code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def test_randomized_eigsh_reconst_low_rank(n, rank):
"""Check that randomized_eigsh is able to reconstruct a low rank psd matrix
Tests that the decomposition provided by `_randomized_eigsh` leads to
orthonormal eigenvectors, and that a low rank PSD matrix can be effectively
reconstructed with good accuracy using it.
"""
assert rank < n
# create a low rank PSD
rng = np.random.RandomState(69)
X = rng.randn(n, rank)
A = X @ X.T
# approximate A with the "right" number of components
S, V = _randomized_eigsh(A, n_components=rank, random_state=rng)
# orthonormality checks
assert_array_almost_equal(np.linalg.norm(V, axis=0), np.ones(S.shape))
assert_array_almost_equal(V.T @ V, np.diag(np.ones(S.shape)))
# reconstruction
A_reconstruct = V @ np.diag(S) @ V.T
# test that the approximation is good
assert_array_almost_equal(A_reconstruct, A, decimal=6)
|
Check that randomized_eigsh is able to reconstruct a low rank psd matrix
Tests that the decomposition provided by `_randomized_eigsh` leads to
orthonormal eigenvectors, and that a low rank PSD matrix can be effectively
reconstructed with good accuracy using it.
|
test_randomized_eigsh_reconst_low_rank
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_extmath.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_extmath.py
|
BSD-3-Clause
|
def max_loading_is_positive(u, v):
"""
returns bool tuple indicating if the values maximising np.abs
are positive across all rows for u and across all columns for v.
"""
u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all()
v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all()
return u_based, v_based
|
returns bool tuple indicating if the values maximising np.abs
are positive across all rows for u and across all columns for v.
|
max_loading_is_positive
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_extmath.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_extmath.py
|
BSD-3-Clause
|
def test_cartesian_mix_types(arrays, output_dtype):
"""Check that the cartesian product works with mixed types."""
output = cartesian(arrays)
assert output.dtype == output_dtype
|
Check that the cartesian product works with mixed types.
|
test_cartesian_mix_types
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_extmath.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_extmath.py
|
BSD-3-Clause
|
def test_approximate_mode():
"""Make sure sklearn.utils.extmath._approximate_mode returns valid
results for cases where "class_counts * n_draws" is enough
to overflow 32-bit signed integer.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20774
"""
X = np.array([99000, 1000], dtype=np.int32)
ret = _approximate_mode(class_counts=X, n_draws=25000, rng=0)
# Draws 25% of the total population, so in this case a fair draw means:
# 25% * 99.000 = 24.750
# 25% * 1.000 = 250
assert_array_equal(ret, [24750, 250])
|
Make sure sklearn.utils.extmath._approximate_mode returns valid
results for cases where "class_counts * n_draws" is enough
to overflow 32-bit signed integer.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20774
|
test_approximate_mode
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_extmath.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_extmath.py
|
BSD-3-Clause
|
def test_smallest_admissible_index_dtype_without_checking_contents(
params, expected_dtype
):
"""Check the behaviour of `smallest_admissible_index_dtype` using the passed
arrays but without checking the contents of the arrays.
"""
assert _smallest_admissible_index_dtype(**params) == expected_dtype
|
Check the behaviour of `smallest_admissible_index_dtype` using the passed
arrays but without checking the contents of the arrays.
|
test_smallest_admissible_index_dtype_without_checking_contents
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_fixes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_fixes.py
|
BSD-3-Clause
|
def test_safe_indexing_list_axis_1_unsupported(indices):
"""Check that we raise a ValueError when axis=1 with input as list."""
X = [[1, 2], [4, 5], [7, 8]]
err_msg = "axis=1 is not supported for lists"
with pytest.raises(ValueError, match=err_msg):
_safe_indexing(X, indices, axis=1)
|
Check that we raise a ValueError when axis=1 with input as list.
|
test_safe_indexing_list_axis_1_unsupported
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_indexing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_indexing.py
|
BSD-3-Clause
|
def test_get_column_indices_interchange():
"""Check _get_column_indices for edge cases with the interchange"""
pl = pytest.importorskip("polars")
# Polars dataframes go down the interchange path.
df = pl.DataFrame([[1, 2, 3], [4, 5, 6]], schema=["a", "b", "c"])
key_results = [
(slice(1, None), [1, 2]),
(slice(None, 2), [0, 1]),
(slice(1, 2), [1]),
(["b", "c"], [1, 2]),
(slice("a", "b"), [0, 1]),
(slice("a", None), [0, 1, 2]),
(slice(None, "a"), [0]),
(["c", "a"], [2, 0]),
([], []),
]
for key, result in key_results:
assert _get_column_indices(df, key) == result
msg = "A given column is not a column of the dataframe"
with pytest.raises(ValueError, match=msg):
_get_column_indices(df, ["not_a_column"])
msg = "key.step must be 1 or None"
with pytest.raises(NotImplementedError, match=msg):
_get_column_indices(df, slice("a", None, 2))
|
Check _get_column_indices for edge cases with the interchange
|
test_get_column_indices_interchange
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_indexing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_indexing.py
|
BSD-3-Clause
|
def test_available_if_methods_can_be_pickled():
"""Check that available_if methods can be pickled.
Non-regression test for #21344.
"""
return_value = 10
est = AvailableParameterEstimator(available=True, return_value=return_value)
pickled_bytes = pickle.dumps(est.available_func)
unpickled_func = pickle.loads(pickled_bytes)
assert unpickled_func() == return_value
|
Check that available_if methods can be pickled.
Non-regression test for #21344.
|
test_available_if_methods_can_be_pickled
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_metaestimators.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_metaestimators.py
|
BSD-3-Clause
|
def test_type_of_target_too_many_unique_classes():
"""Check that we raise a warning when the number of unique classes is greater than
50% of the number of samples.
We need to check that we don't raise if we have less than 20 samples.
"""
y = np.arange(25)
msg = r"The number of unique classes is greater than 50% of the number of samples."
with pytest.warns(UserWarning, match=msg):
type_of_target(y)
# less than 20 samples, no warning should be raised
y = np.arange(10)
with warnings.catch_warnings():
warnings.simplefilter("error")
type_of_target(y)
|
Check that we raise a warning when the number of unique classes is greater than
50% of the number of samples.
We need to check that we don't raise if we have less than 20 samples.
|
test_type_of_target_too_many_unique_classes
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_multiclass.py
|
BSD-3-Clause
|
def test_type_of_target_pandas_nullable():
"""Check that type_of_target works with pandas nullable dtypes."""
pd = pytest.importorskip("pandas")
for dtype in ["Int32", "Float32"]:
y_true = pd.Series([1, 0, 2, 3, 4], dtype=dtype)
assert type_of_target(y_true) == "multiclass"
y_true = pd.Series([1, 0, 1, 0], dtype=dtype)
assert type_of_target(y_true) == "binary"
y_true = pd.DataFrame([[1.4, 3.1], [3.1, 1.4]], dtype="Float32")
assert type_of_target(y_true) == "continuous-multioutput"
y_true = pd.DataFrame([[0, 1], [1, 1]], dtype="Int32")
assert type_of_target(y_true) == "multilabel-indicator"
y_true = pd.DataFrame([[1, 2], [3, 1]], dtype="Int32")
assert type_of_target(y_true) == "multiclass-multioutput"
|
Check that type_of_target works with pandas nullable dtypes.
|
test_type_of_target_pandas_nullable
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_multiclass.py
|
BSD-3-Clause
|
def test_unique_labels_pandas_nullable(dtype):
"""Checks that unique_labels work with pandas nullable dtypes.
Non-regression test for gh-25634.
"""
pd = pytest.importorskip("pandas")
y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype)
y_predicted = pd.Series([0, 0, 1, 1, 0, 1, 1, 1, 1], dtype="int64")
labels = unique_labels(y_true, y_predicted)
assert_array_equal(labels, [0, 1])
|
Checks that unique_labels work with pandas nullable dtypes.
Non-regression test for gh-25634.
|
test_unique_labels_pandas_nullable
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_multiclass.py
|
BSD-3-Clause
|
def test_newton_cg_verbosity(capsys, verbose):
"""Test the std output of verbose newton_cg solver."""
A = np.eye(2)
b = np.array([1, 2], dtype=float)
_newton_cg(
grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
func=lambda x: 0.5 * x @ A @ x - b @ x,
grad=lambda x: A @ x - b,
x0=np.zeros(A.shape[0]),
verbose=verbose,
) # returns array([1., 2])
captured = capsys.readouterr()
if verbose == 0:
assert captured.out == ""
else:
msg = [
"Newton-CG iter = 1",
"Check Convergence",
"max |gradient|",
"Solver did converge at loss = ",
]
for m in msg:
assert m in captured.out
if verbose >= 2:
msg = [
"Inner CG solver iteration 1 stopped with",
"sum(|residuals|) <= tol",
"Line Search",
"try line search wolfe1",
"wolfe1 line search was successful",
]
for m in msg:
assert m in captured.out
if verbose >= 2:
# Set up a badly scaled singular Hessian with a completely wrong starting
# position. This should trigger 2nd line search check
A = np.array([[1.0, 2], [2, 4]]) * 1e30 # collinear columns
b = np.array([1.0, 2.0])
# Note that scipy.optimize._linesearch LineSearchWarning inherits from
# RuntimeWarning, but we do not want to import from non public APIs.
with pytest.warns(RuntimeWarning):
_newton_cg(
grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
func=lambda x: 0.5 * x @ A @ x - b @ x,
grad=lambda x: A @ x - b,
x0=np.array([-2.0, 1]), # null space of hessian
verbose=verbose,
)
captured = capsys.readouterr()
msg = [
"wolfe1 line search was not successful",
"check loss |improvement| <= eps * |loss_old|:",
"check sum(|gradient|) < sum(|gradient_old|):",
"last resort: try line search wolfe2",
]
for m in msg:
