url
stringlengths 63
63
| repository_url
stringclasses 1
value | labels_url
stringlengths 77
77
| comments_url
stringlengths 72
72
| events_url
stringlengths 70
70
| html_url
stringlengths 51
53
| id
int64 1.57B
2.35B
| node_id
stringlengths 18
19
| number
int64 59.5k
69.6k
| title
stringlengths 1
554
| user
dict | labels
listlengths 0
8
| state
stringclasses 2
values | locked
bool 2
classes | assignee
dict | assignees
listlengths 0
8
| milestone
null | comments
sequencelengths 0
30
| created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 4
values | active_lock_reason
stringclasses 3
values | draft
bool 2
classes | pull_request
dict | body
stringlengths 1
65.4k
⌀ | reactions
dict | timeline_url
stringlengths 72
72
| performed_via_github_app
null | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/tensorflow/tensorflow/issues/60421 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60421/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60421/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60421/events | https://github.com/tensorflow/tensorflow/pull/60421 | 1,686,102,045 | PR_kwDOArmXAs5PQeNI | 60,421 | Update arm-cd.yml | {
"login": "ishivansmishra",
"id": 131871626,
"node_id": "U_kgDOB9wzig",
"avatar_url": "https://avatars.githubusercontent.com/u/131871626?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ishivansmishra",
"html_url": "https://github.com/ishivansmishra",
"followers_url": "https://api.github.com/users/ishivansmishra/followers",
"following_url": "https://api.github.com/users/ishivansmishra/following{/other_user}",
"gists_url": "https://api.github.com/users/ishivansmishra/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ishivansmishra/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ishivansmishra/subscriptions",
"organizations_url": "https://api.github.com/users/ishivansmishra/orgs",
"repos_url": "https://api.github.com/users/ishivansmishra/repos",
"events_url": "https://api.github.com/users/ishivansmishra/events{/privacy}",
"received_events_url": "https://api.github.com/users/ishivansmishra/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
},
{
"id": 1593512946,
"node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid",
"name": "invalid",
"color": "db6f57",
"default": true,
"description": "Hacktoberfest spam PR"
}
] | closed | true | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60421/checks?check_run_id=13058540072) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.",
"Please don't use \"add file\"/\"update file\"/\"fix file\"/etc. commit messages. These are hard to reason about when looking at the history of the file/repository. Instead, please write explanatory git commit messages.\r\n\r\nThe commit message is also the title of the PR if the PR has only one commit. It is thus twice important to have commit messages that are relevant, as PRs would be easier to understand and easier to analyze in search results.\r\n\r\nFor how to write good quality git commit messages, please consult https://cbea.ms/git-commit/ "
] | 2023-04-27T04:41:07 | 2023-04-27T19:47:56 | 2023-04-27T04:44:09 | NONE | spam | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60421",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60421",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60421.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60421.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60421/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60421/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60420 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60420/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60420/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60420/events | https://github.com/tensorflow/tensorflow/issues/60420 | 1,685,609,132 | I_kwDOArmXAs5keFqs | 60,420 | Linux clang build issue | {
"login": "gzmkl",
"id": 29215195,
"node_id": "MDQ6VXNlcjI5MjE1MTk1",
"avatar_url": "https://avatars.githubusercontent.com/u/29215195?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gzmkl",
"html_url": "https://github.com/gzmkl",
"followers_url": "https://api.github.com/users/gzmkl/followers",
"following_url": "https://api.github.com/users/gzmkl/following{/other_user}",
"gists_url": "https://api.github.com/users/gzmkl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gzmkl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gzmkl/subscriptions",
"organizations_url": "https://api.github.com/users/gzmkl/orgs",
"repos_url": "https://api.github.com/users/gzmkl/repos",
"events_url": "https://api.github.com/users/gzmkl/events{/privacy}",
"received_events_url": "https://api.github.com/users/gzmkl/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "kanglant",
"id": 47437066,
"node_id": "MDQ6VXNlcjQ3NDM3MDY2",
"avatar_url": "https://avatars.githubusercontent.com/u/47437066?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kanglant",
"html_url": "https://github.com/kanglant",
"followers_url": "https://api.github.com/users/kanglant/followers",
"following_url": "https://api.github.com/users/kanglant/following{/other_user}",
"gists_url": "https://api.github.com/users/kanglant/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kanglant/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kanglant/subscriptions",
"organizations_url": "https://api.github.com/users/kanglant/orgs",
"repos_url": "https://api.github.com/users/kanglant/repos",
"events_url": "https://api.github.com/users/kanglant/events{/privacy}",
"received_events_url": "https://api.github.com/users/kanglant/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "kanglant",
"id": 47437066,
"node_id": "MDQ6VXNlcjQ3NDM3MDY2",
"avatar_url": "https://avatars.githubusercontent.com/u/47437066?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kanglant",
"html_url": "https://github.com/kanglant",
"followers_url": "https://api.github.com/users/kanglant/followers",
"following_url": "https://api.github.com/users/kanglant/following{/other_user}",
"gists_url": "https://api.github.com/users/kanglant/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kanglant/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kanglant/subscriptions",
"organizations_url": "https://api.github.com/users/kanglant/orgs",
"repos_url": "https://api.github.com/users/kanglant/repos",
"events_url": "https://api.github.com/users/kanglant/events{/privacy}",
"received_events_url": "https://api.github.com/users/kanglant/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @gzmkl ,\r\n\r\nAs per Official documentation for building from source on Ubuntu OS, we have to use GCC compiler. Please confirm the GCC compiler version that you are using. Also currently master branch tested for bazel version 5.3.0. Please use this version only and higher versions may have compatibility issues.\r\n\r\nYou can find the tested configurations of TF with GCC, Bazel etc for Linux OS [here](https://www.tensorflow.org/install/source#linux).\r\n\r\nPlease update to tested configurations and let us know if having same problem with all the logs. Thanks!",
"Hi @gzmkl ,\r\n\r\nThe issue is probably some kind of build cache corruption that comes from Bazel and can be fixed by changing the build options. Could you please check the cpu/gpu bazelrc files [here](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tf_sig_build_dockerfiles/devel.usertools) and try to update the build command for testing? \r\n\r\nPlease let us know if you have any further questions. Thanks! \r\n",
"@kanglant Thanks for the pointers. We do not use remote_cache. However, with some experiments the following build command worked for us.\r\n`bazel build --features=-layering_check --copt=-Wno-gnu-offsetof-extensions -c opt //tensorflow/tools/pip_package:build_pip_package`\r\n\r\nCould you please comment on `--features=-layering_check`. Is there any implication in performance in doing so? How to avoid this flag?",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Hi @mdfaijul ! Sorry for the delayed response. I was able to fix the same error on Linux by setting the environment variables CC and BAZEL_COMPILER to the actual path to clang-16, e.g., /usr/lib/llvm-16/bin/clang. My build command was:\r\n\r\n`bazel build -s --verbose_failures --copt=-Wno-gnu-offsetof-extensions //tensorflow/tools/pip_package:build_pip_package`\r\n\r\nWith `-s`, you can see the full command line for each command prior to executing it. \r\n\r\nCould you please try this method and see if it fixes the error? Some other optional env variables are `CLANG_CUDA_COMPILER_PATH`, `HOST_CXX_COMPILER`, and `HOST_C_COMPILER`. Bazel does not do well with symbolic links, so please use the actual path to clang. \r\n\r\nGiven a target T with `layering_check` enabled and a source S in T, the build will fail if S #includes a header that is not part of T itself or listed in the hdrs. We should not disable it without a good reason. ",
"Hi @gzmkl ,\r\n\r\nApologies for the delayed response. Starting from TF2.13v tensorflow uses Clang16 as compiler for Linux and the instructions are updated in the official [documentation](https://www.tensorflow.org/install/source#install_clang_recommended_linux_only).\r\n\r\nCould you please confirm whether the above instructions can be helpful. Please confirm if this is still an issue. Thanks!",
"Hello @SuryanarayanaY @kanglant . I tried building the TF2.13v (Release tag commit) tensorflow from source using the clang-16 compiler and I run into same issue as mentioned in the description of this ticket.\r\n\r\nI see same issue both on Intel ICELAKE (x86) and also on GRAVITON (Arm) with the latest TF.\r\nHowever, we don't face any issues when we use GCC compiler both on x86 and ARM.\r\n\r\nThis looks like a bug with BAZEL + CLANG.\r\n\r\nCan this issue be addressed?\r\n\r\nThis issue is been there for quite a while and I have seen many people complaining about the same issue even with previous clang versions with TF.\r\n\r\n@mdfaijul Hack to use --features=-layering_check flag with the build helps. But is there any implication in using this?\r\nThis could be a temporary workaround.",
"> bazel build -s --verbose_failures --copt=-Wno-gnu-offsetof-extensions //tensorflow/tools/pip_package:build_pip_package\r\n\r\n@kanglant This doesn't resolve the issue. I made sure, I set the actual path to clang and also added the config -Wno-gnu-offsetof-extensions",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"@SuryanarayanaY @kanglant \r\nAny further comments from your end will help us to fix this compilation issue. Also let me know, if this is something we have to report it to the LLVM/CLANG community.",
"Hello @mraunak, could you please share some details on how you fix this issue? See the above comment. ",
"@kanglant With TensorFlow master branch, and on Linux, try \r\n 1. Set up a couple of environment variables\r\n export CC=/usr/lib/llvm-16/bin/clang\r\n export CXX=/usr/lib/llvm-16/bin/clang++\r\n Note: you need adjust RHS with the path where your clang (in my case version 16) is installed\r\n2. Add the following option with your bazel build command\r\n --copt=-Wno-gnu-offsetof-extensions "
] | 2023-04-26T19:42:55 | 2023-08-30T23:22:51 | null | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
Latest master branch
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 18.04.4
### Mobile device
_No response_
### Python version
3.9.16
### Bazel version
6.1.2
### GCC/Compiler version
Ubuntu clang version 16.0.1
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
Clang build failure (on Linux):
[1mERROR: ^[[0m/localdisk/gzhuang/work2/build/external/llvm-project/llvm/BUILD.bazel:320:11: Compiling llvm/lib/Option/ArgList.cpp failed: undeclared inclusion(s) in rule '@llvm-project//llvm:Option':
this rule is missing dependency declarations for the following files included by 'llvm/lib/Option/ArgList.cpp':
'bazel-out/k8-opt/bin/external/llvm-project/llvm/Demangle.cppmap'
'bazel-out/k8-opt/bin/external/llvm_terminfo/terminfo.cppmap'
'bazel-out/k8-opt/bin/external/llvm_zlib/zlib.cppmap'
^[[32m[6,146 / 21,193]^[[0m 55 actions running
### Standalone code to reproduce the issue
```shell
Build Tensorflow from scratch with latest master branch (as of 4/24/2023) with build command
bazel --output_base=$build_dir build --config=opt --cxxopt=-stdlib=libc++ --copt=-O3 --strip=never -c opt //tensorflow/tools/pip_package:build_pip_package -j 56
Also set CC environment to clang++ (/usr/lib/llvm-16/bin/clang++)
```
### Relevant log output
```shell
See the "Behaviour" section above for the snapshot of log.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60420/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60420/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60419 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60419/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60419/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60419/events | https://github.com/tensorflow/tensorflow/issues/60419 | 1,685,458,548 | I_kwDOArmXAs5kdg50 | 60,419 | tf.raw_ops.GatherV2 api doc page does not properly describe the argument 'batch_dims' | {
"login": "meghendra",
"id": 4872638,
"node_id": "MDQ6VXNlcjQ4NzI2Mzg=",
"avatar_url": "https://avatars.githubusercontent.com/u/4872638?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/meghendra",
"html_url": "https://github.com/meghendra",
"followers_url": "https://api.github.com/users/meghendra/followers",
"following_url": "https://api.github.com/users/meghendra/following{/other_user}",
"gists_url": "https://api.github.com/users/meghendra/gists{/gist_id}",
"starred_url": "https://api.github.com/users/meghendra/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/meghendra/subscriptions",
"organizations_url": "https://api.github.com/users/meghendra/orgs",
"repos_url": "https://api.github.com/users/meghendra/repos",
"events_url": "https://api.github.com/users/meghendra/events{/privacy}",
"received_events_url": "https://api.github.com/users/meghendra/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 284443156,
"node_id": "MDU6TGFiZWwyODQ0NDMxNTY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-bug",
"name": "type:docs-bug",
"color": "159b2e",
"default": false,
"description": "Document issues"
},
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 3911105852,
"node_id": "LA_kwDOArmXAs7pHr08",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20PR%20merge",
"name": "awaiting PR merge",
"color": "4080bf",
"default": false,
"description": "awaiting PR merge"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @meghendra ,\r\n\r\nThanks for your time in bringing this. Basically `tf.raw_ops` not meant for end users but for library writers and hence documentation is not much exhaustive. There is equivalent high level API for this which is [tf.gather](https://www.tensorflow.org/api_docs/python/tf/gather). \r\n\r\nHowever your pointed information is related to Argument description I agree to that it should have some explanation on argument. Hence I can add the same description that is there in `tf.gather` API for the argument `batch_dims` which is mentioned below.I would like to append this line to existing description.\r\n\r\n`The number of batch dimensions. Must be less than or equal to rank(indices)`\r\n\r\nThanks!"
] | 2023-04-26T17:45:19 | 2023-06-12T17:16:23 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Documentation Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.12.0
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
The doc page for `tf.raw_ops.GatherV2` [here](https://www.tensorflow.org/api_docs/python/tf/raw_ops/GatherV2) does not describe how `batch_dims` is used in the operator. I found one stack overflow comment [here ](https://stackoverflow.com/questions/58194682/how-to-set-the-parameter-batch-dims-in-tf-gather-nd-tensorflow) that says:
``batch_dims=N informs TF that the first N dimensions of the tensor are batch dimensions...``
If this is indeed correct, it should be included in the doc page. Otherwise the behavior of `batch_dims` parameter is difficult to understand.
### Standalone code to reproduce the issue
```shell
Its a missing detail in the documentation for `tf.raw_ops.GatherV2.
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60419/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60419/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60417 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60417/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60417/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60417/events | https://github.com/tensorflow/tensorflow/issues/60417 | 1,685,397,843 | I_kwDOArmXAs5kdSFT | 60,417 | AVX2 build failure on CPU with --config=mkl due to eigen update | {
"login": "mdfaijul",
"id": 27521767,
"node_id": "MDQ6VXNlcjI3NTIxNzY3",
"avatar_url": "https://avatars.githubusercontent.com/u/27521767?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mdfaijul",
"html_url": "https://github.com/mdfaijul",
"followers_url": "https://api.github.com/users/mdfaijul/followers",
"following_url": "https://api.github.com/users/mdfaijul/following{/other_user}",
"gists_url": "https://api.github.com/users/mdfaijul/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mdfaijul/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mdfaijul/subscriptions",
"organizations_url": "https://api.github.com/users/mdfaijul/orgs",
"repos_url": "https://api.github.com/users/mdfaijul/repos",
"events_url": "https://api.github.com/users/mdfaijul/events{/privacy}",
"received_events_url": "https://api.github.com/users/mdfaijul/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@cantonios This commit has caused a build issue with --config=mkl on avx2 build\r\nhttps://github.com/tensorflow/tensorflow/commit/bc5f83612c6b4b96b652ac60e4138c61cbdb5fc3",
"Thanks for letting me know. We don't see the error internally since it only breaks with gcc, not clang.",
"Eigen update reverted",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60417\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60417\">No</a>\n"
] | 2023-04-26T16:58:14 | 2023-04-26T23:13:43 | 2023-04-26T23:13:40 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 18.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
5.3.0
### GCC/Compiler version
9.4.0
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
AVX2 build is broken with with eigen update. Here is the commit id
https://github.com/tensorflow/tensorflow/commit/bc5f83612c6b4b96b652ac60e4138c61cbdb5fc3
### Standalone code to reproduce the issue
```shell
bazel build --cxxopt=-D_GLIBCXX_USE_CXX11_ABI=1 --copt=-O3 --copt=-Wformat --copt=-Wformat-security --copt=-fstack-protector --copt=-fPIC --copt=-fpic --linkopt=-znoexecstack --linkopt=-zrelro --linkopt=-znow --linkopt=-fstack-protector --config=mkl --copt=-march=haswell //tensorflow/tools/pip_package:build_pip_package
```
### Relevant log output
```shell
ERROR: /localdisk/amin/workspace/private-tensorflow/tensorflow/core/kernels/BUILD:5250:18: Compiling tensorflow/core/kernels/scatter_op.cc failed: (Exit 1): gcc failed: error executing command /usr/bin/gcc -U_FORTIFY_SOURCE -fstack-protector -Wall -Wunused-but-set-parameter -Wno-free-nonheap-object -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG -ffunction-sections ... (remaining 130 arguments skipped)
In file included from external/eigen_archive/Eigen/Core:180,
from ./tensorflow/tsl/framework/fixedpoint_types.h:21,
from ./tensorflow/tsl/framework/numeric_types.h:21,
from ./tensorflow/core/framework/numeric_types.h:24,
from ./tensorflow/core/framework/allocator.h:26,
from ./tensorflow/core/framework/op_kernel.h:27,
from tensorflow/core/kernels/scatter_op.cc:18:
external/eigen_archive/Eigen/src/Core/GenericPacketMath.h: In instantiation of 'Packet Eigen::internal::pmul(const Packet&, const Packet&) [with Packet = Eigen::internal::eigen_packet_wrapper<__vector(4) long long int, 5>]':
external/eigen_archive/Eigen/src/Core/functors/BinaryFunctors.h:81:26: required from 'Packet Eigen::internal::scalar_product_op<LhsScalar, RhsScalar>::packetOp(const Packet&, const Packet&) const [with Packet = Eigen::internal::eigen_packet_wrapper<__vector(4) long long int, 5>; LhsScalar = long unsigned int; RhsScalar = long unsigned int]'
external/eigen_archive/Eigen/src/Core/functors/BinaryFunctors.h:752:30: required from 'const Packet Eigen::internal::bind2nd_op<BinaryOp>::packetOp(const Packet&) const [with Packet = Eigen::internal::eigen_packet_wrapper<__vector(4) long long int, 5>; BinaryOp = Eigen::internal::scalar_product_op<long unsigned int, long unsigned int>]'
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:517:73: required from 'Eigen::TensorEvaluator<const Eigen::TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>::PacketReturnType Eigen::TensorEvaluator<const Eigen::TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>::packet(Eigen::TensorEvaluator<const Eigen::TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>::Index) const [with int LoadMode = 0; UnaryOp = Eigen::internal::bind2nd_op<Eigen::internal::scalar_product_op<long unsigned int, long unsigned int> >; ArgType = const Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> >; Device = Eigen::DefaultDevice; Eigen::TensorEvaluator<const Eigen::TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>::PacketReturnType = Eigen::internal::eigen_packet_wrapper<__vector(4) long long int, 5>; Eigen::TensorEvaluator<const Eigen::TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>::Index = long int]'
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:180:5: required from 'void Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>, Device>::evalPacket(Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>, Device>::Index) const [with LeftArgType = Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> >; RightArgType = const Eigen::TensorCwiseUnaryOp<Eigen::internal::bind2nd_op<Eigen::internal::scalar_product_op<long unsigned int, long unsigned int> >, const Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> > >; Device = Eigen::DefaultDevice; Eigen::TensorEvaluator<const Eigen::TensorAssignOp<LhsXprType, RhsXprType>, Device>::Index = long int]'
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h:144:11: required from 'static void Eigen::internal::TensorExecutor<Expression, Eigen::DefaultDevice, true, Eigen::internal::Off>::run(const Expression&, const Eigen::DefaultDevice&) [with Expression = const Eigen::TensorAssignOp<Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> >, const Eigen::TensorCwiseUnaryOp<Eigen::internal::bind2nd_op<Eigen::internal::scalar_product_op<long unsigned int, long unsigned int> >, const Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> > > >]'
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h:1211:65: required from 'Derived& Eigen::TensorBase<Derived, AccessLevel>::operator=(const OtherDerived&) [with OtherDerived = Eigen::TensorCwiseUnaryOp<Eigen::internal::bind2nd_op<Eigen::internal::scalar_product_op<long unsigned int, long unsigned int> >, const Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> > >; Derived = Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> >; int AccessLevel = 1]'
./tensorflow/core/kernels/scatter_functor.h:87:7: required from 'static void tensorflow::scatter_op::internal::Assign<tensorflow::scatter_op::UpdateOp::MUL>::RunScalar(Params, Update) [with Params = Eigen::TensorChippingOp<0, Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer> >; Update = long unsigned int]'
./tensorflow/core/kernels/scatter_functor.h:339:50: required from 'Index tensorflow::functor::ScatterScalarFunctorBase<Device, T, Index, op>::operator()(tensorflow::OpKernelContext*, const Device&, typename tensorflow::TTypes<T>::Matrix, typename tensorflow::TTypes<T>::ConstScalar, typename tensorflow::TTypes<Index>::ConstFlat) [with Device = Eigen::ThreadPoolDevice; T = long unsigned int; Index = long int; tensorflow::scatter_op::UpdateOp op = tensorflow::scatter_op::UpdateOp::MUL; typename tensorflow::TTypes<T>::Matrix = Eigen::TensorMap<Eigen::Tensor<long unsigned int, 2, 1, long int>, 16, Eigen::MakePointer>; typename tensorflow::TTypes<T>::ConstScalar = Eigen::TensorMap<Eigen::TensorFixedSize<const long unsigned int, Eigen::Sizes<>, 1, long int>, 16, Eigen::MakePointer>; typename tensorflow::TTypes<Index>::ConstFlat = Eigen::TensorMap<Eigen::Tensor<const long int, 1, 1, long int>, 16, Eigen::MakePointer>]'
tensorflow/core/kernels/scatter_op.cc:133:36: required from 'void tensorflow::ScatterUpdateOp<Device, T, Index, op>::DoCompute(tensorflow::OpKernelContext*) [with Device = Eigen::ThreadPoolDevice; T = long unsigned int; Index = long int; tensorflow::scatter_op::UpdateOp op = tensorflow::scatter_op::UpdateOp::MUL]'
tensorflow/core/kernels/scatter_op.cc:91:7: required from 'void tensorflow::ScatterUpdateOp<Device, T, Index, op>::Compute(tensorflow::OpKernelContext*) [with Device = Eigen::ThreadPoolDevice; T = long unsigned int; Index = long int; tensorflow::scatter_op::UpdateOp op = tensorflow::scatter_op::UpdateOp::MUL]'
tensorflow/core/kernels/scatter_op.cc:87:8: required from here
external/eigen_archive/Eigen/src/Core/GenericPacketMath.h:250:50: error: no match for 'operator*' (operand types are 'const Eigen::internal::eigen_packet_wrapper<__vector(4) long long int, 5>' and 'const Eigen::internal::eigen_packet_wrapper<__vector(4) long long int, 5>')
250 | pmul(const Packet& a, const Packet& b) { return a*b; }
| ~^~
In file included from external/eigen_archive/unsupported/Eigen/CXX11/Tensor:79,
from ./third_party/eigen3/unsupported/Eigen/CXX11/Tensor:1,
from ./tensorflow/core/framework/tensor.h:25,
from ./tensorflow/core/framework/device_base.h:26,
from ./tensorflow/core/framework/op_kernel.h:30,
from tensorflow/core/kernels/scatter_op.cc:18:
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h:138:35: note: candidate: 'template<class HL, class LL, class HR, class LR> Eigen::internal::TensorUInt128<long unsigned int, long unsigned int> Eigen::internal::operator*(const Eigen::internal::TensorUInt128<HL, LL>&, const Eigen::internal::TensorUInt128<HR, LR>&)'
138 | TensorUInt128<uint64_t, uint64_t> operator * (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
| ^~~~~~~~
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h:138:35: note: template argument deduction/substitution failed:
In file included from external/eigen_archive/Eigen/Core:180,
from ./tensorflow/tsl/framework/fixedpoint_types.h:21,
from ./tensorflow/tsl/framework/numeric_types.h:21,
from ./tensorflow/core/framework/numeric_types.h:24,
from ./tensorflow/core/framework/allocator.h:26,
from ./tensorflow/core/framework/op_kernel.h:27,
from tensorflow/core/kernels/scatter_op.cc:18:
external/eigen_archive/Eigen/src/Core/GenericPacketMath.h:250:50: note: 'const Eigen::internal::eigen_packet_wrapper<__vector(4) long long int, 5>' is not derived from 'const Eigen::internal::TensorUInt128<HL, LL>'
250 | pmul(const Packet& a, const Packet& b) { return a*b; }
| ~^~
Target //tensorflow/tools/pip_package:build_pip_package failed to build
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60417/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60417/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60416 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60416/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60416/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60416/events | https://github.com/tensorflow/tensorflow/issues/60416 | 1,685,212,473 | I_kwDOArmXAs5kck05 | 60,416 | Issue of "type resource != float" when trying to get frozen graph_def from a model of saved_model format | {
"login": "zehao-intel",
"id": 86036206,
"node_id": "MDQ6VXNlcjg2MDM2MjA2",
"avatar_url": "https://avatars.githubusercontent.com/u/86036206?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/zehao-intel",
"html_url": "https://github.com/zehao-intel",
"followers_url": "https://api.github.com/users/zehao-intel/followers",
"following_url": "https://api.github.com/users/zehao-intel/following{/other_user}",
"gists_url": "https://api.github.com/users/zehao-intel/gists{/gist_id}",
"starred_url": "https://api.github.com/users/zehao-intel/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zehao-intel/subscriptions",
"organizations_url": "https://api.github.com/users/zehao-intel/orgs",
"repos_url": "https://api.github.com/users/zehao-intel/repos",
"events_url": "https://api.github.com/users/zehao-intel/events{/privacy}",
"received_events_url": "https://api.github.com/users/zehao-intel/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @zehao-intel \r\n\r\nThe Value Error occurs if input_map, or return_elements contains names that do not appear in graph_def, or graph_def is not well-formed (e.g. it refers to an unknown tensor).\r\n\r\nAlso, the Saved Model serialisation format is only supported and the TFLite conversion from frozen graph is deprecated.\r\n\r\nCould you please try `from_saved_model` if you are trying convert a saved model from TFLite.\r\n\r\nThanks.\r\n\r\n\r\n\r\n",
"Hi pjpratik,\r\n\r\nThanks for your explanation and suggestions. They are very helpful!\r\nIt seems that 'from_saved_model' only convert a saved_model to TFLite model.\r\nI would like to get a correct graph_def from the saved_model. Is that possible to achieve this by using TFLite API?",
"Hi @zehao-intel \r\n\r\nAs per [documentation](https://www.tensorflow.org/lite/models/convert/convert_models), the TFLite API supports converting a TensorFlow model to a TensorFlow Lite mode using `saved_model` format which is [recommended](https://www.tensorflow.org/lite/models/convert/convert_models#convert_a_savedmodel_recommended_) by TFLite. \r\n\r\nConverting from `frozen_graph` is no longer supported in TF 2.x but can be accessed using `tf.compat.v1.lite.TFLiteConverter.from_frozen_graph` . \r\n\r\nThanks.\r\n\r\n",
"Hi @pjpratik ,\r\n\r\nI have tried ```from_saved_model``` with the following code:\r\n```\r\nimport tensorflow as tf\r\nimport tensorflow_text\r\n\r\nsaved_model_dir = './universal-sentence-encoder-multilingual_3'\r\nconverter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\r\ntflite_model = converter.convert()\r\nwith open('model.tflite', 'wb') as f:\r\n f.write(tflite_model)\r\n```\r\nBut an error occurs:\r\n\r\nIt seems that some binary contents is printed and the execution is stopped at ```converter.convert()```.\r\nCould you please look into it?\r\n\r\nThanks\r\n",
"Hi @zehao-intel \r\n\r\nThe TensorFlow Lite builtin operator library only supports a limited number of TensorFlow operators, not every model is convertible. To allow conversion, we can enable the usage of [certain TensorFlow ops](https://www.tensorflow.org/lite/guide/op_select_allowlist) in their TensorFlow Lite model by using following syntax\r\n\r\n```\r\nconverter.target_spec.supported_ops = [\r\n tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\r\n tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\r\n]\r\n```\r\nPlease find the working gist [here](https://colab.research.google.com/gist/pjpratik/173bdfd2355e539ed24c70352e110186/60416.ipynb) and let us know if it helps.\r\n\r\nThanks.",
"Hi @pjpratik ,\r\n\r\nMany thanks to your comments.\r\nI have tried your code and inspected the generated model.tflite with netron. I believe the model is correctly converted.\r\nBy the way, I made some investigation. It seems that there is no official way to get graph_def from a TFLite model.\r\nIn fact, I still need to find out how to get graph_def from the original saved_model. I have tried many ways, including the tf lite code I mentioned before, but none of them works.\r\nCould you give me some suggestions about this?\r\n\r\nThank!",
"Hi @zehao-intel \r\n\r\nGetting a graph def from tflite is not supported. For getting a frozen graph from checkpoints you can try https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py\r\n\r\nAn example of command-line usage is:\r\n```\r\nbazel build tensorflow/python/tools:freeze_graph && \\\r\nbazel-bin/tensorflow/python/tools/freeze_graph \\\r\n--input_graph=some_graph_def.pb \\\r\n--input_checkpoint=model.ckpt-8361242 \\\r\n--output_graph=/tmp/frozen_graph.pb --output_node_names=softmax\r\n\r\n```\r\nThanks.\r\n\r\n",
"Hi @pjpratik ,\r\n\r\nIt's happy to hear that there is a stable method to get a ```frozen graph``` from ```checkpoints```.\r\nBut for this model, it is in ```saved_model``` format.\r\nI saw some arguments related with ```saved_model``` in the script you provided.\r\nIs there a similar usage of getting a ```frozen graph``` from ```saved_model``` with this script?\r\n\r\nThanks",
"Hi @zehao-intel \r\n\r\nImporting from tensorflow.python or any other modules not supported, and can break unannounced as anything under tf.python.* is private, intended for development only, rather than for public use.\r\n\r\nAs mentioned earlier, frozen graphs are deprecated and using Saved Model format is recommended.\r\n\r\nIs there any challenge to use Saved Model in your use case?\r\n\r\nThanks.",
"Hi @pjpratik,\r\n\r\nThanks for your explanation. So TensorFlow don't recommend to use ```frozen graphs``` in version 2.X.\r\nThe task I am handled is to apply 8bit quantization to the TF model mentioned above. And I need to firstly get the frozen graph from this model so that I can modify the model by change the Op type and fuse Op patterns. I am not able to apply this process to a ```saved_model```.\r\n\r\nThanks.",
"Hi @zehao-intel \r\n\r\nSorry for delayed response.\r\n\r\nWe can apply 8 bit quantization while converting the SavedModel to TFLite model by adding these flags:\r\n\r\n```\r\nconverter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]\r\nconverter.inference_input_type = tf.uint8\r\nconverter.inference_output_type = tf.uint8\r\n```\r\nPlease refer to this [documentation](https://www.tensorflow.org/lite/performance/post_training_integer_quant#convert_using_integer-only_quantization_) on converting using integer only quantization and let us know if it helps.\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Hi @pjpratik ,\r\n\r\nSorry for the late reply.\r\nI think this Issue could be closed.\r\nReally appreciate your patient comments!",
"Thanks for the confirmation.\r\n\r\nClosing this issue. Please feel free to reopen if you'd like to work on this further."
] | 2023-04-26T15:03:51 | 2023-06-06T08:50:48 | 2023-06-06T08:50:48 | NONE | null | null | null | ### 1. System information
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): CentOS Linux release 7.6.1810 (Core)
- TensorFlow installation (pip package or built from source): pip install tensorflow
- TensorFlow library (version, if pip package or github SHA, if built from source): 2.12.0
### 2. Code
I am trying to use the code of this function to get frozen_graph_def from a TF model in saved_model format: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/python/convert_saved_model.py#L134
No error occurs during the process of conversion. But a bug is reported after I pass the frozen_graph_def to tf.import_graph_def()
```
import tensorflow_text
import tensorflow as tf
from convert_saved_model import freeze_saved_model
from tensorflow.python.saved_model import signature_constants
saved_model_dir = "./universal-sentence-encoder-multilingual_3"
tag_set = ['serve']
signature_key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
frozen_graph_def, in_tensors, out_tensors, graph = freeze_saved_model(saved_model_dir, input_arrays=None, input_shapes=None,
output_arrays=None, tag_set=tag_set, signature_key=signature_key)
tf.import_graph_def(frozen_graph_def, name='')
```
The model is downloaded from this tfhub link: https://tfhub.dev/google/universal-sentence-encoder-multilingual/3
### 3. Failure after conversion
If the conversion is successful, but the generated model is wrong, then state what is wrong:
- Can't be loaded by using tf.import_graph_def() API.
### 5. (optional) Any other info / logs
The code is run on Intel CLX Xeon CPU.
The log of this bug:
```
2023-04-26 22:31:36.666526: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-26 22:31:36.668374: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-04-26 22:31:36.708706: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-04-26 22:31:36.709089: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-26 22:31:38.113729: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
WARNING:tensorflow:From /home/zehaohua/tensorflow/tensorflow/lite/python/convert_saved_model.py:42: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.saved_model.load` instead.
2023-04-26 22:31:40.329195: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:353] MLIR V1 optimization pass is not enabled
2023-04-26 22:31:42.536067: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-04-26 22:31:42.536209: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
WARNING:tensorflow:From /home/zehaohua/miniconda3/envs/muse/lib/python3.8/site-packages/tensorflow/lite/python/util.py:306: convert_variables_to_constants (from tensorflow.python.framework.convert_to_constants) is deprecated and will be removed in a future version.
Instructions for updating:
This API was designed for TensorFlow v1. See https://www.tensorflow.org/guide/migrate for instructions on how to migrate your code to TensorFlow v2.
WARNING:tensorflow:From /home/zehaohua/miniconda3/envs/muse/lib/python3.8/site-packages/tensorflow/python/framework/convert_to_constants.py:952: extract_sub_graph (from tensorflow.python.framework.graph_util_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This API was designed for TensorFlow v1. See https://www.tensorflow.org/guide/migrate for instructions on how to migrate your code to TensorFlow v2.
Traceback (most recent call last):
File "/home/zehaohua/miniconda3/envs/muse/lib/python3.8/site-packages/tensorflow/python/framework/importer.py", line 510, in _import_graph_def_internal
results = c_api.TF_GraphImportGraphDefWithResults(
tensorflow.python.framework.errors_impl.InvalidArgumentError: input resource[0] expected type resource != float, the type of embeddings_sharded_0[0]
In {{node EncoderDNN/EmbeddingLookup/EmbeddingLookupUnique/embedding_lookup/Gather}}
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "test_muse.py", line 13, in <module>
tf.import_graph_def(frozen_graph_def, name='')
File "/home/zehaohua/miniconda3/envs/muse/lib/python3.8/site-packages/tensorflow/python/util/deprecation.py", line 576, in new_func
return func(*args, **kwargs)
File "/home/zehaohua/miniconda3/envs/muse/lib/python3.8/site-packages/tensorflow/python/framework/importer.py", line 406, in import_graph_def
return _import_graph_def_internal(
File "/home/zehaohua/miniconda3/envs/muse/lib/python3.8/site-packages/tensorflow/python/framework/importer.py", line 515, in _import_graph_def_internal
raise ValueError(str(e))
ValueError: input resource[0] expected type resource != float, the type of embeddings_sharded_0[0]
In {{node EncoderDNN/EmbeddingLookup/EmbeddingLookupUnique/embedding_lookup/Gather}}
```
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60416/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60416/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60415 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60415/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60415/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60415/events | https://github.com/tensorflow/tensorflow/issues/60415 | 1,685,168,925 | I_kwDOArmXAs5kcaMd | 60,415 | Yolov8 tflite python output is not matching with tflite cpp output for float32 models | {
"login": "ajithkumarmcw",
"id": 84714146,
"node_id": "MDQ6VXNlcjg0NzE0MTQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/84714146?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ajithkumarmcw",
"html_url": "https://github.com/ajithkumarmcw",
"followers_url": "https://api.github.com/users/ajithkumarmcw/followers",
"following_url": "https://api.github.com/users/ajithkumarmcw/following{/other_user}",
"gists_url": "https://api.github.com/users/ajithkumarmcw/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ajithkumarmcw/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ajithkumarmcw/subscriptions",
"organizations_url": "https://api.github.com/users/ajithkumarmcw/orgs",
"repos_url": "https://api.github.com/users/ajithkumarmcw/repos",
"events_url": "https://api.github.com/users/ajithkumarmcw/events{/privacy}",
"received_events_url": "https://api.github.com/users/ajithkumarmcw/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
},
{
"id": 2477739347,
"node_id": "MDU6TGFiZWwyNDc3NzM5MzQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.4",
"name": "TF 2.4",
"color": "5319e7",
"default": false,
"description": "for issues related to TF 2.4"
}
] | closed | false | {
"login": "miaout17",
"id": 22063,
"node_id": "MDQ6VXNlcjIyMDYz",
"avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/miaout17",
"html_url": "https://github.com/miaout17",
"followers_url": "https://api.github.com/users/miaout17/followers",
"following_url": "https://api.github.com/users/miaout17/following{/other_user}",
"gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/miaout17/subscriptions",
"organizations_url": "https://api.github.com/users/miaout17/orgs",
"repos_url": "https://api.github.com/users/miaout17/repos",
"events_url": "https://api.github.com/users/miaout17/events{/privacy}",
"received_events_url": "https://api.github.com/users/miaout17/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "miaout17",
"id": 22063,
"node_id": "MDQ6VXNlcjIyMDYz",
"avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/miaout17",
"html_url": "https://github.com/miaout17",
"followers_url": "https://api.github.com/users/miaout17/followers",
"following_url": "https://api.github.com/users/miaout17/following{/other_user}",
"gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/miaout17/subscriptions",
"organizations_url": "https://api.github.com/users/miaout17/orgs",
"repos_url": "https://api.github.com/users/miaout17/repos",
"events_url": "https://api.github.com/users/miaout17/events{/privacy}",
"received_events_url": "https://api.github.com/users/miaout17/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
},
{
"login": "pkgoogle",
"id": 132095473,
"node_id": "U_kgDOB9-d8Q",
"avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pkgoogle",
"html_url": "https://github.com/pkgoogle",
"followers_url": "https://api.github.com/users/pkgoogle/followers",
"following_url": "https://api.github.com/users/pkgoogle/following{/other_user}",
"gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions",
"organizations_url": "https://api.github.com/users/pkgoogle/orgs",
"repos_url": "https://api.github.com/users/pkgoogle/repos",
"events_url": "https://api.github.com/users/pkgoogle/events{/privacy}",
"received_events_url": "https://api.github.com/users/pkgoogle/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @ajithkumarmcw \r\n\r\nPython binding actually uses the C++ implementation of Tensorflow Lite. Considering the Python runtime overhead itself, It is expected, under the same running environment, the Python performance should be no better than that of the C++ one.\r\n\r\nBtw, you could use the [TFLite benchmark tool](https://www.tensorflow.org/lite/performance/measurement) to measure the performance of your model. \r\n\r\nAlso, can you test the same in latest 2.12 version?\r\n\r\n\r\nThanks.",
"@pjpratik my issue is not with performance its with the output which i am getting \r\n\r\nThis is the code and model files i am using https://github.com/ajithkumarmcw/Yolo_tflite_detection , i am not getting any error but the predictions are almost wrong.\r\nIn python the tflite model files are working fine\r\nBelow are the cpp inference outputs for the tflite models generated from yolov5n.pt/yolov8n.pt files which i took from Yolov5 and Yolov8 repo repectively\r\n\r\nEnvironment: tensorflow==2.4.2, Ubuntu==20.04,bazel==3.7.2, gcc==9.4.0\r\n\r\n- case1: For Yolov5 int 8 tflite model i am getting below output its fine\r\n<img width=\"490\" alt=\"snap_yolov5_int8\" src=\"https://user-images.githubusercontent.com/84714146/235165051-64510b5b-3c6b-4d61-891a-9ae9d8430e6a.png\">\r\n\r\n- case2: For Yolov5 float 16 tflite model i am getting below output and its predictions, labels, bboxes are wrong\r\n<img width=\"494\" alt=\"snap_yolov5_float16\" src=\"https://user-images.githubusercontent.com/84714146/235165249-1476151d-c96c-4468-8059-47e0c6b3cdc6.png\">\r\n\r\n\r\n- case3: For Yolov8 int8 tflite model i am getting below output and its predictions, labels, bboxes are wrong\r\n\r\n<img width=\"488\" alt=\"snap_yolov8_int8\" src=\"https://user-images.githubusercontent.com/84714146/235165341-dd5d2d68-2b0e-470c-9d04-de2a7a99c51e.png\">\r\n\r\n- case4: For Yolov8 float 32 tflite model i am getting below output and its predictions, labels, bboxes are wrong\r\n\r\n<img width=\"488\" alt=\"snap_yolov8_float32\" src=\"https://user-images.githubusercontent.com/84714146/235165381-c658b5e9-3608-4c68-9b72-d0c461a860d1.png\">\r\n\r\nI am not sure why the predictions are correct for Yolov5 uint8 but its failing for other three cases",
"Hi @ajithkumarmcw, can you provide the video file that produced the above results? I was able to compile on the latest TF code by d/ling your code and modifying where the TF source directory was coming from but it's now asking me for an input video and output video file, would you mind sharing the input video which produced the above frames? A very short video w/ just the offending frame would be preferred or any other format that is more easily shareable (and short/small):\r\n\r\n```\r\nls\r\nabseil-cpp CMakeFiles debug.sh fft2d FP16-download FXdiv-source ml_dtypes psimd-source release.sh tmp\r\nbuildtests.sh cmake_install.cmake _deps flatbuffers FP16-source gemmlowp neon2sse pthreadpool ruy xnnpack\r\ncheck.sh compile_commands.json eigen flatbuffers-flatc FXdiv main psimd pthreadpool-download src\r\nCMakeCache.txt cpuinfo farmhash FP16 FXdiv-download Makefile psimd-download pthreadpool-source tensorflow-lite\r\n(base) xxxxxxx@pklinuxmaster:~/git/Yolo_tflite_detection/build$ ./main\r\n\r\nError! Usage: <path to tflite model> <path to classes names> <path to input video> <path to output video>\r\n```\r\n\r\nalso what is the \"path to classes names\" referring to.. is that a text file which you have?\r\n\r\nThanks for your help.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60415\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60415\">No</a>\n",
"Hi, @ajithkumarmcw ,\r\n\r\ncan i check if you were able to solve this issue? I am doing a similar project and experiencing the same problem. Do you mind sharing with me your code?",
"@Thunderzen the problem was in the tflite inference code . i was not reshaping the image, was not preprocessing as per yolov8, and i was using the same script for both yolov5 and v8 so the the bounding boxes were not correct i forgot exact reason but it was like this . U can check this code https://github.com/ajithkumarmcw/Yolo_tflite_detection/tree/main/src or any tflite yolov8 code in github.",
"And the output of yolov5 and yolov8 models are different so you can check for some inference script specifically written for yolov8",
"Hi @ajithkumarmcw, do you have the code for yolov8 instead? I am having troubles with the post-processing of the outputs? Also, I can't seem to find implementations by others on github. Most seemed to be for the Python version and I have completed the Python code but the c++ implementation is quite different. Thanks!",
"Sorry i did it for my office so i cant share it but you can check below\r\nhttps://github.com/JustasBart/yolov8_CPP_Inference_OpenCV_ONNX\r\nhttps://github.com/Li-99/yolov8_onnxruntime\r\nhttps://github.com/ultralytics/ultralytics/tree/main/examples/YOLOv8-ONNXRuntime-CPP\r\nhttps://github.com/yide1235/YOLOv8-Inference-TFLite-Openvino/tree/main\r\n\r\nif above didnt help and if u can share u r code. u can share to [email protected] i will look in to it.",
"if u r using onnx model script first check what is the difference between the output of onnx model output and tflite model output for the same input (u can give a random numpy array). u can then modify the onnx model script to work for tflite."
] | 2023-04-26T14:40:51 | 2024-05-24T03:23:29 | 2023-11-10T01:48:28 | NONE | null | null | null | ### 1. System information
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 20.04
- TensorFlow installation (pip package or built from source): built from source
- TensorFlow library (version, if pip package or github SHA, if built from source): tensorflow==2.4.2
### 2. Code
Provide code to help us reproduce your issues using one of the following options:
Used following three files
https://github.com/muhammedakyuzlu/yolov5-tflite-cpp/blob/main/src/main.cpp
https://github.com/craft-zhang/tensorflow-lite-cpp-examples/blob/main/yolov5.cc
https://github.com/craft-zhang/tensorflow-lite-cpp-examples/blob/main/yolov5.h
### 3. Failure after conversion
If the conversion is successful, but the generated model is wrong, then state what is wrong:
- Model produces wrong results and/or has lesser accuracy.
- I am using Yolov8 model, In python tflite model is predicting correctly but same model when we use it in cpp with above script its not able to give same outputtensor as like python's output
because of this problem models output scores, labels are going to 10000, 20000 like that. Kindly help us to sort this issue
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60415/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60415/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60414 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60414/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60414/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60414/events | https://github.com/tensorflow/tensorflow/pull/60414 | 1,684,219,845 | PR_kwDOArmXAs5PKJTF | 60,414 | [NextPluggableDevice] Enable pjrt compiler for NextPluggableDevice | {
"login": "jzhoulon",
"id": 6346853,
"node_id": "MDQ6VXNlcjYzNDY4NTM=",
"avatar_url": "https://avatars.githubusercontent.com/u/6346853?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jzhoulon",
"html_url": "https://github.com/jzhoulon",
"followers_url": "https://api.github.com/users/jzhoulon/followers",
"following_url": "https://api.github.com/users/jzhoulon/following{/other_user}",
"gists_url": "https://api.github.com/users/jzhoulon/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jzhoulon/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jzhoulon/subscriptions",
"organizations_url": "https://api.github.com/users/jzhoulon/orgs",
"repos_url": "https://api.github.com/users/jzhoulon/repos",
"events_url": "https://api.github.com/users/jzhoulon/events{/privacy}",
"received_events_url": "https://api.github.com/users/jzhoulon/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@jyingl3 Can you help to have a look? thanks"
] | 2023-04-26T03:53:38 | 2023-04-27T17:46:44 | 2023-04-27T17:46:44 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60414",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60414",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60414.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60414.patch",
"merged_at": "2023-04-27T17:46:44"
} | This PR is enabling pjrt device compiler for next pluggable device | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60414/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60414/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60413 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60413/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60413/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60413/events | https://github.com/tensorflow/tensorflow/pull/60413 | 1,684,069,219 | PR_kwDOArmXAs5PJqUA | 60,413 | [oneDNN] Enable bf16 kernels for FusedBatchNormV3 | {
"login": "gaurides",
"id": 42224728,
"node_id": "MDQ6VXNlcjQyMjI0NzI4",
"avatar_url": "https://avatars.githubusercontent.com/u/42224728?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gaurides",
"html_url": "https://github.com/gaurides",
"followers_url": "https://api.github.com/users/gaurides/followers",
"following_url": "https://api.github.com/users/gaurides/following{/other_user}",
"gists_url": "https://api.github.com/users/gaurides/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gaurides/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gaurides/subscriptions",
"organizations_url": "https://api.github.com/users/gaurides/orgs",
"repos_url": "https://api.github.com/users/gaurides/repos",
"events_url": "https://api.github.com/users/gaurides/events{/privacy}",
"received_events_url": "https://api.github.com/users/gaurides/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
}
] | closed | false | {
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @penpornk Can you please review this PR ? Thank you!",
"@penpornk - I don't know what is the failure for Py+CPP job. Looks like there was some timeout, not related to my changes. ",
"These 3 CI failures are unrelated\r\n* [Py+CPP Ubuntu CPU](https://source.cloud.google.com/results/invocations/d9fa27f1-ca9a-4b76-ad3b-08851ad96c1f/log): Tests timed out.\r\n* [Py+CPP Ubuntu GPU](https://source.cloud.google.com/results/invocations/5af8fd45-1f55-4a1e-b963-c507082eb812/log): Test timed out.\r\n* [AMD ROCm](http://ml-ci.amd.com:21096/blue/organizations/jenkins/tensorflow%2Fgithub-prs-upstream-master%2FAMD-ROCm-Community-CI-Build/detail/PR-60413/6/pipeline): This PR doesn't modify XLA.\r\n```\r\nERROR: /workspace/tensorflow/compiler/xla/service/gpu/BUILD:853:11: in deps attribute of cc_library rule //tensorflow/compiler/xla/service/gpu:gpu_executable: Label '//tensorflow/tsl/platform:random' is duplicated\r\n\r\nERROR: /workspace/tensorflow/compiler/xla/service/gpu/BUILD:853:11: Analysis of target '//tensorflow/compiler/xla/service/gpu:gpu_executable' failed\r\n```"
] | 2023-04-26T00:56:53 | 2023-07-25T12:04:51 | 2023-07-25T12:04:51 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60413",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60413",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60413.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60413.patch",
"merged_at": "2023-07-25T12:04:51"
} | If Eigen FusedBatchNormV3 kernel is used in a model on CPU, and oneDNN optimizations are disabled; then it will crash. We had observed such crash in 3 models. To fix the crash, this PR enables valid Eigen kernels for FusedBatchNormV3 and Grad for CPU and also enables the relevant unit-tests.
Also addresses [this old issue](https://github.com/tensorflow/tensorflow/issues/57888 ) | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60413/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60413/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60412 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60412/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60412/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60412/events | https://github.com/tensorflow/tensorflow/issues/60412 | 1,683,978,237 | I_kwDOArmXAs5kX3f9 | 60,412 | Include `run_hlo_module` in Tensorflow releases | {
"login": "mariecwhite",
"id": 5143063,
"node_id": "MDQ6VXNlcjUxNDMwNjM=",
"avatar_url": "https://avatars.githubusercontent.com/u/5143063?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariecwhite",
"html_url": "https://github.com/mariecwhite",
"followers_url": "https://api.github.com/users/mariecwhite/followers",
"following_url": "https://api.github.com/users/mariecwhite/following{/other_user}",
"gists_url": "https://api.github.com/users/mariecwhite/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariecwhite/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariecwhite/subscriptions",
"organizations_url": "https://api.github.com/users/mariecwhite/orgs",
"repos_url": "https://api.github.com/users/mariecwhite/repos",
"events_url": "https://api.github.com/users/mariecwhite/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariecwhite/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
}
] | open | false | {
"login": "cheshire",
"id": 348959,
"node_id": "MDQ6VXNlcjM0ODk1OQ==",
"avatar_url": "https://avatars.githubusercontent.com/u/348959?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cheshire",
"html_url": "https://github.com/cheshire",
"followers_url": "https://api.github.com/users/cheshire/followers",
"following_url": "https://api.github.com/users/cheshire/following{/other_user}",
"gists_url": "https://api.github.com/users/cheshire/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cheshire/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cheshire/subscriptions",
"organizations_url": "https://api.github.com/users/cheshire/orgs",
"repos_url": "https://api.github.com/users/cheshire/repos",
"events_url": "https://api.github.com/users/cheshire/events{/privacy}",
"received_events_url": "https://api.github.com/users/cheshire/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "cheshire",
"id": 348959,
"node_id": "MDQ6VXNlcjM0ODk1OQ==",
"avatar_url": "https://avatars.githubusercontent.com/u/348959?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cheshire",
"html_url": "https://github.com/cheshire",
"followers_url": "https://api.github.com/users/cheshire/followers",
"following_url": "https://api.github.com/users/cheshire/following{/other_user}",
"gists_url": "https://api.github.com/users/cheshire/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cheshire/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cheshire/subscriptions",
"organizations_url": "https://api.github.com/users/cheshire/orgs",
"repos_url": "https://api.github.com/users/cheshire/repos",
"events_url": "https://api.github.com/users/cheshire/events{/privacy}",
"received_events_url": "https://api.github.com/users/cheshire/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@tpopp @vam-google Would be very cool to have this - is it difficult to do?",
"Any updates on this?",
"I'm not the appropriate person for this, and I don't know who is."
] | 2023-04-25T22:52:58 | 2023-05-22T09:44:35 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Feature Request
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 22.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
`tensorflow/compiler/xla/tools/run_hlo_module` provides the ability to run HLO modules. Is it possible to include this in the TF releases so that we do not have to build from source?
### Standalone code to reproduce the issue
```shell
This is what we have to do currently:
git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow
git checkout "r${TF_BRANCH}"
bazel build -c opt --config=cuda tensorflow/compiler/xla/tools/run_hlo_module
```
It's preferred that `run_hlo_module` is included as a binary in Tensorflow releases.
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60412/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60412/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60411 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60411/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60411/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60411/events | https://github.com/tensorflow/tensorflow/issues/60411 | 1,682,922,413 | I_kwDOArmXAs5kT1ut | 60,411 | Maximum aspect ratio of camera for Android Mobile app & Android TV to use feature of Pose estimation? | {
"login": "IBSApple",
"id": 71369657,
"node_id": "MDQ6VXNlcjcxMzY5NjU3",
"avatar_url": "https://avatars.githubusercontent.com/u/71369657?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/IBSApple",
"html_url": "https://github.com/IBSApple",
"followers_url": "https://api.github.com/users/IBSApple/followers",
"following_url": "https://api.github.com/users/IBSApple/following{/other_user}",
"gists_url": "https://api.github.com/users/IBSApple/gists{/gist_id}",
"starred_url": "https://api.github.com/users/IBSApple/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/IBSApple/subscriptions",
"organizations_url": "https://api.github.com/users/IBSApple/orgs",
"repos_url": "https://api.github.com/users/IBSApple/repos",
"events_url": "https://api.github.com/users/IBSApple/events{/privacy}",
"received_events_url": "https://api.github.com/users/IBSApple/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 2689451671,
"node_id": "MDU6TGFiZWwyNjg5NDUxNjcx",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite-examples",
"name": "comp:lite-examples",
"color": "06C2A1",
"default": false,
"description": "TensorFlow Lite Examples"
},
{
"id": 3531398540,
"node_id": "LA_kwDOArmXAs7SfN2M",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.7",
"name": "TF 2.7",
"color": "77237D",
"default": false,
"description": "Issues related to TF 2.7.0"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"??",
"Hi @IBSApple \r\n\r\nWe will resize and pad the image to keep the aspect ratio and fit the expected size which can vary for different pose estimation algorithms.\r\n\r\nThe tensorflow provides [Movenet](https://www.tensorflow.org/hub/tutorials/movenet) tutorial for human body pose estimation which runs faster than real time (30+ FPS) and tested on most modern desktops, laptops, and phones.\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further."
] | 2023-04-25T10:49:31 | 2023-05-12T01:52:02 | 2023-05-12T01:52:02 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Feature Request
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.7.0
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
A bug happened!
### Standalone code to reproduce the issue
```shell
What is the maximum aspect ratio of camera for Android Mobile app & Android TV to use feature of Pose estimation?
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60411/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60411/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60410 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60410/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60410/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60410/events | https://github.com/tensorflow/tensorflow/pull/60410 | 1,682,368,946 | PR_kwDOArmXAs5PD77y | 60,410 | [PluggableDevice] Reduce the log times when plugin is enabled | {
"login": "Zantares",
"id": 38638514,
"node_id": "MDQ6VXNlcjM4NjM4NTE0",
"avatar_url": "https://avatars.githubusercontent.com/u/38638514?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Zantares",
"html_url": "https://github.com/Zantares",
"followers_url": "https://api.github.com/users/Zantares/followers",
"following_url": "https://api.github.com/users/Zantares/following{/other_user}",
"gists_url": "https://api.github.com/users/Zantares/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Zantares/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Zantares/subscriptions",
"organizations_url": "https://api.github.com/users/Zantares/orgs",
"repos_url": "https://api.github.com/users/Zantares/repos",
"events_url": "https://api.github.com/users/Zantares/events{/privacy}",
"received_events_url": "https://api.github.com/users/Zantares/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1097545273,
"node_id": "MDU6TGFiZWwxMDk3NTQ1Mjcz",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:grappler",
"name": "comp:grappler",
"color": "0052cc",
"default": false,
"description": "Grappler related issues"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @ezhulenev Can you please review this PR ? Thank you!",
"Hi @ezhulenev Can you please review this PR ? Thank you!"
