code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def func(*args, **kw):
"""Updates the request for provided parameters
This docstring is overwritten below.
See REQUESTER_DOC for expected functionality
"""
if not _routing_enabled():
raise RuntimeError(
"This method is only available when metadata routing is enabled."
" You can enable it using"
" sklearn.set_config(enable_metadata_routing=True)."
)
if self.validate_keys and (set(kw) - set(self.keys)):
raise TypeError(
f"Unexpected args: {set(kw) - set(self.keys)} in {self.name}. "
f"Accepted arguments are: {set(self.keys)}"
)
# This makes it possible to use the decorated method as an unbound method,
# for instance when monkeypatching.
# https://github.com/scikit-learn/scikit-learn/issues/28632
if instance is None:
_instance = args[0]
args = args[1:]
else:
_instance = instance
# Replicating python's behavior when positional args are given other than
# `self`, and `self` is only allowed if this method is unbound.
if args:
raise TypeError(
f"set_{self.name}_request() takes 0 positional argument but"
f" {len(args)} were given"
)
requests = _instance._get_metadata_request()
method_metadata_request = getattr(requests, self.name)
for prop, alias in kw.items():
if alias is not UNCHANGED:
method_metadata_request.add_request(param=prop, alias=alias)
_instance._metadata_request = requests
return _instance
|
Updates the request for provided parameters
This docstring is overwritten below.
See REQUESTER_DOC for expected functionality
|
func
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_metadata_requests.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_metadata_requests.py
|
BSD-3-Clause
|
def __init_subclass__(cls, **kwargs):
"""Set the ``set_{method}_request`` methods.
This uses PEP-487 [1]_ to set the ``set_{method}_request`` methods. It
looks for the information available in the set default values which are
set using ``__metadata_request__*`` class attributes, or inferred
from method signatures.
The ``__metadata_request__*`` class attributes are used when a method
does not explicitly accept a metadata through its arguments or if the
developer would like to specify a request value for those metadata
which are different from the default ``None``.
References
----------
.. [1] https://www.python.org/dev/peps/pep-0487
"""
try:
requests = cls._get_default_requests()
except Exception:
# if there are any issues in the default values, it will be raised
# when ``get_metadata_routing`` is called. Here we are going to
# ignore all the issues such as bad defaults etc.
super().__init_subclass__(**kwargs)
return
for method in SIMPLE_METHODS:
mmr = getattr(requests, method)
# set ``set_{method}_request`` methods
if not len(mmr.requests):
continue
setattr(
cls,
f"set_{method}_request",
RequestMethod(method, sorted(mmr.requests.keys())),
)
super().__init_subclass__(**kwargs)
|
Set the ``set_{method}_request`` methods.
This uses PEP-487 [1]_ to set the ``set_{method}_request`` methods. It
looks for the information available in the set default values which are
set using ``__metadata_request__*`` class attributes, or inferred
from method signatures.
The ``__metadata_request__*`` class attributes are used when a method
does not explicitly accept a metadata through its arguments or if the
developer would like to specify a request value for those metadata
which are different from the default ``None``.
References
----------
.. [1] https://www.python.org/dev/peps/pep-0487
|
__init_subclass__
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_metadata_requests.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_metadata_requests.py
|
BSD-3-Clause
|
def _build_request_for_signature(cls, router, method):
"""Build the `MethodMetadataRequest` for a method using its signature.
This method takes all arguments from the method signature and uses
``None`` as their default request value, except ``X``, ``y``, ``Y``,
``Xt``, ``yt``, ``*args``, and ``**kwargs``.
Parameters
----------
router : MetadataRequest
The parent object for the created `MethodMetadataRequest`.
method : str
The name of the method.
Returns
-------
method_request : MethodMetadataRequest
The prepared request using the method's signature.
"""
mmr = MethodMetadataRequest(owner=cls.__name__, method=method)
# Here we use `isfunction` instead of `ismethod` because calling `getattr`
# on a class instead of an instance returns an unbound function.
if not hasattr(cls, method) or not inspect.isfunction(getattr(cls, method)):
return mmr
# ignore the first parameter of the method, which is usually "self"
params = list(inspect.signature(getattr(cls, method)).parameters.items())[1:]
for pname, param in params:
if pname in {"X", "y", "Y", "Xt", "yt"}:
continue
if param.kind in {param.VAR_POSITIONAL, param.VAR_KEYWORD}:
continue
mmr.add_request(
param=pname,
alias=None,
)
return mmr
|
Build the `MethodMetadataRequest` for a method using its signature.
This method takes all arguments from the method signature and uses
``None`` as their default request value, except ``X``, ``y``, ``Y``,
``Xt``, ``yt``, ``*args``, and ``**kwargs``.
Parameters
----------
router : MetadataRequest
The parent object for the created `MethodMetadataRequest`.
method : str
The name of the method.
Returns
-------
method_request : MethodMetadataRequest
The prepared request using the method's signature.
|
_build_request_for_signature
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_metadata_requests.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_metadata_requests.py
|
BSD-3-Clause
|
def _get_default_requests(cls):
"""Collect default request values.
This method combines the information present in ``__metadata_request__*``
class attributes, as well as determining request keys from method
signatures.
"""
requests = MetadataRequest(owner=cls.__name__)
for method in SIMPLE_METHODS:
setattr(
requests,
method,
cls._build_request_for_signature(router=requests, method=method),
)
# Then overwrite those defaults with the ones provided in
# __metadata_request__* attributes. Defaults set in
# __metadata_request__* attributes take precedence over signature
# sniffing.
# need to go through the MRO since this is a class attribute and
# ``vars`` doesn't report the parent class attributes. We go through
# the reverse of the MRO so that child classes have precedence over
# their parents.
substr = "__metadata_request__"
for base_class in reversed(inspect.getmro(cls)):
for attr, value in vars(base_class).items():
if substr not in attr:
continue
# we don't check for attr.startswith() since python prefixes attrs
# starting with __ with the `_ClassName`.
method = attr[attr.index(substr) + len(substr) :]
for prop, alias in value.items():
# Here we add request values specified via those class attributes
# to the `MetadataRequest` object. Adding a request which already
# exists will override the previous one. Since we go through the
# MRO in reverse order, the one specified by the lowest most classes
# in the inheritance tree are the ones which take effect.
getattr(requests, method).add_request(param=prop, alias=alias)
return requests
|
Collect default request values.
This method combines the information present in ``__metadata_request__*``
class attributes, as well as determining request keys from method
signatures.
|
_get_default_requests
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_metadata_requests.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_metadata_requests.py
|
BSD-3-Clause
|
def _get_metadata_request(self):
"""Get requested data properties.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
Returns
-------
request : MetadataRequest
A :class:`~sklearn.utils.metadata_routing.MetadataRequest` instance.
"""
if hasattr(self, "_metadata_request"):
requests = get_routing_for_object(self._metadata_request)
else:
requests = self._get_default_requests()
return requests
|
Get requested data properties.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
Returns
-------
request : MetadataRequest
A :class:`~sklearn.utils.metadata_routing.MetadataRequest` instance.
|
_get_metadata_request
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_metadata_requests.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_metadata_requests.py
|
BSD-3-Clause
|
def process_routing(_obj, _method, /, **kwargs):
"""Validate and route input parameters.
This function is used inside a router's method, e.g. :term:`fit`,
to validate the metadata and handle the routing.
Assuming this signature of a router's fit method:
``fit(self, X, y, sample_weight=None, **fit_params)``,
a call to this function would be:
``process_routing(self, "fit", sample_weight=sample_weight, **fit_params)``.
Note that if routing is not enabled and ``kwargs`` is empty, then it
returns an empty routing where ``process_routing(...).ANYTHING.ANY_METHOD``
is always an empty dictionary.
.. versionadded:: 1.3
Parameters
----------
_obj : object
An object implementing ``get_metadata_routing``. Typically a
meta-estimator.
_method : str
The name of the router's method in which this function is called.
**kwargs : dict
Metadata to be routed.
Returns
-------
routed_params : Bunch
A :class:`~utils.Bunch` of the form ``{"object_name": {"method_name":
{params: value}}}`` which can be used to pass the required metadata to
A :class:`~sklearn.utils.Bunch` of the form ``{"object_name": {"method_name":
{params: value}}}`` which can be used to pass the required metadata to
corresponding methods or corresponding child objects. The object names
are those defined in `obj.get_metadata_routing()`.
"""
if not kwargs:
# If routing is not enabled and kwargs are empty, then we don't have to
# try doing any routing, we can simply return a structure which returns
# an empty dict on routed_params.ANYTHING.ANY_METHOD.
class EmptyRequest:
def get(self, name, default=None):
return Bunch(**{method: dict() for method in METHODS})
def __getitem__(self, name):
return Bunch(**{method: dict() for method in METHODS})
def __getattr__(self, name):
return Bunch(**{method: dict() for method in METHODS})
return EmptyRequest()
if not (hasattr(_obj, "get_metadata_routing") or isinstance(_obj, MetadataRouter)):
raise AttributeError(
f"The given object ({_obj.__class__.__name__!r}) needs to either"
" implement the routing method `get_metadata_routing` or be a"
" `MetadataRouter` instance."
)
if _method not in METHODS:
raise TypeError(
f"Can only route and process input on these methods: {METHODS}, "
f"while the passed method is: {_method}."
)
request_routing = get_routing_for_object(_obj)
request_routing.validate_metadata(params=kwargs, method=_method)
routed_params = request_routing.route_params(params=kwargs, caller=_method)
return routed_params
|
Validate and route input parameters.
This function is used inside a router's method, e.g. :term:`fit`,
to validate the metadata and handle the routing.
Assuming this signature of a router's fit method:
``fit(self, X, y, sample_weight=None, **fit_params)``,
a call to this function would be:
``process_routing(self, "fit", sample_weight=sample_weight, **fit_params)``.
Note that if routing is not enabled and ``kwargs`` is empty, then it
returns an empty routing where ``process_routing(...).ANYTHING.ANY_METHOD``
is always an empty dictionary.
.. versionadded:: 1.3
Parameters
----------
_obj : object
An object implementing ``get_metadata_routing``. Typically a
meta-estimator.
_method : str
The name of the router's method in which this function is called.
**kwargs : dict
Metadata to be routed.
Returns
-------
routed_params : Bunch
A :class:`~utils.Bunch` of the form ``{"object_name": {"method_name":
{params: value}}}`` which can be used to pass the required metadata to
A :class:`~sklearn.utils.Bunch` of the form ``{"object_name": {"method_name":
{params: value}}}`` which can be used to pass the required metadata to
corresponding methods or corresponding child objects. The object names
are those defined in `obj.get_metadata_routing()`.
|
process_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_metadata_requests.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_metadata_requests.py
|
BSD-3-Clause
|
def is_scalar_nan(x):
"""Test if x is NaN.
This function is meant to overcome the issue that np.isnan does not allow
non-numerical types as input, and that np.nan is not float('nan').
Parameters
----------
x : any type
Any scalar value.
Returns
-------
bool
Returns true if x is NaN, and false otherwise.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils._missing import is_scalar_nan
>>> is_scalar_nan(np.nan)
True
>>> is_scalar_nan(float("nan"))
True
>>> is_scalar_nan(None)
False
>>> is_scalar_nan("")
False
>>> is_scalar_nan([np.nan])
False
"""
return (
not isinstance(x, numbers.Integral)
and isinstance(x, numbers.Real)
and math.isnan(x)
)
|
Test if x is NaN.
This function is meant to overcome the issue that np.isnan does not allow
non-numerical types as input, and that np.nan is not float('nan').
Parameters
----------
x : any type
Any scalar value.
Returns
-------
bool
Returns true if x is NaN, and false otherwise.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils._missing import is_scalar_nan
>>> is_scalar_nan(np.nan)
True
>>> is_scalar_nan(float("nan"))
True
>>> is_scalar_nan(None)
False
>>> is_scalar_nan("")
False
>>> is_scalar_nan([np.nan])
False
|
is_scalar_nan
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_missing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_missing.py
|
BSD-3-Clause
|
def is_pandas_na(x):
"""Test if x is pandas.NA.
We intentionally do not use this function to return `True` for `pd.NA` in
`is_scalar_nan`, because estimators that support `pd.NA` are the exception
rather than the rule at the moment. When `pd.NA` is more universally
supported, we may reconsider this decision.
Parameters
----------
x : any type
Returns
-------
boolean
"""
with suppress(ImportError):
from pandas import NA
return x is NA
return False
|
Test if x is pandas.NA.
We intentionally do not use this function to return `True` for `pd.NA` in
`is_scalar_nan`, because estimators that support `pd.NA` are the exception
rather than the rule at the moment. When `pd.NA` is more universally
supported, we may reconsider this decision.
Parameters
----------
x : any type
Returns
-------
boolean
|
is_pandas_na
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_missing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_missing.py
|
BSD-3-Clause
|
def _check_X_y(self, X, y=None, should_be_fitted=True):
"""Validate X and y and make extra check.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data set.
`X` is checked only if `check_X` is not `None` (default is None).
y : array-like of shape (n_samples), default=None
The corresponding target, by default `None`.
`y` is checked only if `check_y` is not `None` (default is None).
should_be_fitted : bool, default=True
Whether or not the classifier should be already fitted.
By default True.
Returns
-------
X, y
"""
if should_be_fitted:
check_is_fitted(self)
if self.check_X is not None:
params = {} if self.check_X_params is None else self.check_X_params
checked_X = self.check_X(X, **params)
if isinstance(checked_X, (bool, np.bool_)):
assert checked_X
else:
X = checked_X
if y is not None and self.check_y is not None:
params = {} if self.check_y_params is None else self.check_y_params
checked_y = self.check_y(y, **params)
if isinstance(checked_y, (bool, np.bool_)):
assert checked_y
else:
y = checked_y
return X, y
|
Validate X and y and make extra check.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data set.
`X` is checked only if `check_X` is not `None` (default is None).
y : array-like of shape (n_samples), default=None
The corresponding target, by default `None`.
`y` is checked only if `check_y` is not `None` (default is None).
should_be_fitted : bool, default=True
Whether or not the classifier should be already fitted.
By default True.
Returns
-------
X, y
|
_check_X_y
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_mocking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_mocking.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None, **fit_params):
"""Fit classifier.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples, n_outputs) or (n_samples,), \
default=None
Target relative to X for classification or regression;
None for unsupervised learning.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
**fit_params : dict of string -> object
Parameters passed to the ``fit`` method of the estimator
Returns
-------
self
"""
assert _num_samples(X) == _num_samples(y)
if self.methods_to_check == "all" or "fit" in self.methods_to_check:
X, y = self._check_X_y(X, y, should_be_fitted=False)
self.n_features_in_ = np.shape(X)[1]
self.classes_ = np.unique(check_array(y, ensure_2d=False, allow_nd=True))
if self.expected_fit_params:
missing = set(self.expected_fit_params) - set(fit_params)
if missing:
raise AssertionError(
f"Expected fit parameter(s) {list(missing)} not seen."
)
for key, value in fit_params.items():
if _num_samples(value) != _num_samples(X):
raise AssertionError(
f"Fit parameter {key} has length {_num_samples(value)}"
f"; expected {_num_samples(X)}."
)
if self.expected_sample_weight:
if sample_weight is None:
raise AssertionError("Expected sample_weight to be passed")
_check_sample_weight(sample_weight, X)
return self
|
Fit classifier.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples, n_outputs) or (n_samples,), default=None
Target relative to X for classification or regression;
None for unsupervised learning.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
**fit_params : dict of string -> object
Parameters passed to the ``fit`` method of the estimator
Returns
-------
self
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_mocking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_mocking.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict the first class seen in `classes_`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
preds : ndarray of shape (n_samples,)
Predictions of the first class seen in `classes_`.
"""
if self.methods_to_check == "all" or "predict" in self.methods_to_check:
X, y = self._check_X_y(X)
rng = check_random_state(self.random_state)
return rng.choice(self.classes_, size=_num_samples(X))
|
Predict the first class seen in `classes_`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
preds : ndarray of shape (n_samples,)
Predictions of the first class seen in `classes_`.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_mocking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_mocking.py
|
BSD-3-Clause
|
def predict_proba(self, X):
"""Predict probabilities for each class.
Here, the dummy classifier will provide a probability of 1 for the
first class of `classes_` and 0 otherwise.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
proba : ndarray of shape (n_samples, n_classes)
The probabilities for each sample and class.
"""
if self.methods_to_check == "all" or "predict_proba" in self.methods_to_check:
X, y = self._check_X_y(X)
rng = check_random_state(self.random_state)
proba = rng.randn(_num_samples(X), len(self.classes_))
proba = np.abs(proba, out=proba)
proba /= np.sum(proba, axis=1)[:, np.newaxis]
return proba
|
Predict probabilities for each class.
Here, the dummy classifier will provide a probability of 1 for the
first class of `classes_` and 0 otherwise.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
proba : ndarray of shape (n_samples, n_classes)
The probabilities for each sample and class.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_mocking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_mocking.py
|
BSD-3-Clause
|
def decision_function(self, X):
"""Confidence score.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
decision : ndarray of shape (n_samples,) if n_classes == 2\
else (n_samples, n_classes)
Confidence score.
"""
if (
self.methods_to_check == "all"
or "decision_function" in self.methods_to_check
):
X, y = self._check_X_y(X)
rng = check_random_state(self.random_state)
if len(self.classes_) == 2:
# for binary classifier, the confidence score is related to
# classes_[1] and therefore should be null.
return rng.randn(_num_samples(X))
else:
return rng.randn(_num_samples(X), len(self.classes_))
|
Confidence score.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
decision : ndarray of shape (n_samples,) if n_classes == 2 else (n_samples, n_classes)
Confidence score.
|
decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_mocking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_mocking.py
|
BSD-3-Clause
|
def score(self, X=None, Y=None):
"""Fake score.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data, where `n_samples` is the number of samples and
`n_features` is the number of features.