assert m in captured.out
# Set up a badly conditioned Hessian that leads to tiny curvature.
# X.T @ X have singular values array([1.00000400e+01, 1.00008192e-11])
A = np.array([[1.0, 2], [1, 2 + 1e-15]])
b = np.array([-2.0, 1])
with pytest.warns(ConvergenceWarning):
_newton_cg(
grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
func=lambda x: 0.5 * x @ A @ x - b @ x,
grad=lambda x: A @ x - b,
x0=b,
verbose=verbose,
maxiter=2,
)
captured = capsys.readouterr()
msg = [
"tiny_|p| = eps * ||p||^2",
]
for m in msg:
assert m in captured.out
# Test for a case with negative Hessian.
# We do not trigger "Inner CG solver iteration {i} stopped with negative
# curvature", but that is very hard to trigger.
A = np.eye(2)
b = np.array([-2.0, 1])
with pytest.warns(RuntimeWarning):
_newton_cg(
# Note the wrong sign in the hessian product.
grad_hess=lambda x: (A @ x - b, lambda z: -A @ z),
func=lambda x: 0.5 * x @ A @ x - b @ x,
grad=lambda x: A @ x - b,
x0=np.array([1.0, 1.0]),
verbose=verbose,
maxiter=3,
)
captured = capsys.readouterr()
msg = [
"Inner CG solver iteration 0 fell back to steepest descent",
]
for m in msg:
assert m in captured.out
A = np.diag([1e-3, 1, 1e3])
b = np.array([-2.0, 1, 2.0])
with pytest.warns(ConvergenceWarning):
_newton_cg(
grad_hess=lambda x: (A @ x - b, lambda z: A @ z),
func=lambda x: 0.5 * x @ A @ x - b @ x,
grad=lambda x: A @ x - b,
x0=np.ones_like(b),
verbose=verbose,
maxiter=2,
maxinner=1,
)
captured = capsys.readouterr()
msg = [
"Inner CG solver stopped reaching maxiter=1",
]
for m in msg:
assert m in captured.out
|
Test the std output of verbose newton_cg solver.
|
test_newton_cg_verbosity
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_optimize.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_optimize.py
|
BSD-3-Clause
|
def test_parallel_delayed_warnings():
"""Informative warnings should be raised when mixing sklearn and joblib API"""
# We should issue a warning when one wants to use sklearn.utils.fixes.Parallel
# with joblib.delayed. The config will not be propagated to the workers.
warn_msg = "`sklearn.utils.parallel.Parallel` needs to be used in conjunction"
with pytest.warns(UserWarning, match=warn_msg) as records:
Parallel()(joblib.delayed(time.sleep)(0) for _ in range(10))
assert len(records) == 10
# We should issue a warning if one wants to use sklearn.utils.fixes.delayed with
# joblib.Parallel
warn_msg = (
"`sklearn.utils.parallel.delayed` should be used with "
"`sklearn.utils.parallel.Parallel` to make it possible to propagate"
)
with pytest.warns(UserWarning, match=warn_msg) as records:
joblib.Parallel()(delayed(time.sleep)(0) for _ in range(10))
assert len(records) == 10
|
Informative warnings should be raised when mixing sklearn and joblib API
|
test_parallel_delayed_warnings
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_parallel.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_parallel.py
|
BSD-3-Clause
|
def test_dispatch_config_parallel(n_jobs):
"""Check that we properly dispatch the configuration in parallel processing.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/25239
"""
pd = pytest.importorskip("pandas")
iris = load_iris(as_frame=True)
class TransformerRequiredDataFrame(StandardScaler):
def fit(self, X, y=None):
assert isinstance(X, pd.DataFrame), "X should be a DataFrame"
return super().fit(X, y)
def transform(self, X, y=None):
assert isinstance(X, pd.DataFrame), "X should be a DataFrame"
return super().transform(X, y)
dropper = make_column_transformer(
("drop", [0]),
remainder="passthrough",
n_jobs=n_jobs,
)
param_grid = {"randomforestclassifier__max_depth": [1, 2, 3]}
search_cv = GridSearchCV(
make_pipeline(
dropper,
TransformerRequiredDataFrame(),
RandomForestClassifier(n_estimators=5, n_jobs=n_jobs),
),
param_grid,
cv=5,
n_jobs=n_jobs,
error_score="raise", # this search should not fail
)
# make sure that `fit` would fail in case we don't request dataframe
with pytest.raises(AssertionError, match="X should be a DataFrame"):
search_cv.fit(iris.data, iris.target)
with config_context(transform_output="pandas"):
# we expect each intermediate steps to output a DataFrame
search_cv.fit(iris.data, iris.target)
assert not np.isnan(search_cv.cv_results_["mean_test_score"]).any()
|
Check that we properly dispatch the configuration in parallel processing.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/25239
|
test_dispatch_config_parallel
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_parallel.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_parallel.py
|
BSD-3-Clause
|
def test_filter_warning_propagates(n_jobs, backend):
"""Check warning propagates to the job."""
with warnings.catch_warnings():
warnings.simplefilter("error", category=ConvergenceWarning)
with pytest.raises(ConvergenceWarning):
Parallel(n_jobs=n_jobs, backend=backend)(
delayed(raise_warning)() for _ in range(2)
)
|
Check warning propagates to the job.
|
test_filter_warning_propagates
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_parallel.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_parallel.py
|
BSD-3-Clause
|
def test_check_warnings_threading():
"""Check that warnings filters are set correctly in the threading backend."""
with warnings.catch_warnings():
warnings.simplefilter("error", category=ConvergenceWarning)
filters = warnings.filters
assert ("error", None, ConvergenceWarning, None, 0) in filters
all_warnings = Parallel(n_jobs=2, backend="threading")(
delayed(get_warnings)() for _ in range(2)
)
assert all(w == filters for w in all_warnings)
|
Check that warnings filters are set correctly in the threading backend.
|
test_check_warnings_threading
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_parallel.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_parallel.py
|
BSD-3-Clause
|
def test_interval_range(interval_type):
"""Check the range of values depending on closed."""
interval = Interval(interval_type, -2, 2, closed="left")
assert -2 in interval
assert 2 not in interval
interval = Interval(interval_type, -2, 2, closed="right")
assert -2 not in interval
assert 2 in interval
interval = Interval(interval_type, -2, 2, closed="both")
assert -2 in interval
assert 2 in interval
interval = Interval(interval_type, -2, 2, closed="neither")
assert -2 not in interval
assert 2 not in interval
|
Check the range of values depending on closed.
|
test_interval_range
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_interval_large_integers(interval_type):
"""Check that Interval constraint work with large integers.
non-regression test for #26648.
"""
interval = Interval(interval_type, 0, 2, closed="neither")
assert 2**65 not in interval
assert 2**128 not in interval
assert float(2**65) not in interval
assert float(2**128) not in interval
interval = Interval(interval_type, 0, 2**128, closed="neither")
assert 2**65 in interval
assert 2**128 not in interval
assert float(2**65) in interval
assert float(2**128) not in interval
assert 2**1024 not in interval
|
Check that Interval constraint work with large integers.
non-regression test for #26648.
|
test_interval_large_integers
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_interval_inf_in_bounds():
"""Check that inf is included iff a bound is closed and set to None.
Only valid for real intervals.
"""
interval = Interval(Real, 0, None, closed="right")
assert np.inf in interval
interval = Interval(Real, None, 0, closed="left")
assert -np.inf in interval
interval = Interval(Real, None, None, closed="neither")
assert np.inf not in interval
assert -np.inf not in interval
|
Check that inf is included iff a bound is closed and set to None.
Only valid for real intervals.
|
test_interval_inf_in_bounds
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_stroptions():
"""Sanity check for the StrOptions constraint"""
options = StrOptions({"a", "b", "c"}, deprecated={"c"})
assert options.is_satisfied_by("a")
assert options.is_satisfied_by("c")
assert not options.is_satisfied_by("d")
assert "'c' (deprecated)" in str(options)
|
Sanity check for the StrOptions constraint
|
test_stroptions
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_options():
"""Sanity check for the Options constraint"""
options = Options(Real, {-0.5, 0.5, np.inf}, deprecated={-0.5})
assert options.is_satisfied_by(-0.5)
assert options.is_satisfied_by(np.inf)
assert not options.is_satisfied_by(1.23)
assert "-0.5 (deprecated)" in str(options)
|
Sanity check for the Options constraint
|
test_options
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_instances_of_type_human_readable(type, expected_type_name):
"""Check the string representation of the _InstancesOf constraint."""
constraint = _InstancesOf(type)
assert str(constraint) == f"an instance of '{expected_type_name}'"
|
Check the string representation of the _InstancesOf constraint.
|
test_instances_of_type_human_readable
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_generate_invalid_param_val(constraint):
"""Check that the value generated does not satisfy the constraint"""
bad_value = generate_invalid_param_val(constraint)
assert not constraint.is_satisfied_by(bad_value)
|
Check that the value generated does not satisfy the constraint
|
test_generate_invalid_param_val
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_generate_invalid_param_val_2_intervals(integer_interval, real_interval):
"""Check that the value generated for an interval constraint does not satisfy any of
the interval constraints.
