code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def from_json_file(cls, json_file):
"""Constructs a `NewsConfig` from a json file of parameters."""
with tf.gfile.GFile(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
|
Constructs a `NewsConfig` from a json file of parameters.
|
from_json_file
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def mask_attention_for_ltr(attention_scores, attention_mask):
"""
Mask attention so that we're only predicting going forward
:param attention_scores: [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
:param attention_mask [query_length, key_length]
:return: masked attention
"""
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
mask = attention_mask[None, None]
return attention_scores * mask - tf.cast(1e10, attention_scores.dtype) * (1 - mask)
|
Mask attention so that we're only predicting going forward
:param attention_scores: [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
:param attention_mask [query_length, key_length]
:return: masked attention
|
mask_attention_for_ltr
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def _attention_projection_and_transpose(x_flat, batch_size, seq_length, num_attention_heads, size_per_head,
name, initializer_range=0.02):
"""
:param x_flat: [batch_size*seq_length, width]
:return: A fixed up tensor of size [batch_size, num_attention_heads, seq_length, size_per_head]
"""
batch_size_seq_length, dim = get_shape_list(x_flat, expected_rank=2)
# Had to remove this bc of generation script
# if (batch_size_seq_length != batch_size * seq_length):
# raise ValueError("passed in a tensor of shape {} when batch_size={} and seq_length={}".format(
# (batch_size_seq_length, dim), batch_size, seq_length
# ))
if dim != size_per_head * num_attention_heads:
raise ValueError("passed in a tensor of shape {} when size_per_head={} and num_attention_heads={}".format(
(batch_size_seq_length, dim), size_per_head, num_attention_heads
))
projected = tf.layers.dense(
x_flat,
num_attention_heads * size_per_head,
name=name,
kernel_initializer=create_initializer(initializer_range))
projected = tf.reshape(
projected, [batch_size, seq_length, num_attention_heads, size_per_head])
output_tensor = tf.transpose(projected, [0, 2, 1, 3])
return output_tensor
|
:param x_flat: [batch_size*seq_length, width]
:return: A fixed up tensor of size [batch_size, num_attention_heads, seq_length, size_per_head]
|
_attention_projection_and_transpose
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def attention_layer(x_flat, attention_mask, batch_size, seq_length, size_per_head=512, num_attention_heads=1, *,
cache=None,
initializer_range=0.02, hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1, do_cache=False):
"""
:param x_flat: Tensor input, should be [batch_size*seq_length, dim]
:param attention_mask: Attention mask to use of size [seq_length, seq_length+cached_length]
:param size_per_head: dim = size_per_head * num_attention_heads
:param num_attention_heads: dim = size_per_head * num_attention_heads
:param cache: Optionally some past (cached) things of size
[batch, 2, heads, sequence, features], where 2 is [k, v]
:param do_cache: True if we should return cache
:return: A new tensor of shape [batch_size, seq_length, dim]
as well as a new cache "cached_keys_and_values" that will be of size
[batch_size, 2, num_attention_heads, seq_length, dim]
"""
batch_size_seq_length, dim = get_shape_list(x_flat, expected_rank=2)
# Had to remove this because of generation script
# if (batch_size_seq_length != batch_size * seq_length):
# raise ValueError("passed in a tensor of shape {} when batch_size={} and seq_length={}".format(
# (batch_size_seq_length, dim), batch_size, seq_length
# ))
if dim != size_per_head * num_attention_heads:
raise ValueError("passed in a tensor of shape {} when size_per_head={} and num_attention_heads={}".format(
(batch_size_seq_length, dim), size_per_head, num_attention_heads
))
# if do_cache and past is not None:
# Shape will be (batch_size, 2, num_attention_heads, past_seq_length, dim)
# past_shape = get_shape_list(past, 5)
# desired_shape = (batch_size, 2, num_attention_heads, seq_length, dim)
# if tuple(past_shape) != desired_shape:
# raise ValueError(f"The shape of the cache is {past_shape} but we want {desired_shape}")
# [ batch_size, num_attention_heads, seq_length, size_per_head]
query = _attention_projection_and_transpose(x_flat, batch_size=batch_size, seq_length=seq_length,
num_attention_heads=num_attention_heads, size_per_head=size_per_head,
name='query_layer',
initializer_range=initializer_range)
key = _attention_projection_and_transpose(x_flat, batch_size=batch_size, seq_length=seq_length,
num_attention_heads=num_attention_heads, size_per_head=size_per_head,
name='key_layer',
initializer_range=initializer_range)
value = _attention_projection_and_transpose(x_flat, batch_size=batch_size, seq_length=seq_length,
num_attention_heads=num_attention_heads, size_per_head=size_per_head,
name='value_layer',
initializer_range=initializer_range)
# Add to cache
cached_keys_and_values = tf.stack([key, value], axis=1) if do_cache else None
# Things that were relevant from the cache
if cache is not None:
pk, pv = tf.unstack(cache, axis=1)
key = tf.concat([pk, key], axis=-2)
value = tf.concat([pv, value], axis=-2)
# Multiply [batch_size, num_attention_heads, seq_length, size_per_head] with
# [batch_size, num_attention_heads, size_per_head, seq_length+cached_length] ->
# [batch_size, num_attention_heads, seq_length, seq_length+cached_length]
attention_scores = tf.matmul(query, key, transpose_b=True)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(size_per_head)))
attention_scores = mask_attention_for_ltr(attention_scores, attention_mask)
attention_probs = tf.nn.softmax(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
# NOPENOPENOPENOPE
# attention_probs = factoreddropout(attention_probs, attention_probs_dropout_prob)
# Multiply [batch_size, num_attention_heads, seq_length, seq_length+cached_length] with
# [batch_size, num_attention_heads, seq_length+cached_length, size_per_head] ->
# [batch_size, num_attention_heads, seq_length, size_per_head] ->
context_layer = tf.matmul(attention_probs, value)
# `context_layer` = [batch_size, seq_length, num_attention_heads, size_per_head]
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
context_layer = tf.reshape(context_layer, [batch_size * seq_length, num_attention_heads * size_per_head])
context_layer_projected = tf.layers.dense(
context_layer,
num_attention_heads * size_per_head,
kernel_initializer=create_initializer(initializer_range),
name='context_projection_layer'
)
context_layer_projected = dropout(context_layer_projected, hidden_dropout_prob)
return context_layer_projected, cached_keys_and_values
|
:param x_flat: Tensor input, should be [batch_size*seq_length, dim]
:param attention_mask: Attention mask to use of size [seq_length, seq_length+cached_length]
:param size_per_head: dim = size_per_head * num_attention_heads
:param num_attention_heads: dim = size_per_head * num_attention_heads
:param cache: Optionally some past (cached) things of size
[batch, 2, heads, sequence, features], where 2 is [k, v]
:param do_cache: True if we should return cache
:return: A new tensor of shape [batch_size, seq_length, dim]
as well as a new cache "cached_keys_and_values" that will be of size
[batch_size, 2, num_attention_heads, seq_length, dim]
|
attention_layer
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def residual_mlp_layer(x_flat, intermediate_size, initializer_range=0.02, hidden_dropout_prob=0.1):
"""
:param x: The attention output. It should be [batch_size*seq_length, dim]
:param intermediate_size: the hidden projection. By default this is the input_dim * 4.
in the original GPT we would return layer_norm(x_norm + h1) rather than layer_norm(x + h1)
:return:
"""
batch_size_seq_length, hidden_size = get_shape_list(x_flat, expected_rank=2)
x_norm = layer_norm(x_flat, name='mlp_ln0')
intermediate_output = tf.layers.dense(
x_norm,
intermediate_size,
activation=gelu,
kernel_initializer=create_initializer(initializer_range),
name='intermediate',
)
output_for_residual = tf.layers.dense(
intermediate_output,
hidden_size,
name='output',
kernel_initializer=create_initializer(initializer_range))
output_for_residual = dropout(output_for_residual, hidden_dropout_prob)
layer_output = layer_norm(x_flat + output_for_residual, name='mlp_ln1')
return layer_output
|
:param x: The attention output. It should be [batch_size*seq_length, dim]
:param intermediate_size: the hidden projection. By default this is the input_dim * 4.
in the original GPT we would return layer_norm(x_norm + h1) rather than layer_norm(x + h1)
:return:
|
residual_mlp_layer
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def embed(input_ids,
vocab_size,
embedding_size,
position_offset=0,
initializer_range=0.02,
max_position_embeddings=512,
use_one_hot_embeddings=True):
"""reur and position embeddings
:param input_ids: int Tensor of shape [batch_size, seq_length].
:param vocab_size: number of words in vocab
:param embedding_size: dimensionality of the embedding
:param position_offset: aka number of cached tokens.
:param initializer_range: float. Range of the weight initialization.
:param max_position_embeddings: int. Maximum sequence length.
:param use_one_hot_embeddings: probably want this to be true
:return: [batch_size, seq_length, embedding_size] embedded tensor
"""
(batch_size, seq_length) = get_shape_list(input_ids, expected_rank=2)
embedding_table = tf.get_variable(
name='word_embed',
shape=[vocab_size, embedding_size],
initializer=create_initializer(initializer_range),
)
assert_op = tf.assert_less_equal(tf.reduce_max(input_ids), vocab_size - 1)
with tf.control_dependencies([assert_op]):
if use_one_hot_embeddings:
flat_input_ids = tf.reshape(input_ids, [-1])
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
output_flat = tf.matmul(one_hot_input_ids, embedding_table)
else:
output_flat = tf.nn.embedding_lookup(embedding_table, input_ids)
embedded_input = tf.reshape(output_flat, [batch_size, seq_length, embedding_size])
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
with tf.control_dependencies([assert_op]):
full_position_embeddings = tf.get_variable(
name='pos_embed',
shape=[max_position_embeddings, embedding_size],
initializer=create_initializer(initializer_range),
)
# Since the position embedding table is a learned variable, we create it
# using a (long) sequence length `max_position_embeddings`. The actual
# sequence length might be shorter than this, for faster training of
# tasks that do not have long sequences.
#
# So `full_position_embeddings` is effectively an embedding table
# for position [0, 1, 2, ..., max_position_embeddings-1], and the current
# sequence has positions [0, 1, 2, ... seq_length-1], so we can just
# perform a slice.
if position_offset == 0:
embedded_input += tf.slice(full_position_embeddings, [0, 0], [seq_length, -1])[None]
else:
# Tensorflow is too stupid to allow slicing
flat_pos_ids = (tf.range(seq_length, dtype=tf.int32) + position_offset)
one_hot_pos_ids = tf.one_hot(flat_pos_ids, depth=max_position_embeddings)
# [seq_length, full_position_embeddings], [full_position_embeddings, dim]
seq_embeds = tf.matmul(one_hot_pos_ids, full_position_embeddings)
embedded_input += seq_embeds[None]
# embedded_input += tf.slice(full_position_embeddings[position_offset:], [0, 0], [seq_length, -1])[None]
return layer_norm(embedded_input, name='embed_norm'), embedding_table
|
reur and position embeddings
:param input_ids: int Tensor of shape [batch_size, seq_length].
:param vocab_size: number of words in vocab
:param embedding_size: dimensionality of the embedding
:param position_offset: aka number of cached tokens.
:param initializer_range: float. Range of the weight initialization.
:param max_position_embeddings: int. Maximum sequence length.
:param use_one_hot_embeddings: probably want this to be true
:return: [batch_size, seq_length, embedding_size] embedded tensor
|
embed
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def _top_p_sample(logits, ignore_ids=None, num_samples=1, p=0.9):
"""
Does top-p sampling. if ignore_ids is on, then we will zero out those logits.
:param logits: [batch_size, vocab_size] tensor
:param ignore_ids: [vocab_size] one-hot representation of the indices we'd like to ignore and never predict,
like padding maybe
:param p: topp threshold to use, either a float or a [batch_size] vector
:return: [batch_size, num_samples] samples
# TODO FIGURE OUT HOW TO DO THIS ON TPUS. IT'S HELLA SLOW RIGHT NOW, DUE TO ARGSORT I THINK
"""
with tf.variable_scope('top_p_sample'):
batch_size, vocab_size = get_shape_list(logits, expected_rank=2)
probs = tf.nn.softmax(logits if ignore_ids is None else logits - tf.cast(ignore_ids[None], tf.float32) * 1e10,
axis=-1)
if isinstance(p, float) and p > 0.999999:
# Don't do top-p sampling in this case
print("Top-p sampling DISABLED", flush=True)
return {
'probs': probs,
'sample': tf.random.categorical(
logits=logits if ignore_ids is None else logits - tf.cast(ignore_ids[None], tf.float32) * 1e10,
num_samples=num_samples, dtype=tf.int32),
}
# [batch_size, vocab_perm]
indices = tf.argsort(probs, direction='DESCENDING')
cumulative_probabilities = tf.math.cumsum(tf.batch_gather(probs, indices), axis=-1, exclusive=False)
# find the top pth index to cut off. careful we don't want to cutoff everything!
# result will be [batch_size, vocab_perm]
p_expanded = p if isinstance(p, float) else p[:, None]
exclude_mask = tf.logical_not(
tf.logical_or(cumulative_probabilities < p_expanded, tf.range(vocab_size)[None] < 1))
# OPTION A - sample in the sorted space, then unsort.
logits_to_use = tf.batch_gather(logits, indices) - tf.cast(exclude_mask, tf.float32) * 1e10
sample_perm = tf.random.categorical(logits=logits_to_use, num_samples=num_samples)
sample = tf.batch_gather(indices, sample_perm)
# OPTION B - unsort first - Indices need to go back to 0 -> N-1 -- then sample
# unperm_indices = tf.argsort(indices, direction='ASCENDING')
# include_mask_unperm = tf.batch_gather(include_mask, unperm_indices)
# logits_to_use = logits - (1 - tf.cast(include_mask_unperm, tf.float32)) * 1e10
# sample = tf.random.categorical(logits=logits_to_use, num_samples=num_samples, dtype=tf.int32)
return {
'probs': probs,
'sample': sample,
}
|
Does top-p sampling. if ignore_ids is on, then we will zero out those logits.
:param logits: [batch_size, vocab_size] tensor
:param ignore_ids: [vocab_size] one-hot representation of the indices we'd like to ignore and never predict,
like padding maybe
:param p: topp threshold to use, either a float or a [batch_size] vector
:return: [batch_size, num_samples] samples
# TODO FIGURE OUT HOW TO DO THIS ON TPUS. IT'S HELLA SLOW RIGHT NOW, DUE TO ARGSORT I THINK
|
_top_p_sample
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def _top_k_sample(logits, ignore_ids=None, num_samples=1, k=10):
"""
Does top-k sampling. if ignore_ids is on, then we will zero out those logits.
:param logits: [batch_size, vocab_size] tensor
:param ignore_ids: [vocab_size] one-hot representation of the indices we'd like to ignore and never predict,
like padding maybe
:param p: topp threshold to use, either a float or a [batch_size] vector
:return: [batch_size, num_samples] samples
# TODO FIGURE OUT HOW TO DO THIS ON TPUS. IT'S HELLA SLOW RIGHT NOW, DUE TO ARGSORT I THINK
"""
with tf.variable_scope('top_p_sample'):
batch_size, vocab_size = get_shape_list(logits, expected_rank=2)
probs = tf.nn.softmax(logits if ignore_ids is None else logits - tf.cast(ignore_ids[None], tf.float32) * 1e10,
axis=-1)
# [batch_size, vocab_perm]
indices = tf.argsort(probs, direction='DESCENDING')
# find the top pth index to cut off. careful we don't want to cutoff everything!
# result will be [batch_size, vocab_perm]
k_expanded = k if isinstance(k, int) else k[:, None]
exclude_mask = tf.range(vocab_size)[None] >= k_expanded
# OPTION A - sample in the sorted space, then unsort.
logits_to_use = tf.batch_gather(logits, indices) - tf.cast(exclude_mask, tf.float32) * 1e10
sample_perm = tf.random.categorical(logits=logits_to_use, num_samples=num_samples)
sample = tf.batch_gather(indices, sample_perm)
return {
'probs': probs,
'sample': sample,
}
|
Does top-k sampling. if ignore_ids is on, then we will zero out those logits.
:param logits: [batch_size, vocab_size] tensor
:param ignore_ids: [vocab_size] one-hot representation of the indices we'd like to ignore and never predict,
like padding maybe
:param p: topp threshold to use, either a float or a [batch_size] vector
:return: [batch_size, num_samples] samples
# TODO FIGURE OUT HOW TO DO THIS ON TPUS. IT'S HELLA SLOW RIGHT NOW, DUE TO ARGSORT I THINK
|
_top_k_sample
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def __init__(self,
config: GroverConfig,
is_training,
input_ids,
cache=None,
do_cache=False,
pad_token_id=0,
chop_off_last_token=True,
scope=None,
reuse=False):
"""
:param config:
:param is_training:
:param input_ids: Tensor thats of size [batch_size, seq_length]
:param cache: Optionally, a tensor to use that will contain cached information of the size
[batch_size, num_layers, 2, num_heads, cache_length, features]
:param do_cache: Whether to cache again.
:param pad_token_id: Which token will be used for padding (probably 0.)
