on data')
if z_score is not None:
data2d = self.z_score(data2d, z_score)
if standard_scale is not None:
data2d = self.standard_scale(data2d, standard_scale)
return data2d
|
Extract variables from data or use directly.
|
format_data
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def z_score(data2d, axis=1):
"""Standarize the mean and variance of the data axis
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
normalized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
"""
if axis == 1:
z_scored = data2d
else:
z_scored = data2d.T
z_scored = (z_scored - z_scored.mean()) / z_scored.std()
if axis == 1:
return z_scored
else:
return z_scored.T
|
Standarize the mean and variance of the data axis
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
normalized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
|
z_score
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def standard_scale(data2d, axis=1):
"""Divide the data by the difference between the max and min
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
standardized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
"""
# Normalize these values to range from 0 to 1
if axis == 1:
standardized = data2d
else:
standardized = data2d.T
subtract = standardized.min()
standardized = (standardized - subtract) / (
standardized.max() - standardized.min())
if axis == 1:
return standardized
else:
return standardized.T
|
Divide the data by the difference between the max and min
Parameters
----------
data2d : pandas.DataFrame
Data to normalize
axis : int
Which axis to normalize across. If 0, normalize across rows, if 1,
normalize across columns.
Returns
-------
standardized : pandas.DataFrame
Noramlized data with a mean of 0 and variance of 1 across the
specified axis.
|
standard_scale
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def dim_ratios(self, colors, dendrogram_ratio, colors_ratio):
"""Get the proportions of the figure taken up by each axes."""
ratios = [dendrogram_ratio]
if colors is not None:
# Colors are encoded as rgb, so there is an extra dimension
if np.ndim(colors) > 2:
n_colors = len(colors)
else:
n_colors = 1
ratios += [n_colors * colors_ratio]
# Add the ratio for the heatmap itself
ratios.append(1 - sum(ratios))
return ratios
|
Get the proportions of the figure taken up by each axes.
|
dim_ratios
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def color_list_to_matrix_and_cmap(colors, ind, axis=0):
"""Turns a list of colors into a numpy matrix and matplotlib colormap
These arguments can now be plotted using heatmap(matrix, cmap)
and the provided colors will be plotted.
Parameters
----------
colors : list of matplotlib colors
Colors to label the rows or columns of a dataframe.
ind : list of ints
Ordering of the rows or columns, to reorder the original colors
by the clustered dendrogram order
axis : int
Which axis this is labeling
Returns
-------
matrix : numpy.array
A numpy array of integer values, where each indexes into the cmap
cmap : matplotlib.colors.ListedColormap
"""
try:
mpl.colors.to_rgb(colors[0])
except ValueError:
# We have a 2D color structure
m, n = len(colors), len(colors[0])
if not all(len(c) == n for c in colors[1:]):
raise ValueError("Multiple side color vectors must have same size")
else:
# We have one vector of colors
m, n = 1, len(colors)
colors = [colors]
# Map from unique colors to colormap index value
unique_colors = {}
matrix = np.zeros((m, n), int)
for i, inner in enumerate(colors):
for j, color in enumerate(inner):
idx = unique_colors.setdefault(color, len(unique_colors))
matrix[i, j] = idx
# Reorder for clustering and transpose for axis
matrix = matrix[:, ind]
if axis == 0:
matrix = matrix.T
cmap = mpl.colors.ListedColormap(list(unique_colors))
return matrix, cmap
|
Turns a list of colors into a numpy matrix and matplotlib colormap
These arguments can now be plotted using heatmap(matrix, cmap)
and the provided colors will be plotted.