"""
bad_value = generate_invalid_param_val(constraint=real_interval)
assert not real_interval.is_satisfied_by(bad_value)
assert not integer_interval.is_satisfied_by(bad_value)
bad_value = generate_invalid_param_val(constraint=integer_interval)
assert not real_interval.is_satisfied_by(bad_value)
assert not integer_interval.is_satisfied_by(bad_value)
|
Check that the value generated for an interval constraint does not satisfy any of
the interval constraints.
|
test_generate_invalid_param_val_2_intervals
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_make_constraint(constraint_declaration, expected_constraint_class):
"""Check that make_constraint dispatches to the appropriate constraint class"""
constraint = make_constraint(constraint_declaration)
assert constraint.__class__ is expected_constraint_class
|
Check that make_constraint dispatches to the appropriate constraint class
|
test_make_constraint
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_make_constraint_unknown():
"""Check that an informative error is raised when an unknown constraint is passed"""
with pytest.raises(ValueError, match="Unknown constraint"):
make_constraint("not a valid constraint")
|
Check that an informative error is raised when an unknown constraint is passed
|
test_make_constraint_unknown
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_validate_params():
"""Check that validate_params works no matter how the arguments are passed"""
with pytest.raises(
InvalidParameterError, match="The 'a' parameter of _func must be"
):
_func("wrong", c=1)
with pytest.raises(
InvalidParameterError, match="The 'b' parameter of _func must be"
):
_func(*[1, "wrong"], c=1)
with pytest.raises(
InvalidParameterError, match="The 'c' parameter of _func must be"
):
_func(1, **{"c": "wrong"})
with pytest.raises(
InvalidParameterError, match="The 'd' parameter of _func must be"
):
_func(1, c=1, d="wrong")
# check in the presence of extra positional and keyword args
with pytest.raises(
InvalidParameterError, match="The 'b' parameter of _func must be"
):
_func(0, *["wrong", 2, 3], c=4, **{"e": 5})
with pytest.raises(
InvalidParameterError, match="The 'c' parameter of _func must be"
):
_func(0, *[1, 2, 3], c="four", **{"e": 5})
|
Check that validate_params works no matter how the arguments are passed
|
test_validate_params
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_validate_params_missing_params():
"""Check that no error is raised when there are parameters without
constraints
"""
@validate_params({"a": [int]}, prefer_skip_nested_validation=True)
def func(a, b):
pass
func(1, 2)
|
Check that no error is raised when there are parameters without
constraints
|
test_validate_params_missing_params
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_decorate_validated_function():
"""Check that validate_params functions can be decorated"""
decorated_function = deprecated()(_func)
with pytest.warns(FutureWarning, match="Function _func is deprecated"):
decorated_function(1, 2, c=3)
# outer decorator does not interfere with validation
with pytest.warns(FutureWarning, match="Function _func is deprecated"):
with pytest.raises(
InvalidParameterError, match=r"The 'c' parameter of _func must be"
):
decorated_function(1, 2, c="wrong")
|
Check that validate_params functions can be decorated
|
test_decorate_validated_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_validate_params_estimator():
"""Check that validate_params works with Estimator instances"""
# no validation in init
est = _Estimator("wrong")
with pytest.raises(
InvalidParameterError, match="The 'a' parameter of _Estimator must be"
):
est.fit()
|
Check that validate_params works with Estimator instances
|
test_validate_params_estimator
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_stroptions_deprecated_subset():
"""Check that the deprecated parameter must be a subset of options."""
with pytest.raises(ValueError, match="deprecated options must be a subset"):
StrOptions({"a", "b", "c"}, deprecated={"a", "d"})
|
Check that the deprecated parameter must be a subset of options.
|
test_stroptions_deprecated_subset
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_hidden_constraint():
"""Check that internal constraints are not exposed in the error message."""
@validate_params(
{"param": [Hidden(list), dict]}, prefer_skip_nested_validation=True
)
def f(param):
pass
# list and dict are valid params
f({"a": 1, "b": 2, "c": 3})
f([1, 2, 3])
with pytest.raises(
InvalidParameterError, match="The 'param' parameter"
) as exc_info:
f(param="bad")
# the list option is not exposed in the error message
err_msg = str(exc_info.value)
assert "an instance of 'dict'" in err_msg
assert "an instance of 'list'" not in err_msg
|
Check that internal constraints are not exposed in the error message.
|
test_hidden_constraint
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_hidden_stroptions():
"""Check that we can have 2 StrOptions constraints, one being hidden."""
@validate_params(
{"param": [StrOptions({"auto"}), Hidden(StrOptions({"warn"}))]},
prefer_skip_nested_validation=True,
)
def f(param):
pass
# "auto" and "warn" are valid params
f("auto")
f("warn")
with pytest.raises(
InvalidParameterError, match="The 'param' parameter"
) as exc_info:
f(param="bad")
# the "warn" option is not exposed in the error message
err_msg = str(exc_info.value)
assert "auto" in err_msg
assert "warn" not in err_msg
|
Check that we can have 2 StrOptions constraints, one being hidden.
|
test_hidden_stroptions
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_validate_params_set_param_constraints_attribute():
"""Check that the validate_params decorator properly sets the parameter constraints
as attribute of the decorated function/method.
"""
assert hasattr(_func, "_skl_parameter_constraints")
assert hasattr(_Class()._method, "_skl_parameter_constraints")
|
Check that the validate_params decorator properly sets the parameter constraints
as attribute of the decorated function/method.
|
test_validate_params_set_param_constraints_attribute
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_boolean_constraint_deprecated_int():
"""Check that validate_params raise a deprecation message but still passes
validation when using an int for a parameter accepting a boolean.
"""
@validate_params({"param": ["boolean"]}, prefer_skip_nested_validation=True)
def f(param):
pass
# True/False and np.bool_(True/False) are valid params
f(True)
f(np.bool_(False))
|
Check that validate_params raise a deprecation message but still passes
validation when using an int for a parameter accepting a boolean.
|
test_boolean_constraint_deprecated_int
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_no_validation():
"""Check that validation can be skipped for a parameter."""
@validate_params(
{"param1": [int, None], "param2": "no_validation"},
prefer_skip_nested_validation=True,
)
def f(param1=None, param2=None):
pass
# param1 is validated
with pytest.raises(InvalidParameterError, match="The 'param1' parameter"):
f(param1="wrong")
# param2 is not validated: any type is valid.
class SomeType:
pass
f(param2=SomeType)
f(param2=SomeType())
|
Check that validation can be skipped for a parameter.
|
test_no_validation
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_pandas_na_constraint_with_pd_na():
"""Add a specific test for checking support for `pandas.NA`."""
pd = pytest.importorskip("pandas")
na_constraint = _PandasNAConstraint()
assert na_constraint.is_satisfied_by(pd.NA)
assert not na_constraint.is_satisfied_by(np.array([1, 2, 3]))
|
Add a specific test for checking support for `pandas.NA`.
|
test_pandas_na_constraint_with_pd_na
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_iterable_not_string():
"""Check that a string does not satisfy the _IterableNotString constraint."""
constraint = _IterablesNotString()
assert constraint.is_satisfied_by([1, 2, 3])
assert constraint.is_satisfied_by(range(10))
assert not constraint.is_satisfied_by("some string")
|
Check that a string does not satisfy the _IterableNotString constraint.
|
test_iterable_not_string
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_cv_objects():
"""Check that the _CVObjects constraint accepts all current ways
to pass cv objects."""
constraint = _CVObjects()
assert constraint.is_satisfied_by(5)
assert constraint.is_satisfied_by(LeaveOneOut())
assert constraint.is_satisfied_by([([1, 2], [3, 4]), ([3, 4], [1, 2])])
assert constraint.is_satisfied_by(None)
assert not constraint.is_satisfied_by("not a CV object")
|
Check that the _CVObjects constraint accepts all current ways
to pass cv objects.
|
test_cv_objects
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_third_party_estimator():
"""Check that the validation from a scikit-learn estimator inherited by a third
party estimator does not impose a match between the dict of constraints and the
parameters of the estimator.
"""
class ThirdPartyEstimator(_Estimator):
def __init__(self, b):
self.b = b
super().__init__(a=0)
def fit(self, X=None, y=None):
super().fit(X, y)
# does not raise, even though "b" is not in the constraints dict and "a" is not
# a parameter of the estimator.
ThirdPartyEstimator(b=0).fit()
|
Check that the validation from a scikit-learn estimator inherited by a third
party estimator does not impose a match between the dict of constraints and the
parameters of the estimator.
|
test_third_party_estimator
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_interval_real_not_int():
"""Check for the type RealNotInt in the Interval constraint."""
constraint = Interval(RealNotInt, 0, 1, closed="both")
assert constraint.is_satisfied_by(1.0)
assert not constraint.is_satisfied_by(1)
|
Check for the type RealNotInt in the Interval constraint.
|
test_interval_real_not_int
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_skip_param_validation():
"""Check that param validation can be skipped using config_context."""
@validate_params({"a": [int]}, prefer_skip_nested_validation=True)
def f(a):
pass
with pytest.raises(InvalidParameterError, match="The 'a' parameter"):
f(a="1")
# does not raise
with config_context(skip_parameter_validation=True):
f(a="1")
|
Check that param validation can be skipped using config_context.
|
test_skip_param_validation
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_skip_nested_validation(prefer_skip_nested_validation):
"""Check that nested validation can be skipped."""
@validate_params({"a": [int]}, prefer_skip_nested_validation=True)
def f(a):
pass
@validate_params(
{"b": [int]},
prefer_skip_nested_validation=prefer_skip_nested_validation,
)
def g(b):
# calls f with a bad parameter type
return f(a="invalid_param_value")
# Validation for g is never skipped.
with pytest.raises(InvalidParameterError, match="The 'b' parameter"):
g(b="invalid_param_value")
if prefer_skip_nested_validation:
g(b=1) # does not raise because inner f is not validated
else:
with pytest.raises(InvalidParameterError, match="The 'a' parameter"):
g(b=1)
|
Check that nested validation can be skipped.
|
test_skip_nested_validation
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_skip_nested_validation_and_config_context(
skip_parameter_validation, prefer_skip_nested_validation, expected_skipped
):
"""Check interaction between global skip and local skip."""