:param chop_off_last_token: True if we will end up using this for TRAINING only. False if we want to generate.
it means the last token in input_ids will not be processed by the model as input
:param scope: scope to run this on
"""
self.config = copy.deepcopy(config)
self.is_training = is_training
self.pad_token_id = pad_token_id
if not is_training:
self.config.hidden_dropout_prob = 0.0
self.config.attention_probs_dropout_prob = 0.0
if chop_off_last_token:
self.target_ids = input_ids[:, 1:]
self.input_ids = input_ids[:, :-1]
else:
self.input_ids = input_ids
self.target_ids = tf.concat((input_ids[:, 1:],
tf.constant(self.pad_token_id, dtype=self.input_ids.dtype,
shape=[get_shape_list(self.input_ids, 2)[0], 1])), 1)
self.batch_size, self.seq_length = get_shape_list(self.input_ids, 2)
if cache is None:
caches = [None] * config.num_hidden_layers
self.cache_length = 0
else:
batch_size_, num_layers_, two_, num_heads_, self.cache_length, features_ = get_shape_list(
cache, expected_rank=6)
assert batch_size_ == self.batch_size
assert num_layers_ == config.num_hidden_layers
assert two_ == 2
assert num_heads_ == config.num_attention_heads
assert features_ == (config.hidden_size // config.num_attention_heads)
caches = tf.unstack(cache, axis=1)
with tf.variable_scope(scope, default_name='newslm', reuse=reuse):
with tf.variable_scope("embeddings"):
embeddings, self.embedding_table = embed(self.input_ids, config.vocab_size,
config.hidden_size,
position_offset=self.cache_length,
initializer_range=config.initializer_range,
max_position_embeddings=config.max_position_embeddings,
use_one_hot_embeddings=True)
mask = get_attention_mask(self.seq_length, self.seq_length + self.cache_length, dtype=embeddings.dtype)
# We keep the representation as a 2D tensor to avoid re-shaping it back and
# forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
# the GPU/CPU but may not be free on the TPU, so we want to minimize them to
# help the optimizer.
hidden_state = tf.reshape(embeddings, [self.batch_size * self.seq_length, self.config.hidden_size])
new_kvs = []
for layer_idx, layer_cache in enumerate(caches):
with tf.variable_scope('layer{:02d}'.format(layer_idx)):
# [batch_size * seq_length, hidden_size]
attention_output, new_kv = attention_layer(
hidden_state,
mask,
batch_size=self.batch_size,
seq_length=self.seq_length,
size_per_head=config.hidden_size // config.num_attention_heads,
num_attention_heads=config.num_attention_heads,
initializer_range=config.initializer_range,
hidden_dropout_prob=self.config.hidden_dropout_prob,
attention_probs_dropout_prob=self.config.attention_probs_dropout_prob,
do_cache=do_cache,
cache=layer_cache,
)
new_kvs.append(new_kv)
# [batch_size * seq_length, hidden_size]
hidden_state = residual_mlp_layer(hidden_state + attention_output,
intermediate_size=config.intermediate_size,
hidden_dropout_prob=self.config.hidden_dropout_prob)
self.hidden_state = hidden_state
self.new_kvs = tf.stack(new_kvs, axis=1) if do_cache else None
# Note that the hidden state is still flat (batch_size*hidden_size)
self.logits_flat = tf.matmul(self.hidden_state, self.embedding_table, transpose_b=True)
# THE OUTPUT BIAS DOES NOT SPARK JOY
# output_bias = tf.get_variable('output_bias', shape=[config.vocab_size], initializer=tf.zeros_initializer())
# self.logits_flat = tf.nn.bias_add(self.logits_flat, output_bias)
|
:param config:
:param is_training:
:param input_ids: Tensor thats of size [batch_size, seq_length]
:param cache: Optionally, a tensor to use that will contain cached information of the size
[batch_size, num_layers, 2, num_heads, cache_length, features]
:param do_cache: Whether to cache again.
:param pad_token_id: Which token will be used for padding (probably 0.)
:param chop_off_last_token: True if we will end up using this for TRAINING only. False if we want to generate.
it means the last token in input_ids will not be processed by the model as input
:param scope: scope to run this on
|
__init__
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def pooled_output(self, clf_token):
"""
Extract pooled output given a token that says where we should look
:param clf_token:
:return:
"""
pool_idx = tf.cast(tf.argmax(tf.cast(tf.equal(self.input_ids, clf_token), tf.float32), 1), tf.int32)
return tf.gather(self.hidden_state, tf.range(self.batch_size, dtype=tf.int32) * self.seq_length + pool_idx)
|
Extract pooled output given a token that says where we should look
:param clf_token:
:return:
|
pooled_output
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def sample_step(tokens, ignore_ids, news_config, batch_size=1, p_for_topp=0.95, cache=None, do_topk=False):
"""
Helper function that samples from grover for a single step
:param tokens: [batch_size, n_ctx_b] tokens that we will predict from
:param ignore_ids: [n_vocab] mask of the tokens we don't want to predict
:param news_config: config for the GroverModel
:param batch_size: batch size to use
:param p_for_topp: top-p or top-k threshold
:param cache: [batch_size, news_config.num_hidden_layers, 2,
news_config.num_attention_heads, n_ctx_a,
news_config.hidden_size // news_config.num_attention_heads] OR, None
:return: new_tokens, size [batch_size]
new_probs, also size [batch_size]
new_cache, size [batch_size, news_config.num_hidden_layers, 2, n_ctx_b,
news_config.num_attention_heads, news_config.hidden_size // news_config.num_attention_heads]
"""
model = GroverModel(
config=news_config,
is_training=False,
input_ids=tokens,
reuse=tf.AUTO_REUSE,
scope='newslm',
chop_off_last_token=False,
do_cache=True,
cache=cache,
)
# Extract the FINAL SEQ LENGTH
batch_size_times_seq_length, vocab_size = get_shape_list(model.logits_flat, expected_rank=2)
next_logits = tf.reshape(model.logits_flat, [batch_size, -1, vocab_size])[:, -1]
if do_topk:
sample_info = _top_k_sample(next_logits, num_samples=1, k=tf.cast(p_for_topp, dtype=tf.int32))
else:
sample_info = _top_p_sample(next_logits, ignore_ids=ignore_ids, num_samples=1, p=p_for_topp)
new_tokens = tf.squeeze(sample_info['sample'], 1)
new_probs = tf.squeeze(tf.batch_gather(sample_info['probs'], sample_info['sample']), 1)
return {
'new_tokens': new_tokens,
'new_probs': new_probs,
'new_cache': model.new_kvs,
}
|
Helper function that samples from grover for a single step
:param tokens: [batch_size, n_ctx_b] tokens that we will predict from
:param ignore_ids: [n_vocab] mask of the tokens we don't want to predict
:param news_config: config for the GroverModel
:param batch_size: batch size to use
:param p_for_topp: top-p or top-k threshold
:param cache: [batch_size, news_config.num_hidden_layers, 2,
news_config.num_attention_heads, n_ctx_a,
news_config.hidden_size // news_config.num_attention_heads] OR, None
:return: new_tokens, size [batch_size]
new_probs, also size [batch_size]
new_cache, size [batch_size, news_config.num_hidden_layers, 2, n_ctx_b,
news_config.num_attention_heads, news_config.hidden_size // news_config.num_attention_heads]
|
sample_step
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def sample(news_config: GroverConfig, initial_context, eos_token, ignore_ids=None, p_for_topp=0.95,
do_topk=False):
"""
V1 version of: sample outputs from a model, and do it all at once
:param news_config: Configuration used to construct the model
:param initial_context: [batch_size, seq_length] that we'll start generating with
:param eos_token: Stop generating if you see this (tf scalar)
:param ignore_ids: NEVER GENERATE THESE [vocab_size]
:return:
"""
batch_size, _ = get_shape_list(initial_context, expected_rank=2)
if ignore_ids is None:
ignore_ids = tf.constant([x == 0 for x in range(news_config.vocab_size)], dtype=tf.bool)
with tf.name_scope('sample_sequence'):
# Initial call to get cache
context_output = initialize_from_context(initial_context, ignore_ids=ignore_ids, news_config=news_config,
p_for_topp=p_for_topp,
do_topk=do_topk)
ctx = context_output['tokens']
cache = context_output['cache']
probs = context_output['probs']
def body(ctx, cache, probs):
""" for whatever reason this didn't work when I ran it on more than one at once... ugh."""
next_outputs = sample_step(ctx[:, -1][:, None], ignore_ids=ignore_ids, news_config=news_config,
batch_size=batch_size, p_for_topp=p_for_topp, cache=cache,
do_topk=do_topk)
# Update everything
new_cache = tf.concat([cache, next_outputs['new_cache']], axis=-2)
new_ids = tf.concat([ctx, next_outputs['new_tokens'][:, None]], axis=1)
new_probs = tf.concat([probs, next_outputs['new_probs'][:, None]], axis=1)
return [new_ids, new_cache, new_probs]
def cond(ctx, cache, probs):
is_eos = tf.equal(ctx, eos_token)
return tf.math.logical_not(tf.reduce_all(tf.reduce_any(is_eos, axis=1)))
tokens, cache, probs = tf.while_loop(
cond=cond, body=body, maximum_iterations=1025 - get_shape_list(ctx)[1],
loop_vars=[ctx, cache, probs],
shape_invariants=[tf.TensorShape([batch_size, None]),
tf.TensorShape(
[batch_size, news_config.num_hidden_layers, 2,
news_config.num_attention_heads,
None, news_config.hidden_size // news_config.num_attention_heads]),
tf.TensorShape([batch_size, None]),
],
back_prop=False,
)
return tokens, probs
|
V1 version of: sample outputs from a model, and do it all at once
:param news_config: Configuration used to construct the model
:param initial_context: [batch_size, seq_length] that we'll start generating with
:param eos_token: Stop generating if you see this (tf scalar)
:param ignore_ids: NEVER GENERATE THESE [vocab_size]
:return:
|
sample
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def body(ctx, cache, probs):
""" for whatever reason this didn't work when I ran it on more than one at once... ugh."""
next_outputs = sample_step(ctx[:, -1][:, None], ignore_ids=ignore_ids, news_config=news_config,
batch_size=batch_size, p_for_topp=p_for_topp, cache=cache,
do_topk=do_topk)
# Update everything
new_cache = tf.concat([cache, next_outputs['new_cache']], axis=-2)
new_ids = tf.concat([ctx, next_outputs['new_tokens'][:, None]], axis=1)
new_probs = tf.concat([probs, next_outputs['new_probs'][:, None]], axis=1)
return [new_ids, new_cache, new_probs]
|
for whatever reason this didn't work when I ran it on more than one at once... ugh.
|
body
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def classification_model_fn_builder(config: GroverConfig, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu, num_labels, pool_token_id,
adafactor=False, adam_bfloat=False, lm_loss_coef=0.5):
"""Returns `model_fn` closure for TPUEstimator. FOR CLASSIFICATION ONLY!"""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
label_ids = features["label_ids"]
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
# Create model with aux loss
model = GroverModel(
config=config,
is_training=is_training,
input_ids=input_ids,
pad_token_id=config.pad_token_id,
chop_off_last_token=False,
)
with tf.variable_scope('classification'):
hidden_state = model.pooled_output(pool_token_id)
if is_training:
hidden_state = dropout(hidden_state, dropout_prob=0.1)
logits = tf.layers.dense(
hidden_state,
num_labels,
kernel_initializer=create_initializer(config.initializer_range),
name='logits'
)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(label_ids, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
class_loss = tf.reduce_mean(per_example_loss)
total_loss = lm_loss_coef * model.lm_loss() + class_loss
if is_training:
train_op, train_metrics = optimization_adafactor.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
# tvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
tvars = tf.trainable_variables()
train_metrics['minibatch_cls_loss'] = class_loss
train_metrics['minibatch_acc'] = tf.reduce_mean(
tf.cast(tf.equal(tf.argmax(logits, axis=-1, output_type=tf.int32),
label_ids), tf.float32))
else:
train_op = None
train_metrics = {}
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
if use_tpu:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
host_call=construct_scalar_host_call(metric_dict=train_metrics, model_dir=params['model_dir'],
prefix='training/'),
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
training_hooks=[
tf.train.LoggingTensorHook({'loss': tf.metrics.mean(total_loss)[1]}, every_n_iter=100)],
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={'logits': logits,
'probs': tf.nn.softmax(logits, axis=-1)},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
|
Returns `model_fn` closure for TPUEstimator. FOR CLASSIFICATION ONLY!
|
classification_model_fn_builder
|
python
|
rowanz/grover
|
lm/modeling.py
|
https://github.com/rowanz/grover/blob/master/lm/modeling.py
|
Apache-2.0
|
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
|
Whether to use L2 weight decay for `param_name`.
|
_do_use_weight_decay
|
python
|
rowanz/grover
|
lm/optimization_adafactor.py
|
https://github.com/rowanz/grover/blob/master/lm/optimization_adafactor.py
|
Apache-2.0
|
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
|
Get the variable name from the tensor name.
|
_get_variable_name
|
python
|
rowanz/grover
|
lm/optimization_adafactor.py
|
https://github.com/rowanz/grover/blob/master/lm/optimization_adafactor.py
|
Apache-2.0
|
def assert_rank(tensor, expected_rank, name=None):
"""Raises an exception if the tensor rank is not of the expected rank.
Args:
tensor: A tf.Tensor to check the rank of.
expected_rank: Python integer or list of integers, expected rank.
name: Optional name of the tensor for the error message.
Raises:
ValueError: If the expected shape doesn't match the actual shape.
"""
if name is None:
name = tensor.name
expected_rank_dict = {}
if isinstance(expected_rank, six.integer_types):
expected_rank_dict[expected_rank] = True
else:
for x in expected_rank:
expected_rank_dict[x] = True
actual_rank = tensor.shape.ndims
if actual_rank not in expected_rank_dict:
scope_name = tf.get_variable_scope().name
raise ValueError(
"For the tensor `%s` in scope `%s`, the actual rank "
"`%d` (shape = %s) is not equal to the expected rank `%s`" %
(name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
|
Raises an exception if the tensor rank is not of the expected rank.
Args:
tensor: A tf.Tensor to check the rank of.
expected_rank: Python integer or list of integers, expected rank.
name: Optional name of the tensor for the error message.
Raises:
ValueError: If the expected shape doesn't match the actual shape.
|
assert_rank
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def get_shape_list(tensor, expected_rank=None, name=None):
"""Returns a list of the shape of tensor, preferring static dimensions.
Args:
tensor: A tf.Tensor object to find the shape of.
expected_rank: (optional) int. The expected rank of `tensor`. If this is
specified and the `tensor` has a different rank, and exception will be
thrown.
name: Optional name of the tensor for the error message.
Returns:
A list of dimensions of the shape of tensor. All static dimensions will
be returned as python integers, and dynamic dimensions will be returned
as tf.Tensor scalars.
"""
if name is None:
name = tensor.name
if expected_rank is not None:
assert_rank(tensor, expected_rank, name)
shape = tensor.shape.as_list()
non_static_indexes = []
for (index, dim) in enumerate(shape):
if dim is None:
non_static_indexes.append(index)
if not non_static_indexes:
return shape
dyn_shape = tf.shape(tensor)
for index in non_static_indexes:
shape[index] = dyn_shape[index]
return shape
|
Returns a list of the shape of tensor, preferring static dimensions.
Args:
tensor: A tf.Tensor object to find the shape of.
expected_rank: (optional) int. The expected rank of `tensor`. If this is
specified and the `tensor` has a different rank, and exception will be
thrown.
name: Optional name of the tensor for the error message.
Returns:
A list of dimensions of the shape of tensor. All static dimensions will
be returned as python integers, and dynamic dimensions will be returned
as tf.Tensor scalars.
|
get_shape_list
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def gelu(input_tensor):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
input_tensor: float Tensor to perform activation.
Returns:
`input_tensor` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf
|
Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
input_tensor: float Tensor to perform activation.
Returns:
`input_tensor` with the GELU activation applied.
|
gelu
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def layer_norm(input_tensor, name=None, epsilon=1e-5):
"""Run layer normalization on the last dimension of the tensor."""
name2use = f'LayerNorm_{name}' if name is not None else name
with tf.variable_scope(name2use, default_name='LayerNorm'):
dim = input_tensor.shape[-1].value
gamma = tf.get_variable('gamma', [dim], initializer=tf.constant_initializer(1))
beta = tf.get_variable('beta', [dim], initializer=tf.constant_initializer(0))
mean = tf.reduce_mean(input_tensor, axis=-1, keepdims=True)
std = tf.reduce_mean(tf.square(input_tensor - mean), axis=-1, keepdims=True)
input_tensor = (input_tensor - mean) * tf.rsqrt(std + epsilon)
input_tensor = input_tensor * gamma + beta
return input_tensor
|
Run layer normalization on the last dimension of the tensor.
|
layer_norm
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def dropout(input_tensor, dropout_prob):
"""Perform dropout.
Args:
input_tensor: float Tensor.
dropout_prob: Python float. The probability of dropping out a value (NOT of
*keeping* a dimension as in `tf.nn.dropout`).
Returns:
A version of `input_tensor` with dropout applied.