] | 2023-04-25T03:30:58 | 2023-11-27T09:25:16 | 2023-07-14T07:15:59 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60410",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60410",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60410.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60410.patch",
"merged_at": "2023-07-14T07:15:59"
} | # Background
TF will print some info in each session as below when plugin is enabled:
```
2022-09-07 09:40:01.716295: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type CPU is enabled.
```
These info will be printed **many** times and bother user if there're multiple sessions.
# Solution
Add `call_once` flag for the info, since user won't change the pluggable device after TF is initialized.
Signed-off-by: Lu Teng [[email protected]](mailto:[email protected]) | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60410/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60410/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60409 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60409/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60409/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60409/events | https://github.com/tensorflow/tensorflow/pull/60409 | 1,682,026,664 | PR_kwDOArmXAs5PCyMm | 60,409 | [NVIDIA XLA]Replace broadcast of trivial matrix bias by optional custom-call for CUDA >= 12 | {
"login": "wenscarl",
"id": 25590028,
"node_id": "MDQ6VXNlcjI1NTkwMDI4",
"avatar_url": "https://avatars.githubusercontent.com/u/25590028?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wenscarl",
"html_url": "https://github.com/wenscarl",
"followers_url": "https://api.github.com/users/wenscarl/followers",
"following_url": "https://api.github.com/users/wenscarl/following{/other_user}",
"gists_url": "https://api.github.com/users/wenscarl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wenscarl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wenscarl/subscriptions",
"organizations_url": "https://api.github.com/users/wenscarl/orgs",
"repos_url": "https://api.github.com/users/wenscarl/repos",
"events_url": "https://api.github.com/users/wenscarl/events{/privacy}",
"received_events_url": "https://api.github.com/users/wenscarl/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@reedwm this seems to be of high priority given @wenscarl is reporting the perf hit is ~ 10% of the actual matmul call.",
"Seems like all the unit tests will have to change to accommodate this change. Wenscarl has only implemented a single unit test to show the shape of things to come and is seeking feedback whether the new paradigm works. @philipphack will also give feedback.",
"Version 11 doesn't support non-zero beta. I think that's why we added the version guard [here](https://github.com/tensorflow/tensorflow/blame/0e51c74cd0fa8bef5d9cdbea76f3387a1baae01b/tensorflow/compiler/xla/service/gpu/gemm_rewriter.cc#L728).",
"Changes are made with CUDA_VERSION >= 12000 guards removed.",
"Can you sync with the master branch to get changes from https://github.com/tensorflow/tensorflow/pull/60502?",
"> Can you sync with the master branch to get changes from #60502?\r\n\r\nRebased to current master.",
"As part of the OpenXLA PR rotation:\r\nI'll re-trigger the presubmits as soon as I get permissions.",
"Since the PR author is OOO, I was going to fix some issues when merging. But it's too hard to test on H100s when merging, so instead I'll commit directly to this PR's branch. So let's not merge this PR yet.",
"@philipphack in the FP8 case, when there is no matrix bias, this PR currently sets C to nullptr. But in the FP16 case, when there is no matrix bias, instead C is set to D\r\n\r\nI would prefer that the FP16 and FP8 cases be unified. Is there a fundamental reason why it's important for C to be nullptr in the FP8 case but not in the non-FP8 case? If there is no difference in cublas LT between FP8 and FP16 w.r.t. whether C should be nullptr or equal to D, I will set C to D in this PR. (Since @wenscarl is OOO I am addressing my own comments to this PR before merging it)"
] | 2023-04-24T20:55:45 | 2023-05-25T07:14:41 | 2023-05-25T07:14:41 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60409",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60409",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60409.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60409.patch",
"merged_at": "2023-05-25T07:14:40"
} | Replace broadcast of trivial matrix bias by a scalar under CUDA > 12. Nearly all F8 unittests will get impacted but only 1 unittest is included at the moment for the purpose of demonstration.
Broadcasting trivial matrix bias takes up about 10% time of the actually matmul.

| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60409/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60409/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60408 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60408/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60408/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60408/events | https://github.com/tensorflow/tensorflow/issues/60408 | 1,680,695,933 | I_kwDOArmXAs5kLWJ9 | 60,408 | Missing installed C header | {
"login": "thorsten-klein",
"id": 32164039,
"node_id": "MDQ6VXNlcjMyMTY0MDM5",
"avatar_url": "https://avatars.githubusercontent.com/u/32164039?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/thorsten-klein",
"html_url": "https://github.com/thorsten-klein",
"followers_url": "https://api.github.com/users/thorsten-klein/followers",
"following_url": "https://api.github.com/users/thorsten-klein/following{/other_user}",
"gists_url": "https://api.github.com/users/thorsten-klein/gists{/gist_id}",
"starred_url": "https://api.github.com/users/thorsten-klein/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/thorsten-klein/subscriptions",
"organizations_url": "https://api.github.com/users/thorsten-klein/orgs",
"repos_url": "https://api.github.com/users/thorsten-klein/repos",
"events_url": "https://api.github.com/users/thorsten-klein/events{/privacy}",
"received_events_url": "https://api.github.com/users/thorsten-klein/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @thorsten-klein Thanks for reporting the issue.\r\n\r\nCould you please mention the steps you have followed to encounter the issue?\r\n\r\nAlso, please provide the error log to better understand the issue.\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60408\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60408\">No</a>\n"
] | 2023-04-24T08:12:02 | 2023-05-11T01:53:47 | 2023-05-11T01:53:43 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu 20
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
gcc-9.3.0
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
We install tensorflow via cmake (using conan).
For cmake we specify `-DTFLITE_ENABLE_INSTALL=ON` in order to install all files.
We have an simple C example where we just include tflite:
```
#include <tensorflow/lite/c/c_api.h>
```
This simple #include fails:
```
In file included from /CONAN/.conan/data/tensorflow-lite/2.12.0/conan_toolchain_catalog/build/package/3affdc49463f7dbc587d2b7b43afa94817639253/include/tensorflow/lite/interpreter.h:21,
from /home/EU.BSHG.COM/kleint/GIT/conan_toolchain_catalog/recipes/software/tensorflow-lite/2.12.0/test_package/hello.cpp:3:
/CONAN/.conan/data/tensorflow-lite/2.12.0/conan_toolchain_catalog/build/package/3affdc49463f7dbc587d2b7b43afa94817639253/include/tensorflow/lite/core/interpreter.h:55:10: fatal error: tensorflow/lite/profiling/telemetry/c/telemetry_setting_internal.h: No such file or directory
55 | #include "tensorflow/lite/profiling/telemetry/c/telemetry_setting_internal.h"
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
compilation terminated.
```
With current master I get similar issue:
```
In file included from /CONAN/.conan/data/tensorflow-lite/af92cf22/conan_toolchain_catalog/build/package/a31972e3f4561475d1be503229914494e93219e0/include/tensorflow/lite/core/async/async_signature_runner.h:23,
from /CONAN/.conan/data/tensorflow-lite/af92cf22/conan_toolchain_catalog/build/package/a31972e3f4561475d1be503229914494e93219e0/include/tensorflow/lite/core/interpreter.h:44,
from /CONAN/.conan/data/tensorflow-lite/af92cf22/conan_toolchain_catalog/build/package/a31972e3f4561475d1be503229914494e93219e0/include/tensorflow/lite/interpreter.h:21,
from /home/EU.BSHG.COM/kleint/GIT/conan_toolchain_catalog/recipes/software/tensorflow-lite/af92cf22/test_package/hello.cpp:3:
/CONAN/.conan/data/tensorflow-lite/af92cf22/conan_toolchain_catalog/build/package/a31972e3f4561475d1be503229914494e93219e0/include/tensorflow/lite/core/async/async_subgraph.h:24:10: fatal error: tensorflow/lite/core/async/interop/c/types.h: No such file or directory
24 | #include "tensorflow/lite/core/async/interop/c/types.h"
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
compilation terminated.
```
### Standalone code to reproduce the issue
```shell
#include <tensorflow/lite/c/c_api.h>
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60408/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60408/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60407 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60407/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60407/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60407/events | https://github.com/tensorflow/tensorflow/issues/60407 | 1,680,545,286 | I_kwDOArmXAs5kKxYG | 60,407 | Cannot currently create HexagonDelegate, but was working in the past | {
"login": "ioannispan",
"id": 43993192,
"node_id": "MDQ6VXNlcjQzOTkzMTky",
"avatar_url": "https://avatars.githubusercontent.com/u/43993192?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ioannispan",
"html_url": "https://github.com/ioannispan",
"followers_url": "https://api.github.com/users/ioannispan/followers",
"following_url": "https://api.github.com/users/ioannispan/following{/other_user}",
"gists_url": "https://api.github.com/users/ioannispan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ioannispan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ioannispan/subscriptions",
"organizations_url": "https://api.github.com/users/ioannispan/orgs",
"repos_url": "https://api.github.com/users/ioannispan/repos",
"events_url": "https://api.github.com/users/ioannispan/events{/privacy}",
"received_events_url": "https://api.github.com/users/ioannispan/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 2888762627,
"node_id": "MDU6TGFiZWwyODg4NzYyNjI3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteHexagonDelegate",
"name": "TFLiteHexagonDelegate",
"color": "72ECFE",
"default": false,
"description": ""
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@ioannispan,\r\nCould you you make sure that you're using the latest nightlies - may be clear the gradle cash ?\r\n\r\nWe just cloned tensorflow examples and updated image classification example to include hexagon. I followed the [guide](https://www.tensorflow.org/lite/performance/hexagon_delegate#hexagon_delegate_java_api)\r\n\r\nby adding the gradle dep in build.gradle\r\n\r\nand created directory jniLibs/arm64-v8a and included the files i got from the libhexagon_nn_skel extraction. as explained [here](https://www.tensorflow.org/lite/performance/hexagon_delegate#add_the_shared_library_to_your_app)\r\n\r\nAlso please have a look at this issue https://github.com/tensorflow/tensorflow/issues/55364 and https://github.com/tensorflow/tensorflow/issues/53380 for the reference. Thank you!",
"@tilakrayal \r\nI've cleared the gradle cache and done all the steps in the guide, but the error persists. The issues you stated did not help.\r\n\r\n**UPDATE**\r\nI've tried using the TFLite Model Benchmark Tool with Android Apk (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark/android) to see if i'll have the same issue with Hexagon. In order to be able to use the Hexagon delegate i do the following:\r\n\r\n```\r\nadb push libhexagon_interface.so /data/local/tmp\r\nadb push libhexagon_nn_skel.so /data/local/tmp\r\nadb push libhexagon_nn_skel_v65.so /data/local/tmp\r\nadb push libhexagon_nn_skel_v66.so /data/local/tmp\r\n```\r\n\r\nwhere `libhexagon_interface.so` comes from [this link](https://storage.googleapis.com/tensorflow-nightly-public/prod/tensorflow/release/lite/tools/nightly/latest/android_aarch64_libhexagon_interface.so) from [this guide](https://www.tensorflow.org/lite/performance/measurement) and `libhexagon_nn_skel(_v65/6).so` come from [this link](https://storage.cloud.google.com/download.tensorflow.org/tflite/hexagon_nn_skel_v1.20.0.1.run) (v1.20.0.1) from [this guide](https://www.tensorflow.org/lite/android/delegates/hexagon).\r\n\r\n When i set `use_hexagon=true` and **don't** specify the `hexagon_lib_path`, then the path is set to:\r\n\r\n`I tflite : Hexagon lib path: [/data/app/~~K6aeHsxXcgmL2FRThR7mBQ==/org.tensorflow.lite.benchmark-tPmERhUnFAHAenBJZq4OQw==/lib/arm64]`\r\n\r\nand i get the error:\r\n\r\n```\r\nW tflite : Failed to fetch Hexagon NN version. This might be because you're using incompatible versions of libhexagon_interface and libhexagon_nn_skel. You must use compatible versions. Refer to Tensorflow Lite Hexagon Delegate Guide.\r\nI tflite : Hexagon Delegate is not supported.\r\nW tflite : Could not create Hexagon delegate: platform may not support delegate or required libraries are missing\r\n```\r\n\r\nBut when i specify `hexagon_lib_path=/data/local/tmp/`, then the delegate is applied succesfully:\r\n\r\n```\r\nI tflite : Hexagon delegate created.\r\nI tflite : TfLiteHexagonDelegate delegate: 61 nodes delegated out of 61 nodes with 1 partitions.\r\nI tflite : Replacing 61 out of 61 node(s) with delegate (TfLiteHexagonDelegate) node, yielding 1 partitions for the whole graph.\r\n```\r\n\r\nDoes this help with the problem in my Android app in any way?\r\nThanks",
"Hi @ioannispan \r\n\r\nAlthough the documentation [suggests](https://www.tensorflow.org/lite/android/delegates/hexagon#example_usage) to use v1.20.0.1 , the [config](https://github.com/tensorflow/tensorflow/blob/master/third_party/hexagon/workspace.bzl) has v1.20.0.9 as latest version to use for nightly snapshots which can be downloaded from [here](https://storage.googleapis.com/mirror.tensorflow.org/storage.cloud.google.com/download.tensorflow.org/tflite/hexagon_nn_headers_v1.20.0.9.tgz).\r\n\r\nCould you please try with `libhexagon_interface.so` using v1.20.0.9 and see if it resolves the issue?\r\n\r\nThanks.",
"Hello @pjpratik \r\n\r\nI think i am missing something. The link you provided for v1.20.0.9 does not contain `libhexagon_nn_skel(_v65/6).so` files.\r\nI copy the new `libhexagon_interface.so` to my Android `jniLibs/arm64-v8a/` directory, but the error persists:\r\n\r\n`Failed to load libhexagon_interface.so, Error: dlopen failed: library \"libadsprpc.so\" not found: needed by /data/app/~~3WH2wsowpMNgALxjaSkcCw==/com.example.<project>--XTLMj82qPraRQM25waMKg==/lib/arm64/libhexagon_interface.so in namespace classloader-namespace`\r\n\r\nShould i put `libhexagon_interface.so` somewhere else?\r\nThank you",
"Hi @ioannispan \r\n\r\nI have observed that the path for `hexagon_lib_path` has to be `/data/local/tmp/` as per the build file for the benchmark tool.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/785f7f02f78c6af70ee79729ce95724e89a221bd/tensorflow/lite/tools/benchmark/BUILD#L38\r\n\r\nAre per the [hexagon delegate](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/delegates/hexagon#hexagon-delegate) documentation,\r\n\r\n>'libhexagon_interface.so' which holds the interface that the delegate uses. It must be available if you linked the hexagon_delegate library to TFLite. You can load it either from shell by overriding LD_LIBRARY_PATH=$LD_LIBRARY_PATH:\"path to the so\", or add it inside your apk in a way it is available.\r\n\r\n>'libhexagon_nn_skel(_v65/_v66).so' which holds the DSP code. Use TfLiteHexagonInitWithPath(..) and provide the path to the directory which holds the shared libraries for the Hexagon NN on device. If you're using TfLiteHexagonInit() then You will need to set environment variable \"ADSP_LIBRARY_PATH\" to \"path_to_the_lib\";/system/lib/rfsa/adsp;/system/vendor/lib/rfsa/adsp;/dsp Note that separator here is ';' not ':' You can push all 3 files, and the library will pick the one needed based on the runtime. Or if you are sure of what you will use on the device then push only one of them.\r\n\r\nCould you please confirm if you are following this instructions to set `.so` files?\r\n\r\nThanks.\r\n \r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60407\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60407\">No</a>\n"
] | 2023-04-24T06:28:17 | 2023-05-12T01:52:07 | 2023-05-12T01:52:04 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
org.tensorflow:tensorflow-lite:0.0.0-nightly-SNAPSHOT and org.tensorflow:tensorflow-lite-hexagon:0.0.0-nightly-SNAPSHOT with hexagon libraries v1.20.0.1
### Custom Code
Yes
### OS Platform and Distribution
Android 13
### Mobile device
Samsung Galaxy A71
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
The HexagonDelegate was working fine via a Java Android app on my device (Samsung Galaxy A71 with Snapdragon 730), but then i changed some things on the project (libraries versions, manifest) because i had issues with running some transformer models on the GPU and since then it is not working and produces the error:
Failed to load libhexagon_interface.so, Error: dlopen failed: library "libadsprpc.so" not found: needed by data/app/~~o6sPBobgR5g-DMgV2fEROg==/com.example.<project>-8QtHh6qQZAELc86wE5E8IA==/lib/arm64/libhexagon_interface.so in namespace classloader-namespace
I have also tried stable versions from 2.9.0 to 2.12.0 instead of the nightly snapshots and the error persists.
I can share my project if someone could look into it.
### Standalone code to reproduce the issue
```shell
On a Java project in Android Studio:
Follow the instructions in https://www.tensorflow.org/lite/android/delegates/hexagon#hexagon_delegate_java_api
build.gradle (:app):
def version = "0.0.0-nightly-SNAPSHOT"
implementation "org.tensorflow:tensorflow-lite:$version"
implementation "org.tensorflow:tensorflow-lite-hexagon:$version"
implementation "org.tensorflow:tensorflow-lite-select-tf-ops:$version"
After running the application on the device:
> adb shell ls /data/app/~~o6sPBobgR5g-DMgV2fEROg==/com.example.<project>-8QtHh6qQZAELc86wE5E8IA==/lib/arm64
libhexagon_interface.so
libhexagon_nn_skel.so
libhexagon_nn_skel_v65.so
libhexagon_nn_skel_v66.so
libtensorflowlite_flex_jni.so
libtensorflowlite_hexagon_jni.so
libtensorflowlite_jni.so
> adb shell cat /proc/cpuinfo | grep Hardware
Hardware : Qualcomm Technologies, Inc SDMMAGPIE
> adb shell cat /sys/devices/soc0/soc_id
365
> adb shell getprop ro.product.device
a71
> adb shell getprop ro.board.platform
sm6150
Library "libadsprpc.so" is present in /system/vendor/lib
Code to create a HexagonDelegate:
Interpreter.Options finalOptions = new Interpreter.Options();
try {
mHexagonDelegate = new HexagonDelegate(this);
finalOptions.addDelegate(mHexagonDelegate);
finalOptions.setUseXNNPACK(mOptions.useXNNPACK);
mInterpreter = new Interpreter(mModel, finalOptions);
} catch (UnsupportedOperationException e) {
// Hexagon delegate is not supported on this device.
Log.e(TAG, "Hexagon delegate is not supported on this device.");
return;
}
```
### Relevant log output
```shell
Android Studio log:
2023-04-24 09:14:43.588 19191-19449 tflite com.example.<project> E Failed to load libhexagon_interface.so, Error: dlopen failed: library "libadsprpc.so" not found: needed by /data/app/~~o6sPBobgR5g-DMgV2fEROg==/com.example.<project>-8QtHh6qQZAELc86wE5E8IA==/lib/arm64/libhexagon_interface.so in namespace classloader-namespace
2023-04-24 09:14:43.588 19191-19449 tflite com.example.<project> I Hexagon Delegate is not supported.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60407/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60407/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60406 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60406/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60406/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60406/events | https://github.com/tensorflow/tensorflow/issues/60406 | 1,680,413,797 | I_kwDOArmXAs5kKRRl | 60,406 | The dim size of inferred shape in GraphProperties is less than -1, which is inconsistent with TensorShapeProto | {
"login": "yisonzhu",
"id": 107918054,
"node_id": "U_kgDOBm6y5g",
"avatar_url": "https://avatars.githubusercontent.com/u/107918054?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yisonzhu",
"html_url": "https://github.com/yisonzhu",
"followers_url": "https://api.github.com/users/yisonzhu/followers",
"following_url": "https://api.github.com/users/yisonzhu/following{/other_user}",
"gists_url": "https://api.github.com/users/yisonzhu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yisonzhu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yisonzhu/subscriptions",
"organizations_url": "https://api.github.com/users/yisonzhu/orgs",
"repos_url": "https://api.github.com/users/yisonzhu/repos",
"events_url": "https://api.github.com/users/yisonzhu/events{/privacy}",
"received_events_url": "https://api.github.com/users/yisonzhu/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hey, anyone check this? I'd appreciate an explanation of why it's written this way and how to avoid security issues.",
"Hi,\r\n\r\nFor securities related issues, please use the proper channel.\r\n\r\nFollow [this](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) document for more details. Thanks"
] | 2023-04-24T04:07:40 | 2023-05-22T16:03:42 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
No
### OS Platform and Distribution
Ubuntu 22.04
### Mobile device
_No response_
### Python version
3.9
### Bazel version
5.3.0
### GCC/Compiler version
11.3.0
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
### Behavior
Viewed dim size less than -1 after called `GraphProperties::InferStatically`, while in [TensorShapeProto](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/tensor_shape.proto#L17) the comment says either the dim size is greater than 0 or -1 (meaning unknown).
```
message Dim {
// Size of the tensor in that dimension.
// This value must be >= -1, but values of -1 are reserved for "unknown"
// shapes (values of -1 mean "unknown" dimension).
int64 size = 1;
};
```
The two are inconsistent.
### The Cause
In [this code](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/costs/graph_properties.cc#L118) which constructs the inferred dims, it assigns a negative id to unknown dimensions, starting at -2.
```c++
// Assign a negative id to unknown dimensions, starting at -2 (the -1 id
// reserved by TensorFlow).
void ExtractValue(DimensionHandle d, int64_t* result) {
if (!InferenceContext::ValueKnown(d)) {
*result = -counter;
counter++;
} else {
...
}
}
```
It can be seen from the code that size<=-1 means unknown, but the unknown size in [this code](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/symbolic_shapes.cc#L42) is identified with `==-1`.
`bool IsUnknown(const TensorShapeProto::Dim& dim) { return dim.size() == -1; }`
And the [`ShapeIsSymbolicallyDefined`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/symbolic_shapes.cc#L44), which calls `IsUnknown `may cause bugs.
```c++
bool ShapeIsSymbolicallyDefined(const TensorShapeProto& shape) {
return !shape.unknown_rank() &&
std::all_of(
shape.dim().begin(), shape.dim().end(),
[](const TensorShapeProto::Dim& dim) { return !IsUnknown(dim); });
}
```
[`ShapesSymbolicallyEqual`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/symbolic_shapes.cc#L76) function is the same problem.
### Questions:
1. The inferred dim size is less than -1, inconsistent with TensorShapeProto, is this expected?
2. Is the `IsUnknown` function reasonable?
3. Do the `ShapeIsSymbolicallyDefined` and `ShapesSymbolicallyEqual` cause undefined behavior? I see some graph optimization path will call this function after shape inference.
### Standalone code to reproduce the issue
I manually print the shape inference log in the Tensorflow source code. First, patch my log into the Tensorflow source code, then compile the source code, and finally run the python script I gave. It can be seen from the log that the result of shape inference has dimensions less than -1.
```shell
git checkout v2.12.0
# apply patch
echo 'diff --git a/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc b/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc
index 40c27828d26..899a9d059cb 100644
--- a/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc
+++ b/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc
@@ -4452,6 +4452,26 @@ Status ArithmeticOptimizer::Optimize(Cluster* /*cluster*/,
VLOG(1) << "Shape inference failed." << status.error_message();
}
+ for (auto& node : optimized_graph_->node()) {
+ VLOG(0) << "node_name: " << node.name();
+ const auto& input_properties =
+ graph_properties_->GetInputProperties(node.name());
+ for (int i = 0; i < input_properties.size(); i++) {
+ auto& property = input_properties[i];
+ VLOG(0) << "input" << i << ": ";
+ const TensorShapeProto& tsp = property.shape();
+ if (tsp.unknown_rank()) {
+ VLOG(0) << "unknown shape";
+ continue;
+ }
+ VLOG(0) << "input_rank: " << tsp.dim_size();
+ for (int j = 0; j < tsp.dim_size(); j++) {
+ VLOG(0) << "dim" << j << " size: " << tsp.dim(j).size();
+ }
+ }
+ VLOG(0);
+ }
+
// Perform the optimizations.
TF_RETURN_IF_ERROR(SimplifyArithmeticOps(can_use_shapes));
*optimized_graph = std::move(*optimized_graph_);
' | git apply
# build
bazel build //tensorflow/tools/pip_package:build_pip_package
...(continue to build)
```
```python
import numpy as np
import tensorflow as tf
@tf.function(input_signature=[tf.TensorSpec(shape=(None, None), dtype=tf.float32)])
def fun(x):
y = tf.constant(np.ones((2, 4)), dtype=tf.float32)
return tf.add(x, y)
output = fun(np.ones((2, 4), dtype=np.float32))
print("output: ", output)
```
### Relevant log output
```shell
node_name: Add
input0:
input_rank: 2
dim0 size: 2
dim1 size: 4
input1:
input_rank: 2
dim0 size: -2
dim1 size: -3
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60406/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60406/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60405 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60405/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60405/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60405/events | https://github.com/tensorflow/tensorflow/issues/60405 | 1,680,271,540 | I_kwDOArmXAs5kJui0 | 60,405 | ImportError: DLL load failed while importing _pywrap_dtensor_device: The specified procedure could not be found. | {
"login": "faguilarc",
"id": 116742322,
"node_id": "U_kgDOBvVYsg",
"avatar_url": "https://avatars.githubusercontent.com/u/116742322?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/faguilarc",
"html_url": "https://github.com/faguilarc",
"followers_url": "https://api.github.com/users/faguilarc/followers",
"following_url": "https://api.github.com/users/faguilarc/following{/other_user}",
"gists_url": "https://api.github.com/users/faguilarc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/faguilarc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/faguilarc/subscriptions",
"organizations_url": "https://api.github.com/users/faguilarc/orgs",
"repos_url": "https://api.github.com/users/faguilarc/repos",
"events_url": "https://api.github.com/users/faguilarc/events{/privacy}",
"received_events_url": "https://api.github.com/users/faguilarc/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1188421838,
"node_id": "MDU6TGFiZWwxMTg4NDIxODM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows",
"name": "subtype:windows",
"color": "b619ea",
"default": false,
"description": "Windows Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @faguilarc, \r\nThanks for reporting the issue!\r\nCould you please confirm that you installed Tensorflow using pip and kindly share the steps you have followed to install Tensorflow. It is recommended to follow the installation instructions from [here](https://www.tensorflow.org/install/pip#windows-native). Thank you!",
"i don't know what is the reason, i had to downgrade, and after uninstalling everything for the fifteenth time it stopped giving me problems. Thanks ",
"@faguilarc I'm glad it's working now. If the issue has been resolved, please feel free to close it. Thank you! ",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60405\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60405\">No</a>\n"
] | 2023-04-24T01:07:49 | 2023-05-18T01:54:30 | 2023-05-18T01:54:26 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12
### Custom Code
No
### OS Platform and Distribution
Windows 10
### Mobile device
_No response_
### Python version
3.10.4
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
no
### GPU model and memory
no
### Current Behaviour?
I just upgraded tensorflow to 2.12.x and I get the following error when I run a .py in my project:
ImportError: DLL load failed while importing _pywrap_dtensor_device: The specified procedure could not be found.
How can I solve that ??
### Standalone code to reproduce the issue
```shell
Traceback (most recent call last):
File "C:\Users\FRANK-PC\Documents\GitHub\Syntactic-analysis-system-of-Cuban-addresses\examples\generate_and_save_data_set.py", line 3, in <module>
from src.data_realism_converter.data_set_adapter import DataSetAdapter
File "C:\Users\FRANK-PC\Documents\GitHub\Syntactic-analysis-system-of-Cuban-addresses\src\data_realism_converter\data_set_adapter.py", line 2, in <module>
from keras.utils import pad_sequences, to_categorical
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\__init__.py", line 21, in <module>
from keras import models
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\models\__init__.py", line 18, in <module>
from keras.engine.functional import Functional
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\functional.py", line 26, in <module>
from keras import backend
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\backend.py", line 34, in <module>
from keras.dtensor import dtensor_api as dtensor
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\dtensor\__init__.py", line 22, in <module>
from tensorflow.compat.v2.experimental import dtensor as dtensor_api
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\tensorflow\_api\v2\compat\v2\experimental\dtensor\__init__.py", line 8, in <module>
from tensorflow.dtensor.python.accelerator_util import initialize_accelerator_system
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\tensorflow\dtensor\python\accelerator_util.py", line 24, in <module>
from tensorflow.dtensor.python import tpu_util
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\tensorflow\dtensor\python\tpu_util.py", line 24, in <module>
from tensorflow.dtensor.python import dtensor_device
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\tensorflow\dtensor\python\dtensor_device.py", line 27, in <module>
from tensorflow.dtensor.python import layout as layout_lib
File "C:\Users\FRANK-PC\AppData\Local\Programs\Python\Python310\lib\site-packages\tensorflow\dtensor\python\layout.py", line 25, in <module>
from tensorflow.python import _pywrap_dtensor_device
ImportError: DLL load failed while importing _pywrap_dtensor_device: The specified procedure could not be found.
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60405/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60405/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60404 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60404/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60404/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60404/events | https://github.com/tensorflow/tensorflow/pull/60404 | 1,680,175,899 | PR_kwDOArmXAs5O8icf | 60,404 | Add ignore nan loss and metric | {
"login": "sagi-ezri",
"id": 23264468,
"node_id": "MDQ6VXNlcjIzMjY0NDY4",
"avatar_url": "https://avatars.githubusercontent.com/u/23264468?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sagi-ezri",
"html_url": "https://github.com/sagi-ezri",
"followers_url": "https://api.github.com/users/sagi-ezri/followers",
"following_url": "https://api.github.com/users/sagi-ezri/following{/other_user}",
"gists_url": "https://api.github.com/users/sagi-ezri/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sagi-ezri/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sagi-ezri/subscriptions",
"organizations_url": "https://api.github.com/users/sagi-ezri/orgs",
"repos_url": "https://api.github.com/users/sagi-ezri/repos",
"events_url": "https://api.github.com/users/sagi-ezri/events{/privacy}",
"received_events_url": "https://api.github.com/users/sagi-ezri/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @sagi-ezri It looks like your PR relates to the Keras component. Please submit it to the github.com/keras-team/keras repository instead. Thankyou.\r\n@fchollet, @qlzh727"
] | 2023-04-23T21:01:12 | 2023-04-24T04:10:50 | 2023-04-24T04:10:50 | NONE | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60404",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60404",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60404.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60404.patch",
"merged_at": null
} | Create classes for metrics and losses in the Keras TensorFlow project that can ignore NaN values in the labels by wrapping another metric or loss and computing it. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60404/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60404/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60403 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60403/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60403/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60403/events | https://github.com/tensorflow/tensorflow/issues/60403 | 1,680,024,646 | I_kwDOArmXAs5kIyRG | 60,403 | error: undefined reference to 'TfLiteGpuDelegateBindGlBufferToTensor' | {
"login": "picard314",
"id": 80811676,
"node_id": "MDQ6VXNlcjgwODExNjc2",
"avatar_url": "https://avatars.githubusercontent.com/u/80811676?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/picard314",
"html_url": "https://github.com/picard314",
"followers_url": "https://api.github.com/users/picard314/followers",
"following_url": "https://api.github.com/users/picard314/following{/other_user}",
"gists_url": "https://api.github.com/users/picard314/gists{/gist_id}",
"starred_url": "https://api.github.com/users/picard314/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/picard314/subscriptions",
"organizations_url": "https://api.github.com/users/picard314/orgs",
"repos_url": "https://api.github.com/users/picard314/repos",
"events_url": "https://api.github.com/users/picard314/events{/privacy}",
"received_events_url": "https://api.github.com/users/picard314/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 2671339633,
"node_id": "MDU6TGFiZWwyNjcxMzM5NjMz",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate",
"name": "TFLiteGpuDelegate",
"color": "F71F04",
"default": false,
"description": "TFLite Gpu delegate issue"
},
{
"id": 4511033337,
"node_id": "LA_kwDOArmXAs8AAAABDODn-Q",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10",
"name": "TF 2.10",
"color": "C15088",
"default": false,
"description": ""
}
] | open | false | {
"login": "impjdi",
"id": 9742927,
"node_id": "MDQ6VXNlcjk3NDI5Mjc=",
"avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/impjdi",
"html_url": "https://github.com/impjdi",
"followers_url": "https://api.github.com/users/impjdi/followers",
"following_url": "https://api.github.com/users/impjdi/following{/other_user}",
"gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/impjdi/subscriptions",
"organizations_url": "https://api.github.com/users/impjdi/orgs",
"repos_url": "https://api.github.com/users/impjdi/repos",
"events_url": "https://api.github.com/users/impjdi/events{/privacy}",
"received_events_url": "https://api.github.com/users/impjdi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "impjdi",
"id": 9742927,
"node_id": "MDQ6VXNlcjk3NDI5Mjc=",
"avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/impjdi",
"html_url": "https://github.com/impjdi",
"followers_url": "https://api.github.com/users/impjdi/followers",
"following_url": "https://api.github.com/users/impjdi/following{/other_user}",
"gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/impjdi/subscriptions",
"organizations_url": "https://api.github.com/users/impjdi/orgs",
"repos_url": "https://api.github.com/users/impjdi/repos",
"events_url": "https://api.github.com/users/impjdi/events{/privacy}",
"received_events_url": "https://api.github.com/users/impjdi/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @tilakrayal,\r\n\r\nSorry, I should have noticed that you are the Assignee right now. Please can you shed me some light on this issue?\r\n\r\nThanks~",
"Hi @picard314 \r\n\r\nThe `TfLiteGpuDelegateBindGlBufferToTensor` should be able to refer by inclusion of gpu_api_delegate.h\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/41c3f9ed867b91b8922c6f5828ecce63c85188dd/tensorflow/lite/delegates/gpu/cl/gpu_api_delegate.h#L91\r\n\r\nCould you please provide more details or a sample code snippet to reproduce the error?\r\n\r\nThanks",
"Hi @pjpratik \r\n\r\nThanks a lot for looking into my issue. I am sorry for replying late since I was swamped in a sudden urgent task.\r\n\r\n[Android.tar.gz](https://github.com/tensorflow/tensorflow/files/11330805/Android.tar.gz)\r\n\r\nHere I paste a demo project which can reveal the error I have encountered. Please unzip this .tar.gz and check \"Android/README.txt\" first. \r\n\r\nBesides, I'd like to ask whether or not your \"texture I/O\" supports TfLiteGpuDelegateV2.\r\n\r\nThanks.\r\n",
"Hi, @sachinprasadhs and @impjdi \r\n\r\nMay I lit up this issue again~ Thanks for your attention!\r\n\r\nNow I guess my \"libtensorflowlite_gpu_delegate.so\" (attached) may be incomplete. It was got by running\r\n\r\nbazel build -c opt --config android_arm64 --copt -DCL_DELEGATE_NO_GL --copt -DTFLITE_GPU_BINARY_RELEASE --linkopt -s tensorflow/lite/delegates/gpu:libtensorflowlite_gpu_delegate.so\r\n\r\n, with logs looking correct. What do you say please~\r\n\r\nI am looking forward to your replies. Thanks again!\r\n\r\nBest,\r\npicard314"
] | 2023-04-23T13:16:04 | 2023-05-05T11:11:04 | null | NONE | null | null | null | Hi @impjdi the amazing porygon~,
I've checkout-ed the branch "v2.10.0" for deploying tflite on Android. In order to avoiding cpu-gpu memory copy, I used the function 'TfLiteGpuDelegateBindGlBufferToTensor' but got logs saying as the issue title during project configuration.
BTW,
I had #include "tensorflow/lite/delegates/gpu/cl/gpu_api_delegate.h"
I had compiled "libtensorflowlite.so", "libtensorflowlite_gpu_delegate.so", and all those .h included by my project
Please can you shed me some light?
Thanks~ | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60403/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60403/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60402 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60402/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60402/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60402/events | https://github.com/tensorflow/tensorflow/pull/60402 | 1,679,985,407 | PR_kwDOArmXAs5O7-Pq | 60,402 | Fix xla operation semantics alltoall typo | {
"login": "chaokunyang",
"id": 12445254,
"node_id": "MDQ6VXNlcjEyNDQ1MjU0",
"avatar_url": "https://avatars.githubusercontent.com/u/12445254?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/chaokunyang",
"html_url": "https://github.com/chaokunyang",
"followers_url": "https://api.github.com/users/chaokunyang/followers",
"following_url": "https://api.github.com/users/chaokunyang/following{/other_user}",
"gists_url": "https://api.github.com/users/chaokunyang/gists{/gist_id}",
"starred_url": "https://api.github.com/users/chaokunyang/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/chaokunyang/subscriptions",
"organizations_url": "https://api.github.com/users/chaokunyang/orgs",
"repos_url": "https://api.github.com/users/chaokunyang/repos",
"events_url": "https://api.github.com/users/chaokunyang/events{/privacy}",
"received_events_url": "https://api.github.com/users/chaokunyang/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60402/checks?check_run_id=12954689662) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request."
] | 2023-04-23T11:12:16 | 2023-04-25T03:05:06 | 2023-04-24T16:52:09 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60402",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60402",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60402.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60402.patch",
"merged_at": "2023-04-24T16:52:09"
} | Fix xla operation semantics `alltoall` typo to keep consistent with:
```python
AllToAll(x, /*split_dimension=*/1, /*concat_dimension=*/0, /*split_count=*/4);
``` | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60402/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60402/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60401 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60401/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60401/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60401/events | https://github.com/tensorflow/tensorflow/issues/60401 | 1,679,670,773 | I_kwDOArmXAs5kHb31 | 60,401 | Cuda memory error | {
"login": "Utkarsha666",
"id": 47937976,
"node_id": "MDQ6VXNlcjQ3OTM3OTc2",
"avatar_url": "https://avatars.githubusercontent.com/u/47937976?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Utkarsha666",
"html_url": "https://github.com/Utkarsha666",
"followers_url": "https://api.github.com/users/Utkarsha666/followers",
"following_url": "https://api.github.com/users/Utkarsha666/following{/other_user}",
"gists_url": "https://api.github.com/users/Utkarsha666/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Utkarsha666/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Utkarsha666/subscriptions",
"organizations_url": "https://api.github.com/users/Utkarsha666/orgs",
"repos_url": "https://api.github.com/users/Utkarsha666/repos",
"events_url": "https://api.github.com/users/Utkarsha666/events{/privacy}",
"received_events_url": "https://api.github.com/users/Utkarsha666/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 1463677878,
"node_id": "MDU6TGFiZWwxNDYzNjc3ODc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance",
"name": "type:performance",
"color": "159b2e",
"default": false,
"description": "Performance Issue"
},
{
"id": 4511033337,
"node_id": "LA_kwDOArmXAs8AAAABDODn-Q",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10",
"name": "TF 2.10",
"color": "C15088",
"default": false,
"description": ""
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@Utkarsha666,\r\nCould you please try limiting GPU memory growth using any of the methods listed in this guide.\r\nhttps://www.tensorflow.org/guide/gpu#limiting_gpu_memory_growth\r\n\r\nCould you please try using the latest Tensorflow version for windows which can be installed with WSL2.\r\nAlso, from TensorFlow 2.12 CUDA and CuDNN dependency has been upgraded to 11.8 and 8.6 respectively.\r\nRefer the document here for installation instructions https://www.tensorflow.org/install/pip and let us know if you observe the same behavior in the latest Tensorflow version. Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60401\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60401\">No</a>\n"
] | 2023-04-22T19:33:13 | 2023-05-11T01:53:56 | 2023-05-11T01:53:48 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Performance
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.10
### Custom Code
Yes
### OS Platform and Distribution
Windows 11
### Mobile device
_No response_
### Python version
3.8.16
### Bazel version
_No response_
### GCC/Compiler version
visual studio
### CUDA/cuDNN version
11.2/v8.2.1.32
### GPU model and memory
GTX 1650/ System Memory:8GB
### Current Behaviour?
I am trying to train a model for binary classification, with class1 dataset= 2716 and class 2 dataset= 2164,
The training did happened successfully but during prediction I got error.
The code is quite short so I will paste the whole code here,
```
import matplotlib.pyplot as plt
from tensorflow.keras.models import Model
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense
from tensorflow.keras.applications import vgg16
from tensorflow.keras.optimizers import Adam, SGD
import tensorflow as tf
import scipy
import os
import cv2
from PIL import Image
import numpy as np
# i have habit of writing this on every program, since my GPU memory is only 4GB
if tf.config.list_physical_devices('GPU'):
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], enable=True)
tf.config.experimental.set_virtual_device_configuration(physical_devices[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=12000)])
SIZE = 224
dataset = []
label = []
parasitized_images = os.listdir('Parasitized/')
for i, image_name in enumerate(parasitized_images):
if (image_name.split('.')[1] == 'png'):
image = cv2.imread('Parasitized/' + image_name)
image = Image.fromarray(image, 'RGB')
image = image.resize((SIZE, SIZE))
dataset.append(np.array(image))
label.append(1)
uninfected_images = os.listdir('Uninfected/')
for i, image_name in enumerate(uninfected_images):
if (image_name.split('.')[1] == 'png'):
image = cv2.imread('Uninfected/' + image_name)
image = Image.fromarray(image, 'RGB')
image = image.resize((SIZE, SIZE))
dataset.append(np.array(image))
label.append(0)
dataset = np.array(dataset)
label = np.array(label)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(dataset, label, test_size=0.2, random_state=0)
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
from tensorflow.keras.utils import to_categorical
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
def get_model(input_shape = (224, 224, 3)):
with tf.device('/gpu:0'):
vgg = vgg16.VGG16(weights='imagenet', include_top=False, input_shape = input_shape)
for layer in vgg.layers[:-5]:
print(layer.name)
layer.trainable = False
x = vgg.output
x = GlobalAveragePooling2D()(x)
x = Dense(2, activation="softmax")(x)
model = Model(vgg.input, x)
return model
model = get_model(input_shape = (224, 224, 3))
with tf.device('/cpu:0'):
model.compile(loss="categorical_crossentropy",
optimizer = SGD(lr=0.0001, momentum=0.9), metrics=['accuracy'])
print(model.summary())
history = model.fit(X_train, y_train, batch_size=8, epochs=5, validation_data=(X_test, y_test))
#plot the training and validation accuracy and loss at each epoch
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'y', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
plt.plot(epochs, acc, 'y', label='Training acc')
plt.plot(epochs, val_acc, 'r', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
n=300 #Select the index of image to be loaded for testing
img = X_test[n]
plt.imshow(img)
input_img = np.expand_dims(img, axis=0) #Expand dims so the input is (num images, x, y, c)
print("The prediction for this image is: ", np.argmax(model.predict(input_img)))
print("The actual label for this image is: ", np.argmax(y_test[n]))
from sklearn.metrics import confusion_matrix
import seaborn as sns
y_pred = np.argmax(model.predict(X_test), axis=1)
cm=confusion_matrix(np.argmax(y_test, axis=1), y_pred)
sns.heatmap(cm, annot=True)
#Identify all images classified as parasitized
parasited_image_idx = np.where(y_pred == 1)[0]
predicted_as_para=[]
for i in parasited_image_idx:
par_img = X_test[i]
#plt.imsave("results_classified_as_para/para_"+str(i)+".png", par_img)
predicted_as_para.append(par_img)
predicted_as_para = np.array(predicted_as_para)
```
### Standalone code to reproduce the issue
```shell
from sklearn.metrics import confusion_matrix
import seaborn as sns
y_pred = np.argmax(model.predict(X_test), axis=1)
cm=confusion_matrix(np.argmax(y_test, axis=1), y_pred)
sns.heatmap(cm, annot=True)
```
### Relevant log output
```shell
Traceback (most recent call last):
Cell In[2], line 4
y_pred = np.argmax(model.predict(X_test), axis=1)
File D:\anaconda3\envs\tensorflow-gpu\lib\site-packages\keras\utils\traceback_utils.py:70 in error_handler
raise e.with_traceback(filtered_tb) from None
File D:\anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\framework\constant_op.py:102 in convert_to_eager_tensor
return ops.EagerTensor(value, ctx.device_name, dtype)
InternalError: Failed copying input tensor from /job:localhost/replica:0/task:0/device:CPU:0 to /job:localhost/replica:0/task:0/device:GPU:0 in order to run _EagerConst: Dst tensor is not initialized.
2023-04-23 01:00:06.362905: I tensorflow/stream_executor/cuda/cuda_driver.cc:733] failed to allocate 8.41G (9029127168 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory
2023-04-23 01:00:06.507445: I tensorflow/stream_executor/cuda/cuda_driver.cc:733] failed to allocate 8.41G (9029127168 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory
2023-04-23 01:00:16.685829: I tensorflow/stream_executor/cuda/cuda_driver.cc:733] failed to allocate 8.41G (9029127168 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory
2023-04-23 01:00:16.820275: I tensorflow/stream_executor/cuda/cuda_driver.cc:733] failed to allocate 8.41G (9029127168 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory
2023-04-23 01:00:16.820335: W tensorflow/core/common_runtime/bfc_allocator.cc:479] Allocator (GPU_0_bfc) ran out of memory trying to allocate 560.44MiB (rounded to 587661312)requested by op _EagerConst
If the cause is memory fragmentation maybe the environment variable 'TF_GPU_ALLOCATOR=cuda_malloc_async' will improve the situation.
Current allocation summary follows.
Current allocation summary follows.
2023-04-23 01:00:16.820350: I tensorflow/core/common_runtime/bfc_allocator.cc:1033] BFCAllocator dump for GPU_0_bfc
2023-04-23 01:00:16.820363: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (256): Total Chunks: 45, Chunks in use: 44. 11.2KiB allocated for chunks. 11.0KiB in use in bin. 740B client-requested in use in bin.
2023-04-23 01:00:16.820380: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (512): Total Chunks: 2, Chunks in use: 2. 1.0KiB allocated for chunks. 1.0KiB in use in bin. 1.0KiB client-requested in use in bin.
2023-04-23 01:00:16.820394: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (1024): Total Chunks: 4, Chunks in use: 4. 4.2KiB allocated for chunks. 4.2KiB in use in bin. 4.0KiB client-requested in use in bin.
2023-04-23 01:00:16.820405: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (2048): Total Chunks: 9, Chunks in use: 9. 20.0KiB allocated for chunks. 20.0KiB in use in bin. 18.0KiB client-requested in use in bin.
2023-04-23 01:00:16.820416: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (4096): Total Chunks: 4, Chunks in use: 4. 22.5KiB allocated for chunks. 22.5KiB in use in bin. 22.4KiB client-requested in use in bin.
2023-04-23 01:00:16.820426: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (8192): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820437: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (16384): Total Chunks: 1, Chunks in use: 1. 30.5KiB allocated for chunks. 30.5KiB in use in bin. 30.5KiB client-requested in use in bin.
2023-04-23 01:00:16.820447: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (32768): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820456: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (65536): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820466: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (131072): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820477: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (262144): Total Chunks: 2, Chunks in use: 2. 707.0KiB allocated for chunks. 707.0KiB in use in bin. 432.0KiB client-requested in use in bin.
2023-04-23 01:00:16.820488: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (524288): Total Chunks: 2, Chunks in use: 2. 1.14MiB allocated for chunks. 1.14MiB in use in bin. 1.14MiB client-requested in use in bin.
2023-04-23 01:00:16.820499: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (1048576): Total Chunks: 1, Chunks in use: 1. 1.97MiB allocated for chunks. 1.97MiB in use in bin. 1.12MiB client-requested in use in bin.
2023-04-23 01:00:16.820510: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (2097152): Total Chunks: 2, Chunks in use: 2. 4.50MiB allocated for chunks. 4.50MiB in use in bin. 4.50MiB client-requested in use in bin.
2023-04-23 01:00:16.820520: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (4194304): Total Chunks: 2, Chunks in use: 1. 10.06MiB allocated for chunks. 4.50MiB in use in bin. 4.50MiB client-requested in use in bin.
2023-04-23 01:00:16.820531: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (8388608): Total Chunks: 8, Chunks in use: 8. 72.00MiB allocated for chunks. 72.00MiB in use in bin. 72.00MiB client-requested in use in bin.
2023-04-23 01:00:16.820541: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (16777216): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820551: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (33554432): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820560: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (67108864): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820572: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (134217728): Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.
2023-04-23 01:00:16.820584: I tensorflow/core/common_runtime/bfc_allocator.cc:1040] Bin (268435456): Total Chunks: 3, Chunks in use: 2. 3.22GiB allocated for chunks. 2.74GiB in use in bin. 2.74GiB client-requested in use in bin.
2023-04-23 01:00:16.820594: I tensorflow/core/common_runtime/bfc_allocator.cc:1056] Bin for 560.44MiB was 256.00MiB, Chunk State:
2023-04-23 01:00:16.820607: I tensorflow/core/common_runtime/bfc_allocator.cc:1062] Size: 497.67MiB | Requested Size: 9.00MiB | in_use: 0 | bin_num: 20, prev: Size: 560.44MiB | Requested Size: 560.44MiB | in_use: 1 | bin_num: -1
2023-04-23 01:00:16.820615: I tensorflow/core/common_runtime/bfc_allocator.cc:1069] Next region of size 3553784832
2023-04-23 01:00:16.820623: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00000 of size 1280 next 1
2023-04-23 01:00:16.820630: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00500 of size 256 next 2
2023-04-23 01:00:16.820637: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00600 of size 256 next 3
2023-04-23 01:00:16.820644: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00700 of size 256 next 5
2023-04-23 01:00:16.820651: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00800 of size 256 next 6
2023-04-23 01:00:16.820658: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00900 of size 256 next 4
2023-04-23 01:00:16.820665: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00a00 of size 256 next 7
2023-04-23 01:00:16.820672: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00b00 of size 256 next 12
2023-04-23 01:00:16.820679: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00c00 of size 256 next 10
2023-04-23 01:00:16.820686: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00d00 of size 256 next 11
2023-04-23 01:00:16.820693: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa00e00 of size 512 next 15
2023-04-23 01:00:16.820700: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01000 of size 256 next 16
2023-04-23 01:00:16.820707: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01100 of size 256 next 19
2023-04-23 01:00:16.820714: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01200 of size 256 next 50
2023-04-23 01:00:16.820722: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01300 of size 256 next 22
2023-04-23 01:00:16.820729: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01400 of size 256 next 20
2023-04-23 01:00:16.820736: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01500 of size 256 next 21
2023-04-23 01:00:16.820743: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01600 of size 1024 next 25
2023-04-23 01:00:16.820750: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01a00 of size 256 next 26
2023-04-23 01:00:16.820757: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01b00 of size 256 next 29
2023-04-23 01:00:16.820764: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa01c00 of size 1024 next 32
2023-04-23 01:00:16.820771: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02000 of size 256 next 56
2023-04-23 01:00:16.820777: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02100 of size 256 next 57
2023-04-23 01:00:16.820784: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02200 of size 256 next 58
2023-04-23 01:00:16.820791: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02300 of size 256 next 35
2023-04-23 01:00:16.820799: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02400 of size 256 next 30
2023-04-23 01:00:16.820806: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02500 of size 256 next 31
2023-04-23 01:00:16.820813: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02600 of size 2048 next 37
2023-04-23 01:00:16.820820: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02e00 of size 256 next 38
2023-04-23 01:00:16.820827: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa02f00 of size 256 next 41
2023-04-23 01:00:16.820834: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa03000 of size 2048 next 44
2023-04-23 01:00:16.820841: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa03800 of size 2048 next 8
2023-04-23 01:00:16.820848: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa04000 of size 256 next 54
2023-04-23 01:00:16.820855: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa04100 of size 512 next 17
2023-04-23 01:00:16.820863: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa04300 of size 1024 next 28
2023-04-23 01:00:16.820870: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa04700 of size 2048 next 39
2023-04-23 01:00:16.820877: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa04f00 of size 2048 next 49
2023-04-23 01:00:16.820884: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa05700 of size 2048 next 51
2023-04-23 01:00:16.820891: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa05f00 of size 2048 next 65
2023-04-23 01:00:16.820898: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa06700 of size 3072 next 52
2023-04-23 01:00:16.820908: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa07300 of size 256 next 47
2023-04-23 01:00:16.820916: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa07400 of size 6912 next 42
2023-04-23 01:00:16.820923: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa08f00 of size 281600 next 14
2023-04-23 01:00:16.820930: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aa4db00 of size 442368 next 18
2023-04-23 01:00:16.820937: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50aab9b00 of size 2064384 next 23
2023-04-23 01:00:16.820944: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50acb1b00 of size 589824 next 13
2023-04-23 01:00:16.820951: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50ad41b00 of size 4718592 next 33
2023-04-23 01:00:16.820957: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1c1b00 of size 256 next 59
2023-04-23 01:00:16.820964: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1c1c00 of size 256 next 60
2023-04-23 01:00:16.820971: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1c1d00 of size 256 next 61
2023-04-23 01:00:16.820978: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1c1e00 of size 256 next 62
2023-04-23 01:00:16.820985: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1c1f00 of size 3072 next 24
2023-04-23 01:00:16.820992: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1c2b00 of size 4096 next 48
2023-04-23 01:00:16.821000: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1c3b00 of size 31232 next 55
2023-04-23 01:00:16.821007: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cb500 of size 4096 next 67
2023-04-23 01:00:16.821014: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cc500 of size 256 next 68
2023-04-23 01:00:16.821021: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cc600 of size 256 next 69
2023-04-23 01:00:16.821028: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cc700 of size 256 next 70
2023-04-23 01:00:16.821034: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cc800 of size 256 next 71
2023-04-23 01:00:16.821042: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cc900 of size 256 next 72
2023-04-23 01:00:16.821050: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cca00 of size 256 next 73
2023-04-23 01:00:16.821057: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1ccb00 of size 256 next 74
2023-04-23 01:00:16.821064: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1ccc00 of size 256 next 75
2023-04-23 01:00:16.821070: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1ccd00 of size 256 next 76
2023-04-23 01:00:16.821077: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cce00 of size 256 next 81
2023-04-23 01:00:16.821084: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1ccf00 of size 256 next 78
2023-04-23 01:00:16.821091: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] Free at 50b1cd000 of size 256 next 85
2023-04-23 01:00:16.821098: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cd100 of size 256 next 96
2023-04-23 01:00:16.821104: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cd200 of size 256 next 86
2023-04-23 01:00:16.821111: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cd300 of size 7936 next 93
2023-04-23 01:00:16.821118: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b1cf200 of size 602112 next 89
2023-04-23 01:00:16.821125: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] Free at 50b262200 of size 5830912 next 36
2023-04-23 01:00:16.821132: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50b7f1b00 of size 2359296 next 27
2023-04-23 01:00:16.821140: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50ba31b00 of size 2359296 next 40
2023-04-23 01:00:16.821147: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50bc71b00 of size 9437184 next 34
2023-04-23 01:00:16.821154: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50c571b00 of size 9437184 next 46
2023-04-23 01:00:16.821161: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50ce71b00 of size 9437184 next 45
2023-04-23 01:00:16.821168: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50d771b00 of size 9437184 next 9
2023-04-23 01:00:16.821174: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50e071b00 of size 9437184 next 43
2023-04-23 01:00:16.821181: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 50e971b00 of size 2349441024 next 53
2023-04-23 01:00:16.821188: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 59aa0bb00 of size 9437184 next 63
2023-04-23 01:00:16.821195: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 59b30bb00 of size 9437184 next 64
2023-04-23 01:00:16.821202: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 59bc0bb00 of size 9437184 next 66
2023-04-23 01:00:16.821209: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] InUse at 59c50bb00 of size 587661312 next 84
2023-04-23 01:00:16.821216: I tensorflow/core/common_runtime/bfc_allocator.cc:1089] Free at 5bf57bb00 of size 521844992 next 18446744073709551615
2023-04-23 01:00:16.821223: I tensorflow/core/common_runtime/bfc_allocator.cc:1094] Summary of in-use Chunks by size:
2023-04-23 01:00:16.821232: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 44 Chunks of size 256 totalling 11.0KiB
2023-04-23 01:00:16.821241: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 2 Chunks of size 512 totalling 1.0KiB
2023-04-23 01:00:16.821249: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 3 Chunks of size 1024 totalling 3.0KiB
2023-04-23 01:00:16.821258: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 1280 totalling 1.2KiB
2023-04-23 01:00:16.821267: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 7 Chunks of size 2048 totalling 14.0KiB
2023-04-23 01:00:16.821277: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 2 Chunks of size 3072 totalling 6.0KiB
2023-04-23 01:00:16.821286: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 2 Chunks of size 4096 totalling 8.0KiB
2023-04-23 01:00:16.821294: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 6912 totalling 6.8KiB
2023-04-23 01:00:16.821303: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 7936 totalling 7.8KiB
2023-04-23 01:00:16.821313: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 31232 totalling 30.5KiB
2023-04-23 01:00:16.821322: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 281600 totalling 275.0KiB
2023-04-23 01:00:16.821330: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 442368 totalling 432.0KiB
2023-04-23 01:00:16.821339: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 589824 totalling 576.0KiB
2023-04-23 01:00:16.821347: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 602112 totalling 588.0KiB
2023-04-23 01:00:16.821356: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 2064384 totalling 1.97MiB
2023-04-23 01:00:16.821365: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 2 Chunks of size 2359296 totalling 4.50MiB
2023-04-23 01:00:16.821373: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 4718592 totalling 4.50MiB
2023-04-23 01:00:16.821382: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 8 Chunks of size 9437184 totalling 72.00MiB
2023-04-23 01:00:16.821390: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 587661312 totalling 560.44MiB
2023-04-23 01:00:16.821399: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 2349441024 totalling 2.19GiB
2023-04-23 01:00:16.821407: I tensorflow/core/common_runtime/bfc_allocator.cc:1101] Sum Total of in-use chunks: 2.82GiB
2023-04-23 01:00:16.821416: I tensorflow/core/common_runtime/bfc_allocator.cc:1103] total_region_allocated_bytes_: 3553784832 memory_limit_: 12582912000 available bytes: 9029127168 curr_region_allocation_bytes_: 25165824000
2023-04-23 01:00:16.821428: I tensorflow/core/common_runtime/bfc_allocator.cc:1109] Stats:
Limit: 12582912000
InUse: 3026108672
MaxInUse: 3553784320
NumAllocs: 299589
MaxAllocSize: 2349441024
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0
2023-04-23 01:00:16.821441: W tensorflow/core/common_runtime/bfc_allocator.cc:491] **************************************************************************************______________
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60401/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60401/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60400 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60400/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60400/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60400/events | https://github.com/tensorflow/tensorflow/issues/60400 | 1,679,648,944 | I_kwDOArmXAs5kHWiw | 60,400 | The inferred shape of `tf.RaggedTensor.row_lengths(axis=2)` in Keras graph is incorrect for ragged tensor with uniform row lengths | {
"login": "foxik",
"id": 560016,
"node_id": "MDQ6VXNlcjU2MDAxNg==",
"avatar_url": "https://avatars.githubusercontent.com/u/560016?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/foxik",
"html_url": "https://github.com/foxik",
"followers_url": "https://api.github.com/users/foxik/followers",
"following_url": "https://api.github.com/users/foxik/following{/other_user}",
"gists_url": "https://api.github.com/users/foxik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/foxik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/foxik/subscriptions",
"organizations_url": "https://api.github.com/users/foxik/orgs",
"repos_url": "https://api.github.com/users/foxik/repos",
"events_url": "https://api.github.com/users/foxik/events{/privacy}",
"received_events_url": "https://api.github.com/users/foxik/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @foxik\r\nThank you for reporting this issue!\r\n\r\nI was able to replicate the issue in Colab using Tensorflow 2.12 and tf-nightly(2.13.0.dev20230424). Please find the gists - [TF 2.12](https://colab.sandbox.google.com/gist/synandi/3307d76df72bd5181ed5aa4dd639b7ac/60400.ipynb) & [tf-nightly](https://colab.sandbox.google.com/gist/synandi/fef428141788b9021bb529750e6d7f1c/60400_nightly.ipynb). \r\nThank you!\r\n ",
"Hi @foxik ,\r\n\r\nThe difference in results are due to 2 reasons.The code `inputs.row_lengths(axis=1)` outputs `KerasTensor` with `type_spec=TensorSpec` whereas inputs.row_lengths(axis=2) outputs` KerasTensor(type_spec=RaggedTensorSpec)`. Please note the difference here `TensorSpec` vs `RaggedTensorSpec`.\r\n\r\nWhen we apply index/slicing operation [:] , internally both calls __getitem__ method and you can find from the colab gist attached in [comment](https://github.com/tensorflow/tensorflow/issues/60400#issuecomment-1520309736), for axis=1 tf.__operators__.getitem' method called and for axis=2 'tf.__operators__.ragged_getitem' called and both are different methods and hence different results.\r\n\r\n```\r\nprint(inputs.row_lengths(axis=1))\r\n#KerasTensor(type_spec=TensorSpec(shape=(None,), dtype=tf.int64, name=None), name='input.row_lengths/sub:0', description=\"created by layer 'input.row_lengths'\")\r\n\r\nprint(inputs.row_lengths(axis=1)[:]) # OK, is the same as above\r\n#KerasTensor(type_spec=TensorSpec(shape=(None,), dtype=tf.int64, name=None), name='tf.__operators__.getitem/strided_slice:0', description=\"created by layer `'tf.__operators__.getitem'\")`\r\n\r\nprint(inputs.row_lengths(axis=2))\r\n#KerasTensor(type_spec=RaggedTensorSpec(TensorShape([None, 64]), tf.int64, 1, tf.int64), description=\"created by layer 'input.row_lengths_2'\")\r\n\r\nprint(inputs.row_lengths(axis=2)[:]) # Not the same as above as it calls different methods\r\n#KerasTensor(type_spec=RaggedTensorSpec(TensorShape([1, 64]), tf.int64, 1, tf.int64), description=\"created by layer 'tf.__operators__.ragged_getitem'\")\r\n```\r\nHere the axis and the type spec making the difference.\r\n\r\nHowever, I have tested the same with actual data and observed same result with same specs and values.Please refer the attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/0c013dfafc19261d3dab12d711d21293/60400_r1.ipynb) with the same operations performed on actual ragged tensor.Can you test also with some actual data and confirm if there is any difference.",
"Thanks for your answer!\r\n\r\nThe problem is that\r\n```python\r\ninputs.row_lengths(axis=2).shape != inputs.row_lengths(axis=2)[:].shape\r\n```\r\nwhile it should be the same, because for any tensor (or ragged tensor) `a`, it should be the case that `a.shape == (a[:]).shape`.\r\n\r\nI understand the difference between `inputs.row_lengths(axis=1)` and `inputs.row_lengths(axis=2)`; I just included it in the example to show that for `axis=1` it is indeed the case that\r\n```python\r\ninputs.row_lengths(axis=1).shape == inputs.row_lengths(axis=1)[:].shape\r\n```\r\n\r\nThe reported problem concerns only static shape inference; during the graph evaluation, the shape is correct. That means that even if `inputs.row_lengths(axis=2)[:].shape[0]` is `1`, the `tf.shape(inputs.row_lengths(axis=2)[:])[0]` can be something different than 1 (in the gist it is 5), which is incorrect -- such incorrect static shape can cause problems during graph construction.\r\n\r\nWe encountered the problem in a OCR-like task -- given images of fixed height and dynamic width as ragged tensors, we wanted to extract the widths of the images. That can be achieved using for example `inputs.row_lengths(axis=2)[:, 0]` -- but the `.shape` of that is reported as `(1,)`, which is clearly incorrect.\r\n\r\nSo I believe this behavior is indeed a bug."