@validate_params(
{"a": [int]}, prefer_skip_nested_validation=prefer_skip_nested_validation
)
def g(a):
return get_config()["skip_parameter_validation"]
with config_context(skip_parameter_validation=skip_parameter_validation):
actual_skipped = g(1)
assert actual_skipped == expected_skipped
|
Check interaction between global skip and local skip.
|
test_skip_nested_validation_and_config_context
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_param_validation.py
|
BSD-3-Clause
|
def test_validate_curve_kwargs_single_legend(
name, legend_metric, legend_metric_name, curve_kwargs
):
"""Check `_validate_curve_kwargs` returns correct kwargs for single legend entry."""
n_curves = 3
curve_kwargs_out = _BinaryClassifierCurveDisplayMixin._validate_curve_kwargs(
n_curves=n_curves,
name=name,
legend_metric=legend_metric,
legend_metric_name=legend_metric_name,
curve_kwargs=curve_kwargs,
)
assert isinstance(curve_kwargs_out, list)
assert len(curve_kwargs_out) == n_curves
expected_label = None
if isinstance(name, list):
name = name[0]
if name is not None:
expected_label = name
if legend_metric["mean"] is not None:
expected_label = expected_label + f" ({legend_metric_name} = 0.80 +/- 0.20)"
# `name` is None
elif legend_metric["mean"] is not None:
expected_label = f"{legend_metric_name} = 0.80 +/- 0.20"
assert curve_kwargs_out[0]["label"] == expected_label
# All remaining curves should have None as "label"
assert curve_kwargs_out[1]["label"] is None
assert curve_kwargs_out[2]["label"] is None
# Default multi-curve kwargs
if curve_kwargs is None:
assert all(len(kwargs) == 4 for kwargs in curve_kwargs_out)
assert all(kwargs["alpha"] == 0.5 for kwargs in curve_kwargs_out)
assert all(kwargs["linestyle"] == "--" for kwargs in curve_kwargs_out)
assert all(kwargs["color"] == "blue" for kwargs in curve_kwargs_out)
else:
assert all(len(kwargs) == 2 for kwargs in curve_kwargs_out)
assert all(kwargs["color"] == "red" for kwargs in curve_kwargs_out)
|
Check `_validate_curve_kwargs` returns correct kwargs for single legend entry.
|
test_validate_curve_kwargs_single_legend
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_plotting.py
|
BSD-3-Clause
|
def test_validate_curve_kwargs_multi_legend(name, legend_metric, legend_metric_name):
"""Check `_validate_curve_kwargs` returns correct kwargs for multi legend entry."""
n_curves = 3
curve_kwargs = [{"color": "red"}, {"color": "yellow"}, {"color": "blue"}]
curve_kwargs_out = _BinaryClassifierCurveDisplayMixin._validate_curve_kwargs(
n_curves=n_curves,
name=name,
legend_metric=legend_metric,
legend_metric_name=legend_metric_name,
curve_kwargs=curve_kwargs,
)
assert isinstance(curve_kwargs_out, list)
assert len(curve_kwargs_out) == n_curves
expected_labels = [None, None, None]
if isinstance(name, str):
expected_labels = "curve_name"
if legend_metric["metric"][0] is not None:
expected_labels = expected_labels + f" ({legend_metric_name} = 1.00)"
expected_labels = [expected_labels] * n_curves
elif isinstance(name, list) and legend_metric["metric"][0] is None:
expected_labels = name
elif isinstance(name, list) and legend_metric["metric"][0] is not None:
expected_labels = [
f"{name_single} ({legend_metric_name} = 1.00)" for name_single in name
]
# `name` is None
elif legend_metric["metric"][0] is not None:
expected_labels = [f"{legend_metric_name} = 1.00"] * n_curves
for idx, expected_label in enumerate(expected_labels):
assert curve_kwargs_out[idx]["label"] == expected_label
assert all(len(kwargs) == 2 for kwargs in curve_kwargs_out)
for curve_kwarg, curve_kwarg_out in zip(curve_kwargs, curve_kwargs_out):
assert curve_kwarg_out["color"] == curve_kwarg["color"]
|
Check `_validate_curve_kwargs` returns correct kwargs for multi legend entry.
|
test_validate_curve_kwargs_multi_legend
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_plotting.py
|
BSD-3-Clause
|
def test_validate_score_name(score_name, scoring, negate_score, expected_score_name):
"""Check that we return the right score name."""
assert (
_validate_score_name(score_name, scoring, negate_score) == expected_score_name
)
|
Check that we return the right score name.
|
test_validate_score_name
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_plotting.py
|
BSD-3-Clause
|
def test_validate_style_kwargs(default_kwargs, user_kwargs, expected):
"""Check the behaviour of `validate_style_kwargs` with various type of entries."""
result = _validate_style_kwargs(default_kwargs, user_kwargs)
assert result == expected, (
"The validation of style keywords does not provide the expected results: "
f"Got {result} instead of {expected}."
)
|
Check the behaviour of `validate_style_kwargs` with various type of entries.
|
test_validate_style_kwargs
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_plotting.py
|
BSD-3-Clause
|
def test_get_response_values_regressor_error(response_method):
"""Check the error message with regressor an not supported response
method."""
my_estimator = _MockEstimatorOnOffPrediction(response_methods=[response_method])
X = "mocking_data", "mocking_target"
err_msg = f"{my_estimator.__class__.__name__} should either be a classifier"
with pytest.raises(ValueError, match=err_msg):
_get_response_values(my_estimator, X, response_method=response_method)
|
Check the error message with regressor an not supported response
method.
|
test_get_response_values_regressor_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_regressor(return_response_method_used):
"""Check the behaviour of `_get_response_values` with regressor."""
X, y = make_regression(n_samples=10, random_state=0)
regressor = LinearRegression().fit(X, y)
results = _get_response_values(
regressor,
X,
response_method="predict",
return_response_method_used=return_response_method_used,
)
assert_array_equal(results[0], regressor.predict(X))
assert results[1] is None
if return_response_method_used:
assert results[2] == "predict"
|
Check the behaviour of `_get_response_values` with regressor.
|
test_get_response_values_regressor
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_outlier_detection(
response_method, return_response_method_used
):
"""Check the behaviour of `_get_response_values` with outlier detector."""
X, y = make_classification(n_samples=50, random_state=0)
outlier_detector = IsolationForest(random_state=0).fit(X, y)
results = _get_response_values(
outlier_detector,
X,
response_method=response_method,
return_response_method_used=return_response_method_used,
)
chosen_response_method = (
response_method[0] if isinstance(response_method, list) else response_method
)
prediction_method = getattr(outlier_detector, chosen_response_method)
assert_array_equal(results[0], prediction_method(X))
assert results[1] is None
if return_response_method_used:
assert results[2] == chosen_response_method
|
Check the behaviour of `_get_response_values` with outlier detector.
|
test_get_response_values_outlier_detection
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_classifier_unknown_pos_label(response_method):
"""Check that `_get_response_values` raises the proper error message with
classifier."""
X, y = make_classification(n_samples=10, n_classes=2, random_state=0)
classifier = LogisticRegression().fit(X, y)
# provide a `pos_label` which is not in `y`
err_msg = r"pos_label=whatever is not a valid label: It should be one of \[0 1\]"
with pytest.raises(ValueError, match=err_msg):
_get_response_values(
classifier,
X,
response_method=response_method,
pos_label="whatever",
)
|
Check that `_get_response_values` raises the proper error message with
classifier.
|
test_get_response_values_classifier_unknown_pos_label
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba(
response_method,
):
"""Check that `_get_response_values` will raise an error when `y_pred` has a
single class with `predict_proba`."""
X, y_two_class = make_classification(n_samples=10, n_classes=2, random_state=0)
y_single_class = np.zeros_like(y_two_class)
classifier = DecisionTreeClassifier().fit(X, y_single_class)
err_msg = (
r"Got predict_proba of shape \(10, 1\), but need classifier with "
r"two classes"
)
with pytest.raises(ValueError, match=err_msg):
_get_response_values(classifier, X, response_method=response_method)
|
Check that `_get_response_values` will raise an error when `y_pred` has a
single class with `predict_proba`.
|
test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_binary_classifier_decision_function(
return_response_method_used,
):
"""Check the behaviour of `_get_response_values` with `decision_function`
and binary classifier."""
X, y = make_classification(
n_samples=10,
n_classes=2,
weights=[0.3, 0.7],
random_state=0,
)
classifier = LogisticRegression().fit(X, y)
response_method = "decision_function"
# default `pos_label`
results = _get_response_values(
classifier,
X,
response_method=response_method,
pos_label=None,
return_response_method_used=return_response_method_used,
)
assert_allclose(results[0], classifier.decision_function(X))
assert results[1] == 1
if return_response_method_used:
assert results[2] == "decision_function"
# when forcing `pos_label=classifier.classes_[0]`
results = _get_response_values(
classifier,
X,
response_method=response_method,
pos_label=classifier.classes_[0],
return_response_method_used=return_response_method_used,
)
assert_allclose(results[0], classifier.decision_function(X) * -1)
assert results[1] == 0
if return_response_method_used:
assert results[2] == "decision_function"
|
Check the behaviour of `_get_response_values` with `decision_function`
and binary classifier.
|
test_get_response_values_binary_classifier_decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_binary_classifier_predict_proba(
return_response_method_used, response_method
):
"""Check that `_get_response_values` with `predict_proba` and binary
classifier."""