"""
if dropout_prob is None or dropout_prob == 0.0:
return input_tensor
output = tf.nn.dropout(input_tensor, rate=dropout_prob)
return output
|
Perform dropout.
Args:
input_tensor: float Tensor.
dropout_prob: Python float. The probability of dropping out a value (NOT of
*keeping* a dimension as in `tf.nn.dropout`).
Returns:
A version of `input_tensor` with dropout applied.
|
dropout
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def get_attention_mask(nd, ns, *, dtype):
"""
this is a TPU compatible version of tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd)
where the lower right triangle contains 1s
"""
i = tf.range(nd)[:, None]
j = tf.range(ns)
m = i >= j - ns + nd
return tf.cast(m, dtype)
|
this is a TPU compatible version of tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd)
where the lower right triangle contains 1s
|
get_attention_mask
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def get_assignment_map_from_checkpoint(tvars, init_checkpoint):
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}
initialized_variable_names = {}
name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match("^(.*):\\d+$", name)
if m is not None:
name = m.group(1)
name_to_variable[name] = var
init_vars = tf.train.list_variables(init_checkpoint)
assignment_map = collections.OrderedDict()
for x in init_vars:
(name, var) = (x[0], x[1])
if name not in name_to_variable:
continue
assignment_map[name] = name
initialized_variable_names[name] = 1
initialized_variable_names[name + ":0"] = 1
return (assignment_map, initialized_variable_names)
|
Compute the union of the current variables and checkpoint variables.
|
get_assignment_map_from_checkpoint
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def construct_scalar_host_call(metric_dict, model_dir, prefix=""):
"""Construct a host call to log scalars when training on TPU.
Args:
metric_dict: A dict of the tensors to be logged.
model_dir: The location to write the summary.
prefix: The prefix (if any) to prepend to the metric names.
Returns:
A tuple of (function, args_to_be_passed_to_said_function)
"""
metric_names = list(metric_dict.keys())
def host_call_fn(global_step, *args):
"""Training host call. Creates scalar summaries for training metrics.
This function is executed on the CPU and should not directly reference
any Tensors in the rest of the `model_fn`. To pass Tensors from the
model to the `metric_fn`, provide as part of the `host_call`. See
https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec
for more information.
Arguments should match the list of `Tensor` objects passed as the second
element in the tuple passed to `host_call`.
Args:
global_step: `Tensor with shape `[batch]` for the global_step
*args: Remaining tensors to log.
Returns:
List of summary ops to run on the CPU host.
"""
step = global_step[0]
with tf.contrib.summary.create_file_writer(
logdir=model_dir, filename_suffix=".host_call").as_default():
with tf.contrib.summary.always_record_summaries():
for i, name in enumerate(metric_names):
tf.contrib.summary.scalar(prefix + name, args[i][0], step=step)
return tf.contrib.summary.all_summary_ops()
# To log the current learning rate, and gradient norm for Tensorboard, the
# summary op needs to be run on the host CPU via host_call. host_call
# expects [batch_size, ...] Tensors, thus reshape to introduce a batch
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
global_step_tensor = tf.reshape(
tf.compat.v1.train.get_or_create_global_step(), [1])
other_tensors = [tf.reshape(metric_dict[key], [1]) for key in metric_names]
return host_call_fn, [global_step_tensor] + other_tensors
|
Construct a host call to log scalars when training on TPU.
Args:
metric_dict: A dict of the tensors to be logged.
model_dir: The location to write the summary.
prefix: The prefix (if any) to prepend to the metric names.
Returns:
A tuple of (function, args_to_be_passed_to_said_function)
|
construct_scalar_host_call
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def host_call_fn(global_step, *args):
"""Training host call. Creates scalar summaries for training metrics.
This function is executed on the CPU and should not directly reference
any Tensors in the rest of the `model_fn`. To pass Tensors from the
model to the `metric_fn`, provide as part of the `host_call`. See
https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec
for more information.
Arguments should match the list of `Tensor` objects passed as the second
element in the tuple passed to `host_call`.
Args:
global_step: `Tensor with shape `[batch]` for the global_step
*args: Remaining tensors to log.
Returns:
List of summary ops to run on the CPU host.
"""
step = global_step[0]
with tf.contrib.summary.create_file_writer(
logdir=model_dir, filename_suffix=".host_call").as_default():
with tf.contrib.summary.always_record_summaries():
for i, name in enumerate(metric_names):
tf.contrib.summary.scalar(prefix + name, args[i][0], step=step)
return tf.contrib.summary.all_summary_ops()
|
Training host call. Creates scalar summaries for training metrics.
This function is executed on the CPU and should not directly reference
any Tensors in the rest of the `model_fn`. To pass Tensors from the
model to the `metric_fn`, provide as part of the `host_call`. See
https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec
for more information.
Arguments should match the list of `Tensor` objects passed as the second
element in the tuple passed to `host_call`.
Args:
global_step: `Tensor with shape `[batch]` for the global_step
*args: Remaining tensors to log.
Returns:
List of summary ops to run on the CPU host.
|
host_call_fn
|
python
|
rowanz/grover
|
lm/utils.py
|
https://github.com/rowanz/grover/blob/master/lm/utils.py
|
Apache-2.0
|
def ind_where(array: np.ndarray, target, return_first_match=True, default_value=-1):
"""
:param array: Single dimension array
:param target: target to search for
:param return_first_match: If true, return the first index that matches, otherwise, return the last one
:param default_value: Index to return if there was no match
:return: index of the first match, or -1 if nothing
"""
assert array.ndim == 1
matching_inds = np.where(array == target)[0]
if len(matching_inds) > 0:
if return_first_match:
return int(matching_inds[0])
else:
return int(matching_inds[-1])
return default_value
|
:param array: Single dimension array
:param target: target to search for
:param return_first_match: If true, return the first index that matches, otherwise, return the last one
:param default_value: Index to return if there was no match
:return: index of the first match, or -1 if nothing
|
ind_where
|
python
|
rowanz/grover
|
lm/validate.py
|
https://github.com/rowanz/grover/blob/master/lm/validate.py
|
Apache-2.0
|
def _get_split(domain):
""" You could do this by domain, or not"""
if random.random() < TRAIN_PORTION:
return 'train'
return 'val'
|
You could do this by domain, or not
|
_get_split
|
python
|
rowanz/grover
|
realnews/dedupe_crawl.py
|
https://github.com/rowanz/grover/blob/master/realnews/dedupe_crawl.py
|
Apache-2.0
|
def get_matching_s3_objects(bucket, prefix='', suffix=''):
"""
Generate objects in an S3 bucket.
THANK YOU https://alexwlchan.net/2018/01/listing-s3-keys-redux/
:param bucket: Name of the S3 bucket.
:param prefix: Only fetch objects whose key starts with
this prefix (optional).
:param suffix: Only fetch objects whose keys end with
this suffix (optional).
"""
kwargs = {'Bucket': bucket}
# If the prefix is a single string (not a tuple of strings), we can
# do the filtering directly in the S3 API.
if isinstance(prefix, str):
kwargs['Prefix'] = prefix
while True:
# The S3 API response is a large blob of metadata.
# 'Contents' contains information about the listed objects.
resp = s3client.list_objects_v2(**kwargs)
try:
contents = resp['Contents']
except KeyError:
return
for obj in contents:
key = obj['Key']
if key.startswith(prefix) and key.endswith(suffix):
yield obj['Key''']
# The S3 API is paginated, returning up to 1000 keys at a time.
# Pass the continuation token into the next response, until we
# reach the final page (when this field is missing).
try:
kwargs['ContinuationToken'] = resp['NextContinuationToken']
except KeyError:
break
|
Generate objects in an S3 bucket.
THANK YOU https://alexwlchan.net/2018/01/listing-s3-keys-redux/
:param bucket: Name of the S3 bucket.
:param prefix: Only fetch objects whose key starts with
this prefix (optional).
:param suffix: Only fetch objects whose keys end with
this suffix (optional).
|
get_matching_s3_objects
|
python
|
rowanz/grover
|
realnews/dedupe_crawl.py
|
https://github.com/rowanz/grover/blob/master/realnews/dedupe_crawl.py
|
Apache-2.0
|
def article_iterator(encoder, final_desired_size=1025):
""" Iterate through the provided filename + tokenize"""
assert os.path.exists(args.input_fn)
with open(args.input_fn, 'r') as f:
for l_no, l in enumerate(f):
if l_no % args.num_folds == args.fold:
article = json.loads(l)
article['input_ids'] = tokenize_for_grover_training(encoder, article, desired_size=final_desired_size,
unconditional_prob=.35)
article['inst_index'] = (l_no // args.num_folds)
if article['inst_index'] < 100:
print('---\nINPUT{}. {}\n---\nTokens: {}\n'.format(article['inst_index'],
detokenize(encoder, article['input_ids']),
article['input_ids']
), flush=True)
if len(article['input_ids']) == 0:
continue
yield article
|
Iterate through the provided filename + tokenize
|
article_iterator
|
python
|
rowanz/grover
|
realnews/prepare_lm_data.py
|
https://github.com/rowanz/grover/blob/master/realnews/prepare_lm_data.py
|
Apache-2.0
|
def _stream_from_buffer(buffer, current_desired_size, pad_token=0, add_articles_to_end=False):
""" Combines short articles that are in a buffer """
random.shuffle(buffer)
i = 0
while i < len(buffer):
article = buffer[i]
if add_articles_to_end:
for article2add in buffer[(i + 1):]:
i += 1
article['input_ids'].append(encoder.padding)
article['input_ids'].append(encoder.reset_context)
article['input_ids'].extend(article2add['input_ids'])
if len(article['input_ids']) >= current_desired_size:
article['input_ids'] = article['input_ids'][:current_desired_size]
break
# print(f"YIELD FROM BUFFER {i}")
# Pad to right length
amount_to_pad = current_desired_size - len(article['input_ids'])
article['input_ids'].extend([pad_token] * amount_to_pad)
article['sub_index'] = 0
yield article
i += 1
|
Combines short articles that are in a buffer
|
_stream_from_buffer
|
python
|
rowanz/grover
|
realnews/prepare_lm_data.py
|
https://github.com/rowanz/grover/blob/master/realnews/prepare_lm_data.py
|
Apache-2.0
|
def buffered_and_sliding_window_article_iterator(encoder, current_desired_size, final_desired_size=1025):
""" We apply a sliding window to fix long sequences, and use a buffer that combines short sequences."""
assert current_desired_size <= final_desired_size
buffer = []
for article in article_iterator(encoder, final_desired_size=final_desired_size):
amount_to_pad = current_desired_size - len(article['input_ids'])
if article['split'] == 'val' or amount_to_pad <= 0:
for sub_index, sub_article in enumerate(sliding_window(article, max_seq_length=current_desired_size,
pad_token=encoder.padding)):
sub_article['sub_index'] = sub_index
# print(f"AMT2PAD < 0 YIELD-{inst_index} sliding window {sub_index}", flush=True)
yield sub_article
else:
# Buffer time.
buffer.append(article)
if len(buffer) % 100 == 0:
yield from _stream_from_buffer(buffer,
current_desired_size=current_desired_size,
pad_token=encoder.padding,
add_articles_to_end=args.add_extra_articles_to_end)
buffer = []
yield from _stream_from_buffer(buffer,
current_desired_size=current_desired_size,
pad_token=encoder.padding,
add_articles_to_end=args.add_extra_articles_to_end)
|
We apply a sliding window to fix long sequences, and use a buffer that combines short sequences.
|
buffered_and_sliding_window_article_iterator
|
python
|
rowanz/grover
|
realnews/prepare_lm_data.py
|
https://github.com/rowanz/grover/blob/master/realnews/prepare_lm_data.py
|
Apache-2.0
|
def _url_seems_ok(url, domain_to_allowed_subdomains):
"""
Check if the URL seems ok. if it does then we'll return a tuple of
CLEAN URL, main domain.
:param url:
:return:
"""
# Long URLs are usually bad
if len(url) > 200:
return False
# FIRST check if the domain is OK
ext = tldextract.extract(url)
main_domain = ext.domain + '.' + ext.suffix
allowed_subdomains = domain_to_allowed_subdomains.get(main_domain, None)
if allowed_subdomains is None:
return False
if isinstance(allowed_subdomains, list) and not ext.subdomain in allowed_subdomains:
return False
# Check for banned extensios
parsed = urlparse(url)
parsed = parsed._replace(query="", fragment="")
path_to_use = parsed.path
file_extension = os.path.splitext(path_to_use)[1]
if file_extension in BANNED_EXTENSIONS:
return False
# If there are two dotcoms then that's probably bad!
endings = len(re.findall(r'(\.com|\.co\.uk|\.net|\.org)', url))
if endings > 1:
return False
# Check for banned words
if not (is_banned_regex.search(url) is None):
return False
# AT A LATER DATE: we need to check if the URL was banned
return (parsed.geturl(), main_domain)
|
Check if the URL seems ok. if it does then we'll return a tuple of
CLEAN URL, main domain.
:param url:
:return:
|
_url_seems_ok
|
python
|
rowanz/grover
|
realnews/process_ccrawl.py
|
https://github.com/rowanz/grover/blob/master/realnews/process_ccrawl.py
|
Apache-2.0
|
def serialize(self):
"""
Return simple page object to JSONify and write to file.
"""
return {
'meta_lang': self.dummy_article.meta_lang,
'title': self.title,
'text': self.text,
'summary': self.summary,
'authors': self.authors,
'publish_date': self.publish_date
}
|
Return simple page object to JSONify and write to file.
|
serialize
|
python
|
rowanz/grover
|
realnews/process_ccrawl.py
|
https://github.com/rowanz/grover/blob/master/realnews/process_ccrawl.py
|
Apache-2.0
|
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
|
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
|
get_pairs
|
python
|
rowanz/grover
|
sample/encoder.py
|
https://github.com/rowanz/grover/blob/master/sample/encoder.py
|
Apache-2.0
|
def _tokenize_article_pieces(encoder, item):
"""
Turn the article into tokens
NOTE: in hindsight I kinda messed up here because the first token is always represented as a BPE continuation
rather than an initial token in its own right. whoops....
:param item: Contains things that need to be tokenized
fields are ['domain', 'date', 'authors', 'title', 'article', 'summary']
:return: dict
"""
article_pieces = {
'article': [encoder.begin_article] + encoder.encode(item['text']) + [encoder.end_article],
'domain': [encoder.begin_domain] + encoder.encode(item['domain']) + [encoder.end_domain],
'title': [encoder.begin_title] + encoder.encode(item['title']) + [encoder.end_title],
}
# 4/6: Attach the summary too, why the hell not
if item['summary'] and len(item['summary']) > 50:
article_pieces['summary'] = [encoder.begin_summary] + encoder.encode(item['summary']) + [encoder.end_summary]
# 5/6: date
date_split = item['publish_date'].split('-')
assert len(date_split) == 3
assert date_split[0].isdigit()
date_txt = ['January', 'February', 'March', 'April', 'May', 'June', 'July',
'August', 'September', 'October', 'November', 'December'][int(date_split[0]) - 1] + ' {}, {}'.format(
date_split[1], date_split[2])
article_pieces['date'] = [encoder.begin_date] + encoder.encode(date_txt) + [encoder.end_date]
# 6/6: authors
authors = ', '.join(item['authors'])
if len(authors) > 5:
article_pieces['authors'] = [encoder.begin_authors] + encoder.encode(authors) + [encoder.end_authors]
return article_pieces
|
Turn the article into tokens
NOTE: in hindsight I kinda messed up here because the first token is always represented as a BPE continuation
rather than an initial token in its own right. whoops....
:param item: Contains things that need to be tokenized
fields are ['domain', 'date', 'authors', 'title', 'article', 'summary']
:return: dict
|
_tokenize_article_pieces
|
python
|
rowanz/grover
|
sample/encoder.py
|
https://github.com/rowanz/grover/blob/master/sample/encoder.py
|
Apache-2.0
|
def _cut_tokens_to_add_stuff(tokens, stuff_to_add, desired_size, padding_token):
"""
The idea behind this function is to take away tokens from `tokens' such that tokens[:LENGTH] + stuff_to_add becomes
exactly at the right size (desired_size).
:param tokens:
:param stuff_to_add:
:param desired_size:
:return:
"""
if len(tokens) >= desired_size:
return tokens
# no way we can add this stuff
if len(stuff_to_add) >= desired_size:
return tokens
if (len(tokens) + len(stuff_to_add)) <= desired_size:
return tokens + stuff_to_add
# Otherwise we'll have to actually cut
tokens = tokens[:(desired_size - len(stuff_to_add) - 1)]
tokens.append(padding_token)
tokens.extend(stuff_to_add)
return tokens
|
The idea behind this function is to take away tokens from `tokens' such that tokens[:LENGTH] + stuff_to_add becomes
exactly at the right size (desired_size).
:param tokens:
:param stuff_to_add:
:param desired_size:
:return:
|
_cut_tokens_to_add_stuff
|
python
|
rowanz/grover
|
sample/encoder.py
|
https://github.com/rowanz/grover/blob/master/sample/encoder.py
|
Apache-2.0
|
def tokenize_for_grover_training(encoder, item, desired_size=1024, unconditional_prob=0.35, metadata_dropout_prob=0.1,
cut_prob=0.2):
"""
Not only will we tokenize an item with a BPE encoder, but we'll also put it in a nice format for language modeling.