] | 2023-04-22T18:30:48 | 2023-06-20T14:45:58 | null | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
TF 2.12, TF nightly 2.13.0-dev20230420
### Custom Code
No
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
Assume a Keras graph gets a ragged tensor with uniform row lengths in the axis 1, so for example
```python
inputs = tf.keras.layers.Input([64, None], ragged=True)
```
Then `inputs.row_lengths(axis=2)` is a `KerasTensor` with a correct spec `RaggedTensorSpec(TensorShape([None, 64]), ...)`.
However, when you index the first axis using a "full" slice, i.e.
```python
inputs.row_lengths(axis=2)[:]
```
you should get the same tensor -- but you get a `KerasTensor` with an incorrect spec `RaggedTensorSpec(TensorShape([1, 64]), ...)`.
### Standalone code to reproduce the issue
A Colab notebook reproducing the issue both in TF 2.12.0 and in TF nightly 2.13.0-dev20230420 can be found at https://colab.research.google.com/drive/1RKvNdB_81yKZkfzDpefIPJU2pgqZuYUY?usp=sharing
The full source also follows:
```python
inputs = tf.keras.layers.Input([64, None], ragged=True)
print(inputs)
print(inputs.row_lengths(axis=1))
print(inputs.row_lengths(axis=1)[:]) # OK, is the same as above
print(inputs.row_lengths(axis=2))
print(inputs.row_lengths(axis=2)[:]) # Problem, should be the same as above
```
### Relevant log output
```python
KerasTensor(type_spec=RaggedTensorSpec(TensorShape([None, 64, None]), tf.float32, 2, tf.int64), name='input_1', description="created by layer 'input_1'")
KerasTensor(type_spec=TensorSpec(shape=(None,), dtype=tf.int64, name=None), name='input.row_lengths/sub:0', description="created by layer 'input.row_lengths'")
KerasTensor(type_spec=TensorSpec(shape=(None,), dtype=tf.int64, name=None), name='tf.__operators__.getitem/strided_slice:0', description="created by layer 'tf.__operators__.getitem'")
KerasTensor(type_spec=RaggedTensorSpec(TensorShape([None, 64]), tf.int64, 1, tf.int64), description="created by layer 'input.row_lengths_2'")
KerasTensor(type_spec=RaggedTensorSpec(TensorShape([1, 64]), tf.int64, 1, tf.int64), description="created by layer 'tf.__operators__.ragged_getitem'")
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60400/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60400/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60399 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60399/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60399/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60399/events | https://github.com/tensorflow/tensorflow/issues/60399 | 1,679,539,176 | I_kwDOArmXAs5kG7vo | 60,399 | I am noticing lower validation accuracy on my dataset between Tensorflow 2.4 and Tensorflow 2.9 | {
"login": "hlreicha",
"id": 54408205,
"node_id": "MDQ6VXNlcjU0NDA4MjA1",
"avatar_url": "https://avatars.githubusercontent.com/u/54408205?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/hlreicha",
"html_url": "https://github.com/hlreicha",
"followers_url": "https://api.github.com/users/hlreicha/followers",
"following_url": "https://api.github.com/users/hlreicha/following{/other_user}",
"gists_url": "https://api.github.com/users/hlreicha/gists{/gist_id}",
"starred_url": "https://api.github.com/users/hlreicha/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hlreicha/subscriptions",
"organizations_url": "https://api.github.com/users/hlreicha/orgs",
"repos_url": "https://api.github.com/users/hlreicha/repos",
"events_url": "https://api.github.com/users/hlreicha/events{/privacy}",
"received_events_url": "https://api.github.com/users/hlreicha/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 4032183365,
"node_id": "LA_kwDOArmXAs7wVjxF",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9",
"name": "TF 2.9",
"color": "1CF842",
"default": false,
"description": "Issues found in the TF 2.9 release (or RCs)"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@hlreicha,\r\nI was facing a different issue while executing the given code. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/7eb3058c89de5c1776502b21f3efbabf/untitled1082.ipynb).\r\n\r\nAlso there might be below chances for the low validation accuracy.\r\n\r\n**1.** You are trying to apply some sort of preprocessing (zero meaning, normalizing, etc.) to either your training set or validation set, but not the other.\r\n\r\n**2.** If you built some layers that perform differently during training and inference from scratch, your model might be incorrectly implemented (e.g. are moving mean and moving standard deviation for batch normalization getting updated during training? \r\nIf using dropout, are weights scaled properly during inference?). This might be the case if your code implements these things from scratch and does not use Tensorflow builtin functions.\r\n\r\n**3.** Overfitting. I suspect that the other two options more likely in your specific situation as your validation accuracy might stuck at 50% for some epochs.\r\n\r\nUsing a random sample from your validation set: It means your validation set at each evaluation step is different, so is your validation-loss.\r\nUsing a weighted loss-function(which is used in case of highly imbalanced class-problems). At train step, you weigh your loss function based on class-weights, while at dev step you just calculate the un-weighted loss. In such case, though your network is stepping into convergence, you might see lots of fluctuations in validation loss after each train-step. ",
"@tilakrayal \r\nHi, thank you for your response. I can post more functioning code block later if it would help. The problem is that I am not getting low validation (remember, I am in the 90% range), I am getting lower validation score with TensorFlow 2.9 compared to TensorFlow 2.4. The code (loading image, preprocessing, model building, and etc) is all the same, it is the matter of me switching conda enviroments. \r\n\r\n1. I am not doing any preprocessing other than dividing the image by 255.0 and it is applied to both train/val sets. This never caused issues in TensorFlow 2.4\r\n2. I am not using any custom layers, I import my EfficienetNet model, flatten it, and add the final dense layer.\r\n3. I have not experienced this behavior\r\n\r\nI get these results after I ran my training script 5 times for each version.\r\n- TensorFlow 2.4: ~97-98% Accuracy on the validation set.\r\n\r\n- TensorFlow 2.9: ~93-95% Accuracy on the validation set\r\n\r\nI should specify I set my random seed values as well. Did something change between both versions that causes EfficientNet to lose its performance?",
"@hlreicha - Would you be able to create a complete script / Colab using standard datasets, for example in `tensorflow_datasets` https://github.com/tensorflow/datasets to replicate this issue?",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60399\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60399\">No</a>\n"
] | 2023-04-22T13:16:36 | 2023-05-21T04:23:19 | 2023-05-21T01:58:57 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.9 and 2.4
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I am trying to train an image classifier model using EfficientNetB1 on a custom dataset and I am trying out TensorFlow 2.4 and TensorFlow 2.9. I am using the exact same script with the same optimizer, augmentation, parameters, and dataset. I ran training 5 times and the results are around the same.
Results:
- TensorFlow 2.4: ~97-98% Accuracy on the validation set.
- TensorFlow 2.9: ~93-95% Accuracy on the validation set
More information: I am using Adam optimizer with 0.0001 lr, batch size of 16, using imagenet model weights, and categorical_crossentropy for my loss. I am using the same dataset on each version and I am using the same training script. I simply switch conda enviroments to TF 2.4 and 2.9.
Did something change between both versions that cause this discrepancy? Did the EfficientNet model weights change? Is the way the validation accuracy are calculated is different? Are the opimizers implementations are different?
I would appreciate your help and I would like some information on how to make it consistent between both versions. Thanks
### Standalone code to reproduce the issue
```shell
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import tensorflow as tf
from tensorflow.keras.applications import EfficientNetB1
model_base = EfficientNetB1(weights='imagenet',include_top=False, input_shape=(image_size, image_size, 3))
model.add(model_base)
model._name = "EfficientNetB1"
model.add(layers.Flatten())
model.add(tf.keras.layers.Dense(len(classes), activation='softmax'))
opt = Adam(learning_rate=1e-4)
model.compile(optimizer=opt, loss= 'categorical_crossentropy', metrics=['accuracy'])
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60399/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60399/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60398 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60398/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60398/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60398/events | https://github.com/tensorflow/tensorflow/issues/60398 | 1,679,456,710 | I_kwDOArmXAs5kGnnG | 60,398 | bazel compile error: enumeration value ‘CUDNN_POINTWISE_RECIPROCAL’ not handled in switch | {
"login": "kentosho",
"id": 133243,
"node_id": "MDQ6VXNlcjEzMzI0Mw==",
"avatar_url": "https://avatars.githubusercontent.com/u/133243?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kentosho",
"html_url": "https://github.com/kentosho",
"followers_url": "https://api.github.com/users/kentosho/followers",
"following_url": "https://api.github.com/users/kentosho/following{/other_user}",
"gists_url": "https://api.github.com/users/kentosho/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kentosho/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kentosho/subscriptions",
"organizations_url": "https://api.github.com/users/kentosho/orgs",
"repos_url": "https://api.github.com/users/kentosho/repos",
"events_url": "https://api.github.com/users/kentosho/events{/privacy}",
"received_events_url": "https://api.github.com/users/kentosho/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"It looks like you are encountering a compilation error when building TensorFlow with Bazel on your Debian Bullseye system using CUDA and MKL. The error is related to a missing switch case in the cudnn_frontend library.\r\n\r\nOne possible solution to this issue is to update the cudnn_frontend library to a newer version that has the missing switch case. You can try updating the cudnn_frontend by running the following command:\r\n\r\narduino\r\nCopy code\r\nbazel build --config=cuda --config=mkl --config=monolithic //tensorflow/tools/pip_package:build_pip_package --incompatible_remove_native_http_archive=false\r\nThis command will build TensorFlow with CUDA, MKL, and the latest version of the cudnn_frontend library.\r\n\r\nIf updating the cudnn_frontend library doesn't solve the issue, you can try disabling the --config=mkl option when building TensorFlow with Bazel. You can do this by running the following command:\r\n\r\narduino\r\nCopy code\r\nbazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package\r\nThis command will build TensorFlow with only CUDA and without MKL. This might help you to identify whether the issue is related to the MKL library or not.\r\n\r\nIf neither of these solutions works, you might want to provide more information such as the complete build log or the full error message to help us better understand the issue.",
"$ bazel build --config=cuda --config=mkl --config=monolithic //tensorflow/tools/pip_package:build_pip_package --incompatible_remove_native_http_archive=false\r\nERROR: --incompatible_remove_native_http_archive=false :: Unrecognized option: --incompatible_remove_native_http_archive=false\r\n\r\ngives Unrecognized option error\r\n\r\nI also tried removing --config mkl, which I can not get any improvement.",
"https://github.com/tensorflow/tensorflow/issues/60362 FYI.\r\n\r\nbtw:\r\ntensorflow V2.12.0 requires 8.6cuDNN and 11.8 CUDA",
"Hi @kentosho ,\r\n\r\nPlease look at the tested configurations [here](https://www.tensorflow.org/install/source#gpu). For Tf2.12 version the tested configurations are GCC-9.3.1 , CUDA-11.8,cuDNN-8.6. Can you please cross check with the tested configurations.\r\n\r\nAlso I would like to know the sequence of steps followed for build.Have you installed cuDNN as per instructions ? I am interested to know the sequence of steps followed by you for GPU setup with CUDA,cuDNN toolkit installations etc. Official instructions as per documentation mentioned [here](https://www.tensorflow.org/install/pip#step-by-step_instructions).",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"compile suceeded for gcc-10.2.1 CUDA-11.8 cuDNN-8.9 with following patch\r\nit might be a wired patch\r\n```\r\ndiff --git a/tensorflow/workspace2.bzl b/tensorflow/workspace2.bzl\r\nindex 1261273bc92..0a9d755af0f 100644\r\n--- a/tensorflow/workspace2.bzl\r\n+++ b/tensorflow/workspace2.bzl\r\n@@ -172,9 +172,9 @@ def _tf_repositories():\r\n name = \"cudnn_frontend_archive\",\r\n build_file = \"//third_party:cudnn_frontend.BUILD\",\r\n patch_file = [\"//third_party:cudnn_frontend_header_fix.patch\"],\r\n- sha256 = \"3c7b842cd67989810955b220fa1116e7e2ed10660a8cfb632118146a64992c30\",\r\n- strip_prefix = \"cudnn-frontend-0.7.3\",\r\n- urls = tf_mirror_urls(\"https://github.com/NVIDIA/cudnn-frontend/archive/refs/tags/v0.7.3.zip\"),\r\n+ sha256 = \"d8dba9e2607a0c256aa8eacb45b39986ab6f3f24a4d431d4397047a3cb0cd4fb\",\r\n+ strip_prefix = \"cudnn-frontend-0.9\",\r\n+ urls = tf_mirror_urls(\"https://github.com/NVIDIA/cudnn-frontend/archive/refs/tags/v0.9.zip\"),\r\n )\r\n\r\n```\r\n\r\n",
"Hi @kentosho ,\r\n\r\nThis might be due to the fact that TF tested cuDNN version is 8.6 whereas you are trying to use different version 8.9 and hence the change in dependencies might be worked.\r\n\r\nI assume you haven't checked with cuDNN-8.6 which is a tested configuration. If you have tested this but still fails please let us know. have you done the patch suitable for cuDNN-8.9 directly please let us know.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"I try to build with cuDNN 8.6 instead of cuDNN8.9 and sucssess to build with no error. Also, when using CuDNN 8.9, I had experienced an abnormal termination of python when running model.fit on sensorflow 2.12.0, but this phenomenon was fixed by using CuDNN 8.6.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60398\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60398\">No</a>\n",
"> It looks like you are encountering a compilation error when building TensorFlow with Bazel on your Debian Bullseye system using CUDA and MKL. The error is related to a missing switch case in the cudnn_frontend library.\r\n> \r\n> One possible solution to this issue is to update the cudnn_frontend library to a newer version that has the missing switch case. You can try updating the cudnn_frontend by running the following command:\r\n> \r\n> arduino Copy code bazel build --config=cuda --config=mkl --config=monolithic //tensorflow/tools/pip_package:build_pip_package --incompatible_remove_native_http_archive=false This command will build TensorFlow with CUDA, MKL, and the latest version of the cudnn_frontend library.\r\n> \r\n> If updating the cudnn_frontend library doesn't solve the issue, you can try disabling the --config=mkl option when building TensorFlow with Bazel. You can do this by running the following command:\r\n> \r\n> arduino Copy code bazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package This command will build TensorFlow with only CUDA and without MKL. This might help you to identify whether the issue is related to the MKL library or not.\r\n> \r\n> If neither of these solutions works, you might want to provide more information such as the complete build log or the full error message to help us better understand the issue.\r\n\r\nIs this a chatgpt reply?"
] | 2023-04-22T10:05:31 | 2024-01-02T18:23:48 | 2023-05-18T06:28:02 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
v2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Linux Debian Bullseye
### Mobile device
_No response_
### Python version
3.9
### Bazel version
5.3.0
### GCC/Compiler version
gcc (Debian 10.2.1-6) 10.2.1 20210110
### CUDA/cuDNN version
cuda_11.6.r11.6/compiler.31057947_0
### GPU model and memory
RTX A4000
### Current Behaviour?
bazel build --config=cuda --config=mkl //tensorflow/tools/pip_package:build_pip_package
failed displaying following error messages
ERROR: /mnt/data/kentwork/src/AI/tensorflow/tensorflow/compiler/xla/stream_executor/cuda/BUILD:376:11: Compiling tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc -MD -MF bazel-out/k8-opt/bin/tensorflow/compiler/xla/stream_executor/cuda/_objs/cudnn_plugin/cuda_dnn.pic.d ... (remaining 141 arguments skipped)
In file included from bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_Operation.h:37,
from bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_OperationGraph.h:36,
from bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_Heuristics.h:31,
from bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend.h:101,
from tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:55:
bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_PointWiseDesc.h: In member function ‘int64_t cudnn_frontend::PointWiseDesc_v8::getPortCount() const’:
bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_PointWiseDesc.h:69:16: error: enumeration value ‘CUDNN_POINTWISE_RECIPROCAL’ not handled in switch [-Werror=switch]
69 | switch (mode) {
| ^
In file included from bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_OperationGraph.h:36,
from bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_Heuristics.h:31,
from bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend.h:101,
from tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:55:
bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_Operation.h: In member function ‘cudnn_frontend::Operation_v8&& cudnn_frontend::OperationBuilder_v8::build_pointwise_op()’:
bazel-out/k8-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend/third_party/cudnn_frontend/include/cudnn_frontend_Operation.h:354:16: error: enumeration value ‘CUDNN_POINTWISE_RECIPROCAL’ not handled in switch [-Werror=switch]
354 | switch (m_operation.pointwise_mode) {
| ^
cc1plus: some warnings being treated as errors
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
### Standalone code to reproduce the issue
```shell
bazel build --config=cuda --config=mkl //tensorflow/tools/pip_package:build_pip_package
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60398/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60398/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60397 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60397/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60397/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60397/events | https://github.com/tensorflow/tensorflow/issues/60397 | 1,679,301,698 | I_kwDOArmXAs5kGBxC | 60,397 | segment_reduction_ops_gpu.cu.h error: no instance of overloaded function "tensorflow::min"/"tensorflow::max" matches the argument list | {
"login": "johnnkp",
"id": 22496821,
"node_id": "MDQ6VXNlcjIyNDk2ODIx",
"avatar_url": "https://avatars.githubusercontent.com/u/22496821?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/johnnkp",
"html_url": "https://github.com/johnnkp",
"followers_url": "https://api.github.com/users/johnnkp/followers",
"following_url": "https://api.github.com/users/johnnkp/following{/other_user}",
"gists_url": "https://api.github.com/users/johnnkp/gists{/gist_id}",
"starred_url": "https://api.github.com/users/johnnkp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/johnnkp/subscriptions",
"organizations_url": "https://api.github.com/users/johnnkp/orgs",
"repos_url": "https://api.github.com/users/johnnkp/repos",
"events_url": "https://api.github.com/users/johnnkp/events{/privacy}",
"received_events_url": "https://api.github.com/users/johnnkp/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"When Bazel try to compile tensorflow/core/kernels/segment_reduction_ops_gpu_2.cu.cc, no suitable constructor exists to convert error will also happened.\r\n\r\n> .\\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(206): error: no suitable constructor exists to convert from \"int\" to \"tensorflow::AlignedVector<int, 4>\"\r\n> detected during:\r\n> instantiation of \"void tensorflow::SegmentOffsetsKernel(Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int, Tsegmentids=int]\"\r\n> (233): here\r\n> instantiation of \"tsl::Status tensorflow::LaunchSegmentOffsetsKernel(const tensorflow::GPUDevice &, Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int\r\n> , Tsegmentids=int]\"\r\n> (570): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPUImpl<Treducevec,Tvec,Tindex,Tsegmentids,ReduceOp,Tinit>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmen\r\n> tids, ReduceOp, Tinit, Tinit, __nv_bool, __nv_bool, const Tvec *, const Tsegmentids *, const Tindex *, const Tinit *, Tvec *) [with Treducevec=tensorflow::AlignedVector<int, 4>, Tv\r\n> ec=tensorflow::AlignedVector<int, 4>, Tindex=int, Tsegmentids=int, ReduceOp=tensorflow::functor::Max, Tinit=int]\"\r\n> (617): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPUVectorized<Treduce>::Impl<vec_size>::operator()(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, Re\r\n> duceOp, T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=tsl::int32, vec_size=4, T=int, Tindex=int, Tsegmentids=int, Reduce\r\n> Op=tensorflow::functor::Max]\"\r\n> .\\tensorflow/core/util/gpu_kernel_helper.h(329): here\r\n> instantiation of \"tsl::Status tensorflow::detail::DispatchToVectorizedHelper<VecSize, Functor>::operator()(int64_t, Args &&...) const [with VecSize=4LL, Functor=tensorf\r\n> low::SegmentReduceGPUVectorized<tsl::int32>::Impl, Args=<tensorflow::OpKernelContext *&, int &, int &, int &, tensorflow::functor::Max &, int &, int &, __nv_bool &, __nv_bool &, co\r\n> nst tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, tsl::int32 *&>]\"\r\n> .\\tensorflow/core/util/gpu_kernel_helper.h(364): here\r\n> instantiation of \"tsl::Status tensorflow::DispatchToVectorized<T,Functor,Args...>(int64_t, Args &&...) [with T=tsl::int32, Functor=tensorflow::SegmentReduceGPUVectorize\r\n> d<tsl::int32>::Impl, Args=<tensorflow::OpKernelContext *&, tsl::int32 &, tsl::int32 &, tsl::int32 &, tensorflow::functor::Max &, tsl::int32 &, tsl::int32 &, __nv_bool &, __nv_bool\r\n> &, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, tsl::int32 *&>]\"\r\n> (647): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPU<Treduce,T,Tindex,Tsegmentids,ReduceOp>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, ReduceOp,\r\n> T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=tsl::int32, T=tsl::int32, Tindex=tsl::int32, Tsegmentids=tsl::int32, Reduc\r\n> eOp=tensorflow::functor::Max]\"\r\n> (871): here\r\n> instantiation of \"void tensorflow::functor::UnsortedSegmentFunctor<tensorflow::functor::GPUDevice, T, Index, InitialValueF, ReductionF>::operator()(tensorflow::OpKernel\r\n> Context *, const tensorflow::TensorShape &, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, tensorflow::TTypes<T, 2, Eigen::DenseIndex>::ConstTensor, tensorflow::TTypes\r\n> <T, 2, Eigen::DenseIndex>::Tensor) [with T=tsl::int32, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<tsl::int32>, ReductionF=tensorflow::functor::Max]\"\r\n> E:\\20220616_1800pm\\_bazel_tensorflow\\jsjos6dw\\execroot\\org_tensorflow\\tensorflow\\core\\kernels\\segment_reduction_ops_gpu_2.cu.cc(45): here\r\n> \r\n> .\\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(206): error: no suitable constructor exists to convert from \"int\" to \"tensorflow::AlignedVector<int, 4>\"\r\n> detected during:\r\n> instantiation of \"void tensorflow::SegmentOffsetsKernel(Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int, Tsegmentids=int]\"\r\n> (233): here\r\n> instantiation of \"tsl::Status tensorflow::LaunchSegmentOffsetsKernel(const tensorflow::GPUDevice &, Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int\r\n> , Tsegmentids=int]\"\r\n> (570): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPUImpl<Treducevec,Tvec,Tindex,Tsegmentids,ReduceOp,Tinit>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmen\r\n> tids, ReduceOp, Tinit, Tinit, __nv_bool, __nv_bool, const Tvec *, const Tsegmentids *, const Tindex *, const Tinit *, Tvec *) [with Treducevec=tensorflow::AlignedVector<int, 4>, Tv\r\n> ec=tensorflow::AlignedVector<int, 4>, Tindex=int, Tsegmentids=int, ReduceOp=tensorflow::functor::Max, Tinit=int]\"\r\n> (617): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPUVectorized<Treduce>::Impl<vec_size>::operator()(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, Re\r\n> duceOp, T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=tsl::int32, vec_size=4, T=int, Tindex=int, Tsegmentids=int, Reduce\r\n> Op=tensorflow::functor::Max]\"\r\n> .\\tensorflow/core/util/gpu_kernel_helper.h(329): here\r\n> instantiation of \"tsl::Status tensorflow::detail::DispatchToVectorizedHelper<VecSize, Functor>::operator()(int64_t, Args &&...) const [with VecSize=4LL, Functor=tensorf\r\n> low::SegmentReduceGPUVectorized<tsl::int32>::Impl, Args=<tensorflow::OpKernelContext *&, int &, int &, int &, tensorflow::functor::Max &, int &, int &, __nv_bool &, __nv_bool &, co\r\n> nst tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, tsl::int32 *&>]\"\r\n> .\\tensorflow/core/util/gpu_kernel_helper.h(364): here\r\n> instantiation of \"tsl::Status tensorflow::DispatchToVectorized<T,Functor,Args...>(int64_t, Args &&...) [with T=tsl::int32, Functor=tensorflow::SegmentReduceGPUVectorize\r\n> d<tsl::int32>::Impl, Args=<tensorflow::OpKernelContext *&, tsl::int32 &, tsl::int32 &, tsl::int32 &, tensorflow::functor::Max &, tsl::int32 &, tsl::int32 &, __nv_bool &, __nv_bool\r\n> &, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, tsl::int32 *&>]\"\r\n> (647): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPU<Treduce,T,Tindex,Tsegmentids,ReduceOp>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, ReduceOp,\r\n> T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=tsl::int32, T=tsl::int32, Tindex=tsl::int32, Tsegmentids=tsl::int32, Reduc\r\n> eOp=tensorflow::functor::Max]\"\r\n> (871): here\r\n> instantiation of \"void tensorflow::functor::UnsortedSegmentFunctor<tensorflow::functor::GPUDevice, T, Index, InitialValueF, ReductionF>::operator()(tensorflow::OpKernel\r\n> Context *, const tensorflow::TensorShape &, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, tensorflow::TTypes<T, 2, Eigen::DenseIndex>::ConstTensor, tensorflow::TTypes\r\n> <T, 2, Eigen::DenseIndex>::Tensor) [with T=tsl::int32, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<tsl::int32>, ReductionF=tensorflow::functor::Max]\"\r\n> E:\\20220616_1800pm\\_bazel_tensorflow\\jsjos6dw\\execroot\\org_tensorflow\\tensorflow\\core\\kernels\\segment_reduction_ops_gpu_2.cu.cc(45): here\r\n> \r\n> .\\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(206): error: no suitable constructor exists to convert from \"int\" to \"tensorflow::AlignedVector<int, 4>\"\r\n> detected during:\r\n> instantiation of \"void tensorflow::SegmentOffsetsKernel(Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int, Tsegmentids=int]\"\r\n> (233): here\r\n> instantiation of \"tsl::Status tensorflow::LaunchSegmentOffsetsKernel(const tensorflow::GPUDevice &, Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int\r\n> , Tsegmentids=int]\"\r\n> (570): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPUImpl<Treducevec,Tvec,Tindex,Tsegmentids,ReduceOp,Tinit>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmen\r\n> tids, ReduceOp, Tinit, Tinit, __nv_bool, __nv_bool, const Tvec *, const Tsegmentids *, const Tindex *, const Tinit *, Tvec *) [with Treducevec=tensorflow::AlignedVector<int, 4>, Tv\r\n> ec=tensorflow::AlignedVector<int, 4>, Tindex=int, Tsegmentids=int, ReduceOp=tensorflow::functor::Max, Tinit=int]\"\r\n> (617): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPUVectorized<Treduce>::Impl<vec_size>::operator()(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, Re\r\n> duceOp, T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=tsl::int32, vec_size=4, T=int, Tindex=int, Tsegmentids=int, Reduce\r\n> Op=tensorflow::functor::Max]\"\r\n> .\\tensorflow/core/util/gpu_kernel_helper.h(329): here\r\n> instantiation of \"tsl::Status tensorflow::detail::DispatchToVectorizedHelper<VecSize, Functor>::operator()(int64_t, Args &&...) const [with VecSize=4LL, Functor=tensorf\r\n> low::SegmentReduceGPUVectorized<tsl::int32>::Impl, Args=<tensorflow::OpKernelContext *&, int &, int &, int &, tensorflow::functor::Max &, int &, int &, __nv_bool &, __nv_bool &, co\r\n> nst tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, tsl::int32 *&>]\"\r\n> .\\tensorflow/core/util/gpu_kernel_helper.h(364): here\r\n> instantiation of \"tsl::Status tensorflow::DispatchToVectorized<T,Functor,Args...>(int64_t, Args &&...) [with T=tsl::int32, Functor=tensorflow::SegmentReduceGPUVectorize\r\n> d<tsl::int32>::Impl, Args=<tensorflow::OpKernelContext *&, tsl::int32 &, tsl::int32 &, tsl::int32 &, tensorflow::functor::Max &, tsl::int32 &, tsl::int32 &, __nv_bool &, __nv_bool\r\n> &, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, const tsl::int32 *&, tsl::int32 *&>]\"\r\n> (647): here\r\n> instantiation of \"tsl::Status tensorflow::SegmentReduceGPU<Treduce,T,Tindex,Tsegmentids,ReduceOp>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, ReduceOp,\r\n> T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=tsl::int32, T=tsl::int32, Tindex=tsl::int32, Tsegmentids=tsl::int32, Reduc\r\n> eOp=tensorflow::functor::Max]\"\r\n> (871): here\r\n> instantiation of \"void tensorflow::functor::UnsortedSegmentFunctor<tensorflow::functor::GPUDevice, T, Index, InitialValueF, ReductionF>::operator()(tensorflow::OpKernel\r\n> Context *, const tensorflow::TensorShape &, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, tensorflow::TTypes<T, 2, Eigen::DenseIndex>::ConstTensor, tensorflow::TTypes\r\n> <T, 2, Eigen::DenseIndex>::Tensor) [with T=tsl::int32, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<tsl::int32>, ReductionF=tensorflow::functor::Max]\"\r\n> E:\\20220616_1800pm\\_bazel_tensorflow\\jsjos6dw\\execroot\\org_tensorflow\\tensorflow\\core\\kernels\\segment_reduction_ops_gpu_2.cu.cc(45): here\r\n",
"I have found a way to clear some bugs. Number of errors have reduced to 34 for `segment_reduction_ops_gpu_0.cu.cc`. I need to know for the following CUDA template in `tensorflow/core/util/gpu_kernel_helper.h`:\r\n```\r\ntemplate <typename T>\r\n__host__ __device__ inline const T& tf_max(const T& x, const T& y) {\r\n return x < y ? y : x;\r\n}\r\n```\r\nCan I use it to compare two `tsl::int32` values directly using [`__device__ int max ( const int a, const int b )`](https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INT.html#group__CUDA__MATH__INT_1gcd95edd79e83ba55edb31cce43f4de42)?",
"Same errors occur in 2.13 branch. We better resolve it before rc0 release. If you insist to reproduce the errors before answering my question, save the following as a `.sh` script, change paths correspondingly, then run it after bazel linked CUDA headers. The headers will be ready after approximately 5000th-6000th actions.\r\n\r\n```\r\nexport MSYS_NO_PATHCONV=1\r\nexport MSYS2_ARG_CONV_EXCL=\"*\"\r\nexport PATH=\"/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.8/bin:$PATH\"\r\nexport PATH=\"/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.8/extras/CUPTI/lib64:$PATH\"\r\nexport PATH=\"/c/Users/tensorflow/anaconda3:$PATH\"\r\nexport CUDA_TOOLKIT_PATH=\"/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.8\"\r\nexport INCLUDE=\"/c/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.35.32215/include;/c/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.35.32215/ATLMFC/include;/c/Program Files/Microsoft Visual Studio/2022/Community/VC/Auxiliary/VS/include;/c/Program Files (x86)/Windows Kits/10/include/10.0.22621.0/ucrt;/c/Program Files (x86)/Windows Kits/10/include/10.0.22621.0/um;/c/Program Files (x86)/Windows Kits/10/include/10.0.22621.0/shared;/c/Program Files (x86)/Windows Kits/10/include/10.0.22621.0/winrt;/c/Program Files (x86)/Windows Kits/10/include/10.0.22621.0/cppwinrt\"\r\nexport LIB=\"/c/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.35.32215/ATLMFC/lib/x64;/c/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.35.32215/lib/x64;/c/Program Files (x86)/Windows Kits/10/lib/10.0.22621.0/ucrt/x64;/c/Program Files (x86)/Windows Kits/10/lib/10.0.22621.0/um/x64\"\r\nexport PATH=\"/c/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.35.32215/bin/HostX64/x64;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/IDE/VC/VCPackages;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/IDE/CommonExtensions/Microsoft/TestWindow;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/IDE/CommonExtensions/Microsoft/TeamFoundation/Team Explorer;/c/Program Files/Microsoft Visual Studio/2022/Community/MSBuild/Current/bin/Roslyn;/c/Program Files/Microsoft Visual Studio/2022/Community/Team Tools/Performance Tools/x64;/c/Program Files/Microsoft Visual Studio/2022/Community/Team Tools/Performance Tools;/c/Program Files (x86)/HTML Help Workshop;/c/Program Files (x86)/Windows Kits/10/bin/10.0.22621.0/x64;/c/Program Files (x86)/Windows Kits/10/bin/x64;/c/Program Files/Microsoft Visual Studio/2022/Community/MSBuild/Current/Bin/amd64;/c/Windows/Microsoft.NET/Framework64/v4.0.30319;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/IDE;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/Tools;/c/Windows/system32;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/IDE/CommonExtensions/Microsoft/CMake/CMake/bin;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/IDE/CommonExtensions/Microsoft/CMake/Ninja;/c/Program Files/Microsoft Visual Studio/2022/Community/Common7/IDE/VC/Linux/bin/ConnectionManagerExe:$PATH\"\r\nexport PWD=\"/proc/self/cwd\"\r\nexport PYTHON_BIN_PATH=\"/c/Users/tensorflow/anaconda3/python.exe\"\r\nexport PYTHON_LIB_PATH=\"/c/Users/tensorflow/anaconda3/lib/site-packages\"\r\nexport RUNFILES_MANIFEST_ONLY=1\r\nexport TEMP=\"/c/msys64/tmp\"\r\nexport TF2_BEHAVIOR=1\r\nexport TF_CUDA_COMPUTE_CAPABILITIES=3.5,7.0,8.6\r\nexport TMP=\"/c/msys64/tmp\"\r\ncd E:/_bazel_tensorflow/kxpxxayx/execroot/org_tensorflow\r\n/c/Users/tensorflow/anaconda3/python.exe -B external/local_config_cuda/crosstool/windows/msvc_wrapper_for_nvcc.py /nologo /DCOMPILER_MSVC /DNOMINMAX /D_WIN32_WINNT=0x0600 /D_CRT_SECURE_NO_DEPRECATE /D_CRT_SECURE_NO_WARNINGS /D_SILENCE_STDEXT_HASH_DEPRECATION_WARNINGS /bigobj /Zm500 /J /Gy /GF /EHsc /wd4351 /wd4291 /wd4250 /wd4996 /I. /Ibazel-out/x64_windows-opt/bin /Iexternal/com_google_absl /Ibazel-out/x64_windows-opt/bin/external/com_google_absl /Iexternal/nsync /Ibazel-out/x64_windows-opt/bin/external/nsync /Iexternal/eigen_archive /Ibazel-out/x64_windows-opt/bin/external/eigen_archive /Iexternal/com_google_protobuf /Ibazel-out/x64_windows-opt/bin/external/com_google_protobuf /Iexternal/gif /Ibazel-out/x64_windows-opt/bin/external/gif /Iexternal/libjpeg_turbo /Ibazel-out/x64_windows-opt/bin/external/libjpeg_turbo /Iexternal/com_googlesource_code_re2 /Ibazel-out/x64_windows-opt/bin/external/com_googlesource_code_re2 /Iexternal/farmhash_archive /Ibazel-out/x64_windows-opt/bin/external/farmhash_archive /Iexternal/fft2d /Ibazel-out/x64_windows-opt/bin/external/fft2d /Iexternal/highwayhash /Ibazel-out/x64_windows-opt/bin/external/highwayhash /Iexternal/zlib /Ibazel-out/x64_windows-opt/bin/external/zlib /Iexternal/double_conversion /Ibazel-out/x64_windows-opt/bin/external/double_conversion /Iexternal/snappy /Ibazel-out/x64_windows-opt/bin/external/snappy /Iexternal/local_config_cuda /Ibazel-out/x64_windows-opt/bin/external/local_config_cuda /Iexternal/local_config_rocm /Ibazel-out/x64_windows-opt/bin/external/local_config_rocm /Iexternal/local_config_tensorrt /Ibazel-out/x64_windows-opt/bin/external/local_config_tensorrt /Iexternal/cudnn_frontend_archive /Ibazel-out/x64_windows-opt/bin/external/cudnn_frontend_archive /Iexternal/llvm-project /Ibazel-out/x64_windows-opt/bin/external/llvm-project /Iexternal/llvm_terminfo /Ibazel-out/x64_windows-opt/bin/external/llvm_terminfo /Iexternal/llvm_zlib /Ibazel-out/x64_windows-opt/bin/external/llvm_zlib /Iexternal/curl /Ibazel-out/x64_windows-opt/bin/external/curl /Iexternal/boringssl /Ibazel-out/x64_windows-opt/bin/external/boringssl /Iexternal/jsoncpp_git /Ibazel-out/x64_windows-opt/bin/external/jsoncpp_git /Ibazel-out/x64_windows-opt/bin/external/local_config_cuda/cuda/_virtual_includes/cuda_headers_virtual /Ibazel-out/x64_windows-opt/bin/external/local_config_tensorrt/_virtual_includes/tensorrt_headers /Ibazel-out/x64_windows-opt/bin/external/local_config_cuda/cuda/_virtual_includes/cudnn_header /Ibazel-out/x64_windows-opt/bin/external/cudnn_frontend_archive/_virtual_includes/cudnn_frontend /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinAttributeInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinAttributesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinDialectIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinLocationAttributesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinOpsIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinTypeInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinTypesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/CallOpInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/CastOpInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/FunctionInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/InferTypeOpInterfaceIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/OpAsmInterfaceIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/RegionKindInterfaceIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/SideEffectInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/SymbolInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/TensorEncodingIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithBaseIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithCanonicalizationIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithOpsIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithOpsInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/InferIntRangeInterfaceIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/VectorInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ControlFlowInterfacesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ControlFlowOpsIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/FuncIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/AsmParserTokenKinds /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/QuantOpsIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/LoopLikeInterfaceIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/DialectUtilsIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ViewLikeInterfaceIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/PDLOpsIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/PDLTypesIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/PDLInterpOpsIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/ConversionPassIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/TransformsPassIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/DerivedAttributeOpInterfaceIncGen /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/_virtual_includes/RuntimeVerifiableOpInterfaceIncGen /Iexternal/nsync/public /Ibazel-out/x64_windows-opt/bin/external/nsync/public /Ithird_party/eigen3/mkl_include /Ibazel-out/x64_windows-opt/bin/third_party/eigen3/mkl_include /Iexternal/eigen_archive /Ibazel-out/x64_windows-opt/bin/external/eigen_archive /Iexternal/com_google_protobuf/src /Ibazel-out/x64_windows-opt/bin/external/com_google_protobuf/src /Iexternal/gif /Ibazel-out/x64_windows-opt/bin/external/gif /Iexternal/gif/windows /Ibazel-out/x64_windows-opt/bin/external/gif/windows /Iexternal/farmhash_archive/src /Ibazel-out/x64_windows-opt/bin/external/farmhash_archive/src /Iexternal/zlib /Ibazel-out/x64_windows-opt/bin/external/zlib /Iexternal/local_config_cuda/cuda /Ibazel-out/x64_windows-opt/bin/external/local_config_cuda/cuda /Iexternal/local_config_cuda/cuda/cuda/include /Ibazel-out/x64_windows-opt/bin/external/local_config_cuda/cuda/cuda/include /Iexternal/local_config_rocm/rocm /Ibazel-out/x64_windows-opt/bin/external/local_config_rocm/rocm /Iexternal/local_config_rocm/rocm/rocm/include /Ibazel-out/x64_windows-opt/bin/external/local_config_rocm/rocm/rocm/include /Iexternal/local_config_rocm/rocm/rocm/include/rocrand /Ibazel-out/x64_windows-opt/bin/external/local_config_rocm/rocm/rocm/include/rocrand /Iexternal/local_config_rocm/rocm/rocm/include/roctracer /Ibazel-out/x64_windows-opt/bin/external/local_config_rocm/rocm/rocm/include/roctracer /Iexternal/llvm-project/llvm/include /Ibazel-out/x64_windows-opt/bin/external/llvm-project/llvm/include /Iexternal/llvm-project/mlir/include /Ibazel-out/x64_windows-opt/bin/external/llvm-project/mlir/include /Iexternal/curl/include /Ibazel-out/x64_windows-opt/bin/external/curl/include /Iexternal/boringssl/src/include /Ibazel-out/x64_windows-opt/bin/external/boringssl/src/include /Iexternal/jsoncpp_git/include /Ibazel-out/x64_windows-opt/bin/external/jsoncpp_git/include /DEIGEN_MPL2_ONLY /DEIGEN_MAX_ALIGN_BYTES=64 /DTF_USE_SNAPPY /D_CRT_SECURE_NO_DEPRECATE /D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE /D_CRT_NONSTDC_NO_WARNINGS /D_SCL_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_WARNINGS /DUNICODE /D_UNICODE /DLTDL_SHLIB_EXT=\".dll\" /DLLVM_PLUGIN_EXT=\".dll\" /DLLVM_NATIVE_ARCH=\"X86\" /DLLVM_NATIVE_ASMPARSER=LLVMInitializeX86AsmParser /DLLVM_NATIVE_ASMPRINTER=LLVMInitializeX86AsmPrinter /DLLVM_NATIVE_DISASSEMBLER=LLVMInitializeX86Disassembler /DLLVM_NATIVE_TARGET=LLVMInitializeX86Target /DLLVM_NATIVE_TARGETINFO=LLVMInitializeX86TargetInfo /DLLVM_NATIVE_TARGETMC=LLVMInitializeX86TargetMC /DLLVM_NATIVE_TARGETMCA=LLVMInitializeX86TargetMCA /DLLVM_HOST_TRIPLE=\"x86_64-pc-win32\" /DLLVM_DEFAULT_TARGET_TRIPLE=\"x86_64-pc-win32\" /DLLVM_VERSION_MAJOR=17 /DLLVM_VERSION_MINOR=0 /DLLVM_VERSION_PATCH=0 /DLLVM_VERSION_STRING=\"17.0.0git\" /D__STDC_LIMIT_MACROS /D__STDC_CONSTANT_MACROS /D__STDC_FORMAT_MACROS /DBLAKE3_USE_NEON=0 /DBLAKE3_NO_AVX2 /DBLAKE3_NO_AVX512 /DBLAKE3_NO_SSE2 /DBLAKE3_NO_SSE41 /DCURL_STATICLIB /showIncludes /MD /O2 /DNDEBUG /W0 /Zc:__cplusplus /D_USE_MATH_DEFINES /d2ReducedOptimizeHugeFunctions -DWIN32_LEAN_AND_MEAN -DNOGDI /Zc:preprocessor /arch:AVX2 /std:c++17 -x cuda -DGOOGLE_CUDA=1 --cuda-gpu-arch=sm_35 --cuda-include-ptx=sm_70 --cuda-gpu-arch=sm_70 --cuda-include-ptx=sm_86 --cuda-gpu-arch=sm_86 -Xcuda-fatbinary=--compress-all -DGOOGLE_CUDA=1 -DTENSORFLOW_USE_NVCC=1 -DTENSORFLOW_USE_XLA=1 -DGOOGLE_TENSORRT=1 -DINTEL_MKL -DTENSORFLOW_MONOLITHIC_BUILD /DPLATFORM_WINDOWS /DEIGEN_HAS_C99_MATH /DTENSORFLOW_USE_EIGEN_THREADPOOL /DEIGEN_AVOID_STL_ARRAY /Iexternal/gemmlowp /wd4018 /wd4577 /DNOGDI /DTF_COMPILE_LIBRARY -nvcc_options=relaxed-constexpr -nvcc_options=ftz=true /Fobazel-out/x64_windows-opt/bin/tensorflow/core/kernels/_objs/segment_reduction_ops_gpu/segment_reduction_ops_gpu_0.cu.obj /c tensorflow/core/kernels/segment_reduction_ops_gpu_0.cu.cc\r\n```",
"@mraunak, Could you please take a look into this. Thanks",
"https://github.com/google/tsl/blob/35680b213852096df805c16cfcc92946c2040f38/tsl/platform/default/integral_types.h#L28 is where the type is documented",
"@sachinprasadhs @mraunak @learning-to-play I have found out a way to fix some compilation errors. Screenshots have been uploaded [here](https://mycuhk-my.sharepoint.com/:f:/g/personal/1155144829_link_cuhk_edu_hk/Ej0v7N67oDZAuC6XZuuiiFUBWJbXuYnmDKqTE1adplcIUQ?e=hn0bhx).\r\n\r\nAfter applied the changes, TSL complex operator resolution errors will happened as the log shown. [`DEFINE_BINARY_UPDATE_OPERATOR`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/gpu_kernel_helper.h#L257) cannot choose the Eigen complex operators during compilation. Since the errors are tricky, I am not able to fix. Please also commit the changes to 2.13 and 2.12 branch.",
"Hi @learning-to-play, I think TensorFlow GPU or Nvidia Team would be able to resolve this issue as the errors involve CUDA files\r\nHi @johnnkp, thank you for debugging and resolving intermittent errors",
"@mraunak I have uploaded patch screenshots [here](https://mycuhk-my.sharepoint.com/:f:/g/personal/1155144829_link_cuhk_edu_hk/Ej0v7N67oDZAuC6XZuuiiFUBWJbXuYnmDKqTE1adplcIUQ?e=hn0bhx). If you are concerned that these changes may break other builds, add macros to make them as Windows specific. ",
"Hi @johnnkp, Thank you very much for the solution. could you please create a PR? It would be helpful to review it.",
"PR https://github.com/tensorflow/tensorflow/pull/61339 is merged.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60397\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60397\">No</a>\n"
] | 2023-04-22T03:24:24 | 2023-07-26T02:37:44 | 2023-07-26T02:37:41 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Windows 10 1909
### Mobile device
_No response_
### Python version
Anaconda 2023.03
### Bazel version
5.3.0
### GCC/Compiler version
Visual Studio 2022 (build tools 14.35) + msys2-x86_64-20230318
### CUDA/cuDNN version
CUDA 11.8 + CUDNN 8.6.0 + TensorRT 8.5.3
### GPU model and memory
GTX 750 Ti 2GB
### Current Behaviour?
From previous discussion in https://github.com/tensorflow/tensorflow/issues/59918 and https://github.com/tensorflow/tensorflow/issues/59905, segment_reduction_ops_gpu.cu.h and other GPU header files have function overload errors when using MSVC + msys2 to compile. Run bazel command again just mean shuffle the compile action sequence. The compiler will reach the same errors when starts to compile segment_reduction_ops_gpu_x.cu.cc.