X, y = make_classification(
n_samples=10,
n_classes=2,
weights=[0.3, 0.7],
random_state=0,
)
classifier = LogisticRegression().fit(X, y)
# default `pos_label`
results = _get_response_values(
classifier,
X,
response_method=response_method,
pos_label=None,
return_response_method_used=return_response_method_used,
)
assert_allclose(results[0], getattr(classifier, response_method)(X)[:, 1])
assert results[1] == 1
if return_response_method_used:
assert len(results) == 3
assert results[2] == response_method
else:
assert len(results) == 2
# when forcing `pos_label=classifier.classes_[0]`
y_pred, pos_label, *_ = _get_response_values(
classifier,
X,
response_method=response_method,
pos_label=classifier.classes_[0],
return_response_method_used=return_response_method_used,
)
assert_allclose(y_pred, getattr(classifier, response_method)(X)[:, 0])
assert pos_label == 0
|
Check that `_get_response_values` with `predict_proba` and binary
classifier.
|
test_get_response_values_binary_classifier_predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_error(estimator, X, y, err_msg, params):
"""Check that we raise the proper error messages in _get_response_values_binary."""
estimator.fit(X, y)
with pytest.raises(ValueError, match=err_msg):
_get_response_values_binary(estimator, X, **params)
|
Check that we raise the proper error messages in _get_response_values_binary.
|
test_get_response_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_multiclass(estimator, response_method):
"""Check that we can call `_get_response_values` with a multiclass estimator.
It should return the predictions untouched.
"""
estimator.fit(X, y)
predictions, pos_label = _get_response_values(
estimator, X, response_method=response_method
)
assert pos_label is None
assert predictions.shape == (X.shape[0], len(estimator.classes_))
if response_method == "predict_proba":
assert np.logical_and(predictions >= 0, predictions <= 1).all()
elif response_method == "predict_log_proba":
assert (predictions <= 0.0).all()
|
Check that we can call `_get_response_values` with a multiclass estimator.
It should return the predictions untouched.
|
test_get_response_values_multiclass
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_get_response_values_with_response_list():
"""Check the behaviour of passing a list of responses to `_get_response_values`."""
classifier = LogisticRegression().fit(X_binary, y_binary)
# it should use `predict_proba`
y_pred, pos_label, response_method = _get_response_values(
classifier,
X_binary,
response_method=["predict_proba", "decision_function"],
return_response_method_used=True,
)
assert_allclose(y_pred, classifier.predict_proba(X_binary)[:, 1])
assert pos_label == 1
assert response_method == "predict_proba"
# it should use `decision_function`
y_pred, pos_label, response_method = _get_response_values(
classifier,
X_binary,
response_method=["decision_function", "predict_proba"],
return_response_method_used=True,
)
assert_allclose(y_pred, classifier.decision_function(X_binary))
assert pos_label == 1
assert response_method == "decision_function"
|
Check the behaviour of passing a list of responses to `_get_response_values`.
|
test_get_response_values_with_response_list
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_response.py
|
BSD-3-Clause
|
def test_pandas_adapter():
"""Check pandas adapter has expected behavior."""
pd = pytest.importorskip("pandas")
X_np = np.asarray([[1, 0, 3], [0, 0, 1]])
columns = np.asarray(["f0", "f1", "f2"], dtype=object)
index = np.asarray([0, 1])
X_df_orig = pd.DataFrame([[1, 2], [1, 3]], index=index)
adapter = ADAPTERS_MANAGER.adapters["pandas"]
X_container = adapter.create_container(X_np, X_df_orig, columns=lambda: columns)
assert isinstance(X_container, pd.DataFrame)
assert_array_equal(X_container.columns, columns)
assert_array_equal(X_container.index, index)
# Input dataframe's index does not change
new_columns = np.asarray(["f0", "f1"], dtype=object)
X_df = pd.DataFrame([[1, 2], [1, 3]], index=[10, 12])
new_df = adapter.create_container(X_df, X_df_orig, columns=new_columns)
assert_array_equal(new_df.columns, new_columns)
assert_array_equal(new_df.index, X_df.index)
assert adapter.is_supported_container(X_df)
assert not adapter.is_supported_container(X_np)
# adapter.update_columns updates the columns
new_columns = np.array(["a", "c"], dtype=object)
new_df = adapter.rename_columns(X_df, new_columns)
assert_array_equal(new_df.columns, new_columns)
# adapter.hstack stacks the dataframes horizontally.
X_df_1 = pd.DataFrame([[1, 2, 5], [3, 4, 6]], columns=["a", "b", "e"])
X_df_2 = pd.DataFrame([[4], [5]], columns=["c"])
X_stacked = adapter.hstack([X_df_1, X_df_2])
expected_df = pd.DataFrame(
[[1, 2, 5, 4], [3, 4, 6, 5]], columns=["a", "b", "e", "c"]
)
pd.testing.assert_frame_equal(X_stacked, expected_df)
# check that we update properly the columns even with duplicate column names
# this use-case potentially happen when using ColumnTransformer
# non-regression test for gh-28260
X_df = pd.DataFrame([[1, 2], [1, 3]], columns=["a", "a"])
new_columns = np.array(["x__a", "y__a"], dtype=object)
new_df = adapter.rename_columns(X_df, new_columns)
assert_array_equal(new_df.columns, new_columns)
# check the behavior of the inplace parameter in `create_container`
# we should trigger a copy
X_df = pd.DataFrame([[1, 2], [1, 3]], index=index)
X_output = adapter.create_container(X_df, X_df, columns=["a", "b"], inplace=False)
assert X_output is not X_df
assert list(X_df.columns) == [0, 1]
assert list(X_output.columns) == ["a", "b"]
# the operation is inplace
X_df = pd.DataFrame([[1, 2], [1, 3]], index=index)
X_output = adapter.create_container(X_df, X_df, columns=["a", "b"], inplace=True)
assert X_output is X_df
assert list(X_df.columns) == ["a", "b"]
assert list(X_output.columns) == ["a", "b"]
|
Check pandas adapter has expected behavior.
|
test_pandas_adapter
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_polars_adapter():
"""Check Polars adapter has expected behavior."""
pl = pytest.importorskip("polars")
X_np = np.array([[1, 0, 3], [0, 0, 1]])
columns = ["f1", "f2", "f3"]
X_df_orig = pl.DataFrame(X_np, schema=columns, orient="row")
adapter = ADAPTERS_MANAGER.adapters["polars"]
X_container = adapter.create_container(X_np, X_df_orig, columns=lambda: columns)
assert isinstance(X_container, pl.DataFrame)
assert_array_equal(X_container.columns, columns)
# Update columns with create_container
new_columns = np.asarray(["a", "b", "c"], dtype=object)
new_df = adapter.create_container(X_df_orig, X_df_orig, columns=new_columns)
assert_array_equal(new_df.columns, new_columns)
assert adapter.is_supported_container(X_df_orig)
assert not adapter.is_supported_container(X_np)
# adapter.update_columns updates the columns
new_columns = np.array(["a", "c", "g"], dtype=object)
new_df = adapter.rename_columns(X_df_orig, new_columns)
assert_array_equal(new_df.columns, new_columns)
# adapter.hstack stacks the dataframes horizontally.
X_df_1 = pl.DataFrame([[1, 2, 5], [3, 4, 6]], schema=["a", "b", "e"], orient="row")
X_df_2 = pl.DataFrame([[4], [5]], schema=["c"], orient="row")
X_stacked = adapter.hstack([X_df_1, X_df_2])
expected_df = pl.DataFrame(
[[1, 2, 5, 4], [3, 4, 6, 5]], schema=["a", "b", "e", "c"], orient="row"
)
from polars.testing import assert_frame_equal
assert_frame_equal(X_stacked, expected_df)
# check the behavior of the inplace parameter in `create_container`
# we should trigger a copy
X_df = pl.DataFrame([[1, 2], [1, 3]], schema=["a", "b"], orient="row")
X_output = adapter.create_container(X_df, X_df, columns=["c", "d"], inplace=False)
assert X_output is not X_df
assert list(X_df.columns) == ["a", "b"]
assert list(X_output.columns) == ["c", "d"]
# the operation is inplace
X_df = pl.DataFrame([[1, 2], [1, 3]], schema=["a", "b"], orient="row")
X_output = adapter.create_container(X_df, X_df, columns=["c", "d"], inplace=True)
assert X_output is X_df
assert list(X_df.columns) == ["c", "d"]
assert list(X_output.columns) == ["c", "d"]
|
Check Polars adapter has expected behavior.
|
test_polars_adapter
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_set_output_method(dataframe_lib):
"""Check that the output is a dataframe."""
lib = pytest.importorskip(dataframe_lib)
X = np.asarray([[1, 0, 3], [0, 0, 1]])
est = EstimatorWithSetOutput().fit(X)
# transform=None is a no-op
est2 = est.set_output(transform=None)
assert est2 is est
X_trans_np = est2.transform(X)
assert isinstance(X_trans_np, np.ndarray)
est.set_output(transform=dataframe_lib)
X_trans_pd = est.transform(X)
assert isinstance(X_trans_pd, lib.DataFrame)
|
Check that the output is a dataframe.
|
test_set_output_method
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_set_output_method_error():
"""Check transform fails with invalid transform."""