The goal is to MINIMIZE PADDING. If we don't fill up the desired size of 1024 tokens then we're wasting compute.
The canonical order is
DOMAIN DATE AUTHORS TITLE ARTICLE SUMMARY
:param encoder:
:param item: Contains things like
{"url": "https://www.advocate.com/node/1010911",
"timestamp": "20180118211607",
"url_used": "https://web.archive.org/web/20180118211607id_/https://www.advocate.com/node/1010911",
"domain": "advocate.com",
"title": "Report: One-Third of Trump's Judicial Picks Are Anti-LGBT",
"text": ....
"summary": ....
"authors": list
"publish_date": ...
}
:param desired_size: the goal for how long the span will be
:param unconditional_prob: The probability that we will generate JUST THE TEXT first.
:param metadata_dropout_prob: The probability that we will drop out each item of metadata
:param cut_prob: The probability that, if we're already over the desired size, we'll cut the article and start
predicting metadata before the desired_size window ends.
:return:
"""
# Get all the bits and pieces
article_pieces = _tokenize_article_pieces(encoder, item)
canonical_metadata_order = ['domain', 'date', 'authors', 'title']
# unconditional_prob is probability we only generate the text first, without any metadata
switch = random.random()
if switch < unconditional_prob:
assignments = {'article': 'a'}
chunk_a = article_pieces.pop('article')
chunk_b = []
for x in canonical_metadata_order + ['summary']:
if random.random() > metadata_dropout_prob:
chunk_b.extend(article_pieces.pop(x, []))
assignments[x] = 'b'
elif switch < 0.5:
# Put everything in chunk_a, without dropout
assignments = {}
chunk_a = []
chunk_b = []
for x in canonical_metadata_order + ['article', 'summary']:
chunk_a.extend(article_pieces.pop(x, []))
assignments[x] = 'a'
else:
assignments = {}
chunk_a = []
chunk_b = []
for k in canonical_metadata_order + ['article', 'summary']:
if random.random() < metadata_dropout_prob and k not in ('article', 'title'):
pass
elif random.random() < 0.5:
if k != 'summary':
chunk_a.extend(article_pieces.pop(k, []))
assignments[k] = 'a'
else:
chunk_b.extend(article_pieces.pop(k, []))
assignments[k] = 'b'
if (len(chunk_a) + len(chunk_b)) <= desired_size:
return chunk_a + chunk_b
if (assignments.get('article', '') == 'a') and (len(chunk_b) > 0) and (random.random() < cut_prob):
return _cut_tokens_to_add_stuff(chunk_a, chunk_b, desired_size, encoder.padding)
tokens = chunk_a + chunk_b
return tokens
|
Not only will we tokenize an item with a BPE encoder, but we'll also put it in a nice format for language modeling.
The goal is to MINIMIZE PADDING. If we don't fill up the desired size of 1024 tokens then we're wasting compute.
The canonical order is
DOMAIN DATE AUTHORS TITLE ARTICLE SUMMARY
:param encoder:
:param item: Contains things like
{"url": "https://www.advocate.com/node/1010911",
"timestamp": "20180118211607",
"url_used": "https://web.archive.org/web/20180118211607id_/https://www.advocate.com/node/1010911",
"domain": "advocate.com",
"title": "Report: One-Third of Trump's Judicial Picks Are Anti-LGBT",
"text": ....
"summary": ....
"authors": list
"publish_date": ...
}
:param desired_size: the goal for how long the span will be
:param unconditional_prob: The probability that we will generate JUST THE TEXT first.
:param metadata_dropout_prob: The probability that we will drop out each item of metadata
:param cut_prob: The probability that, if we're already over the desired size, we'll cut the article and start
predicting metadata before the desired_size window ends.
:return:
|
tokenize_for_grover_training
|
python
|
rowanz/grover
|
sample/encoder.py
|
https://github.com/rowanz/grover/blob/master/sample/encoder.py
|
Apache-2.0
|
def sliding_window(article, max_seq_length, pad_token):
"""
Randomly sample some spans. It's a simple approximation of sliding window
:param tokens:
:param max_seq_length:
:return:
"""
# if it's shorter, no need for this
if len(article['input_ids']) <= max_seq_length:
amount_to_pad = max_seq_length - len(article['input_ids'])
article['input_ids'].extend([pad_token] * amount_to_pad)
yield article
return
num_spans = len(article['input_ids']) - max_seq_length + 1
weights = np.ones(num_spans, dtype=np.float32)
# weights[0] = max_seq_length
weights /= weights.sum()
num_to_yield = int(0.5 + len(article['input_ids']) / max_seq_length)
starts = np.random.choice(num_spans, size=num_to_yield, replace=False, p=weights)
input_ids = article.pop('input_ids')
for i in starts.tolist():
article['input_ids'] = input_ids[i:(i + max_seq_length)]
yield article
|
Randomly sample some spans. It's a simple approximation of sliding window
:param tokens:
:param max_seq_length:
:return:
|
sliding_window
|
python
|
rowanz/grover
|
sample/encoder.py
|
https://github.com/rowanz/grover/blob/master/sample/encoder.py
|
Apache-2.0
|
def format_context(encoder, news_article, target):
"""
Generates a news article given some partial information
:param news_article: Contains context
:param target: What we want to get an answer for.
:return:
"""
canonical_metadata_order = ['domain', 'date', 'authors', 'title', 'article']
tokens = []
for metadata_category in canonical_metadata_order:
metadata = news_article.get(metadata_category, '').strip()
# This MIGHT BE needed because I think during training time we never saw empty articles
# if metadata or ((metadata_category == 'article') and target != 'article'):
if (metadata_category == 'article') and (target != 'article'):
metadata = news_article.get('title', '') # Just copy from the title maybe?
if metadata:
tokens.append(encoder.__dict__[f'begin_{metadata_category}'])
tokens.extend(encoder.encode(metadata))
tokens.append(encoder.__dict__[f'end_{metadata_category}'])
assert target in (canonical_metadata_order + ['summary'])
tokens.append(encoder.__dict__[f'begin_{target}'])
return tokens
|
Generates a news article given some partial information
:param news_article: Contains context
:param target: What we want to get an answer for.
:return:
|
format_context
|
python
|
rowanz/grover
|
sample/encoder.py
|
https://github.com/rowanz/grover/blob/master/sample/encoder.py
|
Apache-2.0
|
def extract_generated_target(output_tokens, encoder, target):
"""
Given some tokens that were generated, extract the target
:param output_tokens: [num_tokens] thing that was generated
:param encoder: how they were encoded
:param target: the piece of metadata we wanted to generate!
:return:
"""
# Filter out first instance of start token
assert output_tokens.ndim == 1
start_tokens = output_tokens == encoder.__dict__[f'begin_{target}']
if np.any(start_tokens):
start_ind = np.argmax(start_tokens) + 1
else:
start_ind = 0
end_tokens = output_tokens == encoder.__dict__[f'end_{target}']
if np.any(end_tokens):
end_ind = np.argmax(end_tokens)
else:
end_ind = output_tokens.shape[0]
return {
'extraction': encoder.decode(output_tokens[start_ind:end_ind]),
'start_ind': start_ind,
'end_ind': end_ind,
}
|
Given some tokens that were generated, extract the target
:param output_tokens: [num_tokens] thing that was generated
:param encoder: how they were encoded
:param target: the piece of metadata we wanted to generate!
:return:
|
extract_generated_target
|
python
|
rowanz/grover
|
sample/encoder.py
|
https://github.com/rowanz/grover/blob/master/sample/encoder.py
|
Apache-2.0
|
def compute_distance_two_loops(self, X_test):
"""
Inefficient naive implementation, use only
as a way of understanding what kNN is doing
"""
num_test = X_test.shape[0]
num_train = self.X_train.shape[0]
distances = np.zeros((num_test, num_train))
for i in range(num_test):
for j in range(num_train):
# (Taking sqrt is not necessary: min distance won't change since sqrt is monotone)
distances[i, j] = np.sqrt(
self.eps + np.sum((X_test[i, :] - self.X_train[j, :]) ** 2)
)
return distances
|
Inefficient naive implementation, use only
as a way of understanding what kNN is doing
|
compute_distance_two_loops
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/algorithms/knn/knn.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/algorithms/knn/knn.py
|
MIT
|
def compute_distance_one_loop(self, X_test):
"""
Much better than two-loops but not as fast as fully vectorized version.
Utilize Numpy broadcasting in X_train - X_test[i,:]
"""
num_test = X_test.shape[0]
num_train = self.X_train.shape[0]
distances = np.zeros((num_test, num_train))
for i in range(num_test):
# (Taking sqrt is not necessary: min distance won't change since sqrt is monotone)
distances[i, :] = np.sqrt(
self.eps + np.sum((self.X_train - X_test[i, :]) ** 2, axis=1)
)
return distances
|
Much better than two-loops but not as fast as fully vectorized version.
Utilize Numpy broadcasting in X_train - X_test[i,:]
|
compute_distance_one_loop
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/algorithms/knn/knn.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/algorithms/knn/knn.py
|
MIT
|
def compute_distance_vectorized(self, X_test):
"""
Can be tricky to understand this, we utilize heavy
vecotorization as well as numpy broadcasting.
Idea: if we have two vectors a, b (two examples)
and for vectors we can compute (a-b)^2 = a^2 - 2a (dot) b + b^2
expanding on this and doing so for every vector lends to the
heavy vectorized formula for all examples at the same time.
"""
X_test_squared = np.sum(X_test ** 2, axis=1, keepdims=True)
X_train_squared = np.sum(self.X_train ** 2, axis=1, keepdims=True)
two_X_test_X_train = np.dot(X_test, self.X_train.T)
# (Taking sqrt is not necessary: min distance won't change since sqrt is monotone)
return np.sqrt(
self.eps + X_test_squared - 2 * two_X_test_X_train + X_train_squared.T
)
|
Can be tricky to understand this, we utilize heavy
vecotorization as well as numpy broadcasting.
Idea: if we have two vectors a, b (two examples)
and for vectors we can compute (a-b)^2 = a^2 - 2a (dot) b + b^2
expanding on this and doing so for every vector lends to the
heavy vectorized formula for all examples at the same time.
|
compute_distance_vectorized
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/algorithms/knn/knn.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/algorithms/knn/knn.py
|
MIT
|
def trim(im):
"""
Converts image to grayscale using cv2, then computes binary matrix
of the pixels that are above a certain threshold, then takes out
the first row where a certain percetage of the pixels are above the
threshold will be the first clip point. Same idea for col, max row, max col.
"""
percentage = 0.02
img = np.array(im)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
im = img_gray > 0.1 * np.mean(img_gray[img_gray != 0])
row_sums = np.sum(im, axis=1)
col_sums = np.sum(im, axis=0)
rows = np.where(row_sums > img.shape[1] * percentage)[0]
cols = np.where(col_sums > img.shape[0] * percentage)[0]
min_row, min_col = np.min(rows), np.min(cols)
max_row, max_col = np.max(rows), np.max(cols)
im_crop = img[min_row : max_row + 1, min_col : max_col + 1]
return Image.fromarray(im_crop)
|
Converts image to grayscale using cv2, then computes binary matrix
of the pixels that are above a certain threshold, then takes out
the first row where a certain percetage of the pixels are above the
threshold will be the first clip point. Same idea for col, max row, max col.
|
trim
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Kaggles/DiabeticRetinopathy/preprocess_images.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Kaggles/DiabeticRetinopathy/preprocess_images.py
|
MIT
|
def resize_maintain_aspect(image, desired_size):
"""
Stole this from some stackoverflow post but can't remember which,
this will add padding to maintain the aspect ratio.
"""
old_size = image.size # old_size[0] is in (width, height) format
ratio = float(desired_size) / max(old_size)
new_size = tuple([int(x * ratio) for x in old_size])
im = image.resize(new_size, Image.ANTIALIAS)
new_im = Image.new("RGB", (desired_size, desired_size))
new_im.paste(im, ((desired_size - new_size[0]) // 2, (desired_size - new_size[1]) // 2))
return new_im
|
Stole this from some stackoverflow post but can't remember which,
this will add padding to maintain the aspect ratio.
|
resize_maintain_aspect
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Kaggles/DiabeticRetinopathy/preprocess_images.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Kaggles/DiabeticRetinopathy/preprocess_images.py
|
MIT
|
def fast_image_resize(input_path_folder, output_path_folder, output_size=None):
"""
Uses multiprocessing to make it fast
"""
if not output_size:
warnings.warn("Need to specify output_size! For example: output_size=100")
exit()
if not os.path.exists(output_path_folder):
os.makedirs(output_path_folder)
jobs = [
(file, input_path_folder, output_path_folder, output_size)
for file in os.listdir(input_path_folder)
]
with Pool() as p:
list(tqdm(p.imap_unordered(save_single, jobs), total=len(jobs)))
|
Uses multiprocessing to make it fast
|
fast_image_resize
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Kaggles/DiabeticRetinopathy/preprocess_images.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Kaggles/DiabeticRetinopathy/preprocess_images.py
|
MIT
|
def check_accuracy(
loader, model, loss_fn, input_shape=None, toggle_eval=True, print_accuracy=True
):
"""
Check accuracy of model on data from loader
"""
if toggle_eval:
model.eval()
device = next(model.parameters()).device
num_correct = 0
num_samples = 0
y_preds = []
y_true = []
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
if input_shape:
x = x.reshape(x.shape[0], *input_shape)
scores = model(x)
predictions = torch.sigmoid(scores) > 0.5
y_preds.append(torch.clip(torch.sigmoid(scores), 0.005, 0.995).cpu().numpy())
y_true.append(y.cpu().numpy())
num_correct += (predictions.squeeze(1) == y).sum()
num_samples += predictions.size(0)
accuracy = num_correct / num_samples
if toggle_eval:
model.train()
if print_accuracy:
print(f"Accuracy: {accuracy * 100:.2f}%")
print(log_loss(np.concatenate(y_true, axis=0), np.concatenate(y_preds, axis=0)))
return accuracy
|
Check accuracy of model on data from loader
|
check_accuracy
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Kaggles/Dog vs Cat Competition/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Kaggles/Dog vs Cat Competition/utils.py
|
MIT
|
def get_submission(loader, dataset, model_15, model_4):
"""
This can be done a lot faster.. but it didn't take
too much time to do it in this inefficient way
"""
model_15.eval()
model_4.eval()
id_lookup = pd.read_csv("data/IdLookupTable.csv")
predictions = []
image_id = 1
for image, label in tqdm(loader):
image = image.to(config.DEVICE)
preds_15 = torch.clip(model_15(image).squeeze(0), 0.0, 96.0)
preds_4 = torch.clip(model_4(image).squeeze(0), 0.0, 96.0)
feature_names = id_lookup.loc[id_lookup["ImageId"] == image_id]["FeatureName"]
for feature_name in feature_names:
feature_index = dataset.category_names.index(feature_name)
if feature_names.shape[0] < 10:
predictions.append(preds_4[feature_index].item())
else:
predictions.append(preds_15[feature_index].item())
image_id += 1
df = pd.DataFrame({"RowId": np.arange(1, len(predictions)+1), "Location": predictions})
df.to_csv("submission.csv", index=False)
model_15.train()
model_4.train()
|
This can be done a lot faster.. but it didn't take
too much time to do it in this inefficient way
|
get_submission
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Kaggles/Facial Keypoint Detection Competition/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Kaggles/Facial Keypoint Detection Competition/utils.py
|
MIT
|
def precision(y_true, y_pred):
"""
Fraction of True Positive Elements divided by total number of positive predicted units
How I view it: Assuming we say someone has cancer: how often are we correct?
It tells us how much we can trust the model when it predicts an individual as positive.
"""
tp = true_negatives(y_true, y_pred)
fp = false_positives(y_true, y_pred)
return tp / (tp + fp)
|
Fraction of True Positive Elements divided by total number of positive predicted units
How I view it: Assuming we say someone has cancer: how often are we correct?
It tells us how much we can trust the model when it predicts an individual as positive.
|
precision
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/ml_metrics/metrics.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/ml_metrics/metrics.py
|
MIT
|
def recall(y_true, y_pred):
"""
Recall meaasure the model's predictive accuracy for the positive class.
How I view it, out of all the people that has cancer: how often are
we able to detect it?
"""
tp = true_negatives(y_true, y_pred)
fn = false_negatives(y_true, y_pred)
return tp / (tp + fn)
|
Recall meaasure the model's predictive accuracy for the positive class.