Parameters
----------
colors : list of matplotlib colors
Colors to label the rows or columns of a dataframe.
ind : list of ints
Ordering of the rows or columns, to reorder the original colors
by the clustered dendrogram order
axis : int
Which axis this is labeling
Returns
-------
matrix : numpy.array
A numpy array of integer values, where each indexes into the cmap
cmap : matplotlib.colors.ListedColormap
|
color_list_to_matrix_and_cmap
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def plot_colors(self, xind, yind, **kws):
"""Plots color labels between the dendrogram and the heatmap
Parameters
----------
heatmap_kws : dict
Keyword arguments heatmap
"""
# Remove any custom colormap and centering
# TODO this code has consistently caused problems when we
# have missed kwargs that need to be excluded that it might
# be better to rewrite *in*clusively.
kws = kws.copy()
kws.pop('cmap', None)
kws.pop('norm', None)
kws.pop('center', None)
kws.pop('annot', None)
kws.pop('vmin', None)
kws.pop('vmax', None)
kws.pop('robust', None)
kws.pop('xticklabels', None)
kws.pop('yticklabels', None)
# Plot the row colors
if self.row_colors is not None:
matrix, cmap = self.color_list_to_matrix_and_cmap(
self.row_colors, yind, axis=0)
# Get row_color labels
if self.row_color_labels is not None:
row_color_labels = self.row_color_labels
else:
row_color_labels = False
heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_row_colors,
xticklabels=row_color_labels, yticklabels=False, **kws)
# Adjust rotation of labels
if row_color_labels is not False:
plt.setp(self.ax_row_colors.get_xticklabels(), rotation=90)
else:
despine(self.ax_row_colors, left=True, bottom=True)
# Plot the column colors
if self.col_colors is not None:
matrix, cmap = self.color_list_to_matrix_and_cmap(
self.col_colors, xind, axis=1)
# Get col_color labels
if self.col_color_labels is not None:
col_color_labels = self.col_color_labels
else:
col_color_labels = False
heatmap(matrix, cmap=cmap, cbar=False, ax=self.ax_col_colors,
xticklabels=False, yticklabels=col_color_labels, **kws)
# Adjust rotation of labels, place on right side
if col_color_labels is not False:
self.ax_col_colors.yaxis.tick_right()
plt.setp(self.ax_col_colors.get_yticklabels(), rotation=0)
else:
despine(self.ax_col_colors, left=True, bottom=True)
|
Plots color labels between the dendrogram and the heatmap
Parameters
----------
heatmap_kws : dict
Keyword arguments heatmap
|
plot_colors
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def clustermap(
data, *,
pivot_kws=None, method='average', metric='euclidean',
z_score=None, standard_scale=None, figsize=(10, 10),
cbar_kws=None, row_cluster=True, col_cluster=True,
row_linkage=None, col_linkage=None,
row_colors=None, col_colors=None, mask=None,
dendrogram_ratio=.2, colors_ratio=0.03,
cbar_pos=(.02, .8, .05, .18), tree_kws=None,
**kwargs
):
"""
Plot a matrix dataset as a hierarchically-clustered heatmap.
This function requires scipy to be available.
Parameters
----------
data : 2D array-like
Rectangular data for clustering. Cannot contain NAs.
pivot_kws : dict, optional
If `data` is a tidy dataframe, can provide keyword arguments for
pivot to create a rectangular dataframe.
method : str, optional
Linkage method to use for calculating clusters. See
:func:`scipy.cluster.hierarchy.linkage` documentation for more
information.
metric : str, optional
Distance metric to use for the data. See
:func:`scipy.spatial.distance.pdist` documentation for more options.
To use different metrics (or methods) for rows and columns, you may
construct each linkage matrix yourself and provide them as
`{row,col}_linkage`.
z_score : int or None, optional
Either 0 (rows) or 1 (columns). Whether or not to calculate z-scores
for the rows or the columns. Z scores are: z = (x - mean)/std, so
values in each row (column) will get the mean of the row (column)
subtracted, then divided by the standard deviation of the row (column).
This ensures that each row (column) has mean of 0 and variance of 1.
standard_scale : int or None, optional
Either 0 (rows) or 1 (columns). Whether or not to standardize that
dimension, meaning for each row or column, subtract the minimum and
divide each by its maximum.
figsize : tuple of (width, height), optional
Overall size of the figure.
cbar_kws : dict, optional
Keyword arguments to pass to `cbar_kws` in :func:`heatmap`, e.g. to
add a label to the colorbar.
{row,col}_cluster : bool, optional
If ``True``, cluster the {rows, columns}.