Y : array-like of shape (n_samples, n_output) or (n_samples,)
Target relative to X for classification or regression;
None for unsupervised learning.
Returns
-------
score : float
Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
score=1` otherwise `score=0`).
"""
if self.methods_to_check == "all" or "score" in self.methods_to_check:
self._check_X_y(X, Y)
if self.foo_param > 1:
score = 1.0
else:
score = 0.0
return score
|
Fake score.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data, where `n_samples` is the number of samples and
`n_features` is the number of features.
Y : array-like of shape (n_samples, n_output) or (n_samples,)
Target relative to X for classification or regression;
None for unsupervised learning.
Returns
-------
score : float
Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
score=1` otherwise `score=0`).
|
score
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_mocking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_mocking.py
|
BSD-3-Clause
|
def check_matplotlib_support(caller_name):
"""Raise ImportError with detailed error message if mpl is not installed.
Plot utilities like any of the Display's plotting functions should lazily import
matplotlib and call this helper before any computation.
Parameters
----------
caller_name : str
The name of the caller that requires matplotlib.
"""
try:
import matplotlib # noqa: F401
except ImportError as e:
raise ImportError(
"{} requires matplotlib. You can install matplotlib with "
"`pip install matplotlib`".format(caller_name)
) from e
|
Raise ImportError with detailed error message if mpl is not installed.
Plot utilities like any of the Display's plotting functions should lazily import
matplotlib and call this helper before any computation.
Parameters
----------
caller_name : str
The name of the caller that requires matplotlib.
|
check_matplotlib_support
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_optional_dependencies.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_optional_dependencies.py
|
BSD-3-Clause
|
def check_pandas_support(caller_name):
"""Raise ImportError with detailed error message if pandas is not installed.
Plot utilities like :func:`fetch_openml` should lazily import
pandas and call this helper before any computation.
Parameters
----------
caller_name : str
The name of the caller that requires pandas.
Returns
-------
pandas
The pandas package.
"""
try:
import pandas
return pandas
except ImportError as e:
raise ImportError("{} requires pandas.".format(caller_name)) from e
|
Raise ImportError with detailed error message if pandas is not installed.
Plot utilities like :func:`fetch_openml` should lazily import
pandas and call this helper before any computation.
Parameters
----------
caller_name : str
The name of the caller that requires pandas.
Returns
-------
pandas
The pandas package.
|
check_pandas_support
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_optional_dependencies.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_optional_dependencies.py
|
BSD-3-Clause
|
def validate_parameter_constraints(parameter_constraints, params, caller_name):
"""Validate types and values of given parameters.
Parameters
----------
parameter_constraints : dict or {"no_validation"}
If "no_validation", validation is skipped for this parameter.
If a dict, it must be a dictionary `param_name: list of constraints`.
A parameter is valid if it satisfies one of the constraints from the list.
Constraints can be:
- an Interval object, representing a continuous or discrete range of numbers
- the string "array-like"
- the string "sparse matrix"
- the string "random_state"
- callable
- None, meaning that None is a valid value for the parameter
- any type, meaning that any instance of this type is valid
- an Options object, representing a set of elements of a given type
- a StrOptions object, representing a set of strings
- the string "boolean"
- the string "verbose"
- the string "cv_object"
- the string "nan"
- a MissingValues object representing markers for missing values
- a HasMethods object, representing method(s) an object must have
- a Hidden object, representing a constraint not meant to be exposed to the user
params : dict
A dictionary `param_name: param_value`. The parameters to validate against the
constraints.
caller_name : str
The name of the estimator or function or method that called this function.
"""
for param_name, param_val in params.items():
# We allow parameters to not have a constraint so that third party estimators
# can inherit from sklearn estimators without having to necessarily use the
# validation tools.
if param_name not in parameter_constraints:
continue
constraints = parameter_constraints[param_name]
if constraints == "no_validation":
continue
constraints = [make_constraint(constraint) for constraint in constraints]
for constraint in constraints:
if constraint.is_satisfied_by(param_val):
# this constraint is satisfied, no need to check further.
break
else:
# No constraint is satisfied, raise with an informative message.
# Ignore constraints that we don't want to expose in the error message,
# i.e. options that are for internal purpose or not officially supported.
constraints = [
constraint for constraint in constraints if not constraint.hidden
]
if len(constraints) == 1:
constraints_str = f"{constraints[0]}"
else:
constraints_str = (
f"{', '.join([str(c) for c in constraints[:-1]])} or"
f" {constraints[-1]}"
)
raise InvalidParameterError(
f"The {param_name!r} parameter of {caller_name} must be"
f" {constraints_str}. Got {param_val!r} instead."
)
|
Validate types and values of given parameters.
Parameters
----------
parameter_constraints : dict or {"no_validation"}
If "no_validation", validation is skipped for this parameter.
If a dict, it must be a dictionary `param_name: list of constraints`.
A parameter is valid if it satisfies one of the constraints from the list.
Constraints can be:
- an Interval object, representing a continuous or discrete range of numbers
- the string "array-like"
- the string "sparse matrix"
- the string "random_state"
- callable
- None, meaning that None is a valid value for the parameter
- any type, meaning that any instance of this type is valid
- an Options object, representing a set of elements of a given type
- a StrOptions object, representing a set of strings
- the string "boolean"
- the string "verbose"
- the string "cv_object"
- the string "nan"
- a MissingValues object representing markers for missing values
- a HasMethods object, representing method(s) an object must have
- a Hidden object, representing a constraint not meant to be exposed to the user
params : dict
A dictionary `param_name: param_value`. The parameters to validate against the
constraints.
caller_name : str
The name of the estimator or function or method that called this function.
|
validate_parameter_constraints
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def make_constraint(constraint):
"""Convert the constraint into the appropriate Constraint object.
Parameters
----------
constraint : object
The constraint to convert.
Returns
-------
constraint : instance of _Constraint
The converted constraint.
"""
if isinstance(constraint, str) and constraint == "array-like":
return _ArrayLikes()
if isinstance(constraint, str) and constraint == "sparse matrix":
return _SparseMatrices()
if isinstance(constraint, str) and constraint == "random_state":
return _RandomStates()
if constraint is callable:
return _Callables()
if constraint is None:
return _NoneConstraint()
if isinstance(constraint, type):
return _InstancesOf(constraint)
if isinstance(
constraint, (Interval, StrOptions, Options, HasMethods, MissingValues)
):
return constraint
if isinstance(constraint, str) and constraint == "boolean":
return _Booleans()
if isinstance(constraint, str) and constraint == "verbose":
return _VerboseHelper()
if isinstance(constraint, str) and constraint == "cv_object":
return _CVObjects()
if isinstance(constraint, Hidden):
constraint = make_constraint(constraint.constraint)
constraint.hidden = True
return constraint
if (isinstance(constraint, str) and constraint == "nan") or (
isinstance(constraint, float) and np.isnan(constraint)
):
return _NanConstraint()
raise ValueError(f"Unknown constraint type: {constraint}")
|
Convert the constraint into the appropriate Constraint object.
Parameters
----------
constraint : object
The constraint to convert.
Returns
-------
constraint : instance of _Constraint
The converted constraint.
|
make_constraint
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def validate_params(parameter_constraints, *, prefer_skip_nested_validation):
"""Decorator to validate types and values of functions and methods.
Parameters
----------
parameter_constraints : dict
A dictionary `param_name: list of constraints`. See the docstring of
`validate_parameter_constraints` for a description of the accepted constraints.
Note that the *args and **kwargs parameters are not validated and must not be
present in the parameter_constraints dictionary.
prefer_skip_nested_validation : bool
If True, the validation of parameters of inner estimators or functions
called by the decorated function will be skipped.
This is useful to avoid validating many times the parameters passed by the
user from the public facing API. It's also useful to avoid validating
parameters that we pass internally to inner functions that are guaranteed to
be valid by the test suite.
It should be set to True for most functions, except for those that receive
non-validated objects as parameters or that are just wrappers around classes
because they only perform a partial validation.
Returns
-------
decorated_function : function or method
The decorated function.
"""
def decorator(func):
# The dict of parameter constraints is set as an attribute of the function
# to make it possible to dynamically introspect the constraints for
# automatic testing.
setattr(func, "_skl_parameter_constraints", parameter_constraints)
@functools.wraps(func)
def wrapper(*args, **kwargs):
global_skip_validation = get_config()["skip_parameter_validation"]
if global_skip_validation:
return func(*args, **kwargs)
func_sig = signature(func)
# Map *args/**kwargs to the function signature
params = func_sig.bind(*args, **kwargs)
params.apply_defaults()
# ignore self/cls and positional/keyword markers
to_ignore = [
p.name
for p in func_sig.parameters.values()
if p.kind in (p.VAR_POSITIONAL, p.VAR_KEYWORD)
]
to_ignore += ["self", "cls"]
params = {k: v for k, v in params.arguments.items() if k not in to_ignore}
validate_parameter_constraints(
parameter_constraints, params, caller_name=func.__qualname__
)
try:
with config_context(
skip_parameter_validation=(
prefer_skip_nested_validation or global_skip_validation
)
):
return func(*args, **kwargs)
except InvalidParameterError as e:
# When the function is just a wrapper around an estimator, we allow
# the function to delegate validation to the estimator, but we replace
# the name of the estimator by the name of the function in the error
# message to avoid confusion.
msg = re.sub(
r"parameter of \w+ must be",
f"parameter of {func.__qualname__} must be",
str(e),
)
raise InvalidParameterError(msg) from e
return wrapper
return decorator
|
Decorator to validate types and values of functions and methods.
Parameters
----------
parameter_constraints : dict
A dictionary `param_name: list of constraints`. See the docstring of
`validate_parameter_constraints` for a description of the accepted constraints.
Note that the *args and **kwargs parameters are not validated and must not be
present in the parameter_constraints dictionary.
prefer_skip_nested_validation : bool
If True, the validation of parameters of inner estimators or functions
called by the decorated function will be skipped.
This is useful to avoid validating many times the parameters passed by the
user from the public facing API. It's also useful to avoid validating
parameters that we pass internally to inner functions that are guaranteed to
be valid by the test suite.
It should be set to True for most functions, except for those that receive
non-validated objects as parameters or that are just wrappers around classes
because they only perform a partial validation.
Returns
-------
decorated_function : function or method
The decorated function.
|
validate_params
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def _type_name(t):
"""Convert type into human readable string."""
module = t.__module__
qualname = t.__qualname__
if module == "builtins":
return qualname
elif t == Real:
return "float"
elif t == Integral:
return "int"
return f"{module}.{qualname}"
|
Convert type into human readable string.
|
_type_name
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def is_satisfied_by(self, val):
"""Whether or not a value satisfies the constraint.
Parameters
----------
val : object
The value to check.
Returns
-------
is_satisfied : bool
Whether or not the constraint is satisfied by this value.
"""
|
Whether or not a value satisfies the constraint.
Parameters
----------
val : object
The value to check.
Returns
-------
is_satisfied : bool
Whether or not the constraint is satisfied by this value.
|
is_satisfied_by
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def _mark_if_deprecated(self, option):
"""Add a deprecated mark to an option if needed."""
option_str = f"{option!r}"
if option in self.deprecated:
option_str = f"{option_str} (deprecated)"
return option_str
|
Add a deprecated mark to an option if needed.
|
_mark_if_deprecated
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def generate_invalid_param_val(constraint):
"""Return a value that does not satisfy the constraint.
Raises a NotImplementedError if there exists no invalid value for this constraint.
This is only useful for testing purpose.
Parameters
----------
constraint : _Constraint instance
The constraint to generate a value for.
Returns
-------
val : object
A value that does not satisfy the constraint.
"""
if isinstance(constraint, StrOptions):
return f"not {' or '.join(constraint.options)}"
if isinstance(constraint, MissingValues):
return np.array([1, 2, 3])
if isinstance(constraint, _VerboseHelper):
return -1
if isinstance(constraint, HasMethods):
return type("HasNotMethods", (), {})()
if isinstance(constraint, _IterablesNotString):
return "a string"
if isinstance(constraint, _CVObjects):
return "not a cv object"
if isinstance(constraint, Interval) and constraint.type is Integral:
if constraint.left is not None:
return constraint.left - 1
if constraint.right is not None:
return constraint.right + 1
# There's no integer outside (-inf, +inf)
raise NotImplementedError
if isinstance(constraint, Interval) and constraint.type in (Real, RealNotInt):
if constraint.left is not None:
return constraint.left - 1e-6
if constraint.right is not None:
return constraint.right + 1e-6
# bounds are -inf, +inf
if constraint.closed in ("right", "neither"):
return -np.inf
if constraint.closed in ("left", "neither"):
return np.inf
# interval is [-inf, +inf]
return np.nan
raise NotImplementedError
|
Return a value that does not satisfy the constraint.
Raises a NotImplementedError if there exists no invalid value for this constraint.
This is only useful for testing purpose.
Parameters
----------
constraint : _Constraint instance
The constraint to generate a value for.
Returns
-------
val : object
A value that does not satisfy the constraint.
|
generate_invalid_param_val
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def generate_valid_param(constraint):
"""Return a value that does satisfy a constraint.
This is only useful for testing purpose.
Parameters
----------
constraint : Constraint instance
The constraint to generate a value for.
Returns
-------
val : object
A value that does satisfy the constraint.
"""
if isinstance(constraint, _ArrayLikes):
return np.array([1, 2, 3])
if isinstance(constraint, _SparseMatrices):
return csr_matrix([[0, 1], [1, 0]])
if isinstance(constraint, _RandomStates):
return np.random.RandomState(42)
if isinstance(constraint, _Callables):
return lambda x: x
if isinstance(constraint, _NoneConstraint):
return None
if isinstance(constraint, _InstancesOf):
if constraint.type is np.ndarray:
# special case for ndarray since it can't be instantiated without arguments
return np.array([1, 2, 3])
if constraint.type in (Integral, Real):
# special case for Integral and Real since they are abstract classes
return 1
return constraint.type()
if isinstance(constraint, _Booleans):
return True
if isinstance(constraint, _VerboseHelper):
return 1
if isinstance(constraint, MissingValues) and constraint.numeric_only:
return np.nan
if isinstance(constraint, MissingValues) and not constraint.numeric_only:
return "missing"
if isinstance(constraint, HasMethods):
return type(
"ValidHasMethods", (), {m: lambda self: None for m in constraint.methods}
)()
if isinstance(constraint, _IterablesNotString):
return [1, 2, 3]
if isinstance(constraint, _CVObjects):
return 5
if isinstance(constraint, Options): # includes StrOptions
for option in constraint.options:
return option
if isinstance(constraint, Interval):
interval = constraint
if interval.left is None and interval.right is None:
return 0
elif interval.left is None:
return interval.right - 1
elif interval.right is None:
return interval.left + 1
else:
if interval.type is Real:
return (interval.left + interval.right) / 2
else:
return interval.left + 1
raise ValueError(f"Unknown constraint type: {constraint}")
|
Return a value that does satisfy a constraint.
This is only useful for testing purpose.
Parameters
----------
constraint : Constraint instance
The constraint to generate a value for.
Returns
-------
val : object
A value that does satisfy the constraint.
|
generate_valid_param
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_param_validation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_param_validation.py
|
BSD-3-Clause
|
def _get_legend_label(curve_legend_metric, curve_name, legend_metric_name):
"""Helper to get legend label using `name` and `legend_metric`"""
if curve_legend_metric is not None and curve_name is not None:
label = f"{curve_name} ({legend_metric_name} = {curve_legend_metric:0.2f})"
elif curve_legend_metric is not None:
label = f"{legend_metric_name} = {curve_legend_metric:0.2f}"
elif curve_name is not None:
label = curve_name
else:
label = None
return label
|
Helper to get legend label using `name` and `legend_metric`
|
_get_legend_label
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _validate_curve_kwargs(
n_curves,
name,
legend_metric,
legend_metric_name,
curve_kwargs,
**kwargs,
):
"""Get validated line kwargs for each curve.
Parameters
----------
n_curves : int
Number of curves.
name : list of str or None
Name for labeling legend entries.
legend_metric : dict
Dictionary with "mean" and "std" keys, or "metric" key of metric
values for each curve. If None, "label" will not contain metric values.
legend_metric_name : str
Name of the summary value provided in `legend_metrics`.
curve_kwargs : dict or list of dict or None
Dictionary with keywords passed to the matplotlib's `plot` function
to draw the individual curves. If a list is provided, the
parameters are applied to the curves sequentially. If a single
dictionary is provided, the same parameters are applied to all
curves.
**kwargs : dict
Deprecated. Keyword arguments to be passed to matplotlib's `plot`.
"""
# TODO(1.9): Remove deprecated **kwargs
if curve_kwargs and kwargs:
raise ValueError(
"Cannot provide both `curve_kwargs` and `kwargs`. `**kwargs` is "
"deprecated in 1.7 and will be removed in 1.9. Pass all matplotlib "
"arguments to `curve_kwargs` as a dictionary."
)
if kwargs:
warnings.warn(
"`**kwargs` is deprecated and will be removed in 1.9. Pass all "
"matplotlib arguments to `curve_kwargs` as a dictionary instead.",
FutureWarning,
)
curve_kwargs = kwargs
if isinstance(curve_kwargs, list) and len(curve_kwargs) != n_curves:
raise ValueError(
f"`curve_kwargs` must be None, a dictionary or a list of length "
f"{n_curves}. Got: {curve_kwargs}."