How I view it, out of all the people that has cancer: how often are
we able to detect it?
|
recall
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/ml_metrics/metrics.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/ml_metrics/metrics.py
|
MIT
|
def sort_array(encoder, decoder, device, arr=None):
"""
A very simple example of use of the model
Input: encoder nn.Module
decoder nn.Module
device
array to sort (optional)
"""
if arr is None:
arr = ask_user()
with torch.no_grad():
while arr != "q":
# Avoid numerical errors by rounding to max_len
arr = eval(arr)
lengths = [
len(str(elem).split(".")[1]) if len(str(elem).split(".")) > 1 else 0
for elem in arr
]
max_len = max(lengths)
source = torch.tensor(arr, dtype=torch.float).to(device).unsqueeze(1)
batch_size = source.shape[1]
target_len = source.shape[0] + 1
outputs = torch.zeros(target_len, batch_size, target_len - 1).to(device)
encoder_states, hidden, cell = encoder(source)
# First input will be <SOS> token
x = torch.tensor([-1], dtype=torch.float).to(device)
predictions = torch.zeros((target_len)).to(device)
for t in range(1, target_len):
# At every time step use encoder_states and update hidden, cell
attention, energy, hidden, cell = decoder(
x, encoder_states, hidden, cell
)
# Store prediction for current time step
outputs[t] = energy.permute(1, 0)
# Get the best word the Decoder predicted (index in the vocabulary)
best_guess = attention.argmax(0)
predictions[t] = best_guess.item()
x = torch.tensor([best_guess.item()], dtype=torch.float).to(device)
output = [
round(source[predictions[1:].long()][i, :].item(), max_len)
for i in range(source.shape[0])
]
print(f"Here's the result: {output}")
arr = ask_user()
|
A very simple example of use of the model
Input: encoder nn.Module
decoder nn.Module
device
array to sort (optional)
|
sort_array
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Projects/DeepSort/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Projects/DeepSort/utils.py
|
MIT
|
def __init__(self, input_size, num_classes):
"""
Here we define the layers of the network. We create two fully connected layers
Parameters:
input_size: the size of the input, in this case 784 (28x28)
num_classes: the number of classes we want to predict, in this case 10 (0-9)
"""
super(NN, self).__init__()
# Our first linear layer take input_size, in this case 784 nodes to 50
# and our second linear layer takes 50 to the num_classes we have, in
# this case 10.
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
|
Here we define the layers of the network. We create two fully connected layers
Parameters:
input_size: the size of the input, in this case 784 (28x28)
num_classes: the number of classes we want to predict, in this case 10 (0-9)
|
__init__
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/Basics/pytorch_simple_fullynet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/Basics/pytorch_simple_fullynet.py
|
MIT
|
def forward(self, x):
"""
x here is the mnist images and we run it through fc1, fc2 that we created above.
we also add a ReLU activation function in between and for that (since it has no parameters)
I recommend using nn.functional (F)
Parameters:
x: mnist images
Returns:
out: the output of the network
"""
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
|
x here is the mnist images and we run it through fc1, fc2 that we created above.
we also add a ReLU activation function in between and for that (since it has no parameters)
I recommend using nn.functional (F)
Parameters:
x: mnist images
Returns:
out: the output of the network
|
forward
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/Basics/pytorch_simple_fullynet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/Basics/pytorch_simple_fullynet.py
|
MIT
|
def check_accuracy(loader, model):
"""
Check accuracy of our trained model given a loader and a model
Parameters:
loader: torch.utils.data.DataLoader
A loader for the dataset you want to check accuracy on
model: nn.Module
The model you want to check accuracy on
Returns:
acc: float
The accuracy of the model on the dataset given by the loader
"""
num_correct = 0
num_samples = 0
model.eval()
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
with torch.no_grad():
# Loop through the data
for x, y in loader:
# Move data to device
x = x.to(device=device)
y = y.to(device=device)
# Get to correct shape
x = x.reshape(x.shape[0], -1)
# Forward pass
scores = model(x)
_, predictions = scores.max(1)
# Check how many we got correct
num_correct += (predictions == y).sum()
# Keep track of number of samples
num_samples += predictions.size(0)
model.train()
return num_correct / num_samples
|
Check accuracy of our trained model given a loader and a model
Parameters:
loader: torch.utils.data.DataLoader
A loader for the dataset you want to check accuracy on
model: nn.Module
The model you want to check accuracy on
Returns:
acc: float
The accuracy of the model on the dataset given by the loader
|
check_accuracy
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/Basics/pytorch_simple_fullynet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/Basics/pytorch_simple_fullynet.py
|
MIT
|
def visualize_bbox(img, bbox, class_name, color=(255, 0, 0), thickness=5):
"""Visualizes a single bounding box on the image"""
x_min, y_min, x_max, y_max = map(int, bbox)
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color, thickness)
return img
|
Visualizes a single bounding box on the image
|
visualize_bbox
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/Basics/albumentations_tutorial/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/Basics/albumentations_tutorial/utils.py
|
MIT
|
def fade_in(self, alpha, downscaled, out):
"""Used to fade in downscaled using avg pooling and output from CNN"""
# alpha should be scalar within [0, 1], and upscale.shape == generated.shape
return alpha * out + (1 - alpha) * downscaled
|
Used to fade in downscaled using avg pooling and output from CNN
|
fade_in
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/GANs/ProGAN/model.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/GANs/ProGAN/model.py
|
MIT
|
def generate_examples(gen, steps, truncation=0.7, n=100):
"""
Tried using truncation trick here but not sure it actually helped anything, you can
remove it if you like and just sample from torch.randn
"""
gen.eval()
alpha = 1.0
for i in range(n):
with torch.no_grad():
noise = torch.tensor(truncnorm.rvs(-truncation, truncation, size=(1, config.Z_DIM, 1, 1)), device=config.DEVICE, dtype=torch.float32)
img = gen(noise, alpha, steps)
save_image(img*0.5+0.5, f"saved_examples/img_{i}.png")
gen.train()
|
Tried using truncation trick here but not sure it actually helped anything, you can
remove it if you like and just sample from torch.randn
|
generate_examples
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/GANs/ProGAN/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/GANs/ProGAN/utils.py
|
MIT
|
def fade_in(self, alpha, downscaled, out):
"""Used to fade in downscaled using avg pooling and output from CNN"""
# alpha should be scalar within [0, 1], and upscale.shape == generated.shape
return alpha * out + (1 - alpha) * downscaled
|
Used to fade in downscaled using avg pooling and output from CNN
|
fade_in
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/GANs/StyleGAN/model.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/GANs/StyleGAN/model.py
|
MIT
|
def __init__(self, gamma=0.99, save=True, save_frequency=100, save_filename="ema_weights.pth"):
"""
Initialize the weight to which we will do the
exponential moving average and the dictionary
where we store the model parameters
"""
self.gamma = gamma
self.registered = {}
self.save_filename = save_filename
self.save_frequency = save_frequency
self.count = 0
if save_filename in os.listdir("."):
self.registered = torch.load(self.save_filename)
if not save:
warnings.warn("Note that the exponential moving average weights will not be saved to a .pth file!")
|
Initialize the weight to which we will do the
exponential moving average and the dictionary
where we store the model parameters
|
__init__
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/GANs/StyleGAN/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/GANs/StyleGAN/utils.py
|
MIT
|
def register_weights(self, model):
"""
Registers the weights of the model which will
later be used when we take the moving average
"""
for name, param in model.named_parameters():
if param.requires_grad:
self.registered[name] = param.clone().detach()
|
Registers the weights of the model which will
later be used when we take the moving average
|
register_weights
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/GANs/StyleGAN/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/GANs/StyleGAN/utils.py
|
MIT
|
def inference(digit, num_examples=1):
"""
Generates (num_examples) of a particular digit.
Specifically we extract an example of each digit,
then after we have the mu, sigma representation for
each digit we can sample from that.
After we sample we can run the decoder part of the VAE
and generate examples.
"""
images = []
idx = 0
for x, y in dataset:
if y == idx:
images.append(x)
idx += 1
if idx == 10:
break
encodings_digit = []
for d in range(10):
with torch.no_grad():
mu, sigma = model.encode(images[d].view(1, 784))
encodings_digit.append((mu, sigma))
mu, sigma = encodings_digit[digit]
for example in range(num_examples):
epsilon = torch.randn_like(sigma)
z = mu + sigma * epsilon
out = model.decode(z)
out = out.view(-1, 1, 28, 28)
save_image(out, f"generated_{digit}_ex{example}.png")
|
Generates (num_examples) of a particular digit.
Specifically we extract an example of each digit,
then after we have the mu, sigma representation for
each digit we can sample from that.
After we sample we can run the decoder part of the VAE
and generate examples.
|
inference
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/more_advanced/VAE/train.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/VAE/train.py
|
MIT
|
def inference(model, dataset, digit, num_examples=1):
"""
Generates (num_examples) of a particular digit.
Specifically we extract an example of each digit,
then after we have the mu, sigma representation for
each digit we can sample from that.
After we sample we can run the decoder part of the VAE
and generate examples.
"""
images = []
idx = 0
for x, y in dataset:
if y == idx:
images.append(x)
idx += 1
if idx == 10:
break
encodings_digit = []
for d in range(10):
with torch.no_grad():
mu, sigma = model.encode(images[d].view(1, 784))
encodings_digit.append((mu, sigma))
mu, sigma = encodings_digit[digit]
for example in range(num_examples):
epsilon = torch.randn_like(sigma)
z = mu + sigma * epsilon
out = model.decode(z)
out = out.view(-1, 1, 28, 28)
save_image(out, f"generated_{digit}_ex{example}.png")
|
Generates (num_examples) of a particular digit.
Specifically we extract an example of each digit,
then after we have the mu, sigma representation for
each digit we can sample from that.
After we sample we can run the decoder part of the VAE
and generate examples.
|
inference
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/more_advanced/VAE/lightning_vae/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/VAE/lightning_vae/utils.py
|
MIT
|
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
"""
Calculates intersection over union
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct Labels of Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
"""
# Slicing idx:idx+1 in order to keep tensor dimensionality
# Doing ... in indexing if there would be additional dimensions
# Like for Yolo algorithm which would have (N, S, S, 4) in shape
if box_format == "midpoint":
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
elif box_format == "corners":
box1_x1 = boxes_preds[..., 0:1]
box1_y1 = boxes_preds[..., 1:2]
box1_x2 = boxes_preds[..., 2:3]
box1_y2 = boxes_preds[..., 3:4]
box2_x1 = boxes_labels[..., 0:1]
box2_y1 = boxes_labels[..., 1:2]
box2_x2 = boxes_labels[..., 2:3]
box2_y2 = boxes_labels[..., 3:4]
x1 = torch.max(box1_x1, box2_x1)
y1 = torch.max(box1_y1, box2_y1)
x2 = torch.min(box1_x2, box2_x2)
y2 = torch.min(box1_y2, box2_y2)
# Need clamp(0) in case they do not intersect, then we want intersection to be 0
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
Calculates intersection over union
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct Labels of Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
|
intersection_over_union
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/metrics/iou.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/metrics/iou.py
|
MIT
|
def mean_average_precision(
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
):
"""
Calculates mean average precision
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
"""
# list storing all AP for respective classes
average_precisions = []
# used for numerical stability later on
epsilon = 1e-6
for c in range(num_classes):
detections = []
ground_truths = []
# Go through all predictions and targets,
# and only add the ones that belong to the
# current class c
for detection in pred_boxes:
if detection[1] == c:
detections.append(detection)
for true_box in true_boxes:
if true_box[1] == c:
ground_truths.append(true_box)
# find the amount of bboxes for each training example
# Counter here finds how many ground truth bboxes we get
# for each training example, so let's say img 0 has 3,
# img 1 has 5 then we will obtain a dictionary with:
# amount_bboxes = {0:3, 1:5}
amount_bboxes = Counter([gt[0] for gt in ground_truths])
# We then go through each key, val in this dictionary
# and convert to the following (w.r.t same example):
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
for key, val in amount_bboxes.items():
amount_bboxes[key] = torch.zeros(val)
# sort by box probabilities which is index 2
detections.sort(key=lambda x: x[2], reverse=True)
TP = torch.zeros((len(detections)))
FP = torch.zeros((len(detections)))
total_true_bboxes = len(ground_truths)
# If none exists for this class then we can safely skip
if total_true_bboxes == 0:
continue
for detection_idx, detection in enumerate(detections):
# Only take out the ground_truths that have the same
# training idx as detection
ground_truth_img = [
bbox for bbox in ground_truths if bbox[0] == detection[0]
]
num_gts = len(ground_truth_img)
best_iou = 0
for idx, gt in enumerate(ground_truth_img):
iou = intersection_over_union(
torch.tensor(detection[3:]),
torch.tensor(gt[3:]),
box_format=box_format,
)
if iou > best_iou:
best_iou = iou
best_gt_idx = idx
if best_iou > iou_threshold:
# only detect ground truth detection once
if amount_bboxes[detection[0]][best_gt_idx] == 0:
# true positive and add this bounding box to seen
TP[detection_idx] = 1
amount_bboxes[detection[0]][best_gt_idx] = 1
else:
FP[detection_idx] = 1
# if IOU is lower then the detection is a false positive
else:
FP[detection_idx] = 1
TP_cumsum = torch.cumsum(TP, dim=0)
FP_cumsum = torch.cumsum(FP, dim=0)
recalls = TP_cumsum / (total_true_bboxes + epsilon)
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
precisions = torch.cat((torch.tensor([1]), precisions))
recalls = torch.cat((torch.tensor([0]), recalls))
# torch.trapz for numerical integration
average_precisions.append(torch.trapz(precisions, recalls))
return sum(average_precisions) / len(average_precisions)
|
Calculates mean average precision
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
|
mean_average_precision
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/metrics/mean_avg_precision.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/metrics/mean_avg_precision.py
|
MIT
|
def nms(bboxes, iou_threshold, threshold, box_format="corners"):
"""
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
"""
assert type(bboxes) == list
bboxes = [box for box in bboxes if box[1] > threshold]
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
bboxes_after_nms = []
while bboxes:
chosen_box = bboxes.pop(0)
bboxes = [
box
for box in bboxes
if box[0] != chosen_box[0]
or intersection_over_union(
torch.tensor(chosen_box[2:]),
torch.tensor(box[2:]),
box_format=box_format,
)
< iou_threshold
]
bboxes_after_nms.append(chosen_box)
return bboxes_after_nms
|
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
|
nms
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/metrics/nms.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/metrics/nms.py
|
MIT
|
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
"""
Calculates intersection over union
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
"""
if box_format == "midpoint":
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
if box_format == "corners":
box1_x1 = boxes_preds[..., 0:1]
box1_y1 = boxes_preds[..., 1:2]
box1_x2 = boxes_preds[..., 2:3]
box1_y2 = boxes_preds[..., 3:4] # (N, 1)
box2_x1 = boxes_labels[..., 0:1]
box2_y1 = boxes_labels[..., 1:2]
box2_x2 = boxes_labels[..., 2:3]
box2_y2 = boxes_labels[..., 3:4]
x1 = torch.max(box1_x1, box2_x1)
y1 = torch.max(box1_y1, box2_y1)
x2 = torch.min(box1_x2, box2_x2)
y2 = torch.min(box1_y2, box2_y2)
# .clamp(0) is for the case when they do not intersect
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
Calculates intersection over union
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
|
intersection_over_union
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLO/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLO/utils.py
|
MIT
|
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
"""
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
"""
assert type(bboxes) == list
bboxes = [box for box in bboxes if box[1] > threshold]
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
bboxes_after_nms = []
while bboxes:
chosen_box = bboxes.pop(0)
bboxes = [
box
for box in bboxes
if box[0] != chosen_box[0]
or intersection_over_union(
torch.tensor(chosen_box[2:]),
torch.tensor(box[2:]),
box_format=box_format,
)
< iou_threshold
]
bboxes_after_nms.append(chosen_box)
return bboxes_after_nms
|
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
|
non_max_suppression
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLO/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLO/utils.py
|
MIT
|
def mean_average_precision(
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
):
"""
Calculates mean average precision
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
"""
# list storing all AP for respective classes
average_precisions = []
# used for numerical stability later on
epsilon = 1e-6
for c in range(num_classes):
detections = []
ground_truths = []
# Go through all predictions and targets,
# and only add the ones that belong to the
# current class c
for detection in pred_boxes:
if detection[1] == c:
detections.append(detection)
for true_box in true_boxes:
if true_box[1] == c:
ground_truths.append(true_box)
# find the amount of bboxes for each training example
# Counter here finds how many ground truth bboxes we get
# for each training example, so let's say img 0 has 3,
# img 1 has 5 then we will obtain a dictionary with:
# amount_bboxes = {0:3, 1:5}
amount_bboxes = Counter([gt[0] for gt in ground_truths])
# We then go through each key, val in this dictionary
# and convert to the following (w.r.t same example):
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
for key, val in amount_bboxes.items():
amount_bboxes[key] = torch.zeros(val)
# sort by box probabilities which is index 2
detections.sort(key=lambda x: x[2], reverse=True)
TP = torch.zeros((len(detections)))
FP = torch.zeros((len(detections)))
total_true_bboxes = len(ground_truths)
# If none exists for this class then we can safely skip
if total_true_bboxes == 0:
continue
for detection_idx, detection in enumerate(detections):
# Only take out the ground_truths that have the same
# training idx as detection
ground_truth_img = [
bbox for bbox in ground_truths if bbox[0] == detection[0]
]
num_gts = len(ground_truth_img)
best_iou = 0
for idx, gt in enumerate(ground_truth_img):
iou = intersection_over_union(
torch.tensor(detection[3:]),
torch.tensor(gt[3:]),
box_format=box_format,
)
if iou > best_iou:
best_iou = iou
best_gt_idx = idx
if best_iou > iou_threshold:
# only detect ground truth detection once
if amount_bboxes[detection[0]][best_gt_idx] == 0:
# true positive and add this bounding box to seen
TP[detection_idx] = 1
amount_bboxes[detection[0]][best_gt_idx] = 1
else:
FP[detection_idx] = 1
# if IOU is lower then the detection is a false positive
else:
FP[detection_idx] = 1
TP_cumsum = torch.cumsum(TP, dim=0)
FP_cumsum = torch.cumsum(FP, dim=0)
recalls = TP_cumsum / (total_true_bboxes + epsilon)
precisions = torch.divide(TP_cumsum, (TP_cumsum + FP_cumsum + epsilon))
precisions = torch.cat((torch.tensor([1]), precisions))
recalls = torch.cat((torch.tensor([0]), recalls))
# torch.trapz for numerical integration
average_precisions.append(torch.trapz(precisions, recalls))
return sum(average_precisions) / len(average_precisions)
|
Calculates mean average precision
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
|
mean_average_precision
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLO/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLO/utils.py
|
MIT
|
def plot_image(image, boxes):
"""Plots predicted bounding boxes on the image"""
im = np.array(image)
height, width, _ = im.shape
# Create figure and axes
fig, ax = plt.subplots(1)
# Display the image
ax.imshow(im)
# box[0] is x midpoint, box[2] is width
# box[1] is y midpoint, box[3] is height
# Create a Rectangle potch
for box in boxes:
box = box[2:]
assert len(box) == 4, "Got more values than in x, y, w, h, in a box!"