{row,col}_linkage : :class:`numpy.ndarray`, optional
Precomputed linkage matrix for the rows or columns. See
:func:`scipy.cluster.hierarchy.linkage` for specific formats.
{row,col}_colors : list-like or pandas DataFrame/Series, optional
List of colors to label for either the rows or columns. Useful to evaluate
whether samples within a group are clustered together. Can use nested lists or
DataFrame for multiple color levels of labeling. If given as a
:class:`pandas.DataFrame` or :class:`pandas.Series`, labels for the colors are
extracted from the DataFrames column names or from the name of the Series.
DataFrame/Series colors are also matched to the data by their index, ensuring
colors are drawn in the correct order.
mask : bool array or DataFrame, optional
If passed, data will not be shown in cells where `mask` is True.
Cells with missing values are automatically masked. Only used for
visualizing, not for calculating.
{dendrogram,colors}_ratio : float, or pair of floats, optional
Proportion of the figure size devoted to the two marginal elements. If
a pair is given, they correspond to (row, col) ratios.
cbar_pos : tuple of (left, bottom, width, height), optional
Position of the colorbar axes in the figure. Setting to ``None`` will
disable the colorbar.
tree_kws : dict, optional
Parameters for the :class:`matplotlib.collections.LineCollection`
that is used to plot the lines of the dendrogram tree.
kwargs : other keyword arguments
All other keyword arguments are passed to :func:`heatmap`.
Returns
-------
:class:`ClusterGrid`
A :class:`ClusterGrid` instance.
See Also
--------
heatmap : Plot rectangular data as a color-encoded matrix.
Notes
-----
The returned object has a ``savefig`` method that should be used if you
want to save the figure object without clipping the dendrograms.
To access the reordered row indices, use:
``clustergrid.dendrogram_row.reordered_ind``
Column indices, use:
``clustergrid.dendrogram_col.reordered_ind``
Examples
--------
.. include:: ../docstrings/clustermap.rst
"""
if _no_scipy:
raise RuntimeError("clustermap requires scipy to be available")
plotter = ClusterGrid(data, pivot_kws=pivot_kws, figsize=figsize,
row_colors=row_colors, col_colors=col_colors,
z_score=z_score, standard_scale=standard_scale,
mask=mask, dendrogram_ratio=dendrogram_ratio,
colors_ratio=colors_ratio, cbar_pos=cbar_pos)
return plotter.plot(metric=metric, method=method,
colorbar_kws=cbar_kws,
row_cluster=row_cluster, col_cluster=col_cluster,
row_linkage=row_linkage, col_linkage=col_linkage,
tree_kws=tree_kws, **kwargs)
|
Plot a matrix dataset as a hierarchically-clustered heatmap.
This function requires scipy to be available.
Parameters
----------
data : 2D array-like
Rectangular data for clustering. Cannot contain NAs.
pivot_kws : dict, optional
If `data` is a tidy dataframe, can provide keyword arguments for
pivot to create a rectangular dataframe.
method : str, optional
Linkage method to use for calculating clusters. See
:func:`scipy.cluster.hierarchy.linkage` documentation for more
information.
metric : str, optional
Distance metric to use for the data. See
:func:`scipy.spatial.distance.pdist` documentation for more options.
To use different metrics (or methods) for rows and columns, you may
construct each linkage matrix yourself and provide them as
`{row,col}_linkage`.
z_score : int or None, optional
Either 0 (rows) or 1 (columns). Whether or not to calculate z-scores
for the rows or the columns. Z scores are: z = (x - mean)/std, so
values in each row (column) will get the mean of the row (column)
subtracted, then divided by the standard deviation of the row (column).
This ensures that each row (column) has mean of 0 and variance of 1.
standard_scale : int or None, optional
Either 0 (rows) or 1 (columns). Whether or not to standardize that
dimension, meaning for each row or column, subtract the minimum and
divide each by its maximum.
figsize : tuple of (width, height), optional
Overall size of the figure.
cbar_kws : dict, optional
Keyword arguments to pass to `cbar_kws` in :func:`heatmap`, e.g. to
add a label to the colorbar.
{row,col}_cluster : bool, optional
If ``True``, cluster the {rows, columns}.
