Update EMT.py
Browse files
EMT.py
CHANGED
@@ -3,7 +3,6 @@
|
|
3 |
import os
|
4 |
import datasets
|
5 |
|
6 |
-
|
7 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
8 |
|
9 |
_LICENSE = "CC-BY-SA 4.0"
|
@@ -22,11 +21,11 @@ _CITATION = """
|
|
22 |
|
23 |
_DESCRIPTION = """\
|
24 |
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
25 |
-
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection
|
26 |
"""
|
27 |
|
28 |
# Annotation repository
|
29 |
-
_ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations
|
30 |
|
31 |
# Tar file URLs for images
|
32 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
@@ -68,55 +67,57 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
68 |
|
69 |
def _split_generators(self, dl_manager):
|
70 |
"""Download train/test images and annotations."""
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
}
|
75 |
-
|
|
|
76 |
annotation_paths = {
|
77 |
-
"train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train
|
78 |
-
"test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test
|
79 |
}
|
80 |
-
|
81 |
return [
|
82 |
datasets.SplitGenerator(
|
83 |
name=datasets.Split.TRAIN,
|
84 |
gen_kwargs={
|
85 |
-
"images": dl_manager.iter_archive(
|
86 |
"annotation_path": annotation_paths["train"],
|
87 |
},
|
88 |
),
|
89 |
datasets.SplitGenerator(
|
90 |
name=datasets.Split.TEST,
|
91 |
gen_kwargs={
|
92 |
-
"images": dl_manager.iter_archive(
|
93 |
"annotation_path": annotation_paths["test"],
|
94 |
},
|
95 |
),
|
96 |
]
|
97 |
|
98 |
-
|
99 |
def _generate_examples(self, images, annotation_path):
|
100 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
101 |
|
102 |
# Load ALL annotations into memory before iterating over images
|
103 |
annotations = {}
|
104 |
-
|
105 |
for ann_file in os.listdir(annotation_path): # Iterate over all annotation files
|
106 |
-
video_name = os.path.splitext(ann_file)[0] # Extract video folder name
|
107 |
ann_path = os.path.join(annotation_path, ann_file)
|
108 |
-
|
|
|
109 |
with open(ann_path, "r", encoding="utf-8") as f:
|
110 |
for line in f:
|
111 |
parts = line.strip().split()
|
112 |
if len(parts) < 8:
|
113 |
continue
|
114 |
-
|
115 |
frame_id, track_id, class_name = parts[:3]
|
116 |
bbox = list(map(float, parts[4:8]))
|
117 |
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
118 |
img_name = f"{frame_id}.jpg"
|
119 |
-
|
120 |
# Store annotation in a simple dictionary
|
121 |
key = f"{video_name}/{img_name}"
|
122 |
if key not in annotations:
|
@@ -130,14 +131,14 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
130 |
"class_name": class_name,
|
131 |
}
|
132 |
)
|
133 |
-
|
134 |
# Yield dataset entries
|
135 |
idx = 0
|
136 |
for file_path, file_obj in images:
|
137 |
img_name = os.path.basename(file_path)
|
138 |
video_name = os.path.basename(os.path.dirname(file_path))
|
139 |
key = f"{video_name}/{img_name}" # Match image to preloaded annotations
|
140 |
-
|
141 |
if key in annotations:
|
142 |
yield idx, {
|
143 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
|
|
3 |
import os
|
4 |
import datasets
|
5 |
|
|
|
6 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
7 |
|
8 |
_LICENSE = "CC-BY-SA 4.0"
|
|
|
21 |
|
22 |
_DESCRIPTION = """\
|
23 |
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
24 |
+
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
|
25 |
"""
|
26 |
|
27 |
# Annotation repository
|
28 |
+
_ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"
|
29 |
|
30 |
# Tar file URLs for images
|
31 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
|
|
67 |
|
68 |
def _split_generators(self, dl_manager):
|
69 |
"""Download train/test images and annotations."""
|
70 |
+
|
71 |
+
# Download and extract images
|
72 |
+
image_paths = {
|
73 |
+
"train": dl_manager.download_and_extract(_TRAIN_IMAGE_ARCHIVE_URL),
|
74 |
+
"test": dl_manager.download_and_extract(_TEST_IMAGE_ARCHIVE_URL),
|
75 |
}
|
76 |
+
|
77 |
+
# Download annotations (extracted automatically)
|
78 |
annotation_paths = {
|
79 |
+
"train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train"),
|
80 |
+
"test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test"),
|
81 |
}
|
82 |
+
|
83 |
return [
|
84 |
datasets.SplitGenerator(
|
85 |
name=datasets.Split.TRAIN,
|
86 |
gen_kwargs={
|
87 |
+
"images": dl_manager.iter_archive(image_paths["train"]),
|
88 |
"annotation_path": annotation_paths["train"],
|
89 |
},
|
90 |
),
|
91 |
datasets.SplitGenerator(
|
92 |
name=datasets.Split.TEST,
|
93 |
gen_kwargs={
|
94 |
+
"images": dl_manager.iter_archive(image_paths["test"]),
|
95 |
"annotation_path": annotation_paths["test"],
|
96 |
},
|
97 |
),
|
98 |
]
|
99 |
|
|
|
100 |
def _generate_examples(self, images, annotation_path):
|
101 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
102 |
|
103 |
# Load ALL annotations into memory before iterating over images
|
104 |
annotations = {}
|
105 |
+
|
106 |
for ann_file in os.listdir(annotation_path): # Iterate over all annotation files
|
|
|
107 |
ann_path = os.path.join(annotation_path, ann_file)
|
108 |
+
video_name = os.path.splitext(ann_file)[0] # Extract video folder name
|
109 |
+
|
110 |
with open(ann_path, "r", encoding="utf-8") as f:
|
111 |
for line in f:
|
112 |
parts = line.strip().split()
|
113 |
if len(parts) < 8:
|
114 |
continue
|
115 |
+
|
116 |
frame_id, track_id, class_name = parts[:3]
|
117 |
bbox = list(map(float, parts[4:8]))
|
118 |
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
119 |
img_name = f"{frame_id}.jpg"
|
120 |
+
|
121 |
# Store annotation in a simple dictionary
|
122 |
key = f"{video_name}/{img_name}"
|
123 |
if key not in annotations:
|
|
|
131 |
"class_name": class_name,
|
132 |
}
|
133 |
)
|
134 |
+
|
135 |
# Yield dataset entries
|
136 |
idx = 0
|
137 |
for file_path, file_obj in images:
|
138 |
img_name = os.path.basename(file_path)
|
139 |
video_name = os.path.basename(os.path.dirname(file_path))
|
140 |
key = f"{video_name}/{img_name}" # Match image to preloaded annotations
|
141 |
+
|
142 |
if key in annotations:
|
143 |
yield idx, {
|
144 |
"image": {"path": file_path, "bytes": file_obj.read()},
|