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
rect = patches.Rectangle(
(upper_left_x * width, upper_left_y * height),
box[2] * width,
box[3] * height,
linewidth=1,
edgecolor="r",
facecolor="none",
)
# Add the patch to the Axes
ax.add_patch(rect)
plt.show()
|
Plots predicted bounding boxes on the image
|
plot_image
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLO/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLO/utils.py
|
MIT
|
def convert_cellboxes(predictions, S=7):
"""
Converts bounding boxes output from Yolo with
an image split size of S into entire image ratios
rather than relative to cell ratios. Tried to do this
vectorized, but this resulted in quite difficult to read
code... Use as a black box? Or implement a more intuitive,
using 2 for loops iterating range(S) and convert them one
by one, resulting in a slower but more readable implementation.
"""
predictions = predictions.to("cpu")
batch_size = predictions.shape[0]
predictions = predictions.reshape(batch_size, 7, 7, 30)
bboxes1 = predictions[..., 21:25]
bboxes2 = predictions[..., 26:30]
scores = torch.cat(
(predictions[..., 20].unsqueeze(0), predictions[..., 25].unsqueeze(0)), dim=0
)
best_box = scores.argmax(0).unsqueeze(-1)
best_boxes = bboxes1 * (1 - best_box) + best_box * bboxes2
cell_indices = torch.arange(7).repeat(batch_size, 7, 1).unsqueeze(-1)
x = 1 / S * (best_boxes[..., :1] + cell_indices)
y = 1 / S * (best_boxes[..., 1:2] + cell_indices.permute(0, 2, 1, 3))
w_y = 1 / S * best_boxes[..., 2:4]
converted_bboxes = torch.cat((x, y, w_y), dim=-1)
predicted_class = predictions[..., :20].argmax(-1).unsqueeze(-1)
best_confidence = torch.max(predictions[..., 20], predictions[..., 25]).unsqueeze(
-1
)
converted_preds = torch.cat(
(predicted_class, best_confidence, converted_bboxes), dim=-1
)
return converted_preds
|
Converts bounding boxes output from Yolo with
an image split size of S into entire image ratios
rather than relative to cell ratios. Tried to do this
vectorized, but this resulted in quite difficult to read
code... Use as a black box? Or implement a more intuitive,
using 2 for loops iterating range(S) and convert them one
by one, resulting in a slower but more readable implementation.
|
convert_cellboxes
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLO/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLO/utils.py
|
MIT
|
def iou_width_height(boxes1, boxes2):
"""
Parameters:
boxes1 (tensor): width and height of the first bounding boxes
boxes2 (tensor): width and height of the second bounding boxes
Returns:
tensor: Intersection over union of the corresponding boxes
"""
intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
boxes1[..., 1], boxes2[..., 1]
)
union = (
boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
)
return intersection / union
|
Parameters:
boxes1 (tensor): width and height of the first bounding boxes
boxes2 (tensor): width and height of the second bounding boxes
Returns:
tensor: Intersection over union of the corresponding boxes
|
iou_width_height
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLOv3/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLOv3/utils.py
|
MIT
|
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
"""
Video explanation of this function:
https://youtu.be/XXYG5ZWtjj0
This function calculates intersection over union (iou) given pred boxes
and target boxes.
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
"""
if box_format == "midpoint":
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
if box_format == "corners":
box1_x1 = boxes_preds[..., 0:1]
box1_y1 = boxes_preds[..., 1:2]
box1_x2 = boxes_preds[..., 2:3]
box1_y2 = boxes_preds[..., 3:4]
box2_x1 = boxes_labels[..., 0:1]
box2_y1 = boxes_labels[..., 1:2]
box2_x2 = boxes_labels[..., 2:3]
box2_y2 = boxes_labels[..., 3:4]
x1 = torch.max(box1_x1, box2_x1)
y1 = torch.max(box1_y1, box2_y1)
x2 = torch.min(box1_x2, box2_x2)
y2 = torch.min(box1_y2, box2_y2)
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
Video explanation of this function:
https://youtu.be/XXYG5ZWtjj0
This function calculates intersection over union (iou) given pred boxes
and target boxes.
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
|
intersection_over_union
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLOv3/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLOv3/utils.py
|
MIT
|
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
"""
Video explanation of this function:
https://youtu.be/YDkjWEN8jNA
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
"""
assert type(bboxes) == list
bboxes = [box for box in bboxes if box[1] > threshold]
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
bboxes_after_nms = []
while bboxes:
chosen_box = bboxes.pop(0)
bboxes = [
box
for box in bboxes
if box[0] != chosen_box[0]
or intersection_over_union(
torch.tensor(chosen_box[2:]),
torch.tensor(box[2:]),
box_format=box_format,
)
< iou_threshold
]
bboxes_after_nms.append(chosen_box)
return bboxes_after_nms
|
Video explanation of this function:
https://youtu.be/YDkjWEN8jNA
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
|
non_max_suppression
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLOv3/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLOv3/utils.py
|
MIT
|
def mean_average_precision(
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
):
"""
Video explanation of this function:
https://youtu.be/FppOzcDvaDI
This function calculates mean average precision (mAP)
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
"""
# list storing all AP for respective classes
average_precisions = []
# used for numerical stability later on
epsilon = 1e-6
for c in range(num_classes):
detections = []
ground_truths = []
# Go through all predictions and targets,
# and only add the ones that belong to the
# current class c
for detection in pred_boxes:
if detection[1] == c:
detections.append(detection)
for true_box in true_boxes:
if true_box[1] == c:
ground_truths.append(true_box)
# find the amount of bboxes for each training example
# Counter here finds how many ground truth bboxes we get
# for each training example, so let's say img 0 has 3,
# img 1 has 5 then we will obtain a dictionary with:
# amount_bboxes = {0:3, 1:5}
amount_bboxes = Counter([gt[0] for gt in ground_truths])
# We then go through each key, val in this dictionary
# and convert to the following (w.r.t same example):
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
for key, val in amount_bboxes.items():
amount_bboxes[key] = torch.zeros(val)
# sort by box probabilities which is index 2
detections.sort(key=lambda x: x[2], reverse=True)
TP = torch.zeros((len(detections)))
FP = torch.zeros((len(detections)))
total_true_bboxes = len(ground_truths)
# If none exists for this class then we can safely skip
if total_true_bboxes == 0:
continue
for detection_idx, detection in enumerate(detections):
# Only take out the ground_truths that have the same
# training idx as detection
ground_truth_img = [
bbox for bbox in ground_truths if bbox[0] == detection[0]
]
num_gts = len(ground_truth_img)
best_iou = 0
for idx, gt in enumerate(ground_truth_img):
iou = intersection_over_union(
torch.tensor(detection[3:]),
torch.tensor(gt[3:]),
box_format=box_format,
)
if iou > best_iou:
best_iou = iou
best_gt_idx = idx
if best_iou > iou_threshold:
# only detect ground truth detection once
if amount_bboxes[detection[0]][best_gt_idx] == 0:
# true positive and add this bounding box to seen
TP[detection_idx] = 1
amount_bboxes[detection[0]][best_gt_idx] = 1
else:
FP[detection_idx] = 1
# if IOU is lower then the detection is a false positive
else:
FP[detection_idx] = 1
TP_cumsum = torch.cumsum(TP, dim=0)
FP_cumsum = torch.cumsum(FP, dim=0)
recalls = TP_cumsum / (total_true_bboxes + epsilon)
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
precisions = torch.cat((torch.tensor([1]), precisions))
recalls = torch.cat((torch.tensor([0]), recalls))
# torch.trapz for numerical integration
average_precisions.append(torch.trapz(precisions, recalls))
return sum(average_precisions) / len(average_precisions)
|
Video explanation of this function:
https://youtu.be/FppOzcDvaDI
This function calculates mean average precision (mAP)
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
|
mean_average_precision
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLOv3/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLOv3/utils.py
|
MIT
|
def plot_image(image, boxes):
"""Plots predicted bounding boxes on the image"""
cmap = plt.get_cmap("tab20b")
class_labels = config.COCO_LABELS if config.DATASET=='COCO' else config.PASCAL_CLASSES
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
im = np.array(image)
height, width, _ = im.shape
# Create figure and axes
fig, ax = plt.subplots(1)
# Display the image
ax.imshow(im)
# box[0] is x midpoint, box[2] is width
# box[1] is y midpoint, box[3] is height
# Create a Rectangle patch
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
rect = patches.Rectangle(
(upper_left_x * width, upper_left_y * height),
box[2] * width,
box[3] * height,
linewidth=2,
edgecolor=colors[int(class_pred)],
facecolor="none",
)
# Add the patch to the Axes
ax.add_patch(rect)
plt.text(
upper_left_x * width,
upper_left_y * height,
s=class_labels[int(class_pred)],
color="white",
verticalalignment="top",
bbox={"color": colors[int(class_pred)], "pad": 0},
)
plt.show()
|
Plots predicted bounding boxes on the image
|
plot_image
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLOv3/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLOv3/utils.py
|
MIT
|
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
"""
Scales the predictions coming from the model to
be relative to the entire image such that they for example later
can be plotted or.
INPUT:
predictions: tensor of size (N, 3, S, S, num_classes+5)
anchors: the anchors used for the predictions
S: the number of cells the image is divided in on the width (and height)
is_preds: whether the input is predictions or the true bounding boxes
OUTPUT:
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
object score, bounding box coordinates
"""
BATCH_SIZE = predictions.shape[0]
num_anchors = len(anchors)
box_predictions = predictions[..., 1:5]
if is_preds:
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
scores = torch.sigmoid(predictions[..., 0:1])
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
else:
scores = predictions[..., 0:1]
best_class = predictions[..., 5:6]
cell_indices = (
torch.arange(S)
.repeat(predictions.shape[0], 3, S, 1)
.unsqueeze(-1)
.to(predictions.device)
)
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
w_h = 1 / S * box_predictions[..., 2:4]
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
return converted_bboxes.tolist()
|
Scales the predictions coming from the model to
be relative to the entire image such that they for example later
can be plotted or.
INPUT:
predictions: tensor of size (N, 3, S, S, num_classes+5)
anchors: the anchors used for the predictions
S: the number of cells the image is divided in on the width (and height)
is_preds: whether the input is predictions or the true bounding boxes
OUTPUT:
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
object score, bounding box coordinates
|
cells_to_bboxes
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/Pytorch/object_detection/YOLOv3/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLOv3/utils.py
|
MIT
|
def plot_to_image(figure):
"""Converts the matplotlib plot specified by 'figure' to a PNG image and
returns it. The supplied figure is closed and inaccessible after this call."""
# Save the plot to a PNG in memory.
buf = io.BytesIO()
plt.savefig(buf, format="png")
# Closing the figure prevents it from being displayed directly inside
# the notebook.
plt.close(figure)
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
return image
|
Converts the matplotlib plot specified by 'figure' to a PNG image and
returns it. The supplied figure is closed and inaccessible after this call.
|
plot_to_image
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/Basics/tutorial17-tensorboard/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/Basics/tutorial17-tensorboard/utils.py
|
MIT
|
def create_sprite(data):
"""
Tile images into sprite image.
Add any necessary padding
"""
# For B&W or greyscale images
if len(data.shape) == 3:
data = np.tile(data[..., np.newaxis], (1, 1, 1, 3))
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, 0), (0, 0))
data = np.pad(data, padding, mode="constant", constant_values=0)
# Tile images into sprite
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3, 4))
# print(data.shape) => (n, image_height, n, image_width, 3)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
# print(data.shape) => (n * image_height, n * image_width, 3)
return data
|
Tile images into sprite image.
Add any necessary padding
|
create_sprite
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/Basics/tutorial17-tensorboard/utils.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/Basics/tutorial17-tensorboard/utils.py
|
MIT
|
def AlexNet(input_shape: typing.Tuple[int], classes: int = 1000) -> Model:
"""
Implementation of the AlexNet architecture.
Arguments:
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
Note:
when you read the paper, you will notice that the channels (filters) in the diagram is only
half of what I have written below. That is because in the diagram, they only showed model for
one GPU (I guess for simplicity). However, during the ILSVRC, they run the network across 2 NVIDIA GTA 580 3GB GPUs.
Also, in paper, they used Local Response Normalization. This can also be done in Keras with Lambda layer.
You can also use BatchNormalization layer instead.
"""
# convert input shape into tensor
X_input = Input(input_shape)
# NOTE: layer 1-5 is conv-layers
# layer 1
X = Conv2D(
filters = 96,
kernel_size = (11, 11),
strides = (4, 4),
activation = "relu",
padding = "same",
)(X_input)
X = MaxPooling2D(pool_size = (3, 3), strides = (2, 2))(X)
X = Lambda(tf.nn.local_response_normalization)(X)
# layer 2
X = Conv2D(
filters = 256,
kernel_size = (5, 5),
strides = (1, 1),
activation = "relu",
padding = "same",
)(X)
X = MaxPooling2D(pool_size = (3, 3), strides = (2, 2))(X)
X = Lambda(tf.nn.local_response_normalization)(X)
# layer 3
X = Conv2D(
filters = 384,
kernel_size = (3, 3),
strides = (1, 1),
activation = "relu",
padding = "same",
)(X)
# layer 4
X = Conv2D(
filters = 384,
kernel_size = (3, 3),
strides = (1, 1),
activation = "relu",
padding = "same",
)(X)
# layer 5
X = Conv2D(
filters = 256,
kernel_size = (3, 3),
strides = (1, 1),
activation = "relu",
padding = "same",
)(X)
X = MaxPooling2D(pool_size = (3, 3), strides = (2, 2))(X)
X = Lambda(tf.nn.local_response_normalization)(X)
# NOTE: layer 6-7 is fully-connected layers
# layer 6
X = Flatten()(X)
X = Dense(units = 4096, activation = 'relu')(X)
X = Dropout(0.5)(X)
# layer 7
X = Dense(units = 4096, activation = 'relu')(X)
X = Dropout(0.5)(X)
# layer 8 (classification layer)
# use sigmoid if binary classificaton and softmax if multiclass classification
X = Dense(units = classes, activation = "softmax")(X)
model = Model(inputs = X_input, outputs = X, name = "AlexNet")
return model
|
Implementation of the AlexNet architecture.
Arguments:
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
Note:
when you read the paper, you will notice that the channels (filters) in the diagram is only
half of what I have written below. That is because in the diagram, they only showed model for
one GPU (I guess for simplicity). However, during the ILSVRC, they run the network across 2 NVIDIA GTA 580 3GB GPUs.
Also, in paper, they used Local Response Normalization. This can also be done in Keras with Lambda layer.
You can also use BatchNormalization layer instead.
|
AlexNet
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/AlexNet/alexnet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/AlexNet/alexnet.py
|
MIT
|
def convolution_block(
X: tf.Tensor,
filters: int,
kernel_size: int,
stride: int = 1,
padding: str = 'valid',
) -> tf.Tensor:
"""
Convolution block for GoogLeNet.
Arguments:
X -- input tensor of shape (m, H, W, filters)
filters -- defining the number of filters in the CONV layers
kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
stride -- integer specifying the stride to be used
padding -- padding type, same or valid. Default is valid
Returns:
X -- output of the identity block, tensor of shape (H, W, filters)
"""
X = Conv2D(
filters = filters,
kernel_size = (kernel_size, kernel_size),
strides = (stride, stride),
padding = padding,
)(X)
# batch normalization is not in original paper because it was not invented at that time
# however I am using it here because it will improve the performance
X = BatchNormalization()(X)
X = Activation("relu")(X)
return X
|
Convolution block for GoogLeNet.