)
# Ensure valid `name` and `curve_kwargs` combination.
if (
isinstance(name, list)
and len(name) != 1
and not isinstance(curve_kwargs, list)
):
raise ValueError(
"To avoid labeling individual curves that have the same appearance, "
f"`curve_kwargs` should be a list of {n_curves} dictionaries. "
"Alternatively, set `name` to `None` or a single string to label "
"a single legend entry with mean ROC AUC score of all curves."
)
# Ensure `name` is of the correct length
if isinstance(name, str):
name = [name]
if isinstance(name, list) and len(name) == 1:
name = name * n_curves
name = [None] * n_curves if name is None else name
# Ensure `curve_kwargs` is of correct length
if isinstance(curve_kwargs, Mapping):
curve_kwargs = [curve_kwargs] * n_curves
default_multi_curve_kwargs = {"alpha": 0.5, "linestyle": "--", "color": "blue"}
if curve_kwargs is None:
if n_curves > 1:
curve_kwargs = [default_multi_curve_kwargs] * n_curves
else:
curve_kwargs = [{}]
labels = []
if "mean" in legend_metric:
label_aggregate = _BinaryClassifierCurveDisplayMixin._get_legend_label(
legend_metric["mean"], name[0], legend_metric_name
)
# Note: "std" always `None` when "mean" is `None` - no metric value added
# to label in this case
if legend_metric["std"] is not None:
# Add the "+/- std" to the end (in brackets if name provided)
if name[0] is not None:
label_aggregate = (
label_aggregate[:-1] + f" +/- {legend_metric['std']:0.2f})"
)
else:
label_aggregate = (
label_aggregate + f" +/- {legend_metric['std']:0.2f}"
)
# Add `label` for first curve only, set to `None` for remaining curves
labels.extend([label_aggregate] + [None] * (n_curves - 1))
else:
for curve_legend_metric, curve_name in zip(legend_metric["metric"], name):
labels.append(
_BinaryClassifierCurveDisplayMixin._get_legend_label(
curve_legend_metric, curve_name, legend_metric_name
)
)
curve_kwargs_ = [
_validate_style_kwargs({"label": label}, curve_kwargs[fold_idx])
for fold_idx, label in enumerate(labels)
]
return curve_kwargs_
|
Get validated line kwargs for each curve.
Parameters
----------
n_curves : int
Number of curves.
name : list of str or None
Name for labeling legend entries.
legend_metric : dict
Dictionary with "mean" and "std" keys, or "metric" key of metric
values for each curve. If None, "label" will not contain metric values.
legend_metric_name : str
Name of the summary value provided in `legend_metrics`.
curve_kwargs : dict or list of dict or None
Dictionary with keywords passed to the matplotlib's `plot` function
to draw the individual curves. If a list is provided, the
parameters are applied to the curves sequentially. If a single
dictionary is provided, the same parameters are applied to all
curves.
**kwargs : dict
Deprecated. Keyword arguments to be passed to matplotlib's `plot`.
|
_validate_curve_kwargs
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _validate_score_name(score_name, scoring, negate_score):
"""Validate the `score_name` parameter.
If `score_name` is provided, we just return it as-is.
If `score_name` is `None`, we use `Score` if `negate_score` is `False` and
`Negative score` otherwise.
If `score_name` is a string or a callable, we infer the name. We replace `_` by
spaces and capitalize the first letter. We remove `neg_` and replace it by
`"Negative"` if `negate_score` is `False` or just remove it otherwise.
"""
if score_name is not None:
return score_name
elif scoring is None:
return "Negative score" if negate_score else "Score"
else:
score_name = scoring.__name__ if callable(scoring) else scoring
if negate_score:
if score_name.startswith("neg_"):
score_name = score_name[4:]
else:
score_name = f"Negative {score_name}"
elif score_name.startswith("neg_"):
score_name = f"Negative {score_name[4:]}"
score_name = score_name.replace("_", " ")
return score_name.capitalize()
|
Validate the `score_name` parameter.
If `score_name` is provided, we just return it as-is.
If `score_name` is `None`, we use `Score` if `negate_score` is `False` and
`Negative score` otherwise.
If `score_name` is a string or a callable, we infer the name. We replace `_` by
spaces and capitalize the first letter. We remove `neg_` and replace it by
`"Negative"` if `negate_score` is `False` or just remove it otherwise.
|
_validate_score_name
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _interval_max_min_ratio(data):
"""Compute the ratio between the largest and smallest inter-point distances.
A value larger than 5 typically indicates that the parameter range would
better be displayed with a log scale while a linear scale would be more
suitable otherwise.
"""
diff = np.diff(np.sort(data))
return diff.max() / diff.min()
|
Compute the ratio between the largest and smallest inter-point distances.
A value larger than 5 typically indicates that the parameter range would
better be displayed with a log scale while a linear scale would be more
suitable otherwise.
|
_interval_max_min_ratio
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _validate_style_kwargs(default_style_kwargs, user_style_kwargs):
"""Create valid style kwargs by avoiding Matplotlib alias errors.
Matplotlib raises an error when, for example, 'color' and 'c', or 'linestyle' and
'ls', are specified together. To avoid this, we automatically keep only the one
specified by the user and raise an error if the user specifies both.
Parameters
----------
default_style_kwargs : dict
The Matplotlib style kwargs used by default in the scikit-learn display.
user_style_kwargs : dict
The user-defined Matplotlib style kwargs.
Returns
-------
valid_style_kwargs : dict
The validated style kwargs taking into account both default and user-defined
Matplotlib style kwargs.
"""
invalid_to_valid_kw = {
"ls": "linestyle",
"c": "color",
"ec": "edgecolor",
"fc": "facecolor",
"lw": "linewidth",
"mec": "markeredgecolor",
"mfcalt": "markerfacecoloralt",
"ms": "markersize",
"mew": "markeredgewidth",
"mfc": "markerfacecolor",
"aa": "antialiased",
"ds": "drawstyle",
"font": "fontproperties",
"family": "fontfamily",
"name": "fontname",
"size": "fontsize",
"stretch": "fontstretch",
"style": "fontstyle",
"variant": "fontvariant",
"weight": "fontweight",
"ha": "horizontalalignment",
"va": "verticalalignment",
"ma": "multialignment",
}
for invalid_key, valid_key in invalid_to_valid_kw.items():
if invalid_key in user_style_kwargs and valid_key in user_style_kwargs:
raise TypeError(
f"Got both {invalid_key} and {valid_key}, which are aliases of one "
"another"
)
valid_style_kwargs = default_style_kwargs.copy()
for key in user_style_kwargs.keys():
if key in invalid_to_valid_kw:
valid_style_kwargs[invalid_to_valid_kw[key]] = user_style_kwargs[key]
else:
valid_style_kwargs[key] = user_style_kwargs[key]
return valid_style_kwargs
|
Create valid style kwargs by avoiding Matplotlib alias errors.
Matplotlib raises an error when, for example, 'color' and 'c', or 'linestyle' and
'ls', are specified together. To avoid this, we automatically keep only the one
specified by the user and raise an error if the user specifies both.
Parameters
----------
default_style_kwargs : dict
The Matplotlib style kwargs used by default in the scikit-learn display.
user_style_kwargs : dict
The user-defined Matplotlib style kwargs.
Returns
-------
valid_style_kwargs : dict
The validated style kwargs taking into account both default and user-defined
Matplotlib style kwargs.
|
_validate_style_kwargs
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _despine(ax):
"""Remove the top and right spines of the plot.
Parameters
----------
ax : matplotlib.axes.Axes
The axes of the plot to despine.
"""
for s in ["top", "right"]:
ax.spines[s].set_visible(False)
for s in ["bottom", "left"]:
ax.spines[s].set_bounds(0, 1)
|
Remove the top and right spines of the plot.
Parameters
----------
ax : matplotlib.axes.Axes
The axes of the plot to despine.
|
_despine
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _convert_to_list_leaving_none(param):
"""Convert parameters to a list, leaving `None` as is."""
if param is None:
return None
if isinstance(param, list):
return param
return [param]
|
Convert parameters to a list, leaving `None` as is.
|
_convert_to_list_leaving_none
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _check_param_lengths(required, optional, class_name):
"""Check required and optional parameters are of the same length."""
optional_provided = {}
for name, param in optional.items():
if isinstance(param, list):
optional_provided[name] = param
all_params = {**required, **optional_provided}
if len({len(param) for param in all_params.values()}) > 1:
param_keys = [key for key in all_params.keys()]
# Note: below code requires `len(param_keys) >= 2`, which is the case for all
# display classes
params_formatted = " and ".join([", ".join(param_keys[:-1]), param_keys[-1]])
or_plot = ""
if "'name' (or self.name)" in param_keys:
or_plot = " (or `plot`)"
lengths_formatted = ", ".join(
f"{key}: {len(value)}" for key, value in all_params.items()
)
raise ValueError(
f"{params_formatted} from `{class_name}` initialization{or_plot}, "
f"should all be lists of the same length. Got: {lengths_formatted}"
)
|
Check required and optional parameters are of the same length.
|
_check_param_lengths
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_plotting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_plotting.py
|
BSD-3-Clause
|
def _changed_params(estimator):
"""Return dict (param_name: value) of parameters that were given to
estimator with non-default values."""
params = estimator.get_params(deep=False)
init_func = getattr(estimator.__init__, "deprecated_original", estimator.__init__)
init_params = inspect.signature(init_func).parameters
init_params = {name: param.default for name, param in init_params.items()}
def has_changed(k, v):
if k not in init_params: # happens if k is part of a **kwargs
return True
if init_params[k] == inspect._empty: # k has no default value
return True
# try to avoid calling repr on nested estimators
if isinstance(v, BaseEstimator) and v.__class__ != init_params[k].__class__:
return True
# Use repr as a last resort. It may be expensive.
if repr(v) != repr(init_params[k]) and not (
is_scalar_nan(init_params[k]) and is_scalar_nan(v)
):
return True
return False
return {k: v for k, v in params.items() if has_changed(k, v)}
|
Return dict (param_name: value) of parameters that were given to
estimator with non-default values.
|
_changed_params
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_pprint.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_pprint.py
|
BSD-3-Clause
|
def _format_params_or_dict_items(
self, object, stream, indent, allowance, context, level, is_dict
):
"""Format dict items or parameters respecting the compact=True
parameter. For some reason, the builtin rendering of dict items doesn't
respect compact=True and will use one line per key-value if all cannot
fit in a single line.
Dict items will be rendered as <'key': value> while params will be
rendered as <key=value>. The implementation is mostly copy/pasting from
the builtin _format_items().
This also adds ellipsis if the number of items is greater than
self.n_max_elements_to_show.
"""
write = stream.write
indent += self._indent_per_level
delimnl = ",\n" + " " * indent
delim = ""
width = max_width = self._width - indent + 1
it = iter(object)
try:
next_ent = next(it)
except StopIteration:
return
last = False
n_items = 0
while not last:
if n_items == self.n_max_elements_to_show:
write(", ...")
break
n_items += 1
ent = next_ent
try:
next_ent = next(it)
except StopIteration:
last = True
max_width -= allowance
width -= allowance
if self._compact:
k, v = ent
krepr = self._repr(k, context, level)
vrepr = self._repr(v, context, level)
if not is_dict:
krepr = krepr.strip("'")
middle = ": " if is_dict else "="
rep = krepr + middle + vrepr
w = len(rep) + 2
if width < w:
width = max_width
if delim:
delim = delimnl
if width >= w:
width -= w
write(delim)
delim = ", "
write(rep)
continue
write(delim)
delim = delimnl
class_ = KeyValTuple if is_dict else KeyValTupleParam
self._format(
class_(ent), stream, indent, allowance if last else 1, context, level
)
|
Format dict items or parameters respecting the compact=True
parameter. For some reason, the builtin rendering of dict items doesn't
respect compact=True and will use one line per key-value if all cannot
fit in a single line.
Dict items will be rendered as <'key': value> while params will be
rendered as <key=value>. The implementation is mostly copy/pasting from
the builtin _format_items().
This also adds ellipsis if the number of items is greater than
self.n_max_elements_to_show.
|
_format_params_or_dict_items
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_pprint.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_pprint.py
|
BSD-3-Clause
|
def _format_items(self, items, stream, indent, allowance, context, level):
"""Format the items of an iterable (list, tuple...). Same as the
built-in _format_items, with support for ellipsis if the number of
elements is greater than self.n_max_elements_to_show.
"""
write = stream.write
indent += self._indent_per_level
if self._indent_per_level > 1:
write((self._indent_per_level - 1) * " ")
delimnl = ",\n" + " " * indent
delim = ""
width = max_width = self._width - indent + 1
it = iter(items)
try:
next_ent = next(it)
except StopIteration:
return
last = False
n_items = 0
while not last:
if n_items == self.n_max_elements_to_show:
write(", ...")
break
n_items += 1
ent = next_ent
try:
next_ent = next(it)
except StopIteration:
last = True
max_width -= allowance
width -= allowance
if self._compact:
rep = self._repr(ent, context, level)
w = len(rep) + 2
if width < w:
width = max_width
if delim:
delim = delimnl
if width >= w:
width -= w
write(delim)
delim = ", "
write(rep)
continue
write(delim)
delim = delimnl
self._format(ent, stream, indent, allowance if last else 1, context, level)
|
Format the items of an iterable (list, tuple...). Same as the
built-in _format_items, with support for ellipsis if the number of
elements is greater than self.n_max_elements_to_show.
|
_format_items
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_pprint.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_pprint.py
|
BSD-3-Clause
|
def _pprint_key_val_tuple(self, object, stream, indent, allowance, context, level):
"""Pretty printing for key-value tuples from dict or parameters."""
k, v = object
rep = self._repr(k, context, level)
if isinstance(object, KeyValTupleParam):
rep = rep.strip("'")
middle = "="
else:
middle = ": "
stream.write(rep)
stream.write(middle)
self._format(
v, stream, indent + len(rep) + len(middle), allowance, context, level
)
|
Pretty printing for key-value tuples from dict or parameters.
|
_pprint_key_val_tuple
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_pprint.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_pprint.py
|
BSD-3-Clause
|
def _safe_repr(object, context, maxlevels, level, changed_only=False):
"""Same as the builtin _safe_repr, with added support for Estimator
objects."""
typ = type(object)
if typ in pprint._builtin_scalars:
return repr(object), True, False
r = getattr(typ, "__repr__", None)
if issubclass(typ, dict) and r is dict.__repr__:
if not object:
return "{}", True, False
objid = id(object)
if maxlevels and level >= maxlevels:
return "{...}", False, objid in context
if objid in context:
return pprint._recursion(object), False, True
context[objid] = 1
readable = True
recursive = False
components = []
append = components.append
level += 1
saferepr = _safe_repr
items = sorted(object.items(), key=pprint._safe_tuple)
for k, v in items:
krepr, kreadable, krecur = saferepr(
k, context, maxlevels, level, changed_only=changed_only
)
vrepr, vreadable, vrecur = saferepr(
v, context, maxlevels, level, changed_only=changed_only
)
append("%s: %s" % (krepr, vrepr))
readable = readable and kreadable and vreadable
if krecur or vrecur:
recursive = True
del context[objid]
return "{%s}" % ", ".join(components), readable, recursive
if (issubclass(typ, list) and r is list.__repr__) or (
issubclass(typ, tuple) and r is tuple.__repr__
):
if issubclass(typ, list):
if not object:
return "[]", True, False
format = "[%s]"
elif len(object) == 1:
format = "(%s,)"
else:
if not object:
return "()", True, False
format = "(%s)"
objid = id(object)
if maxlevels and level >= maxlevels:
return format % "...", False, objid in context
if objid in context:
return pprint._recursion(object), False, True
context[objid] = 1
readable = True
recursive = False
components = []
append = components.append
level += 1
for o in object:
orepr, oreadable, orecur = _safe_repr(
o, context, maxlevels, level, changed_only=changed_only
)
append(orepr)
if not oreadable:
readable = False
if orecur:
recursive = True
del context[objid]
return format % ", ".join(components), readable, recursive
if issubclass(typ, BaseEstimator):
objid = id(object)
if maxlevels and level >= maxlevels:
return f"{typ.__name__}(...)", False, objid in context
if objid in context:
return pprint._recursion(object), False, True
context[objid] = 1
readable = True
recursive = False
if changed_only:
params = _changed_params(object)
else:
params = object.get_params(deep=False)
components = []
append = components.append
level += 1
saferepr = _safe_repr
items = sorted(params.items(), key=pprint._safe_tuple)
for k, v in items:
krepr, kreadable, krecur = saferepr(
k, context, maxlevels, level, changed_only=changed_only
)
vrepr, vreadable, vrecur = saferepr(
v, context, maxlevels, level, changed_only=changed_only
)
append("%s=%s" % (krepr.strip("'"), vrepr))
readable = readable and kreadable and vreadable
if krecur or vrecur:
recursive = True
del context[objid]
return ("%s(%s)" % (typ.__name__, ", ".join(components)), readable, recursive)
rep = repr(object)
return rep, (rep and not rep.startswith("<")), False
|
Same as the builtin _safe_repr, with added support for Estimator
objects.
|
_safe_repr
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_pprint.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_pprint.py
|
BSD-3-Clause
|
def _process_predict_proba(*, y_pred, target_type, classes, pos_label):
"""Get the response values when the response method is `predict_proba`.
This function process the `y_pred` array in the binary and multi-label cases.