{row,col}_linkage : :class:`numpy.ndarray`, optional
Precomputed linkage matrix for the rows or columns. See
:func:`scipy.cluster.hierarchy.linkage` for specific formats.
{row,col}_colors : list-like or pandas DataFrame/Series, optional
List of colors to label for either the rows or columns. Useful to evaluate
whether samples within a group are clustered together. Can use nested lists or
DataFrame for multiple color levels of labeling. If given as a
:class:`pandas.DataFrame` or :class:`pandas.Series`, labels for the colors are
extracted from the DataFrames column names or from the name of the Series.
DataFrame/Series colors are also matched to the data by their index, ensuring
colors are drawn in the correct order.
mask : bool array or DataFrame, optional
If passed, data will not be shown in cells where `mask` is True.
Cells with missing values are automatically masked. Only used for
visualizing, not for calculating.
{dendrogram,colors}_ratio : float, or pair of floats, optional
Proportion of the figure size devoted to the two marginal elements. If
a pair is given, they correspond to (row, col) ratios.
cbar_pos : tuple of (left, bottom, width, height), optional
Position of the colorbar axes in the figure. Setting to ``None`` will
disable the colorbar.
tree_kws : dict, optional
Parameters for the :class:`matplotlib.collections.LineCollection`
that is used to plot the lines of the dendrogram tree.
kwargs : other keyword arguments
All other keyword arguments are passed to :func:`heatmap`.
Returns
-------
:class:`ClusterGrid`
A :class:`ClusterGrid` instance.
See Also
--------
heatmap : Plot rectangular data as a color-encoded matrix.
Notes
-----
The returned object has a ``savefig`` method that should be used if you
want to save the figure object without clipping the dendrograms.
To access the reordered row indices, use:
``clustergrid.dendrogram_row.reordered_ind``
Column indices, use:
``clustergrid.dendrogram_col.reordered_ind``
Examples
--------
.. include:: ../docstrings/clustermap.rst
|
clustermap
|
python
|
mwaskom/seaborn
|
seaborn/matrix.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/matrix.py
|
BSD-3-Clause
|
def palplot(pal, size=1):
"""Plot the values in a color palette as a horizontal array.
Parameters
----------
pal : sequence of matplotlib colors
colors, i.e. as returned by seaborn.color_palette()
size :
scaling factor for size of plot
"""
n = len(pal)
_, ax = plt.subplots(1, 1, figsize=(n * size, size))
ax.imshow(np.arange(n).reshape(1, n),
cmap=mpl.colors.ListedColormap(list(pal)),
interpolation="nearest", aspect="auto")
ax.set_xticks(np.arange(n) - .5)
ax.set_yticks([-.5, .5])
# Ensure nice border between colors
ax.set_xticklabels(["" for _ in range(n)])
# The proper way to set no ticks
ax.yaxis.set_major_locator(ticker.NullLocator())
|
Plot the values in a color palette as a horizontal array.
Parameters
----------
pal : sequence of matplotlib colors
colors, i.e. as returned by seaborn.color_palette()
size :
scaling factor for size of plot
|
palplot
|
python
|
mwaskom/seaborn
|
seaborn/miscplot.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/miscplot.py
|
BSD-3-Clause
|
def _repr_html_(self):
"""Rich display of the color palette in an HTML frontend."""
s = 55
n = len(self)
html = f'<svg width="{n * s}" height="{s}">'
for i, c in enumerate(self.as_hex()):
html += (
f'<rect x="{i * s}" y="0" width="{s}" height="{s}" style="fill:{c};'
'stroke-width:2;stroke:rgb(255,255,255)"/>'
)
html += '</svg>'
return html
|
Rich display of the color palette in an HTML frontend.
|
_repr_html_
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def _patch_colormap_display():
"""Simplify the rich display of matplotlib color maps in a notebook."""
def _repr_png_(self):
"""Generate a PNG representation of the Colormap."""
import io
from PIL import Image
import numpy as np
IMAGE_SIZE = (400, 50)
X = np.tile(np.linspace(0, 1, IMAGE_SIZE[0]), (IMAGE_SIZE[1], 1))
pixels = self(X, bytes=True)
png_bytes = io.BytesIO()
Image.fromarray(pixels).save(png_bytes, format='png')
return png_bytes.getvalue()
def _repr_html_(self):
"""Generate an HTML representation of the Colormap."""