Arguments:
X -- input tensor of shape (m, H, W, filters)
filters -- defining the number of filters in the CONV layers
kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
stride -- integer specifying the stride to be used
padding -- padding type, same or valid. Default is valid
Returns:
X -- output of the identity block, tensor of shape (H, W, filters)
|
convolution_block
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/GoogLeNet/block.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/GoogLeNet/block.py
|
MIT
|
def inception_block(
X: tf.Tensor,
filters_1x1: int,
filters_3x3_reduce: int,
filters_3x3: int,
filters_5x5_reduce: int,
filters_5x5: int,
pool_size: int,
) -> tf.Tensor:
"""
Inception block for GoogLeNet.
Arguments:
X -- input tensor of shape (m, H, W, filters)
filters_1x1 -- number of filters for (1x1 conv) in first branch
filters_3x3_reduce -- number of filters for (1x1 conv) dimensionality reduction before (3x3 conv) in second branch
filters_3x3 -- number of filters for (3x3 conv) in second branch
filters_5x5_reduce -- number of filters for (1x1 conv) dimensionality reduction before (5x5 conv) in third branch
filters_5x5 -- number of filters for (5x5 conv) in third branch
pool_size -- number of filters for (1x1 conv) after 3x3 max pooling in fourth branch
Returns:
X -- output of the identity block, tensor of shape (H, W, filters)
"""
# first branch
conv_1x1 = convolution_block(
X,
filters = filters_1x1,
kernel_size = 1,
padding = "same"
)
# second branch
conv_3x3 = convolution_block(
X,
filters = filters_3x3_reduce,
kernel_size = 1,
padding = "same"
)
conv_3x3 = convolution_block(
conv_3x3,
filters = filters_3x3,
kernel_size = 3,
padding = "same"
)
# third branch
conv_5x5 = convolution_block(
X,
filters = filters_5x5_reduce,
kernel_size = 1,
padding = "same"
)
conv_5x5 = convolution_block(
conv_5x5,
filters = filters_5x5,
kernel_size = 5,
padding = "same"
)
# fourth branch
pool_projection = MaxPooling2D(
pool_size = (2, 2),
strides = (1, 1),
padding = "same",
)(X)
pool_projection = convolution_block(
pool_projection,
filters = pool_size,
kernel_size = 1,
padding = "same"
)
# concat by channel/filter
return concatenate(inputs = [conv_1x1, conv_3x3, conv_5x5, pool_projection], axis = 3)
|
Inception block for GoogLeNet.
Arguments:
X -- input tensor of shape (m, H, W, filters)
filters_1x1 -- number of filters for (1x1 conv) in first branch
filters_3x3_reduce -- number of filters for (1x1 conv) dimensionality reduction before (3x3 conv) in second branch
filters_3x3 -- number of filters for (3x3 conv) in second branch
filters_5x5_reduce -- number of filters for (1x1 conv) dimensionality reduction before (5x5 conv) in third branch
filters_5x5 -- number of filters for (5x5 conv) in third branch
pool_size -- number of filters for (1x1 conv) after 3x3 max pooling in fourth branch
Returns:
X -- output of the identity block, tensor of shape (H, W, filters)
|
inception_block
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/GoogLeNet/block.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/GoogLeNet/block.py
|
MIT
|
def auxiliary_block(
X: tf.Tensor,
classes: int,
) -> tf.Tensor:
"""
Auxiliary block for GoogLeNet.
Refer to the original paper, page 8 for the auxiliary layer specification.
Arguments:
X -- input tensor of shape (m, H, W, filters)
classes -- number of classes for classification
Return:
X -- output of the identity block, tensor of shape (H, W, filters)
"""
X = AveragePooling2D(
pool_size = (5, 5),
padding = "same",
strides = (3, 3),
)(X)
X = convolution_block(
X,
filters = 128,
kernel_size = 1,
stride = 1,
padding = "same",
)
X = Flatten()(X)
X = Dense(units = 1024, activation = "relu")(X)
X = Dropout(rate = 0.7)(X)
X = Dense(units = classes)(X)
X = Activation("softmax")(X)
return X
|
Auxiliary block for GoogLeNet.
Refer to the original paper, page 8 for the auxiliary layer specification.
Arguments:
X -- input tensor of shape (m, H, W, filters)
classes -- number of classes for classification
Return:
X -- output of the identity block, tensor of shape (H, W, filters)
|
auxiliary_block
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/GoogLeNet/block.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/GoogLeNet/block.py
|
MIT
|
def GoogLeNet(input_shape: typing.Tuple[int] = (224, 224, 3), classes: int = 1000) -> Model:
"""
Implementation of the popular GoogLeNet aka Inception v1 architecture.
Refer to the original paper, page 6 - table 1 for inception block filter sizes.
Arguments:
input_shape -- shape of the images of the dataset
classes -- number of classes for classification
Returns:
model -- a Model() instance in Keras
"""
# convert input shape into tensor
X_input = Input(input_shape)
# NOTE: auxiliary layers are only used in trainig phase to improve performance
# because they act as regularization and prevent vanishing gradient problem
auxiliary1 = None # to store auxiliary layers classification value
auxiliary2 = None
# layer 1 (convolution block)
X = convolution_block(
X = X_input,
filters = 64,
kernel_size = 7,
stride = 2,
padding = "same",
)
# layer 2 (max pool)
X = MaxPooling2D(
pool_size = (3, 3),
padding = "same",
strides = (2, 2),
)(X)
# layer 3 (convolution block)
# 1x1 reduce
X = convolution_block(
X,
filters = 64,
kernel_size = 1,
stride = 1,
padding = "same",
)
X = convolution_block(
X,
filters = 192,
kernel_size = 3,
stride = 1,
padding = "same",
)
# layer 4 (max pool)
X = MaxPooling2D(
pool_size = (3, 3),
padding = "same",
strides = (2, 2),
)(X)
# layer 5 (inception 3a)
X = inception_block(
X,
filters_1x1 = 64,
filters_3x3_reduce = 96,
filters_3x3 = 128,
filters_5x5_reduce = 16,
filters_5x5 = 32,
pool_size = 32,
)
# layer 6 (inception 3b)
X = inception_block(
X,
filters_1x1 = 128,
filters_3x3_reduce = 128,
filters_3x3 = 192,
filters_5x5_reduce = 32,
filters_5x5 = 96,
pool_size = 64,
)
# layer 7 (max pool)
X = MaxPooling2D(
pool_size = (3, 3),
padding = "same",
strides = (2, 2),
)(X)
# layer 8 (inception 4a)
X = inception_block(
X,
filters_1x1 = 192,
filters_3x3_reduce = 96,
filters_3x3 = 208,
filters_5x5_reduce = 16,
filters_5x5 = 48,
pool_size = 64,
)
# First Auxiliary Softmax Classifier
auxiliary1 = auxiliary_block(X, classes = classes)
# layer 9 (inception 4b)
X = inception_block(
X,
filters_1x1 = 160,
filters_3x3_reduce = 112,
filters_3x3 = 224,
filters_5x5_reduce = 24,
filters_5x5 = 64,
pool_size = 64,
)
# layer 10 (inception 4c)
X = inception_block(
X,
filters_1x1 = 128,
filters_3x3_reduce = 128,
filters_3x3 = 256,
filters_5x5_reduce = 24,
filters_5x5 = 64,
pool_size = 64,
)
# layer 11 (inception 4d)
X = inception_block(
X,
filters_1x1 = 112,
filters_3x3_reduce = 144,
filters_3x3 = 288,
filters_5x5_reduce = 32,
filters_5x5 = 64,
pool_size = 64,
)
# Second Auxiliary Softmax Classifier
auxiliary2 = auxiliary_block(X, classes = classes)
# layer 12 (inception 4e)
X = inception_block(
X,
filters_1x1 = 256,
filters_3x3_reduce = 160,
filters_3x3 = 320,
filters_5x5_reduce = 32,
filters_5x5 = 128,
pool_size = 128,
)
# layer 13 (max pool)
X = MaxPooling2D(
pool_size = (3, 3),
padding = "same",
strides = (2, 2),
)(X)
# layer 14 (inception 5a)
X = inception_block(
X,
filters_1x1 = 256,
filters_3x3_reduce = 160,
filters_3x3 = 320,
filters_5x5_reduce = 32,
filters_5x5 = 128,
pool_size = 128,
)
# layer 15 (inception 5b)
X = inception_block(
X,
filters_1x1 = 384,
filters_3x3_reduce = 192,
filters_3x3 = 384,
filters_5x5_reduce = 48,
filters_5x5 = 128,
pool_size = 128,
)
# layer 16 (average pool)
X = AveragePooling2D(
pool_size = (7, 7),
padding = "same",
strides = (1, 1),
)(X)
# layer 17 (dropout 40%)
X = Dropout(rate = 0.4)(X)
# layer 18 (fully-connected layer with softmax activation)
X = Dense(units = classes, activation='softmax')(X)
model = Model(X_input, outputs = [X, auxiliary1, auxiliary2], name='GoogLeNet/Inception-v1')
return model
|
Implementation of the popular GoogLeNet aka Inception v1 architecture.
Refer to the original paper, page 6 - table 1 for inception block filter sizes.
Arguments:
input_shape -- shape of the images of the dataset
classes -- number of classes for classification
Returns:
model -- a Model() instance in Keras
|
GoogLeNet
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/GoogLeNet/googlenet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/GoogLeNet/googlenet.py
|
MIT
|
def LeNet5(input_shape: typing.Tuple[int], classes: int = 1000) -> Model:
"""
Implementation of the classic LeNet architecture.
Arguments:
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
Note:
because I want to keep it original, I used tanh activation instead of ReLU activation.
however based on newer papers, the rectified linear unit (ReLU) performed much faster than
tanh activation.
"""
# convert input shape into tensor
X_input = Input(input_shape)
# layer 1
X = Conv2D(
filters = 6,
kernel_size = (5, 5),
strides = (1, 1),
activation = "tanh",
padding = "valid",
)(X_input)
X = AveragePooling2D(pool_size = (2, 2), strides = (2, 2), padding = "valid")(X)
# layer 2
X = Conv2D(
filters = 16,
kernel_size = (5, 5),
strides = (1, 1),
activation = "tanh",
padding = "valid",
)(X)
X = AveragePooling2D(pool_size = (2, 2), strides = (2, 2), padding = "valid")(X)
# layer 3
X = Conv2D(
filters = 120,
kernel_size = (5, 5),
strides = (1, 1),
activation = "tanh",
padding = "valid",
)(X)
# layer 4
X = Flatten()(X)
X = Dense(units = 84, activation = "tanh")(X)
# layer 5 (classification layer)
X = Dense(units = classes, activation = "softmax")(X)
model = Model(inputs = X_input, outputs = X, name = "LeNet5")
return model
|
Implementation of the classic LeNet architecture.
Arguments:
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
Note:
because I want to keep it original, I used tanh activation instead of ReLU activation.
however based on newer papers, the rectified linear unit (ReLU) performed much faster than
tanh activation.
|
LeNet5
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/LeNet5/lenet5.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/LeNet5/lenet5.py
|
MIT
|
def block(
X: tf.Tensor,
kernel_size: int,
filters: typing.List[int],
stage_no: int,
block_name: str,
is_conv_layer: bool = False,
stride: int = 2
) -> tf.Tensor:
"""
Block for residual network.
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage_no -- integer, used to name the layers, depending on their position in the network
block_name -- string/character, used to name the layers, depending on their position in the network
is_conv_layer -- to identiy if identity downsample is needed
stride -- integer specifying the stride to be used
Returns:
X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
"""
# names
conv_name_base = "res" + str(stage_no) + block_name + "_branch"
bn_name_base = "bn" + str(stage_no) + block_name + "_branch"
# filters
F1, F2, F3 = filters
# save the input value for shortcut.
X_shortcut = X
# First component
# NOTE: if conv_layer, you need to do downsampling
X = Conv2D(
filters = F1,
kernel_size = (1, 1),
strides = (stride, stride) if is_conv_layer else (1, 1),
padding = "valid",
name = conv_name_base + "2a",
kernel_initializer = "glorot_uniform",
)(X)
X = BatchNormalization(axis = 3, name = bn_name_base + "2a")(X)
X = Activation("relu")(X)
# Second component
X = Conv2D(
filters = F2,
kernel_size = (kernel_size, kernel_size),
strides = (1, 1),
padding = "same",
name = conv_name_base + "2b",
kernel_initializer = "glorot_uniform",
)(X)
X = BatchNormalization(axis = 3, name = bn_name_base + "2b")(X)
X = Activation("relu")(X)
# Third component
X = Conv2D(
filters = F3,
kernel_size = (1, 1),
strides = (1, 1),
padding = "valid",
name = conv_name_base + "2c",
kernel_initializer = "glorot_uniform",
)(X)
X = BatchNormalization(axis = 3, name = bn_name_base + "2c")(X)
# NOTE: if is_conv_layer, you need to do downsampling the X_shortcut to match the output (X) channel
# so it can be added together
if is_conv_layer:
X_shortcut = Conv2D(
filters = F3,
kernel_size = (1, 1),
strides = (stride, stride),
padding = "valid",
name = conv_name_base + "1",
kernel_initializer = "glorot_uniform",
)(X_shortcut)
X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + "1")(X_shortcut)
# Shortcut value
X = Add()([X, X_shortcut])
X = Activation("relu")(X)
return X
|
Block for residual network.
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage_no -- integer, used to name the layers, depending on their position in the network
block_name -- string/character, used to name the layers, depending on their position in the network
is_conv_layer -- to identiy if identity downsample is needed
stride -- integer specifying the stride to be used
Returns:
X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
|
block
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/ResNet/block.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/ResNet/block.py
|
MIT
|
def ResNet(name: str, layers: typing.List[int], input_shape: typing.Tuple[int] = (64, 64, 3), classes: int = 6) -> Model:
"""
Implementation of the popular ResNet architecture.
Arguments:
name -- name of the architecture
layers -- number of blocks per layer
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
Model Architecture:
Resnet50:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 3 // conv3_x
-> CONVBLOCK -> IDBLOCK * 5 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
Resnet101:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 3 // conv3_x
-> CONVBLOCK -> IDBLOCK * 22 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
Resnet152:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 7 // conv3_x
-> CONVBLOCK -> IDBLOCK * 35 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
"""
# get layers (layer1 is always the same so no need to provide)
layer2, layer3, layer4, layer5 = layers
# convert input shape into tensor
X_input = Input(input_shape)
# zero-padding
X = ZeroPadding2D((3, 3))(X_input)
# conv1
X = Conv2D(
filters = 64,
kernel_size = (7, 7),
strides = (2, 2),
name = "conv1",
kernel_initializer = "glorot_uniform",
)(X)
X = BatchNormalization(axis = 3, name = "bn_conv1")(X)
X = Activation("relu")(X)
X = MaxPooling2D((3, 3), strides = (2, 2))(X)
# conv2_x
X = make_layer(X, layers = layer2, kernel_size = 3, filters = [64, 64, 256], stride = 1, stage_no = 2)
# conv3_x
X = make_layer(X, layers = layer3, kernel_size = 3, filters = [128, 128, 512], stride = 2, stage_no = 3)
# conv4_x
X = make_layer(X, layers = layer4, kernel_size = 3, filters = [256, 256, 1024], stride = 2, stage_no = 4)
# conv5_x
X = make_layer(X, layers = layer5, kernel_size = 3, filters = [512, 512, 2048], stride = 1, stage_no = 5)
# average pooling
X = AveragePooling2D((2, 2), name = "avg_pool")(X)
# output layer
X = Flatten()(X)
X = Dense(
classes,
activation = "softmax",
name="fc" + str(classes),
kernel_initializer = "glorot_uniform"
)(X)
model = Model(inputs = X_input, outputs = X, name = name)
return model
|
Implementation of the popular ResNet architecture.
Arguments:
name -- name of the architecture
layers -- number of blocks per layer
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
Model Architecture:
Resnet50:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 3 // conv3_x
-> CONVBLOCK -> IDBLOCK * 5 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
Resnet101:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 3 // conv3_x
-> CONVBLOCK -> IDBLOCK * 22 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
Resnet152:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL // conv1
-> CONVBLOCK -> IDBLOCK * 2 // conv2_x
-> CONVBLOCK -> IDBLOCK * 7 // conv3_x
-> CONVBLOCK -> IDBLOCK * 35 // conv4_x
-> CONVBLOCK -> IDBLOCK * 2 // conv5_x
-> AVGPOOL
-> TOPLAYER
|
ResNet
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/ResNet/resnet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/ResNet/resnet.py
|
MIT
|
def make_layer(X: tf.Tensor, layers: int, kernel_size: int, filters: typing.List[int], stride: int, stage_no: int) -> tf.Tensor:
"""
Method to create one conv-identity layer for ResNet.
Arguments:
X -- input tensor
layers -- number of blocks per layer
kernel_size -- size of the kernel for the block
filters -- number of filters/channels
stride -- number of stride for downsampling the input
stage_no -- stage number just to name the layer
Returns:
X -- output tensor
"""
# create convolution block
X = block(
X,
kernel_size = kernel_size,
filters = filters,
stage_no = stage_no,
block_name = "a",
is_conv_layer = True,
stride = stride
)
# create identity block
block_name_ordinal = ord("b")
for _ in range(layers - 1):
X = block(
X,
kernel_size = kernel_size,
filters = filters,
stage_no = stage_no,
block_name = chr(block_name_ordinal)
)
block_name_ordinal += 1
return X
|
Method to create one conv-identity layer for ResNet.