### Standalone code to reproduce the issue
```shell
1. download https://github.com/tensorflow/tensorflow/archive/refs/tags/v2.12.0.zip and extract
2. comment out Windows CUDA build rejection code in configure.py
3. run `python configure.py` to configure Windows CUDA build
4. run `bazel build --config=opt --define=no_tensorflow_py_deps=true //tensorflow/tools/pip_package:build_pip_package`
```
### Relevant log output
```shell
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=Eigen::half, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicProdOpGpu, AtomicReductionF=tensorflow::AtomicProdOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=Eigen::half, Index=tsl::int32, InitialValueF=tensorflow::functor::One<Eigen::half>, EmptySegmentValueF=tensorflow::functor::One<Ei
gen::half>, ReductionF=tensorflow::functor::Prod]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=Eigen::half, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMinOpGpu, AtomicReductionF=tensorflow::AtomicMinOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=Eigen::half, Index=tsl::int32, InitialValueF=tensorflow::functor::Highest<Eigen::half>, EmptySegmentValueF=tensorflow::functor::Ze
ro<Eigen::half>, ReductionF=tensorflow::functor::Min]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=Eigen::half, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMaxOpGpu, AtomicReductionF=tensorflow::AtomicMaxOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=Eigen::half, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<Eigen::half>, EmptySegmentValueF=tensorflow::functor::Zer
o<Eigen::half>, ReductionF=tensorflow::functor::Max]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=tensorflow::bfloat16, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicSumOpGpu, AtomicReductionF=tensorflow::AtomicSumOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=tensorflow::bfloat16, Index=tsl::int32, InitialValueF=tensorflow::functor::Zero<tensorflow::bfloat16>, EmptySegmentValueF=tensorfl
ow::functor::Zero<tensorflow::bfloat16>, ReductionF=tensorflow::functor::Sum]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(151): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentMeanNormalizeKernel(SegmentId, Index, const Index *, T *) [with SegmentId=tsl::int32, Index=tsl::int32, T=tensorflow::bfloat16
]"
(166): here
instantiation of "tsl::Status tensorflow::LaunchSegmentMeanNormalizeKernel(const tensorflow::GPUDevice &, SegmentId, Index, const Index *, T *) [with SegmentId=tsl::int
32, Index=tsl::int32, T=tensorflow::bfloat16]"
(770): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=tensorflow::bfloat16, Index=tsl::int32, InitialValueF=tensorflow::functor::Zero<tensorflow::bfloat16>, EmptySegmentValueF=tensorfl
ow::functor::Zero<tensorflow::bfloat16>, ReductionF=tensorflow::functor::Sum]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=tensorflow::bfloat16, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicProdOpGpu, AtomicReductionF=tensorflow::AtomicProdOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=tensorflow::bfloat16, Index=tsl::int32, InitialValueF=tensorflow::functor::One<tensorflow::bfloat16>, EmptySegmentValueF=tensorflo
w::functor::One<tensorflow::bfloat16>, ReductionF=tensorflow::functor::Prod]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=tensorflow::bfloat16, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMinOpGpu, AtomicReductionF=tensorflow::AtomicMinOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=tensorflow::bfloat16, Index=tsl::int32, InitialValueF=tensorflow::functor::Highest<tensorflow::bfloat16>, EmptySegmentValueF=tenso
rflow::functor::Zero<tensorflow::bfloat16>, ReductionF=tensorflow::functor::Min]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=tensorflow::bfloat16, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMaxOpGpu, AtomicReductionF=tensorflow::AtomicMaxOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=tensorflow::bfloat16, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<tensorflow::bfloat16>, EmptySegmentValueF=tensor
flow::functor::Zero<tensorflow::bfloat16>, ReductionF=tensorflow::functor::Max]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=float, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicSumOpGpu, AtomicReductionF=tensorflow::AtomicSumOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=float, Index=tsl::int32, InitialValueF=tensorflow::functor::Zero<float>, EmptySegmentValueF=tensorflow::functor::Zero<float>, Redu
ctionF=tensorflow::functor::Sum]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(151): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentMeanNormalizeKernel(SegmentId, Index, const Index *, T *) [with SegmentId=tsl::int32, Index=tsl::int32, T=float]"
(166): here
instantiation of "tsl::Status tensorflow::LaunchSegmentMeanNormalizeKernel(const tensorflow::GPUDevice &, SegmentId, Index, const Index *, T *) [with SegmentId=tsl::int
32, Index=tsl::int32, T=float]"
(770): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=float, Index=tsl::int32, InitialValueF=tensorflow::functor::Zero<float>, EmptySegmentValueF=tensorflow::functor::Zero<float>, Redu
ctionF=tensorflow::functor::Sum]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=float, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicProdOpGpu, AtomicReductionF=tensorflow::AtomicProdOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=float, Index=tsl::int32, InitialValueF=tensorflow::functor::One<float>, EmptySegmentValueF=tensorflow::functor::One<float>, Reduct
ionF=tensorflow::functor::Prod]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=float, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMinOpGpu, AtomicReductionF=tensorflow::AtomicMinOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=float, Index=tsl::int32, InitialValueF=tensorflow::functor::Highest<float>, EmptySegmentValueF=tensorflow::functor::Zero<float>, R
eductionF=tensorflow::functor::Min]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(54): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (float, const float)
detected during:
instantiation of "void tensorflow::NonAtomicMinOpGpu::operator()(T *, const T &) [with T=float]"
(125): here
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=float, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMinOpGpu, AtomicReductionF=tensorflow::AtomicMinOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=float, Index=tsl::int32, InitialValueF=tensorflow::functor::Highest<float>, EmptySegmentValueF=tensorflow::functor::Zero<float>, R
eductionF=tensorflow::functor::Min]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=float, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMaxOpGpu, AtomicReductionF=tensorflow::AtomicMaxOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=float, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<float>, EmptySegmentValueF=tensorflow::functor::Zero<float>, Re
ductionF=tensorflow::functor::Max]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(53): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (float, const float)
detected during:
instantiation of "void tensorflow::NonAtomicMaxOpGpu::operator()(T *, const T &) [with T=float]"
(125): here
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=float, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMaxOpGpu, AtomicReductionF=tensorflow::AtomicMaxOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=float, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<float>, EmptySegmentValueF=tensorflow::functor::Zero<float>, Re
ductionF=tensorflow::functor::Max]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=double, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicSumOpGpu, AtomicReductionF=tensorflow::AtomicSumOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=double, Index=tsl::int32, InitialValueF=tensorflow::functor::Zero<double>, EmptySegmentValueF=tensorflow::functor::Zero<double>, R
eductionF=tensorflow::functor::Sum]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(151): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentMeanNormalizeKernel(SegmentId, Index, const Index *, T *) [with SegmentId=tsl::int32, Index=tsl::int32, T=double]"
(166): here
instantiation of "tsl::Status tensorflow::LaunchSegmentMeanNormalizeKernel(const tensorflow::GPUDevice &, SegmentId, Index, const Index *, T *) [with SegmentId=tsl::int
32, Index=tsl::int32, T=double]"
(770): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=double, Index=tsl::int32, InitialValueF=tensorflow::functor::Zero<double>, EmptySegmentValueF=tensorflow::functor::Zero<double>, R
eductionF=tensorflow::functor::Sum]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=double, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicProdOpGpu, AtomicReductionF=tensorflow::AtomicProdOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=double, Index=tsl::int32, InitialValueF=tensorflow::functor::One<double>, EmptySegmentValueF=tensorflow::functor::One<double>, Red
uctionF=tensorflow::functor::Prod]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=double, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMinOpGpu, AtomicReductionF=tensorflow::AtomicMinOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=double, Index=tsl::int32, InitialValueF=tensorflow::functor::Highest<double>, EmptySegmentValueF=tensorflow::functor::Zero<double>
, ReductionF=tensorflow::functor::Min]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(54): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (double, const double)
detected during:
instantiation of "void tensorflow::NonAtomicMinOpGpu::operator()(T *, const T &) [with T=double]"
(125): here
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=double, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMinOpGpu, AtomicReductionF=tensorflow::AtomicMinOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=double, Index=tsl::int32, InitialValueF=tensorflow::functor::Highest<double>, EmptySegmentValueF=tensorflow::functor::Zero<double>
, ReductionF=tensorflow::functor::Min]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(109): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (tsl::int32, int)
detected during:
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=double, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMaxOpGpu, AtomicReductionF=tensorflow::AtomicMaxOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=double, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<double>, EmptySegmentValueF=tensorflow::functor::Zero<double>,
ReductionF=tensorflow::functor::Max]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(53): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (double, const double)
detected during:
instantiation of "void tensorflow::NonAtomicMaxOpGpu::operator()(T *, const T &) [with T=double]"
(125): here
instantiation of "void tensorflow::SortedSegmentReductionCustomKernel<T,Index,OuterDimTileSize,ReductionF,AtomicReductionF>(Index, Index, Index, const Index *, const T
*, T *, Index, T) [with T=double, Index=tsl::int32, OuterDimTileSize=8, ReductionF=tensorflow::NonAtomicMaxOpGpu, AtomicReductionF=tensorflow::AtomicMaxOpGpu]"
(750): here
instantiation of "void tensorflow::functor::SegmentReductionFunctor<T, Index, InitialValueF, EmptySegmentValueF, ReductionF>::operator()(tensorflow::OpKernelContext *,
const tensorflow::functor::GPUDevice &, Index, const tensorflow::TensorShape &, __nv_bool, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstFlat, Index, const T *, tensorflow:
:TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=double, Index=tsl::int32, InitialValueF=tensorflow::functor::Lowest<double>, EmptySegmentValueF=tensorflow::functor::Zero<double>,
ReductionF=tensorflow::functor::Max]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(63): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(206): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (ptrdiff_t, ptrdiff_t)
detected during:
instantiation of "void tensorflow::SegmentOffsetsKernel(Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int, Tsegmentids=ptrdiff_t]"
(233): here
instantiation of "tsl::Status tensorflow::LaunchSegmentOffsetsKernel(const tensorflow::GPUDevice &, Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int
, Tsegmentids=ptrdiff_t]"
(570): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUImpl<Treducevec,Tvec,Tindex,Tsegmentids,ReduceOp,Tinit>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmen
tids, ReduceOp, Tinit, Tinit, __nv_bool, __nv_bool, const Tvec *, const Tsegmentids *, const Tindex *, const Tinit *, Tvec *) [with Treducevec=tensorflow::AlignedVector<float, 8>,
Tvec=tensorflow::AlignedVector<Eigen::half, 8>, Tindex=int, Tsegmentids=ptrdiff_t, ReduceOp=tensorflow::functor::Sum, Tinit=Eigen::half]"
(617): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUVectorized<Treduce>::Impl<vec_size>::operator()(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, Re
duceOp, T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=float, vec_size=8, T=Eigen::half, Tindex=int, Tsegmentids=ptrdiff_
t, ReduceOp=tensorflow::functor::Sum]"
.\tensorflow/core/util/gpu_kernel_helper.h(329): here
instantiation of "tsl::Status tensorflow::detail::DispatchToVectorizedHelper<VecSize, Functor>::operator()(int64_t, Args &&...) const [with VecSize=8LL, Functor=tensorf
low::SegmentReduceGPUVectorized<float>::Impl, Args=<tensorflow::OpKernelContext *&, int &, int &, ptrdiff_t &, tensorflow::functor::Sum &, Eigen::half &, Eigen::half &, __nv_bool &
, __nv_bool &, const Eigen::half *&, const int64_t *&, const tsl::int32 *&, const Eigen::half *&, Eigen::half *&>]"
.\tensorflow/core/util/gpu_kernel_helper.h(364): here
instantiation of "tsl::Status tensorflow::DispatchToVectorized<T,Functor,Args...>(int64_t, Args &&...) [with T=Eigen::half, Functor=tensorflow::SegmentReduceGPUVectoriz
ed<float>::Impl, Args=<tensorflow::OpKernelContext *&, tsl::int32 &, tsl::int32 &, int64_t &, tensorflow::functor::Sum &, Eigen::half &, Eigen::half &, __nv_bool &, __nv_bool &, co
nst Eigen::half *&, const int64_t *&, const tsl::int32 *&, const Eigen::half *&, Eigen::half *&>]"
(647): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPU<Treduce,T,Tindex,Tsegmentids,ReduceOp>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, ReduceOp,
T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=float, T=Eigen::half, Tindex=tsl::int32, Tsegmentids=int64_t, ReduceOp=ten
sorflow::functor::Sum]"
(904): here
instantiation of "tsl::Status tensorflow::functor::SparseSegmentReductionFunctor<T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, __nv_bool, __nv_bool, T
, tensorflow::TTypes<T, 2, Eigen::DenseIndex>::ConstTensor, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<SegmentId, 1, Eigen::DenseIndex>::ConstVec
, tensorflow::TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=Eigen::half, Index=tsl::int32, SegmentId=int64_t]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(95): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(206): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (<error-type>, ptrdiff_t)
detected during:
instantiation of "void tensorflow::SegmentOffsetsKernel(Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int, Tsegmentids=ptrdiff_t]"
(233): here
instantiation of "tsl::Status tensorflow::LaunchSegmentOffsetsKernel(const tensorflow::GPUDevice &, Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=int
, Tsegmentids=ptrdiff_t]"
(570): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUImpl<Treducevec,Tvec,Tindex,Tsegmentids,ReduceOp,Tinit>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmen
tids, ReduceOp, Tinit, Tinit, __nv_bool, __nv_bool, const Tvec *, const Tsegmentids *, const Tindex *, const Tinit *, Tvec *) [with Treducevec=tensorflow::AlignedVector<float, 8>,
Tvec=tensorflow::AlignedVector<Eigen::half, 8>, Tindex=int, Tsegmentids=ptrdiff_t, ReduceOp=tensorflow::functor::Sum, Tinit=Eigen::half]"
(617): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUVectorized<Treduce>::Impl<vec_size>::operator()(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, Re
duceOp, T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=float, vec_size=8, T=Eigen::half, Tindex=int, Tsegmentids=ptrdiff_
t, ReduceOp=tensorflow::functor::Sum]"
.\tensorflow/core/util/gpu_kernel_helper.h(329): here
instantiation of "tsl::Status tensorflow::detail::DispatchToVectorizedHelper<VecSize, Functor>::operator()(int64_t, Args &&...) const [with VecSize=8LL, Functor=tensorf
low::SegmentReduceGPUVectorized<float>::Impl, Args=<tensorflow::OpKernelContext *&, int &, int &, ptrdiff_t &, tensorflow::functor::Sum &, Eigen::half &, Eigen::half &, __nv_bool &
, __nv_bool &, const Eigen::half *&, const int64_t *&, const tsl::int32 *&, const Eigen::half *&, Eigen::half *&>]"
.\tensorflow/core/util/gpu_kernel_helper.h(364): here
instantiation of "tsl::Status tensorflow::DispatchToVectorized<T,Functor,Args...>(int64_t, Args &&...) [with T=Eigen::half, Functor=tensorflow::SegmentReduceGPUVectoriz
ed<float>::Impl, Args=<tensorflow::OpKernelContext *&, tsl::int32 &, tsl::int32 &, int64_t &, tensorflow::functor::Sum &, Eigen::half &, Eigen::half &, __nv_bool &, __nv_bool &, co
nst Eigen::half *&, const int64_t *&, const tsl::int32 *&, const Eigen::half *&, Eigen::half *&>]"
(647): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPU<Treduce,T,Tindex,Tsegmentids,ReduceOp>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, ReduceOp,
T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=float, T=Eigen::half, Tindex=tsl::int32, Tsegmentids=int64_t, ReduceOp=ten
sorflow::functor::Sum]"
(904): here
instantiation of "tsl::Status tensorflow::functor::SparseSegmentReductionFunctor<T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, __nv_bool, __nv_bool, T
, tensorflow::TTypes<T, 2, Eigen::DenseIndex>::ConstTensor, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<SegmentId, 1, Eigen::DenseIndex>::ConstVec
, tensorflow::TTypes<T, 2, Eigen::DenseIndex>::Tensor) [with T=Eigen::half, Index=tsl::int32, SegmentId=int64_t]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(95): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentWeightsKernel(SegmentId, tensorflow::SparseSegmentReductionOperation, const Index *, T *) [with SegmentId=tsl::int32, Index=ts
l::int32, T=Eigen::half]"
(674): here
instantiation of "tsl::Status tensorflow::LaunchSegmentWeightsKernel(const tensorflow::GPUDevice &, SegmentId, tensorflow::SparseSegmentReductionOperation, const Index
*, T *) [with SegmentId=tsl::int32, Index=tsl::int32, T=Eigen::half]"
(941): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=Eigen::half, Index=tsl::int32, SegmentId=tsl::int32]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentWeightsKernel(SegmentId, tensorflow::SparseSegmentReductionOperation, const Index *, T *) [with SegmentId=int64_t, Index=tsl::
int32, T=Eigen::half]"
(674): here
instantiation of "tsl::Status tensorflow::LaunchSegmentWeightsKernel(const tensorflow::GPUDevice &, SegmentId, tensorflow::SparseSegmentReductionOperation, const Index
*, T *) [with SegmentId=int64_t, Index=tsl::int32, T=Eigen::half]"
(941): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=Eigen::half, Index=tsl::int32, SegmentId=int64_t]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(206): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (int, int)
detected during:
instantiation of "void tensorflow::SegmentOffsetsKernel(Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=ptrdiff_t, Tsegmentids=int]"
(233): here
instantiation of "tsl::Status tensorflow::LaunchSegmentOffsetsKernel(const tensorflow::GPUDevice &, Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=ptr
diff_t, Tsegmentids=int]"
(570): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUImpl<Treducevec,Tvec,Tindex,Tsegmentids,ReduceOp,Tinit>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmen
tids, ReduceOp, Tinit, Tinit, __nv_bool, __nv_bool, const Tvec *, const Tsegmentids *, const Tindex *, const Tinit *, Tvec *) [with Treducevec=tensorflow::AlignedVector<Eigen::half
, 8>, Tvec=tensorflow::AlignedVector<Eigen::half, 8>, Tindex=ptrdiff_t, Tsegmentids=int, ReduceOp=cub::Sum, Tinit=Eigen::half]"
(617): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUVectorized<Treduce>::Impl<vec_size>::operator()(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, Re
duceOp, T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=Eigen::half, vec_size=8, T=Eigen::half, Tindex=ptrdiff_t, Tsegment
ids=int, ReduceOp=cub::Sum]"
.\tensorflow/core/util/gpu_kernel_helper.h(329): here
instantiation of "tsl::Status tensorflow::detail::DispatchToVectorizedHelper<VecSize, Functor>::operator()(int64_t, Args &&...) const [with VecSize=8LL, Functor=tensorf
low::SegmentReduceGPUVectorized<Eigen::half>::Impl, Args=<tensorflow::OpKernelContext *&, ptrdiff_t &, ptrdiff_t &, int &, cub::Sum &, Eigen::half &, Eigen::half &, __nv_bool &, __
nv_bool &, const Eigen::half *&, const tsl::int32 *&, const int64_t *&, const Eigen::half *&, Eigen::half *&>]"
.\tensorflow/core/util/gpu_kernel_helper.h(364): here
instantiation of "tsl::Status tensorflow::DispatchToVectorized<T,Functor,Args...>(int64_t, Args &&...) [with T=Eigen::half, Functor=tensorflow::SegmentReduceGPUVectoriz
ed<Eigen::half>::Impl, Args=<tensorflow::OpKernelContext *&, int64_t &, int64_t &, tsl::int32 &, cub::Sum &, Eigen::half &, Eigen::half &, __nv_bool &, __nv_bool &, const Eigen::ha
lf *&, const tsl::int32 *&, const int64_t *&, const Eigen::half *&, Eigen::half *&>]"
(647): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPU<Treduce,T,Tindex,Tsegmentids,ReduceOp>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, ReduceOp,
T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=Eigen::half, T=Eigen::half, Tindex=int64_t, Tsegmentids=tsl::int32, Reduce
Op=cub::Sum]"
(976): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=Eigen::half, Index=tsl::int32, SegmentId=int64_t]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(206): error: no instance of overloaded function "tensorflow::min" matches the argument list
argument types are: (<error-type>, int)
detected during:
instantiation of "void tensorflow::SegmentOffsetsKernel(Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=ptrdiff_t, Tsegmentids=int]"
(233): here
instantiation of "tsl::Status tensorflow::LaunchSegmentOffsetsKernel(const tensorflow::GPUDevice &, Tindex, Tsegmentids, const Tsegmentids *, Tindex *) [with Tindex=ptr
diff_t, Tsegmentids=int]"
(570): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUImpl<Treducevec,Tvec,Tindex,Tsegmentids,ReduceOp,Tinit>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmen
tids, ReduceOp, Tinit, Tinit, __nv_bool, __nv_bool, const Tvec *, const Tsegmentids *, const Tindex *, const Tinit *, Tvec *) [with Treducevec=tensorflow::AlignedVector<Eigen::half
, 8>, Tvec=tensorflow::AlignedVector<Eigen::half, 8>, Tindex=ptrdiff_t, Tsegmentids=int, ReduceOp=cub::Sum, Tinit=Eigen::half]"
(617): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPUVectorized<Treduce>::Impl<vec_size>::operator()(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, Re
duceOp, T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=Eigen::half, vec_size=8, T=Eigen::half, Tindex=ptrdiff_t, Tsegment
ids=int, ReduceOp=cub::Sum]"
.\tensorflow/core/util/gpu_kernel_helper.h(329): here
instantiation of "tsl::Status tensorflow::detail::DispatchToVectorizedHelper<VecSize, Functor>::operator()(int64_t, Args &&...) const [with VecSize=8LL, Functor=tensorf
low::SegmentReduceGPUVectorized<Eigen::half>::Impl, Args=<tensorflow::OpKernelContext *&, ptrdiff_t &, ptrdiff_t &, int &, cub::Sum &, Eigen::half &, Eigen::half &, __nv_bool &, __
nv_bool &, const Eigen::half *&, const tsl::int32 *&, const int64_t *&, const Eigen::half *&, Eigen::half *&>]"
.\tensorflow/core/util/gpu_kernel_helper.h(364): here
instantiation of "tsl::Status tensorflow::DispatchToVectorized<T,Functor,Args...>(int64_t, Args &&...) [with T=Eigen::half, Functor=tensorflow::SegmentReduceGPUVectoriz
ed<Eigen::half>::Impl, Args=<tensorflow::OpKernelContext *&, int64_t &, int64_t &, tsl::int32 &, cub::Sum &, Eigen::half &, Eigen::half &, __nv_bool &, __nv_bool &, const Eigen::ha
lf *&, const tsl::int32 *&, const int64_t *&, const Eigen::half *&, Eigen::half *&>]"
(647): here
instantiation of "tsl::Status tensorflow::SegmentReduceGPU<Treduce,T,Tindex,Tsegmentids,ReduceOp>(tensorflow::OpKernelContext *, Tindex, Tindex, Tsegmentids, ReduceOp,
T, T, __nv_bool, __nv_bool, const T *, const Tsegmentids *, const Tindex *, const T *, T *) [with Treduce=Eigen::half, T=Eigen::half, Tindex=int64_t, Tsegmentids=tsl::int32, Reduce
Op=cub::Sum]"
(976): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=Eigen::half, Index=tsl::int32, SegmentId=int64_t]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentWeightsKernel(SegmentId, tensorflow::SparseSegmentReductionOperation, const Index *, T *) [with SegmentId=tsl::int32, Index=ts
l::int32, T=tensorflow::bfloat16]"
(674): here
instantiation of "tsl::Status tensorflow::LaunchSegmentWeightsKernel(const tensorflow::GPUDevice &, SegmentId, tensorflow::SparseSegmentReductionOperation, const Index
*, T *) [with SegmentId=tsl::int32, Index=tsl::int32, T=tensorflow::bfloat16]"
(941): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=tensorflow::bfloat16, Index=tsl::int32, SegmentId=tsl::int32]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentWeightsKernel(SegmentId, tensorflow::SparseSegmentReductionOperation, const Index *, T *) [with SegmentId=int64_t, Index=tsl::
int32, T=tensorflow::bfloat16]"
(674): here
instantiation of "tsl::Status tensorflow::LaunchSegmentWeightsKernel(const tensorflow::GPUDevice &, SegmentId, tensorflow::SparseSegmentReductionOperation, const Index
*, T *) [with SegmentId=int64_t, Index=tsl::int32, T=tensorflow::bfloat16]"
(941): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=tensorflow::bfloat16, Index=tsl::int32, SegmentId=int64_t]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentWeightsKernel(SegmentId, tensorflow::SparseSegmentReductionOperation, const Index *, T *) [with SegmentId=tsl::int32, Index=ts
l::int32, T=float]"
(674): here
instantiation of "tsl::Status tensorflow::LaunchSegmentWeightsKernel(const tensorflow::GPUDevice &, SegmentId, tensorflow::SparseSegmentReductionOperation, const Index
*, T *) [with SegmentId=tsl::int32, Index=tsl::int32, T=float]"
(941): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=float, Index=tsl::int32, SegmentId=tsl::int32]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentWeightsKernel(SegmentId, tensorflow::SparseSegmentReductionOperation, const Index *, T *) [with SegmentId=int64_t, Index=tsl::
int32, T=float]"
(674): here
instantiation of "tsl::Status tensorflow::LaunchSegmentWeightsKernel(const tensorflow::GPUDevice &, SegmentId, tensorflow::SparseSegmentReductionOperation, const Index
*, T *) [with SegmentId=int64_t, Index=tsl::int32, T=float]"
(941): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=float, Index=tsl::int32, SegmentId=int64_t]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
detected during:
instantiation of "void tensorflow::SegmentWeightsKernel(SegmentId, tensorflow::SparseSegmentReductionOperation, const Index *, T *) [with SegmentId=tsl::int32, Index=ts
l::int32, T=double]"
(674): here
instantiation of "tsl::Status tensorflow::LaunchSegmentWeightsKernel(const tensorflow::GPUDevice &, SegmentId, tensorflow::SparseSegmentReductionOperation, const Index
*, T *) [with SegmentId=tsl::int32, Index=tsl::int32, T=double]"
(941): here
instantiation of "void tensorflow::functor::SparseSegmentGradFunctor<tensorflow::functor::GPUDevice, T, Index, SegmentId>::operator()(tensorflow::OpKernelContext *, ten
sorflow::SparseSegmentReductionOperation, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::ConstMatrix, tensorflow::TTypes<Index, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<Se
gmentId, 1, Eigen::DenseIndex>::ConstVec, tensorflow::TTypes<T, 1, Eigen::DenseIndex>::Matrix) [with T=double, Index=tsl::int32, SegmentId=tsl::int32]"
E:\20220616_1800pm\_bazel_tensorflow\jsjos6dw\execroot\org_tensorflow\tensorflow\core\kernels\segment_reduction_ops_gpu_0.cu.cc(101): here
.\tensorflow/core/kernels/segment_reduction_ops_gpu.cu.h(657): error: no instance of overloaded function "tensorflow::max" matches the argument list
argument types are: (tsl::int32, tsl::int32)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60397/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60397/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60396 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60396/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60396/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60396/events | https://github.com/tensorflow/tensorflow/pull/60396 | 1,679,021,317 | PR_kwDOArmXAs5O43n- | 60,396 | Update README.md | {
"login": "tmm88",
"id": 124882934,
"node_id": "U_kgDOB3GP9g",
"avatar_url": "https://avatars.githubusercontent.com/u/124882934?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tmm88",
"html_url": "https://github.com/tmm88",
"followers_url": "https://api.github.com/users/tmm88/followers",
"following_url": "https://api.github.com/users/tmm88/following{/other_user}",
"gists_url": "https://api.github.com/users/tmm88/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tmm88/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tmm88/subscriptions",
"organizations_url": "https://api.github.com/users/tmm88/orgs",
"repos_url": "https://api.github.com/users/tmm88/repos",
"events_url": "https://api.github.com/users/tmm88/events{/privacy}",
"received_events_url": "https://api.github.com/users/tmm88/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
},
{
"id": 1593512946,
"node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid",
"name": "invalid",
"color": "db6f57",
"default": true,
"description": "Hacktoberfest spam PR"
}
] | closed | true | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60396/checks?check_run_id=12934789977) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.",
"Please don't use \"add file\"/\"update file\"/\"fix file\"/etc. commit messages. These are hard to reason about when looking at the history of the file/repository. Instead, please write explanatory git commit messages.\r\n\r\nThe commit message is also the title of the PR if the PR has only one commit. It is thus twice important to have commit messages that are relevant, as PRs would be easier to understand and easier to analyze in search results.\r\n\r\nFor how to write good quality git commit messages, please consult https://cbea.ms/git-commit/ "
] | 2023-04-21T20:02:16 | 2023-04-23T16:03:57 | 2023-04-23T16:03:43 | NONE | spam | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60396",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60396",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60396.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60396.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60396/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60396/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60395 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60395/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60395/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60395/events | https://github.com/tensorflow/tensorflow/issues/60395 | 1,678,928,054 | I_kwDOArmXAs5kEmi2 | 60,395 | Tensorflow GPU segfaults on M1 mac | {
"login": "ashok-arora",
"id": 19496434,
"node_id": "MDQ6VXNlcjE5NDk2NDM0",
"avatar_url": "https://avatars.githubusercontent.com/u/19496434?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ashok-arora",
"html_url": "https://github.com/ashok-arora",
"followers_url": "https://api.github.com/users/ashok-arora/followers",
"following_url": "https://api.github.com/users/ashok-arora/following{/other_user}",
"gists_url": "https://api.github.com/users/ashok-arora/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ashok-arora/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ashok-arora/subscriptions",
"organizations_url": "https://api.github.com/users/ashok-arora/orgs",
"repos_url": "https://api.github.com/users/ashok-arora/repos",
"events_url": "https://api.github.com/users/ashok-arora/events{/privacy}",
"received_events_url": "https://api.github.com/users/ashok-arora/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"solutions that you can try:\r\n\r\nEnsure that you have installed the latest version of TensorFlow for Apple Silicon processors. You can download the latest version from the official TensorFlow website or install it via pip.\r\n\r\nTry running your code with an earlier version of TensorFlow. This issue might be specific to TensorFlow 2.12.0. So, try running your code with TensorFlow 2.11.0 or 2.13.0.\r\n\r\nCheck if there is any issue with your custom code. You can try running the TensorFlow MNIST example code without any modification to check if the issue is with TensorFlow or your code.\r\n\r\nCheck if there are any compatibility issues with the Python version that you have installed. You can try running your code with Python 3.8 or 3.9.\r\n\r\nTry updating your Ventura OS and Xcode version to the latest stable version.\r\n\r\nI hope this helps. If the issue persists, please provide more details about the error, including the full stack trace, the GPU model and memory, and other relevant information.",
"@ashok-arora - Can you confirm that you followed the steps here for installing TensorFlow on Mac M1? - https://developer.apple.com/metal/tensorflow-plugin/ . This is the suggested installation from TensorFlow Docs for installing on M1 (https://www.tensorflow.org/install/pip#macos)\r\n\r\nI would also recommend that you create a new Conda environment and install inside there to isolate the issue.",
"@sampathweb Yes, I have followed the developer guide for installing TensorFlow on mac M1 and had created a new conda environment. ",
"@ashok-arora ,\r\n\r\nSInce you are using M1 apple silicon(arm architecture) you need to follow the metal plugin instructions from Apple which are [here](https://developer.apple.com/metal/tensorflow-plugin/). The instructions in Tensorflow forum can be work for Macos with intel chips(X86-64 architecture).\r\n\r\nCan you please also confirm whether you have installed `tensorflow-macos`(Apple package) or `tensorflow`(TF package)? \r\npip install tensorflow-macos fetches Apple wheel and pip install tensorflow fetches TF wheel but this will work for X86_64 architecture only except for tf-nightly version. You can use `pip install tf-nightly` which can install tf-macos-nightly wheel of Apple based on systems architecture. Please try with tf-nightly version also let us know if same behaviour observed in nightly also.\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"@SuryanarayanaY Yes, I have installed it through the given instructions. ",
"Hi @ashok-arora , Could you please try to install Tensorflow 2.13 using pip for Apple M1 chips.\r\n\r\n`!pip install tensorflow==2.13.0`\r\n\r\n```\r\nimport tensorflow as tf\r\nprint(tf.config.list_physical_devices())\r\n[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')]\r\n```\r\n\r\nAbove command will install the CPU version, for GPU support use the below command and your system will detect both CPU and GPU.\r\n\r\n`!pip install tesnsorflow-metal `\r\n\r\n```\r\nimport tensorflow as tf\r\nprint(tf.config.list_physical_devices())\r\n[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]\r\n```\r\n\r\nLet me know if you face any issues. Thanks!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60395\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60395\">No</a>\n",
"How can I reopen the issue?"
] | 2023-04-21T18:29:20 | 2023-08-03T18:19:28 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
M1 mac, Ventura OS
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
Fatal Python error: Segmentation fault.
### Standalone code to reproduce the issue
```shell
# Download script
curl https://raw.githubusercontent.com/abreheret/tensorflow-models/master/tutorials/image/mnist/convolutional.py -o model.py
# Make script compatible with Tensorflow 2.0
sed -i 's/import tensorflow as tf/import tensorflow.compat.v1 as tf\ntf.disable_eager_execution()/g' model.py
# Run script
python model.py
```
### Relevant log output
```shell
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
Metal device set to: Apple M1
systemMemory: 16.00 GB
maxCacheSize: 5.33 GB
2023-04-21 23:54:30.086459: W tensorflow/tsl/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz
Initialized!
Fatal Python error: Segmentation fault
Thread 0x00000001eb19a500 (most recent call first):
File "/Users/ashok/miniconda/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1454 in _call_tf_sessionrun
File "/Users/ashok/miniconda/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1361 in _run_fn
File "/Users/ashok/miniconda/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1378 in _do_call
File "/Users/ashok/miniconda/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1371 in _do_run
File "/Users/ashok/miniconda/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1191 in _run
File "/Users/ashok/miniconda/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 968 in run
File "/Users/ashok/Desktop/model.py", line 314 in main
File "/Users/ashok/miniconda/lib/python3.10/site-packages/absl/app.py", line 254 in _run_main
File "/Users/ashok/miniconda/lib/python3.10/site-packages/absl/app.py", line 308 in run
File "/Users/ashok/miniconda/lib/python3.10/site-packages/tensorflow/python/platform/app.py", line 36 in run
File "/Users/ashok/Desktop/model.py", line 353 in <module>
Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, google._upb._message, tensorflow.python.framework.fast_tensor_util, _cffi_backend, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.h5r, h5py.utils, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5t, h5py._conv, h5py.h5z, h5py._proxy, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5o, h5py.h5l, h5py._selector, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._isolve._iterative, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg._cythonized_array_utils, scipy.linalg._flinalg, scipy.linalg._solve_toeplitz, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_lapack, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, PIL._imaging, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.hashing, pandas._libs.tslib, pandas._libs.ops, pandas._libs.arrays, pandas._libs.sparse, pandas._libs.reduction, pandas._libs.indexing, pandas._libs.index, pandas._libs.internals, pandas._libs.join, pandas._libs.writers, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.testing, pandas._libs.parsers, pandas._libs.json, scipy.ndimage._nd_image, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, _ni_label, scipy.ndimage._ni_label (total: 114)
fish: Job 1, 'python ~/Desktop/model.py' terminated by signal SIGSEGV (Address boundary error)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60395/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60395/timeline | null | reopened | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60394 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60394/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60394/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60394/events | https://github.com/tensorflow/tensorflow/issues/60394 | 1,678,883,296 | I_kwDOArmXAs5kEbng | 60,394 | ValueError: Unexpected result of `predict_function` (Empty batch_outputs) | {
"login": "Erangi2020",
"id": 65387688,
"node_id": "MDQ6VXNlcjY1Mzg3Njg4",
"avatar_url": "https://avatars.githubusercontent.com/u/65387688?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Erangi2020",
"html_url": "https://github.com/Erangi2020",
"followers_url": "https://api.github.com/users/Erangi2020/followers",
"following_url": "https://api.github.com/users/Erangi2020/following{/other_user}",
"gists_url": "https://api.github.com/users/Erangi2020/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Erangi2020/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Erangi2020/subscriptions",
"organizations_url": "https://api.github.com/users/Erangi2020/orgs",
"repos_url": "https://api.github.com/users/Erangi2020/repos",
"events_url": "https://api.github.com/users/Erangi2020/events{/privacy}",
"received_events_url": "https://api.github.com/users/Erangi2020/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@Erangi2020,\r\nI tried to execute the mentioned code and it was failing due to a different error. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/9d6225a1748eb9d00b71ec039df2c049/untitled1081.ipynb) and also Have you got the chance to take a look at this PR which was raised for the similar error and it was open and under review with the Developer. \r\n\r\nhttps://github.com/keras-team/keras/pull/16216\r\nhttps://github.com/keras-team/keras/pull/18042\r\nhttps://github.com/keras-team/keras/issues/16202\r\n\r\nRequesting you to follow the same issue for the updates. Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60394\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60394\">No</a>\n"
] | 2023-04-21T17:49:11 | 2023-05-09T01:54:48 | 2023-05-09T01:54:44 | NONE | null | null | null | I have the below model I'm working on. The intention is to forecast the 'Index' field based on the impacts from the fields A,B,C and D. The Date field is of the type 'MM/DD/YYYY'
--------------------------------------------------------------------------------------------------------------------------------------------------
`#Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
#Load the dataset
df = pd.read_csv('New Final.csv', usecols=['Date', 'Index', 'A', 'B', 'C', 'D'])
df = df.sort_values('Date')
df = df.set_index('Date')
#Normalize the data using MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(df)
#Split data into training and testing sets
training_data_len = int(len(scaled_data) * 0.8)
train_data = scaled_data[0:training_data_len, :]
test_data = scaled_data[training_data_len:, :]
#Prepare the data for training
def create_dataset(dataset, time_step=1):
data_X, data_y = [], []
for i in range(len(dataset) - time_step):
a = dataset[i:(i + time_step), :]
data_X.append(a)
data_y.append(dataset[i + time_step, 0])
return np.array(data_X), np.array(data_y)
time_steps = 60
X_train, y_train = create_dataset(train_data, time_steps)
X_test, y_test = create_dataset(test_data, time_steps)
#Build the model
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(LSTM(units=50, return_sequences=True))
model.add(LSTM(units=50))
model.add(Dense(units=1))
#Compile the model
#model.compile(optimizer='adam', loss='mean_squared_error')
model.compile(loss='mean_squared_error', optimizer='adam', run_eagerly=True)
#Train the model
model.fit(X_train, y_train, epochs=100, batch_size=32)
#Evaluate the model
train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test, batch_size=1)
#Convert the predictions back to original form
train_predictions = scaler.inverse_transform(train_predictions)
y_train = scaler.inverse_transform([y_train])
test_predictions = scaler.inverse_transform(test_predictions)
y_test = scaler.inverse_transform([y_test])
#Create a dataframe to store the predictions
train_predict_df = pd.DataFrame(train_predictions, columns=['IndexI'], index=df.iloc[time_steps:training_data_len, :].index)
test_predict_df = pd.DataFrame(test_predictions, columns=['Index'], index=df.iloc[training_data_len+time_steps:-1, :].index)
#Merge the predicted values with the original dataset
df_train_predict = pd.concat([df.iloc[time_steps:training_data_len, :], train_predict_df], axis=1)
df_test_predict = pd.concat([df.iloc[training_data_len+time_steps:-1, :], test_predict_df], axis=1)
#Import the necessary libraries
import matplotlib.pyplot as plt
#Define the x-axis labels
x_labels = []
for year in range(2009, 2023):
for week in range(1, 53):
x_labels.append(str(year) + '-W' + str(week))
#Create the plot
plt.plot(df['Index'].values, color='purple')
plt.plot(df_train_predict['Index'], color='green')
plt.plot(df_test_predict['Index'], color='yellow')
#Set the x-axis labels
plt.xticks(np.arange(0, len(df), 52), x_labels[::52], rotation=90)
#Set the plot title and axis labels
plt.title('Actual vs. Predicted Index Values')
plt.xlabel('Weeks of the Year')
plt.ylabel('SCFI Values')
#Display the plot
plt.show()`
--------------------------------------------------------------------------------------------------------------------------------------------------
The training outcomes I get is below.

Im getting the following error when Im trying to predict the model,

Please tell me the possible reason for the above error and how can I fix it?
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60394/reactions",
"total_count": 2,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 2
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60394/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60393 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60393/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60393/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60393/events | https://github.com/tensorflow/tensorflow/pull/60393 | 1,678,719,009 | PR_kwDOArmXAs5O32vU | 60,393 | Added missing const and ensure proper resource management with unique_ptr | {
"login": "VijayR19",
"id": 107766524,
"node_id": "U_kgDOBmxi_A",
"avatar_url": "https://avatars.githubusercontent.com/u/107766524?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/VijayR19",
"html_url": "https://github.com/VijayR19",
"followers_url": "https://api.github.com/users/VijayR19/followers",
"following_url": "https://api.github.com/users/VijayR19/following{/other_user}",
"gists_url": "https://api.github.com/users/VijayR19/gists{/gist_id}",
"starred_url": "https://api.github.com/users/VijayR19/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/VijayR19/subscriptions",
"organizations_url": "https://api.github.com/users/VijayR19/orgs",
"repos_url": "https://api.github.com/users/VijayR19/repos",
"events_url": "https://api.github.com/users/VijayR19/events{/privacy}",
"received_events_url": "https://api.github.com/users/VijayR19/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @sagunb Can you please review this PR ? Thank you!"
] | 2023-04-21T15:36:39 | 2023-07-13T06:34:03 | 2023-07-13T06:34:03 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60393",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60393",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60393.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60393.patch",
"merged_at": "2023-07-13T06:34:03"
} | Title: Add missing const and ensure proper resource management with unique_ptr
Description:
This pull request addresses two issues in the code:
1. Added missing const to the TFPackage class member functions.
- This change improves the const-correctness of the code, ensuring that these member functions do not modify the internal state of the TFPackage objects.
2. Ensured proper resource management for the BundleReader object by using a std::unique_ptr.
- This change ensures that the BundleReader object is correctly deallocated when the TFPackage object is destroyed, preventing potential memory leaks.
These improvements will help maintain the robustness and quality of the codebase.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60393/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60393/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60392 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60392/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60392/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60392/events | https://github.com/tensorflow/tensorflow/issues/60392 | 1,678,052,354 | I_kwDOArmXAs5kBQwC | 60,392 | [MSVC]Tensorflow build process takes 11 hours with 2589785 commit | {
"login": "Eva-An",
"id": 122774610,
"node_id": "U_kgDOB1FkUg",
"avatar_url": "https://avatars.githubusercontent.com/u/122774610?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Eva-An",
"html_url": "https://github.com/Eva-An",
"followers_url": "https://api.github.com/users/Eva-An/followers",
"following_url": "https://api.github.com/users/Eva-An/following{/other_user}",
"gists_url": "https://api.github.com/users/Eva-An/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Eva-An/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Eva-An/subscriptions",
"organizations_url": "https://api.github.com/users/Eva-An/orgs",
"repos_url": "https://api.github.com/users/Eva-An/repos",
"events_url": "https://api.github.com/users/Eva-An/events{/privacy}",
"received_events_url": "https://api.github.com/users/Eva-An/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1188421838,
"node_id": "MDU6TGFiZWwxMTg4NDIxODM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows",
"name": "subtype:windows",
"color": "b619ea",
"default": false,
"description": "Windows Build/Installation Issues"
},
{
"id": 1463677878,
"node_id": "MDU6TGFiZWwxNDYzNjc3ODc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance",
"name": "type:performance",
"color": "159b2e",
"default": false,
"description": "Performance Issue"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
},
{
"login": "mraunak",
"id": 83710963,
"node_id": "MDQ6VXNlcjgzNzEwOTYz",
"avatar_url": "https://avatars.githubusercontent.com/u/83710963?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mraunak",
"html_url": "https://github.com/mraunak",
"followers_url": "https://api.github.com/users/mraunak/followers",
"following_url": "https://api.github.com/users/mraunak/following{/other_user}",
"gists_url": "https://api.github.com/users/mraunak/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mraunak/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mraunak/subscriptions",
"organizations_url": "https://api.github.com/users/mraunak/orgs",
"repos_url": "https://api.github.com/users/mraunak/repos",
"events_url": "https://api.github.com/users/mraunak/events{/privacy}",
"received_events_url": "https://api.github.com/users/mraunak/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @Eva-An, I see you are using --jobs 8, --> This specifies a limit on the number of jobs that should be executed concurrently during the execution phase of the build. You can increase the number of jobs to improve the time taken. However, it also depends upon your CPU specification - no. of cores etc",
"Hi @mraunak , I made four modifications and below are the settings and results.\r\n1. set --jobs 16 --local_ram_resources=2048, it took 11 hours\r\n2. set --jobs 8 --local_ram_resources=4096, it took 9 and a half hours\r\n3. set --jobs 8 --local_ram_resources=12288, it took 9 and a half hours\r\n4. set --jobs 16 --local_ram_reources=4069, it took 9 hours and 15 minutes",
"Hi @Eva-An, thank you for the update. I ran the build command on my end, it took 30-35 minutes, my CPU specification is Intel Xeon with 24 cores and 56 Logical Processors. command used: \r\nbazel --output_user_root F:\\bazelTemp build --config=opt --define=no_tensorflow_py_deps=true //tensorflow/tools/pip_package:build_pip_package\r\n\r\nI removed --jobs and --local_ram_resources arguments and gave the machine the flexibility to allocate resources on its own. Could you please try just running the command:\r\nbazel --output_user_root F:\\bazelTemp build --config=opt --define=no_tensorflow_py_deps=true //tensorflow/tools/pip_package:build_pip_package",
"Hi @Eva-An ,\r\n\r\nThe build time depends upon the no of CPU specifications like no of cores, Memory resources etc. Also its hard to compare the build time with different flags `--jobs` and `--local_ram_reources`. If jobs are more it is scalable (if enough RAM) and also more the memory allotted more will be the performance likely.\r\n\r\nWe need comparison without any difference in jobs or local_ram_sources etc. Like mentioned in above [comment](https://github.com/tensorflow/tensorflow/issues/60392#issuecomment-1524275096) please try a simple command for both commits you want to test and let us know the results. Request you to use `bazel clean --expunge` command before second build to clear the cache maintained by bazel.\r\n\r\nThanks!\r\n\r\n\r\n",
"Hi All,\r\n\r\n I removed --jobs and --local_ram_resources arguments of my command, the test took 8 hours and 15 minutes. Command: bazel --output_user_root F:\\bazelTemp build --config=opt --subcommands //tensorflow/tools/pip_package:build_pip_package\r\n\r\n@SuryanarayanaY We will only execute the bazel command once on a machine.\r\n\r\nThanks,\r\nEva",
"Hi @Eva-An, if the problem still persists, please check CPU utilization, and also make sure the CPU is not overloaded with other tasks while running the build command. Please let us know if you are still facing the issue",
"Hi @mraunak, when I start building this project, I will kill other tasks. My machine is a virtual machine with Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz 2.69GHz and Windows specifications are Windows Server 2022 Datacenter.\r\nSo far, it still takes about 9 hours to build it on my machine.",
"Hi @Eva-An, thank you for the information. Please run the command:\r\nbazel --output_user_root F:\\bazelTemp build --config=opt --jobs=50 -- subcommands //tensorflow/tools/pip_package:build_pip_package > run.log 2>&1\r\n\r\nI believe Intel(R) Xeon(R) Platinum 8168 processors will have 48 logical processors. --jobs flag will force the system to run 48 jobs in parallel. Please share the log file where we can find the number of processors being utilized. e.g. 64 processors are utilized in the screenshot shared below.\r\n\r\n\r\n\r\n",
"Hi @mraunak, I tried to build the project with the command your provided, but it comes up with this issue: fatal error C1002: compiler is out of heap space in pass 2. And I set the --local_ram_resources to 28G, this issue still appears.",
"Hi, @Eva-An please try the Bazel cache clean command below and then run the build command shared above. pls check if enough space is left on the disk (F:\\), \r\n\r\nbazel --output_user_root=F:\\bazelTemp clean --expunge\r\n\r\nIf the issue still persists, please share the log"
] | 2023-04-21T07:57:17 | 2023-06-02T18:22:15 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Performance
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
master branch, commit: 2589785
### Custom Code
No
### OS Platform and Distribution
Windows Server 2022
### Mobile device
_No response_
### Python version
3.9
### Bazel version
5.3.0
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
It took 11 hours to build this project with 2589785 commits, however with 160f2bd, it took 6 hours.
**2589785 Commit Build log:**
INFO: Build completed successfully, 34131 total actions
INFO: Build completed successfully, 34131 total actions
##[debug] Command #6 exited with code [0].
2023-04-12T07:34:32.2365460-07:00 Command ran in 11 hours, 17 minutes, 46 seconds
**160f2bd Commit Build log:**
INFO: Build completed successfully, 16950 total actions
INFO: Build completed successfully, 16950 total actions
##[debug] Command #6 exited with code [0].
2023-04-14T23:52:20.2671170-07:00 Command ran in 5 hours, 27 minutes, 51 seconds
### Standalone code to reproduce the issue
```shell
git clone https://github.com/tensorflow/tensorflow.git F:\gitP\tensorflow\tensorflow
cd F:\gitP\tensorflow\tensorflow
git reset --hard 2589785
pip3 install -r tensorflow/tools/ci_build/release/requirements_common.txt 2>&1
set PATH=F:\gitP\tensorflow\tensorflow\..\tools;%path%
set PATH=F:\gitP\tensorflow\tensorflow\..\tools\msys64\usr\bin;%path%
yes "" 2>nul | python ./configure.py 2>&1
set BAZEL_VC=C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC
set BAZEL_VC_FULL_VERSION=14.35.32215
set PATH=F:\gitP\tensorflow\tensorflow\..\tools;%path%
set PATH=F:\gitP\tensorflow\tensorflow\..\tools\msys64\usr\bin;%path%
bazel --output_user_root F:\bazelTemp build --jobs 8 --config=opt --local_ram_resources=2048 --subcommands //tensorflow/tools/pip_package:build_pip_package 2>&1
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60392/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60392/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60391 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60391/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60391/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60391/events | https://github.com/tensorflow/tensorflow/issues/60391 | 1,677,816,364 | I_kwDOArmXAs5kAXIs | 60,391 | Unequal strides support recently removed for DepthwiseConv2D | {
"login": "KaminiSabu",
"id": 19322541,
"node_id": "MDQ6VXNlcjE5MzIyNTQx",
"avatar_url": "https://avatars.githubusercontent.com/u/19322541?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/KaminiSabu",
"html_url": "https://github.com/KaminiSabu",
"followers_url": "https://api.github.com/users/KaminiSabu/followers",
"following_url": "https://api.github.com/users/KaminiSabu/following{/other_user}",
"gists_url": "https://api.github.com/users/KaminiSabu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/KaminiSabu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/KaminiSabu/subscriptions",
"organizations_url": "https://api.github.com/users/KaminiSabu/orgs",
"repos_url": "https://api.github.com/users/KaminiSabu/repos",
"events_url": "https://api.github.com/users/KaminiSabu/events{/privacy}",
"received_events_url": "https://api.github.com/users/KaminiSabu/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @KaminiSabu, As it is mentioned in the documentation of Tensorflow versions [2.9](https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/layers/DepthwiseConv2D#args), [2.11](https://www.tensorflow.org/versions/r2.11/api_docs/python/tf/keras/layers/DepthwiseConv2D#args) and [2.12](https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/keras/layers/DepthwiseConv2D#args) that the current implementation only supports equal length strides in the row and column dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. describing the strides argument. This is an expected behavior in all the three versions of Tensorflow. Thank you! ",
"Hello @synandi \r\n\r\nBut in the link you shared, against strides, I can see the following entry for 2.9 and 2.11\r\n\r\n\"An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1\"\r\n\r\nThe nonavailability for equal stride support is mentioned only for 2.12\r\n\r\nAnd more importantly, it works in the older installations on a specific machine and not on the new installations I am doing on other machines.\r\n\r\n",
"@KaminiSabu Apologies for the confusion. You are right. It is not mentioned in 2.9 and 2.11 doc about the nonavailability for equal stride. Kindly refer to this [issue](https://github.com/keras-team/keras/issues/15667), it is a known issue. The document has been updated in TF v2.12. Thank you! \r\n\r\n ",
"Ohh, so it should not work for any previous implementations as well. But it works in an older installation on a specific machine. Any idea how? Was the implementation wrong and hence is not being supported now? I used the same set of commands on that machine and got an output matrix printed:\r\n```\r\nimport tensorflow as tf\r\nimport numpy as np\r\nlayer1 = tf.keras.layers.DepthwiseConv2D(depth_multiplier=2,kernel_size=(1,9),strides=(1,2))\r\nprint(layer1(np.ones((100, 28, 28, 1), dtype=np.float32)))\r\n```",
"I'm not sure what has changed since 2.9 in the backend, but the current Argument details is inline with the API behavior.\r\nFor the latest API behavior, please install latest package. Thank you",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60391\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60391\">No</a>\n"
] | 2023-04-21T05:06:49 | 2023-06-22T02:01:58 | 2023-06-22T02:01:56 | NONE | null | null | null | Please go to Stack Overflow for help and support:
https://stackoverflow.com/questions/tagged/tensorflow
If you open a GitHub issue, here is our policy:
1. It must be a bug, a feature request, or a significant problem with the
documentation (for small docs fixes please send a PR instead).
2. The form below must be filled out.
3. It shouldn't be a TensorBoard issue. Those go
[here](https://github.com/tensorflow/tensorboard/issues).
**Here's why we have that policy**: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.
------------------------
### System information
- **Have I written custom code (as opposed to using a stock example script
provided in TensorFlow)**: Yes
- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: Ubuntu
- **Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue
happens on a mobile device**:
- **TensorFlow installed from (source or binary)**:
- **TensorFlow version (use command below)**: 2.9 and 2.11
- **Python version**: 3.8
- **Bazel version (if compiling from source)**:
- **GCC/Compiler version (if compiling from source)**:
- **CUDA/cuDNN version**: 11.2 and 8.1
- **GPU model and memory**:
- **Exact command to reproduce**:
import tensorflow as tf
import numpy as np
layer1 = tf.keras.layers.DepthwiseConv2D(depth_multiplier=2,kernel_size=(1,9),strides=(1,2))
print(layer1(np.ones((100, 28, 28, 1), dtype=np.float32)))
You can collect some of this information using our environment capture script:
https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh
You can obtain the TensorFlow version with:
```bash
python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)"
```
### Describe the problem
Describe the problem clearly here. Be sure to convey here why it's a bug in TensorFlow or a feature request.
The command would run without any error when I was using it with TF2.11 version installed previously. On the newly installed TF2.9 version, however, the code throws an error as:
InvalidArgumentError: Exception encountered when calling layer 'depthwise_conv2d_1' (type DepthwiseConv2D).
{{function_node __wrapped__DepthwiseConv2dNative_device_/job:localhost/replica:0/task:0/device:CPU:0}} Current implementation only supports equal length strides in the row and column dimensions. [Op:DepthwiseConv2dNative]
Call arguments received by layer 'depthwise_conv2d_1' (type DepthwiseConv2D):
• inputs=tf.Tensor(shape=(100, 28, 28, 1), dtype=float32)
Seeing the documentation, the error is expected for version 2.12, but should work for versions 2.9 and 2.11
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/layers/DepthwiseConv2D
https://www.tensorflow.org/versions/r2.11/api_docs/python/tf/keras/layers/DepthwiseConv2D
https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/keras/layers/DepthwiseConv2D
Is it that the implementation existing in the earlier versions has been removed recently for all previous and current versions?