import base64
png_bytes = self._repr_png_()
png_base64 = base64.b64encode(png_bytes).decode('ascii')
return ('<img '
+ 'alt="' + self.name + ' color map" '
+ 'title="' + self.name + '"'
+ 'src="data:image/png;base64,' + png_base64 + '">')
mpl.colors.Colormap._repr_png_ = _repr_png_
mpl.colors.Colormap._repr_html_ = _repr_html_
|
Simplify the rich display of matplotlib color maps in a notebook.
|
_patch_colormap_display
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def _repr_png_(self):
"""Generate a PNG representation of the Colormap."""
import io
from PIL import Image
import numpy as np
IMAGE_SIZE = (400, 50)
X = np.tile(np.linspace(0, 1, IMAGE_SIZE[0]), (IMAGE_SIZE[1], 1))
pixels = self(X, bytes=True)
png_bytes = io.BytesIO()
Image.fromarray(pixels).save(png_bytes, format='png')
return png_bytes.getvalue()
|
Generate a PNG representation of the Colormap.
|
_repr_png_
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def _repr_html_(self):
"""Generate an HTML representation of the Colormap."""
import base64
png_bytes = self._repr_png_()
png_base64 = base64.b64encode(png_bytes).decode('ascii')
return ('<img '
+ 'alt="' + self.name + ' color map" '
+ 'title="' + self.name + '"'
+ 'src="data:image/png;base64,' + png_base64 + '">')
|
Generate an HTML representation of the Colormap.
|
_repr_html_
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def color_palette(palette=None, n_colors=None, desat=None, as_cmap=False):
"""Return a list of colors or continuous colormap defining a palette.
Possible ``palette`` values include:
- Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind)
- Name of matplotlib colormap
- 'husl' or 'hls'
- 'ch:<cubehelix arguments>'
- 'light:<color>', 'dark:<color>', 'blend:<color>,<color>',
- A sequence of colors in any format matplotlib accepts
Calling this function with ``palette=None`` will return the current
matplotlib color cycle.
This function can also be used in a ``with`` statement to temporarily
set the color cycle for a plot or set of plots.
See the :ref:`tutorial <palette_tutorial>` for more information.
Parameters
----------
palette : None, string, or sequence, optional
Name of palette or None to return current palette. If a sequence, input
colors are used but possibly cycled and desaturated.
n_colors : int, optional
Number of colors in the palette. If ``None``, the default will depend
on how ``palette`` is specified. Named palettes default to 6 colors,
but grabbing the current palette or passing in a list of colors will
not change the number of colors unless this is specified. Asking for
more colors than exist in the palette will cause it to cycle. Ignored
when ``as_cmap`` is True.
desat : float, optional
Proportion to desaturate each color by.
as_cmap : bool
If True, return a :class:`matplotlib.colors.ListedColormap`.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
set_palette : Set the default color cycle for all plots.
set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to
colors from one of the seaborn palettes.
Examples
--------
.. include:: ../docstrings/color_palette.rst
"""
if palette is None:
palette = get_color_cycle()
if n_colors is None:
n_colors = len(palette)
elif not isinstance(palette, str):
palette = palette
if n_colors is None:
n_colors = len(palette)
else:
if n_colors is None:
# Use all colors in a qualitative palette or 6 of another kind
n_colors = QUAL_PALETTE_SIZES.get(palette, 6)
if palette in SEABORN_PALETTES:
# Named "seaborn variant" of matplotlib default color cycle
palette = SEABORN_PALETTES[palette]
elif palette == "hls":
# Evenly spaced colors in cylindrical RGB space
palette = hls_palette(n_colors, as_cmap=as_cmap)
elif palette == "husl":
# Evenly spaced colors in cylindrical Lab space
palette = husl_palette(n_colors, as_cmap=as_cmap)
elif palette.lower() == "jet":
# Paternalism
raise ValueError("No.")