In the binary case, it selects the column corresponding to the positive
class. In the multi-label case, it stacks the predictions if they are not
in the "compressed" format `(n_samples, n_outputs)`.
Parameters
----------
y_pred : ndarray
Output of `estimator.predict_proba`. The shape depends on the target type:
- for binary classification, it is a 2d array of shape `(n_samples, 2)`;
- for multiclass classification, it is a 2d array of shape
`(n_samples, n_classes)`;
- for multilabel classification, it is either a list of 2d arrays of shape
`(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or
an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or
`RidgeClassifier`).
target_type : {"binary", "multiclass", "multilabel-indicator"}
Type of the target.
classes : ndarray of shape (n_classes,) or list of such arrays
Class labels as reported by `estimator.classes_`.
pos_label : int, float, bool or str
Only used with binary and multiclass targets.
Returns
-------
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
(n_samples, n_output)
Compressed predictions format as requested by the metrics.
"""
if target_type == "binary" and y_pred.shape[1] < 2:
# We don't handle classifiers trained on a single class.
raise ValueError(
f"Got predict_proba of shape {y_pred.shape}, but need "
"classifier with two classes."
)
if target_type == "binary":
col_idx = np.flatnonzero(classes == pos_label)[0]
return y_pred[:, col_idx]
elif target_type == "multilabel-indicator":
# Use a compress format of shape `(n_samples, n_output)`.
# Only `MLPClassifier` and `RidgeClassifier` return an array of shape
# `(n_samples, n_outputs)`.
if isinstance(y_pred, list):
# list of arrays of shape `(n_samples, 2)`
return np.vstack([p[:, -1] for p in y_pred]).T
else:
# array of shape `(n_samples, n_outputs)`
return y_pred
return y_pred
|
Get the response values when the response method is `predict_proba`.
This function process the `y_pred` array in the binary and multi-label cases.
In the binary case, it selects the column corresponding to the positive
class. In the multi-label case, it stacks the predictions if they are not
in the "compressed" format `(n_samples, n_outputs)`.
Parameters
----------
y_pred : ndarray
Output of `estimator.predict_proba`. The shape depends on the target type:
- for binary classification, it is a 2d array of shape `(n_samples, 2)`;
- for multiclass classification, it is a 2d array of shape
`(n_samples, n_classes)`;
- for multilabel classification, it is either a list of 2d arrays of shape
`(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or
an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or
`RidgeClassifier`).
target_type : {"binary", "multiclass", "multilabel-indicator"}
Type of the target.
classes : ndarray of shape (n_classes,) or list of such arrays
Class labels as reported by `estimator.classes_`.
pos_label : int, float, bool or str
Only used with binary and multiclass targets.
Returns
-------
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or (n_samples, n_output)
Compressed predictions format as requested by the metrics.
|
_process_predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_response.py
|
BSD-3-Clause
|
def _process_decision_function(*, y_pred, target_type, classes, pos_label):
"""Get the response values when the response method is `decision_function`.
This function process the `y_pred` array in the binary and multi-label cases.
In the binary case, it inverts the sign of the score if the positive label
is not `classes[1]`. In the multi-label case, it stacks the predictions if
they are not in the "compressed" format `(n_samples, n_outputs)`.
Parameters
----------
y_pred : ndarray
Output of `estimator.decision_function`. The shape depends on the target type:
- for binary classification, it is a 1d array of shape `(n_samples,)` where the
sign is assuming that `classes[1]` is the positive class;
- for multiclass classification, it is a 2d array of shape
`(n_samples, n_classes)`;
- for multilabel classification, it is a 2d array of shape `(n_samples,
n_outputs)`.
target_type : {"binary", "multiclass", "multilabel-indicator"}
Type of the target.
classes : ndarray of shape (n_classes,) or list of such arrays
Class labels as reported by `estimator.classes_`.
pos_label : int, float, bool or str
Only used with binary and multiclass targets.
Returns
-------
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
(n_samples, n_output)
Compressed predictions format as requested by the metrics.
"""
if target_type == "binary" and pos_label == classes[0]:
return -1 * y_pred
return y_pred
|
Get the response values when the response method is `decision_function`.
This function process the `y_pred` array in the binary and multi-label cases.
In the binary case, it inverts the sign of the score if the positive label
is not `classes[1]`. In the multi-label case, it stacks the predictions if
they are not in the "compressed" format `(n_samples, n_outputs)`.
Parameters
----------
y_pred : ndarray
Output of `estimator.decision_function`. The shape depends on the target type:
- for binary classification, it is a 1d array of shape `(n_samples,)` where the
sign is assuming that `classes[1]` is the positive class;
- for multiclass classification, it is a 2d array of shape
`(n_samples, n_classes)`;
- for multilabel classification, it is a 2d array of shape `(n_samples,
n_outputs)`.
target_type : {"binary", "multiclass", "multilabel-indicator"}
Type of the target.
classes : ndarray of shape (n_classes,) or list of such arrays
Class labels as reported by `estimator.classes_`.
pos_label : int, float, bool or str
Only used with binary and multiclass targets.
Returns
-------
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or (n_samples, n_output)
Compressed predictions format as requested by the metrics.
|
_process_decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_response.py
|
BSD-3-Clause
|
def _get_response_values(
estimator,
X,
response_method,
pos_label=None,
return_response_method_used=False,
):
"""Compute the response values of a classifier, an outlier detector, or a regressor.
The response values are predictions such that it follows the following shape:
- for binary classification, it is a 1d array of shape `(n_samples,)`;
- for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`;
- for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`;
- for outlier detection, it is a 1d array of shape `(n_samples,)`;
- for regression, it is a 1d array of shape `(n_samples,)`.
If `estimator` is a binary classifier, also return the label for the
effective positive class.
This utility is used primarily in the displays and the scikit-learn scorers.
.. versionadded:: 1.3
Parameters
----------
estimator : estimator instance
Fitted classifier, outlier detector, or regressor or a
fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a
classifier, an outlier detector, or a regressor.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
response_method : {"predict_proba", "predict_log_proba", "decision_function", \
"predict"} or list of such str
Specifies the response method to use get prediction from an estimator
(i.e. :term:`predict_proba`, :term:`predict_log_proba`,
:term:`decision_function` or :term:`predict`). Possible choices are:
- if `str`, it corresponds to the name to the method to return;
- if a list of `str`, it provides the method names in order of
preference. The method returned corresponds to the first method in
the list and which is implemented by `estimator`.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing
the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is
considered as the positive class.
return_response_method_used : bool, default=False
Whether to return the response method used to compute the response
values.
.. versionadded:: 1.4
Returns
-------
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
(n_samples, n_outputs)
Target scores calculated from the provided `response_method`
and `pos_label`.
pos_label : int, float, bool, str or None
The class considered as the positive class when computing
the metrics. Returns `None` if `estimator` is a regressor or an outlier
detector.
response_method_used : str
The response method used to compute the response values. Only returned
if `return_response_method_used` is `True`.
.. versionadded:: 1.4
Raises
------
ValueError
If `pos_label` is not a valid label.
If the shape of `y_pred` is not consistent for binary classifier.
If the response method can be applied to a classifier only and
`estimator` is a regressor.
"""
from sklearn.base import is_classifier, is_outlier_detector
if is_classifier(estimator):
prediction_method = _check_response_method(estimator, response_method)
classes = estimator.classes_
target_type = type_of_target(classes)
if target_type in ("binary", "multiclass"):
if pos_label is not None and pos_label not in classes.tolist():
raise ValueError(
f"pos_label={pos_label} is not a valid label: It should be "
f"one of {classes}"
)
elif pos_label is None and target_type == "binary":
pos_label = classes[-1]
y_pred = prediction_method(X)
if prediction_method.__name__ in ("predict_proba", "predict_log_proba"):
y_pred = _process_predict_proba(
y_pred=y_pred,
target_type=target_type,
classes=classes,
pos_label=pos_label,
)
elif prediction_method.__name__ == "decision_function":
y_pred = _process_decision_function(
y_pred=y_pred,
target_type=target_type,
classes=classes,
pos_label=pos_label,
)
elif is_outlier_detector(estimator):
prediction_method = _check_response_method(estimator, response_method)
y_pred, pos_label = prediction_method(X), None
else: # estimator is a regressor
if response_method != "predict":
raise ValueError(
f"{estimator.__class__.__name__} should either be a classifier to be "
f"used with response_method={response_method} or the response_method "
"should be 'predict'. Got a regressor with response_method="
f"{response_method} instead."
)
prediction_method = estimator.predict
y_pred, pos_label = prediction_method(X), None
if return_response_method_used:
return y_pred, pos_label, prediction_method.__name__
return y_pred, pos_label
|
Compute the response values of a classifier, an outlier detector, or a regressor.
The response values are predictions such that it follows the following shape:
- for binary classification, it is a 1d array of shape `(n_samples,)`;
- for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`;
- for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`;
- for outlier detection, it is a 1d array of shape `(n_samples,)`;
- for regression, it is a 1d array of shape `(n_samples,)`.
If `estimator` is a binary classifier, also return the label for the
effective positive class.
This utility is used primarily in the displays and the scikit-learn scorers.
.. versionadded:: 1.3
Parameters
----------
estimator : estimator instance
Fitted classifier, outlier detector, or regressor or a
fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a
classifier, an outlier detector, or a regressor.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
response_method : {"predict_proba", "predict_log_proba", "decision_function", "predict"} or list of such str
Specifies the response method to use get prediction from an estimator
(i.e. :term:`predict_proba`, :term:`predict_log_proba`,
:term:`decision_function` or :term:`predict`). Possible choices are:
- if `str`, it corresponds to the name to the method to return;
- if a list of `str`, it provides the method names in order of
preference. The method returned corresponds to the first method in
the list and which is implemented by `estimator`.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing
the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is
considered as the positive class.
return_response_method_used : bool, default=False
Whether to return the response method used to compute the response
values.
.. versionadded:: 1.4
Returns
-------
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or (n_samples, n_outputs)
Target scores calculated from the provided `response_method`
and `pos_label`.
pos_label : int, float, bool, str or None
The class considered as the positive class when computing
the metrics. Returns `None` if `estimator` is a regressor or an outlier
detector.
response_method_used : str
The response method used to compute the response values. Only returned
if `return_response_method_used` is `True`.
.. versionadded:: 1.4
Raises
------
ValueError
If `pos_label` is not a valid label.
If the shape of `y_pred` is not consistent for binary classifier.
If the response method can be applied to a classifier only and
`estimator` is a regressor.
|
_get_response_values
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_response.py
|
BSD-3-Clause
|
def _get_response_values_binary(
estimator, X, response_method, pos_label=None, return_response_method_used=False
):
"""Compute the response values of a binary classifier.
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a binary classifier.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
response_method : {'auto', 'predict_proba', 'decision_function'}
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. If set to 'auto',
:term:`predict_proba` is tried first and if it does not exist
:term:`decision_function` is tried next.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing
the metrics. By default, `estimators.classes_[1]` is
considered as the positive class.
return_response_method_used : bool, default=False
Whether to return the response method used to compute the response
values.
.. versionadded:: 1.5
Returns
-------
y_pred : ndarray of shape (n_samples,)
Target scores calculated from the provided response_method
and pos_label.
pos_label : int, float, bool or str
The class considered as the positive class when computing
the metrics.
response_method_used : str
The response method used to compute the response values. Only returned
if `return_response_method_used` is `True`.
.. versionadded:: 1.5
"""
classification_error = "Expected 'estimator' to be a binary classifier."
check_is_fitted(estimator)
if not is_classifier(estimator):
raise ValueError(
classification_error + f" Got {estimator.__class__.__name__} instead."
)
elif len(estimator.classes_) != 2:
raise ValueError(
classification_error + f" Got {len(estimator.classes_)} classes instead."
)
if response_method == "auto":
response_method = ["predict_proba", "decision_function"]
return _get_response_values(
estimator,
X,
response_method,
pos_label=pos_label,
return_response_method_used=return_response_method_used,
)
|
Compute the response values of a binary classifier.
Parameters
----------
estimator : estimator instance
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
in which the last estimator is a binary classifier.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
response_method : {'auto', 'predict_proba', 'decision_function'}
Specifies whether to use :term:`predict_proba` or
:term:`decision_function` as the target response. If set to 'auto',
:term:`predict_proba` is tried first and if it does not exist
:term:`decision_function` is tried next.
pos_label : int, float, bool or str, default=None
The class considered as the positive class when computing
the metrics. By default, `estimators.classes_[1]` is
considered as the positive class.
return_response_method_used : bool, default=False
Whether to return the response method used to compute the response
values.
.. versionadded:: 1.5
Returns
-------
y_pred : ndarray of shape (n_samples,)
Target scores calculated from the provided response_method
and pos_label.
pos_label : int, float, bool or str
The class considered as the positive class when computing
the metrics.
response_method_used : str
The response method used to compute the response values. Only returned
if `return_response_method_used` is `True`.
.. versionadded:: 1.5
|
_get_response_values_binary
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_response.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_response.py
|
BSD-3-Clause
|
def create_container(self, X_output, X_original, columns, inplace=False):
"""Create container from `X_output` with additional metadata.
Parameters
----------
X_output : {ndarray, dataframe}
Data to wrap.
X_original : {ndarray, dataframe}
Original input dataframe. This is used to extract the metadata that should
be passed to `X_output`, e.g. pandas row index.
columns : callable, ndarray, or None
The column names or a callable that returns the column names. The
callable is useful if the column names require some computation. If `None`,
then no columns are passed to the container's constructor.
inplace : bool, default=False
Whether or not we intend to modify `X_output` in-place. However, it does
not guarantee that we return the same object if the in-place operation
is not possible.
Returns
-------
wrapped_output : container_type
`X_output` wrapped into the container type.
"""
|
Create container from `X_output` with additional metadata.
Parameters
----------
X_output : {ndarray, dataframe}
Data to wrap.
X_original : {ndarray, dataframe}
Original input dataframe. This is used to extract the metadata that should
be passed to `X_output`, e.g. pandas row index.
columns : callable, ndarray, or None
The column names or a callable that returns the column names. The
callable is useful if the column names require some computation. If `None`,
then no columns are passed to the container's constructor.
inplace : bool, default=False
Whether or not we intend to modify `X_output` in-place. However, it does
not guarantee that we return the same object if the in-place operation
is not possible.
Returns
-------
wrapped_output : container_type
`X_output` wrapped into the container type.
|
create_container
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def is_supported_container(self, X):
"""Return True if X is a supported container.
Parameters
----------
Xs: container
Containers to be checked.
Returns
-------
is_supported_container : bool
True if X is a supported container.
"""
|
Return True if X is a supported container.
Parameters
----------
Xs: container
Containers to be checked.
Returns
-------
is_supported_container : bool
True if X is a supported container.
|
is_supported_container
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def rename_columns(self, X, columns):
"""Rename columns in `X`.
Parameters
----------
X : container
Container which columns is updated.
columns : ndarray of str
Columns to update the `X`'s columns with.
Returns
-------
updated_container : container
Container with new names.
"""
|
Rename columns in `X`.
Parameters
----------
X : container
Container which columns is updated.
columns : ndarray of str
Columns to update the `X`'s columns with.
Returns
-------
updated_container : container
Container with new names.
|
rename_columns
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def hstack(self, Xs):
"""Stack containers horizontally (column-wise).
Parameters
----------
Xs : list of containers
List of containers to stack.
Returns
-------
stacked_Xs : container
Stacked containers.
"""
|
Stack containers horizontally (column-wise).
Parameters
----------
Xs : list of containers
List of containers to stack.
Returns
-------
stacked_Xs : container
Stacked containers.
|
hstack
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def _get_adapter_from_container(container):
"""Get the adapter that knows how to handle such container.
See :class:`sklearn.utils._set_output.ContainerAdapterProtocol` for more
details.
"""
module_name = container.__class__.__module__.split(".")[0]
try:
return ADAPTERS_MANAGER.adapters[module_name]
except KeyError as exc:
available_adapters = list(ADAPTERS_MANAGER.adapters.keys())
raise ValueError(
"The container does not have a registered adapter in scikit-learn. "
f"Available adapters are: {available_adapters} while the container "
f"provided is: {container!r}."
) from exc
|
Get the adapter that knows how to handle such container.
See :class:`sklearn.utils._set_output.ContainerAdapterProtocol` for more
details.
|
_get_adapter_from_container
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def _get_output_config(method, estimator=None):
"""Get output config based on estimator and global configuration.
Parameters
----------
method : {"transform"}
Estimator's method for which the output container is looked up.
estimator : estimator instance or None
Estimator to get the output configuration from. If `None`, check global
configuration is used.
Returns
-------
config : dict
Dictionary with keys:
- "dense": specifies the dense container for `method`. This can be
`"default"` or `"pandas"`.
"""
est_sklearn_output_config = getattr(estimator, "_sklearn_output_config", {})
if method in est_sklearn_output_config:
dense_config = est_sklearn_output_config[method]
else:
dense_config = get_config()[f"{method}_output"]
supported_outputs = ADAPTERS_MANAGER.supported_outputs
if dense_config not in supported_outputs:
raise ValueError(
f"output config must be in {sorted(supported_outputs)}, got {dense_config}"
)
return {"dense": dense_config}
|
Get output config based on estimator and global configuration.
Parameters
----------
method : {"transform"}
Estimator's method for which the output container is looked up.
estimator : estimator instance or None
Estimator to get the output configuration from. If `None`, check global
configuration is used.
Returns
-------
config : dict
Dictionary with keys:
- "dense": specifies the dense container for `method`. This can be
`"default"` or `"pandas"`.
|
_get_output_config
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def _wrap_data_with_container(method, data_to_wrap, original_input, estimator):
"""Wrap output with container based on an estimator's or global config.