### Source code / logs
Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. Try to provide a reproducible test case that is the bare minimum necessary to generate the problem.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60391/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60391/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60390 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60390/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60390/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60390/events | https://github.com/tensorflow/tensorflow/pull/60390 | 1,677,446,559 | PR_kwDOArmXAs5OzlHI | 60,390 | Adds mkl_batch_matmul_op to mkl_matmul_op_benchmark build | {
"login": "nSircombe",
"id": 32057673,
"node_id": "MDQ6VXNlcjMyMDU3Njcz",
"avatar_url": "https://avatars.githubusercontent.com/u/32057673?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nSircombe",
"html_url": "https://github.com/nSircombe",
"followers_url": "https://api.github.com/users/nSircombe/followers",
"following_url": "https://api.github.com/users/nSircombe/following{/other_user}",
"gists_url": "https://api.github.com/users/nSircombe/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nSircombe/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nSircombe/subscriptions",
"organizations_url": "https://api.github.com/users/nSircombe/orgs",
"repos_url": "https://api.github.com/users/nSircombe/repos",
"events_url": "https://api.github.com/users/nSircombe/events{/privacy}",
"received_events_url": "https://api.github.com/users/nSircombe/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-20T21:21:27 | 2023-04-21T17:04:19 | 2023-04-21T17:04:18 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60390",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60390",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60390.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60390.patch",
"merged_at": "2023-04-21T17:04:18"
} | Following https://github.com/tensorflow/tensorflow/pull/60355, the BUILD file for mkl_matmul_op_benchmark needs to be updated. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60390/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60390/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60389 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60389/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60389/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60389/events | https://github.com/tensorflow/tensorflow/issues/60389 | 1,677,043,488 | I_kwDOArmXAs5j9acg | 60,389 | Tensorflow won't let pytorch import | {
"login": "RickSanchezStoic",
"id": 57310695,
"node_id": "MDQ6VXNlcjU3MzEwNjk1",
"avatar_url": "https://avatars.githubusercontent.com/u/57310695?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RickSanchezStoic",
"html_url": "https://github.com/RickSanchezStoic",
"followers_url": "https://api.github.com/users/RickSanchezStoic/followers",
"following_url": "https://api.github.com/users/RickSanchezStoic/following{/other_user}",
"gists_url": "https://api.github.com/users/RickSanchezStoic/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RickSanchezStoic/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RickSanchezStoic/subscriptions",
"organizations_url": "https://api.github.com/users/RickSanchezStoic/orgs",
"repos_url": "https://api.github.com/users/RickSanchezStoic/repos",
"events_url": "https://api.github.com/users/RickSanchezStoic/events{/privacy}",
"received_events_url": "https://api.github.com/users/RickSanchezStoic/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Related to https://github.com/tensorflow/tensorflow/issues/60109\r\nMay be you want to follow-up on that Issue?",
"Yeah, it's a duplicate of #60109",
"@RickSanchezStoic,\r\nThis is a duplicate of the issue [#60109](https://github.com/tensorflow/tensorflow/issues/60109). Could you please close this issue, since it is already being tracked there? Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Closing duplicate issue, no need to wait for stale bot",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60389\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60389\">No</a>\n"
] | 2023-04-20T16:23:28 | 2024-01-19T17:01:51 | 2024-01-19T17:01:47 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Docker image ubuntu:20.04 and above
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
Tensorflow 2.12.0 won't let torch import, causes some sort of deadlock, if tensorflow is imported first
### Standalone code to reproduce the issue
```shell
Code to reproduce the error:
docker run --rm -it ubuntu:22.04
// once inside
apt-get update && apt-get install python3
apt-get install pip
pip install tensorflow -y
pip install torch --extra-index-url https://download.pytorch.org/whl/cu118 -y
python3
import tensorflow
import torch
```
Note: the issue will persist even if you install torch-cpu, also on any Ubuntu:20.04 and above
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60389/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60389/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60388 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60388/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60388/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60388/events | https://github.com/tensorflow/tensorflow/pull/60388 | 1,676,808,605 | PR_kwDOArmXAs5Oxb5c | 60,388 | Standardize error messages from invalid shapes for Mkl MatMul and Bat… | {
"login": "fadara01",
"id": 115173828,
"node_id": "U_kgDOBt1pxA",
"avatar_url": "https://avatars.githubusercontent.com/u/115173828?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/fadara01",
"html_url": "https://github.com/fadara01",
"followers_url": "https://api.github.com/users/fadara01/followers",
"following_url": "https://api.github.com/users/fadara01/following{/other_user}",
"gists_url": "https://api.github.com/users/fadara01/gists{/gist_id}",
"starred_url": "https://api.github.com/users/fadara01/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/fadara01/subscriptions",
"organizations_url": "https://api.github.com/users/fadara01/orgs",
"repos_url": "https://api.github.com/users/fadara01/repos",
"events_url": "https://api.github.com/users/fadara01/events{/privacy}",
"received_events_url": "https://api.github.com/users/fadara01/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @penpornk,\r\nFor the test failure that https://github.com/tensorflow/tensorflow/pull/60355 introduced, the expected error return that's being tested is unchanged, and the error returned on x86, from `mkl_matmul_op.cc`, is unchanged. So the x86 test should be OK.\r\nThe changes this makes to the error reported by `mkl_batch_matmul_op.cc` (making it consistent with the same error from `mkl_matmul_op.cc`) don't appear to feature in any other tests. So I don't think there are any tests on x86 expecting the old error message from `mkl_batch_matmul_op.cc`.\r\nSo I think there's no need to guard the change.\r\n",
"That's great, thanks @penpornk. "
] | 2023-04-20T14:09:07 | 2023-04-21T21:07:50 | 2023-04-21T20:48:58 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60388",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60388",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60388.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60388.patch",
"merged_at": "2023-04-21T20:48:58"
} | This PR:
- fixes the failing test on Arm CI caused by #60355
- standardizes the use of In[0], In[1] instead of lhs, rhs in error messages | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60388/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60388/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60387 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60387/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60387/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60387/events | https://github.com/tensorflow/tensorflow/issues/60387 | 1,676,790,757 | I_kwDOArmXAs5j8cvl | 60,387 | Compile tensorflow with static cuda libs | {
"login": "manospavlidakis",
"id": 11426987,
"node_id": "MDQ6VXNlcjExNDI2OTg3",
"avatar_url": "https://avatars.githubusercontent.com/u/11426987?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/manospavlidakis",
"html_url": "https://github.com/manospavlidakis",
"followers_url": "https://api.github.com/users/manospavlidakis/followers",
"following_url": "https://api.github.com/users/manospavlidakis/following{/other_user}",
"gists_url": "https://api.github.com/users/manospavlidakis/gists{/gist_id}",
"starred_url": "https://api.github.com/users/manospavlidakis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/manospavlidakis/subscriptions",
"organizations_url": "https://api.github.com/users/manospavlidakis/orgs",
"repos_url": "https://api.github.com/users/manospavlidakis/repos",
"events_url": "https://api.github.com/users/manospavlidakis/events{/privacy}",
"received_events_url": "https://api.github.com/users/manospavlidakis/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205657510,
"node_id": "MDU6TGFiZWwxMjA1NjU3NTEw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:centos",
"name": "subtype:centos",
"color": "b619ea",
"default": false,
"description": "Centos Build/Installation issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-20T14:00:14 | 2023-07-18T18:26:20 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.11.0
### Custom Code
No
### OS Platform and Distribution
Centos &
### Mobile device
_No response_
### Python version
Python-3.9.16
### Bazel version
bazel-5.3.0
### GCC/Compiler version
9.3.1
### CUDA/cuDNN version
11.2
### GPU model and memory
Quadro RTX 4000
### Current Behaviour?
I am trying to link TF with cuda static libs (cublas, cufft, cusparse etc). I have made some changes in the following files:
1. tensorflow/lite/toco/BUILD b/tensorflow/lite/toco/BUILD
2. tensorflow/tensorflow.bzl
3. tensorflow/compiler/mlir/tools/kernel_gen/BUILD
4. third_party/gpus/cuda_configure.bzl
In the first 3 files I have added inkopts = if_not_windows(["-lm", "-Wl,-ldl"]) + lrt_if_needed() + ["-L/usr/local/cuda/lib64", "-L/usr/local/cuda/extras/CUPTI/lib64", "-lcuda", "-lcudart", "-lcublas","-lcublasLt","-lculibos","-lcufft", "-lcudnn", "-lcurand", "-lcupti", "-lcusolver", "-lcusparse"],
In the fourth I have changed static = False to static = True.
### Standalone code to reproduce the issue
```shell
https://drive.google.com/file/d/1vGyJD-1OWWlE2tYu4qbglMklSfep6x4T/view?usp=share_link
```
### Relevant log output
```shell
bazel build //tensorflow/tools/pip_package:build_pip_package
$TEST_TMPDIR defined: output root default is '/tmp/bazel_manospavl' and max_idle_secs default is '15'.
$TEST_TMPDIR defined: output root default is '/tmp/bazel_manospavl' and max_idle_secs default is '15'.
Starting local Bazel server and connecting to it...
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=104
INFO: Reading rc options for 'build' from /tmp/manospavl/tensorflow/.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from /tmp/manospavl/tensorflow/.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false
INFO: Reading rc options for 'build' from /tmp/manospavl/tensorflow/.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=/usr/local/bin/python3.9 --action_env PYTHON_LIB_PATH=/opt/rh/llvm-toolset-7/root/usr/lib/python2.7/site-packages --python_path=/usr/local/bin/python3.9 --action_env PYTHONPATH=/opt/rh/devtoolset-8/root/usr/lib64/python2.7/site-packages:/opt/rh/devtoolset-8/root/usr/lib/python2.7/site-packages:/opt/rh/llvm-toolset-7/root/usr/lib/python2.7/site-packages --action_env CUDA_TOOLKIT_PATH=/usr/local/cuda-11.2 --action_env TF_CUDA_COMPUTE_CAPABILITIES=7.5 --action_env LD_LIBRARY_PATH=/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/opt/rh/devtoolset-9/root/usr/lib64/dyninst:/opt/rh/devtoolset-9/root/usr/lib/dyninst:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/archive/users/gxanth/gcc-12.1.0/lib64:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/linux64/lib:/opt/altera/intelFPGA/20.3/hld/host/linux64/lib:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/tests/extlibs/lib:/usr/local/cuda-11.2/extras/CUPTI/lib64:/usr/local/cuda-11.2/lib64:/usr/lib64/atlas:/usr/local/lib:/lib64:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/opt/rh/devtoolset-9/root/usr/lib64/dyninst:/opt/rh/devtoolset-9/root/usr/lib/dyninst:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/archive/users/gxanth/gcc-12.1.0/lib64:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/linux64/lib:/opt/altera/intelFPGA/20.3/hld/host/linux64/lib:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/tests/extlibs/lib:/usr/local/cuda-11.2/extras/CUPTI/lib64:/usr/local/cuda-11.2/lib64:/usr/lib64/atlas:/usr/local/lib:/lib64:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/opt/rh/devtoolset-9/root/usr/lib64/dyninst:/opt/rh/devtoolset-9/root/usr/lib/dyninst:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/archive/users/gxanth/gcc-12.1.0/lib64:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/linux64/lib:/opt/altera/intelFPGA/20.3/hld/host/linux64/lib:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/tests/extlibs/lib:/usr/local/cuda-11.2/lib64:/usr/lib64/atlas:/usr/local/lib:/lib64:/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib:/opt/rh/devtoolset-8/root/usr/lib64/dyninst:/opt/rh/devtoolset-8/root/usr/lib/dyninst:/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/opt/rh/devtoolset-9/root/usr/lib64/dyninst:/opt/rh/devtoolset-9/root/usr/lib/dyninst:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/archive/users/gxanth/gcc-12.1.0/lib64:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/linux64/lib:/opt/altera/intelFPGA/20.3/hld/host/linux64/lib:/opt/altera/intelFPGA/20.3/hld/board/de5a_net_ddr4/tests/extlibs/lib:/usr/local/cuda-11.2/lib64:/usr/lib64/atlas:/usr/local/lib:/lib64:/opt/rh/llvm-toolset-7/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/opt/rh/devtoolset-9/root/usr/lib64/dyninst:/opt/rh/devtoolset-9/root/usr/lib/dyninst:/opt/rh/devtoolset-9/root/usr/lib64:/opt/rh/devtoolset-9/root/usr/lib:/usr/mpi/gcc/openmpi-4.0.3rc4/lib64 --action_env GCC_HOST_COMPILER_PATH=/opt/rh/devtoolset-9/root/usr/bin/gcc --config=cuda
INFO: Reading rc options for 'build' from /tmp/manospavl/tensorflow/.bazelrc:
'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils
INFO: Found applicable config definition build:short_logs in file /tmp/manospavl/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file /tmp/manospavl/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:cuda in file /tmp/manospavl/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda
INFO: Found applicable config definition build:linux in file /tmp/manospavl/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-unknown-warning --copt=-Wno-array-parameter --copt=-Wno-stringop-overflow --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --distinct_host_configuration=false --experimental_guard_against_concurrent_changes
INFO: Found applicable config definition build:dynamic_kernels in file /tmp/manospavl/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (558 packages loaded, 38371 targets configured).
INFO: Found 1 target...
ERROR: /tmp/manospavl/tensorflow/tensorflow/BUILD:1426:19: Executing genrule //tensorflow:tf_python_api_gen_v2 failed: (Exit 1): bash failed: error executing command /bin/bash -c ... (remaining 1 argument skipped)
2023-04-20 16:53:52.189168: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Traceback (most recent call last):
File "/tmp/bazel_manospavl/_bazel_manospavl/3b86cb968a28ba76b0db07c39e753f80/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/pywrap_tensorflow.py", line 62, in <module>
from tensorflow.python._pywrap_tensorflow_internal import *
ImportError: /tmp/bazel_manospavl/_bazel_manospavl/3b86cb968a28ba76b0db07c39e753f80/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/../libtensorflow_framework.so.2: undefined symbol: cublasLtMatmulDescDestroy
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/tmp/bazel_manospavl/_bazel_manospavl/3b86cb968a28ba76b0db07c39e753f80/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/tools/api/generator/create_python_api.py", line 22, in <module>
from tensorflow.python.tools.api.generator import doc_srcs
File "/tmp/bazel_manospavl/_bazel_manospavl/3b86cb968a28ba76b0db07c39e753f80/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/__init__.py", line 36, in <module>
from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow
File "/tmp/bazel_manospavl/_bazel_manospavl/3b86cb968a28ba76b0db07c39e753f80/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/pywrap_tensorflow.py", line 77, in <module>
raise ImportError(
ImportError: Traceback (most recent call last):
File "/tmp/bazel_manospavl/_bazel_manospavl/3b86cb968a28ba76b0db07c39e753f80/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/pywrap_tensorflow.py", line 62, in <module>
from tensorflow.python._pywrap_tensorflow_internal import *
ImportError: /tmp/bazel_manospavl/_bazel_manospavl/3b86cb968a28ba76b0db07c39e753f80/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/../libtensorflow_framework.so.2: undefined symbol: cublasLtMatmulDescDestroy
Failed to load the native TensorFlow runtime.
See https://www.tensorflow.org/install/errors for some common causes and solutions.
If you need help, create an issue at https://github.com/tensorflow/tensorflow/issues and include the entire stack trace above this error message.
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
ERROR: /tmp/manospavl/tensorflow/tensorflow/python/tools/BUILD:98:10 Middleman _middlemen/tensorflow_Spython_Stools_Simport_Upb_Uto_Utensorboard-runfiles failed: (Exit 1): bash failed: error executing command /bin/bash -c ... (remaining 1 argument skipped)
INFO: Elapsed time: 29.342s, Critical Path: 6.86s
INFO: 2 processes: 2 internal.
FAILED: Build did NOT complete successfully
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60387/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60387/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60386 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60386/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60386/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60386/events | https://github.com/tensorflow/tensorflow/issues/60386 | 1,676,757,385 | I_kwDOArmXAs5j8UmJ | 60,386 | Limiting graph serialization depth for composite models. | {
"login": "RameezI",
"id": 16198015,
"node_id": "MDQ6VXNlcjE2MTk4MDE1",
"avatar_url": "https://avatars.githubusercontent.com/u/16198015?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RameezI",
"html_url": "https://github.com/RameezI",
"followers_url": "https://api.github.com/users/RameezI/followers",
"following_url": "https://api.github.com/users/RameezI/following{/other_user}",
"gists_url": "https://api.github.com/users/RameezI/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RameezI/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RameezI/subscriptions",
"organizations_url": "https://api.github.com/users/RameezI/orgs",
"repos_url": "https://api.github.com/users/RameezI/repos",
"events_url": "https://api.github.com/users/RameezI/events{/privacy}",
"received_events_url": "https://api.github.com/users/RameezI/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1105108936,
"node_id": "MDU6TGFiZWwxMTA1MTA4OTM2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:model",
"name": "comp:model",
"color": "0052cc",
"default": false,
"description": "Model related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @RameezI\r\nApologies for the delay.\r\nI was able to replicate the issue in Colab using Tensorflow 2.12 and tf-nightly(2.13.0.dev20230424). Please find the gists - [TF v2.12](https://colab.sandbox.google.com/gist/synandi/3182c8600aedacc08ad4f8fa04b27b53/60386.ipynb) & [tf-nightly](https://colab.sandbox.google.com/gist/synandi/a0522fcc8f89b9a254ebc56fbb3dfc2c/60386_nightly.ipynb). It seems like we have to dig deep into the issue, we'll update here soon. Thank you! ",
"Hi @RameezI,\r\n\r\nThe two models that you have in your colab are structurally different. Lets say for a `_MAX_RECURSION_DEPTH = N`, \r\nMyModuleMono has ~N objects of type `tf.Module` (`TerminalModule` objects) while in the recursive approach you create double the amount of `tf.Module` objects i.e ~N `MyModule` and ~N `TerminalModule`. The size of the saved model is a result of the inherent difference in the two models. \r\nYour experiment also demonstrates that the iterative approach is better design than recursive for same usecase (which is working as intended in my opinion). \r\nIf you intend to only work with the top level graphs and do not care for saving the full structure, then before saving you could create another module from MyModule that contains only the parts that you intend to save. However, note that it will be a different module than `MyMonoModule` and `MyModule`.\r\nThanks,\r\nHope this helps!\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Hi @silkyarora \r\nThanks a lot for looking into it. Indeed, the structure of the two models are different. The recursive model contains additional symbolic objects that do not enter into computations but makes it easier to define the model in some cases. \r\n\r\nI was basically interested in exporting a new model from recursively constructed model, as you suggested, that does not track/serialize its child models and that how to do it without manually writing the iterative version. It seems like I can unset `_setattr_tracking` attribute of a `tf.Module` to do this? \r\n\r\n"
] | 2023-04-20T13:43:52 | 2023-05-31T17:53:28 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.12
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I am building a model generator that composes models by putting together assemblies of simpler modules. When exporting such a model, I noticed that all component modules (submodules/sugraphs) are serialized and exported as well and are available at the load time, so if my model is composed of say P, Q the graph for P and Q is also serialized and same for all the children of P and Q.
1. My understanding is that the top-level graph is self-contained and does not need the graph structures of submodules, exporting them is wasteful if I only need to run the compute function at the top-level graph.
2. Is there a way I could achieve resource restriction using ` tf.saved_model.save`; I only mean to save and work with top level graphs. Ideally, I think it would be great to be able to provide a maximum depth at which the graph serialization/export is done so it excludes everything below this depth.
Any guidance on how to achieve this will be greatly appreciated. Please see the code snippet and the comments for more information, the code demonstrates that a composite model takes considerably more disk space than an equivalent monolithic model, did not look into memory and compute performance as yet...
### Standalone code to reproduce the issue
```shell
https://colab.research.google.com/drive/1FeP_bhVwQ223A9GGts1v--FgXDNeb6jY?usp=sharing
```
### Relevant log output
```shell
https://gist.github.com/RameezI/3d51ab59d745d08b62daec77a3a5439c
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60386/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60386/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60385 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60385/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60385/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60385/events | https://github.com/tensorflow/tensorflow/issues/60385 | 1,676,427,574 | I_kwDOArmXAs5j7EE2 | 60,385 | IndexError: tuple index out of range in Quantum LSTM Hybrid Model | {
"login": "sleepingcat4",
"id": 81933585,
"node_id": "MDQ6VXNlcjgxOTMzNTg1",
"avatar_url": "https://avatars.githubusercontent.com/u/81933585?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sleepingcat4",
"html_url": "https://github.com/sleepingcat4",
"followers_url": "https://api.github.com/users/sleepingcat4/followers",
"following_url": "https://api.github.com/users/sleepingcat4/following{/other_user}",
"gists_url": "https://api.github.com/users/sleepingcat4/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sleepingcat4/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sleepingcat4/subscriptions",
"organizations_url": "https://api.github.com/users/sleepingcat4/orgs",
"repos_url": "https://api.github.com/users/sleepingcat4/repos",
"events_url": "https://api.github.com/users/sleepingcat4/events{/privacy}",
"received_events_url": "https://api.github.com/users/sleepingcat4/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 3531398540,
"node_id": "LA_kwDOArmXAs7SfN2M",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.7",
"name": "TF 2.7",
"color": "77237D",
"default": false,
"description": "Issues related to TF 2.7.0"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @sleepingcat4, Thanks for reporting the issue!\r\n\r\nI was able to replicate the issue in Colab using Tensorflow 2.7, please find the gist [here](https://colab.sandbox.google.com/gist/synandi/dbecb1235104ecef478b0c809a58d1f4/60385_error.ipynb). \r\n\r\nI have reshaped `weights` to have shape `(n_layers, n_qubits, 3)` in the quantum_layer. This is because `qml.StronglyEntanglingLayers` expects a tensor of shape `(n_layers, n_qubits, 3)` as input for the weights. Kindly refer to this [doc](https://docs.pennylane.ai/en/stable/code/api/pennylane.StronglyEntanglingLayers.html). Please check the working code [here](https://colab.sandbox.google.com/gist/synandi/34bffecda57235b112c6f2fd86f90efd/60385.ipynb). Thank you!",
"Thank you! I followed the pennylane documentation to create VQC, that's why, I missed that reshaping part. Tensorflow is my favourite, looking forward to create more stuff ^^",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60385\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60385\">No</a>\n"
] | 2023-04-20T10:13:09 | 2023-04-23T16:26:07 | 2023-04-23T16:26:05 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.7.0
### Custom Code
Yes
### OS Platform and Distribution
Windows 11
### Mobile device
_No response_
### Python version
3.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I have created a simple VQC and combined it with Classsical Tensorflow layers using KerasLayer. My model compiles perfectly but when I try to train it using toy data, it returns a input_shape() error.
I have already tried a bunch of tricks to change the shape of my data to prevent the error but it creates more error or same error presists.
**Packages:**
1. PennyLane
2. Tensorflow
3. Numpy
It'll be significantly appreciated if someone can help me.
### Standalone code to reproduce the issue
```shell
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf
import numpy as np
import pennylane as qml
from pennylane.templates.layers import StronglyEntanglingLayers
# Define the quantum circuit
n_qubits = 4
dev = qml.device("default.qubit", wires=n_qubits)
@qml.qnode(dev)
def quantum_layer(inputs, weights):
print("Inputs shape:", inputs.shape)
print("Weights shape:", weights.shape)
# weights=weights[0]
qml.StronglyEntanglingLayers(weights, wires=range(n_qubits))
return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)]
n_layers = 2
features=1
timesteps = 10
weight_shapes = {"weights": (n_layers, n_qubits)}
# Define the neural network model
def create_model():
model = tf.keras.Sequential([
tf.keras.layers.LSTM(4, input_shape=(timesteps, features)),
tf.keras.layers.Reshape((1, 4)),
tf.keras.layers.Lambda(lambda x: x[:, -1, :]),
qml.qnn.KerasLayer(quantum_layer, weight_shapes, output_dim=n_qubits),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
return model
# Compile the model and print the summary
model = create_model()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
# Define the toy dataset
X = np.random.rand(100, timesteps, features)
y = np.random.randint(0, 2, size=(100, 1))
# Train the model
model.fit(X, y, epochs=10, batch_size=10)
```
### Relevant log output
```shell
Traceback (most recent call last):
File "f:/CS/QLSTM/qml.py", line 49, in <module>
model.fit(X, y, epochs=10, batch_size=10)
File "C:\Users\DELL\AppData\Roaming\Python\Python38\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\DELL\AppData\Roaming\Python\Python38\site-packages\pennylane\qnn\keras.py", line 302, in call
reconstructor.append(self.call(x))
File "C:\Users\DELL\AppData\Roaming\Python\Python38\site-packages\pennylane\qnn\keras.py", line 305, in call
return self._evaluate_qnode(inputs)
File "C:\Users\DELL\AppData\Roaming\Python\Python38\site-packages\pennylane\qnn\keras.py", line 320, in _evaluate_qnode
return self.qnode(**kwargs)
File "C:\Users\DELL\AppData\Roaming\Python\Python38\site-packages\pennylane\qnode.py", line 842, in __call__
self.construct(args, kwargs)
File "C:\Users\DELL\AppData\Roaming\Python\Python38\site-packages\pennylane\qnode.py", line 751, in construct
1, in wrapper
result = fn(*args, **kwargs)
File "f:/CS/QLSTM/qml.py", line 19, in quantum_layer
qml.StronglyEntanglingLayers(weights, wires=range(n_qubits))
File "C:\Users\DELL\AppData\Roaming\Python\Python38\site-packages\pennylane\templates\layers\strongly_entangling.py", line 143, in __init__
if shape[2] != 3:
IndexError: Exception encountered when calling layer "keras_layer" (type KerasLayer).
tuple index out of range
Call arguments received:
• inputs=tf.Tensor(shape=(10, 4), dtype=float32)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60385/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60385/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60384 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60384/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60384/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60384/events | https://github.com/tensorflow/tensorflow/issues/60384 | 1,676,420,397 | I_kwDOArmXAs5j7CUt | 60,384 | Performance using prefetch does not improve! | {
"login": "pietroorlandi",
"id": 62559206,
"node_id": "MDQ6VXNlcjYyNTU5MjA2",
"avatar_url": "https://avatars.githubusercontent.com/u/62559206?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pietroorlandi",
"html_url": "https://github.com/pietroorlandi",
"followers_url": "https://api.github.com/users/pietroorlandi/followers",
"following_url": "https://api.github.com/users/pietroorlandi/following{/other_user}",
"gists_url": "https://api.github.com/users/pietroorlandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pietroorlandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pietroorlandi/subscriptions",
"organizations_url": "https://api.github.com/users/pietroorlandi/orgs",
"repos_url": "https://api.github.com/users/pietroorlandi/repos",
"events_url": "https://api.github.com/users/pietroorlandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/pietroorlandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 1097545817,
"node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis",
"name": "comp:apis",
"color": "0052cc",
"default": false,
"description": "Highlevel API related issues"
},
{
"id": 1114343535,
"node_id": "MDU6TGFiZWwxMTE0MzQzNTM1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data",
"name": "comp:data",
"color": "0052cc",
"default": false,
"description": "tf.data related issues"
},
{
"id": 1463677878,
"node_id": "MDU6TGFiZWwxNDYzNjc3ODc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance",
"name": "type:performance",
"color": "159b2e",
"default": false,
"description": "Performance Issue"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
},
{
"login": "wilsingosti",
"id": 93937952,
"node_id": "U_kgDOBZlhIA",
"avatar_url": "https://avatars.githubusercontent.com/u/93937952?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wilsingosti",
"html_url": "https://github.com/wilsingosti",
"followers_url": "https://api.github.com/users/wilsingosti/followers",
"following_url": "https://api.github.com/users/wilsingosti/following{/other_user}",
"gists_url": "https://api.github.com/users/wilsingosti/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wilsingosti/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wilsingosti/subscriptions",
"organizations_url": "https://api.github.com/users/wilsingosti/orgs",
"repos_url": "https://api.github.com/users/wilsingosti/repos",
"events_url": "https://api.github.com/users/wilsingosti/events{/privacy}",
"received_events_url": "https://api.github.com/users/wilsingosti/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@pietroorlandi,\r\nThank you for raising the issue. I tried to reproduce the issue on tensorflow v2.12 and facing the issue with the dataset. Could you please provide the TFRECORD_FILE_TRAIN dataset/tfrecord to analyse the issue in an effective way. Also could you please provide the GPU device information where you are trying. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/6c6d16e7b29a057b7c0133d6eb18ea2b/untitled1080.ipynb). Thank you!",
"@tilakrayal thanks for your reply!\r\nHow can I upload my tfrecords dataset in the gist? I tried with \"upload in session storage space\", it is a file called _train.tfrecords_.\r\nThe tests that I made to say that prefetch optimization doesn't change the performance were done with two GPU: RTX2080 and RTX2060 Super",
"I too have noticed the same problem with tensorflow 2.10 and tensorflow 2.11: I don't see any perfomance gain with prefetch optimization compared to using a parallel version of map function (both setting manually the num_parallel_calls and using AUTOTUNE).\r\n(as GPU I'm using a NVIDIA GeForce GTX 1050Ti)",
"@tilakrayal Is there any news?\r\nI saw that, as it mentioned [here](https://www.reddit.com/r/MachineLearning/comments/a08fx6/d_why_tfdata_is_so_much_better_than_feed_dict_and/) it seems that _prefetch_ does not overlap the computation between the CPU and GPU and you don't have the behavior that while GPU train _batch i_ the CPU processes _batch i+1_. It seems that prefetch function overlap data reading and data processing. Is this right?\r\nAlways [here](https://www.reddit.com/r/MachineLearning/comments/a08fx6/d_why_tfdata_is_so_much_better_than_feed_dict_and/) I saw that exist a function called _prefetch_to_device_ that would allow the overlap of computation between CPU and GPU. I tried it but again it does not provide any improvement.\r\nThank you in advance for the answers that will be provided to me"
] | 2023-04-20T10:08:07 | 2023-05-09T22:48:28 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Performance
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.11.1
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu 22.04.2 LTS
### Mobile device
_No response_
### Python version
3.9.16
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
12.0
### GPU model and memory
_No response_
### Current Behaviour?
Hi all, the problem I have is about _tf.data_ and mainly about the fact that _prefetch_ optimization does not improve perfomance in any case (and it almost seems that it is not used).
Specifically, I did the tests using different environments (with different GPUs and different CPUs), using different versions of tensorflow (I used tf-2.10.0 and tf-2.11.0), using different batch-size, using different data-processing/data-augmentation operations, using different parameters of _num_parallel_calls_ (with fixed number and with AUTOTUNE) and the results are the same: I have no advantage using prefetching.
This seems strange to me, because at least theoretically a speed-up should be there. I used Cifar10 as the dataset, and the data are initially stored in a TFRecordDataset. PS: I already see this [guide](https://www.tensorflow.org/guide/data_performance)
Thank you in advance
### Standalone code to reproduce the issue
```shell
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
from keras.utils.layer_utils import count_params
import time
from datetime import datetime
def get_model_data_augmentation_CPU():
model = tf.keras.Sequential([
layers.Conv2D(64, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.1),
layers.Conv2D(128, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.1),
layers.Conv2D(128, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Flatten(),
layers.Dense(256, activation='relu'),
layers.Dropout(0.3),
layers.Dense(10)
])
adam_opt = keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer = adam_opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
def parse_image_function(example_proto):
image_feature_description = {
'image': tf.io.FixedLenFeature([], tf.string),
'label': tf.io.FixedLenFeature([], tf.int64)
}
features = tf.io.parse_single_example(
example_proto, image_feature_description)
image = tf.io.decode_raw(features['image'], tf.float32)
image = tf.reshape(image, [32, 32, 3])
label = tf.cast(features['label'], tf.int64)
return image, label
# Set Memory Growth of tensorflow equals true
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
NUM_CLASSES = 10 # Cifar10 has 10 classes
BATCH_SIZE = 32
EPOCHS=5
AUTOTUNE = tf.data.AUTOTUNE
TFRECORD_FILE_TRAIN = # YOUR_PATH
TFRECORD_FILE_VALIDATION= # YOUR_PATH
TFRECORD_FILE_TEST = # YOUR_PATH
SIZE_DATASET_TRAIN= 40000
STEPS_PER_EPOCH = (SIZE_DATASET_TRAIN*2)//BATCH_SIZE
VALIDATION_STEP = 10000//BATCH_SIZE
model = get_model_data_augmentation_CPU() # Get the Keras model
data_augmentation = tf.keras.Sequential([
layers.RandomFlip("horizontal_and_vertical"),
layers.RandomRotation(0.2),
layers.RandomZoom(0.2)
])
dataset_train = tf.data.TFRecordDataset(TFRECORD_FILE_TRAIN, num_parallel_reads=4)
dataset_train = dataset_train.repeat(2*EPOCHS)
dataset_train = dataset_train.map(parse_image_function, num_parallel_calls=8) # decode image from Tfrecord
dataset_train = dataset_train.map(lambda x,y: (data_augmentation(x, training=True),y), num_parallel_calls=8)
dataset_train = dataset_train.batch(BATCH_SIZE)
# Comment or uncomment following line to see differences
dataset_train = dataset_train.prefetch(1) # I tried also with other buffer_size
# Training of the network
start_time = time.time() # Measure the start time of the training
history = model.fit(
dataset_train,
epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
)
end_time = time.time()
training_time = end_time-start_time
print(f"Execution time: {(end_time-start_time)} sec")
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60384/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60384/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60383 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60383/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60383/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60383/events | https://github.com/tensorflow/tensorflow/pull/60383 | 1,676,285,228 | PR_kwDOArmXAs5Ovqur | 60,383 | [NVIDIA TF] Optimize embedding_lookup_sparse using new grad op [PART 1/3] | {
"login": "benbarsdell",
"id": 3979096,
"node_id": "MDQ6VXNlcjM5NzkwOTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/3979096?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benbarsdell",
"html_url": "https://github.com/benbarsdell",
"followers_url": "https://api.github.com/users/benbarsdell/followers",
"following_url": "https://api.github.com/users/benbarsdell/following{/other_user}",
"gists_url": "https://api.github.com/users/benbarsdell/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benbarsdell/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benbarsdell/subscriptions",
"organizations_url": "https://api.github.com/users/benbarsdell/orgs",
"repos_url": "https://api.github.com/users/benbarsdell/repos",
"events_url": "https://api.github.com/users/benbarsdell/events{/privacy}",
"received_events_url": "https://api.github.com/users/benbarsdell/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365682,
"node_id": "MDU6TGFiZWwxMTY5MzY1Njgy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L",
"name": "size:L",
"color": "adafea",
"default": false,
"description": "CL Change Size: Large"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @cantonios Can you please review this PR ? Thank you!",
"This is currently failing the following test internally: `//tensorflow/python/kernel_tests/math_ops:segment_reduction_ops_test_cpu`. It looks like it passes externally though. The error is:\r\n\r\n```\r\n[ RUN ] SparseSegmentReductionOpTest.testGradientV2SegmentsInvalid4\r\nF0607 16:23:53.050092 384 shape_inference.cc:113] Check failed: output(i).IsSet() 1 for {{node SparseSegmentSumGradV2}} = SparseSegmentSumGradV2[T=DT_FLOAT, Tidx=DT_INT32, Tsegmentids=DT_INT32](Const, SparseSegmentSumGradV2/indices, SparseSegmentSumGradV2/segment_ids, SparseSegmentSumGradV2/dense_output_dim0)\r\n```\r\n\r\nPerhaps it only fails internally due to a difference in build flags. Can you see if the following passes, and if not, fix the issue?\r\n\r\n```bash\r\nbazel test -c opt --copt=-UNDEBUG --test_env='TF2_BEHAVIOR=1' //tensorflow/python/kernel_tests/math_ops:segment_reduction_ops_test_cpu\r\n```\r\n\r\nIf this passes for you, we'll debug internally.",
"Thanks Reed, I've fixed it."
] | 2023-04-20T08:48:23 | 2023-08-07T12:34:08 | 2023-06-14T05:47:53 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60383",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60383",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60383.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60383.patch",
"merged_at": "2023-06-14T05:47:53"
} | `embedding_lookup_sparse` currently uses separate `Unique` + `Gather` + `SparseSegmentSum` ops. In some cases the `Unique` and `Gather` ops can be elided, leaving the `SparseSegmentSum` to read the embeddings directly. However, this causes the function to return a dense gradient, which is impractical in cases where the embedding table is very large.
This series of PRs solves this problem by adding a new op, `SparseSegmentSumGradV2` (plus `Mean/SqrtN` versions), that fuses the Unique operation into the gradient calculation and directly returns a sparse gradient (`IndexedSlices`). In addition to enabling elision of the `Gather` + `Unique` ops in more cases, the new op also improves performance by taking advantage of lower-precision indexing for internal temporary tensors. An included benchmark demonstrates a 2x speedup for `embedding_lookup_sparse` out of the box.
More details are available in the commit messages.
Part 1 adds the new ops with a CPU kernel implementation.
[Part 2](https://github.com/tensorflow/tensorflow/pull/61294) adds GPU kernel implementations.
[Part 3](https://github.com/tensorflow/tensorflow/pull/61491) integrates the new ops into `embedding_lookup_sparse` and includes a benchmark.
cc @nluehr @pjannaty | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60383/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60383/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60379 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60379/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60379/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60379/events | https://github.com/tensorflow/tensorflow/pull/60379 | 1,675,986,360 | PR_kwDOArmXAs5OurEV | 60,379 | bump cudnn frontend to v0.9 | {
"login": "yudelevi",
"id": 4537920,
"node_id": "MDQ6VXNlcjQ1Mzc5MjA=",
"avatar_url": "https://avatars.githubusercontent.com/u/4537920?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yudelevi",
"html_url": "https://github.com/yudelevi",
"followers_url": "https://api.github.com/users/yudelevi/followers",
"following_url": "https://api.github.com/users/yudelevi/following{/other_user}",
"gists_url": "https://api.github.com/users/yudelevi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yudelevi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yudelevi/subscriptions",
"organizations_url": "https://api.github.com/users/yudelevi/orgs",
"repos_url": "https://api.github.com/users/yudelevi/repos",
"events_url": "https://api.github.com/users/yudelevi/events{/privacy}",
"received_events_url": "https://api.github.com/users/yudelevi/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60379/checks?check_run_id=12884492198) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.",
"@pgpetrak, can you update cudnn frontend internally and review this PR?\r\n\r\nCC @kaixih ",
"Will do.",
"Hi @pgpetrak Any update on this PR? Please. Thank you!"
] | 2023-04-20T04:39:46 | 2023-05-09T18:49:56 | 2023-05-09T18:49:56 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60379",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60379",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60379.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60379.patch",
"merged_at": "2023-05-09T18:49:56"
} | v0.9 of the cudnn frontend has been released (https://github.com/NVIDIA/cudnn-frontend/releases/tag/v0.9).
Followed a format similar to PR #59675 | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60379/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60379/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60378 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60378/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60378/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60378/events | https://github.com/tensorflow/tensorflow/pull/60378 | 1,675,722,297 | PR_kwDOArmXAs5Ot0M3 | 60,378 | [oneDNN v3.x]: Added support for matmul for fp32/bf16/int8 and einsum for fp32/bf16 | {
"login": "bhavani-subramanian",
"id": 28113241,
"node_id": "MDQ6VXNlcjI4MTEzMjQx",
"avatar_url": "https://avatars.githubusercontent.com/u/28113241?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bhavani-subramanian",
"html_url": "https://github.com/bhavani-subramanian",
"followers_url": "https://api.github.com/users/bhavani-subramanian/followers",
"following_url": "https://api.github.com/users/bhavani-subramanian/following{/other_user}",
"gists_url": "https://api.github.com/users/bhavani-subramanian/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bhavani-subramanian/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhavani-subramanian/subscriptions",
"organizations_url": "https://api.github.com/users/bhavani-subramanian/orgs",
"repos_url": "https://api.github.com/users/bhavani-subramanian/repos",
"events_url": "https://api.github.com/users/bhavani-subramanian/events{/privacy}",
"received_events_url": "https://api.github.com/users/bhavani-subramanian/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169365682,
"node_id": "MDU6TGFiZWwxMTY5MzY1Njgy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L",
"name": "size:L",
"color": "adafea",
"default": false,
"description": "CL Change Size: Large"
}
] | closed | false | {
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @penpornk Can you please review this PR ? Thank you!",
"Thank you for the review and for the good suggestions. I have addressed the comments. I also included a bug fix in this [line](https://github.com/tensorflow/tensorflow/pull/60378/commits/8ba59847e722c692885ff1eaa49c94cfd01b121e#diff-273ed23e668174f96de6482ae9dc33fa1e59b6c7761690ad00d42dfb90c328ecR486).",
"@penpornk I have addressed your review comments. Can you please take a look?",
"@penpornk Thanks for approving this PR. Please let me know if you need anything else from my end.",
"@bhavani-subramanian Could you please help fix [Windows Bazel failures](https://source.cloud.google.com/results/invocations/eba509ee-fed0-4215-b671-685ec6497b2a/log)? Thank you!\r\n\r\n```\r\n.\\tensorflow/core/kernels/mkl/mkl_matmul_ops_common.h(375): error C2059: syntax error: '#'\r\n.\\tensorflow/core/kernels/mkl/mkl_matmul_ops_common.h(249): note: while compiling class template member function 'void tensorflow::MklDnnMatMulFwdPrimitive<T,T,T,T,T>::Setup(const tensorflow::MklDnnMatMulFwdParams &)'\r\n with\r\n [\r\n T=float\r\n ]\r\n.\\tensorflow/core/kernels/mkl/mkl_matmul_ops_common.h(129): note: see reference to function template instantiation 'void tensorflow::MklDnnMatMulFwdPrimitive<T,T,T,T,T>::Setup(const tensorflow::MklDnnMatMulFwdParams &)' being compiled\r\n with\r\n [\r\n T=float\r\n ]\r\ntensorflow/core/kernels/mkl/mkl_matmul_op_fused.cc(145): note: see reference to class template instantiation 'tensorflow::MklDnnMatMulFwdPrimitive<T,T,T,T,T>' being compiled\r\n with\r\n [\r\n T=float\r\n ]\r\ntensorflow/core/kernels/mkl/mkl_matmul_op_fused.cc(61): note: while compiling class template member function 'void tensorflow::MklFusedMatMulOp<tensorflow::CPUDevice,float,true>::Compute(tensorflow::OpKernelContext *)'\r\ntensorflow/core/kernels/mkl/mkl_matmul_op_fused.cc(341): note: see reference to class template instantiation 'tensorflow::MklFusedMatMulOp<tensorflow::CPUDevice,float,true>' being compiled\r\n[17,997 / 20,875] Compiling tensorflow/compiler/mlir/lite/utils/tftext_utils.cc; 40s local, remote-cache ... (9 actions, 8 running)\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nINFO: Elapsed time: 258.481s, Critical Path: 84.48s\r\nINFO: 17584 processes: 12330 remote cache hit, 4755 internal, 499 local.\r\nFAILED: Build did NOT complete successfully\r\n```"
] | 2023-04-19T22:22:17 | 2023-06-19T20:45:31 | 2023-06-19T20:45:30 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60378",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60378",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60378.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60378.patch",
"merged_at": "2023-06-19T20:45:30"
} | - This PR adds support for oneDNN v3.x in fused-matmul (inner-product), batch-matmul, MKL CBLAS matmul and einsum for fp32 and bf16.
- This PR also adds oneDNN v3.x support for QuantizedMatmul. Changes in oneDNNv3.x for INT8 are 1) Changing the scaling API, so we need to pass a scale for every tensor. 2) Bias needs to be float. If not already in float, we convert it to float.
- Support for weight caching in fused-matmul will be added in a future PR.
- This PR passes all unit tests related to matmul ops for fp32/bf16/int8 when oneDNN v3.x is enabled.
- This PR does not add or affect Eigen ops and are specific only to oneDNN kernels.
- For additional comments related to oneDNN v3.x integration, please refer to [this](https://github.com/tensorflow/tensorflow/pull/60307#issue-1665423762) comment. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60378/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60378/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60377 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60377/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60377/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60377/events | https://github.com/tensorflow/tensorflow/pull/60377 | 1,675,706,444 | PR_kwDOArmXAs5Otw25 | 60,377 | [NVIDIA XLA] Support Conv-Bias-Relu6/LeakyRelu fusion in XLA using cuDNN runtime fusion | {
"login": "Young768",
"id": 7083506,
"node_id": "MDQ6VXNlcjcwODM1MDY=",
"avatar_url": "https://avatars.githubusercontent.com/u/7083506?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Young768",
"html_url": "https://github.com/Young768",
"followers_url": "https://api.github.com/users/Young768/followers",
"following_url": "https://api.github.com/users/Young768/following{/other_user}",
"gists_url": "https://api.github.com/users/Young768/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Young768/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Young768/subscriptions",
"organizations_url": "https://api.github.com/users/Young768/orgs",
"repos_url": "https://api.github.com/users/Young768/repos",
"events_url": "https://api.github.com/users/Young768/events{/privacy}",
"received_events_url": "https://api.github.com/users/Young768/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 1169365682,
"node_id": "MDU6TGFiZWwxMTY5MzY1Njgy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L",
"name": "size:L",
"color": "adafea",
"default": false,
"description": "CL Change Size: Large"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@reedwm could you please help run Google internal tests?",
"Hi @reedwm does this PR pass the internal tests?",
"Hi @reedwm Can you please assist on above comments from @Young768. Thank you!",
"@Young768, sorry for the delay. This causes compile time regressions, and in some cases compile time increases 300x. I'm worried that if I accept this, it will be rolled back, and rolling back large PRs is messy.\r\n\r\nThe ideal solution would be to improve compile time performance of cuDNN's relu fusions. Can you ask the cuDNN team to see if that is possible? But even if possible, this will take a while. In the meantime, can you guard this feature behind a [debug option flag](https://github.com/tensorflow/tensorflow/blob/9804d0b5eba7a17fce316573be32d2593c8acdd9/tensorflow/compiler/xla/debug_options_flags.cc#L176)? Then after this PR is submitted, we can then try turning the flag on by default, and rolling back that one-line change is easier than rolling back this entire PR. Perhaps the flag can be called `xla_gpu_extra_conv_relu_fusions`, but maybe you can think of a better name.",
"Hi @reedwm, what do you mean by `compile time`? Do you mean the cudnn runtime compilation time during the model training/inference? If yes, maybe we can simply use `xla_gpu_use_runtime_fusion`, which was introduced in our first cudnn runtime XLA PR. At that time, it was turned on by default but it seems we now want to turn it off to be more conservative.\r\n\r\nAlso, can you show us in which cases you saw the 300x slowdown? We can use them as the motivation examples to ask our cudnn team to improve the compilation overhead. They are looking for such cases quite enthusiastically.",
"For reference, all these 3 extra fusions are handled here: https://github.com/tensorflow/tensorflow/pull/60377/files#diff-0476808ba47a3d580457c1189ffc5677cea8f4fc0fcce600e1f26e342937cc26R82.",
"> Hi @reedwm, what do you mean by `compile time`? Do you mean the cudnn runtime compilation time during the model training/inference? If yes, maybe we can simply use `xla_gpu_use_runtime_fusion`, which was introduced in our first cudnn runtime XLA PR. At that time, it was turned on by default but it seems we now want to turn it off to be more conservative.\r\n> \r\n> Also, can you show us in which cases you saw the 300x slowdown? We can use them as the motivation examples to ask our cudnn team to improve the compilation overhead. They are looking for such cases quite enthusiastically.\r\n\r\nI have no details about the compilation regression that @reedwm mentioned, but to me it sounds like using xla_gpu_runtime_fusion flag for this (and disabling it by default) could also be a solution until the problem with compile time is fixed.",
"I'm going to try to submit this internally at Google. It will require some minor modifications (that I will take care of).",
"This is closed by https://github.com/tensorflow/tensorflow/commit/24f323096dd48615ca59c208708ca2cb8d88685f.\r\n\r\nHope it sticks.",
"Unfortunately I have had to disable leaky-relu fusion. On Ampere Waymo hit a convolution that got 0 algorithms during autotuning. Therefore the model fails to run.\r\n\r\nThe failing testcase will be documented in the code so you all can have a look at your leisure.\r\n\r\nrelu6 has not gotten rolled back. Yet. :)",
"https://github.com/tensorflow/tensorflow/commit/cb73612a496950fa5ace9ee9967757edb2e5a493 disables leaky-relu and has a testcase that was breaking for us with cudnn 8.9.0.",
"And I have now found a case where we have the same behavior with kRelu6: cudnn provides 0 algorithms for running a kRelu6 fusion. I will have to disable that as well. :(",
"I entirely disabled cudnn runtime fusion in https://github.com/tensorflow/tensorflow/commit/83bbee775f381a481cbfad4e910ce7fbafa93df1.\r\n\r\nPlease see that commit for testcases that illustrate the problem we're hitting.",
"Thanks for the finding. Let me double check it and may need to file a bug to our cudnn team to fix.",
"I think the problem may be that we were missing the input/output-channels divisible by 2 check for relu6 and leaky-relu. This check was present for kElu but it looks like it should have been general."
] | 2023-04-19T22:03:10 | 2023-07-14T13:30:41 | 2023-07-12T19:25:08 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60377",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60377",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60377.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60377.patch",
"merged_at": null
} | This is the re-submission of PR#5[9614](https://github.com/tensorflow/tensorflow/pull/59614).
@pjannaty @nluehr
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60377/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60377/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60376 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60376/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60376/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60376/events | https://github.com/tensorflow/tensorflow/pull/60376 | 1,675,423,973 | PR_kwDOArmXAs5Osy3z | 60,376 | [oneDNN v3.1] Enabled INT8 Conv op/fusions with oneDNN v3.1 | {
"login": "mahmoud-abuzaina",
"id": 24963061,
"node_id": "MDQ6VXNlcjI0OTYzMDYx",
"avatar_url": "https://avatars.githubusercontent.com/u/24963061?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mahmoud-abuzaina",
"html_url": "https://github.com/mahmoud-abuzaina",
"followers_url": "https://api.github.com/users/mahmoud-abuzaina/followers",
"following_url": "https://api.github.com/users/mahmoud-abuzaina/following{/other_user}",
"gists_url": "https://api.github.com/users/mahmoud-abuzaina/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mahmoud-abuzaina/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mahmoud-abuzaina/subscriptions",
"organizations_url": "https://api.github.com/users/mahmoud-abuzaina/orgs",
"repos_url": "https://api.github.com/users/mahmoud-abuzaina/repos",
"events_url": "https://api.github.com/users/mahmoud-abuzaina/events{/privacy}",
"received_events_url": "https://api.github.com/users/mahmoud-abuzaina/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169365682,
"node_id": "MDU6TGFiZWwxMTY5MzY1Njgy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L",
"name": "size:L",
"color": "adafea",
"default": false,
"description": "CL Change Size: Large"
}
] | closed | false | {
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @penpornk Can you please review this PR ? Thank you!",
"Hi @penpornk Can you please review this PR ? Thank you!",
"Thank you for reviewing the PR. I have addressed your comments."
] | 2023-04-19T18:39:12 | 2023-07-14T08:59:47 | 2023-07-14T08:59:47 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60376",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60376",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60376.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60376.patch",
"merged_at": "2023-07-14T08:59:47"
} | - This PR adds support for oneDNN v3.1 in QuantizedConvolution op/fusions.
- Main changes in oneDNN v3.0 for quantization API are 1) Scaling API; now scale needs to be set for each tensor. 2) Bias needs to be passed as float32.
- This PR is not changing common (non-oneDNN) TF code. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60376/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60376/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60375 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60375/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60375/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60375/events | https://github.com/tensorflow/tensorflow/pull/60375 | 1,675,358,387 | PR_kwDOArmXAs5OskpM | 60,375 | [oneDNN v3.x]: Added support for batchnorm fwd and bwd for fp32 and bf16 | {
"login": "bhavani-subramanian",
"id": 28113241,
"node_id": "MDQ6VXNlcjI4MTEzMjQx",
"avatar_url": "https://avatars.githubusercontent.com/u/28113241?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bhavani-subramanian",
"html_url": "https://github.com/bhavani-subramanian",
"followers_url": "https://api.github.com/users/bhavani-subramanian/followers",
"following_url": "https://api.github.com/users/bhavani-subramanian/following{/other_user}",
"gists_url": "https://api.github.com/users/bhavani-subramanian/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bhavani-subramanian/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhavani-subramanian/subscriptions",
"organizations_url": "https://api.github.com/users/bhavani-subramanian/orgs",
"repos_url": "https://api.github.com/users/bhavani-subramanian/repos",
"events_url": "https://api.github.com/users/bhavani-subramanian/events{/privacy}",
"received_events_url": "https://api.github.com/users/bhavani-subramanian/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169365682,
"node_id": "MDU6TGFiZWwxMTY5MzY1Njgy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L",
"name": "size:L",
"color": "adafea",
"default": false,
"description": "CL Change Size: Large"
}
] | closed | false | {
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @penpornk Can you please review this PR ? Thank you!",
"Hi @penpornk Can you please review this PR ? Thank you!",
"@penpornk I have addressed your review comments. Please take a look. Thanks."
] | 2023-04-19T17:53:04 | 2023-07-19T12:36:33 | 2023-07-19T12:36:32 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60375",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60375",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60375.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60375.patch",
"merged_at": "2023-07-19T12:36:32"
} | - This PR adds support for oneDNN v3.x in batchnorm fwd and bwd for fp32 and bf16.
- This PR passes all unit tests related to batchnorm fwd and bwd for fp32/bf16 when oneDNN v3.x is enabled.
- This PR does not add or affect Eigen ops and is specific only to oneDNN kernels.
- For additional comments related to oneDNN v3.x integration, please refer to [this](https://github.com/tensorflow/tensorflow/pull/60307#issue-1665423762) comment. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60375/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60375/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60374 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60374/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60374/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60374/events | https://github.com/tensorflow/tensorflow/pull/60374 | 1,675,334,437 | PR_kwDOArmXAs5Osfi9 | 60,374 | Update the RBE images to the latest container versions | {
"login": "tensorflow-jenkins",
"id": 16359713,
"node_id": "MDQ6VXNlcjE2MzU5NzEz",
"avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tensorflow-jenkins",
"html_url": "https://github.com/tensorflow-jenkins",
"followers_url": "https://api.github.com/users/tensorflow-jenkins/followers",
"following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}",
"gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions",
"organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs",
"repos_url": "https://api.github.com/users/tensorflow-jenkins/repos",
"events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}",
"received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-19T17:34:28 | 2023-04-20T14:37:19 | 2023-04-20T02:49:03 | COLLABORATOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60374",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60374",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60374.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60374.patch",
"merged_at": "2023-04-20T02:49:03"
} | This PR was created by a GitHub Actions workflow to update all the SIG Build-based RBE containers to the most recent containers. See:
- https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/toolchains/remote_config/configs.bzl
- https://github.com/tensorflow/tensorflow/blob/master/.github/workflows/update-rbe.yml | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60374/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60374/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60373 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60373/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60373/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60373/events | https://github.com/tensorflow/tensorflow/pull/60373 | 1,675,303,579 | PR_kwDOArmXAs5OsZB_ | 60,373 | Pjpratik patch 6 1 | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-04-19T17:09:43 | 2023-05-01T16:26:10 | 2023-04-19T17:10:01 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60373",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60373",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60373.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60373.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60373/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60373/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60372 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60372/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60372/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60372/events | https://github.com/tensorflow/tensorflow/pull/60372 | 1,675,272,957 | PR_kwDOArmXAs5OsSST | 60,372 | Update training information in get_started_low_level.md | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!"
] | 2023-04-19T16:51:18 | 2023-06-15T10:50:26 | 2023-06-09T07:06:38 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60372",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60372",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60372.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60372.patch",
"merged_at": "2023-06-09T07:06:38"
} | The link to the colab notebook about training is broken and it is now updated with `train.py` in the hello world example.
Thanks. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60372/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60372/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60371 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60371/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60371/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60371/events | https://github.com/tensorflow/tensorflow/pull/60371 | 1,675,259,630 | PR_kwDOArmXAs5OsPcE | 60,371 | [Linaro:ARM_CI] Add clang support to aarch64 toolchain | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "nitins17",
"id": 29348997,
"node_id": "MDQ6VXNlcjI5MzQ4OTk3",
"avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nitins17",
"html_url": "https://github.com/nitins17",
"followers_url": "https://api.github.com/users/nitins17/followers",
"following_url": "https://api.github.com/users/nitins17/following{/other_user}",
"gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nitins17/subscriptions",
"organizations_url": "https://api.github.com/users/nitins17/orgs",
"repos_url": "https://api.github.com/users/nitins17/repos",
"events_url": "https://api.github.com/users/nitins17/events{/privacy}",
"received_events_url": "https://api.github.com/users/nitins17/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "nitins17",
"id": 29348997,
"node_id": "MDQ6VXNlcjI5MzQ4OTk3",
"avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nitins17",
"html_url": "https://github.com/nitins17",
"followers_url": "https://api.github.com/users/nitins17/followers",
"following_url": "https://api.github.com/users/nitins17/following{/other_user}",
"gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nitins17/subscriptions",
"organizations_url": "https://api.github.com/users/nitins17/orgs",
"repos_url": "https://api.github.com/users/nitins17/repos",
"events_url": "https://api.github.com/users/nitins17/events{/privacy}",
"received_events_url": "https://api.github.com/users/nitins17/received_events",
"type": "User",
"site_admin": false
},
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @MichaelHudgins Can you please review this PR ? Thank you!",
"@elfringham let me know when you want to get this merged. ",
"Hi @elfringham Any update on this CL? Please. Thank you!",
"@gbaned The agreement here was to merge after 2.13 release.",
"@MichaelHudgins We would like to have this PR merged now please. It adds the toolchain but does not use it by default. This will allow use and testing by other CI systems such as Linaro and ARM.",
"Sorry on the delay, was OOO last week. Can you please rebase?",
"@MichaelHudgins I cannot see what the failure on the feedback/copybara check is about. Is it something I need to fix?",
"Its from a broken windows build from the last LLVM integrate, so not on your end. "
] | 2023-04-19T16:40:13 | 2023-08-22T14:08:37 | 2023-07-05T20:07:48 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60371",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60371",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60371.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60371.patch",
"merged_at": "2023-07-05T20:07:48"
} | Add the ability to use clang instead of gcc in the aarch64 toolchain | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60371/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60371/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60370 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60370/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60370/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60370/events | https://github.com/tensorflow/tensorflow/pull/60370 | 1,675,257,285 | PR_kwDOArmXAs5OsO64 | 60,370 | [Linaro:ARM_CI] Clean the extended skip list | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "nitins17",
"id": 29348997,
"node_id": "MDQ6VXNlcjI5MzQ4OTk3",
"avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nitins17",
"html_url": "https://github.com/nitins17",
"followers_url": "https://api.github.com/users/nitins17/followers",
"following_url": "https://api.github.com/users/nitins17/following{/other_user}",
"gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nitins17/subscriptions",
"organizations_url": "https://api.github.com/users/nitins17/orgs",
"repos_url": "https://api.github.com/users/nitins17/repos",
"events_url": "https://api.github.com/users/nitins17/events{/privacy}",
"received_events_url": "https://api.github.com/users/nitins17/received_events",
"type": "User",
"site_admin": false
},
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-19T16:38:53 | 2023-08-22T14:08:37 | 2023-04-21T15:25:31 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60370",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60370",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60370.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60370.patch",
"merged_at": "2023-04-21T15:25:31"
} | Remove tests that pass from the skip list for ARM CI Extended | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60370/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60370/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60369 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60369/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60369/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60369/events | https://github.com/tensorflow/tensorflow/issues/60369 | 1,675,223,131 | I_kwDOArmXAs5j2eBb | 60,369 | `tf.bitcast` throws assertion on `osx-64` and `osx-arm64` with `2.11.1` | {
"login": "sumit0190",
"id": 8823156,
"node_id": "MDQ6VXNlcjg4MjMxNTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/8823156?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sumit0190",
"html_url": "https://github.com/sumit0190",
"followers_url": "https://api.github.com/users/sumit0190/followers",
"following_url": "https://api.github.com/users/sumit0190/following{/other_user}",
"gists_url": "https://api.github.com/users/sumit0190/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sumit0190/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sumit0190/subscriptions",
"organizations_url": "https://api.github.com/users/sumit0190/orgs",
"repos_url": "https://api.github.com/users/sumit0190/repos",
"events_url": "https://api.github.com/users/sumit0190/events{/privacy}",
"received_events_url": "https://api.github.com/users/sumit0190/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@sumit0190,\r\nThank you for the issue. I tried to execute the mentioned code on MacOS M1 tensorflow v2.11 and tf-nightly and it was executed without any assertion error. Kindly find the screenshot for the reference and also the output for the code was also as expected. Thank you!\r\n\r\n\r\n\r\n\r\n",
"@tilakrayal Thanks for trying this out. This only happens on the binaries from `conda-forge` and `anaconda`, and when building from source. I assume the compiler or something else in our setup has something to do with it, but without any debugging information it's hard to understand what. Would you be able to provide us with some instructions on how we can debug this further?",
"@sumit0190,\r\nCould you please confirm whether you are following the metal plugin instructions for installing tensorflow? Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60369\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60369\">No</a>\n"
] | 2023-04-19T16:12:51 | 2023-05-27T01:54:25 | 2023-05-27T01:54:23 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
TF 2.11
### Custom Code
No
### OS Platform and Distribution
`osx-64`, `osx-arm64`
### Mobile device
_No response_
### Python version
3.10.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
For some reason, with version `2.11` (and `2.11.1`) the `bitcast` function hits an assertion in `casts.h`, no matter what the input. This only happens on `osx-64` and `osx-arm64`, and that too only with this version - older versions work correctly.