elif palette.startswith("ch:"):
# Cubehelix palette with params specified in string
args, kwargs = _parse_cubehelix_args(palette)
palette = cubehelix_palette(n_colors, *args, **kwargs, as_cmap=as_cmap)
elif palette.startswith("light:"):
# light palette to color specified in string
_, color = palette.split(":")
reverse = color.endswith("_r")
if reverse:
color = color[:-2]
palette = light_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)
elif palette.startswith("dark:"):
# light palette to color specified in string
_, color = palette.split(":")
reverse = color.endswith("_r")
if reverse:
color = color[:-2]
palette = dark_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap)
elif palette.startswith("blend:"):
# blend palette between colors specified in string
_, colors = palette.split(":")
colors = colors.split(",")
palette = blend_palette(colors, n_colors, as_cmap=as_cmap)
else:
try:
# Perhaps a named matplotlib colormap?
palette = mpl_palette(palette, n_colors, as_cmap=as_cmap)
except (ValueError, KeyError): # Error class changed in mpl36
raise ValueError(f"{palette!r} is not a valid palette name")
if desat is not None:
palette = [desaturate(c, desat) for c in palette]
if not as_cmap:
# Always return as many colors as we asked for
pal_cycle = cycle(palette)
palette = [next(pal_cycle) for _ in range(n_colors)]
# Always return in r, g, b tuple format
try:
palette = map(mpl.colors.colorConverter.to_rgb, palette)
palette = _ColorPalette(palette)
except ValueError:
raise ValueError(f"Could not generate a palette for {palette}")
return palette
|
Return a list of colors or continuous colormap defining a palette.
Possible ``palette`` values include:
- Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind)
- Name of matplotlib colormap
- 'husl' or 'hls'
- 'ch:<cubehelix arguments>'
- 'light:<color>', 'dark:<color>', 'blend:<color>,<color>',
- A sequence of colors in any format matplotlib accepts
Calling this function with ``palette=None`` will return the current
matplotlib color cycle.
This function can also be used in a ``with`` statement to temporarily
set the color cycle for a plot or set of plots.
See the :ref:`tutorial <palette_tutorial>` for more information.
Parameters
----------
palette : None, string, or sequence, optional
Name of palette or None to return current palette. If a sequence, input
colors are used but possibly cycled and desaturated.
n_colors : int, optional
Number of colors in the palette. If ``None``, the default will depend
on how ``palette`` is specified. Named palettes default to 6 colors,
but grabbing the current palette or passing in a list of colors will
not change the number of colors unless this is specified. Asking for
more colors than exist in the palette will cause it to cycle. Ignored
when ``as_cmap`` is True.
desat : float, optional
Proportion to desaturate each color by.
as_cmap : bool
If True, return a :class:`matplotlib.colors.ListedColormap`.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
set_palette : Set the default color cycle for all plots.
set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to
colors from one of the seaborn palettes.
Examples
--------
.. include:: ../docstrings/color_palette.rst
|
color_palette
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def hls_palette(n_colors=6, h=.01, l=.6, s=.65, as_cmap=False): # noqa
"""
Return hues with constant lightness and saturation in the HLS system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
.. note::
While the separation of the resulting colors will be mathematically
constant, the HLS system does not construct a perceptually-uniform space,
so their apparent intensity will vary.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
husl_palette : Make a palette using evenly spaced hues in the HUSL system.
Examples
--------
.. include:: ../docstrings/hls_palette.rst
"""
if as_cmap:
n_colors = 256
hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]
hues += h
hues %= 1
hues -= hues.astype(int)
palette = [colorsys.hls_to_rgb(h_i, l, s) for h_i in hues]
if as_cmap:
return mpl.colors.ListedColormap(palette, "hls")
else:
return _ColorPalette(palette)
|
Return hues with constant lightness and saturation in the HLS system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
.. note::
While the separation of the resulting colors will be mathematically
constant, the HLS system does not construct a perceptually-uniform space,
so their apparent intensity will vary.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
husl_palette : Make a palette using evenly spaced hues in the HUSL system.