X = np.asarray([[1, 0, 3], [0, 0, 1]])
est = EstimatorWithSetOutput().fit(X)
est.set_output(transform="bad")
msg = "output config must be in"
with pytest.raises(ValueError, match=msg):
est.transform(X)
|
Check transform fails with invalid transform.
|
test_set_output_method_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_get_output_auto_wrap_false():
"""Check that auto_wrap_output_keys=None does not wrap."""
est = EstimatorWithSetOutputNoAutoWrap()
assert not hasattr(est, "set_output")
X = np.asarray([[1, 0, 3], [0, 0, 1]])
assert X is est.transform(X)
|
Check that auto_wrap_output_keys=None does not wrap.
|
test_get_output_auto_wrap_false
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_set_output_mixin_custom_mixin():
"""Check that multiple init_subclasses passes parameters up."""
class BothMixinEstimator(_SetOutputMixin, AnotherMixin, custom_parameter=123):
def transform(self, X, y=None):
return X
def get_feature_names_out(self, input_features=None):
return input_features
est = BothMixinEstimator()
assert est.custom_parameter == 123
assert hasattr(est, "set_output")
|
Check that multiple init_subclasses passes parameters up.
|
test_set_output_mixin_custom_mixin
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_set_output_mro():
"""Check that multi-inheritance resolves to the correct class method.
Non-regression test gh-25293.
"""
class Base(_SetOutputMixin):
def transform(self, X):
return "Base"
class A(Base):
pass
class B(Base):
def transform(self, X):
return "B"
class C(A, B):
pass
assert C().transform(None) == "B"
|
Check that multi-inheritance resolves to the correct class method.
Non-regression test gh-25293.
|
test_set_output_mro
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_set_output_pandas_keep_index():
"""Check that set_output does not override index.
Non-regression test for gh-25730.
"""
pd = pytest.importorskip("pandas")
X = pd.DataFrame([[1, 2, 3], [4, 5, 6]], index=[0, 1])
est = EstimatorWithSetOutputIndex().set_output(transform="pandas")
est.fit(X)
X_trans = est.transform(X)
assert_array_equal(X_trans.index, ["s0", "s1"])
|
Check that set_output does not override index.
Non-regression test for gh-25730.
|
test_set_output_pandas_keep_index
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_set_output_named_tuple_out():
"""Check that namedtuples are kept by default."""
Output = namedtuple("Output", "X, Y")
X = np.asarray([[1, 2, 3]])
est = EstimatorReturnTuple(OutputTuple=Output)
X_trans = est.transform(X)
assert isinstance(X_trans, Output)
assert_array_equal(X_trans.X, X)
assert_array_equal(X_trans.Y, 2 * X)
|
Check that namedtuples are kept by default.
|
test_set_output_named_tuple_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_set_output_list_input(dataframe_lib):
"""Check set_output for list input.
Non-regression test for #27037.
"""
lib = pytest.importorskip(dataframe_lib)
X = [[0, 1, 2, 3], [4, 5, 6, 7]]
est = EstimatorWithListInput()
est.set_output(transform=dataframe_lib)
X_out = est.fit(X).transform(X)
assert isinstance(X_out, lib.DataFrame)
assert_array_equal(X_out.columns, ["X0", "X1", "X2", "X3"])
|
Check set_output for list input.
Non-regression test for #27037.
|
test_set_output_list_input
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_set_output.py
|
BSD-3-Clause
|
def test_incr_mean_variance_axis_dim_mismatch(sparse_constructor):
"""Check that we raise proper error when axis=1 and the dimension mismatch.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/pull/18655
"""
n_samples, n_features = 60, 4
rng = np.random.RandomState(42)
X = sparse_constructor(rng.rand(n_samples, n_features))
last_mean = np.zeros(n_features)
last_var = np.zeros_like(last_mean)
last_n = np.zeros(last_mean.shape, dtype=np.int64)
kwargs = dict(last_mean=last_mean, last_var=last_var, last_n=last_n)
mean0, var0, _ = incr_mean_variance_axis(X, axis=0, **kwargs)
assert_allclose(np.mean(X.toarray(), axis=0), mean0)
assert_allclose(np.var(X.toarray(), axis=0), var0)
# test ValueError if axis=1 and last_mean.size == n_features
with pytest.raises(ValueError):
incr_mean_variance_axis(X, axis=1, **kwargs)
# test inconsistent shapes of last_mean, last_var, last_n
kwargs = dict(last_mean=last_mean[:-1], last_var=last_var, last_n=last_n)
with pytest.raises(ValueError):
incr_mean_variance_axis(X, axis=0, **kwargs)
|
Check that we raise proper error when axis=1 and the dimension mismatch.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/pull/18655
|
test_incr_mean_variance_axis_dim_mismatch
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_sparsefuncs.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_sparsefuncs.py
|
BSD-3-Clause
|
def centered_matrices(request):
"""Returns equivalent tuple[sp.linalg.LinearOperator, np.ndarray]."""
sparse_container = request.param
random_state = np.random.default_rng(42)
X_sparse = sparse_container(
sp.random(500, 100, density=0.1, format="csr", random_state=random_state)
)
X_dense = X_sparse.toarray()
mu = np.asarray(X_sparse.mean(axis=0)).ravel()
X_sparse_centered = _implicit_column_offset(X_sparse, mu)
X_dense_centered = X_dense - mu
return X_sparse_centered, X_dense_centered
|
Returns equivalent tuple[sp.linalg.LinearOperator, np.ndarray].
|
centered_matrices
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_sparsefuncs.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_sparsefuncs.py
|
BSD-3-Clause
|
def test_weighted_percentile():
"""Check `weighted_percentile` on artificial data with obvious median."""
y = np.empty(102, dtype=np.float64)
y[:50] = 0
y[-51:] = 2
y[-1] = 100000
y[50] = 1
sw = np.ones(102, dtype=np.float64)
sw[-1] = 0.0
value = _weighted_percentile(y, sw, 50)
assert approx(value) == 1
|
Check `weighted_percentile` on artificial data with obvious median.
|
test_weighted_percentile
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_equal():
"""Check `weighted_percentile` with all weights equal to 1."""
y = np.empty(102, dtype=np.float64)
y.fill(0.0)
sw = np.ones(102, dtype=np.float64)
score = _weighted_percentile(y, sw, 50)
assert approx(score) == 0
|
Check `weighted_percentile` with all weights equal to 1.
|
test_weighted_percentile_equal
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_zero_weight():
"""Check `weighted_percentile` with all weights equal to 0."""
y = np.empty(102, dtype=np.float64)
y.fill(1.0)
sw = np.ones(102, dtype=np.float64)
sw.fill(0.0)
value = _weighted_percentile(y, sw, 50)
assert approx(value) == 1.0
|
Check `weighted_percentile` with all weights equal to 0.
|
test_weighted_percentile_zero_weight
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_zero_weight_zero_percentile():
"""Check `weighted_percentile(percentile_rank=0)` behaves correctly.
Ensures that (leading)zero-weight observations ignored when `percentile_rank=0`.
See #20528 for details.
"""
y = np.array([0, 1, 2, 3, 4, 5])
sw = np.array([0, 0, 1, 1, 1, 0])
value = _weighted_percentile(y, sw, 0)
assert approx(value) == 2
value = _weighted_percentile(y, sw, 50)
assert approx(value) == 3
value = _weighted_percentile(y, sw, 100)
assert approx(value) == 4
|
Check `weighted_percentile(percentile_rank=0)` behaves correctly.
Ensures that (leading)zero-weight observations ignored when `percentile_rank=0`.
See #20528 for details.
|
test_weighted_percentile_zero_weight_zero_percentile
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_median_equal_weights(global_random_seed):
"""Checks `_weighted_percentile(percentile_rank=50)` is the same as `np.median`.
`sample_weights` are all 1s and the number of samples is odd.
When number of samples is odd, `_weighted_percentile` always falls on a single
observation (not between 2 values, in which case the lower value would be taken)
and is thus equal to `np.median`.
For an even number of samples, this check will not always hold as (note that
for some other percentile methods it will always hold). See #17370 for details.
"""
rng = np.random.RandomState(global_random_seed)
x = rng.randint(10, size=11)
weights = np.ones(x.shape)
median = np.median(x)
w_median = _weighted_percentile(x, weights)
assert median == approx(w_median)
|
Checks `_weighted_percentile(percentile_rank=50)` is the same as `np.median`.
`sample_weights` are all 1s and the number of samples is odd.
When number of samples is odd, `_weighted_percentile` always falls on a single
observation (not between 2 values, in which case the lower value would be taken)
and is thus equal to `np.median`.
For an even number of samples, this check will not always hold as (note that
for some other percentile methods it will always hold). See #17370 for details.
|
test_weighted_median_equal_weights
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_array_api_consistency(
global_random_seed, array_namespace, device, dtype_name, data, weights, percentile
):
"""Check `_weighted_percentile` gives consistent results with array API."""
if array_namespace == "array_api_strict":
try:
import array_api_strict
except ImportError:
pass
else:
if device == array_api_strict.Device("device1"):
# See https://github.com/data-apis/array-api-strict/issues/134
pytest.xfail(
"array_api_strict has bug when indexing with tuple of arrays "
"on non-'CPU_DEVICE' devices."