Parameters
----------
method : {"transform"}
Estimator's method to get container output for.
data_to_wrap : {ndarray, dataframe}
Data to wrap with container.
original_input : {ndarray, dataframe}
Original input of function.
estimator : estimator instance
Estimator with to get the output configuration from.
Returns
-------
output : {ndarray, dataframe}
If the output config is "default" or the estimator is not configured
for wrapping return `data_to_wrap` unchanged.
If the output config is "pandas", return `data_to_wrap` as a pandas
DataFrame.
"""
output_config = _get_output_config(method, estimator)
if output_config["dense"] == "default" or not _auto_wrap_is_configured(estimator):
return data_to_wrap
dense_config = output_config["dense"]
if issparse(data_to_wrap):
raise ValueError(
"The transformer outputs a scipy sparse matrix. "
"Try to set the transformer output to a dense array or disable "
f"{dense_config.capitalize()} output with set_output(transform='default')."
)
adapter = ADAPTERS_MANAGER.adapters[dense_config]
return adapter.create_container(
data_to_wrap,
original_input,
columns=estimator.get_feature_names_out,
)
|
Wrap output with container based on an estimator's or global config.
Parameters
----------
method : {"transform"}
Estimator's method to get container output for.
data_to_wrap : {ndarray, dataframe}
Data to wrap with container.
original_input : {ndarray, dataframe}
Original input of function.
estimator : estimator instance
Estimator with to get the output configuration from.
Returns
-------
output : {ndarray, dataframe}
If the output config is "default" or the estimator is not configured
for wrapping return `data_to_wrap` unchanged.
If the output config is "pandas", return `data_to_wrap` as a pandas
DataFrame.
|
_wrap_data_with_container
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def _wrap_method_output(f, method):
"""Wrapper used by `_SetOutputMixin` to automatically wrap methods."""
@wraps(f)
def wrapped(self, X, *args, **kwargs):
data_to_wrap = f(self, X, *args, **kwargs)
if isinstance(data_to_wrap, tuple):
# only wrap the first output for cross decomposition
return_tuple = (
_wrap_data_with_container(method, data_to_wrap[0], X, self),
*data_to_wrap[1:],
)
# Support for namedtuples `_make` is a documented API for namedtuples:
# https://docs.python.org/3/library/collections.html#collections.somenamedtuple._make
if hasattr(type(data_to_wrap), "_make"):
return type(data_to_wrap)._make(return_tuple)
return return_tuple
return _wrap_data_with_container(method, data_to_wrap, X, self)
return wrapped
|
Wrapper used by `_SetOutputMixin` to automatically wrap methods.
|
_wrap_method_output
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def _auto_wrap_is_configured(estimator):
"""Return True if estimator is configured for auto-wrapping the transform method.
`_SetOutputMixin` sets `_sklearn_auto_wrap_output_keys` to `set()` if auto wrapping
is manually disabled.
"""
auto_wrap_output_keys = getattr(estimator, "_sklearn_auto_wrap_output_keys", set())
return (
hasattr(estimator, "get_feature_names_out")
and "transform" in auto_wrap_output_keys
)
|
Return True if estimator is configured for auto-wrapping the transform method.
`_SetOutputMixin` sets `_sklearn_auto_wrap_output_keys` to `set()` if auto wrapping
is manually disabled.
|
_auto_wrap_is_configured
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def set_output(self, *, transform=None):
"""Set output container.
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
for an example on how to use the API.
Parameters
----------
transform : {"default", "pandas", "polars"}, default=None
Configure output of `transform` and `fit_transform`.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
.. versionadded:: 1.4
`"polars"` option was added.
Returns
-------
self : estimator instance
Estimator instance.
"""
if transform is None:
return self
if not hasattr(self, "_sklearn_output_config"):
self._sklearn_output_config = {}
self._sklearn_output_config["transform"] = transform
return self
|
Set output container.
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
for an example on how to use the API.
Parameters
----------
transform : {"default", "pandas", "polars"}, default=None
Configure output of `transform` and `fit_transform`.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
.. versionadded:: 1.4
`"polars"` option was added.
Returns
-------
self : estimator instance
Estimator instance.
|
set_output
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def _safe_set_output(estimator, *, transform=None):
"""Safely call estimator.set_output and error if it not available.
This is used by meta-estimators to set the output for child estimators.
Parameters
----------
estimator : estimator instance
Estimator instance.
transform : {"default", "pandas", "polars"}, default=None
Configure output of the following estimator's methods:
- `"transform"`
- `"fit_transform"`
If `None`, this operation is a no-op.
Returns
-------
estimator : estimator instance
Estimator instance.
"""
set_output_for_transform = hasattr(estimator, "transform") or (
hasattr(estimator, "fit_transform") and transform is not None
)
if not set_output_for_transform:
# If estimator can not transform, then `set_output` does not need to be
# called.
return
if not hasattr(estimator, "set_output"):
raise ValueError(
f"Unable to configure output for {estimator} because `set_output` "
"is not available."
)
return estimator.set_output(transform=transform)
|
Safely call estimator.set_output and error if it not available.
This is used by meta-estimators to set the output for child estimators.
Parameters
----------
estimator : estimator instance
Estimator instance.
transform : {"default", "pandas", "polars"}, default=None
Configure output of the following estimator's methods:
- `"transform"`
- `"fit_transform"`
If `None`, this operation is a no-op.
Returns
-------
estimator : estimator instance
Estimator instance.
|
_safe_set_output
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_set_output.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_set_output.py
|
BSD-3-Clause
|
def _get_sys_info():
"""System information
Returns
-------
sys_info : dict
system and Python version information
"""
python = sys.version.replace("\n", " ")
blob = [
("python", python),
("executable", sys.executable),
("machine", platform.platform()),
]
return dict(blob)
|
System information
Returns
-------
sys_info : dict
system and Python version information
|
_get_sys_info
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_show_versions.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_show_versions.py
|
BSD-3-Clause
|
def _get_deps_info():
"""Overview of the installed version of main dependencies
This function does not import the modules to collect the version numbers
but instead relies on standard Python package metadata.
Returns
-------
deps_info: dict
version information on relevant Python libraries
"""
deps = [
"pip",
"setuptools",
"numpy",
"scipy",
"Cython",
"pandas",
"matplotlib",
"joblib",
"threadpoolctl",
]
deps_info = {
"sklearn": __version__,
}
from importlib.metadata import PackageNotFoundError, version
for modname in deps:
try:
deps_info[modname] = version(modname)
except PackageNotFoundError:
deps_info[modname] = None
return deps_info
|
Overview of the installed version of main dependencies
This function does not import the modules to collect the version numbers
but instead relies on standard Python package metadata.
Returns
-------
deps_info: dict
version information on relevant Python libraries
|
_get_deps_info
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_show_versions.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_show_versions.py
|
BSD-3-Clause
|
def show_versions():
"""Print useful debugging information"
.. versionadded:: 0.20
Examples
--------
>>> from sklearn import show_versions
>>> show_versions() # doctest: +SKIP
"""
sys_info = _get_sys_info()
deps_info = _get_deps_info()
print("\nSystem:")
for k, stat in sys_info.items():
print("{k:>10}: {stat}".format(k=k, stat=stat))
print("\nPython dependencies:")
for k, stat in deps_info.items():
print("{k:>13}: {stat}".format(k=k, stat=stat))
print(
"\n{k}: {stat}".format(
k="Built with OpenMP", stat=_openmp_parallelism_enabled()
)
)
# show threadpoolctl results
threadpool_results = threadpool_info()
if threadpool_results:
print()
print("threadpoolctl info:")
for i, result in enumerate(threadpool_results):
for key, val in result.items():
print(f"{key:>15}: {val}")
if i != len(threadpool_results) - 1:
print()
|
Print useful debugging information"
.. versionadded:: 0.20
Examples
--------
>>> from sklearn import show_versions
>>> show_versions() # doctest: +SKIP
|
show_versions
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_show_versions.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_show_versions.py
|
BSD-3-Clause
|
def default_tags(estimator) -> Tags:
"""Get the default tags for an estimator.
This ignores any ``__sklearn_tags__`` method that the estimator may have.
If the estimator is a classifier or a regressor, ``target_tags.required``
will be set to ``True``, otherwise it will be set to ``False``.
``transformer_tags`` will be set to :class:`~.sklearn.utils. TransformerTags` if the
estimator has a ``transform`` or ``fit_transform`` method, otherwise it will be set
to ``None``.
``classifier_tags`` will be set to :class:`~.sklearn.utils.ClassifierTags` if the
estimator is a classifier, otherwise it will be set to ``None``.
a classifier, otherwise it will be set to ``None``.
``regressor_tags`` will be set to :class:`~.sklearn.utils.RegressorTags` if the
estimator is a regressor, otherwise it will be set to ``None``.
Parameters
----------
estimator : estimator object
The estimator for which to get the default tags.
Returns
-------
tags : Tags
The default tags for the estimator.
"""
est_is_classifier = getattr(estimator, "_estimator_type", None) == "classifier"
est_is_regressor = getattr(estimator, "_estimator_type", None) == "regressor"
target_required = est_is_classifier or est_is_regressor
return Tags(
estimator_type=getattr(estimator, "_estimator_type", None),
target_tags=TargetTags(required=target_required),
transformer_tags=(
TransformerTags()
if hasattr(estimator, "transform") or hasattr(estimator, "fit_transform")
else None
),
classifier_tags=ClassifierTags() if est_is_classifier else None,
regressor_tags=RegressorTags() if est_is_regressor else None,
)
|
Get the default tags for an estimator.
This ignores any ``__sklearn_tags__`` method that the estimator may have.
If the estimator is a classifier or a regressor, ``target_tags.required``
will be set to ``True``, otherwise it will be set to ``False``.
``transformer_tags`` will be set to :class:`~.sklearn.utils. TransformerTags` if the
estimator has a ``transform`` or ``fit_transform`` method, otherwise it will be set
to ``None``.
``classifier_tags`` will be set to :class:`~.sklearn.utils.ClassifierTags` if the
estimator is a classifier, otherwise it will be set to ``None``.
a classifier, otherwise it will be set to ``None``.
``regressor_tags`` will be set to :class:`~.sklearn.utils.RegressorTags` if the
estimator is a regressor, otherwise it will be set to ``None``.
Parameters
----------
estimator : estimator object
The estimator for which to get the default tags.
Returns
-------
tags : Tags
The default tags for the estimator.
|
default_tags
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_tags.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_tags.py
|
BSD-3-Clause
|
def get_tags(estimator) -> Tags:
"""Get estimator tags.
:class:`~sklearn.BaseEstimator` provides the estimator tags machinery.
However, if an estimator does not inherit from this base class, we should
fall-back to the default tags.
For scikit-learn built-in estimators, we should still rely on
`self.__sklearn_tags__()`. `get_tags(est)` should be used when we
are not sure where `est` comes from: typically
`get_tags(self.estimator)` where `self` is a meta-estimator, or in
the common checks.
.. versionadded:: 1.6
Parameters
----------
estimator : estimator object
The estimator from which to get the tag.
Returns
-------
tags : :class:`~.sklearn.utils.Tags`
The estimator tags.
"""
try:
tags = estimator.__sklearn_tags__()
except AttributeError as exc:
# TODO(1.8): turn the warning into an error
if "object has no attribute '__sklearn_tags__'" in str(exc):
# Fall back to the default tags if the estimator does not
# implement __sklearn_tags__.
# In particular, workaround the regression reported in
# https://github.com/scikit-learn/scikit-learn/issues/30479
# `__sklearn_tags__` is implemented by calling
# `super().__sklearn_tags__()` but there is no `__sklearn_tags__`
# method in the base class. Typically happens when only inheriting
# from Mixins.
warnings.warn(
f"The following error was raised: {exc}. It seems that "
"there are no classes that implement `__sklearn_tags__` "
"in the MRO and/or all classes in the MRO call "
"`super().__sklearn_tags__()`. Make sure to inherit from "
"`BaseEstimator` which implements `__sklearn_tags__` (or "
"alternatively define `__sklearn_tags__` but we don't recommend "
"this approach). Note that `BaseEstimator` needs to be on the "
"right side of other Mixins in the inheritance order. The "
"default are now used instead since retrieving tags failed. "
"This warning will be replaced by an error in 1.8.",
category=DeprecationWarning,
)
tags = default_tags(estimator)
else:
raise
return tags
|
Get estimator tags.
:class:`~sklearn.BaseEstimator` provides the estimator tags machinery.
However, if an estimator does not inherit from this base class, we should
fall-back to the default tags.
For scikit-learn built-in estimators, we should still rely on
`self.__sklearn_tags__()`. `get_tags(est)` should be used when we
are not sure where `est` comes from: typically
`get_tags(self.estimator)` where `self` is a meta-estimator, or in
the common checks.
.. versionadded:: 1.6
Parameters
----------
estimator : estimator object
The estimator from which to get the tag.
Returns
-------
tags : :class:`~.sklearn.utils.Tags`
The estimator tags.
|
get_tags
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_tags.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_tags.py
|
BSD-3-Clause
|
def ignore_warnings(obj=None, category=Warning):
"""Context manager and decorator to ignore warnings.
Note: Using this (in both variants) will clear all warnings
from all python modules loaded. In case you need to test
cross-module-warning-logging, this is not your tool of choice.
Parameters
----------
obj : callable, default=None
callable where you want to ignore the warnings.
category : warning class, default=Warning
The category to filter. If Warning, all categories will be muted.
Examples
--------
>>> import warnings
>>> from sklearn.utils._testing import ignore_warnings
>>> with ignore_warnings():
... warnings.warn('buhuhuhu')
>>> def nasty_warn():
... warnings.warn('buhuhuhu')
... print(42)
>>> ignore_warnings(nasty_warn)()
42
"""
if isinstance(obj, type) and issubclass(obj, Warning):
# Avoid common pitfall of passing category as the first positional
# argument which result in the test not being run
warning_name = obj.__name__
raise ValueError(
"'obj' should be a callable where you want to ignore warnings. "
"You passed a warning class instead: 'obj={warning_name}'. "
"If you want to pass a warning class to ignore_warnings, "
"you should use 'category={warning_name}'".format(warning_name=warning_name)
)
elif callable(obj):
return _IgnoreWarnings(category=category)(obj)
else:
return _IgnoreWarnings(category=category)
|
Context manager and decorator to ignore warnings.
Note: Using this (in both variants) will clear all warnings
from all python modules loaded. In case you need to test
cross-module-warning-logging, this is not your tool of choice.
Parameters
----------
obj : callable, default=None
callable where you want to ignore the warnings.
category : warning class, default=Warning
The category to filter. If Warning, all categories will be muted.
Examples
--------
>>> import warnings
>>> from sklearn.utils._testing import ignore_warnings
>>> with ignore_warnings():
... warnings.warn('buhuhuhu')
>>> def nasty_warn():
... warnings.warn('buhuhuhu')
... print(42)
>>> ignore_warnings(nasty_warn)()
42
|
ignore_warnings
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def __call__(self, fn):
"""Decorator to catch and hide warnings without visual nesting."""
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore", self.category)
return fn(*args, **kwargs)
return wrapper
|
Decorator to catch and hide warnings without visual nesting.
|
__call__
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def assert_allclose(
actual, desired, rtol=None, atol=0.0, equal_nan=True, err_msg="", verbose=True
):
"""dtype-aware variant of numpy.testing.assert_allclose
This variant introspects the least precise floating point dtype
in the input argument and automatically sets the relative tolerance
parameter to 1e-4 float32 and use 1e-7 otherwise (typically float64
in scikit-learn).
`atol` is always left to 0. by default. It should be adjusted manually
to an assertion-specific value in case there are null values expected
in `desired`.
The aggregate tolerance is `atol + rtol * abs(desired)`.
Parameters
----------
actual : array_like
Array obtained.
desired : array_like
Array desired.
rtol : float, optional, default=None
Relative tolerance.
If None, it is set based on the provided arrays' dtypes.
atol : float, optional, default=0.
Absolute tolerance.
equal_nan : bool, optional, default=True
If True, NaNs will compare equal.
err_msg : str, optional, default=''
The error message to be printed in case of failure.
verbose : bool, optional, default=True
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
numpy.testing.assert_allclose
Examples
--------
>>> import numpy as np
>>> from sklearn.utils._testing import assert_allclose
>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> assert_allclose(x, y, rtol=1e-5, atol=0)
>>> a = np.full(shape=10, fill_value=1e-5, dtype=np.float32)
>>> assert_allclose(a, 1e-5)
"""
dtypes = []
actual, desired = np.asanyarray(actual), np.asanyarray(desired)
dtypes = [actual.dtype, desired.dtype]
if rtol is None:
rtols = [1e-4 if dtype == np.float32 else 1e-7 for dtype in dtypes]
rtol = max(rtols)
np_assert_allclose(
actual,
desired,
rtol=rtol,
atol=atol,
equal_nan=equal_nan,
err_msg=err_msg,
verbose=verbose,
)
|
dtype-aware variant of numpy.testing.assert_allclose
This variant introspects the least precise floating point dtype
in the input argument and automatically sets the relative tolerance
parameter to 1e-4 float32 and use 1e-7 otherwise (typically float64
in scikit-learn).
`atol` is always left to 0. by default. It should be adjusted manually
to an assertion-specific value in case there are null values expected
in `desired`.
The aggregate tolerance is `atol + rtol * abs(desired)`.
Parameters
----------
actual : array_like
Array obtained.
desired : array_like
Array desired.
rtol : float, optional, default=None
Relative tolerance.