Arguments:
X -- input tensor
layers -- number of blocks per layer
kernel_size -- size of the kernel for the block
filters -- number of filters/channels
stride -- number of stride for downsampling the input
stage_no -- stage number just to name the layer
Returns:
X -- output tensor
|
make_layer
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/ResNet/resnet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/ResNet/resnet.py
|
MIT
|
def VGGNet(
name: str,
architecture: typing.List[ typing.Union[int, str] ],
input_shape: typing.Tuple[int],
classes: int = 1000
) -> Model:
"""
Implementation of the VGGNet architecture.
Arguments:
name -- name of the architecture
architecture -- number of output channel per convolution layers in VGGNet
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
"""
# convert input shape into tensor
X_input = Input(input_shape)
# make convolution layers
X = make_conv_layer(X_input, architecture)
# flatten the output and make fully connected layers
X = Flatten()(X)
X = make_dense_layer(X, 4096)
X = make_dense_layer(X, 4096)
# classification layer
X = Dense(units = classes, activation = "softmax")(X)
model = Model(inputs = X_input, outputs = X, name = name)
return model
|
Implementation of the VGGNet architecture.
Arguments:
name -- name of the architecture
architecture -- number of output channel per convolution layers in VGGNet
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
|
VGGNet
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/VGGNet/vggnet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/VGGNet/vggnet.py
|
MIT
|
def make_conv_layer(
X: tf.Tensor,
architecture: typing.List[ typing.Union[int, str] ],
activation: str = 'relu'
) -> tf.Tensor:
"""
Method to create convolution layers for VGGNet.
In VGGNet
- Kernal is always 3x3 for conv-layer with padding 1 and stride 1.
- 2x2 kernel for max pooling with stride of 2.
Arguments:
X -- input tensor
architecture -- number of output channel per convolution layers in VGGNet
activation -- type of activation method
Returns:
X -- output tensor
"""
for output in architecture:
# convolution layer
if type(output) == int:
out_channels = output
X = Conv2D(
filters = out_channels,
kernel_size = (3, 3),
strides = (1, 1),
padding = "same"
)(X)
X = BatchNormalization()(X)
X = Activation(activation)(X)
# relu activation is added (by default activation) so that all the
# negative values are not passed to the next layer
# max-pooling layer
else:
X = MaxPooling2D(
pool_size = (2, 2),
strides = (2, 2)
)(X)
return X
|
Method to create convolution layers for VGGNet.
In VGGNet
- Kernal is always 3x3 for conv-layer with padding 1 and stride 1.
- 2x2 kernel for max pooling with stride of 2.
Arguments:
X -- input tensor
architecture -- number of output channel per convolution layers in VGGNet
activation -- type of activation method
Returns:
X -- output tensor
|
make_conv_layer
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/VGGNet/vggnet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/VGGNet/vggnet.py
|
MIT
|
def make_dense_layer(X: tf.Tensor, output_units: int, dropout = 0.5, activation = 'relu') -> tf.Tensor:
"""
Method to create dense layer for VGGNet.
Arguments:
X -- input tensor
output_units -- output tensor size
dropout -- dropout value for regularization
activation -- type of activation method
Returns:
X -- input tensor
"""
X = Dense(units = output_units)(X)
X = BatchNormalization()(X)
X = Activation(activation)(X)
X = Dropout(dropout)(X)
return X
|
Method to create dense layer for VGGNet.
Arguments:
X -- input tensor
output_units -- output tensor size
dropout -- dropout value for regularization
activation -- type of activation method
Returns:
X -- input tensor
|
make_dense_layer
|
python
|
aladdinpersson/Machine-Learning-Collection
|
ML/TensorFlow/CNN_architectures/VGGNet/vggnet.py
|
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/TensorFlow/CNN_architectures/VGGNet/vggnet.py
|
MIT
|
def poisson_disc_sample(array_radius, pad_radius, candidates=100, d=2, seed=None):
"""Find positions using poisson-disc sampling."""
# See http://bost.ocks.org/mike/algorithms/
rng = np.random.default_rng(seed)
uniform = rng.uniform
randint = rng.integers
# Cache the results
key = array_radius, pad_radius, seed
if key in XY_CACHE:
return XY_CACHE[key]
# Start at a fixed point we know will work
start = np.zeros(d)
samples = [start]
queue = [start]
while queue:
# Pick a sample to expand from
s_idx = randint(len(queue))
s = queue[s_idx]
for i in range(candidates):
# Generate a candidate from this sample
coords = uniform(s - 2 * pad_radius, s + 2 * pad_radius, d)
# Check the three conditions to accept the candidate
in_array = np.sqrt(np.sum(coords ** 2)) < array_radius
in_ring = np.all(distance.cdist(samples, [coords]) > pad_radius)
if in_array and in_ring:
# Accept the candidate
samples.append(coords)
queue.append(coords)
break
if (i + 1) == candidates:
# We've exhausted the particular sample
queue.pop(s_idx)
samples = np.array(samples)
XY_CACHE[key] = samples
return samples
|
Find positions using poisson-disc sampling.
|
poisson_disc_sample
|
python
|
mwaskom/seaborn
|
doc/tools/generate_logos.py
|
https://github.com/mwaskom/seaborn/blob/master/doc/tools/generate_logos.py
|
BSD-3-Clause
|
def strip_output(nb):
"""
Strip the outputs, execution count/prompt number and miscellaneous
metadata from a notebook object, unless specified to keep either the
outputs or counts.
"""
keys = {'metadata': [], 'cell': {'metadata': ["execution"]}}
nb.metadata.pop('signature', None)
nb.metadata.pop('widgets', None)
for field in keys['metadata']:
pop_recursive(nb.metadata, field)
if 'NB_KERNEL' in os.environ:
nb.metadata['kernelspec']['name'] = os.environ['NB_KERNEL']
nb.metadata['kernelspec']['display_name'] = os.environ['NB_KERNEL']
for cell in nb.cells:
if 'outputs' in cell:
cell['outputs'] = []
if 'prompt_number' in cell:
cell['prompt_number'] = None
if 'execution_count' in cell:
cell['execution_count'] = None
# Always remove this metadata
for output_style in ['collapsed', 'scrolled']:
if output_style in cell.metadata:
cell.metadata[output_style] = False
if 'metadata' in cell:
for field in ['collapsed', 'scrolled', 'ExecuteTime']:
cell.metadata.pop(field, None)
for (extra, fields) in keys['cell'].items():
if extra in cell:
for field in fields:
pop_recursive(getattr(cell, extra), field)
return nb
|
Strip the outputs, execution count/prompt number and miscellaneous
metadata from a notebook object, unless specified to keep either the
outputs or counts.
|
strip_output
|
python
|
mwaskom/seaborn
|
doc/tools/nb_to_doc.py
|
https://github.com/mwaskom/seaborn/blob/master/doc/tools/nb_to_doc.py
|
BSD-3-Clause
|
def bootstrap(*args, **kwargs):
"""Resample one or more arrays with replacement and store aggregate values.
Positional arguments are a sequence of arrays to bootstrap along the first
axis and pass to a summary function.
Keyword arguments:
n_boot : int, default=10000
Number of iterations
axis : int, default=None
Will pass axis to ``func`` as a keyword argument.
units : array, default=None
Array of sampling unit IDs. When used the bootstrap resamples units
and then observations within units instead of individual
datapoints.
func : string or callable, default="mean"
Function to call on the args that are passed in. If string, uses as
name of function in the numpy namespace. If nans are present in the
data, will try to use nan-aware version of named function.
seed : Generator | SeedSequence | RandomState | int | None
Seed for the random number generator; useful if you want
reproducible resamples.
Returns
-------
boot_dist: array
array of bootstrapped statistic values
"""
# Ensure list of arrays are same length
if len(np.unique(list(map(len, args)))) > 1:
raise ValueError("All input arrays must have the same length")
n = len(args[0])
# Default keyword arguments
n_boot = kwargs.get("n_boot", 10000)
func = kwargs.get("func", "mean")
axis = kwargs.get("axis", None)
units = kwargs.get("units", None)
random_seed = kwargs.get("random_seed", None)
if random_seed is not None:
msg = "`random_seed` has been renamed to `seed` and will be removed"
warnings.warn(msg)
seed = kwargs.get("seed", random_seed)
if axis is None:
func_kwargs = dict()
else:
func_kwargs = dict(axis=axis)
# Initialize the resampler
if isinstance(seed, np.random.RandomState):
rng = seed
else:
rng = np.random.default_rng(seed)
# Coerce to arrays
args = list(map(np.asarray, args))
if units is not None:
units = np.asarray(units)
if isinstance(func, str):
# Allow named numpy functions
f = getattr(np, func)
# Try to use nan-aware version of function if necessary
missing_data = np.isnan(np.sum(np.column_stack(args)))
if missing_data and not func.startswith("nan"):
nanf = getattr(np, f"nan{func}", None)
if nanf is None:
msg = f"Data contain nans but no nan-aware version of `{func}` found"
warnings.warn(msg, UserWarning)
else:
f = nanf
else:
f = func
# Handle numpy changes
try:
integers = rng.integers
except AttributeError:
integers = rng.randint
# Do the bootstrap
if units is not None:
return _structured_bootstrap(args, n_boot, units, f,
func_kwargs, integers)
boot_dist = []
for i in range(int(n_boot)):
resampler = integers(0, n, n, dtype=np.intp) # intp is indexing dtype
sample = [a.take(resampler, axis=0) for a in args]
boot_dist.append(f(*sample, **func_kwargs))
return np.array(boot_dist)
|
Resample one or more arrays with replacement and store aggregate values.
Positional arguments are a sequence of arrays to bootstrap along the first
axis and pass to a summary function.
Keyword arguments:
n_boot : int, default=10000
Number of iterations
axis : int, default=None
Will pass axis to ``func`` as a keyword argument.
units : array, default=None
Array of sampling unit IDs. When used the bootstrap resamples units
and then observations within units instead of individual
datapoints.
func : string or callable, default="mean"
Function to call on the args that are passed in. If string, uses as
name of function in the numpy namespace. If nans are present in the
data, will try to use nan-aware version of named function.
seed : Generator | SeedSequence | RandomState | int | None
Seed for the random number generator; useful if you want
reproducible resamples.
Returns
-------
boot_dist: array
array of bootstrapped statistic values
|
bootstrap
|
python
|
mwaskom/seaborn
|
seaborn/algorithms.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/algorithms.py
|
BSD-3-Clause
|
def set(self, **kwargs):
"""Set attributes on each subplot Axes."""
for ax in self.axes.flat:
if ax is not None: # Handle removed axes
ax.set(**kwargs)
return self
|
Set attributes on each subplot Axes.
|
set
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def savefig(self, *args, **kwargs):
"""
Save an image of the plot.
This wraps :meth:`matplotlib.figure.Figure.savefig`, using bbox_inches="tight"
by default. Parameters are passed through to the matplotlib function.
"""
kwargs = kwargs.copy()
kwargs.setdefault("bbox_inches", "tight")
self.figure.savefig(*args, **kwargs)
|
Save an image of the plot.
This wraps :meth:`matplotlib.figure.Figure.savefig`, using bbox_inches="tight"
by default. Parameters are passed through to the matplotlib function.
|
savefig
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def tight_layout(self, *args, **kwargs):
"""Call fig.tight_layout within rect that exclude the legend."""
kwargs = kwargs.copy()
kwargs.setdefault("rect", self._tight_layout_rect)
if self._tight_layout_pad is not None:
kwargs.setdefault("pad", self._tight_layout_pad)
self._figure.tight_layout(*args, **kwargs)
return self
|
Call fig.tight_layout within rect that exclude the legend.
|
tight_layout
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def add_legend(self, legend_data=None, title=None, label_order=None,
adjust_subtitles=False, **kwargs):
"""Draw a legend, maybe placing it outside axes and resizing the figure.
Parameters
----------
legend_data : dict
Dictionary mapping label names (or two-element tuples where the
second element is a label name) to matplotlib artist handles. The
default reads from ``self._legend_data``.
title : string
Title for the legend. The default reads from ``self._hue_var``.
label_order : list of labels
The order that the legend entries should appear in. The default
reads from ``self.hue_names``.
adjust_subtitles : bool
If True, modify entries with invisible artists to left-align
the labels and set the font size to that of a title.
kwargs : key, value pairings
Other keyword arguments are passed to the underlying legend methods
on the Figure or Axes object.
Returns
-------
self : Grid instance
Returns self for easy chaining.
"""
# Find the data for the legend
if legend_data is None:
legend_data = self._legend_data
if label_order is None:
if self.hue_names is None:
label_order = list(legend_data.keys())
else:
label_order = list(map(utils.to_utf8, self.hue_names))
blank_handle = mpl.patches.Patch(alpha=0, linewidth=0)
handles = [legend_data.get(lab, blank_handle) for lab in label_order]
title = self._hue_var if title is None else title
title_size = mpl.rcParams["legend.title_fontsize"]
# Unpack nested labels from a hierarchical legend
labels = []
for entry in label_order:
if isinstance(entry, tuple):
_, label = entry
else:
label = entry
labels.append(label)
# Set default legend kwargs
kwargs.setdefault("scatterpoints", 1)
if self._legend_out:
kwargs.setdefault("frameon", False)
kwargs.setdefault("loc", "center right")
# Draw a full-figure legend outside the grid
figlegend = self._figure.legend(handles, labels, **kwargs)
self._legend = figlegend
figlegend.set_title(title, prop={"size": title_size})
if adjust_subtitles:
adjust_legend_subtitles(figlegend)
# Draw the plot to set the bounding boxes correctly
_draw_figure(self._figure)
# Calculate and set the new width of the figure so the legend fits
legend_width = figlegend.get_window_extent().width / self._figure.dpi
fig_width, fig_height = self._figure.get_size_inches()
self._figure.set_size_inches(fig_width + legend_width, fig_height)
# Draw the plot again to get the new transformations
_draw_figure(self._figure)
# Now calculate how much space we need on the right side
legend_width = figlegend.get_window_extent().width / self._figure.dpi
space_needed = legend_width / (fig_width + legend_width)
margin = .04 if self._margin_titles else .01
self._space_needed = margin + space_needed
right = 1 - self._space_needed
# Place the subplot axes to give space for the legend
self._figure.subplots_adjust(right=right)
self._tight_layout_rect[2] = right
else:
# Draw a legend in the first axis
ax = self.axes.flat[0]
kwargs.setdefault("loc", "best")
leg = ax.legend(handles, labels, **kwargs)
leg.set_title(title, prop={"size": title_size})
self._legend = leg
if adjust_subtitles:
adjust_legend_subtitles(leg)
return self
|
Draw a legend, maybe placing it outside axes and resizing the figure.
Parameters
----------
legend_data : dict
Dictionary mapping label names (or two-element tuples where the
second element is a label name) to matplotlib artist handles. The
default reads from ``self._legend_data``.
title : string
Title for the legend. The default reads from ``self._hue_var``.
label_order : list of labels
The order that the legend entries should appear in. The default
reads from ``self.hue_names``.
adjust_subtitles : bool
If True, modify entries with invisible artists to left-align
the labels and set the font size to that of a title.
kwargs : key, value pairings
Other keyword arguments are passed to the underlying legend methods
on the Figure or Axes object.
Returns
-------
self : Grid instance
Returns self for easy chaining.
|
add_legend
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _update_legend_data(self, ax):
"""Extract the legend data from an axes object and save it."""
data = {}
# Get data directly from the legend, which is necessary
# for newer functions that don't add labeled proxy artists
if ax.legend_ is not None and self._extract_legend_handles:
handles = get_legend_handles(ax.legend_)
labels = [t.get_text() for t in ax.legend_.texts]
data.update({label: handle for handle, label in zip(handles, labels)})
handles, labels = ax.get_legend_handles_labels()
data.update({label: handle for handle, label in zip(handles, labels)})
self._legend_data.update(data)
# Now clear the legend
ax.legend_ = None
|
Extract the legend data from an axes object and save it.
|
_update_legend_data
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def _get_palette(self, data, hue, hue_order, palette):
"""Get a list of colors for the hue variable."""
if hue is None:
palette = color_palette(n_colors=1)
else:
hue_names = categorical_order(data[hue], hue_order)
n_colors = len(hue_names)
# By default use either the current color palette or HUSL
if palette is None:
current_palette = utils.get_color_cycle()
if n_colors > len(current_palette):
colors = color_palette("husl", n_colors)
else:
colors = color_palette(n_colors=n_colors)
# Allow for palette to map from hue variable names
elif isinstance(palette, dict):
color_names = [palette[h] for h in hue_names]
colors = color_palette(color_names, n_colors)
# Otherwise act as if we just got a list of colors
else:
colors = color_palette(palette, n_colors)
palette = color_palette(colors, n_colors)
return palette
|
Get a list of colors for the hue variable.
|
_get_palette
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
def legend(self):
"""The :class:`matplotlib.legend.Legend` object, if present."""
try:
return self._legend
except AttributeError:
return None
|
The :class:`matplotlib.legend.Legend` object, if present.
|
legend
|
python
|
mwaskom/seaborn
|
seaborn/axisgrid.py
|
https://github.com/mwaskom/seaborn/blob/master/seaborn/axisgrid.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.