I also tried installing this version from `conda-forge` and `anaconda`, and both have the same behavior. So in summary, regardless of whether you install this from source or from the common `conda` channels the behavior is the same.
This **does not happen** with the versions installed via `pip`.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
x = [1., 2., 3.]
tf.bitcast(x, tf.qint8)
```
### Relevant log output
```shell
Assertion failed: (f == nullptr || dynamic_cast<To>(f) != nullptr), function down_cast, file casts.h, line 58.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60369/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60369/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60368 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60368/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60368/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60368/events | https://github.com/tensorflow/tensorflow/issues/60368 | 1,674,913,306 | I_kwDOArmXAs5j1SYa | 60,368 | Tensorflow 2.11.1 bazel failed with option framework_shared_object=false | {
"login": "tomchen1000",
"id": 9027847,
"node_id": "MDQ6VXNlcjkwMjc4NDc=",
"avatar_url": "https://avatars.githubusercontent.com/u/9027847?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tomchen1000",
"html_url": "https://github.com/tomchen1000",
"followers_url": "https://api.github.com/users/tomchen1000/followers",
"following_url": "https://api.github.com/users/tomchen1000/following{/other_user}",
"gists_url": "https://api.github.com/users/tomchen1000/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tomchen1000/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tomchen1000/subscriptions",
"organizations_url": "https://api.github.com/users/tomchen1000/orgs",
"repos_url": "https://api.github.com/users/tomchen1000/repos",
"events_url": "https://api.github.com/users/tomchen1000/events{/privacy}",
"received_events_url": "https://api.github.com/users/tomchen1000/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @tomchen1000 ,\r\n\r\nCan you please cross check and confirm the command ? Is it `--config=opt `? Your command getting error below, which is obvious.\r\n\r\n```\r\n(bazel3) suryanarayanay@surya-ubuntu20:~/tensorflow$ bazel build --config opt --define framework_shared_object=false //tensorflow/tools/pip_package:build_pip_package\r\nERROR: Config value 'opt' is not defined in any .rc file\r\n```\r\nWhat are the configurations you have opted in `./configure.py` step if you have used `--config=opt` ?\r\n\r\nI tried building on a Ubuntu VM by omitting `--config=opt` from your command and it seems similar errors with different ops replicated as reported by you. You may please check and confirm.\r\n\r\n```\r\n(bazel3) suryanarayanay@surya-ubuntu20:~/tensorflow$ bazel build --define framework_shared_object=false //tensorflow/tools/pip_package:build_pip_package\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1 --terminal_columns=100\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /home/suryanarayanay/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /home/suryanarayanay/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:linux in file /home/suryanarayanay/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes\r\nINFO: Found applicable config definition build:dynamic_kernels in file /home/suryanarayanay/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (612 packages loaded, 36319 targets configured).\r\nINFO: Found 1 target...\r\nERROR: /home/suryanarayanay/tensorflow/tensorflow/cc/BUILD:673:22: Linking tensorflow/cc/ops/training_ops_gen_cc [for host] failed: (Exit 1): gcc failed: error executing command /usr/bin/gcc @bazel-out/host/bin/tensorflow/cc/ops/training_ops_gen_cc-2.params\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::_InternalParse(char const*, google::protobuf::internal::ParseContext*): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::_InternalParse(char const*, google::protobuf::internal::ParseContext*): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::_InternalParse(char const*, google::protobuf::internal::ParseContext*): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::_InternalParse(char const*, google::protobuf::internal::ParseContext*): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::ConvolutionDescriptorProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::_TensorDescriptorProto_default_instance_'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::_TensorDescriptorProto_default_instance_'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::_TensorDescriptorProto_default_instance_'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::ConvolutionDescriptorProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::_ConvolutionDescriptorProto_default_instance_'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::~ConvolutionProto(): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::~TensorDescriptorProto()'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::~ConvolutionProto(): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::~TensorDescriptorProto()'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::~ConvolutionProto(): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::~TensorDescriptorProto()'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::~ConvolutionProto(): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::~ConvolutionDescriptorProto()'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::Clear(): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::~ConvolutionDescriptorProto()'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::Clear(): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::~TensorDescriptorProto()'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::ByteSizeLong() const'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::ByteSizeLong() const'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::ByteSizeLong() const'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::ByteSizeLong() const'\r\nbazel-out/host/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:descriptor_table_tensorflow_2fcore_2fprotobuf_2fconv_5fautotuning_2eproto_deps: error: undefined reference to 'descriptor_table_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::clear_key(): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::~AlgorithmProto()'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::_InternalParse(char const*, google::protobuf::internal::ParseContext*): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&)'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::_AlgorithmProto_default_instance_'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::clear_key(): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::~AlgorithmProto()'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::_InternalParse(char const*, google::protobuf::internal::ParseContext*): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&)'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::_AlgorithmProto_default_instance_'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::AlgorithmProto::ByteSizeLong() const'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::AlgorithmProto::ByteSizeLong() const'\r\nbazel-out/host/bin/tensorflow/tsl/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:descriptor_table_tensorflow_2ftsl_2fprotobuf_2fautotuning_2eproto_deps: error: undefined reference to 'descriptor_table_tensorflow_2ftsl_2fprotobuf_2fdnn_2eproto'\r\nbazel-out/host/bin/tensorflow/compiler/xla/service/gpu/_objs/backend_configs_cc_impl/backend_configs.pb.o:backend_configs.pb.cc:function xla::gpu::CudnnConvBackendConfig::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&)'\r\nbazel-out/host/bin/tensorflow/compiler/xla/service/gpu/_objs/backend_configs_cc_impl/backend_configs.pb.o:backend_configs.pb.cc:function xla::gpu::CudnnConvBackendConfig::MergeImpl(google::protobuf::Message&, google::protobuf::Message const&): error: undefined reference to 'stream_executor::dnn::_AlgorithmProto_default_instance_'\r\nbazel-out/host/bin/tensorflow/compiler/xla/service/gpu/_objs/backend_configs_cc_impl/backend_configs.pb.o:backend_configs.pb.cc:function xla::gpu::CudnnConvBackendConfig::~CudnnConvBackendConfig(): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::~AlgorithmProto()'\r\nbazel-out/host/bin/tensorflow/compiler/xla/service/gpu/_objs/backend_configs_cc_impl/backend_configs.pb.o:backend_configs.pb.cc:function xla::gpu::CudnnConvBackendConfig::Clear(): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::~AlgorithmProto()'\r\nbazel-out/host/bin/tensorflow/compiler/xla/service/gpu/_objs/backend_configs_cc_impl/backend_configs.pb.o:backend_configs.pb.cc:function xla::gpu::CudnnConvBackendConfig::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::AlgorithmProto::ByteSizeLong() const'\r\nbazel-out/host/bin/tensorflow/compiler/xla/service/gpu/_objs/backend_configs_cc_impl/backend_configs.pb.o:backend_configs.pb.cc:descriptor_table_tensorflow_2fcompiler_2fxla_2fservice_2fgpu_2fbackend_5fconfigs_2eproto_deps: error: undefined reference to 'descriptor_table_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'\r\ncollect2: error: ld returned 1 exit status\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nUse --verbose_failures to see the command lines of failed build steps.\r\nINFO: Elapsed time: 757.694s, Critical Path: 75.05s\r\nINFO: 769 processes: 68 internal, 701 local.\r\n```\r\n\r\n",
"@tomchen1000 ,\r\n\r\n One observation is that even though you are using the flag `--define framework_shared_object=false` its not being considered by bazel as in bazel the default setting is `framework_shared_object=true` and this can be override with `config=monolithic`. Please have a look at source here.\r\nhttps://github.com/tensorflow/tensorflow/blob/f318efaa1175af1e76a3b75f8ebae4f776518cb9/.bazelrc#L218-L222\r\n\r\nFrom the logs attached above you can see `framework_shared_object=true` under `Info` log sets by default and it is not override anywhere. \r\n\r\nWhen I added `config=monolithic` now `framework_shared_object=false` has been set. You can find the command and logs below.\r\n\r\n```\r\n(bazel3) suryanarayanay@surya-ubuntu20:~/tensorflow$ bazel build --config=monolithic //tensorflow/tools/pip_package:build_pip_package\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1 --terminal_columns=171\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /home/suryanarayanay/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /home/suryanarayanay/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:monolithic in file /home/suryanarayanay/tensorflow/.bazelrc: --define framework_shared_object=false --define tsl_protobuf_header_only=false --experimental_link_static_libraries_once=false\r\nINFO: Found applicable config definition build:linux in file /home/suryanarayanay/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes\r\nINFO: Found applicable config definition build:dynamic_kernels in file /home/suryanarayanay/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nINFO: Build option --define has changed, discarding analysis cache.\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 36331 targets configured).\r\nINFO: Found 1 target...\r\n[9,722 / 12,411] 8 actions running\r\n Compiling tensorflow/compiler/xla/service/hlo_memory_scheduler.cc; 18s local\r\n Compiling tensorflow/compiler/xla/service/convolution_group_converter.cc; 12s local\r\n Compiling tensorflow/compiler/xla/service/dot_decomposer.cc; 12s local\r\n Compiling tensorflow/compiler/xla/service/layout_assignment.cc; 7s local\r\n Compiling tensorflow/compiler/xla/service/float_normalization.cc; 7s local\r\n Compiling tensorflow/compiler/xla/service/spmd/stateful_rng_spmd_partitioner.cc; 6s local\r\n Compiling tensorflow/compiler/xla/service/spmd/gather_scatter_handler.cc; 5s local\r\n Compiling tensorflow/compiler/xla/service/spmd/dot_handler.cc; 3s local\r\n```\r\n\r\nPlease try the above command and let us if it works. Thanks!",
"@SuryanarayanaY \r\n\r\nNo, it doesn't work either. \r\n\r\nGot this error: \r\nImportError: libtensorflow_framework.so.2: cannot open shared object file: No such file or directory.\r\n\r\nSee the command and logs below.\r\n\r\n```\r\nroot@cb0af95e04e4:/tensorflow# bazel build --config=monolithic //tensorflow/tools/pip_package:build_pip_package\r\nStarting local Bazel server and connecting to it...\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1 --terminal_columns=165\r\nINFO: Reading rc options for 'build' from /tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true\r\n --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=\r\nwith_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link\r\n_static_libraries_once=false\r\nINFO: Reading rc options for 'build' from /tensorflow/.tf_configure.bazelrc:\r\n 'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3\r\nINFO: Reading rc options for 'build' from /tensorflow/.bazelrc:\r\n 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorf\r\nlow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflo\r\nw/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo\r\n_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensor\r\nflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback\r\n/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow\r\n/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/c\r\npp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/\r\ncore/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:monolithic in file /tensorflow/.bazelrc: --define framework_shared_object=false --define tsl_protobuf_header_only=fals\r\ne --experimental_link_static_libraries_once=false\r\nINFO: Found applicable config definition build:linux in file /tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wn\r\no-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-unknown-warning --copt=-Wno-array-parameter --copt=-Wno-stringop-overflow --copt=-Wno-array-boun\r\nds --copt=-Wunused-result --copt=-Werror=unused-result --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INC\r\nLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --distinct_host_configuration=false --experimental_guard_against_co\r\nncurrent_changes\r\nINFO: Found applicable config definition build:dynamic_kernels in file /tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (544 packages loaded, 31178 targets configured).\r\nINFO: Found 1 target...\r\n\r\nERROR: /tensorflow/tensorflow/BUILD:1426:19: Executing genrule //tensorflow:tf_python_api_gen_v2 failed: (Exit 1): bash failed: error executing command /bin/bash -c\r\n... (remaining 1 argument skipped)\r\n2023-04-24 21:41:16.396194: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)\r\n to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA\r\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\nTraceback (most recent call last):\r\n File \"/root/.cache/bazel/_bazel_root/68a62076e91007a7908bc42a32e4cff9/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_pytho\r\nn_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/pywrap_tensorflow.py\", line 62, in <module>\r\n from tensorflow.python._pywrap_tensorflow_internal import *\r\nImportError: libtensorflow_framework.so.2: cannot open shared object file: No such file or directory\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"/root/.cache/bazel/_bazel_root/68a62076e91007a7908bc42a32e4cff9/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_pytho\r\nn_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/tools/api/generator/create_python_api.py\", line 22, in <module>\r\n from tensorflow.python.tools.api.generator import doc_srcs\r\n File \"/root/.cache/bazel/_bazel_root/68a62076e91007a7908bc42a32e4cff9/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_pytho\r\nn_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/__init__.py\", line 36, in <module>\r\n from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow\r\n File \"/root/.cache/bazel/_bazel_root/68a62076e91007a7908bc42a32e4cff9/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_pytho\r\nn_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/pywrap_tensorflow.py\", line 77, in <module>\r\n raise ImportError(\r\nImportError: Traceback (most recent call last):\r\n File \"/root/.cache/bazel/_bazel_root/68a62076e91007a7908bc42a32e4cff9/execroot/org_tensorflow/bazel-out/k8-opt/bin/tensorflow/create_tensorflow.python_api_tf_pytho\r\nn_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/pywrap_tensorflow.py\", line 62, in <module>\r\n from tensorflow.python._pywrap_tensorflow_internal import *\r\nImportError: libtensorflow_framework.so.2: cannot open shared object file: No such file or directory\r\n\r\n\r\nFailed to load the native TensorFlow runtime.\r\nSee https://www.tensorflow.org/install/errors for some common causes and solutions.\r\nIf you need help, create an issue at https://github.com/tensorflow/tensorflow/issues and include the entire stack trace above this error message.\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nUse --verbose_failures to see the command lines of failed build steps.\r\nERROR: /tensorflow/tensorflow/lite/python/BUILD:68:10 Middleman _middlemen/tensorflow_Slite_Spython_Stflite_Uconvert-runfiles failed: (Exit 1): bash failed: error ex\r\necuting command /bin/bash -c ... (remaining 1 argument skipped)\r\nINFO: Elapsed time: 5936.681s, Critical Path: 3536.96s\r\nINFO: 13312 processes: 1415 internal, 11897 local.\r\nFAILED: Build did NOT complete successfully\r\n\r\n```\r\n\r\n",
"The same error occurs in TensorFlow v2.11.0, v2.12.0 and v2.13.0-rc0.\r\n\r\nAll of the following will produce the same error.\r\n\r\n```bash\r\nbazel build \\\r\n--config=monolithic \\\r\n--config=noaws \\\r\n--config=nohdfs \\\r\n--config=nonccl \\\r\n--config=v2 \\\r\n--define=tflite_pip_with_flex=true \\\r\n--define=tflite_with_xnnpack=true \\\r\n--copt=\"-Wno-stringop-overflow\" \\\r\n--ui_actions_shown=20 \\\r\n//tensorflow/tools/pip_package:build_pip_package\r\n```\r\n```bash\r\nbazel build \\\r\n--config=monolithic \\\r\n--config=noaws \\\r\n--config=nohdfs \\\r\n--config=nonccl \\\r\n--config=v2 \\\r\n--define=tflite_with_xnnpack=true \\\r\n--copt=\"-Wno-stringop-overflow\" \\\r\n--ui_actions_shown=20 \\\r\n//tensorflow/tools/pip_package:build_pip_package\r\n```\r\n```bash\r\nbazel build \\\r\n--config=opt \\\r\n--config=noaws \\\r\n--config=nohdfs \\\r\n--config=nonccl \\\r\n--config=v2 \\\r\n--define=tflite_pip_with_flex=true \\\r\n--define=tflite_with_xnnpack=true \\\r\n--copt=\"-Wno-stringop-overflow\" \\\r\n--ui_actions_shown=20 \\\r\n//tensorflow/tools/pip_package:build_pip_package\r\n```\r\n```bash\r\nbazel build \\\r\n--config=noaws \\\r\n--config=nohdfs \\\r\n--config=nonccl \\\r\n--config=v2 \\\r\n--define=tflite_pip_with_flex=true \\\r\n--define=tflite_with_xnnpack=true \\\r\n--copt=\"-Wno-stringop-overflow\" \\\r\n--ui_actions_shown=20 \\\r\n//tensorflow/tools/pip_package:build_pip_package\r\n```",
"Hi, Were you able to find a resolution for? \r\n```\r\nImportError: libtensorflow_framework.so.2: cannot open shared object file: No such file or directory.\r\n```"
] | 2023-04-19T13:32:33 | 2023-09-01T18:56:00 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf2.11.1
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 18.04
### Mobile device
_No response_
### Python version
3.8.10
### Bazel version
5.3.0
### GCC/Compiler version
9.4.0
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
Tried to build Tensorflow 2.11.1 (and Tensorflow 2.12.0) using Tensorflow docker image: tensorflow/tensorflow:devel with option framework_shared_object=false. The build fails with the following error. (It's a build for CPU only).
Using the same option, previous versions of Tensorflow (such as v2.10.1) build without error.
### Standalone code to reproduce the issue
```shell
docker pull tensorflow/tensorflow:devel
docker run -it -w /tensorflow -v /path/to/tensorflow:/tensorflow -v $PWD:/mnt \
-e HOST_PERMS="\\((id -u):\\)(id -g)" tensorflow/tensorflow:devel bash
# within the container
bazel build --config opt --define framework_shared_object=false //tensorflow/tools/pip_package:build_pip_package
```
### Relevant log output
```shell
ERROR: /tensorflow/tensorflow/python/BUILD:889:29: Linking tensorflow/python/gen_ragged_math_ops_py_wrappers_cc failed: (Exit 1): gcc failed: error executing command /usr/bin/gcc @bazel-out/k8-opt/bin/tensorflow/python/gen_ragged_math_ops_py_wrappers_cc-2.params
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function InitDefaultsscc_info_AutotuneResult_FailureResult_tensorflow_2fcore_2fprotobuf_2fautotuning_2eproto(): error: undefined reference to 'stream_executor::dnn::_AlgorithmProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function InitDefaultsscc_info_AutotuneResult_tensorflow_2fcore_2fprotobuf_2fautotuning_2eproto(): error: undefined reference to 'stream_executor::dnn::_AlgorithmProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergeFrom(tensorflow::AutotuneResult_FailureResult const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergeFrom(tensorflow::AutotuneResult_FailureResult const&): error: undefined reference to 'stream_executor::dnn::_AlgorithmProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergeFrom(tensorflow::AutotuneResult_FailureResult const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergeFrom(stream_executor::dnn::AlgorithmProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergeFrom(tensorflow::AutotuneResult_FailureResult const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergeFrom(stream_executor::dnn::AlgorithmProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergeFrom(tensorflow::AutotuneResult const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergeFrom(tensorflow::AutotuneResult const&): error: undefined reference to 'stream_executor::dnn::_AlgorithmProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergeFrom(tensorflow::AutotuneResult const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergeFrom(stream_executor::dnn::AlgorithmProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergeFrom(tensorflow::AutotuneResult const&): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergeFrom(stream_executor::dnn::AlgorithmProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::InternalSerializeWithCachedSizesToArray(unsigned char*) const: error: undefined reference to 'stream_executor::dnn::AlgorithmProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult_FailureResult::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::AlgorithmProto::ByteSizeLong() const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::AlgorithmProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::AlgorithmProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::AlgorithmProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::InternalSerializeWithCachedSizesToArray(unsigned char*) const: error: undefined reference to 'stream_executor::dnn::AlgorithmProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:function tensorflow::AutotuneResult::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::AlgorithmProto::ByteSizeLong() const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:descriptor_table_tensorflow_2fcore_2fprotobuf_2fautotuning_2eproto_deps: error: undefined reference to 'descriptor_table_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:scc_info_AutotuneResult_FailureResult_tensorflow_2fcore_2fprotobuf_2fautotuning_2eproto: error: undefined reference to 'scc_info_AlgorithmProto_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/autotuning_proto_cc_impl/autotuning.pb.o:autotuning.pb.cc:scc_info_AutotuneResult_tensorflow_2fcore_2fprotobuf_2fautotuning_2eproto: error: undefined reference to 'scc_info_AlgorithmProto_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function InitDefaultsscc_info_ConvolutionProto_tensorflow_2fcore_2fprotobuf_2fconv_5fautotuning_2eproto(): error: undefined reference to 'stream_executor::dnn::_TensorDescriptorProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function InitDefaultsscc_info_ConvolutionProto_tensorflow_2fcore_2fprotobuf_2fconv_5fautotuning_2eproto(): error: undefined reference to 'stream_executor::dnn::_ConvolutionDescriptorProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::MergeFrom(stream_executor::dnn::TensorDescriptorProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::MergeFrom(stream_executor::dnn::TensorDescriptorProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::MergeFrom(stream_executor::dnn::TensorDescriptorProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::MergeFrom(stream_executor::dnn::ConvolutionDescriptorProto const&)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::_TensorDescriptorProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::_TensorDescriptorProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::_TensorDescriptorProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::ConvolutionDescriptorProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergeFrom(tensorflow::ConvolutionProto const&): error: undefined reference to 'stream_executor::dnn::_ConvolutionDescriptorProto_default_instance_'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::TensorDescriptorProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*): error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto* google::protobuf::Arena::CreateMaybeMessage<stream_executor::dnn::ConvolutionDescriptorProto>(google::protobuf::Arena*)'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const: error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::InternalSerializeWithCachedSizesToArray(unsigned char*) const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::ByteSizeLong() const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::ByteSizeLong() const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::TensorDescriptorProto::ByteSizeLong() const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:function tensorflow::ConvolutionProto::ByteSizeLong() const: error: undefined reference to 'stream_executor::dnn::ConvolutionDescriptorProto::ByteSizeLong() const'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:descriptor_table_tensorflow_2fcore_2fprotobuf_2fconv_5fautotuning_2eproto_deps: error: undefined reference to 'descriptor_table_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:scc_info_ConvolutionProto_tensorflow_2fcore_2fprotobuf_2fconv_5fautotuning_2eproto: error: undefined reference to 'scc_info_TensorDescriptorProto_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'
bazel-out/k8-opt/bin/tensorflow/core/protobuf/_objs/conv_autotuning_proto_cc_impl/conv_autotuning.pb.o:conv_autotuning.pb.cc:scc_info_ConvolutionProto_tensorflow_2fcore_2fprotobuf_2fconv_5fautotuning_2eproto: error: undefined reference to 'scc_info_ConvolutionDescriptorProto_tensorflow_2fcompiler_2fxla_2fstream_5fexecutor_2fdnn_2eproto'
collect2: error: ld returned 1 exit status
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
ERROR: /tensorflow/tensorflow/lite/python/BUILD:68:10 Middleman _middlemen/tensorflow_Slite_Spython_Stflite_Uconvert-runfiles failed: (Exit 1): gcc failed: error executing command /usr/bin/gcc @bazel-out/k8-opt/bin/tensorflow/python/gen_ragged_math_ops_py_wrappers_cc-2.params
INFO: Elapsed time: 152.054s, Critical Path: 49.12s
INFO: 376 processes: 39 internal, 337 local.
FAILED: Build did NOT complete successfully
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60368/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60368/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60367 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60367/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60367/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60367/events | https://github.com/tensorflow/tensorflow/issues/60367 | 1,674,507,315 | I_kwDOArmXAs5jzvQz | 60,367 | Internal error: Unexpected failure when preparing tensor allocations: tensorflow/lite/kernels/conv.cc:343 input->dims->size != 4 (3 != 4) | {
"login": "gptshubham595",
"id": 24877361,
"node_id": "MDQ6VXNlcjI0ODc3MzYx",
"avatar_url": "https://avatars.githubusercontent.com/u/24877361?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gptshubham595",
"html_url": "https://github.com/gptshubham595",
"followers_url": "https://api.github.com/users/gptshubham595/followers",
"following_url": "https://api.github.com/users/gptshubham595/following{/other_user}",
"gists_url": "https://api.github.com/users/gptshubham595/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gptshubham595/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gptshubham595/subscriptions",
"organizations_url": "https://api.github.com/users/gptshubham595/orgs",
"repos_url": "https://api.github.com/users/gptshubham595/repos",
"events_url": "https://api.github.com/users/gptshubham595/events{/privacy}",
"received_events_url": "https://api.github.com/users/gptshubham595/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @gptshubham595 Thanks for reporting the issue.\r\n\r\nWe see that the colab file you have shared has data access issues. Could you please provide a standalone code or a toy tflite model inorder to reproduce the issue?\r\n\r\nThanks.",
"[NoiseSuppressionModel.h5](https://drive.google.com/file/d/1xUQklFyuYFV_ZsuO8Rskc52xsuSPZCip/view?usp=share_link)\r\n[Model.Tflite]( https://drive.google.com/file/d/1xUQklFyuYFV_ZsuO8Rskc52xsuSPZCip/view?usp=sharing)",
"Hi @gptshubham595 \r\n\r\nThe input signature of the TFLite model is `'shape_signature': array([ -1, 12000, 1]`. I have tested with random data with shape `[1,1200,1]` and model runs without any error.\r\n\r\nPlease find the colab gist [here](https://colab.research.google.com/gist/pjpratik/bd48804cc8d40239812079b5a249aac3/60367.ipynb) and let us know if it helps.\r\n\r\nThanks.",
"I tried this in android but i'm getting this error\r\n\r\n```\r\nprivate fun applyModel() {\r\n val inputFloatArray = Array(1) { Array(inputAudioData.size) { FloatArray(1) } } //1,1200,1\r\n\r\n val outputFloatArray = inputFloatArray //Attempt 1\r\n val outputFloatArray = Array(1) { Array(inputAudioData.size) { FloatArray(1) } } //Attempt 2\r\n\r\n Log.d(\"tflite\", \"Model input data: ${inputFloatArray.toString()}\")\r\n\r\n tflite!!.run(inputFloatArray, outputFloatArray)\r\n\r\n Log.d(\"tflite\", \"Model output data: ${outputFloatArray.toString()}\")\r\n }\r\n```\r\n\r\n\r\n```\r\n java.lang.IllegalStateException: Internal error: Unexpected failure when preparing tensor allocations: tensorflow/lite/kernels/reshape.cc:85 num_input_elements != num_output_elements (1200 != 0)\r\n Node number 6 (RESHAPE) failed to prepare.\r\n \tat org.tensorflow.lite.NativeInterpreterWrapper.allocateTensors(Native Method)\r\n \tat org.tensorflow.lite.NativeInterpreterWrapper.allocateTensorsIfNeeded(NativeInterpreterWrapper.java:308)\r\n \tat org.tensorflow.lite.NativeInterpreterWrapper.run(NativeInterpreterWrapper.java:248)\r\n \tat org.tensorflow.lite.InterpreterImpl.runForMultipleInputsOutputs(InterpreterImpl.java:101)\r\n \tat org.tensorflow.lite.Interpreter.runForMultipleInputsOutputs(Interpreter.java:77)\r\n \tat org.tensorflow.lite.InterpreterImpl.run(InterpreterImpl.java:94)\r\n \t```",
"Hi @gptshubham595 \r\n\r\nIt is hard to say from the code snippet, but as mentioned earlier please check the input tensor shapes and resize before during inference.\r\n\r\nAlso, If the loaded model in TFLite does not have any defined batch size, converter will take the batch size as 1, and when you evaluate it with the different batch size, you are likely to end up with the problem which you are facing.\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60367\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60367\">No</a>\n"
] | 2023-04-19T09:14:34 | 2023-05-05T01:50:33 | 2023-05-05T01:50:30 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
MacOS
### Mobile device
Linux (Android Oneplus)
### Python version
3.9
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I am working on this noise and echo cancellation on android. I used this tflite model created via https://colab.research.google.com/drive/1HzGdovqo0gg_xW1QL7ygbkYlWqbyMaKL?usp=sharing#scrollTo=2kRjDbp7og1u
Now I want to use a ShortArray() audioData and want to pass and get a ShortArray() data back with removed echo and noise.
I tried creating, tflite model, predict function works there, I incorporated it in android but whenever data is passed in the array it returns the error
```Internal error: Unexpected failure when preparing tensor allocations: tensorflow/lite/kernels/conv.cc:343 input->dims->size != 4 (3 != 4)```
### Standalone code to reproduce the issue
```shell
snippet has this
#@INPUT
print(test_audio) gives
<tf.Tensor: shape=(6, 12000, 1), dtype=float32, numpy=
array([[[-0.00097656],
[-0.01428223],
[-0.02471924],
...,
[ 0.14346313],
[ 0.13012695],
[ 0.14242554]]]], dtype=float32)>
```
```
predict_tflite_with_array(tf.convert_to_tensor(test_audio, np.float32)) # @To predict
```
```
#@Output
<tf.Tensor: shape=(68800,), dtype=float32, numpy=
array([-0.00645937, -0.01239021, -0.01816257, ..., -0.02149353,
-0.0514788 , -0.04442336], dtype=float32)>
```
```
def predict_tflite_with_array(test_audio):
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
preds = []
for i in test_audio:
interpreter.set_tensor(input_index, tf.expand_dims(i,0))
interpreter.invoke()
predictions = interpreter.get_tensor(output_index)
preds.append(predictions)
predictions = tf.squeeze(tf.stack(preds,axis=1))
final_op = tf.reshape(predictions[:-1],((predictions.shape[0]-1)*predictions.shape[1],1))
final_op = tf.concat((tf.squeeze(final_op),predictions[-1][-diff:]),axis=0)
return final_op
```
I used this tflite model in android to run this
```
aaptOptions {
noCompress "model.tflite"
}
implementation 'org.tensorflow:tensorflow-lite:2.12.0'
```
```
@Throws(IOException::class)
private fun loadModelFile(activity: Activity): MappedByteBuffer? {
val fileDescriptor: AssetFileDescriptor = activity.assets.openFd("model.tflite")
val inputStream = FileInputStream(fileDescriptor.fileDescriptor)
val fileChannel = inputStream.channel
val startOffset = fileDescriptor.startOffset
val declaredLength = fileDescriptor.declaredLength
return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength)
}
try {
viewModel.tflite = loadModelFile(requireActivity())?.let {
Interpreter(it) }
Log.d("tflite", "Model initiated")
} catch (ex: Exception) {
ex.printStackTrace()
Log.d("tflite", "Model initiation Failed $ex")
}
```
```
private fun applyModel(inputAudioData: ShortArray): ShortArray {
val inputVal = FloatArray(inputAudioData.size)
for (i in inputAudioData.indices) {
inputVal[i] = inputAudioData[i].toFloat()
}
val inputFloatArray = Array(1){
inputVal
}
val outputFloatArray = Array(1) {
FloatArray(inputAudioData.size)
}
Log.d("tflite", "Model input data: ${inputFloatArray.toString()}")
tflite!!.run(inputFloatArray, outputFloatArray)
Log.d("tflite", "Model output data: ${outputFloatArray.toString()}")
val outputAudioData = ShortArray(inputFloatArray.size)
for (i in outputFloatArray[0].indices) {
outputAudioData[i] = outputFloatArray[0][i].toInt().toShort()
}
Log.d("tflite", "Model returning data: ${outputAudioData.toString()}")
return outputAudioData
}
```
[1]: https://colab.research.google.com/drive/1HzGdovqo0gg_xW1QL7ygbkYlWqbyMaKL?usp=sharing#scrollTo=2kRjDbp7og1u
```
### Relevant log output
```shell
but whenever the app is running its crashing with this error
java.lang.IllegalStateException: Internal error: Unexpected failure when preparing tensor allocations: tensorflow/lite/kernels/conv.cc:343 input->dims->size != 4 (3 != 4)
Node number 5 (CONV_2D) failed to prepare.
at org.tensorflow.lite.NativeInterpreterWrapper.allocateTensors(Native Method)
at org.tensorflow.lite.NativeInterpreterWrapper.allocateTensorsIfNeeded(NativeInterpreterWrapper.java:308)
at org.tensorflow.lite.NativeInterpreterWrapper.run(NativeInterpreterWrapper.java:248)
at org.tensorflow.lite.InterpreterImpl.runForMultipleInputsOutputs(InterpreterImpl.java:101)
at org.tensorflow.lite.Interpreter.runForMultipleInputsOutputs(Interpreter.java:77)
at org.tensorflow.lite.InterpreterImpl.run(InterpreterImpl.java:94)
at org.tensorflow.lite.Interpreter.run(Interpreter.java:77)
```
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60367/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60367/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60366 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60366/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60366/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60366/events | https://github.com/tensorflow/tensorflow/issues/60366 | 1,674,472,898 | I_kwDOArmXAs5jzm3C | 60,366 | NaN is not propagated in `tf.pow(tf.constant(1.0), tf.sqrt(tf.constant(-1.0)))` | {
"login": "hujiajie",
"id": 1270848,
"node_id": "MDQ6VXNlcjEyNzA4NDg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1270848?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/hujiajie",
"html_url": "https://github.com/hujiajie",
"followers_url": "https://api.github.com/users/hujiajie/followers",
"following_url": "https://api.github.com/users/hujiajie/following{/other_user}",
"gists_url": "https://api.github.com/users/hujiajie/gists{/gist_id}",
"starred_url": "https://api.github.com/users/hujiajie/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hujiajie/subscriptions",
"organizations_url": "https://api.github.com/users/hujiajie/orgs",
"repos_url": "https://api.github.com/users/hujiajie/repos",
"events_url": "https://api.github.com/users/hujiajie/events{/privacy}",
"received_events_url": "https://api.github.com/users/hujiajie/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@hujiajie,\r\nThank you for reporting the issue. Have you got the chance to have a look at this open issue https://github.com/tensorflow/tensorflow/issues/57747 https://github.com/tensorflow/tensorflow/issues/57757 where a similar issue has been reported and it is still open.\r\n Also I request to follow the similar feature which has been proposed to have the updates on the similar issue. Thank you!",
"I can follow on #57757, thanks!\r\n",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60366\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60366\">No</a>\n"
] | 2023-04-19T08:54:38 | 2023-04-20T10:11:29 | 2023-04-20T10:11:27 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
Currently `tf.pow(x, y)` returns 1.0 (at least on CPU) when `x` is 1.0 and `y` is NaN, instead of propagating NaN like most other math ops. Can someone confirm which is the intended behavior? Thanks
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
x = tf.constant(1.0)
y = tf.sqrt(tf.constant(-1.0))
z = tf.pow(x, y)
print(z)
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60366/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60366/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60365 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60365/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60365/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60365/events | https://github.com/tensorflow/tensorflow/pull/60365 | 1,674,427,163 | PR_kwDOArmXAs5OpbRs | 60,365 | [Linaro:ARM_CI] Suppress verbose test time warnings | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "nitins17",
"id": 29348997,
"node_id": "MDQ6VXNlcjI5MzQ4OTk3",
"avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nitins17",
"html_url": "https://github.com/nitins17",
"followers_url": "https://api.github.com/users/nitins17/followers",
"following_url": "https://api.github.com/users/nitins17/following{/other_user}",
"gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nitins17/subscriptions",
"organizations_url": "https://api.github.com/users/nitins17/orgs",
"repos_url": "https://api.github.com/users/nitins17/repos",
"events_url": "https://api.github.com/users/nitins17/events{/privacy}",
"received_events_url": "https://api.github.com/users/nitins17/received_events",
"type": "User",
"site_admin": false
},
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-19T08:25:20 | 2023-08-22T14:08:37 | 2023-04-25T06:20:41 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60365",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60365",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60365.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60365.patch",
"merged_at": "2023-04-25T06:20:41"
} | Suppress the warnings about test time being outside of range, these are not useful and are obscuring the results. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60365/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60365/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60364 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60364/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60364/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60364/events | https://github.com/tensorflow/tensorflow/issues/60364 | 1,674,268,224 | I_kwDOArmXAs5jy05A | 60,364 | TFLite model maker installation issue in kaggle | {
"login": "dsbyprateekg",
"id": 30830541,
"node_id": "MDQ6VXNlcjMwODMwNTQx",
"avatar_url": "https://avatars.githubusercontent.com/u/30830541?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dsbyprateekg",
"html_url": "https://github.com/dsbyprateekg",
"followers_url": "https://api.github.com/users/dsbyprateekg/followers",
"following_url": "https://api.github.com/users/dsbyprateekg/following{/other_user}",
"gists_url": "https://api.github.com/users/dsbyprateekg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dsbyprateekg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dsbyprateekg/subscriptions",
"organizations_url": "https://api.github.com/users/dsbyprateekg/orgs",
"repos_url": "https://api.github.com/users/dsbyprateekg/repos",
"events_url": "https://api.github.com/users/dsbyprateekg/events{/privacy}",
"received_events_url": "https://api.github.com/users/dsbyprateekg/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@dsbyprateekg \r\n\r\nI was trying to check the issue and was able to successfully install in colab. Please find the gist [here](https://colab.research.google.com/gist/pjpratik/6450e69ec889a4090f1b4a1d272508d3/60364.ipynb). We may have downgrade numpy version in colab to solve the dependency issues.\r\n\r\nCan you try giving `--user` access and see if it works?\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60364\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60364\">No</a>\n"
] | 2023-04-19T06:44:37 | 2023-05-11T01:54:02 | 2023-05-11T01:53:50 | NONE | null | null | null | ### 1. System information
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): kaggle
- TensorFlow installation (pip package or built from source): !pip install tflite-model-maker
- TensorFlow library (version, if pip package or github SHA, if built from source):2.8
### 2. Code
[[Provide code to help us reproduce your issues using one of the following options:](https://www.kaggle.com/code/iamprateek/tflite-model-maker-test/notebook)](https://www.kaggle.com/code/iamprateek/tflite-model-maker-test/notebook)
###3. ERROR: `Cannot uninstall 'llvmlite'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.` | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60364/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60364/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60363 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60363/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60363/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60363/events | https://github.com/tensorflow/tensorflow/issues/60363 | 1,674,230,031 | I_kwDOArmXAs5jyrkP | 60,363 | Tensorflow model training stalls with MirroredStrategy on multiple GPUs | {
"login": "JustASquid",
"id": 11645696,
"node_id": "MDQ6VXNlcjExNjQ1Njk2",
"avatar_url": "https://avatars.githubusercontent.com/u/11645696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/JustASquid",
"html_url": "https://github.com/JustASquid",
"followers_url": "https://api.github.com/users/JustASquid/followers",
"following_url": "https://api.github.com/users/JustASquid/following{/other_user}",
"gists_url": "https://api.github.com/users/JustASquid/gists{/gist_id}",
"starred_url": "https://api.github.com/users/JustASquid/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JustASquid/subscriptions",
"organizations_url": "https://api.github.com/users/JustASquid/orgs",
"repos_url": "https://api.github.com/users/JustASquid/repos",
"events_url": "https://api.github.com/users/JustASquid/events{/privacy}",
"received_events_url": "https://api.github.com/users/JustASquid/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 996845227,
"node_id": "MDU6TGFiZWw5OTY4NDUyMjc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:dist-strat",
"name": "comp:dist-strat",
"color": "0052cc",
"default": false,
"description": "Distribution Strategy related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @JustASquid ,\r\n\r\nPlease submit a code snippet to replicate the issue.We can't say whether the issue is related to Distribution strategy bug or bug in code it self. As you mentioned Sage maker as GPU I am assuming you are using AWS Sage maker, and also going through the error log it seems the error might be due to NCCL communication problems. Please find the attached sources [link1](https://github.com/NVIDIA/nccl/issues/352) and [link2](https://github.com/NVIDIA/nccl/blob/master/ext-net/README.md) here and let us know if it helps. ",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60363\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60363\">No</a>\n"
] | 2023-04-19T06:06:06 | 2023-05-11T01:54:08 | 2023-05-11T01:53:52 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.12
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.8
### GPU model and memory
Sagemaker ml.p3.8xlarge - 4x V100
### Current Behaviour?
When using `MirroredStrategy`, initializing training (after calling `fit`) takes an incredibly long time (over an hour), and often it stalls completely. See the attached logs - it stalls after the 4 `Init COMPLETE` messages are logged.
I'm unable to share the specific model and training code as it is proprietary. However, it's based around the Keras model `InceptionResNetV2`.
I'll try to work on putting together a shareable test-case, but in the meantime is there any way I can try and diagnose the issue myself?
### Standalone code to reproduce the issue
```shell
TBD
```
### Relevant log output
```shell
INFO:tensorflow:Mixed precision compatibility check (mixed_float16): OK
Your GPUs will likely run quickly with dtype policy mixed_float16 as they all have compute capability of at least 7.0
INFO:tensorflow:Mixed precision compatibility check (mixed_float16): OK
Your GPUs will likely run quickly with dtype policy mixed_float16 as they all have compute capability of at least 7.0
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3')
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3')
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
...
INFO:tensorflow:batch_all_reduce: 499 all-reduces with algorithm = nccl, num_packs = 1
INFO:tensorflow:batch_all_reduce: 499 all-reduces with algorithm = nccl, num_packs = 1
INFO:tensorflow:batch_all_reduce: 499 all-reduces with algorithm = nccl, num_packs = 1
INFO:tensorflow:batch_all_reduce: 499 all-reduces with algorithm = nccl, num_packs = 1
4e409fc75fa0:30:152 [3] NCCL INFO Bootstrap : Using eth0:172.17.0.2<0>
4e409fc75fa0:30:152 [3] NCCL INFO NET/Plugin: Failed to find ncclCollNetPlugin_v6 symbol.
4e409fc75fa0:30:152 [3] NCCL INFO NET/Plugin: Failed to find ncclCollNetPlugin symbol (v4 or v5).
4e409fc75fa0:30:152 [0] NCCL INFO cudaDriverVersion 11080
NCCL version 2.16.5+cuda11.8
4e409fc75fa0:30:536 [0] NCCL INFO NET/OFI Using aws-ofi-nccl 1.5.0aws
4e409fc75fa0:30:536 [0] NCCL INFO NET/OFI Setting FI_EFA_FORK_SAFE environment variable to 1
4e409fc75fa0:30:536 [0] nccl_net_ofi_init:1444 NCCL WARN NET/OFI Only EFA provider is supported
4e409fc75fa0:30:536 [0] nccl_net_ofi_init:1483 NCCL WARN NET/OFI aws-ofi-nccl initialization failed
4e409fc75fa0:30:536 [0] NCCL INFO NET/IB : No device found.
4e409fc75fa0:30:536 [0] NCCL INFO NET/Socket : Using [0]eth0:172.17.0.2<0>
4e409fc75fa0:30:536 [0] NCCL INFO Using network Socket
4e409fc75fa0:30:539 [3] NCCL INFO Using network Socket
4e409fc75fa0:30:537 [1] NCCL INFO Using network Socket
4e409fc75fa0:30:538 [2] NCCL INFO Using network Socket
4e409fc75fa0:30:538 [2] NCCL INFO Trees [0] 1/-1/-1->2->3 [1] 3/-1/-1->2->1 [2] 1/-1/-1->2->3 [3] 3/-1/-1->2->1 [4] 1/-1/-1->2->3 [5] 3/-1/-1->2->1 [6] 1/-1/-1->2->3 [7] 3/-1/-1->2->1
4e409fc75fa0:30:538 [2] NCCL INFO P2P Chunksize set to 524288
4e409fc75fa0:30:537 [1] NCCL INFO Trees [0] -1/-1/-1->1->2 [1] 2/-1/-1->1->-1 [2] -1/-1/-1->1->2 [3] 2/-1/-1->1->-1 [4] -1/-1/-1->1->2 [5] 2/-1/-1->1->-1 [6] -1/-1/-1->1->2 [7] 2/-1/-1->1->-1
4e409fc75fa0:30:537 [1] NCCL INFO P2P Chunksize set to 524288
4e409fc75fa0:30:536 [0] NCCL INFO Channel 00/08 : 0 1 2 3
4e409fc75fa0:30:536 [0] NCCL INFO Channel 01/08 : 0 3 2 1
4e409fc75fa0:30:536 [0] NCCL INFO Channel 02/08 : 0 3 1 2
4e409fc75fa0:30:536 [0] NCCL INFO Channel 03/08 : 0 2 1 3
4e409fc75fa0:30:536 [0] NCCL INFO Channel 04/08 : 0 1 2 3
4e409fc75fa0:30:536 [0] NCCL INFO Channel 05/08 : 0 3 2 1
4e409fc75fa0:30:536 [0] NCCL INFO Channel 06/08 : 0 3 1 2
4e409fc75fa0:30:539 [3] NCCL INFO Trees [0] 2/-1/-1->3->0 [1] 0/-1/-1->3->2 [2] 2/-1/-1->3->0 [3] 0/-1/-1->3->2 [4] 2/-1/-1->3->0 [5] 0/-1/-1->3->2 [6] 2/-1/-1->3->0 [7] 0/-1/-1->3->2
4e409fc75fa0:30:539 [3] NCCL INFO P2P Chunksize set to 524288
4e409fc75fa0:30:536 [0] NCCL INFO Channel 07/08 : 0 2 1 3
4e409fc75fa0:30:536 [0] NCCL INFO Trees [0] 3/-1/-1->0->-1 [1] -1/-1/-1->0->3 [2] 3/-1/-1->0->-1 [3] -1/-1/-1->0->3 [4] 3/-1/-1->0->-1 [5] -1/-1/-1->0->3 [6] 3/-1/-1->0->-1 [7] -1/-1/-1->0->3
4e409fc75fa0:30:536 [0] NCCL INFO P2P Chunksize set to 524288
4e409fc75fa0:30:539 [3] NCCL INFO Channel 00/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 00/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 03/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 02/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 00/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 04/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 04/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 00/0 : 0[1b0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 04/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 07/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 06/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 04/0 : 0[1b0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 02/0 : 2[1d0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 02/0 : 3[1e0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 03/0 : 1[1c0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 03/0 : 0[1b0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 06/0 : 2[1d0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 06/0 : 3[1e0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 07/0 : 1[1c0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 07/0 : 0[1b0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 01/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 01/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 03/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 02/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 01/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 01/0 : 1[1c0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 05/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 05/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 05/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 05/0 : 1[1c0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 07/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 06/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Connected all rings
4e409fc75fa0:30:537 [1] NCCL INFO Connected all rings
4e409fc75fa0:30:537 [1] NCCL INFO Channel 01/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Connected all rings
4e409fc75fa0:30:536 [0] NCCL INFO Connected all rings
4e409fc75fa0:30:537 [1] NCCL INFO Channel 03/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 05/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Channel 07/0 : 1[1c0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 01/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 02/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 03/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 01/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 05/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 02/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 06/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 05/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 07/0 : 2[1d0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 06/0 : 3[1e0] -> 0[1b0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 00/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 03/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 04/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:536 [0] NCCL INFO Channel 07/0 : 0[1b0] -> 3[1e0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 00/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 02/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 00/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 03/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 02/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 04/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 04/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 06/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:538 [2] NCCL INFO Channel 06/0 : 2[1d0] -> 1[1c0] via P2P/direct pointer
4e409fc75fa0:30:539 [3] NCCL INFO Channel 07/0 : 3[1e0] -> 2[1d0] via P2P/direct pointer
4e409fc75fa0:30:537 [1] NCCL INFO Connected all trees
4e409fc75fa0:30:537 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
4e409fc75fa0:30:537 [1] NCCL INFO 8 coll channels, 8 p2p channels, 2 p2p channels per peer
4e409fc75fa0:30:536 [0] NCCL INFO Connected all trees
4e409fc75fa0:30:538 [2] NCCL INFO Connected all trees
4e409fc75fa0:30:538 [2] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
4e409fc75fa0:30:538 [2] NCCL INFO 8 coll channels, 8 p2p channels, 2 p2p channels per peer
4e409fc75fa0:30:536 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
4e409fc75fa0:30:536 [0] NCCL INFO 8 coll channels, 8 p2p channels, 2 p2p channels per peer
4e409fc75fa0:30:539 [3] NCCL INFO Connected all trees
4e409fc75fa0:30:539 [3] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
4e409fc75fa0:30:539 [3] NCCL INFO 8 coll channels, 8 p2p channels, 2 p2p channels per peer
4e409fc75fa0:30:538 [2] NCCL INFO comm 0x7f7cd93df490 rank 2 nranks 4 cudaDev 2 busId 1d0 commId 0xb631c8061e2f5303 - Init COMPLETE
4e409fc75fa0:30:536 [0] NCCL INFO comm 0x7f7cf2520cf0 rank 0 nranks 4 cudaDev 0 busId 1b0 commId 0xb631c8061e2f5303 - Init COMPLETE
4e409fc75fa0:30:539 [3] NCCL INFO comm 0x7f7cd93e1f20 rank 3 nranks 4 cudaDev 3 busId 1e0 commId 0xb631c8061e2f5303 - Init COMPLETE
4e409fc75fa0:30:537 [1] NCCL INFO comm 0x7f7ce1c85c50 rank 1 nranks 4 cudaDev 1 busId 1c0 commId 0xb631c8061e2f5303 - Init COMPLETE
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60363/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60363/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60362 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60362/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60362/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60362/events | https://github.com/tensorflow/tensorflow/issues/60362 | 1,674,208,051 | I_kwDOArmXAs5jymMz | 60,362 | Tensorflow 2.12 bazel failed!Cuda11.2+cuDNN8.1+Tensorrt7.2 under Ubuntu2004 | {
"login": "Shuolongbj",
"id": 27951761,
"node_id": "MDQ6VXNlcjI3OTUxNzYx",
"avatar_url": "https://avatars.githubusercontent.com/u/27951761?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Shuolongbj",
"html_url": "https://github.com/Shuolongbj",
"followers_url": "https://api.github.com/users/Shuolongbj/followers",
"following_url": "https://api.github.com/users/Shuolongbj/following{/other_user}",
"gists_url": "https://api.github.com/users/Shuolongbj/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Shuolongbj/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Shuolongbj/subscriptions",
"organizations_url": "https://api.github.com/users/Shuolongbj/orgs",
"repos_url": "https://api.github.com/users/Shuolongbj/repos",
"events_url": "https://api.github.com/users/Shuolongbj/events{/privacy}",
"received_events_url": "https://api.github.com/users/Shuolongbj/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 1222092379,
"node_id": "MDU6TGFiZWwxMjIyMDkyMzc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:bazel",
"name": "subtype:bazel",
"color": "b619ea",
"default": false,
"description": "Bazel related Build_Installation issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@mihaimaruseac, same here. I am trying to build TensorFlow 2.12 in docker:\r\n\r\n```\r\nsudo docker run --gpus all -it -w /tensorflow -v /home/vishnya/tensorflow:/tensorflow -v $PWD:/mnt -e HOST_PERMS=\"\\\\((id -u):\\\\)(id -g)\" tensorflow/tensorflow:devel-gpu bash\r\nbazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package\r\n```",
"When building from master, please always give the commit, given TF moves fast forward.\r\n\r\nDoes it reproduce if you switch to a newer commit?",
"Sorry, I misread the link to the `.bazelrc` in master branch.\r\n\r\nCan you try a `bazel clean --expunge` and then build again?\r\n\r\nAdding @angerson and @MichaelHudgins for the Docker stuff too.",
"> When building from master, please always give the commit, given TF moves fast forward.\r\n> \r\n> Does it reproduce if you switch to a newer commit?\r\n\r\n@mihaimaruseac, TensorFlow fails to build from `r2.12` branch. I haven't tried master, because I try to locally rebuild 2.12 release.\r\n\r\n> Can you try a `bazel clean --expunge` and then build again?\r\n\r\nI'll try it.",
"> Can you try a `bazel clean --expunge` and then build again?\r\n\r\n@mihaimaruseac, it didn't help. The same error:\r\n\r\n```\r\nERROR: /tensorflow/tensorflow/compiler/xla/stream_executor/cuda/BUILD:519:11: Compiling tensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc -MD -MF bazel-out/k8-opt/bin/tensorflow/compiler/xla/stream_executor/cuda/_objs/cuda_graph/cuda_graph.pic.d ... (remaining 108 arguments skipped)\r\ntensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc: In function ‘tsl::StatusOr<stream_executor::gpu::OwnedCudaGraph> stream_executor::gpu::CaptureCudaGraph(stream_executor::Stream*, absl::lts_20220623::AnyInvocable<tsl::Status()>, cudaStreamCaptureMode)’:\r\ntensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc:135:21: error: ‘cudaGraphDebugDotFlagsVerbose’ was not declared in this scope\r\n 135 | int flags = cudaGraphDebugDotFlagsVerbose;\r\n | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\ntensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc:136:24: error: ‘cudaGraphDebugDotPrint’ was not declared in this scope\r\n 136 | if (auto err = cudaGraphDebugDotPrint(graph, file.c_str(), flags);\r\n | ^~~~~~~~~~~~~~~~~~~~~~\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\n```",
"Could it be because 2.12 uses cuDNN 8.6, Cuda 11.8?",
"> Could it be because 2.12 uses cuDNN 8.6, Cuda 11.8?\r\n\r\n```\r\nnvcc --version\r\nnvcc: NVIDIA (R) Cuda compiler driver\r\nCopyright (c) 2005-2021 NVIDIA Corporation\r\nBuilt on Sun_Feb_14_21:12:58_PST_2021\r\nCuda compilation tools, release 11.2, V11.2.152\r\nBuild cuda_11.2.r11.2/compiler.29618528_0\r\n```\r\n\r\nHmm, maybe I am using the wrong docker container. What's the right docker container with fresh cuda to build 2.12?",
"Tagging @angerson ",
"Now I am trying the following docker (at least it has correct CUDA version):\r\n\r\n```\r\nsudo docker run --rm --gpus all -it -w /tensorflow -v /home/vishnya/tensorflow:/tensorflow -v $PWD:/mnt -e HOST_PERMS=\"\\\\((id -u):\\\\)(id -g)\" tensorflow/build:2.12-python3.8 bash\r\nbazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package\r\n```",
"As for docker containers using the tensorflow/build ones would be the correct ones. See: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tf_sig_build_dockerfiles.\r\n\r\nI agree that it likely is the mismatch on the original issue as well. The root level .bazelrc should get an update in the next few days as clang is migrated. Until then https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/tf_sig_build_dockerfiles/devel.usertools/gpu_gcc.bazelrc has the bazelrc values being used in TF's CI. \r\n\r\n",
"Thanks Michael & Mihai. Those instructions Michael linked should work.\r\n\r\nI'll have to look into updating the https://www.tensorflow.org/install/source#docker_linux_builds docs. I guess they never got changed, as the SIG Build containers were not initially planned to be official.",
"I succeeded building TensorFlow 2.12 in `tensorflow/build:2.12-python3.8` docker.",
"Thank you all. @SweetVishnya @angerson @MichaelHudgins @mihaimaruseac \r\nThe relevant documents [build from source](https://www.tensorflow.org/install/source) have been updated to the latest version.well done!\r\n\r\n\r\nBTW:\r\nbazel.rc [TensorRT 7 for CUDA 11.1 is compatible with CUDA 11.2](https://github.com/tensorflow/tensorflow/blob/master/.bazelrc#L492)\r\nCUDA 11.2 must be [11.2 update 1](https://developer.nvidia.com/cuda-toolkit-archive),not 11.2 update 2, refer to here [tensorrt-723/support-matrix](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-723/support-matrix/index.html)\r\n\r\nnvrtc is deliver inside the CUDA toolkit, you can also install it separate, I find the links in:\r\n\r\nubuntu1804\r\nhttps://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-nvrtc-11-1_11.1.105-1_amd64.deb\r\nhttps://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-nvrtc-dev-11-1_11.1.105-1_amd64.deb\r\n\r\nubuntu2004\r\nhttps://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/cuda-nvrtc-11-1_11.1.105-1_amd64.deb\r\nhttps://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/cuda-nvrtc-dev-11-1_11.1.105-1_amd64.deb\r\n\r\nubuntu2204\r\nhttps://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2204/x86_64/cuda-nvrtc-11-1_11.1.105-1_amd64.deb https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2204/x86_64/cuda-nvrtc-dev-11-1_11.1.105-1_amd64.deb",
"In this case, we can close this?",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60362\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60362\">No</a>\n",
"And,I sucessed to build the latest 2.12 version with Cuda11.8+cuDNN8.6+Tensorrt**8.5.2.2**+JAX+Flax under Ubuntu2004 at last.\r\n\r\nyou will continue to meet new \"DataType kFP8\" error as shown in the following information if you use the tensorrt version between [8.5.3](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-853/api/c_api/namespacenvinfer1.html#a83aed11a1c160f30dcd13809678bdd29) and [8.6.0](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-860-ea/api/c_api/namespacenvinfer1.html#a83aed11a1c160f30dcd13809678bdd29) of TensorRT. (API Reference: [8.5.3](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-853/api/c_api/namespacenvinfer1.html#a83aed11a1c160f30dcd13809678bdd29), [8.6.0](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-860-ea/api/c_api/namespacenvinfer1.html#a83aed11a1c160f30dcd13809678bdd29))\r\n\r\nExecution platform: @local_execution_config_platform//:platform\r\ntensorflow/compiler/tf2tensorrt/convert/weights.cc: In member function ‘size_t tensorflow::tensorrt::convert::TRT_ShapedWeights::size_bytes() const’:\r\ntensorflow/compiler/tf2tensorrt/convert/weights.cc:61:10: error: enumeration value ‘kFP8’ not handled in switch [-Werror=switch]\r\n 61 | switch (type_) {\r\n | ^\r\ncc1plus: some warnings being treated as errors\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nINFO: Elapsed time: 1276.053s, Critical Path: 83.16s\r\nINFO: 8084 processes: 3883 internal, 4201 local.\r\nFAILED: Build did NOT complete successfully\r\n",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60362\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60362\">No</a>\n"
] | 2023-04-19T05:42:05 | 2023-04-23T00:57:20 | 2023-04-23T00:57:17 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf2.12
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu2004
### Mobile device
_No response_
### Python version
3.8
### Bazel version
5.3
### GCC/Compiler version
9.4
### CUDA/cuDNN version
CUDA11.2/cuDNN8.1
### GPU model and memory
_No response_
##Current Behaviour?