If None, it is set based on the provided arrays' dtypes.
atol : float, optional, default=0.
Absolute tolerance.
equal_nan : bool, optional, default=True
If True, NaNs will compare equal.
err_msg : str, optional, default=''
The error message to be printed in case of failure.
verbose : bool, optional, default=True
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
numpy.testing.assert_allclose
Examples
--------
>>> import numpy as np
>>> from sklearn.utils._testing import assert_allclose
>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> assert_allclose(x, y, rtol=1e-5, atol=0)
>>> a = np.full(shape=10, fill_value=1e-5, dtype=np.float32)
>>> assert_allclose(a, 1e-5)
|
assert_allclose
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=""):
"""Assert allclose for sparse and dense data.
Both x and y need to be either sparse or dense, they
can't be mixed.
Parameters
----------
x : {array-like, sparse matrix}
First array to compare.
y : {array-like, sparse matrix}
Second array to compare.
rtol : float, default=1e-07
relative tolerance; see numpy.allclose.
atol : float, default=1e-9
absolute tolerance; see numpy.allclose. Note that the default here is
more tolerant than the default for numpy.testing.assert_allclose, where
atol=0.
err_msg : str, default=''
Error message to raise.
"""
if sp.sparse.issparse(x) and sp.sparse.issparse(y):
x = x.tocsr()
y = y.tocsr()
x.sum_duplicates()
y.sum_duplicates()
assert_array_equal(x.indices, y.indices, err_msg=err_msg)
assert_array_equal(x.indptr, y.indptr, err_msg=err_msg)
assert_allclose(x.data, y.data, rtol=rtol, atol=atol, err_msg=err_msg)
elif not sp.sparse.issparse(x) and not sp.sparse.issparse(y):
# both dense
assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg)
else:
raise ValueError(
"Can only compare two sparse matrices, not a sparse matrix and an array."
)
|
Assert allclose for sparse and dense data.
Both x and y need to be either sparse or dense, they
can't be mixed.
Parameters
----------
x : {array-like, sparse matrix}
First array to compare.
y : {array-like, sparse matrix}
Second array to compare.
rtol : float, default=1e-07
relative tolerance; see numpy.allclose.
atol : float, default=1e-9
absolute tolerance; see numpy.allclose. Note that the default here is
more tolerant than the default for numpy.testing.assert_allclose, where
atol=0.
err_msg : str, default=''
Error message to raise.
|
assert_allclose_dense_sparse
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def _delete_folder(folder_path, warn=False):
"""Utility function to cleanup a temporary folder if still existing.
Copy from joblib.pool (for independence).
"""
try:
if os.path.exists(folder_path):
# This can fail under windows,
# but will succeed when called by atexit
shutil.rmtree(folder_path)
except OSError:
if warn:
warnings.warn("Could not delete temporary folder %s" % folder_path)
|
Utility function to cleanup a temporary folder if still existing.
Copy from joblib.pool (for independence).
|
_delete_folder
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def create_memmap_backed_data(data, mmap_mode="r", return_folder=False):
"""
Parameters
----------
data
mmap_mode : str, default='r'
return_folder : bool, default=False
"""
temp_folder = tempfile.mkdtemp(prefix="sklearn_testing_")
atexit.register(functools.partial(_delete_folder, temp_folder, warn=True))
filename = op.join(temp_folder, "data.pkl")
joblib.dump(data, filename)
memmap_backed_data = joblib.load(filename, mmap_mode=mmap_mode)
result = (
memmap_backed_data if not return_folder else (memmap_backed_data, temp_folder)
)
return result
|
Parameters
----------
data
mmap_mode : str, default='r'
return_folder : bool, default=False
|
create_memmap_backed_data
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def _get_func_name(func):
"""Get function full name.
Parameters
----------
func : callable
The function object.
Returns
-------
name : str
The function name.
"""
parts = []
module = inspect.getmodule(func)
if module:
parts.append(module.__name__)
qualname = func.__qualname__
if qualname != func.__name__:
parts.append(qualname[: qualname.find(".")])
parts.append(func.__name__)
return ".".join(parts)
|
Get function full name.
Parameters
----------
func : callable
The function object.
Returns
-------
name : str
The function name.
|
_get_func_name
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def check_docstring_parameters(func, doc=None, ignore=None):
"""Helper to check docstring.
Parameters
----------
func : callable
The function object to test.
doc : str, default=None
Docstring if it is passed manually to the test.
ignore : list, default=None
Parameters to ignore.
Returns
-------
incorrect : list
A list of string describing the incorrect results.
"""
from numpydoc import docscrape
incorrect = []
ignore = [] if ignore is None else ignore
func_name = _get_func_name(func)
if not func_name.startswith("sklearn.") or func_name.startswith(
"sklearn.externals"
):
return incorrect
# Don't check docstring for property-functions
if inspect.isdatadescriptor(func):
return incorrect
# Don't check docstring for setup / teardown pytest functions
if func_name.split(".")[-1] in ("setup_module", "teardown_module"):
return incorrect
# Dont check estimator_checks module
if func_name.split(".")[2] == "estimator_checks":
return incorrect
# Get the arguments from the function signature
param_signature = list(filter(lambda x: x not in ignore, _get_args(func)))
# drop self
if len(param_signature) > 0 and param_signature[0] == "self":
param_signature.remove("self")
# Analyze function's docstring
if doc is None:
records = []
with warnings.catch_warnings(record=True):
warnings.simplefilter("error", UserWarning)
try:
doc = docscrape.FunctionDoc(func)
except UserWarning as exp:
if "potentially wrong underline length" in str(exp):
# Catch warning raised as of numpydoc 1.2 when
# the underline length for a section of a docstring
# is not consistent.
message = str(exp).split("\n")[:3]
incorrect += [f"In function: {func_name}"] + message
return incorrect
records.append(str(exp))
except Exception as exp:
incorrect += [func_name + " parsing error: " + str(exp)]
return incorrect
if len(records):
raise RuntimeError("Error for %s:\n%s" % (func_name, records[0]))
param_docs = []
for name, type_definition, param_doc in doc["Parameters"]:
# Type hints are empty only if parameter name ended with :
if not type_definition.strip():
if ":" in name and name[: name.index(":")][-1:].strip():
incorrect += [
func_name
+ " There was no space between the param name and colon (%r)" % name
]
elif name.rstrip().endswith(":"):
incorrect += [
func_name
+ " Parameter %r has an empty type spec. Remove the colon"
% (name.lstrip())
]
# Create a list of parameters to compare with the parameters gotten
# from the func signature
if "*" not in name:
param_docs.append(name.split(":")[0].strip("` "))
# If one of the docstring's parameters had an error then return that
# incorrect message
if len(incorrect) > 0:
return incorrect
# Remove the parameters that should be ignored from list
param_docs = list(filter(lambda x: x not in ignore, param_docs))
# The following is derived from pytest, Copyright (c) 2004-2017 Holger
# Krekel and others, Licensed under MIT License. See
# https://github.com/pytest-dev/pytest
message = []
for i in range(min(len(param_docs), len(param_signature))):
if param_signature[i] != param_docs[i]:
message += [
"There's a parameter name mismatch in function"
" docstring w.r.t. function signature, at index %s"
" diff: %r != %r" % (i, param_signature[i], param_docs[i])
]
break
if len(param_signature) > len(param_docs):
message += [
"Parameters in function docstring have less items w.r.t."
" function signature, first missing item: %s"
% param_signature[len(param_docs)]
]
elif len(param_signature) < len(param_docs):
message += [
"Parameters in function docstring have more items w.r.t."
" function signature, first extra item: %s"
% param_docs[len(param_signature)]
]
# If there wasn't any difference in the parameters themselves between
# docstring and signature including having the same length then return
# empty list
if len(message) == 0:
return []
import difflib
import pprint
param_docs_formatted = pprint.pformat(param_docs).splitlines()
param_signature_formatted = pprint.pformat(param_signature).splitlines()
message += ["Full diff:"]
message.extend(
line.strip()
for line in difflib.ndiff(param_signature_formatted, param_docs_formatted)
)
incorrect.extend(message)
# Prepend function name
incorrect = ["In function: " + func_name] + incorrect
return incorrect
|
Helper to check docstring.
Parameters
----------
func : callable
The function object to test.
doc : str, default=None
Docstring if it is passed manually to the test.
ignore : list, default=None
Parameters to ignore.
Returns
-------
incorrect : list
A list of string describing the incorrect results.
|
check_docstring_parameters
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def _check_item_included(item_name, args):
"""Helper to check if item should be included in checking."""
if args.include is not True and item_name not in args.include:
return False
if args.exclude is not None and item_name in args.exclude:
return False
return True
|
Helper to check if item should be included in checking.
|
_check_item_included
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def _get_diff_msg(docstrings_grouped):
"""Get message showing the difference between type/desc docstrings of all objects.
`docstrings_grouped` keys should be the type/desc docstrings and values are a list
of objects with that docstring. Objects with the same type/desc docstring are
thus grouped together.
"""
msg_diff = ""
ref_str = ""
ref_group = []
for docstring, group in docstrings_grouped.items():
if not ref_str and not ref_group:
ref_str += docstring
ref_group.extend(group)
diff = list(
context_diff(
ref_str.split(),
docstring.split(),
fromfile=str(ref_group),
tofile=str(group),
n=8,
)
)
# Add header
msg_diff += "".join((diff[:3]))
# Group consecutive 'diff' words to shorten error message
for start, group in groupby(diff[3:], key=_diff_key):
if start is None:
msg_diff += "\n" + "\n".join(group)
else:
msg_diff += "\n" + start + " ".join(word[2:] for word in group)
# Add new lines at end of diff, to separate comparisons
msg_diff += "\n\n"
return msg_diff
|
Get message showing the difference between type/desc docstrings of all objects.
`docstrings_grouped` keys should be the type/desc docstrings and values are a list
of objects with that docstring. Objects with the same type/desc docstring are
thus grouped together.
|
_get_diff_msg
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def _check_consistency_items(
items_docs,
type_or_desc,
section,
n_objects,
descr_regex_pattern="",
ignore_types=tuple(),
):
"""Helper to check docstring consistency of all `items_docs`.
If item is not present in all objects, checking is skipped and warning raised.
If `regex` provided, match descriptions to all descriptions.
Parameters
----------
items_doc : dict of dict of str
Dictionary where the key is the string type or description, value is
a dictionary where the key is "type description" or "description"
and the value is a list of object names with the same string type or
description.
type_or_desc : {"type description", "description"}
Whether to check type description or description between objects.
section : {"Parameters", "Attributes", "Returns"}
Name of the section type.
n_objects : int
Total number of objects.
descr_regex_pattern : str, default=""
Regex pattern to match for description of all objects.
Ignored when `type_or_desc="type description".
ignore_types : tuple of str, default=()
Tuple of parameter/attribute/return names for which type description
matching is ignored. Ignored when `type_or_desc="description".
"""
skipped = []
for item_name, docstrings_grouped in items_docs.items():
# If item not found in all objects, skip
if sum([len(objs) for objs in docstrings_grouped.values()]) < n_objects:
skipped.append(item_name)
# If regex provided, match to all descriptions
elif type_or_desc == "description" and descr_regex_pattern:
not_matched = []
for docstring, group in docstrings_grouped.items():
if not re.search(descr_regex_pattern, docstring):
not_matched.extend(group)
if not_matched:
msg = textwrap.fill(
f"The description of {section[:-1]} '{item_name}' in {not_matched}"
f" does not match 'descr_regex_pattern': {descr_regex_pattern} "
)
raise AssertionError(msg)
# Skip type checking for items in `ignore_types`
elif type_or_desc == "type specification" and item_name in ignore_types:
continue
# Otherwise, if more than one key, docstrings not consistent between objects
elif len(docstrings_grouped.keys()) > 1:
msg_diff = _get_diff_msg(docstrings_grouped)
obj_groups = " and ".join(
str(group) for group in docstrings_grouped.values()
)
msg = textwrap.fill(
f"The {type_or_desc} of {section[:-1]} '{item_name}' is inconsistent "
f"between {obj_groups}:"
)
msg += msg_diff
raise AssertionError(msg)
if skipped:
warnings.warn(
f"Checking was skipped for {section}: {skipped} as they were "
"not found in all objects."
)
|
Helper to check docstring consistency of all `items_docs`.
If item is not present in all objects, checking is skipped and warning raised.
If `regex` provided, match descriptions to all descriptions.
Parameters
----------
items_doc : dict of dict of str
Dictionary where the key is the string type or description, value is
a dictionary where the key is "type description" or "description"
and the value is a list of object names with the same string type or
description.
type_or_desc : {"type description", "description"}
Whether to check type description or description between objects.
section : {"Parameters", "Attributes", "Returns"}
Name of the section type.
n_objects : int
Total number of objects.
descr_regex_pattern : str, default=""
Regex pattern to match for description of all objects.
Ignored when `type_or_desc="type description".
ignore_types : tuple of str, default=()
Tuple of parameter/attribute/return names for which type description
matching is ignored. Ignored when `type_or_desc="description".
|
_check_consistency_items
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def assert_docstring_consistency(
objects,
include_params=False,
exclude_params=None,
include_attrs=False,
exclude_attrs=None,
include_returns=False,
exclude_returns=None,
descr_regex_pattern=None,
ignore_types=tuple(),
):
r"""Check consistency between docstring parameters/attributes/returns of objects.
Checks if parameters/attributes/returns have the same type specification and
description (ignoring whitespace) across `objects`. Intended to be used for
related classes/functions/data descriptors.
Entries that do not appear across all `objects` are ignored.
Parameters
----------
objects : list of {classes, functions, data descriptors}
Objects to check.
Objects may be classes, functions or data descriptors with docstrings that
can be parsed by numpydoc.
include_params : list of str or bool, default=False
List of parameters to be included. If True, all parameters are included,
if False, checking is skipped for parameters.
Can only be set if `exclude_params` is None.
exclude_params : list of str or None, default=None
List of parameters to be excluded. If None, no parameters are excluded.
Can only be set if `include_params` is True.
include_attrs : list of str or bool, default=False
List of attributes to be included. If True, all attributes are included,
if False, checking is skipped for attributes.
Can only be set if `exclude_attrs` is None.
exclude_attrs : list of str or None, default=None
List of attributes to be excluded. If None, no attributes are excluded.
Can only be set if `include_attrs` is True.
include_returns : list of str or bool, default=False
List of returns to be included. If True, all returns are included,
if False, checking is skipped for returns.
Can only be set if `exclude_returns` is None.
exclude_returns : list of str or None, default=None
List of returns to be excluded. If None, no returns are excluded.
Can only be set if `include_returns` is True.
descr_regex_pattern : str, default=None
Regular expression to match to all descriptions of included
parameters/attributes/returns. If None, will revert to default behavior
of comparing descriptions between objects.
ignore_types : tuple of str, default=tuple()
Tuple of parameter/attribute/return names to exclude from type description
matching between objects.
Examples
--------
>>> from sklearn.metrics import (accuracy_score, classification_report,
... mean_absolute_error, mean_squared_error, median_absolute_error)
>>> from sklearn.utils._testing import assert_docstring_consistency
... # doctest: +SKIP
>>> assert_docstring_consistency([mean_absolute_error, mean_squared_error],
... include_params=['y_true', 'y_pred', 'sample_weight']) # doctest: +SKIP
>>> assert_docstring_consistency([median_absolute_error, mean_squared_error],
... include_params=True) # doctest: +SKIP
>>> assert_docstring_consistency([accuracy_score, classification_report],
... include_params=["y_true"],
... descr_regex_pattern=r"Ground truth \(correct\) (labels|target values)")
... # doctest: +SKIP
"""
from numpydoc.docscrape import NumpyDocString
Args = namedtuple("args", ["include", "exclude", "arg_name"])
def _create_args(include, exclude, arg_name, section_name):
if exclude and include is not True:
raise TypeError(
f"The 'exclude_{arg_name}' argument can be set only when the "
f"'include_{arg_name}' argument is True."
)
if include is False:
return {}
return {section_name: Args(include, exclude, arg_name)}
section_args = {
**_create_args(include_params, exclude_params, "params", "Parameters"),
**_create_args(include_attrs, exclude_attrs, "attrs", "Attributes"),
**_create_args(include_returns, exclude_returns, "returns", "Returns"),
}
objects_doc = dict()
for obj in objects:
if (
inspect.isdatadescriptor(obj)
or inspect.isfunction(obj)
or inspect.isclass(obj)
):
objects_doc[obj.__name__] = NumpyDocString(inspect.getdoc(obj))
else:
raise TypeError(
"All 'objects' must be one of: function, class or descriptor, "
f"got a: {type(obj)}."
)
n_objects = len(objects)
for section, args in section_args.items():
type_items = defaultdict(lambda: defaultdict(list))
desc_items = defaultdict(lambda: defaultdict(list))
for obj_name, obj_doc in objects_doc.items():
for item_name, type_def, desc in obj_doc[section]:
if _check_item_included(item_name, args):
# Normalize white space
type_def = " ".join(type_def.strip().split())
desc = " ".join(chain.from_iterable(line.split() for line in desc))
# Use string type/desc as key, to group consistent objs together
type_items[item_name][type_def].append(obj_name)
desc_items[item_name][desc].append(obj_name)
_check_consistency_items(
type_items,
"type specification",
section,
n_objects,
ignore_types=ignore_types,
)
_check_consistency_items(
desc_items,
"description",
section,
n_objects,
descr_regex_pattern=descr_regex_pattern,
)
|
Check consistency between docstring parameters/attributes/returns of objects.