)
xp = _array_api_for_tests(array_namespace, device)
# Skip test for percentile=0 edge case (#20528) on namespace/device where
# xp.nextafter is broken. This is the case for torch with MPS device:
# https://github.com/pytorch/pytorch/issues/150027
zero = xp.zeros(1, device=device)
one = xp.ones(1, device=device)
if percentile == 0 and xp.all(xp.nextafter(zero, one) == zero):
pytest.xfail(f"xp.nextafter is broken on {device}")
rng = np.random.RandomState(global_random_seed)
X_np = data(rng) if callable(data) else data
weights_np = weights(rng) if callable(weights) else weights
# Ensure `data` of correct dtype
X_np = X_np.astype(dtype_name)
result_np = _weighted_percentile(X_np, weights_np, percentile)
# Convert to Array API arrays
X_xp = xp.asarray(X_np, device=device)
weights_xp = xp.asarray(weights_np, device=device)
with config_context(array_api_dispatch=True):
result_xp = _weighted_percentile(X_xp, weights_xp, percentile)
assert array_device(result_xp) == array_device(X_xp)
assert get_namespace(result_xp)[0] == get_namespace(X_xp)[0]
result_xp_np = _convert_to_numpy(result_xp, xp=xp)
assert result_xp_np.dtype == result_np.dtype
assert result_xp_np.shape == result_np.shape
assert_allclose(result_np, result_xp_np)
# Check dtype correct (`sample_weight` should follow `array`)
if dtype_name == "float32":
assert result_xp_np.dtype == result_np.dtype == np.float32
else:
assert result_xp_np.dtype == np.float64
|
Check `_weighted_percentile` gives consistent results with array API.
|
test_weighted_percentile_array_api_consistency
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_nan_filtered(sample_weight_ndim, global_random_seed):
"""Test that calling _weighted_percentile on an array with nan values returns
the same results as calling _weighted_percentile on a filtered version of the data.
We test both with sample_weight of the same shape as the data and with
one-dimensional sample_weight."""
rng = np.random.RandomState(global_random_seed)
array_with_nans = rng.rand(100, 10)
array_with_nans[rng.rand(*array_with_nans.shape) < 0.5] = np.nan
nan_mask = np.isnan(array_with_nans)
if sample_weight_ndim == 2:
sample_weight = rng.randint(1, 6, size=(100, 10))
else:
sample_weight = rng.randint(1, 6, size=(100,))
# Find the weighted percentile on the array with nans:
results = _weighted_percentile(array_with_nans, sample_weight, 30)
# Find the weighted percentile on the filtered array:
filtered_array = [
array_with_nans[~nan_mask[:, col], col]
for col in range(array_with_nans.shape[1])
]
if sample_weight.ndim == 1:
sample_weight = np.repeat(sample_weight, array_with_nans.shape[1]).reshape(
array_with_nans.shape[0], array_with_nans.shape[1]
)
filtered_weights = [
sample_weight[~nan_mask[:, col], col] for col in range(array_with_nans.shape[1])
]
expected_results = np.array(
[
_weighted_percentile(filtered_array[col], filtered_weights[col], 30)
for col in range(array_with_nans.shape[1])
]
)
assert_array_equal(expected_results, results)
|
Test that calling _weighted_percentile on an array with nan values returns
the same results as calling _weighted_percentile on a filtered version of the data.
We test both with sample_weight of the same shape as the data and with
one-dimensional sample_weight.
|
test_weighted_percentile_nan_filtered
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_all_nan_column():
"""Check that nans are ignored in general, except for all NaN columns."""
array = np.array(
[
[np.nan, 5],
[np.nan, 1],
[np.nan, np.nan],
[np.nan, np.nan],
[np.nan, 2],
[np.nan, np.nan],
]
)
weights = np.ones_like(array)
percentile_rank = 90
values = _weighted_percentile(array, weights, percentile_rank)
# The percentile of the second column should be `5` even though there are many nan
# values present; the percentile of the first column can only be nan, since there
# are no other possible values:
assert np.array_equal(values, np.array([np.nan, 5]), equal_nan=True)
|
Check that nans are ignored in general, except for all NaN columns.
|
test_weighted_percentile_all_nan_column
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_like_numpy_quantile(percentile, global_random_seed):
"""Check that _weighted_percentile delivers equivalent results as np.quantile
with weights."""
rng = np.random.RandomState(global_random_seed)
array = rng.rand(10, 100)
sample_weight = rng.randint(1, 6, size=(10, 100))
percentile_weighted_percentile = _weighted_percentile(
array, sample_weight, percentile
)
percentile_numpy_quantile = np.quantile(
array, percentile / 100, weights=sample_weight, axis=0, method="inverted_cdf"
)
assert_array_equal(percentile_weighted_percentile, percentile_numpy_quantile)
|
Check that _weighted_percentile delivers equivalent results as np.quantile
with weights.
|
test_weighted_percentile_like_numpy_quantile
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_weighted_percentile_like_numpy_nanquantile(percentile, global_random_seed):
"""Check that _weighted_percentile delivers equivalent results as np.nanquantile
with weights."""
rng = np.random.RandomState(global_random_seed)
array_with_nans = rng.rand(10, 100)
array_with_nans[rng.rand(*array_with_nans.shape) < 0.5] = np.nan
sample_weight = rng.randint(1, 6, size=(10, 100))
percentile_weighted_percentile = _weighted_percentile(
array_with_nans, sample_weight, percentile
)
percentile_numpy_nanquantile = np.nanquantile(
array_with_nans,
percentile / 100,
weights=sample_weight,
axis=0,
method="inverted_cdf",
)
assert_array_equal(percentile_weighted_percentile, percentile_numpy_nanquantile)
|
Check that _weighted_percentile delivers equivalent results as np.nanquantile
with weights.
|
test_weighted_percentile_like_numpy_nanquantile
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_stats.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_stats.py
|
BSD-3-Clause
|
def test_no___sklearn_tags__with_more_tags():
"""Test that calling `get_tags` on a class that defines `_more_tags` but not
`__sklearn_tags__` raises an error.
"""
class MoreTagsEstimator(BaseEstimator):
def _more_tags(self):
return {"requires_y": True} # pragma: no cover
with pytest.raises(
TypeError, match="has defined either `_more_tags` or `_get_tags`"
):
check_estimator_tags_renamed("MoreTagsEstimator", MoreTagsEstimator())
|
Test that calling `get_tags` on a class that defines `_more_tags` but not
`__sklearn_tags__` raises an error.
|
test_no___sklearn_tags__with_more_tags
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_tags.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_tags.py
|
BSD-3-Clause
|
def test_tags_no_sklearn_tags_concrete_implementation():
"""Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/30479
Either the estimator doesn't implement `__sklearn_tags` or there is no class
implementing `__sklearn_tags__` without calling `super().__sklearn_tags__()` in
its mro. Thus, we raise a warning and request to inherit from
`BaseEstimator` that implements `__sklearn_tags__`.
"""
X = np.array([[1, 2], [2, 3], [3, 4]])
y = np.array([1, 0, 1])
# 1st case, the estimator inherits from a class that only implements
# `__sklearn_tags__` by calling `super().__sklearn_tags__()`.
class MyEstimator(ClassifierMixin):
def __init__(self, *, param=1):
self.param = param
def fit(self, X, y=None):
self.is_fitted_ = True
return self
def predict(self, X):
return np.full(shape=X.shape[0], fill_value=self.param)
my_pipeline = Pipeline([("estimator", MyEstimator(param=1))])
with pytest.warns(DeprecationWarning, match="The following error was raised"):
my_pipeline.fit(X, y).predict(X)
# 2nd case, the estimator doesn't implement `__sklearn_tags__` at all.
class MyEstimator2:
def __init__(self, *, param=1):
self.param = param
def fit(self, X, y=None):
self.is_fitted_ = True
return self
def predict(self, X):
return np.full(shape=X.shape[0], fill_value=self.param)
my_pipeline = Pipeline([("estimator", MyEstimator2(param=1))])
with pytest.warns(DeprecationWarning, match="The following error was raised"):
my_pipeline.fit(X, y).predict(X)
# check that we still raise an error if it is not a AttributeError or related to
# __sklearn_tags__
class MyEstimator3(MyEstimator, BaseEstimator):
def __init__(self, *, param=1, error_type=AttributeError):
self.param = param
self.error_type = error_type
def __sklearn_tags__(self):
super().__sklearn_tags__()
raise self.error_type("test")
for error_type in (AttributeError, TypeError, ValueError):
estimator = MyEstimator3(param=1, error_type=error_type)
with pytest.raises(error_type):
get_tags(estimator)
|
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/30479
Either the estimator doesn't implement `__sklearn_tags` or there is no class
implementing `__sklearn_tags__` without calling `super().__sklearn_tags__()` in
its mro. Thus, we raise a warning and request to inherit from
`BaseEstimator` that implements `__sklearn_tags__`.
|
test_tags_no_sklearn_tags_concrete_implementation
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_tags.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_tags.py
|
BSD-3-Clause
|
def score(self, X):
"""This is available only if delegate has score.
Parameters
---------
y : ndarray
Parameter y
"""
|
This is available only if delegate has score.