TensorRT Version: 7.2.3.4 CUDA Version: 11.2 CUDNN Version: 8.1.1.33-1 Operating System: Ubuntu-20.04
https://github.com/tensorflow/tensorflow/blob/master/.bazelrc
Bazel build latest 2.12 source code failed:
##Standalone code to reproduce the issue
```shell
# Configuration: 605fee2c8aa1b68d8dcb7abeac1c0e77048ffd56710c9ebb1fee2729853263d3
# Execution platform: @local_execution_config_platform//:platform
tensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc: In function ‘tsl::StatusOr<stream_executor::gpu::OwnedCudaGraph> stream_executor::gpu::CaptureCudaGraph(stream_executor::Stream*, absl::lts_20220623::AnyInvocable<tsl::Status()>, cudaStreamCaptureMode)’:
tensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc:135:21: **error**: ‘cudaGraphDebugDotFlagsVerbose’ was not declared in this scope
135 | int flags = cudaGraphDebugDotFlagsVerbose;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc:136:24: **error**: ‘cudaGraphDebugDotPrint’ was not declared in this scope
136 | if (auto err = cudaGraphDebugDotPrint(graph, file.c_str(), flags);
| ^~~~~~~~~~~~~~~~~~~~~~
Target //tensorflow/tools/pip_package:build_pip_package failed to build
INFO: Elapsed time: 11358.490s, Critical Path: 270.65s
INFO: 26270 processes: 9762 internal, 16508 local.
FAILED: Build did NOT complete successfully
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60362/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60362/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60361 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60361/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60361/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60361/events | https://github.com/tensorflow/tensorflow/issues/60361 | 1,674,088,788 | I_kwDOArmXAs5jyJFU | 60,361 | Need Add Perl to Supported API Languages | {
"login": "wbraswell",
"id": 1772630,
"node_id": "MDQ6VXNlcjE3NzI2MzA=",
"avatar_url": "https://avatars.githubusercontent.com/u/1772630?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wbraswell",
"html_url": "https://github.com/wbraswell",
"followers_url": "https://api.github.com/users/wbraswell/followers",
"following_url": "https://api.github.com/users/wbraswell/following{/other_user}",
"gists_url": "https://api.github.com/users/wbraswell/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wbraswell/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wbraswell/subscriptions",
"organizations_url": "https://api.github.com/users/wbraswell/orgs",
"repos_url": "https://api.github.com/users/wbraswell/repos",
"events_url": "https://api.github.com/users/wbraswell/events{/privacy}",
"received_events_url": "https://api.github.com/users/wbraswell/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 1097545817,
"node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis",
"name": "comp:apis",
"color": "0052cc",
"default": false,
"description": "Highlevel API related issues"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for opening the issue, I have created a bug internally to update the document under list of community contributions. ",
"@sachinprasadhs \r\nThank you for your help with this! I will continue following this ticket until we get it all updated and the links checked etc.",
"Tag @zmughal and @jjn1056 who worked on the Perl code with me",
"To get Perl added to the list of supported TensorFlow API languages on the TensorFlow website, you can submit a pull request to the TensorFlow website's GitHub repository. Here are the steps to follow:\r\n\r\nGo to the TensorFlow website's GitHub repository: https://github.com/tensorflow/tensorflow\r\n\r\nClick on the \"Fork\" button on the top-right corner to create a fork of the repository.\r\n\r\nClone the forked repository to your local machine using the following command: git clone https://github.com/<your_username>/tensorflow.git\r\n\r\nCreate a new branch for your changes using the following command: git checkout -b add-perl-api\r\n\r\nNavigate to the _data/api_docs/languages.yml file in the repository and open it in a text editor.\r\n\r\nAdd the following lines to the file:\r\n\r\narduino\r\nCopy code\r\n- title: \"Perl\"\r\n url: \"https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow\"\r\nSave the file and commit your changes using the following commands:\r\n\r\nsql\r\nCopy code\r\ngit add _data/api_docs/languages.yml\r\ngit commit -m \"Add Perl to supported API languages\"\r\nPush the changes to your forked repository using the following command: git push origin add-perl-api\r\n\r\nGo to the original TensorFlow website's GitHub repository and click on the \"New pull request\" button.\r\n\r\nSelect your forked repository and the add-perl-api branch.\r\n\r\nProvide a brief description of your changes and submit the pull request.\r\n\r\nOnce your pull request is reviewed and accepted by the TensorFlow team, Perl will be added to the list of supported TensorFlow API languages on the website.",
"Hi, The change has been made internally last week, It will be visible in the website soon. Thanks",
"This got hung up internally, but it looks like it might be moving again.",
"@wbraswell , Perl is now listed as community build package in our API document https://www.tensorflow.org/api_docs.\r\n\r\nThanks a lot for contributing to the TensorFlow community. \r\n\r\nCould you please spare some to close the issue as well. Thanks!",
"@sachinprasadhs \r\nYes the link looks good, thanks! :-)\r\nShould we be concerned that all the languages in the list are in alphabetical order, except for Perl?\r\n```\r\nC#\r\nHaskell\r\nJulia\r\nMATLAB\r\nR\r\nRuby\r\nRust\r\nScala\r\nPerl\r\n```",
"Missed that small detail, you can ignore it for now, will take handle that in future. Thanks!",
"Okay thanks @sachinprasadhs !\r\nPlease post a comment back here in this thread when you fix the alphabetical ordering.\r\nI am closing this issue for now! :-)"
] | 2023-04-19T02:51:07 | 2023-05-30T20:06:39 | 2023-05-30T20:06:39 | NONE | null | null | null | This page lists all the languages with support for the TensorFlow API:
https://www.tensorflow.org/api_docs
Thanks to an official grant from The Perl Foundation, we have recently released a Perl API:
https://github.com/EntropyOrg/perl-AI-TensorFlow-Libtensorflow
https://metacpan.org/dist/AI-TensorFlow-Libtensorflow
How do we go about getting Perl added to the list? | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60361/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60361/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60360 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60360/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60360/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60360/events | https://github.com/tensorflow/tensorflow/pull/60360 | 1,673,865,221 | PR_kwDOArmXAs5Onk9l | 60,360 | [oneDNN v3.x]: Added support for quantize, dequantize and few other int8 ops | {
"login": "bhavani-subramanian",
"id": 28113241,
"node_id": "MDQ6VXNlcjI4MTEzMjQx",
"avatar_url": "https://avatars.githubusercontent.com/u/28113241?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bhavani-subramanian",
"html_url": "https://github.com/bhavani-subramanian",
"followers_url": "https://api.github.com/users/bhavani-subramanian/followers",
"following_url": "https://api.github.com/users/bhavani-subramanian/following{/other_user}",
"gists_url": "https://api.github.com/users/bhavani-subramanian/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bhavani-subramanian/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhavani-subramanian/subscriptions",
"organizations_url": "https://api.github.com/users/bhavani-subramanian/orgs",
"repos_url": "https://api.github.com/users/bhavani-subramanian/repos",
"events_url": "https://api.github.com/users/bhavani-subramanian/events{/privacy}",
"received_events_url": "https://api.github.com/users/bhavani-subramanian/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@penpornk I have addressed your review comments. Please take a look."
] | 2023-04-18T21:39:07 | 2023-04-21T17:41:30 | 2023-04-21T17:41:30 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60360",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60360",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60360.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60360.patch",
"merged_at": "2023-04-21T17:41:30"
} | - This PR adds support for oneDNN v3.x in quantize, dequantize, quantized-concat, requantization-range-per-channel and requantize-per-channel ops.
- Support for primitive cache in quantize op will be added in a separate PR.
- This PR passes all unit tests related to the above ops when oneDNN v3.x is enabled.
- This PR does not add or affect Eigen ops and is specific only to oneDNN kernels.
- For additional comments related to oneDNN v3.x integration, please refer to [this](https://github.com/tensorflow/tensorflow/pull/60307#issue-1665423762) comment. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60360/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60360/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60359 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60359/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60359/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60359/events | https://github.com/tensorflow/tensorflow/pull/60359 | 1,673,779,360 | PR_kwDOArmXAs5OnSfn | 60,359 | [oneDNN v3.x]: Added support for softmax, layernorm, concat and element-wise ops for fp32 and bf16 | {
"login": "bhavani-subramanian",
"id": 28113241,
"node_id": "MDQ6VXNlcjI4MTEzMjQx",
"avatar_url": "https://avatars.githubusercontent.com/u/28113241?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bhavani-subramanian",
"html_url": "https://github.com/bhavani-subramanian",
"followers_url": "https://api.github.com/users/bhavani-subramanian/followers",
"following_url": "https://api.github.com/users/bhavani-subramanian/following{/other_user}",
"gists_url": "https://api.github.com/users/bhavani-subramanian/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bhavani-subramanian/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhavani-subramanian/subscriptions",
"organizations_url": "https://api.github.com/users/bhavani-subramanian/orgs",
"repos_url": "https://api.github.com/users/bhavani-subramanian/repos",
"events_url": "https://api.github.com/users/bhavani-subramanian/events{/privacy}",
"received_events_url": "https://api.github.com/users/bhavani-subramanian/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-18T20:21:08 | 2023-04-19T16:34:54 | 2023-04-19T16:34:54 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60359",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60359",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60359.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60359.patch",
"merged_at": "2023-04-19T16:34:54"
} | - This PR adds support for oneDNN v3.x in softmax, layernorm, concat and element-wise ops (fused-mish and _MklSwish) for fp32 and bf16.
- This PR passes all unit tests related to the above ops for fp32/bf16 when oneDNN v3.x is enabled.
- Support for int8 concat will be added in a separate PR.
- This PR does not add or affect Eigen ops and is specific only to oneDNN kernels.
- For additional comments related to oneDNN v3.x integration, please refer to [this](https://github.com/tensorflow/tensorflow/pull/60307#issue-1665423762) comment. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60359/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60359/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60358 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60358/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60358/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60358/events | https://github.com/tensorflow/tensorflow/issues/60358 | 1,673,707,244 | I_kwDOArmXAs5jwr7s | 60,358 | Training speed and GPU utilization 50% lower after upgrading from 2.9 to 2.12 | {
"login": "ShuaiShao93",
"id": 7556010,
"node_id": "MDQ6VXNlcjc1NTYwMTA=",
"avatar_url": "https://avatars.githubusercontent.com/u/7556010?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ShuaiShao93",
"html_url": "https://github.com/ShuaiShao93",
"followers_url": "https://api.github.com/users/ShuaiShao93/followers",
"following_url": "https://api.github.com/users/ShuaiShao93/following{/other_user}",
"gists_url": "https://api.github.com/users/ShuaiShao93/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ShuaiShao93/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ShuaiShao93/subscriptions",
"organizations_url": "https://api.github.com/users/ShuaiShao93/orgs",
"repos_url": "https://api.github.com/users/ShuaiShao93/repos",
"events_url": "https://api.github.com/users/ShuaiShao93/events{/privacy}",
"received_events_url": "https://api.github.com/users/ShuaiShao93/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 1097547538,
"node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu",
"name": "comp:gpu",
"color": "0052cc",
"default": false,
"description": "GPU related issues"
},
{
"id": 1463677878,
"node_id": "MDU6TGFiZWwxNDYzNjc3ODc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance",
"name": "type:performance",
"color": "159b2e",
"default": false,
"description": "Performance Issue"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "poulsbo",
"id": 1046529,
"node_id": "MDQ6VXNlcjEwNDY1Mjk=",
"avatar_url": "https://avatars.githubusercontent.com/u/1046529?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/poulsbo",
"html_url": "https://github.com/poulsbo",
"followers_url": "https://api.github.com/users/poulsbo/followers",
"following_url": "https://api.github.com/users/poulsbo/following{/other_user}",
"gists_url": "https://api.github.com/users/poulsbo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/poulsbo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/poulsbo/subscriptions",
"organizations_url": "https://api.github.com/users/poulsbo/orgs",
"repos_url": "https://api.github.com/users/poulsbo/repos",
"events_url": "https://api.github.com/users/poulsbo/events{/privacy}",
"received_events_url": "https://api.github.com/users/poulsbo/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "poulsbo",
"id": 1046529,
"node_id": "MDQ6VXNlcjEwNDY1Mjk=",
"avatar_url": "https://avatars.githubusercontent.com/u/1046529?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/poulsbo",
"html_url": "https://github.com/poulsbo",
"followers_url": "https://api.github.com/users/poulsbo/followers",
"following_url": "https://api.github.com/users/poulsbo/following{/other_user}",
"gists_url": "https://api.github.com/users/poulsbo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/poulsbo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/poulsbo/subscriptions",
"organizations_url": "https://api.github.com/users/poulsbo/orgs",
"repos_url": "https://api.github.com/users/poulsbo/repos",
"events_url": "https://api.github.com/users/poulsbo/events{/privacy}",
"received_events_url": "https://api.github.com/users/poulsbo/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@ShuaiShao93 \r\nCould you please provide complete code or colab gist to replicate the issue reported here ?\r\n\r\nThank You!",
"Check if the code changes are causing the issue: If you have made changes to your custom code while upgrading TensorFlow, it might be causing the issue. Try to isolate the TensorFlow upgrade by running the old code with the new TensorFlow version and check if the issue persists.\r\n\r\nCheck TensorFlow configurations: Verify that you have the correct TensorFlow configurations for your system. Make sure that you have installed the correct CUDA and cuDNN versions that are compatible with TensorFlow 2.12. Also, ensure that the TensorFlow version you are using is built with the right configurations.\r\n\r\nCheck multi-worker setup: Ensure that the multi-worker setup is properly configured. Make sure that the communication between the workers is working correctly and that the resources are distributed evenly.\r\n\r\nCheck for bottlenecks: Check if there are any bottlenecks in the code. Use profiling tools to identify any slow operations or data transfer between the workers that might be causing the issue.\r\n\r\nUpgrade to the latest version: Try upgrading to the latest version of TensorFlow, as newer versions might have addressed the issue.\r\n\r\nIn summary, the issue might be related to the custom code changes, TensorFlow configurations, multi-worker setup, bottlenecks, or outdated TensorFlow version. You can try the suggestions above to debug the issue.",
"Sorry, the description was wrong. This is also reproducible on single worker.\r\n\r\nThe only change on the code is replacing tf.keras.optimizers with tf.keras.optimizers.legacy.\r\n\r\nBy profiling it, I found there is a huge gap on GPU between the steps, and below is what it does on host in the gap. Basically it's `EagerLocalExecute:WriteSummary`?\r\n<img width=\"526\" alt=\"gap\" src=\"https://user-images.githubusercontent.com/7556010/233800388-89e919db-b9b8-452c-a6d8-153bf2ba1a0d.png\">\r\n\r\nI added more logging in WriteSummaryOp, and it showed that it took 900ms to write a single float scalar.\r\n```\r\nstep 6\r\ntag batch_loss\r\nduration 882ms\r\ntensor Tensor<type: float shape: [] values: 0.0100328028>\r\n```\r\n\r\nBy raising max_queue in `tf.summary.create_file_writer`, the training speed is fixed, but I think this is still probably a bug that `SummaryFileWriter::InternalFlush` is too slow.",
"Hi @ShuaiShao93 ,\r\n\r\nThanks for reporting this. By looking at template I am assuming you have used Build from Source package and bazel version mentioned is 0.27.1. Please confirm whether the info is correct. If correct right now tested bazel version is 5.3.0 for Tf 2.12 versions. You can find tested configurations [here](https://www.tensorflow.org/install/source#gpu).\r\n\r\nPlease find and do necessary upgrades applicable and test the code and please confirm the results. Also please submit minimal code snippet to replicate the issue. Thanks!",
"I just verified this is even reproducible on pip installed TensorFlow, so I believe it has nothing to do with the bazel version.",
"@ShuaiShao93 ,\r\n\r\nCould you please share the reproducible code for this behaviour. Also is the issue is only reproducible with legacy optimizers? Please confirm.",
"> @ShuaiShao93 ,\r\n> \r\n> Could you please share the reproducible code for this behaviour. Also is the issue is only reproducible with legacy optimizers? Please confirm.\r\n\r\nI'm happy to make a repro on colab, but for some reason [this profiler](https://colab.research.google.com/github/tensorflow/tensorboard/blob/master/docs/tensorboard_profiling_keras.ipynb) demo on github doesn't work. \r\n<img width=\"1356\" alt=\"image\" src=\"https://user-images.githubusercontent.com/7556010/234989348-907ce95f-c720-4967-a555-2aa0740a9b17.png\">\r\n\r\nIf you can help fix it, I'm happy to provide a repro with it.",
"> I added more logging in WriteSummaryOp, and it showed that it took 900ms to write a single float scalar.\r\n\r\n> By raising max_queue in `tf.summary.create_file_writer`, the training speed is fixed, but I think this is still probably a bug that `SummaryFileWriter::InternalFlush` is too slow.\r\n\r\nIt looks like this is the culprit, and so I doubt this is GPU related specically. @poulsbo, do you know if there have been any changes to the TF summary ops that would cause such a big regression?"
] | 2023-04-18T19:23:53 | 2023-05-25T22:55:23 | null | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Performance
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.8
### Bazel version
0.27.1
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.8/8.6
### GPU model and memory
A100
### Current Behaviour?
After upgrading TF from 2.9 to 2.12, when training our point segmentation model, the GPU utilization dropped from 70% to 30%, and the training speed is 50% slower. Is there any suggestion why this may happen? And what's the best way to debug it?
### Standalone code to reproduce the issue
```shell
N/A
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60358/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60358/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60357 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60357/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60357/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60357/events | https://github.com/tensorflow/tensorflow/pull/60357 | 1,673,700,849 | PR_kwDOArmXAs5OnBeY | 60,357 | [oneDNN v3.x]: Added support for pooling for fp32 and bf16 | {
"login": "bhavani-subramanian",
"id": 28113241,
"node_id": "MDQ6VXNlcjI4MTEzMjQx",
"avatar_url": "https://avatars.githubusercontent.com/u/28113241?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bhavani-subramanian",
"html_url": "https://github.com/bhavani-subramanian",
"followers_url": "https://api.github.com/users/bhavani-subramanian/followers",
"following_url": "https://api.github.com/users/bhavani-subramanian/following{/other_user}",
"gists_url": "https://api.github.com/users/bhavani-subramanian/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bhavani-subramanian/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhavani-subramanian/subscriptions",
"organizations_url": "https://api.github.com/users/bhavani-subramanian/orgs",
"repos_url": "https://api.github.com/users/bhavani-subramanian/repos",
"events_url": "https://api.github.com/users/bhavani-subramanian/events{/privacy}",
"received_events_url": "https://api.github.com/users/bhavani-subramanian/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
}
] | closed | false | {
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @penpornk Can you please review this PR ? Thank you!",
"> Thank you for the PR! The overall changes look good to me.\r\n> \r\n> Could you please replace `errors::*` calls with their `absl::*` counterparts, e.g., `errors::InvalidArgument` -> `absl::InvalidArgumentError`, `errors::Aborted` -> `absl::AbortedError`, etc?\r\n> \r\n> Example usage:\r\n> \r\n> https://github.com/tensorflow/tensorflow/blob/32b1e9793d696f716dafaf8bd3760e6098fdb21e/tensorflow/core/kernels/concat_op.cc#L265-L267\r\n> \r\n> Please do this for all files in the PR.\r\n\r\n@penpornk Thanks for reviewing this PR. I have addressed your review comments. Please take a look.",
"@penpornk Thanks for approving this PR. Please let me know if you need anything else from my end. ",
"@bhavani-subramanian Could you please help fix [Windows Bazel failures](https://source.cloud.google.com/results/invocations/1aec6d0f-057d-40a8-a3b1-339c5e9f056a/log)? Thank you!\r\n\r\n```\r\ntensorflow/core/kernels/mkl/mkl_pooling_ops_common.cc(37): error C2059: syntax error: '#'\r\ntensorflow/core/kernels/mkl/mkl_pooling_ops_common.cc(36): note: while compiling class template member function 'void tensorflow::MklPoolingFwdPrimitive<float>::Setup(const tensorflow::MklPoolingParams &)'\r\n.\\tensorflow/core/kernels/mkl/mkl_pooling_ops_common.h(98): note: see reference to function template instantiation 'void tensorflow::MklPoolingFwdPrimitive<float>::Setup(const tensorflow::MklPoolingParams &)' being compiled\r\ntensorflow/core/kernels/mkl/mkl_pooling_ops_common.cc(140): note: see reference to class template instantiation 'tensorflow::MklPoolingFwdPrimitive<float>' being compiled\r\ntensorflow/core/kernels/mkl/mkl_pooling_ops_common.cc(150): error C2059: syntax error: '#'\r\ntensorflow/core/kernels/mkl/mkl_pooling_ops_common.cc(149): note: while compiling class template member function 'void tensorflow::MklPoolingBwdPrimitive<float>::Setup(const tensorflow::MklPoolingParams &)'\r\n.\\tensorflow/core/kernels/mkl/mkl_pooling_ops_common.h(247): note: see reference to function template instantiation 'void tensorflow::MklPoolingBwdPrimitive<float>::Setup(const tensorflow::MklPoolingParams &)' being compiled\r\ntensorflow/core/kernels/mkl/mkl_pooling_ops_common.cc(255): note: see reference to class template instantiation 'tensorflow::MklPoolingBwdPrimitive<float>' being compiled\r\n[16,756 / 18,834] Compiling tensorflow/core/common_runtime/mkl_layout_pass.cc; 11s local, remote-cache ... (3 actions, 2 running)\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\n```",
"Could you please help resolve merge conflicts?",
"@penpornk I have resolved the merge conflicts. Can you please take a look? Thanks.",
"@penpornk Seems like `feedback/copybara` checks have failed and I'm unable to access the link. Can you please let me know which tests have failed? Thanks."
] | 2023-04-18T19:18:00 | 2023-06-28T17:00:09 | 2023-06-28T17:00:09 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60357",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60357",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60357.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60357.patch",
"merged_at": "2023-06-28T17:00:08"
} | - This PR adds support for oneDNN v3.x in maxpooling and avgpooling fwd and bwd (with primitive cache) for fp32 and bf16.
- Support for int8 pooling will be added in a separate PR.
- This PR passes all unit tests related to pooling ops for fp32/bf16 when oneDNN v3.x is enabled.
- This PR does not add or affect Eigen ops and are specific only to oneDNN kernels.
- For additional comments related to oneDNN v3.x integration, please refer to [this](https://github.com/tensorflow/tensorflow/pull/60307#issue-1665423762) comment. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60357/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60357/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60356 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60356/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60356/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60356/events | https://github.com/tensorflow/tensorflow/pull/60356 | 1,673,689,558 | PR_kwDOArmXAs5Om_Fd | 60,356 | Big-endian saved_model byte swapping improvements | {
"login": "jonathan-albrecht-ibm",
"id": 74002225,
"node_id": "MDQ6VXNlcjc0MDAyMjI1",
"avatar_url": "https://avatars.githubusercontent.com/u/74002225?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jonathan-albrecht-ibm",
"html_url": "https://github.com/jonathan-albrecht-ibm",
"followers_url": "https://api.github.com/users/jonathan-albrecht-ibm/followers",
"following_url": "https://api.github.com/users/jonathan-albrecht-ibm/following{/other_user}",
"gists_url": "https://api.github.com/users/jonathan-albrecht-ibm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jonathan-albrecht-ibm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jonathan-albrecht-ibm/subscriptions",
"organizations_url": "https://api.github.com/users/jonathan-albrecht-ibm/orgs",
"repos_url": "https://api.github.com/users/jonathan-albrecht-ibm/repos",
"events_url": "https://api.github.com/users/jonathan-albrecht-ibm/events{/privacy}",
"received_events_url": "https://api.github.com/users/jonathan-albrecht-ibm/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | open | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Just a quick note that the amended commit was just to fix code formatting. No further changes are pending and this PR is ready for review.",
"Spoke too soon :(. Had to rebase to see pylint errors already on master. Ran pylint locally to check before pushing the latest changes so hopefully good this time.",
"I think the currently failing ARM test might be due to another change mentioned here: https://github.com/tensorflow/tensorflow/pull/60388",
"Hi @ChromeHearts Can you please review this PR ? Thank you!",
"@ChromeHearts, gentle ping. Could you review this PR when you have time?",
"Hi @ChromeHearts Can you please review this PR ? Thank you!",
"> Hi @ChromeHearts Can you please review this PR ? Thank you!\r\n\r\nYes, I am on it.",
"@jonathan-albrecht-ibm Sorry taking this long. The codes LGTM. I have been looking for a big endianness environment to test your PR internally. We actually no longer have such an environment readily assessable. Could you sync your PR with the latest release and then test in your Big endian environment? This should also clear the AMD build failure. Thanks!",
"TFTR @ChromeHearts! I'm rebasing the PR now. I'm running into some unrelated issues with the bazel build that I have to work through on my big-endian machine so it will take a bit of time before I can submit it but hopefully not too long.\r\n\r\n> @jonathan-albrecht-ibm Sorry taking this long. The codes LGTM. I have been looking for a big endianness environment to test your PR internally. We actually no longer have such an environment readily assessable. Could you sync your PR with the latest release and then test in your Big endian environment? This should also clear the AMD build failure. Thanks!\r\n\r\n",
"Hi @jonathan-albrecht-ibm Any update on this PR? Please. Thank you!",
"@gbaned I should have an update soon. The build issues took longer than expected.",
"@gbaned, @ChromeHearts I have pushed the rebased changes.\r\n\r\nThe rocm build failed with:\r\n\r\n```\r\n++ bazel build --config=rocm //tensorflow/tools/pip_package:build_pip_package --verbose_failures\r\n\r\nERROR: Config value 'rocm' is not defined in any .rc file\r\n```\r\n\r\nso I think its not related.",
"Hi @jpienaar, gentle ping, please review when you have time",
"I've not been on the team for about 2 years now, let me see who I can ping to review here.",
"Looks like @ChromeHearts is probably the best person to review and help land here.",
"Thanks @jpienaar . @gbaned did you want another review in addition to @ChromeHearts review which had already approved it?",
"> Thanks @jpienaar . @gbaned did you want another review in addition to @ChromeHearts review which had already approved it?\r\n\r\nHi @jonathan-albrecht-ibm Sorry for the delay in response. I can't find @ChromeHearts in https://opensource.corp.google.com/github/search?q=ChromeHearts, hence I have assigned @jpienaar. \r\n",
"Hi @dellis23 Can you please review this PR ? Thank you!",
"Hi @dellis23 Can you please review this PR ? Thank you!",
"Hi @dellis23 Can you please review this PR ? Thank you!",
"Hi @dellis23 Can you please review this PR ? Thank you!",
"Thanks @jpienaar!",
"Hi @jonathan-albrecht-ibm Can you please rebase your branch and resolve the conflicts. Thank you. ",
"@gbaned, yes, no problem. I've rebased the PR.",
"I pushed a commit to fix the `pylint line-too-long` lint that was failing.",
"Hi @jonathan-albrecht-ibm Can you please rebase your branch and resolve the conflicts? Thank you!",
"@gbaned I have rebased the PR. The only conflicts were in `tensorflow/core/util/tensor_bundle/byte_swap_tensor.cc` due to the mass rename of `OkStatus()` to `absl::OkStatus()`. There were no other upstream changes in that file. All other files rebased with no conflicts. I did not make any changes to my code or the upstream code except for the trivial rename of `OkStatus()` to `absl::OkStatus()`.\r\n\r\n@gbaned this is the third time I have had to rebase this PR due to conflicts with upstream changes. Please do not send it to the back of the merge queue. Each time I have completed the rebase within a few days. The only thing that is keeping this PR from being merged is that it spends so long in the merge queue that its almost inevitable that it picks up conflicts. Anything you can do to help get this PR out of that cycle would be greatly appreciated.",
"Hi @ChromeHearts Can you please review this PR ? Thank you!",
"TFTR @ChromeHearts!\r\n\r\n@gbaned this PR has been approved but there is still an \"awaiting review\" label. Does that label need to be removed?\r\n\r\nThe `PyLint / PyLint (pull_request)` and `Presubmit - Code Check (Changed Files)` checks are failing due to a `line to long` lint in `tensorflow/lite/python/lite.py` that is not due my PR. It was from a previous unrelated commit ([3e72ed6005cb26bbadbd8ee0e95b570d2dd52bfa](https://github.com/tensorflow/tensorflow/commit/3e72ed6005cb26bbadbd8ee0e95b570d2dd52bfa)) by someone else that happens to be in the same file that is part of my PR. I am not planning on fixing it since it is unrelated to my PR but please let me know if it is blocking my PR from being merged.",
"> TFTR @ChromeHearts!\r\n> \r\n> @gbaned this PR has been approved but there is still an \"awaiting review\" label. Does that label need to be removed?\r\n> \r\n> The `PyLint / PyLint (pull_request)` and `Presubmit - Code Check (Changed Files)` checks are failing due to a `line to long` lint in `tensorflow/lite/python/lite.py` that is not due my PR. It was from a previous unrelated commit ([3e72ed6005cb26bbadbd8ee0e95b570d2dd52bfa](https://github.com/tensorflow/tensorflow/commit/3e72ed6005cb26bbadbd8ee0e95b570d2dd52bfa)) by someone else that happens to be in the same file that is part of my PR. I am not planning on fixing it since it is unrelated to my PR but please let me know if it is blocking my PR from being merged.\r\n\r\nHi @jonathan-albrecht-ibm Sorry for the delay in response. I have removed the awaiting review label and nothing pending from your side. It is awaiting approval from code owners internally, it will be merged once approved. Thank you for your contribution!\r\n"
] | 2023-04-18T19:08:23 | 2024-06-05T08:24:45 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60356",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60356",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60356.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60356.patch",
"merged_at": null
} | Make byte swapping more consistent by always searching for nodes in both function libraries and at the top level.
Undo byte swapping after saving when it is possible that the saved_model in memory could still be used afterward.
Add byte swapping in loader_impl.py close to where loading from file happens and remove byte swapping that is no longer needed.
Add byte swapping when saving saved models in builder_impl.py. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60356/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60356/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60355 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60355/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60355/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60355/events | https://github.com/tensorflow/tensorflow/pull/60355 | 1,673,478,393 | PR_kwDOArmXAs5OmRfK | 60,355 | Divert calls to MklMatMulOp into BatchMatMulMkl for aarch64 | {
"login": "fadara01",
"id": 115173828,
"node_id": "U_kgDOBt1pxA",
"avatar_url": "https://avatars.githubusercontent.com/u/115173828?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/fadara01",
"html_url": "https://github.com/fadara01",
"followers_url": "https://api.github.com/users/fadara01/followers",
"following_url": "https://api.github.com/users/fadara01/following{/other_user}",
"gists_url": "https://api.github.com/users/fadara01/gists{/gist_id}",
"starred_url": "https://api.github.com/users/fadara01/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/fadara01/subscriptions",
"organizations_url": "https://api.github.com/users/fadara01/orgs",
"repos_url": "https://api.github.com/users/fadara01/repos",
"events_url": "https://api.github.com/users/fadara01/events{/privacy}",
"received_events_url": "https://api.github.com/users/fadara01/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"This commit seems to have introduced 4 unit test failures on ARM_CI.\r\nhttps://github.com/tensorflow/tensorflow/actions/runs/4743110078",
"Hi @elfringham - These are from `test_invalid_shape` in `tensorflow/python/kernel_tests/math_ops/tensordot_op_test.py` due to inconsistent error messages thrown by `MklMatMul` and `MklBatchMatMul`. The test started failing because this PR re-wires the matmuls - uses `MklBatchMatMul` instead of `MklMatMul`\r\n\r\nThe 2 error messages mean the same thing, but the one thrown by `MklBatchMatmul` is different from the one expected by the test (the one thrown by `MklMatMul`).\r\nThis is the one currently being thrown:\r\n`lhs mismatch rhs shape: 2 vs. 3: [2,2] [3,2]`\r\nThis is the expected one:\r\n`\"Matrix size-incompatible: In\\[0\\]: \\[2,2\\], In\\[1\\]: \\[3,2\\]\")`\r\n\r\nI'll put a PR very soon to standardize the error message between the 2 matmuls.\r\n\r\nSorry for any inconveniences \r\n\r\n"
] | 2023-04-18T16:32:56 | 2023-04-20T09:26:25 | 2023-04-19T12:10:24 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60355",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60355",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60355.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60355.patch",
"merged_at": "2023-04-19T12:10:24"
} | We observed that for most transformer models, the MklLMatMulOp node in tensorflow gets called. This operation requires an SGEMM BLAS interface which is not supported by the Arm Compute Library (ACL). Hence, when running with TF_ENABLE_ONEDNN_OPTS=1, the sub-optimal gemm_api kernels are used in oneDNN (instead of the ACL ones).
Here, we divert calls to MklMatMulOp into BatchMatMulMkl for aarch64 which allows the ACL kernels to be used when running with TF_ENABLE_ONEDNN_OPTS=1 (rather than the gemm_api ones).
This shows the speedups gained with this RP for a range of transformer models using 8 intra threads and a sequence length of 128:

And this is with 16 threads and also 128 for sequence length:

| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60355/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60355/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60353 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60353/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60353/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60353/events | https://github.com/tensorflow/tensorflow/pull/60353 | 1,673,197,343 | PR_kwDOArmXAs5OlVTc | 60,353 | Make oneDNN ACL default on Neoverse V1 cores | {
"login": "cfRod",
"id": 65665931,
"node_id": "MDQ6VXNlcjY1NjY1OTMx",
"avatar_url": "https://avatars.githubusercontent.com/u/65665931?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cfRod",
"html_url": "https://github.com/cfRod",
"followers_url": "https://api.github.com/users/cfRod/followers",
"following_url": "https://api.github.com/users/cfRod/following{/other_user}",
"gists_url": "https://api.github.com/users/cfRod/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cfRod/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cfRod/subscriptions",
"organizations_url": "https://api.github.com/users/cfRod/orgs",
"repos_url": "https://api.github.com/users/cfRod/repos",
"events_url": "https://api.github.com/users/cfRod/events{/privacy}",
"received_events_url": "https://api.github.com/users/cfRod/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@nSircombe @milpuz01 @penpornk ",
"Marked as draft until we have performance numbers to justify the change",
"@cfRod This PR is in draft, any update on this? Please. Thank you!",
"Hi @gbaned I have updated this PR 2 weeks ago.."
] | 2023-04-18T13:58:44 | 2023-07-28T11:59:52 | 2023-07-28T11:59:52 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60353",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60353",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60353.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60353.patch",
"merged_at": "2023-07-28T11:59:52"
} | This PR makes oneDNN+ACL default for Arm Neoverse V1 cores | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60353/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60353/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60352 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60352/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60352/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60352/events | https://github.com/tensorflow/tensorflow/pull/60352 | 1,673,163,953 | PR_kwDOArmXAs5OlOB_ | 60,352 | Added Arm NN Settings for Arm NN delegate | {
"login": "SaoirseARM",
"id": 44364573,
"node_id": "MDQ6VXNlcjQ0MzY0NTcz",
"avatar_url": "https://avatars.githubusercontent.com/u/44364573?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SaoirseARM",
"html_url": "https://github.com/SaoirseARM",
"followers_url": "https://api.github.com/users/SaoirseARM/followers",
"following_url": "https://api.github.com/users/SaoirseARM/following{/other_user}",
"gists_url": "https://api.github.com/users/SaoirseARM/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SaoirseARM/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SaoirseARM/subscriptions",
"organizations_url": "https://api.github.com/users/SaoirseARM/orgs",
"repos_url": "https://api.github.com/users/SaoirseARM/repos",
"events_url": "https://api.github.com/users/SaoirseARM/events{/privacy}",
"received_events_url": "https://api.github.com/users/SaoirseARM/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hello @alankelly, We would highly appreciate your review. Thank you very much.",
"@sirakiin Can you PTAL at this, I am unfamiliar with the delegate interface. Thanks!",
"Would this be possible to be merged? Thank you very much."
] | 2023-04-18T13:42:10 | 2023-06-09T09:54:15 | 2023-06-09T09:54:14 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60352",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60352",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60352.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60352.patch",
"merged_at": "2023-06-09T09:54:14"
} | Added Arm NN settings to configuration.proto and related files for Arm NN delegate
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60352/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60352/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60351 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60351/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60351/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60351/events | https://github.com/tensorflow/tensorflow/issues/60351 | 1,673,143,288 | I_kwDOArmXAs5juiP4 | 60,351 | //tensorflow/python/client:session_partial_run_test is flaky | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @elfringham ,\r\n\r\nThanks for reporting. I would like to know whether this is docker specific? can we replicate it with linux environment? If so please provide command(s) that replicates the reported behaviour. Thanks!\r\n",
"@SuryanarayanaY Sorry but the behaviour is too intermittent to draw any conclusion about whether it is docker specific or not. Current results show two failures together then 12 passing jobs."
] | 2023-04-18T13:30:50 | 2023-05-09T21:36:46 | null | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
git HEAD
### Custom Code
No
### OS Platform and Distribution
Ubuntu 20.04
### Mobile device
n/a
### Python version
3.9.16
### Bazel version
5.3.0
### GCC/Compiler version
10.2.1
### CUDA/cuDNN version
n/a
### GPU model and memory
n/a
### Current Behaviour?
Unit test reports as FLAKY or FAILED.
See https://source.cloud.google.com/results/invocations/dea422ff-7e14-4fc1-b324-0129ecd7ffbc/log or https://github.com/tensorflow/tensorflow/actions/runs/4731924097/jobs/8397430880#step:5:23224
### Standalone code to reproduce the issue
```shell
docker exec tf bazel --bazelrc=/usertools/cpu.bazelrc test --config=rbe --config=pycpp --config=build_event_export
```
### Relevant log output
```shell
======================================================================
ERROR: testPartialRunMissingPlaceholderFeedExceptionDist (__main__.PartialRunTest)
PartialRunTest.testPartialRunMissingPlaceholderFeedExceptionDist
----------------------------------------------------------------------
Traceback (most recent call last):
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session.py", line 1379, in _do_call
return fn(*args)
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session.py", line 1369, in _prun_fn
return self._call_tf_sessionprun(handle, feed_dict, fetch_list)
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session.py", line 1460, in _call_tf_sessionprun
return tf_session.TF_SessionPRun_wrapper(self._session, handle, feed_dict,
tensorflow.python.framework.errors_impl.InternalError: From /job:localhost/replica:0/task:0:
ValidateDevices called before initialization.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/framework/test_util.py", line 1629, in decorated
return f(self, *args, **kwargs)
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session_partial_run_test.py", line 269, in testPartialRunMissingPlaceholderFeedExceptionDist
self.RunTestPartialRunMissingPlaceholderFeedException(
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session_partial_run_test.py", line 119, in RunTestPartialRunMissingPlaceholderFeedException
sess.partial_run(handle, fetches[0])
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session.py", line 1026, in partial_run
return self._run(handle, fetches, feed_dict, None, None)
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session.py", line 1192, in _run
results = self._do_run(handle, final_targets, final_fetches,
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session.py", line 1375, in _do_run
return self._do_call(_prun_fn, handle, feeds, fetches)
File "/b/f/w/bazel-out/k8-opt/bin/tensorflow/python/client/session_partial_run_test.runfiles/org_tensorflow/tensorflow/python/client/session.py", line 1398, in _do_call
raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.InternalError: Graph execution error:
From /job:localhost/replica:0/task:0:
ValidateDevices called before initialization.
----------------------------------------------------------------------
Ran 25 tests in 2.625s
FAILED (errors=1, skipped=1)
================================================================================
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60351/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60351/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60350 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60350/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60350/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60350/events | https://github.com/tensorflow/tensorflow/issues/60350 | 1,673,030,084 | I_kwDOArmXAs5juGnE | 60,350 | Use optimized Convolution2DTransposeBias Layer in tflite | {
"login": "kevinpl07",
"id": 18429675,
"node_id": "MDQ6VXNlcjE4NDI5Njc1",
"avatar_url": "https://avatars.githubusercontent.com/u/18429675?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kevinpl07",
"html_url": "https://github.com/kevinpl07",
"followers_url": "https://api.github.com/users/kevinpl07/followers",
"following_url": "https://api.github.com/users/kevinpl07/following{/other_user}",
"gists_url": "https://api.github.com/users/kevinpl07/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kevinpl07/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kevinpl07/subscriptions",
"organizations_url": "https://api.github.com/users/kevinpl07/orgs",
"repos_url": "https://api.github.com/users/kevinpl07/repos",
"events_url": "https://api.github.com/users/kevinpl07/events{/privacy}",
"received_events_url": "https://api.github.com/users/kevinpl07/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"To add more context: \r\n\r\nIn the Netron visualizer, this is what I want it to look like:\r\n\r\n\r\nbut when executing the code from above this is what i get:\r\n\r\n\r\n",
"Hi @kevinpl07 \r\n\r\nI see that `TransposeConv` is a builtin op in the TFLite. Hence while while converting the `Conv2DTranspose` , it maps to the builtin operator which is present.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/5a035e7a4ae4067d3b8c40fed6fbaef9b73a5504/tensorflow/lite/builtin_ops.h#L97\r\n\r\nIncase the builtin op is not available, we can choose TF Select Ops or use [custom operators](https://www.tensorflow.org/lite/guide/ops_custom) for the tflite to use.\r\n\r\nThanks.",
"> Hi @kevinpl07\r\n> \r\n> I see that `TransposeConv` is a builtin op in the TFLite. Hence while while converting the `Conv2DTranspose` , it maps to the builtin operator which is present.\r\n> \r\n> https://github.com/tensorflow/tensorflow/blob/5a035e7a4ae4067d3b8c40fed6fbaef9b73a5504/tensorflow/lite/builtin_ops.h#L97\r\n> \r\n> Incase the builtin op is not available, we can choose TF Select Ops or use [custom operators](https://www.tensorflow.org/lite/guide/ops_custom) for the tflite to use.\r\n> \r\n> Thanks.\r\n\r\nI know that there is a builting op but it is not optmized for my usecase. Is there a way to make the tflite converter assign [this kernel](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.cc) to the operation?\r\n",
"@kevinpl07 \r\n \r\nThanks for the clarification. The models are built with GPU use case as priority as [this](https://github.com/google/mediapipe/issues/245#issuecomment-555227438) comment suggests and the [transpose conv](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.cc) kernel is used when the model is run on GPU delegate AFAIK.\r\n\r\nThe [custom operators](https://www.tensorflow.org/lite/guide/ops_custom) is a way to allow conversion of an unsupported TensorFlow operator in TensorFlow Lite. Will that help?\r\n\r\nThanks.\r\n\r\n\r\n",
"> @kevinpl07\r\n> \r\n> Thanks for the clarification. The models are built with GPU use case as priority as [this](https://github.com/google/mediapipe/issues/245#issuecomment-555227438) comment suggests and the [transpose conv](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.cc) kernel is used when the model is run on GPU delegate AFAIK.\r\n> \r\n> The [custom operators](https://www.tensorflow.org/lite/guide/ops_custom) is a way to allow conversion of an unsupported TensorFlow operator in TensorFlow Lite. Will that help?\r\n> \r\n> Thanks.\r\n\r\nI ended up using [tflite2json2tflite](https://github.com/PINTO0309/tflite2json2tflite) to just edit the json. Feel free to close the issue and thanks for your help!",
"@kevinpl07 Thanks for the work around and confirmation.\r\n\r\nClosing this issue. Please feel free to your reopen if the issue still persists.\r\n\r\nThanks."
] | 2023-04-18T12:32:39 | 2023-04-21T14:16:44 | 2023-04-21T14:16:44 | NONE | null | null | null | ### 1. System information
- Windows 11 x64
- tensorflow==2.11.0
### 2. Code
```python
import tensorflow as tf
from tensorflow.keras.layers import (Conv2D, Conv2DTranspose, Input)
from tensorflow.keras.models import Model
input_size=(144, 256, 3)
inputs = Input(input_size, batch_size=1)
conv2d = Conv2D(16, kernel_size=(3, 3), strides=(2, 2), padding='same', use_bias=True)(inputs)
segment = Conv2DTranspose(2, kernel_size=(2, 2), strides=(2, 2), use_bias=True)(conv2d)
model = Model(inputs, segment, name="test")
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float16]
tflite_model = converter.convert()
with open('model.tflite', 'wb') as f:
f.write(tflite_model)
```
### 3. Failure after conversion
I want to convert a keras model to tflite while using optimized operations such as "Convolution2DTransposeBias". Those are discussed here: [Link](https://github.com/google/mediapipe/issues/245)
### 5. (optional) Any other info / logs
How can I tell tflite to use those custom op after converting?
Thanks in advance!
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60350/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60350/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60349 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60349/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60349/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60349/events | https://github.com/tensorflow/tensorflow/pull/60349 | 1,672,739,033 | PR_kwDOArmXAs5OjzQC | 60,349 | Fixed build failure on Power | {
"login": "npanpaliya",
"id": 14196089,
"node_id": "MDQ6VXNlcjE0MTk2MDg5",
"avatar_url": "https://avatars.githubusercontent.com/u/14196089?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/npanpaliya",
"html_url": "https://github.com/npanpaliya",
"followers_url": "https://api.github.com/users/npanpaliya/followers",
"following_url": "https://api.github.com/users/npanpaliya/following{/other_user}",
"gists_url": "https://api.github.com/users/npanpaliya/gists{/gist_id}",
"starred_url": "https://api.github.com/users/npanpaliya/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/npanpaliya/subscriptions",
"organizations_url": "https://api.github.com/users/npanpaliya/orgs",
"repos_url": "https://api.github.com/users/npanpaliya/repos",
"events_url": "https://api.github.com/users/npanpaliya/events{/privacy}",
"received_events_url": "https://api.github.com/users/npanpaliya/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-18T09:44:58 | 2023-04-24T08:22:29 | 2023-04-20T01:56:10 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60349",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60349",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60349.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60349.patch",
"merged_at": "2023-04-20T01:56:10"
} | This change is needed to fix builds on Linux Power.
Error was seen while building TF 2.12 on Power. Same error is also encountered when TF IO 0.32 and TF text 2.12 are built as they also use Tensorflow 2.12 during their build. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60349/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60349/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60348 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60348/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60348/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60348/events | https://github.com/tensorflow/tensorflow/issues/60348 | 1,672,704,144 | I_kwDOArmXAs5js3CQ | 60,348 | data and ml module missing | {
"login": "changyushun",
"id": 16750027,
"node_id": "MDQ6VXNlcjE2NzUwMDI3",
"avatar_url": "https://avatars.githubusercontent.com/u/16750027?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/changyushun",
"html_url": "https://github.com/changyushun",
"followers_url": "https://api.github.com/users/changyushun/followers",
"following_url": "https://api.github.com/users/changyushun/following{/other_user}",
"gists_url": "https://api.github.com/users/changyushun/gists{/gist_id}",
"starred_url": "https://api.github.com/users/changyushun/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/changyushun/subscriptions",
"organizations_url": "https://api.github.com/users/changyushun/orgs",
"repos_url": "https://api.github.com/users/changyushun/repos",
"events_url": "https://api.github.com/users/changyushun/events{/privacy}",
"received_events_url": "https://api.github.com/users/changyushun/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@changyushun,\r\nAFAIK you are trying to run the mentioned code directly. Before executing the code, please try to import the dependencies as well. And also I guess, you are trying to execute the pose_classification.ipynb file.\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/pose_classification.ipynb\r\n\r\nI was able to execute the code without any issues. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/50af14cb4b5234769e3350c4ca2369bd/untitled1073.ipynb). Thank you!",
"> issues\r\n@tilakrayal , thank your comment.\r\nI do know the code is runable in colab and try to run in my local mac environment. the 'data' and 'ml' module is the issue happen in my mac. i thought the 'data' and 'ml' is the modules installed by PIP but apperantly not or installed wrong modules? can you tell which dependencies do those two modules belong to ? thank in advance.\r\n",
"@tilakrayal \r\nI found those two modules is come from the loaded examples. not from PIP. My Bad.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60348\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60348\">No</a>\n"
] | 2023-04-18T09:19:55 | 2023-04-19T01:49:10 | 2023-04-19T01:49:07 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2
### Custom Code
No
### OS Platform and Distribution
mac
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
A bug happened!
### Standalone code to reproduce the issue
```shell
from data import BodyPart
from ml import Movenet
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60348/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60348/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60347 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60347/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60347/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60347/events | https://github.com/tensorflow/tensorflow/pull/60347 | 1,672,639,916 | PR_kwDOArmXAs5OjdyH | 60,347 | [Linaro:ARM_CI] Fix use of is_nightly in CI | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "nitins17",
"id": 29348997,
"node_id": "MDQ6VXNlcjI5MzQ4OTk3",
"avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nitins17",
"html_url": "https://github.com/nitins17",
"followers_url": "https://api.github.com/users/nitins17/followers",
"following_url": "https://api.github.com/users/nitins17/following{/other_user}",
"gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nitins17/subscriptions",
"organizations_url": "https://api.github.com/users/nitins17/orgs",
"repos_url": "https://api.github.com/users/nitins17/repos",
"events_url": "https://api.github.com/users/nitins17/events{/privacy}",
"received_events_url": "https://api.github.com/users/nitins17/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "nitins17",
"id": 29348997,
"node_id": "MDQ6VXNlcjI5MzQ4OTk3",
"avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nitins17",
"html_url": "https://github.com/nitins17",
"followers_url": "https://api.github.com/users/nitins17/followers",
"following_url": "https://api.github.com/users/nitins17/following{/other_user}",
"gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nitins17/subscriptions",
"organizations_url": "https://api.github.com/users/nitins17/orgs",
"repos_url": "https://api.github.com/users/nitins17/repos",
"events_url": "https://api.github.com/users/nitins17/events{/privacy}",
"received_events_url": "https://api.github.com/users/nitins17/received_events",
"type": "User",
"site_admin": false
},
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Fixes #60328 "
] | 2023-04-18T08:42:24 | 2023-08-22T14:08:37 | 2023-04-18T17:53:19 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60347",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60347",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60347.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60347.patch",
"merged_at": "2023-04-18T17:53:19"
} | Need to use is_nightly to correctly build for HEAD in CI | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60347/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60347/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60346 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60346/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60346/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60346/events | https://github.com/tensorflow/tensorflow/pull/60346 | 1,672,622,028 | PR_kwDOArmXAs5OjaCB | 60,346 | Improves the current scheduler by implementing a recursive version that makes spinning up threads more efficient | {
"login": "renato-arantes",
"id": 129947394,
"node_id": "U_kgDOB77XAg",
"avatar_url": "https://avatars.githubusercontent.com/u/129947394?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/renato-arantes",
"html_url": "https://github.com/renato-arantes",
"followers_url": "https://api.github.com/users/renato-arantes/followers",
"following_url": "https://api.github.com/users/renato-arantes/following{/other_user}",
"gists_url": "https://api.github.com/users/renato-arantes/gists{/gist_id}",
"starred_url": "https://api.github.com/users/renato-arantes/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/renato-arantes/subscriptions",
"organizations_url": "https://api.github.com/users/renato-arantes/orgs",
"repos_url": "https://api.github.com/users/renato-arantes/repos",
"events_url": "https://api.github.com/users/renato-arantes/events{/privacy}",
"received_events_url": "https://api.github.com/users/renato-arantes/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@TensorFlow-MKL FYI. Let us know if you see performance regression.",
"Closing the PR since it's merged in https://github.com/tensorflow/tensorflow/commit/f7d95b05044dd3ac318bcca7a5a7bfbc7336b88e"
] | 2023-04-18T08:31:17 | 2023-05-03T14:47:16 | 2023-05-03T14:47:13 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60346",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60346",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60346.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60346.patch",
"merged_at": null
} | This PR improves the current TensorFlow scheduler by implementing a recursive version that makes spinning up threads for MKL primitives more efficient.