Checks if parameters/attributes/returns have the same type specification and
description (ignoring whitespace) across `objects`. Intended to be used for
related classes/functions/data descriptors.
Entries that do not appear across all `objects` are ignored.
Parameters
----------
objects : list of {classes, functions, data descriptors}
Objects to check.
Objects may be classes, functions or data descriptors with docstrings that
can be parsed by numpydoc.
include_params : list of str or bool, default=False
List of parameters to be included. If True, all parameters are included,
if False, checking is skipped for parameters.
Can only be set if `exclude_params` is None.
exclude_params : list of str or None, default=None
List of parameters to be excluded. If None, no parameters are excluded.
Can only be set if `include_params` is True.
include_attrs : list of str or bool, default=False
List of attributes to be included. If True, all attributes are included,
if False, checking is skipped for attributes.
Can only be set if `exclude_attrs` is None.
exclude_attrs : list of str or None, default=None
List of attributes to be excluded. If None, no attributes are excluded.
Can only be set if `include_attrs` is True.
include_returns : list of str or bool, default=False
List of returns to be included. If True, all returns are included,
if False, checking is skipped for returns.
Can only be set if `exclude_returns` is None.
exclude_returns : list of str or None, default=None
List of returns to be excluded. If None, no returns are excluded.
Can only be set if `include_returns` is True.
descr_regex_pattern : str, default=None
Regular expression to match to all descriptions of included
parameters/attributes/returns. If None, will revert to default behavior
of comparing descriptions between objects.
ignore_types : tuple of str, default=tuple()
Tuple of parameter/attribute/return names to exclude from type description
matching between objects.
Examples
--------
>>> from sklearn.metrics import (accuracy_score, classification_report,
... mean_absolute_error, mean_squared_error, median_absolute_error)
>>> from sklearn.utils._testing import assert_docstring_consistency
... # doctest: +SKIP
>>> assert_docstring_consistency([mean_absolute_error, mean_squared_error],
... include_params=['y_true', 'y_pred', 'sample_weight']) # doctest: +SKIP
>>> assert_docstring_consistency([median_absolute_error, mean_squared_error],
... include_params=True) # doctest: +SKIP
>>> assert_docstring_consistency([accuracy_score, classification_report],
... include_params=["y_true"],
... descr_regex_pattern=r"Ground truth \(correct\) (labels|target values)")
... # doctest: +SKIP
|
assert_docstring_consistency
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def assert_run_python_script_without_output(source_code, pattern=".+", timeout=60):
"""Utility to check assertions in an independent Python subprocess.
The script provided in the source code should return 0 and the stdtout +
stderr should not match the pattern `pattern`.
This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle
Parameters
----------
source_code : str
The Python source code to execute.
pattern : str
Pattern that the stdout + stderr should not match. By default, unless
stdout + stderr are both empty, an error will be raised.
timeout : int, default=60
Time in seconds before timeout.
"""
fd, source_file = tempfile.mkstemp(suffix="_src_test_sklearn.py")
os.close(fd)
try:
with open(source_file, "wb") as f:
f.write(source_code.encode("utf-8"))
cmd = [sys.executable, source_file]
cwd = op.normpath(op.join(op.dirname(sklearn.__file__), ".."))
env = os.environ.copy()
try:
env["PYTHONPATH"] = os.pathsep.join([cwd, env["PYTHONPATH"]])
except KeyError:
env["PYTHONPATH"] = cwd
kwargs = {"cwd": cwd, "stderr": STDOUT, "env": env}
# If coverage is running, pass the config file to the subprocess
coverage_rc = os.environ.get("COVERAGE_PROCESS_START")
if coverage_rc:
kwargs["env"]["COVERAGE_PROCESS_START"] = coverage_rc
kwargs["timeout"] = timeout
try:
try:
out = check_output(cmd, **kwargs)
except CalledProcessError as e:
raise RuntimeError(
"script errored with output:\n%s" % e.output.decode("utf-8")
)
out = out.decode("utf-8")
if re.search(pattern, out):
if pattern == ".+":
expectation = "Expected no output"
else:
expectation = f"The output was not supposed to match {pattern!r}"
message = f"{expectation}, got the following output instead: {out!r}"
raise AssertionError(message)
except TimeoutExpired as e:
raise RuntimeError(
"script timeout, output so far:\n%s" % e.output.decode("utf-8")
)
finally:
os.unlink(source_file)
|
Utility to check assertions in an independent Python subprocess.
The script provided in the source code should return 0 and the stdtout +
stderr should not match the pattern `pattern`.
This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle
Parameters
----------
source_code : str
The Python source code to execute.
pattern : str
Pattern that the stdout + stderr should not match. By default, unless
stdout + stderr are both empty, an error will be raised.
timeout : int, default=60
Time in seconds before timeout.
|
assert_run_python_script_without_output
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def _convert_container(
container,
constructor_name,
columns_name=None,
dtype=None,
minversion=None,
categorical_feature_names=None,
):
"""Convert a given container to a specific array-like with a dtype.
Parameters
----------
container : array-like
The container to convert.
constructor_name : {"list", "tuple", "array", "sparse", "dataframe", \
"series", "index", "slice", "sparse_csr", "sparse_csc", \
"sparse_csr_array", "sparse_csc_array", "pyarrow", "polars", \
"polars_series"}
The type of the returned container.
columns_name : index or array-like, default=None
For pandas container supporting `columns_names`, it will affect
specific names.
dtype : dtype, default=None
Force the dtype of the container. Does not apply to `"slice"`
container.
minversion : str, default=None
Minimum version for package to install.
categorical_feature_names : list of str, default=None
List of column names to cast to categorical dtype.
Returns
-------
converted_container
"""
if constructor_name == "list":
if dtype is None:
return list(container)
else:
return np.asarray(container, dtype=dtype).tolist()
elif constructor_name == "tuple":
if dtype is None:
return tuple(container)
else:
return tuple(np.asarray(container, dtype=dtype).tolist())
elif constructor_name == "array":
return np.asarray(container, dtype=dtype)
elif constructor_name in ("pandas", "dataframe"):
pd = pytest.importorskip("pandas", minversion=minversion)
result = pd.DataFrame(container, columns=columns_name, dtype=dtype, copy=False)
if categorical_feature_names is not None:
for col_name in categorical_feature_names:
result[col_name] = result[col_name].astype("category")
return result
elif constructor_name == "pyarrow":
pa = pytest.importorskip("pyarrow", minversion=minversion)
array = np.asarray(container)
array = array[:, None] if array.ndim == 1 else array
if columns_name is None:
columns_name = [f"col{i}" for i in range(array.shape[1])]
data = {name: array[:, i] for i, name in enumerate(columns_name)}
result = pa.Table.from_pydict(data)
if categorical_feature_names is not None:
for col_idx, col_name in enumerate(result.column_names):
if col_name in categorical_feature_names:
result = result.set_column(
col_idx, col_name, result.column(col_name).dictionary_encode()
)
return result
elif constructor_name == "polars":
pl = pytest.importorskip("polars", minversion=minversion)
result = pl.DataFrame(container, schema=columns_name, orient="row")
if categorical_feature_names is not None:
for col_name in categorical_feature_names:
result = result.with_columns(pl.col(col_name).cast(pl.Categorical))
return result
elif constructor_name == "series":
pd = pytest.importorskip("pandas", minversion=minversion)
return pd.Series(container, dtype=dtype)
elif constructor_name == "pyarrow_array":
pa = pytest.importorskip("pyarrow", minversion=minversion)
return pa.array(container)
elif constructor_name == "polars_series":
pl = pytest.importorskip("polars", minversion=minversion)
return pl.Series(values=container)
elif constructor_name == "index":
pd = pytest.importorskip("pandas", minversion=minversion)
return pd.Index(container, dtype=dtype)
elif constructor_name == "slice":
return slice(container[0], container[1])
elif "sparse" in constructor_name:
if not sp.sparse.issparse(container):
# For scipy >= 1.13, sparse array constructed from 1d array may be
# 1d or raise an exception. To avoid this, we make sure that the
# input container is 2d. For more details, see
# https://github.com/scipy/scipy/pull/18530#issuecomment-1878005149
container = np.atleast_2d(container)
if constructor_name in ("sparse", "sparse_csr"):
# sparse and sparse_csr are equivalent for legacy reasons
return sp.sparse.csr_matrix(container, dtype=dtype)
elif constructor_name == "sparse_csr_array":
return sp.sparse.csr_array(container, dtype=dtype)
elif constructor_name == "sparse_csc":
return sp.sparse.csc_matrix(container, dtype=dtype)
elif constructor_name == "sparse_csc_array":
return sp.sparse.csc_array(container, dtype=dtype)
|
Convert a given container to a specific array-like with a dtype.
Parameters
----------
container : array-like
The container to convert.
constructor_name : {"list", "tuple", "array", "sparse", "dataframe", "series", "index", "slice", "sparse_csr", "sparse_csc", "sparse_csr_array", "sparse_csc_array", "pyarrow", "polars", "polars_series"}
The type of the returned container.
columns_name : index or array-like, default=None
For pandas container supporting `columns_names`, it will affect
specific names.
dtype : dtype, default=None
Force the dtype of the container. Does not apply to `"slice"`
container.
minversion : str, default=None
Minimum version for package to install.
categorical_feature_names : list of str, default=None
List of column names to cast to categorical dtype.
Returns
-------
converted_container
|
_convert_container
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_testing.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_testing.py
|
BSD-3-Clause
|
def _attach_unique(y):
"""Attach unique values of y to y and return the result.
The result is a view of y, and the metadata (unique) is not attached to y.
"""
if not isinstance(y, np.ndarray):
return y
try:
# avoid recalculating unique in nested calls.
if "unique" in y.dtype.metadata:
return y
except (AttributeError, TypeError):
pass
unique = np.unique(y)
unique_dtype = np.dtype(y.dtype, metadata={"unique": unique})
return y.view(dtype=unique_dtype)
|
Attach unique values of y to y and return the result.
The result is a view of y, and the metadata (unique) is not attached to y.
|
_attach_unique
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_unique.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_unique.py
|
BSD-3-Clause
|
def attach_unique(*ys, return_tuple=False):
"""Attach unique values of ys to ys and return the results.
The result is a view of y, and the metadata (unique) is not attached to y.
IMPORTANT: The output of this function should NEVER be returned in functions.
This is to avoid this pattern:
.. code:: python
y = np.array([1, 2, 3])
y = attach_unique(y)
y[1] = -1
# now np.unique(y) will be different from cached_unique(y)
Parameters
----------
*ys : sequence of array-like
Input data arrays.
return_tuple : bool, default=False
If True, always return a tuple even if there is only one array.
Returns
-------
ys : tuple of array-like or array-like
Input data with unique values attached.
"""
res = tuple(_attach_unique(y) for y in ys)
if len(res) == 1 and not return_tuple:
return res[0]
return res
|
Attach unique values of ys to ys and return the results.
The result is a view of y, and the metadata (unique) is not attached to y.
IMPORTANT: The output of this function should NEVER be returned in functions.
This is to avoid this pattern:
.. code:: python
y = np.array([1, 2, 3])
y = attach_unique(y)
y[1] = -1
# now np.unique(y) will be different from cached_unique(y)
Parameters
----------
*ys : sequence of array-like
Input data arrays.
return_tuple : bool, default=False
If True, always return a tuple even if there is only one array.
Returns
-------
ys : tuple of array-like or array-like
Input data with unique values attached.
|
attach_unique
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_unique.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_unique.py
|
BSD-3-Clause
|
def _cached_unique(y, xp=None):
"""Return the unique values of y.
Use the cached values from dtype.metadata if present.
This function does NOT cache the values in y, i.e. it doesn't change y.
Call `attach_unique` to attach the unique values to y.
"""
try:
if y.dtype.metadata is not None and "unique" in y.dtype.metadata:
return y.dtype.metadata["unique"]
except AttributeError:
# in case y is not a numpy array
pass
xp, _ = get_namespace(y, xp=xp)
return xp.unique_values(y)
|
Return the unique values of y.
Use the cached values from dtype.metadata if present.
This function does NOT cache the values in y, i.e. it doesn't change y.
Call `attach_unique` to attach the unique values to y.
|
_cached_unique
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_unique.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_unique.py
|
BSD-3-Clause
|
def cached_unique(*ys, xp=None):
"""Return the unique values of ys.
Use the cached values from dtype.metadata if present.
This function does NOT cache the values in y, i.e. it doesn't change y.
Call `attach_unique` to attach the unique values to y.
Parameters
----------
*ys : sequence of array-like
Input data arrays.
xp : module, default=None
Precomputed array namespace module. When passed, typically from a caller
that has already performed inspection of its own inputs, skips array
namespace inspection.
Returns
-------
res : tuple of array-like or array-like
Unique values of ys.
"""
res = tuple(_cached_unique(y, xp=xp) for y in ys)
if len(res) == 1:
return res[0]
return res
|
Return the unique values of ys.
Use the cached values from dtype.metadata if present.
This function does NOT cache the values in y, i.e. it doesn't change y.
Call `attach_unique` to attach the unique values to y.
Parameters
----------
*ys : sequence of array-like
Input data arrays.
xp : module, default=None
Precomputed array namespace module. When passed, typically from a caller
that has already performed inspection of its own inputs, skips array
namespace inspection.
Returns
-------
res : tuple of array-like or array-like
Unique values of ys.
|
cached_unique
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_unique.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_unique.py
|
BSD-3-Clause
|
def _message_with_time(source, message, time):
"""Create one line message for logging purposes.
Parameters
----------
source : str
String indicating the source or the reference of the message.
message : str
Short message.
time : int
Time in seconds.
"""
start_message = "[%s] " % source
# adapted from joblib.logger.short_format_time without the Windows -.1s
# adjustment
if time > 60:
time_str = "%4.1fmin" % (time / 60)
else:
time_str = " %5.1fs" % time
end_message = " %s, total=%s" % (message, time_str)
dots_len = 70 - len(start_message) - len(end_message)
return "%s%s%s" % (start_message, dots_len * ".", end_message)
|
Create one line message for logging purposes.
Parameters
----------
source : str
String indicating the source or the reference of the message.
message : str
Short message.
time : int
Time in seconds.
|
_message_with_time
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_user_interface.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_user_interface.py
|
BSD-3-Clause
|
def _print_elapsed_time(source, message=None):
"""Log elapsed time to stdout when the context is exited.
Parameters
----------
source : str
String indicating the source or the reference of the message.
message : str, default=None
Short message. If None, nothing will be printed.
Returns
-------
context_manager
Prints elapsed time upon exit if verbose.
"""
if message is None:
yield
else:
start = timeit.default_timer()
yield
print(_message_with_time(source, message, timeit.default_timer() - start))
|
Log elapsed time to stdout when the context is exited.
Parameters
----------
source : str
String indicating the source or the reference of the message.
message : str, default=None
Short message. If None, nothing will be printed.
Returns
-------
context_manager
Prints elapsed time upon exit if verbose.
|
_print_elapsed_time
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/_user_interface.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/_user_interface.py
|
BSD-3-Clause
|
def test_get_namespace_ndarray_creation_device():
"""Check expected behavior with device and creation functions."""
X = numpy.asarray([1, 2, 3])
xp_out, _ = get_namespace(X)
full_array = xp_out.full(10, fill_value=2.0, device="cpu")
assert_allclose(full_array, [2.0] * 10)
with pytest.raises(ValueError, match="Unsupported device"):
xp_out.zeros(10, device="cuda")
|
Check expected behavior with device and creation functions.
|
test_get_namespace_ndarray_creation_device
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_array_api.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_array_api.py
|
BSD-3-Clause
|
def test_asarray_with_order(array_api):
"""Test _asarray_with_order passes along order for NumPy arrays."""
xp = pytest.importorskip(array_api)
X = xp.asarray([1.2, 3.4, 5.1])
X_new = _asarray_with_order(X, order="F", xp=xp)
X_new_np = numpy.asarray(X_new)
assert X_new_np.flags["F_CONTIGUOUS"]
|
Test _asarray_with_order passes along order for NumPy arrays.
|
test_asarray_with_order
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_array_api.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_array_api.py
|
BSD-3-Clause
|
def test_convert_estimator_to_array_api():
"""Convert estimator attributes to ArrayAPI arrays."""
xp = pytest.importorskip("array_api_strict")
X_np = numpy.asarray([[1.3, 4.5]])
est = SimpleEstimator().fit(X_np)
new_est = _estimator_with_converted_arrays(est, lambda array: xp.asarray(array))
assert hasattr(new_est.X_, "__array_namespace__")
|
Convert estimator attributes to ArrayAPI arrays.
|
test_convert_estimator_to_array_api
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_array_api.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_array_api.py
|
BSD-3-Clause
|
def test_bunch_attribute_deprecation():
"""Check that bunch raises deprecation message with `__getattr__`."""
bunch = Bunch()
values = np.asarray([1, 2, 3])
msg = (
"Key: 'values', is deprecated in 1.3 and will be "
"removed in 1.5. Please use 'grid_values' instead"
)
bunch._set_deprecated(
values, new_key="grid_values", deprecated_key="values", warning_message=msg
)
with warnings.catch_warnings():
# Does not warn for "grid_values"
warnings.simplefilter("error")
v = bunch["grid_values"]
assert v is values
with pytest.warns(FutureWarning, match=msg):
# Warns for "values"
v = bunch["values"]
assert v is values
|
Check that bunch raises deprecation message with `__getattr__`.
|
test_bunch_attribute_deprecation
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_bunch.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_bunch.py
|
BSD-3-Clause
|
def test_get_chunk_n_rows_warns():
"""Check that warning is raised when working_memory is too low."""
row_bytes = 1024 * 1024 + 1
max_n_rows = None
working_memory = 1
expected = 1
warn_msg = (
"Could not adhere to working_memory config. Currently 1MiB, 2MiB required."