Parameters
---------
y : ndarray
Parameter y
|
score
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_testing.py
|
BSD-3-Clause
|
def test_convert_container(
constructor_name,
container_type,
dtype,
superdtype,
):
"""Check that we convert the container to the right type of array with the
right data type."""
if constructor_name in (
"dataframe",
"index",
"polars",
"polars_series",
"pyarrow",
"pyarrow_array",
"series",
):
# delay the import of pandas/polars within the function to only skip this test
# instead of the whole file
container_type = container_type()
container = [0, 1]
container_converted = _convert_container(
container,
constructor_name,
dtype=dtype,
)
assert isinstance(container_converted, container_type)
if constructor_name in ("list", "tuple", "index"):
# list and tuple will use Python class dtype: int, float
# pandas index will always use high precision: np.int64 and np.float64
assert np.issubdtype(type(container_converted[0]), superdtype)
elif constructor_name in ("polars", "polars_series", "pyarrow", "pyarrow_array"):
return
elif hasattr(container_converted, "dtype"):
assert container_converted.dtype == dtype
elif hasattr(container_converted, "dtypes"):
assert container_converted.dtypes[0] == dtype
|
Check that we convert the container to the right type of array with the
right data type.
|
test_convert_container
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_testing.py
|
BSD-3-Clause
|
def test_attach_unique_not_ndarray():
"""Test that when not np.ndarray, we don't touch the array."""
arr = [1, 2, 2, 3, 4, 4, 5]
arr_ = attach_unique(arr)
assert arr_ is arr
|
Test that when not np.ndarray, we don't touch the array.
|
test_attach_unique_not_ndarray
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_unique.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_unique.py
|
BSD-3-Clause
|
def test_attach_unique_returns_view():
"""Test that attach_unique returns a view of the array."""
arr = np.array([1, 2, 2, 3, 4, 4, 5])
arr_ = attach_unique(arr)
assert arr_.base is arr
|
Test that attach_unique returns a view of the array.
|
test_attach_unique_returns_view
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_unique.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_unique.py
|
BSD-3-Clause
|
def test_check_array_keeps_unique():
"""Test that check_array keeps the unique metadata."""
arr = np.array([[1, 2, 2, 3, 4, 4, 5]])
arr_ = attach_unique(arr)
arr_ = check_array(arr_)
assert_array_equal(arr_.dtype.metadata["unique"], np.array([1, 2, 3, 4, 5]))
assert_array_equal(arr_, arr)
|
Test that check_array keeps the unique metadata.
|
test_check_array_keeps_unique
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_unique.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_unique.py
|
BSD-3-Clause
|
def test_check_array_series_err_msg():
"""
Check that we raise a proper error message when passing a Series and we expect a
2-dimensional container.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/27498
"""
pd = pytest.importorskip("pandas")
ser = pd.Series([1, 2, 3])
msg = f"Expected a 2-dimensional container but got {type(ser)} instead."
with pytest.raises(ValueError, match=msg):
check_array(ser, ensure_2d=True)
|
Check that we raise a proper error message when passing a Series and we expect a
2-dimensional container.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/27498
|
test_check_array_series_err_msg
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_array_numeric_error(X):
"""Test that check_array errors when it receives an array of bytes/string
while a numeric dtype is required."""
expected_msg = r"dtype='numeric' is not compatible with arrays of bytes/strings"
with pytest.raises(ValueError, match=expected_msg):
check_array(X, dtype="numeric")
|
Test that check_array errors when it receives an array of bytes/string
while a numeric dtype is required.
|
test_check_array_numeric_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_array_panadas_na_support_series():
"""Check check_array is correct with pd.NA in a series."""
pd = pytest.importorskip("pandas")
X_int64 = pd.Series([1, 2, pd.NA], dtype="Int64")
msg = "Input contains NaN"
with pytest.raises(ValueError, match=msg):
check_array(X_int64, ensure_all_finite=True, ensure_2d=False)
X_out = check_array(X_int64, ensure_all_finite=False, ensure_2d=False)
assert_allclose(X_out, [1, 2, np.nan])
assert X_out.dtype == np.float64
X_out = check_array(
X_int64, ensure_all_finite=False, ensure_2d=False, dtype=np.float32
)
assert_allclose(X_out, [1, 2, np.nan])
assert X_out.dtype == np.float32
|
Check check_array is correct with pd.NA in a series.
|
test_check_array_panadas_na_support_series
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_is_fitted_stateless():
"""Check that check_is_fitted passes for stateless estimators."""
class StatelessEstimator(BaseEstimator):
def fit(self, **kwargs):
return self # pragma: no cover
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.requires_fit = False
return tags
check_is_fitted(StatelessEstimator())
|
Check that check_is_fitted passes for stateless estimators.
|
test_check_is_fitted_stateless
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_consistent_length():
"""Test that `check_consistent_length` raises on inconsistent lengths and wrong
input types trigger TypeErrors."""
check_consistent_length([1], [2], [3], [4], [5])
check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ["a", "b"])
check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2)))
with pytest.raises(ValueError, match="inconsistent numbers of samples"):
check_consistent_length([1, 2], [1])
with pytest.raises(TypeError, match=r"got <\w+ 'int'>"):
check_consistent_length([1, 2], 1)
with pytest.raises(TypeError, match=r"got <\w+ 'object'>"):
check_consistent_length([1, 2], object())
with pytest.raises(TypeError):
check_consistent_length([1, 2], np.array(1))
# Despite ensembles having __len__ they must raise TypeError
with pytest.raises(TypeError, match="Expected sequence or array-like"):
check_consistent_length([1, 2], RandomForestRegressor())
# XXX: We should have a test with a string, but what is correct behaviour?
|
Test that `check_consistent_length` raises on inconsistent lengths and wrong
input types trigger TypeErrors.
|
test_check_consistent_length
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_consistent_length_array_api(array_namespace, device, _):
"""Test that check_consistent_length works with different array types."""
xp = _array_api_for_tests(array_namespace, device)
with config_context(array_api_dispatch=True):
check_consistent_length(
xp.asarray([1, 2, 3], device=device),
xp.asarray([[1, 1], [2, 2], [3, 3]], device=device),
[1, 2, 3],
["a", "b", "c"],
np.asarray(("a", "b", "c"), dtype=object),
sp.csr_array([[0, 1], [1, 0], [0, 0]]),
)
with pytest.raises(ValueError, match="inconsistent numbers of samples"):
check_consistent_length(
xp.asarray([1, 2], device=device), xp.asarray([1], device=device)
)
|
Test that check_consistent_length works with different array types.
|
test_check_consistent_length_array_api
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_dataframe_with_only_bool():
"""Check that dataframe with bool return a boolean arrays."""
pd = importorskip("pandas")
df = pd.DataFrame({"bool": [True, False, True]})
array = check_array(df, dtype=None)
assert array.dtype == np.bool_
assert_array_equal(array, [[True], [False], [True]])
# common dtype is int for bool + int
df = pd.DataFrame(
{"bool": [True, False, True], "int": [1, 2, 3]},
columns=["bool", "int"],
)
array = check_array(df, dtype="numeric")
assert array.dtype == np.int64
assert_array_equal(array, [[1, 1], [0, 2], [1, 3]])
|
Check that dataframe with bool return a boolean arrays.
|
test_check_dataframe_with_only_bool
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_dataframe_with_only_boolean():
"""Check that dataframe with boolean return a float array with dtype=None"""
pd = importorskip("pandas")
df = pd.DataFrame({"bool": pd.Series([True, False, True], dtype="boolean")})
array = check_array(df, dtype=None)
assert array.dtype == np.float64
assert_array_equal(array, [[True], [False], [True]])
|
Check that dataframe with boolean return a float array with dtype=None
|
test_check_dataframe_with_only_boolean
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_estimator_has(
estimator_name, estimator_value, delegates, expected_result, expected_exception
):
"""
Tests the _estimator_has function by verifying:
- Functionality with default and custom delegates.
- Raises ValueError if delegates are missing.
- Raises AttributeError if the specified attribute is missing.
"""
# always checks for attribute - "attribute_present"
# ["estimator_", "estimator"] is default value for delegates
if delegates is None:
check = _estimator_has("attribute_present")
else:
check = _estimator_has("attribute_present", delegates=delegates)
class MockEstimator:
pass
a = MockEstimator()
setattr(a, estimator_name, estimator_value)
if expected_exception:
with pytest.raises(expected_exception):
check(a)
else:
assert check(a) == expected_result
|
Tests the _estimator_has function by verifying:
- Functionality with default and custom delegates.
- Raises ValueError if delegates are missing.
- Raises AttributeError if the specified attribute is missing.
|
test_estimator_has
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_scalar_valid(x):
"""Test that check_scalar returns no error/warning if valid inputs are
provided"""
with warnings.catch_warnings():
warnings.simplefilter("error")
scalar = check_scalar(
x,
"test_name",
target_type=numbers.Real,
min_val=2,
max_val=5,
include_boundaries="both",
)
assert scalar == x
|
Test that check_scalar returns no error/warning if valid inputs are
provided
|
test_check_scalar_valid
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_scalar_invalid(
x, target_name, target_type, min_val, max_val, include_boundaries, err_msg
):
"""Test that check_scalar returns the right error if a wrong input is
given"""
with pytest.raises(Exception) as raised_error:
check_scalar(
x,
target_name,
target_type=target_type,
min_val=min_val,
max_val=max_val,
include_boundaries=include_boundaries,
)
assert str(raised_error.value) == str(err_msg)
assert isinstance(raised_error.value, type(err_msg))
|
Test that check_scalar returns the right error if a wrong input is
given
|
test_check_scalar_invalid
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_check_pandas_sparse_mixed_dtypes(ntype1, ntype2):
"""Check that pandas dataframes having sparse extension arrays with mixed dtypes
works."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame(
{
"col1": pd.arrays.SparseArray([0, 1, 0], dtype=ntype1, fill_value=0),
"col2": pd.arrays.SparseArray([1, 0, 1], dtype=ntype2, fill_value=0),
}
)
check_array(df, accept_sparse=["csr", "csc"])
|
Check that pandas dataframes having sparse extension arrays with mixed dtypes
works.
|
test_check_pandas_sparse_mixed_dtypes
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
def test_get_feature_names_pandas_with_ints_no_warning(names):
"""Get feature names with pandas dataframes without warning.
Column names with consistent dtypes will not warn, such as int or MultiIndex.
"""
pd = pytest.importorskip("pandas")
X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names)
with warnings.catch_warnings():
warnings.simplefilter("error", FutureWarning)
names = _get_feature_names(X)
assert names is None
|
Get feature names with pandas dataframes without warning.
Column names with consistent dtypes will not warn, such as int or MultiIndex.
|
test_get_feature_names_pandas_with_ints_no_warning
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_validation.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.