Examples
--------
.. include:: ../docstrings/hls_palette.rst
|
hls_palette
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def husl_palette(n_colors=6, h=.01, s=.9, l=.65, as_cmap=False): # noqa
"""
Return hues with constant lightness and saturation in the HUSL system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
This function is similar to :func:`hls_palette`, but it uses a nonlinear color
space that is more perceptually uniform.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
hls_palette : Make a palette using evenly spaced hues in the HSL system.
Examples
--------
.. include:: ../docstrings/husl_palette.rst
"""
if as_cmap:
n_colors = 256
hues = np.linspace(0, 1, int(n_colors) + 1)[:-1]
hues += h
hues %= 1
hues *= 359
s *= 99
l *= 99 # noqa
palette = [_color_to_rgb((h_i, s, l), input="husl") for h_i in hues]
if as_cmap:
return mpl.colors.ListedColormap(palette, "hsl")
else:
return _ColorPalette(palette)
|
Return hues with constant lightness and saturation in the HUSL system.
The hues are evenly sampled along a circular path. The resulting palette will be
appropriate for categorical or cyclical data.
The `h`, `l`, and `s` values should be between 0 and 1.
This function is similar to :func:`hls_palette`, but it uses a nonlinear color
space that is more perceptually uniform.
Parameters
----------
n_colors : int
Number of colors in the palette.
h : float
The value of the first hue.
l : float
The lightness value.
s : float
The saturation intensity.
as_cmap : bool
If True, return a matplotlib colormap object.
Returns
-------
palette
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
See Also
--------
hls_palette : Make a palette using evenly spaced hues in the HSL system.
Examples
--------
.. include:: ../docstrings/husl_palette.rst
|
husl_palette
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def mpl_palette(name, n_colors=6, as_cmap=False):
"""
Return a palette or colormap from the matplotlib registry.
For continuous palettes, evenly-spaced discrete samples are chosen while
excluding the minimum and maximum value in the colormap to provide better
contrast at the extremes.
For qualitative palettes (e.g. those from colorbrewer), exact values are
indexed (rather than interpolated), but fewer than `n_colors` can be returned
if the palette does not define that many.
Parameters
----------
name : string
Name of the palette. This should be a named matplotlib colormap.
n_colors : int
Number of discrete colors in the palette.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
Examples
--------
.. include:: ../docstrings/mpl_palette.rst
"""
if name.endswith("_d"):
sub_name = name[:-2]
if sub_name.endswith("_r"):
reverse = True
sub_name = sub_name[:-2]
else:
reverse = False
pal = color_palette(sub_name, 2) + ["#333333"]
if reverse:
pal = pal[::-1]
cmap = blend_palette(pal, n_colors, as_cmap=True)
else:
cmap = get_colormap(name)
if name in MPL_QUAL_PALS:
bins = np.linspace(0, 1, MPL_QUAL_PALS[name])[:n_colors]
else:
bins = np.linspace(0, 1, int(n_colors) + 2)[1:-1]
palette = list(map(tuple, cmap(bins)[:, :3]))
if as_cmap:
return cmap
else:
return _ColorPalette(palette)
|
Return a palette or colormap from the matplotlib registry.
For continuous palettes, evenly-spaced discrete samples are chosen while
excluding the minimum and maximum value in the colormap to provide better
contrast at the extremes.
For qualitative palettes (e.g. those from colorbrewer), exact values are
indexed (rather than interpolated), but fewer than `n_colors` can be returned
if the palette does not define that many.
Parameters
----------
name : string
Name of the palette. This should be a named matplotlib colormap.
n_colors : int
Number of discrete colors in the palette.
Returns
-------
list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
Examples
--------
.. include:: ../docstrings/mpl_palette.rst
|
mpl_palette
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
def _color_to_rgb(color, input):
"""Add some more flexibility to color choices."""
if input == "hls":
color = colorsys.hls_to_rgb(*color)
elif input == "husl":
color = husl.husl_to_rgb(*color)
color = tuple(np.clip(color, 0, 1))
elif input == "xkcd":
color = xkcd_rgb[color]
return mpl.colors.to_rgb(color)
|
Add some more flexibility to color choices.
|
_color_to_rgb
|
python
|
mwaskom/seaborn
|
seaborn/palettes.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/palettes.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.