)
with pytest.warns(UserWarning, match=warn_msg):
actual = get_chunk_n_rows(
row_bytes=row_bytes,
max_n_rows=max_n_rows,
working_memory=working_memory,
)
assert actual == expected
assert type(actual) is type(expected)
with config_context(working_memory=working_memory):
with pytest.warns(UserWarning, match=warn_msg):
actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows)
assert actual == expected
assert type(actual) is type(expected)
|
Check that warning is raised when working_memory is too low.
|
test_get_chunk_n_rows_warns
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_chunking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_chunking.py
|
BSD-3-Clause
|
def test_class_weight_does_not_contains_more_classes():
"""Check that class_weight can contain more labels than in y.
Non-regression test for #22413
"""
tree = DecisionTreeClassifier(class_weight={0: 1, 1: 10, 2: 20})
# Does not raise
tree.fit([[0, 0, 1], [1, 0, 1], [1, 2, 0]], [0, 0, 1])
|
Check that class_weight can contain more labels than in y.
Non-regression test for #22413
|
test_class_weight_does_not_contains_more_classes
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_class_weight.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_class_weight.py
|
BSD-3-Clause
|
def test_compute_sample_weight_sparse(csc_container):
"""Check that we can compute weight for sparse `y`."""
y = csc_container(np.asarray([[0], [1], [1]]))
sample_weight = compute_sample_weight("balanced", y)
assert_allclose(sample_weight, [1.5, 0.75, 0.75])
|
Check that we can compute weight for sparse `y`.
|
test_compute_sample_weight_sparse
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_class_weight.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_class_weight.py
|
BSD-3-Clause
|
def test_check_estimator_with_class_removed():
"""Test that passing a class instead of an instance fails."""
msg = "Passing a class was deprecated"
with raises(TypeError, match=msg):
check_estimator(LogisticRegression)
|
Test that passing a class instead of an instance fails.
|
test_check_estimator_with_class_removed
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_mutable_default_params():
"""Test that constructor cannot have mutable default parameters."""
msg = (
"Parameter 'p' of estimator 'HasMutableParameters' is of type "
"object which is not allowed"
)
# check that the "default_constructible" test checks for mutable parameters
check_parameters_default_constructible(
"Immutable", HasImmutableParameters()
) # should pass
with raises(AssertionError, match=msg):
check_parameters_default_constructible("Mutable", HasMutableParameters())
|
Test that constructor cannot have mutable default parameters.
|
test_mutable_default_params
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_set_params():
"""Check set_params doesn't fail and sets the right values."""
# check that values returned by get_params match set_params
msg = "get_params result does not match what was passed to set_params"
with raises(AssertionError, match=msg):
check_set_params("test", ModifiesValueInsteadOfRaisingError())
with warnings.catch_warnings(record=True) as records:
check_set_params("test", RaisesErrorInSetParams())
assert UserWarning in [rec.category for rec in records]
with raises(AssertionError, match=msg):
check_set_params("test", ModifiesAnotherValue())
|
Check set_params doesn't fail and sets the right values.
|
test_check_set_params
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_estimator_not_fail_fast():
"""Check the contents of the results returned with on_fail!="raise".
This results should contain details about the observed failures, expected
or not.
"""
check_results = check_estimator(BaseEstimator(), on_fail=None)
assert isinstance(check_results, list)
assert len(check_results) > 0
assert all(
isinstance(item, dict)
and set(item.keys())
== {
"estimator",
"check_name",
"exception",
"status",
"expected_to_fail",
"expected_to_fail_reason",
}
for item in check_results
)
# Some tests are expected to fail, some are expected to pass.
assert any(item["status"] == "failed" for item in check_results)
assert any(item["status"] == "passed" for item in check_results)
|
Check the contents of the results returned with on_fail!="raise".
This results should contain details about the observed failures, expected
or not.
|
test_check_estimator_not_fail_fast
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_estimator_sparse_tag():
"""Test that check_estimator_sparse_tag raises error when sparse tag is
misaligned."""
class EstimatorWithSparseConfig(BaseEstimator):
def __init__(self, tag_sparse, accept_sparse, fit_error=None):
self.tag_sparse = tag_sparse
self.accept_sparse = accept_sparse
self.fit_error = fit_error
def fit(self, X, y=None):
if self.fit_error:
raise self.fit_error
validate_data(self, X, y, accept_sparse=self.accept_sparse)
return self
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = self.tag_sparse
return tags
test_cases = [
{"tag_sparse": True, "accept_sparse": True, "error_type": None},
{"tag_sparse": False, "accept_sparse": False, "error_type": None},
{"tag_sparse": False, "accept_sparse": True, "error_type": AssertionError},
{"tag_sparse": True, "accept_sparse": False, "error_type": AssertionError},
]
for test_case in test_cases:
estimator = EstimatorWithSparseConfig(
test_case["tag_sparse"],
test_case["accept_sparse"],
)
if test_case["error_type"] is None:
check_estimator_sparse_tag(estimator.__class__.__name__, estimator)
else:
with raises(test_case["error_type"]):
check_estimator_sparse_tag(estimator.__class__.__name__, estimator)
# estimator `tag_sparse=accept_sparse=False` fails on sparse data
# but does not raise the appropriate error
for fit_error in [TypeError("unexpected error"), KeyError("other error")]:
estimator = EstimatorWithSparseConfig(False, False, fit_error)
with raises(AssertionError):
check_estimator_sparse_tag(estimator.__class__.__name__, estimator)
|
Test that check_estimator_sparse_tag raises error when sparse tag is
misaligned.
|
test_check_estimator_sparse_tag
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def run_tests_without_pytest():
"""Runs the tests in this file without using pytest."""
main_module = sys.modules["__main__"]
test_functions = [
getattr(main_module, name)
for name in dir(main_module)
if name.startswith("test_")
]
test_cases = [unittest.FunctionTestCase(fn) for fn in test_functions]
suite = unittest.TestSuite()
suite.addTests(test_cases)
runner = unittest.TextTestRunner()
runner.run(suite)
|
Runs the tests in this file without using pytest.
|
run_tests_without_pytest
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_xfail_count_with_no_fast_fail():
"""Test that the right number of xfail warnings are raised when on_fail is "warn".
It also checks the number of raised EstimatorCheckFailedWarning, and checks the
output of check_estimator.
"""
est = NuSVC()
expected_failed_checks = _get_expected_failed_checks(est)
# This is to make sure we test a class that has some expected failures
assert len(expected_failed_checks) > 0
with warnings.catch_warnings(record=True) as records:
logs = check_estimator(
est,
expected_failed_checks=expected_failed_checks,
on_fail="warn",
)
xfail_warns = [w for w in records if w.category != SkipTestWarning]
assert all([rec.category == EstimatorCheckFailedWarning for rec in xfail_warns])
assert len(xfail_warns) == len(expected_failed_checks)
xfailed = [log for log in logs if log["status"] == "xfail"]
assert len(xfailed) == len(expected_failed_checks)
|
Test that the right number of xfail warnings are raised when on_fail is "warn".
It also checks the number of raised EstimatorCheckFailedWarning, and checks the
output of check_estimator.
|
test_xfail_count_with_no_fast_fail
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_estimator_callback():
"""Test that the callback is called with the right arguments."""
call_count = {"xfail": 0, "skipped": 0, "passed": 0, "failed": 0}
def callback(
*,
estimator,
check_name,
exception,
status,
expected_to_fail,
expected_to_fail_reason,
):
assert status in ("xfail", "skipped", "passed", "failed")
nonlocal call_count
call_count[status] += 1
est = NuSVC()
expected_failed_checks = _get_expected_failed_checks(est)
# This is to make sure we test a class that has some expected failures
assert len(expected_failed_checks) > 0
with warnings.catch_warnings(record=True):
check_estimator(
est,
expected_failed_checks=expected_failed_checks,
on_fail=None,
callback=callback,
)
all_checks_count = len(list(estimator_checks_generator(est, legacy=True)))
assert call_count["xfail"] == len(expected_failed_checks)
assert call_count["passed"] > 0
assert call_count["failed"] == 0
assert call_count["skipped"] == (
all_checks_count - call_count["xfail"] - call_count["passed"]
)
|
Test that the callback is called with the right arguments.
|
test_check_estimator_callback
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_outlier_contamination():
"""Check the test for the contamination parameter in the outlier detectors."""
# Without any parameter constraints, the estimator will early exit the test by
# returning None.
class OutlierDetectorWithoutConstraint(OutlierMixin, BaseEstimator):
"""Outlier detector without parameter validation."""
def __init__(self, contamination=0.1):
self.contamination = contamination
def fit(self, X, y=None, sample_weight=None):
return self # pragma: no cover
def predict(self, X, y=None):
return np.ones(X.shape[0])
detector = OutlierDetectorWithoutConstraint()
assert check_outlier_contamination(detector.__class__.__name__, detector) is None
# Now, we check that with the parameter constraints, the test should only be valid
# if an Interval constraint with bound in [0, 1] is provided.
class OutlierDetectorWithConstraint(OutlierDetectorWithoutConstraint):
_parameter_constraints = {"contamination": [StrOptions({"auto"})]}
detector = OutlierDetectorWithConstraint()
err_msg = "contamination constraints should contain a Real Interval constraint."
with raises(AssertionError, match=err_msg):
check_outlier_contamination(detector.__class__.__name__, detector)
# Add a correct interval constraint and check that the test passes.
OutlierDetectorWithConstraint._parameter_constraints["contamination"] = [
Interval(Real, 0, 0.5, closed="right")
]
detector = OutlierDetectorWithConstraint()
check_outlier_contamination(detector.__class__.__name__, detector)
incorrect_intervals = [
Interval(Integral, 0, 1, closed="right"), # not an integral interval
Interval(Real, -1, 1, closed="right"), # lower bound is negative
Interval(Real, 0, 2, closed="right"), # upper bound is greater than 1
Interval(Real, 0, 0.5, closed="left"), # lower bound include 0
]
err_msg = r"contamination constraint should be an interval in \(0, 0.5\]"
for interval in incorrect_intervals:
OutlierDetectorWithConstraint._parameter_constraints["contamination"] = [
interval
]
detector = OutlierDetectorWithConstraint()
with raises(AssertionError, match=err_msg):
check_outlier_contamination(detector.__class__.__name__, detector)
|
Check the test for the contamination parameter in the outlier detectors.
|
test_check_outlier_contamination
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_estimator_cloneable_error():
"""Check that the right error is raised when the estimator is not cloneable."""
class NotCloneable(BaseEstimator):
def __sklearn_clone__(self):
raise NotImplementedError("This estimator is not cloneable.")
estimator = NotCloneable()
msg = "Cloning of .* failed with error"
with raises(AssertionError, match=msg):
check_estimator_cloneable("NotCloneable", estimator)
|
Check that the right error is raised when the estimator is not cloneable.
|
test_check_estimator_cloneable_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_estimator_repr_error():
"""Check that the right error is raised when the estimator does not have a repr."""
class NotRepr(BaseEstimator):
def __repr__(self):
raise NotImplementedError("This estimator does not have a repr.")
estimator = NotRepr()
msg = "Repr of .* failed with error"
with raises(AssertionError, match=msg):
check_estimator_repr("NotRepr", estimator)
|
Check that the right error is raised when the estimator does not have a repr.
|
test_estimator_repr_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_classifier_not_supporting_multiclass():
"""Check that when the estimator has the wrong tags.classifier_tags.multi_class
set, the test fails."""
class BadEstimator(BaseEstimator):
# we don't actually need to define the tag here since we're running the test
# manually, and BaseEstimator defaults to multi_output=False.
def fit(self, X, y):
return self
msg = "The estimator tag `tags.classifier_tags.multi_class` is False"
with raises(AssertionError, match=msg):
check_classifier_not_supporting_multiclass("BadEstimator", BadEstimator())
|
Check that when the estimator has the wrong tags.classifier_tags.multi_class
set, the test fails.
|
test_check_classifier_not_supporting_multiclass
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_estimator_callback_with_fast_fail_error():
"""Check that check_estimator fails correctly with on_fail='raise' and callback."""
with raises(
ValueError, match="callback cannot be provided together with on_fail='raise'"
):
check_estimator(LogisticRegression(), on_fail="raise", callback=lambda: None)
|
Check that check_estimator fails correctly with on_fail='raise' and callback.
|
test_check_estimator_callback_with_fast_fail_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_check_mixin_order():
"""Test that the check raises an error when the mixin order is incorrect."""
class BadEstimator(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
msg = "TransformerMixin comes before/left side of BaseEstimator"
with raises(AssertionError, match=re.escape(msg)):
check_mixin_order("BadEstimator", BadEstimator())
|
Test that the check raises an error when the mixin order is incorrect.
|
test_check_mixin_order
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_estimator_checks.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_estimator_checks.py
|
BSD-3-Clause
|
def test_randomized_eigsh(dtype):
"""Test that `_randomized_eigsh` returns the appropriate components"""
rng = np.random.RandomState(42)
X = np.diag(np.array([1.0, -2.0, 0.0, 3.0], dtype=dtype))
# random rotation that preserves the eigenvalues of X
rand_rot = np.linalg.qr(rng.normal(size=X.shape))[0]
X = rand_rot @ X @ rand_rot.T
# with 'module' selection method, the negative eigenvalue shows up
eigvals, eigvecs = _randomized_eigsh(X, n_components=2, selection="module")
# eigenvalues
assert eigvals.shape == (2,)
assert_array_almost_equal(eigvals, [3.0, -2.0]) # negative eigenvalue here
# eigenvectors
assert eigvecs.shape == (4, 2)
# with 'value' selection method, the negative eigenvalue does not show up
with pytest.raises(NotImplementedError):
_randomized_eigsh(X, n_components=2, selection="value")
|
Test that `_randomized_eigsh` returns the appropriate components
|
test_randomized_eigsh
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_extmath.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_extmath.py
|
BSD-3-Clause
|
def test_randomized_eigsh_compared_to_others(k):
"""Check that `_randomized_eigsh` is similar to other `eigsh`
Tests that for a random PSD matrix, `_randomized_eigsh` provides results
comparable to LAPACK (scipy.linalg.eigh) and ARPACK
(scipy.sparse.linalg.eigsh).
Note: some versions of ARPACK do not support k=n_features.
"""
# make a random PSD matrix
n_features = 200
X = make_sparse_spd_matrix(n_features, random_state=0)
# compare two versions of randomized
# rough and fast
eigvals, eigvecs = _randomized_eigsh(
X, n_components=k, selection="module", n_iter=25, random_state=0
)
# more accurate but slow (TODO find realistic settings here)
eigvals_qr, eigvecs_qr = _randomized_eigsh(
X,
n_components=k,
n_iter=25,
n_oversamples=20,
random_state=0,
power_iteration_normalizer="QR",
selection="module",
)
# with LAPACK
eigvals_lapack, eigvecs_lapack = eigh(
X, subset_by_index=(n_features - k, n_features - 1)
)
indices = eigvals_lapack.argsort()[::-1]
eigvals_lapack = eigvals_lapack[indices]
eigvecs_lapack = eigvecs_lapack[:, indices]
# -- eigenvalues comparison
assert eigvals_lapack.shape == (k,)
# comparison precision
assert_array_almost_equal(eigvals, eigvals_lapack, decimal=6)
assert_array_almost_equal(eigvals_qr, eigvals_lapack, decimal=6)
# -- eigenvectors comparison
assert eigvecs_lapack.shape == (n_features, k)
# flip eigenvectors' sign to enforce deterministic output
dummy_vecs = np.zeros_like(eigvecs).T
eigvecs, _ = svd_flip(eigvecs, dummy_vecs)
eigvecs_qr, _ = svd_flip(eigvecs_qr, dummy_vecs)
eigvecs_lapack, _ = svd_flip(eigvecs_lapack, dummy_vecs)
assert_array_almost_equal(eigvecs, eigvecs_lapack, decimal=4)
assert_array_almost_equal(eigvecs_qr, eigvecs_lapack, decimal=6)
# comparison ARPACK ~ LAPACK (some ARPACK implems do not support k=n)
if k < n_features:
v0 = _init_arpack_v0(n_features, random_state=0)
# "LA" largest algebraic <=> selection="value" in randomized_eigsh
eigvals_arpack, eigvecs_arpack = eigsh(
X, k, which="LA", tol=0, maxiter=None, v0=v0
)
indices = eigvals_arpack.argsort()[::-1]
# eigenvalues
eigvals_arpack = eigvals_arpack[indices]
assert_array_almost_equal(eigvals_lapack, eigvals_arpack, decimal=10)
# eigenvectors
eigvecs_arpack = eigvecs_arpack[:, indices]
eigvecs_arpack, _ = svd_flip(eigvecs_arpack, dummy_vecs)
assert_array_almost_equal(eigvecs_arpack, eigvecs_lapack, decimal=8)
|
Check that `_randomized_eigsh` is similar to other `eigsh`
Tests that for a random PSD matrix, `_randomized_eigsh` provides results
comparable to LAPACK (scipy.linalg.eigh) and ARPACK
(scipy.sparse.linalg.eigsh).
Note: some versions of ARPACK do not support k=n_features.
|
test_randomized_eigsh_compared_to_others
|
python
|
scikit-learn/scikit-learn
|
sklearn/utils/tests/test_extmath.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/tests/test_extmath.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.