File size: 5,494 Bytes
88e3654
 
 
 
 
 
81368b8
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9d07c
88e3654
 
81368b8
4b9d07c
88e3654
81368b8
999146f
 
88e3654
 
 
 
 
81368b8
 
 
 
 
 
 
 
88e3654
 
2f6e05a
88e3654
 
 
 
 
81368b8
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
5246ac6
4b9d07c
 
 
 
 
81368b8
4b9d07c
 
88e3654
4b9d07c
 
88e3654
4b9d07c
88e3654
 
 
 
4b9d07c
88e3654
 
 
 
 
 
4b9d07c
88e3654
 
 
81368b8
2f6e05a
81368b8
 
75e71e7
 
2f6e05a
4b9d07c
75e71e7
 
4b9d07c
 
75e71e7
 
 
 
 
4b9d07c
75e71e7
 
 
 
4b9d07c
75e71e7
 
 
 
 
 
 
 
 
 
 
 
 
4b9d07c
2f6e05a
88e3654
 
2f6e05a
81368b8
75e71e7
4b9d07c
75e71e7
88e3654
 
75e71e7
88e3654
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""EMT dataset."""

import os
import datasets

_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"

_LICENSE = "CC-BY-SA 4.0"

_CITATION = """  
@article{EMTdataset2025,  
      title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},  
      author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},  
      year={2025},  
      eprint={2502.19260},  
      archivePrefix={arXiv},  
      primaryClass={cs.CV},  
      url={https://arxiv.org/abs/2502.19260}  
}  
""" 

_DESCRIPTION = """\
A multi-task dataset for detection, tracking, prediction, and intention prediction. 
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
"""

# Annotation repository
_ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"

# Tar file URLs for images
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"


class EMT(datasets.GeneratorBasedBuilder):
    """EMT dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="full_size",
            description="All images are in their original size.",
            version=datasets.Version("1.0.0"),
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                            "class_id": datasets.Value("int32"),
                            "track_id": datasets.Value("int32"),
                            "class_name": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Download train/test images and annotations."""

        # Download and extract images
        image_paths = {
            "train": dl_manager.download_and_extract(_TRAIN_IMAGE_ARCHIVE_URL),
            "test": dl_manager.download_and_extract(_TEST_IMAGE_ARCHIVE_URL),
        }
        
        # Download annotations (extracted automatically)
        annotation_paths = {
            "train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train"),
            "test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test"),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": dl_manager.iter_archive(image_paths["train"]),  
                    "annotation_path": annotation_paths["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "images": dl_manager.iter_archive(image_paths["test"]), 
                    "annotation_path": annotation_paths["test"],
                },
            ),
        ]

    def _generate_examples(self, images, annotation_path):
        """Generate dataset examples by matching images to their corresponding annotations."""
        
        # Load ALL annotations into memory before iterating over images
        annotations = {}

        for ann_file in os.listdir(annotation_path):  # Iterate over all annotation files
            ann_path = os.path.join(annotation_path, ann_file)
            video_name = os.path.splitext(ann_file)[0]  # Extract video folder name

            with open(ann_path, "r", encoding="utf-8") as f:
                for line in f:
                    parts = line.strip().split()
                    if len(parts) < 8:
                        continue

                    frame_id, track_id, class_name = parts[:3]
                    bbox = list(map(float, parts[4:8]))
                    class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
                    img_name = f"{frame_id}.jpg"

                    # Store annotation in a simple dictionary
                    key = f"{video_name}/{img_name}"
                    if key not in annotations:
                        annotations[key] = []
                    
                    annotations[key].append(
                        {
                            "bbox": bbox,
                            "class_id": class_id,
                            "track_id": int(track_id),
                            "class_name": class_name,
                        }
                    )

        # Yield dataset entries
        idx = 0
        for file_path, file_obj in images:
            img_name = os.path.basename(file_path)
            video_name = os.path.basename(os.path.dirname(file_path))
            key = f"{video_name}/{img_name}"  # Match image to preloaded annotations

            if key in annotations:
                yield idx, {
                    "image": {"path": file_path, "bytes": file_obj.read()},
                    "objects": annotations[key],
                }
                idx += 1