Here is an example of the before the recursive scheduler:
<p align="center">
<img src="https://user-images.githubusercontent.com/129947394/232718078-c7c7bb17-fbce-4ab7-9905-15e2529ff7c8.png" width="500">
</p>
And after:
<p align="center">
<img src="https://user-images.githubusercontent.com/129947394/232718338-cca5d8de-f933-4b89-bdf1-0c0f2962acf2.png" width="500">
</p>
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60346/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60346/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60345 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60345/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60345/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60345/events | https://github.com/tensorflow/tensorflow/issues/60345 | 1,672,398,000 | I_kwDOArmXAs5jrsSw | 60,345 | RuntimeError: Given shapes, [1,784] and [784,100], are not broadcastable.Node number 1 (MUL) failed to prepare. | {
"login": "aanujdu",
"id": 37201355,
"node_id": "MDQ6VXNlcjM3MjAxMzU1",
"avatar_url": "https://avatars.githubusercontent.com/u/37201355?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/aanujdu",
"html_url": "https://github.com/aanujdu",
"followers_url": "https://api.github.com/users/aanujdu/followers",
"following_url": "https://api.github.com/users/aanujdu/following{/other_user}",
"gists_url": "https://api.github.com/users/aanujdu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/aanujdu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/aanujdu/subscriptions",
"organizations_url": "https://api.github.com/users/aanujdu/orgs",
"repos_url": "https://api.github.com/users/aanujdu/repos",
"events_url": "https://api.github.com/users/aanujdu/events{/privacy}",
"received_events_url": "https://api.github.com/users/aanujdu/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @aanujdu Thanks for reporting the issue.\r\n\r\n@sachinprasadhs I was able to reproduce this issue. Please find the gist [here](https://colab.research.google.com/gist/pjpratik/9c96fb3cba7c1af242b9af95d342bbc8/60345.ipynb).\r\n\r\nThanks.",
"The issue seems to be with the representative dataset which you are using. \r\n\r\nBelow is the corrected way to use the `representative_data_gen`.\r\n\r\n```\r\ndef representative_data_gen():\r\n for _ in range(100):\r\n yield {'image': tf.random.normal(shape=(1, 784), dtype=tf.float32),'r1': tf.Variable(np.random.randn(), dtype=tf.float32)}\r\n```\r\nWith the above changes, I'm able to convert the model without any issues. Attaching the Gist for reference here https://gist.github.com/sachinprasadhs/fb4b62e7e37b5308217addbe9c2edd5f. \r\n",
"Thanks for the response @sachinprasadhs . I can reproduce a working conversion with your code. However, I am still not sure what is the actual issue. Are you saying I need to specify the output as a dictionary with keys as the names of the variables I specify in the input signature? If that is the case, could you please let me know how I write the code if I want to use the train_images_flat array, and the random array as my representative dataset? The example you have given is for random inputs, which works for sure, but I want to know how to extend it for an actual usecase with real variables. \r\n\r\nI tried the following code using the dictionary format, but it still gives me a similar error.\r\n```\r\ndef representative_data_gen():\r\n for (input_value, randomness) in zip(tf.data.Dataset.from_tensor_slices(train_images_flat).batch(1).take(100),\r\n r[0:100, :]):\r\n yield {'image': input_value, 'r1': tf.Variable(randomness, dtype=tf.float32)}\r\n```\r\n\r\nError:\r\n```\r\nWARNING:absl:Found untraced functions such as _update_step_xla while saving (showing 1 of 1). These functions will not be directly callable after loading.\r\nINFO:tensorflow:Assets written to: /tmp/tmp_c8clq3s/assets\r\n---------------------------------------------------------------------------\r\nRuntimeError Traceback (most recent call last)\r\n[<ipython-input-7-a7311f42f11a>](https://localhost:8080/#) in <cell line: 14>()\r\n 12 converter.representative_dataset = representative_data_gen\r\n 13 \r\n---> 14 tflite_model_quant = converter.convert()\r\n 15 \r\n 16 interpreter = tf.lite.Interpreter(model_content=tflite_model_quant)\r\n\r\n13 frames\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in convert(self)\r\n 1895 Invalid quantization parameters.\r\n 1896 \"\"\"\r\n-> 1897 return super(TFLiteConverterV2, self).convert()\r\n 1898 \r\n 1899 \r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in wrapper(self, *args, **kwargs)\r\n 960 def wrapper(self, *args, **kwargs):\r\n 961 # pylint: disable=protected-access\r\n--> 962 return self._convert_and_export_metrics(convert_func, *args, **kwargs)\r\n 963 # pylint: enable=protected-access\r\n 964 \r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _convert_and_export_metrics(self, convert_func, *args, **kwargs)\r\n 938 self._save_conversion_params_metric()\r\n 939 start_time = time.process_time()\r\n--> 940 result = convert_func(self, *args, **kwargs)\r\n 941 elapsed_time_ms = (time.process_time() - start_time) * 1000\r\n 942 if result:\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in convert(self)\r\n 1534 \"\"\"\r\n 1535 if self.experimental_lower_to_saved_model:\r\n-> 1536 saved_model_convert_result = self._convert_as_saved_model()\r\n 1537 if saved_model_convert_result:\r\n 1538 return saved_model_convert_result\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _convert_as_saved_model(self)\r\n 1514 if self.saved_model_dir:\r\n 1515 self._validate_inputs(graph_def, input_tensors)\r\n-> 1516 return self._convert_from_saved_model(graph_def)\r\n 1517 finally:\r\n 1518 shutil.rmtree(temp_dir, True)\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _convert_from_saved_model(self, graph_def)\r\n 1129 \r\n 1130 result = _convert_saved_model(**converter_kwargs)\r\n-> 1131 return self._optimize_tflite_model(\r\n 1132 result, quant_mode, quant_io=self.experimental_new_quantizer)\r\n 1133 \r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)\r\n 213 except Exception as error:\r\n 214 report_error_message(str(error))\r\n--> 215 raise error from None # Re-throws the exception.\r\n 216 \r\n 217 return wrapper\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)\r\n 203 def wrapper(*args, **kwargs):\r\n 204 try:\r\n--> 205 return func(*args, **kwargs)\r\n 206 except ConverterError as converter_error:\r\n 207 if converter_error.errors:\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _optimize_tflite_model(self, model, quant_mode, quant_io)\r\n 897 q_allow_float = quant_mode.is_allow_float()\r\n 898 q_variable_quantization = quant_mode.enable_mlir_variable_quantization\r\n--> 899 model = self._quantize(model, q_in_type, q_out_type, q_activations_type,\r\n 900 q_bias_type, q_allow_float,\r\n 901 q_variable_quantization)\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _quantize(self, result, input_type, output_type, activations_type, bias_type, allow_float, enable_variable_quantization)\r\n 636 custom_op_registerers_by_func)\r\n 637 if self._experimental_calibrate_only or self.experimental_new_quantizer:\r\n--> 638 calibrated = calibrate_quantize.calibrate(\r\n 639 self.representative_dataset.input_gen)\r\n 640 \r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)\r\n 213 except Exception as error:\r\n 214 report_error_message(str(error))\r\n--> 215 raise error from None # Re-throws the exception.\r\n 216 \r\n 217 return wrapper\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)\r\n 203 def wrapper(*args, **kwargs):\r\n 204 try:\r\n--> 205 return func(*args, **kwargs)\r\n 206 except ConverterError as converter_error:\r\n 207 if converter_error.errors:\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/optimize/calibrator.py](https://localhost:8080/#) in calibrate(self, dataset_gen)\r\n 224 dataset_gen: A generator that generates calibration samples.\r\n 225 \"\"\"\r\n--> 226 self._feed_tensors(dataset_gen, resize_input=True)\r\n 227 return self._calibrator.Calibrate()\r\n\r\n[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/optimize/calibrator.py](https://localhost:8080/#) in _feed_tensors(self, dataset_gen, resize_input)\r\n 127 signature_key)\r\n 128 else:\r\n--> 129 self._calibrator.Prepare([list(s.shape) for s in input_array])\r\n 130 else:\r\n 131 if signature_key is not None:\r\n\r\nRuntimeError: Given shapes, [2] and [784,100], are not broadcastable.Node number 1 (MUL) failed to prepare.\r\n```\r\n\r\nMaybe, what might help is, if you can clearly explain the set of rules I need to follow when I am using the representative_data_gen function, instead of a working example.\r\n\r\nThanks,",
"Well in that case, according to the data which you have, you should provide in the below format.\r\n\r\n```\r\ndef representative_data_gen():\r\n for (input_value, randomness) in zip(tf.data.Dataset.from_tensor_slices(train_images_flat).batch(1).take(100),\r\n r[0:100, :]):\r\n yield {'image': input_value, 'r1': tf.Variable(randomness[0], dtype=tf.float32)}\r\n```\r\n\r\nHere is the working [Gist](https://colab.sandbox.google.com/gist/sachinprasadhs/c64f410a78e7b8c00e295d597976329a/60345.ipynb#scrollTo=D7n5mHjdw3XB). ",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60345\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60345\">No</a>\n"
] | 2023-04-18T05:51:45 | 2023-05-09T01:54:50 | 2023-05-09T01:54:48 | NONE | null | null | null | ### 1. System information
I am using Google Colab. Gives the output Linux a0c9eeb98a07 5.10.147+ #1 SMP Sat Dec 10 16:00:40 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux, when I run uname -a.
Tensorflow Version: 2.12.0
### 2. Code
Reference [TensorFlow Model Colab](https://colab.research.google.com/drive/1Qq2CdEKDbV-Y5y2EFV3LxQgSPly_PbdT?usp=sharing): The basic conversion to TFLite without any representative dataset works just fine. However, the problematic portions are cells 4, and 5, where I am trying to perform a TFLite conversion with a representative dataset.
### 3. Failure after conversion
It throws the following error.
```
WARNING:absl:Found untraced functions such as _update_step_xla while saving (showing 1 of 1). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmpz4fb25rp/assets
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
[<ipython-input-6-3bd48f77d98d>](https://localhost:8080/#) in <cell line: 10>()
8 converter.inference_output_type = tf.uint8
9
---> 10 tflite_model_quant = converter.convert()
11
12 interpreter = tf.lite.Interpreter(model_content=tflite_model_quant)
13 frames
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in convert(self)
1895 Invalid quantization parameters.
1896 """
-> 1897 return super(TFLiteConverterV2, self).convert()
1898
1899
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in wrapper(self, *args, **kwargs)
960 def wrapper(self, *args, **kwargs):
961 # pylint: disable=protected-access
--> 962 return self._convert_and_export_metrics(convert_func, *args, **kwargs)
963 # pylint: enable=protected-access
964
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _convert_and_export_metrics(self, convert_func, *args, **kwargs)
938 self._save_conversion_params_metric()
939 start_time = time.process_time()
--> 940 result = convert_func(self, *args, **kwargs)
941 elapsed_time_ms = (time.process_time() - start_time) * 1000
942 if result:
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in convert(self)
1534 """
1535 if self.experimental_lower_to_saved_model:
-> 1536 saved_model_convert_result = self._convert_as_saved_model()
1537 if saved_model_convert_result:
1538 return saved_model_convert_result
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _convert_as_saved_model(self)
1514 if self.saved_model_dir:
1515 self._validate_inputs(graph_def, input_tensors)
-> 1516 return self._convert_from_saved_model(graph_def)
1517 finally:
1518 shutil.rmtree(temp_dir, True)
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _convert_from_saved_model(self, graph_def)
1129
1130 result = _convert_saved_model(**converter_kwargs)
-> 1131 return self._optimize_tflite_model(
1132 result, quant_mode, quant_io=self.experimental_new_quantizer)
1133
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)
213 except Exception as error:
214 report_error_message(str(error))
--> 215 raise error from None # Re-throws the exception.
216
217 return wrapper
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)
203 def wrapper(*args, **kwargs):
204 try:
--> 205 return func(*args, **kwargs)
206 except ConverterError as converter_error:
207 if converter_error.errors:
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _optimize_tflite_model(self, model, quant_mode, quant_io)
897 q_allow_float = quant_mode.is_allow_float()
898 q_variable_quantization = quant_mode.enable_mlir_variable_quantization
--> 899 model = self._quantize(model, q_in_type, q_out_type, q_activations_type,
900 q_bias_type, q_allow_float,
901 q_variable_quantization)
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/lite.py](https://localhost:8080/#) in _quantize(self, result, input_type, output_type, activations_type, bias_type, allow_float, enable_variable_quantization)
636 custom_op_registerers_by_func)
637 if self._experimental_calibrate_only or self.experimental_new_quantizer:
--> 638 calibrated = calibrate_quantize.calibrate(
639 self.representative_dataset.input_gen)
640
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)
213 except Exception as error:
214 report_error_message(str(error))
--> 215 raise error from None # Re-throws the exception.
216
217 return wrapper
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/convert_phase.py](https://localhost:8080/#) in wrapper(*args, **kwargs)
203 def wrapper(*args, **kwargs):
204 try:
--> 205 return func(*args, **kwargs)
206 except ConverterError as converter_error:
207 if converter_error.errors:
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/optimize/calibrator.py](https://localhost:8080/#) in calibrate(self, dataset_gen)
224 dataset_gen: A generator that generates calibration samples.
225 """
--> 226 self._feed_tensors(dataset_gen, resize_input=True)
227 return self._calibrator.Calibrate()
[/usr/local/lib/python3.9/dist-packages/tensorflow/lite/python/optimize/calibrator.py](https://localhost:8080/#) in _feed_tensors(self, dataset_gen, resize_input)
127 signature_key)
128 else:
--> 129 self._calibrator.Prepare([list(s.shape) for s in input_array])
130 else:
131 if signature_key is not None:
RuntimeError: Given shapes, [1,784] and [784,100], are not broadcastable.Node number 1 (MUL) failed to prepare.
```
Following is the netron image and the problematic node info.

I do not suspect the issue to be with the broadcasting of scalar r in the multiplication with W1_1, because the code [here](https://colab.research.google.com/drive/1jOs_vcne2-vzf2SnB-6-PRkdGk3s9wq3?usp=sharing) works just fine. The only difference in this new code is that the __call__ implementation only takes r as the input argument and returns the product of r and W1_1, which does not emit the error shown above, even though there is a broadcast. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60345/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60345/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60344 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60344/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60344/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60344/events | https://github.com/tensorflow/tensorflow/issues/60344 | 1,672,364,983 | I_kwDOArmXAs5jrkO3 | 60,344 | "Affected Versions" discrepancies between TFSA and GHSA | {
"login": "razzlestorm",
"id": 32030231,
"node_id": "MDQ6VXNlcjMyMDMwMjMx",
"avatar_url": "https://avatars.githubusercontent.com/u/32030231?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/razzlestorm",
"html_url": "https://github.com/razzlestorm",
"followers_url": "https://api.github.com/users/razzlestorm/followers",
"following_url": "https://api.github.com/users/razzlestorm/following{/other_user}",
"gists_url": "https://api.github.com/users/razzlestorm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/razzlestorm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/razzlestorm/subscriptions",
"organizations_url": "https://api.github.com/users/razzlestorm/orgs",
"repos_url": "https://api.github.com/users/razzlestorm/repos",
"events_url": "https://api.github.com/users/razzlestorm/events{/privacy}",
"received_events_url": "https://api.github.com/users/razzlestorm/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi, To make it clear to you the information mentioned in the TFSA\r\n\r\n `The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.` \r\n\r\nstates that the fix was included in the mentioned versions only.\r\nThe fix is not part of all the affected versions, i.e anything `< 2.6` version did not come under our support window policy. \r\nOur patch release policy during that timeline which we followed was:\r\n `All TF minor releases are supported for 1 year. This means we aim to release patches for any vulnerability detected in TF for 1 year year after the “X.X.0” release date.`\r\n\r\n@mihaimaruseac , Correct me if my understanding is wrong, the advisory which was added by you for [TFSA-2022-035](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2022-035.md)",
"Hi! Thank you for explaining that to me! I think I better understand the versions that are listed on your security advisory now. To better explain the context behind my use case, I'm curating a list of many versions of tensorflow, and trying to figure out which vulnerabilities affect which versions.\r\n\r\nI think now I see that the \"Versions affected\" in the [security readme list](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/security) are referring to the \"affected versions which are still supported at the time of the TFSA being released\", but am I correct in understanding that the versions that example issue (and issues like it) affects are actually `< 2.8.0`, like is listed in your [GHSA entry](https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j)? \r\n\r\nIn other words, can I assume that vulnerability would be present in all the lower versions of tensorflow that aren't specifically mentioned as being patched, like the [NVD entry](https://nvd.nist.gov/vuln/detail/CVE-2022-23572) asserts? So something like 2.2.0 would be affected even though it wouldn't be considered affected in the `>= 2.6.0, < 2.8.0` versions from the security readme list? \r\n\r\n",
"Hello,\r\n\r\nBoth GHSA and TFSA are correct at the time of their release and should be equivalent. However, they each summarize the affected range differently, and that results in issues like the one you identified when new releases are created.\r\n\r\nFor your specific question in the above comment, in general you __cannot__ make that assumption _if you want to have no false positives_. We only used to check the versions that are still in the support window (that is, that were released in the past year), but now even that is no longer done. Newer vulns are only patched at head, on the next stable release and only very critical ones will see an update on a previous version.\r\n\r\nTo see the actual affected range, you'd need to look at the history of the code around the fix, but TF has too many commits daily so this does not scale, especially if you want to do it automatically.\r\n\r\nAs a rule of thumb, I'd say using `< x.y.0` is the best, although it comes with all of the false positives mentioned above. If these false positives are something that are not an issue, then please assume `< x.y.0`\r\n\r\nPS: For the cases where the advisory specified a range (such as `>= 2.6.0, < 2.8.0`), this means that we have validated that the code has been inserted after the branch for 2.5.0 has been cut. But these assertions are going to be rarer, given security team changes which resulted in changes in the workflows around handling security vulnerabilities\r\n",
"Got it, thank you so much for the clear information, it helps figure out how best I can do this automatically, and what limitations I'll put in place! I'm okay with closing this, unless there's anything else you'd like to use the issue to work on.",
"Thank you very much!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60344\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60344\">No</a>\n"
] | 2023-04-18T05:13:16 | 2023-04-26T15:14:48 | 2023-04-26T15:14:45 | NONE | null | null | null | ### System information
- **Have I written custom code (as opposed to using a stock example script
provided in TensorFlow)**: N/A
- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: N/A
- **Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue
happens on a mobile device**: N/A
- **TensorFlow installed from (source or binary)**: N/A
- **TensorFlow version (use command below)**: N/A
- **Python version**: N/A
- **Bazel version (if compiling from source)**: N/A
- **GCC/Compiler version (if compiling from source)**: N/A
- **CUDA/cuDNN version**: N/A
- **GPU model and memory**: N/A
- **Exact command to reproduce**: N/A
### Describe the problem
There are "affected versions" discrepancies between [GHSA](https://github.com/tensorflow/tensorflow/security) and [TFSA](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/security) security advisories. I don't really expect this to be resolved, as the affected versions differ on almost every advisory, but perhaps it could be made clear which one of these advisories users should view as the source of truth? The security readme mentions that the TFSA list might be sunset, and only GHSA will be used, but is that definitely the case? Before that happens, which repository for security advisories should be viewed as the truth, since they are both still getting published to? Thank you!
### Source code / logs
An example of this is the [GHSA entry](https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j) for CVE-2022-23572, which lists the affected versions as `< 2.8.0`, while the [TFSA Entry](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2022-035.md) lists the affected version as `>= 2.6.0, < 2.8.0` in the [security readme](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/security).
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60344/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60344/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60343 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60343/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60343/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60343/events | https://github.com/tensorflow/tensorflow/issues/60343 | 1,672,343,116 | I_kwDOArmXAs5jre5M | 60,343 | build from source in jetson nano bazel report error | {
"login": "Stave604671",
"id": 59908449,
"node_id": "MDQ6VXNlcjU5OTA4NDQ5",
"avatar_url": "https://avatars.githubusercontent.com/u/59908449?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Stave604671",
"html_url": "https://github.com/Stave604671",
"followers_url": "https://api.github.com/users/Stave604671/followers",
"following_url": "https://api.github.com/users/Stave604671/following{/other_user}",
"gists_url": "https://api.github.com/users/Stave604671/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Stave604671/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Stave604671/subscriptions",
"organizations_url": "https://api.github.com/users/Stave604671/orgs",
"repos_url": "https://api.github.com/users/Stave604671/repos",
"events_url": "https://api.github.com/users/Stave604671/events{/privacy}",
"received_events_url": "https://api.github.com/users/Stave604671/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1222092379,
"node_id": "MDU6TGFiZWwxMjIyMDkyMzc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:bazel",
"name": "subtype:bazel",
"color": "b619ea",
"default": false,
"description": "Bazel related Build_Installation issues"
},
{
"id": 3255468475,
"node_id": "MDU6TGFiZWwzMjU1NDY4NDc1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/2.6.0",
"name": "2.6.0",
"color": "FA96B6",
"default": false,
"description": ""
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @Stave604671 , \r\n\r\nFrom the log stack it seems related to java environment and logged under warning and it might not affect the build. Could you please confirm whether the build is failing or just you want to report about warnings ?\r\n\r\nWith latest versions I am sure there is no problem with builds.We have tested the builds on Ubuntu VMs and found success.Could you please confirm whether any reason for sticking to TF 2.6 version as we are not actively supporting the older versions. Request you to please cross check with latest versions.\r\n\r\nI have cross checked the build with Master and could not notice any such warning. Please refer to attached logs below.\r\n\r\n```\r\n(bazel2) suryanarayanay@surya-ubuntu20:~/tensorflow$ bazel build //tensorflow/tools/pip_package:build_pip_package &>60343logs.txt\r\n\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=0 --terminal_columns=80\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.tf_configure.bazelrc:\r\n 'build' options: --action_env PYTHON_BIN_PATH=/home/suryanarayanay/miniconda3/bin/python3 --action_env PYTHON_LIB_PATH=/home/suryanarayanay/miniconda3/lib/python3.10/site-packages --python_path=/home/suryanarayanay/miniconda3/bin/python3\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /home/suryanarayanay/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /home/suryanarayanay/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:linux in file /home/suryanarayanay/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --distinct_host_configuration=false --experimental_guard_against_concurrent_changes\r\nINFO: Found applicable config definition build:dynamic_kernels in file /home/suryanarayanay/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nLoading: \r\nLoading: 0 packages loaded\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 0 targets configured)\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 1343 targets configured).\r\n\r\nINFO: Found 1 target...\r\n[0 / 15] [Prepa] BazelWorkspaceStatusAction stable-status.txt\r\n[82 / 119] Compiling src/util.cpp; 0s local ... (8 actions, 7 running)\r\n[83 / 119] Compiling src/idl_gen_text.cpp; 2s local ... (8 actions running)\r\n[84 / 119] Compiling src/idl_gen_text.cpp; 3s local ... (8 actions running)\r\n[85 / 119] Compiling src/idl_gen_text.cpp; 4s local ... (8 actions running)\r\n[89 / 119] Compiling src/idl_gen_python.cpp; 4s local ... (8 actions running)\r\n[90 / 119] Compiling src/idl_gen_python.cpp; 6s local ... (8 actions running)\r\n[91 / 119] Compiling src/idl_gen_python.cpp; 8s local ... (8 actions running)\r\n[94 / 119] Compiling src/idl_gen_rust.cpp; 9s local ... (8 actions running)\r\n[99 / 119] Compiling src/idl_gen_cpp.cpp; 8s local ... (7 actions running)\r\n[103 / 119] Compiling src/idl_gen_cpp.cpp; 10s local ... (8 actions running)\r\n[105 / 119] Compiling src/idl_gen_cpp.cpp; 13s local ... (8 actions running)\r\n[123 / 318] Compiling src/idl_gen_java.cpp; 8s local ... (8 actions running)\r\n[132 / 318] Compiling src/idl_parser.cpp; 11s local ... (8 actions running)\r\n[140 / 318] Compiling src/idl_parser.cpp; 15s local ... (8 actions running)\r\n[150 / 318] Compiling src/idl_parser.cpp; 20s local ... (8 actions running)\r\n[169 / 318] Compiling src/google/protobuf/compiler/python/pyi_generator.cc; 4s local ... (8 actions running)\r\n[186 / 318] Compiling src/google/protobuf/compiler/java/field.cc; 3s local ... (8 actions running)\r\n[206 / 318] Compiling src/google/protobuf/compiler/csharp/csharp_helpers.cc; 2s local ... (8 actions running)\r\n[231 / 318] Compiling src/google/protobuf/struct.pb.cc; 5s local ... (8 actions running)\r\n[264 / 318] Compiling src/google/protobuf/compiler/cpp/message.cc; 10s local ... (8 actions, 7 running)\r\n[302 / 318] Compiling src/google/protobuf/descriptor.cc; 12s local ... (8 actions, 7 running)\r\n[372 / 451] Compiling src/google/protobuf/descriptor.cc; 6s local ... (8 actions, 7 running)\r\n[419 / 451] Compiling src/google/protobuf/text_format.cc; 5s local ... (8 actions, 7 running)\r\n[649 / 3,019] Compiling llvm/lib/TableGen/TGParser.cpp; 7s local ... (8 actions, 7 running)\r\n[734 / 3,019] Compiling llvm/lib/Support/Path.cpp; 4s local ... (8 actions, 7 running)\r\n[807 / 3,019] Compiling llvm/utils/TableGen/AsmMatcherEmitter.cpp; 10s local ... (8 actions, 7 running)\r\n[844 / 3,019] Compiling llvm/utils/TableGen/AsmWriterEmitter.cpp; 10s local ... (8 actions, 7 running)\r\n[947 / 3,019] Compiling llvm/lib/Support/Program.cpp; 3s local ... (8 actions, 7 running)\r\n[1,059 / 3,024] Compiling mlir/tools/mlir-tblgen/OpFormatGen.cpp; 11s local ... (8 actions, 7 running)\r\n[1,438 / 3,028] Compiling tensorflow/core/ir/ops.cc; 19s local ... (8 actions, 7 running)\r\n[1,517 / 3,028] Compiling tensorflow/core/protobuf/meta_graph.pb.cc; 9s local ... (8 actions, 7 running)\r\n[1,641 / 3,034] Compiling tensorflow/core/common_runtime/device_set.cc; 8s local ... (8 actions, 7 running)\r\n[1,693 / 3,034] Compiling tensorflow/core/common_runtime/inline_function_utils.cc; 13s local ... (8 actions, 7 running)\r\n[1,759 / 3,034] Compiling tensorflow/core/grappler/optimizers/memory_optimizer.cc; 20s local ... (8 actions, 7 running)\r\n[2,035 / 3,347] Compiling tensorflow/core/grappler/optimizers/auto_mixed_precision.cc; 19s local ... (8 actions, 7 running)\r\n[2,315 / 3,349] Compiling mlir/lib/IR/OperationSupport.cpp; 6s local ... (8 actions, 7 running)\r\n[2,648 / 3,349] Compiling tensorflow/core/transforms/utils/eval_utils.cc; 7s local ... (8 actions, 7 running)\r\n[2,976 / 3,349] Compiling tensorflow/core/ir/importexport/convert_types.cc; 7s local ... (8 actions, 7 running)\r\n[3,293 / 3,349] Compiling tensorflow/core/util/tensor_bundle/tensor_bundle.cc; 14s local ... (8 actions running)\r\n[4,197 / 10,183] Compiling tensorflow/core/kernels/reverse_op.cc; 39s local ... (8 actions running)\r\n[5,137 / 11,053] Compiling tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc; 28s local ... (8 actions running)\r\n[5,433 / 11,065] Compiling tensorflow/lite/kernels/conv.cc; 28s local ... (8 actions running)\r\n[5,525 / 11,066] Compiling tensorflow/dtensor/mlir/dtensor_allreduce_scatter_optimization.cc; 31s local ... (8 actions running)\r\n[5,921 / 11,329] Compiling tensorflow/compiler/mlir/lite/transforms/optimize.cc; 47s local ... (8 actions running)\r\n[6,100 / 11,329] Compiling tensorflow/core/kernels/fft_ops.cc; 32s local ... (8 actions running)\r\n[6,443 / 11,329] Compiling tensorflow/core/kernels/gather_nd_op_cpu_impl_3.cc; 9s local ... (8 actions, 7 running)\r\n[6,950 / 11,329] Compiling tensorflow/core/kernels/cwise_op_xlogy.cc; 33s local ... (8 actions, 7 running)\r\n[7,367 / 11,329] Compiling tensorflow/compiler/mlir/tensorflow/transforms/localize_var_handles.cc; 27s local ... (8 actions, 7 running)\r\n[7,776 / 11,330] Compiling tensorflow/compiler/mlir/tensorflow/ir/tf_ops_n_z.cc; 182s local ... (8 actions, 7 running)\r\n[8,295 / 11,330] Compiling llvm/lib/Target/AArch64/GISel/AArch64PreLegalizerCombiner.cpp; 17s local ... (8 actions, 7 running)\r\n[8,635 / 11,330] Compiling tensorflow/dtensor/mlir/op_to_device_cluster.cc; 28s local ... (8 actions, 7 running)\r\n```\r\n\r\nMy build interrupted by VM disconnection.But I am sure it can be succeeded. Please check with latest versions and let us know if having issues. Thanks!\r\n",
"> From the log stack it seems related to java environment and logged under warning and it might not affect the build. Could you please confirm whether the build is failing or just you want to report about warnings ?\r\n> \r\n> With latest versions I am sure there is no problem with builds.We have tested the builds on Ubuntu VMs and found success.Could you please confirm whether any reason for sticking to TF 2.6 version as we are not actively supporting the older versions. Request you to please cross check with latest versions.\r\n> \r\n> I have cross checked the build with Master and could not notice any such warning. Please refer to attached logs below.\r\n\r\nThank you very much for your reply to my question. My requirement is within the scope of edge calculation. The operating system supported by jetson nano affects glibc<=2.28. So the higher version of me is a little difficult. In addition, the version of java --version here is this, I do not know whether you are consistent with this under the virtual machine, or bazel3.7.2 requires other versions of java to successfully compile tensorflow.\r\n`java --version`\r\n\r\nopenjdk 11.0.18 2023-01-17\r\nOpenJDK Runtime Environment (build 11.0.18+10-post-Ubuntu-0ubuntu118.04.1)\r\nOpenJDK 64-Bit Server VM (build 11.0.18+10-post-Ubuntu-0ubuntu118.04.1, mixed mode)\r\n\r\nIn this picture, I used to install the gpu. The gpu and cpu have the same problem. I will feed back the screenshot of the failed installation of the cpu version to you later。\r\n\r\n```\r\n\r\nStarting local Bazel server and connecting to it...\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=0 --terminal_columns=80\r\nINFO: Reading rc options for 'build' from /home/jetson/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /home/jetson/.bazelrc:\r\n Inherited 'common' options: --enable_platform_specific_config\r\nINFO: Reading rc options for 'build' from /home/jetson/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --java_toolchain=@tf_toolchains//toolchains/java:tf_java_toolchain --host_java_toolchain=@tf_toolchains//toolchains/java:tf_java_toolchain --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true\r\nINFO: Reading rc options for 'build' from /home/jetson/tensorflow/.tf_configure.bazelrc:\r\n 'build' options: --action_env PYTHON_BIN_PATH=/home/jetson/miniforge3/envs/py38/bin/python3 --action_env PYTHON_LIB_PATH=/home/jetson/miniforge3/envs/py38/lib/python3.8/site-packages --python_path=/home/jetson/miniforge3/envs/py38/bin/python3\r\nINFO: Found applicable config definition build:short_logs in file /home/jetson/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /home/jetson/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:linux in file /home/jetson/tensorflow/.bazelrc: --copt=-w --host_copt=-w --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++14 --host_cxxopt=-std=c++14 --config=dynamic_kernels --distinct_host_configuration=false\r\nINFO: Found applicable config definition build:dynamic_kernels in file /home/jetson/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nLoading: \r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nDEBUG: /home/jetson/experiment/tensorflow_pkg/external/tf_runtime/third_party/cuda/dependencies.bzl:51:10: The following command will download NVIDIA proprietary software. By using the software you agree to comply with the terms of the license agreement that accompanies the software. If you do not agree to the terms of the license agreement, do not use the software.\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\nLoading: 0 packages loaded\r\n currently loading: tensorflow/tools/pip_package\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (1 packages loaded, 0 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (22 packages loaded, 14 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (55 packages loaded, 14 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (56 packages loaded, 14 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (76 packages loaded, 111 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (105 packages loaded, 237 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (127 packages loaded, 2665 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (150 packages loaded, 3007 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (168 packages loaded, 3228 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (205 packages loaded, 3811 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (208 packages loaded, 3811 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (208 packages loaded, 3811 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (208 packages loaded, 3811 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (208 packages loaded, 3811 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (208 packages loaded, 3811 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (219 packages loaded, 3908 targets configured)\r\nDEBUG: Rule 'io_bazel_rules_docker' indicated that a canonical reproducible form can be obtained by modifying arguments shallow_since = \"1556410077 -0400\"\r\nDEBUG: Repository io_bazel_rules_docker instantiated at:\r\n /home/jetson/tensorflow/WORKSPACE:23:14: in <toplevel>\r\n /home/jetson/tensorflow/tensorflow/workspace0.bzl:108:34: in workspace\r\n /home/jetson/experiment/tensorflow_pkg/external/bazel_toolchains/repositories/repositories.bzl:37:23: in repositories\r\nRepository rule git_repository defined at:\r\n /home/jetson/experiment/tensorflow_pkg/external/bazel_tools/tools/build_defs/repo/git.bzl:199:33: in <toplevel>\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (225 packages loaded, 4008 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (225 packages loaded, 4008 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (225 packages loaded, 4008 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (264 packages loaded, 4132 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (299 packages loaded, 4140 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (303 packages loaded, 4140 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (345 packages loaded, 7081 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (414 packages loaded, 11877 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (421 packages loaded, 17093 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (421 packages loaded, 17093 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (421 packages loaded, 17093 targets configured)\r\nAnalyzing: target //tensorflow/tools/pip_package:build_pip_package (421 packages loaded, 17093 targets configured)\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (428 packages loaded, 25904 targets configured).\r\nINFO: Found 1 target...\r\n[0 / 305] [Prepa] BazelWorkspaceStatusAction stable-status.txt ... (2 actions, 0 running)\r\n[106 / 843] Compiling com_google_protobuf/src/google/protobuf/compiler/java/java_message_builder.cc; 7s local ... (4 actions, 3 running)\r\n[319 / 933] Compiling tensorflow/python/tfe_wrapper.cc; 8s local ... (4 actions, 3 running)\r\n[605 / 933] Compiling llvm-project/llvm/lib/Support/YAMLTraits.cpp; 7s local ... (4 actions, 3 running)\r\n[814 / 1,259] Compiling tensorflow/lite/kernels/floor.cc; 8s local ... (4 actions, 3 running)\r\n[960 / 1,263] Compiling tensorflow/lite/kernels/batch_matmul.cc; 11s local ... (4 actions, 3 running)\r\n[1,355 / 1,686] Compiling com_google_protobuf/src/google/protobuf/util/internal/proto_writer.cc; 9s local ... (4 actions, 3 running)\r\n[1,606 / 3,264] Compiling llvm-project/llvm/lib/DebugInfo/CodeView/EnumTables.cpp; 27s local ... (4 actions, 3 running)\r\n[1,868 / 3,300] Compiling llvm-project/llvm/lib/IR/SafepointIRVerifier.cpp; 19s local ... (4 actions, 3 running)\r\n[2,000 / 3,300] Compiling llvm-project/llvm/lib/IR/Instructions.cpp; 31s local ... (4 actions, 3 running)\r\n[2,187 / 3,345] Compiling llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp; 18s local ... (4 actions, 3 running)\r\n[2,301 / 3,345] Compiling llvm-project/llvm/lib/Transforms/Utils/CallGraphUpdater.cpp; 9s local ... (4 actions, 3 running)\r\n[2,448 / 3,345] Compiling llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp; 21s local ... (4 actions, 3 running)\r\n[2,642 / 3,345] Compiling llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp; 19s local ... (4 actions running)\r\n[2,862 / 3,345] Compiling llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp; 32s local ... (4 actions, 3 running)\r\n[4,085 / 4,587] Compiling llvm-project/mlir/lib/IR/Diagnostics.cpp; 13s local ... (4 actions, 3 running)\r\n[5,435 / 6,419] Compiling tensorflow/tools/proto_text/gen_proto_text_functions_lib.cc; 28s local ... (3 actions, 2 running)\r\n[5,992 / 6,419] Compiling tensorflow/core/util/example_proto_fast_parsing.cc; 37s local ... (4 actions, 3 running)\r\n[6,625 / 9,288] Compiling tensorflow/core/kernels/cwise_op_select.cc; 1433s local ... (4 actions running)\r\n[6,649 / 9,288] Compiling tensorflow/core/kernels/cwise_op_select.cc; 3778s local ... (4 actions running)\r\n[6,661 / 9,288] Compiling tensorflow/core/kernels/cwise_op_greater.cc; 4624s local ... (4 actions running)\r\n[6,663 / 9,288] Compiling tensorflow/core/kernels/cwise_op_greater.cc; 7760s local ... (4 actions running)\r\n[6,667 / 9,288] Compiling tensorflow/core/kernels/cwise_op_greater_equal.cc; 7010s local ... (4 actions running)\r\n[6,685 / 9,288] Compiling tensorflow/core/kernels/cwise_op_div.cc; 5661s local ... (4 actions running)\r\n[6,781 / 9,288] Compiling tensorflow/compiler/xla/service/qr_expander.cc; 32s local ... (4 actions, 3 running)\r\n[7,131 / 9,322] Compiling tensorflow/core/kernels/linalg/svd_op_complex128.cc; 2690s local ... (3 actions running)\r\n[7,178 / 9,322] Compiling tensorflow/core/kernels/matmul_op_real.cc; 50s local ... (4 actions running)\r\n[7,180 / 9,322] Compiling tensorflow/core/kernels/matmul_op_real.cc; 7307s local ... (4 actions running)\r\n[7,218 / 9,322] Compiling tensorflow/core/kernels/matmul_op_real.cc; 15604s local ... (4 actions running)\r\n[7,277 / 9,322] Compiling tensorflow/core/kernels/matmul_op_real.cc; 25169s local ... (4 actions running)\r\n[7,400 / 9,322] Compiling tensorflow/core/kernels/matmul_op_real.cc; 36163s local ... (4 actions running)\r\n[7,408 / 9,322] Compiling tensorflow/core/kernels/matmul_op_real.cc; 48846s local ... (4 actions running)\r\n\r\nServer terminated abruptly (error code: 1, error message: 'Received RST_STREAM with error code 8', log file: '/home/jetson/experiment/tensorflow_pkg/server/jvm.out')\r\n```\r\n",
"Hi @Stave604671 ,\r\n\r\nI have not installed java environment as latest default build seems not supporting java builds. I have cross checked the [.bazelrc-TF2.6v](https://github.com/tensorflow/tensorflow/blob/r2.6/.bazelrc#L104) file in TF 2.6 version and found there are default java tool chains are built which is not the case with latest versions.Please refer to [.bazelrc](https://github.com/tensorflow/tensorflow/blob/r2.12/.bazelrc) file of TF 2.12 for reference which has no default build for java.\r\nMay be this will throw some pointers on your issue. \r\n\r\nI would like to know whether your project or OS has dependencies with java.\r\n\r\nOur team also not actively supporting TF2.6 version now as it is quiet older.\r\n\r\nSo is there any way you can able replicate the issue with latest versions.Since our build instructions were tested only for Ubuntu OS as per attached [source](https://www.tensorflow.org/install/source#:~:text=Build%20a%20TensorFlow%20pip%20package%20from%20source%20and%20install%20it%20on%20Ubuntu%20Linux%20and%20macOS.%20While%20the%20instructions%20might%20work%20for%20other%20systems%2C%20it%20is%20only%20tested%20and%20supported%20for%20Ubuntu%20and%20macOS.)\r\n",
"> Hi @Stave604671 ,\r\n> \r\n> I have not installed java environment as latest default build seems not supporting java builds. I have cross checked the [.bazelrc-TF2.6v](https://github.com/tensorflow/tensorflow/blob/r2.6/.bazelrc#L104) file in TF 2.6 version and found there are default java tool chains are built which is not the case with latest versions.Please refer to [.bazelrc](https://github.com/tensorflow/tensorflow/blob/r2.12/.bazelrc) file of TF 2.12 for reference which has no default build for java. May be this will throw some pointers on your issue.\r\n> \r\n> I would like to know whether your project or OS has dependencies with java.\r\n> \r\n> Our team also not actively supporting TF2.6 version now as it is quiet older.\r\n> \r\n> So is there any way you can able replicate the issue with latest versions.Since our build instructions were tested only for Ubuntu OS as per attached [source](https://www.tensorflow.org/install/source#:~:text=Build%20a%20TensorFlow%20pip%20package%20from%20source%20and%20install%20it%20on%20Ubuntu%20Linux%20and%20macOS.%20While%20the%20instructions%20might%20work%20for%20other%20systems%2C%20it%20is%20only%20tested%20and%20supported%20for%20Ubuntu%20and%20macOS.)\r\n\r\nok I have switched the version you mentioned here. Do you have any requirements for the version of gcc and bazel? The environment variables ' _TF_MIN_BAZEL_VERSION _TF_MAX_BAZEL_VERSION' mentioned in the installation instructions are not mentioned in the file you refer to.https://github.com/tensorflow/tensorflow/blob/r2.12/.bazelrc\r\nmy bazel version is 3.7.2 and gcc --version is 7.5.0\r\n(py38) jetson@jetson-desktop:~/tensorflow$ git status\r\nOn branch r2.12\r\nYour branch is up to date with 'origin/r2.12'.\r\n\r\nnothing to commit, working tree clean\r\n(py38) jetson@jetson-desktop:~/tensorflow$ bazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package\r\nINFO: Reading rc options for 'build' from /home/jetson/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility\r\nERROR: --experimental_link_static_libraries_once=false :: Unrecognized option: --experimental_link_static_libraries_once=false\r\n",
"Hi @Stave604671 ,\r\n\r\nYou can find the bazel versions and GCC versions required for each version from the documentation [source](https://www.tensorflow.org/install/source#linux).\r\n\r\nFor Tf 2.12v :\r\n\r\n\r\nVersion | Python version | Compiler | Build tools\r\n-- | -- | -- | --\r\ntensorflow-2.12.0 | 3.8-3.11 | GCC 9.3.1 | Bazel 5.3.0\r\n\r\n\r\n\r\n\r\nThere is no need to set `_TF_MIN_BAZEL_VERSION` or `_TF_MAX_BAZEL_VERSION`.Required bazel version for each version mentioned in source code [here](https://github.com/tensorflow/tensorflow/blob/master/.bazelversion). Please download bazel 5.3.0 version or bazelisk. Bazelisk will use the bazel versions configured for respective TF version automatically. Please follow the documentation instructions [here](https://www.tensorflow.org/install/source#install_bazel).\r\n\r\nPlease try with correct configurations and let us know if still fails. Thanks!\r\n\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60343\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60343\">No</a>\n"
] | 2023-04-18T04:48:42 | 2023-05-24T01:58:16 | 2023-05-24T01:58:14 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
r2.6
### Custom Code
Yes
### OS Platform and Distribution
linux ubuntu18.04 jetpack461
### Mobile device
_No response_
### Python version
3.8
### Bazel version
3.7.2
### GCC/Compiler version
7.5.0
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
i want install tensorflow-cpu==2.6 on jetson nano and python>=3.8 jetpack 4.61
### Standalone code to reproduce the issue
```shell
git checkout r2.6
./configure
You have bazel 3.7.2- (@non-git) installed.
Please specify the location of python. [Default is /home/jetson/miniforge3/envs/py38/bin/python3]:
Found possible Python library paths:
/home/jetson/miniforge3/envs/py38/lib/python3.8/site-packages
Please input the desired Python library path to use. Default is [/home/jetson/miniforge3/envs/py38/lib/python3.8/site-packages]
Do you wish to build TensorFlow with ROCm support? [y/N]:
No ROCm support will be enabled for TensorFlow.
Do you wish to build TensorFlow with CUDA support? [y/N]:
No CUDA support will be enabled for TensorFlow.
Do you wish to download a fresh release of clang? (Experimental) [y/N]:
Clang will not be downloaded.
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -Wno-sign-compare]:
Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]:
Not configuring the WORKSPACE for Android builds.
bazel --output_base=/home/jetson/experiment/tensorflow_pkg build //tensorflow/tools/pip_package:build_pip_package
```
### Relevant log output
```shell
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by com.google.devtools.build.lib.unsafe.StringUnsafe (file:/home/jetson/.cache/bazel/_bazel_jetson/install/55993bca119e0c9410de59d485012347/A-server.jar) to constructor java.lang.String(byte[],byte)
WARNING: Please consider reporting this to the maintainers of com.google.devtools.build.lib.unsafe.StringUnsafe
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60343/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60343/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60342 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60342/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60342/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60342/events | https://github.com/tensorflow/tensorflow/pull/60342 | 1,671,396,256 | PR_kwDOArmXAs5OfSzL | 60,342 | [Linaro:ARM_CI] Fix version of tb-nightly used in CI | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-17T15:04:01 | 2023-08-22T14:08:37 | 2023-04-18T05:37:35 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60342",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60342",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60342.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60342.patch",
"merged_at": "2023-04-18T05:37:35"
} | null | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60342/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60342/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60341 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60341/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60341/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60341/events | https://github.com/tensorflow/tensorflow/issues/60341 | 1,670,849,768 | I_kwDOArmXAs5jlyTo | 60,341 | Importing Tensorflow on Databricks after setting a log configuration causes next cell to hang indefinitely | {
"login": "Henriklimseth",
"id": 13903284,
"node_id": "MDQ6VXNlcjEzOTAzMjg0",
"avatar_url": "https://avatars.githubusercontent.com/u/13903284?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Henriklimseth",
"html_url": "https://github.com/Henriklimseth",
"followers_url": "https://api.github.com/users/Henriklimseth/followers",
"following_url": "https://api.github.com/users/Henriklimseth/following{/other_user}",
"gists_url": "https://api.github.com/users/Henriklimseth/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Henriklimseth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Henriklimseth/subscriptions",
"organizations_url": "https://api.github.com/users/Henriklimseth/orgs",
"repos_url": "https://api.github.com/users/Henriklimseth/repos",
"events_url": "https://api.github.com/users/Henriklimseth/events{/privacy}",
"received_events_url": "https://api.github.com/users/Henriklimseth/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097543484,
"node_id": "MDU6TGFiZWwxMDk3NTQzNDg0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime",
"name": "comp:runtime",
"color": "0052cc",
"default": false,
"description": "c++ runtime, performance issues (cpu)"
},
{
"id": 1097545817,
"node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis",
"name": "comp:apis",
"color": "0052cc",
"default": false,
"description": "Highlevel API related issues"
},
{
"id": 4032183365,
"node_id": "LA_kwDOArmXAs7wVjxF",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9",
"name": "TF 2.9",
"color": "1CF842",
"default": false,
"description": "Issues found in the TF 2.9 release (or RCs)"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@Henriklimseth,\r\nCould you please try using [get_statistics_html](https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/get_statistics_html) that generates the HTML objects and calling those instead of the visualize functions. \r\n\r\nThen, try to visualize those functions with the DataBricks .[displayHTML](https://docs.databricks.com/notebooks/visualizations/html-d3-and-svg.html) function. And also could you please refer to this https://github.com/tensorflow/tfx/issues/2194#issuecomment-1262088337 for the reference.\r\nThank you!",
"@tilakrayal \r\nThank you for the response.\r\nI'm not sure what you mean, though. I'm not calling any visualize functions. Everything simply hangs after importing tensorflow.\r\nIf you still think I should call this `get_statistics_html`-function, could you please tell me what the argument of the function should be? My code fails without any data.\r\n\r\n",
"This looks like an issue on the environment side, did you observe this behavior in any other platform. \r\nIf not, cloud you please help us with more information to investigate on this further. Thanks!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60341\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60341\">No</a>\n"
] | 2023-04-17T10:12:32 | 2023-05-17T01:56:29 | 2023-05-17T01:56:27 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.9.1
### Custom Code
Yes
### OS Platform and Distribution
Databricks runtime 11.3 LTS ML
### Mobile device
_No response_
### Python version
3.9.5
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
On Databricks: importing tensorflow after setting a logz.io logging configuration casues the next cell to hang indefinitely roughly 50% of the time.
In the screenshot below, I've cancelled a Databricks command after it spent over 10 minutes calculating `1+1` after a tensorflow import.

This only happens when I've set a logz.io logging configuration before importing tensorflow, as shown in the **Standalone code to reproduce this issue**. Tensorflow seems to pick up the log configuration, as the import outputs this message when the logz.io-token is invalid:

And this _somehow_ seems to be related to the issue, as I've only had it happen after I've set the log configuration.
The same issue occurs when using tf-nightly. It can be observed by adding a magic command: `%pip install tf-nightly` to the beginning of the standalone code below. Doing so reveals that tensorboard and logzio-python-handler have several common dependencies, and there could in principle be underlying conflicts. But please note that the issue also occurs with tensorflow 2.9.1 and logzio-python-handler 3.1.1, which were specifically chosen to not have version-conflicts in the common transitive dependencies:
```
tensorboard 2.9.1 requires google-auth-oauthlib<0.5,>=0.4.1, but you have google-auth-oauthlib 1.0.0 which is incompatible.
tensorboard 2.9.1 requires protobuf<3.20,>=3.9.2, but you have protobuf 4.22.3 which is incompatible.
tensorboard 2.9.1 requires tensorboard-data-server<0.7.0,>=0.6.0, but you have tensorboard-data-server 0.7.0 which is incompatible.
```
Do anyone have ideas about this? Does tensorflow have some internal logging that might cause conflicts?
**Expected behaviour**
Running a cell after importing tensorflow should just work.
### Standalone code to reproduce the issue
```shell
# Databricks notebook source
# MAGIC %pip install logzio-python-handler==3.1.1
# COMMAND ----------
import logging
import logging.config
try:
token = dbutils.secrets.get('default', 'logzio_token')
except:
token = "test_value"
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'logzioFormat': {
'format': '{"component": "test_comp", "res_cluster": "test_cluster"}',
'validate': False
}
},
'handlers': {
'logzio': {
'class': 'logzio.handler.LogzioHandler',
'level': 'INFO',
'formatter': 'logzioFormat',
'token': f'{token}',
'logzio_type': 'Databricks',
'logs_drain_timeout': 1,
'url': 'https://listener-eu.logz.io:8071',
'debug': False
}
},
'loggers': {
'': {
'level': 'INFO',
'handlers': ['logzio'],
'propagate': True
}
}
}
logging.config.dictConfig(LOGGING)
logger = logging.getLogger('DatabricksLogger')
# COMMAND ----------
import tensorflow as tf
# COMMAND ----------
1+1
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60341/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60341/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60340 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60340/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60340/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60340/events | https://github.com/tensorflow/tensorflow/issues/60340 | 1,670,339,980 | I_kwDOArmXAs5jj12M | 60,340 | Training data format for EfficientNet | {
"login": "WennPaper",
"id": 67032259,
"node_id": "MDQ6VXNlcjY3MDMyMjU5",
"avatar_url": "https://avatars.githubusercontent.com/u/67032259?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/WennPaper",
"html_url": "https://github.com/WennPaper",
"followers_url": "https://api.github.com/users/WennPaper/followers",
"following_url": "https://api.github.com/users/WennPaper/following{/other_user}",
"gists_url": "https://api.github.com/users/WennPaper/gists{/gist_id}",
"starred_url": "https://api.github.com/users/WennPaper/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/WennPaper/subscriptions",
"organizations_url": "https://api.github.com/users/WennPaper/orgs",
"repos_url": "https://api.github.com/users/WennPaper/repos",
"events_url": "https://api.github.com/users/WennPaper/events{/privacy}",
"received_events_url": "https://api.github.com/users/WennPaper/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1105108936,
"node_id": "MDU6TGFiZWwxMTA1MTA4OTM2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:model",
"name": "comp:model",
"color": "0052cc",
"default": false,
"description": "Model related issues"
},
{
"id": 4511033337,
"node_id": "LA_kwDOArmXAs8AAAABDODn-Q",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10",
"name": "TF 2.10",
"color": "C15088",
"default": false,
"description": ""
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@WenTheProgrammer \r\nI tried to replicate the issue on Colab using TF v2.12 but facing a different error. Could you please provide all dependencies and detailed steps to replicate the issue reported here ?\r\nPlease find the gist [here](https://colab.research.google.com/gist/tiruk007/ce6db2a01e2f147c24d1383e9f3a7f5a/untitled190.ipynb) for reference.\r\n\r\nThank you ! ",
"Hi @WenTheProgrammer,\r\n \r\nTo fix the error, you can convert x_train to a NumPy array using np.stack and y_train to a NumPy array using np.array before fitting it to the model.\r\n```python\r\nimport numpy as np\r\n\r\nx_train = np.stack(x_train, axis=0)\r\ny_train = np.array(y_train)\r\n\r\nhistory = model.fit(x_train, y_train, batch_size=8, epochs=100)\r\n\r\n```\r\nThis will ensure that the input data is in the correct format for the model. Let me know if this works for you.\r\n\r\nThank you!",
"Thank you @tiruk007 and @nitya-khuntia for your suggestions!\r\n\r\nTo your question @tiruk007, the following code simulates my program. By the way my tensorflow version is 2.10.1.\r\n```\r\nimport numpy as np\r\nfrom tensorflow.keras.layers import Dense, Flatten\r\nfrom tensorflow.keras.applications import EfficientNetB7\r\nfrom tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping\r\nfrom tensorflow.keras.models import Sequential\r\n\r\nx_train = np.random.rand(4317, 600, 600)\r\ny_train = np.random.randint(low=0, high=2, size=(4317,), dtype=np.int32)\r\nx_val = np.random.rand(1233, 600, 600)\r\ny_val = np.random.randint(low=0, high=2, size=(1233,), dtype=np.int32)\r\nx_test = np.random.rand(618, 600, 600)\r\ny_test = np.random.randint(low=0, high=2, size=(618,), dtype=np.int32)\r\n\r\nbase_model = EfficientNetB7(include_top=False, weights=None, input_shape=(600,600,1), classes=2)\r\nbase_model.trainable = True\r\nmodel = Sequential()\r\nmodel.add(base_model)\r\nmodel.add(Flatten())\r\nmodel.add(Dense(1, activation='sigmoid'))\r\nmodel.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\r\nhistory = model.fit(x_train, y_train, batch_size=2, epochs=100)\r\n```\r\nThe `np.stack` method worked for me, @nitya-khuntia. However, a new memory-related error occurred.\r\n\r\nWhen I used EfficientNetB7 model, I received the following error message:\r\n```\r\nMemoryError: Unable to allocate 1.66 GiB for an array with shape (618, 600, 600) and data type float64\r\nThe system cannot find the path specified.\r\n2023-04-23 21:01:00.199194: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found\r\n2023-04-23 21:01:00.199432: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\r\n```\r\nThe error is related to my test dataset, while my computer seemed to have just enough memory to prepare my training and validation datasets. When I switched to EfficientNetB1 model, which has an input size of 240, the error disappeared.\r\n\r\nInterestingly, when I removed my `x_test` and `y_test` to save memory and ran the code again, I received a different error:\r\n```\r\n{{function_node __wrapped__AddV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} OOM when allocating tensor with shape[1,1,384,2304] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu [Op:AddV2]\r\n\r\nThe system cannot find the path specified.\r\n2023-04-23 21:13:19.354984: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found\r\n2023-04-23 21:13:19.355127: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\r\n2023-04-23 21:14:42.095665: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found\r\n2023-04-23 21:14:42.097306: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublas64_11.dll'; dlerror: cublas64_11.dll not found\r\n2023-04-23 21:14:42.098308: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublasLt64_11.dll'; dlerror: cublasLt64_11.dll not found\r\n2023-04-23 21:14:42.098580: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cufft64_10.dll'; dlerror: cufft64_10.dll not found\r\n2023-04-23 21:14:42.867423: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cusparse64_11.dll'; dlerror: cusparse64_11.dll not found\r\n2023-04-23 21:14:42.869108: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudnn64_8.dll'; dlerror: cudnn64_8.dll not found\r\n2023-04-23 21:14:42.869164: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\r\nSkipping registering GPU devices...\r\n2023-04-23 21:14:42.883158: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2\r\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-23 21:14:46.496880: W tensorflow/core/framework/op_kernel.cc:1780] OP_REQUIRES failed at cwise_ops_common.h:138 : RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[1,1,384,2304] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu\r\n```\r\n\r\nNow I am wondering if I want to train my model with a large training dataset, is there anything I can do to prevent the error? I already specified my batch size as 2.",
"@WenTheProgrammer \r\n\r\nThe errors you are encountering are related to memory issues when running your TensorFlow code with the EfficientNetB7 model. \r\n\r\n* One possible solution could be to reduce the batch size during training. Currently, you are using a batch size of 2 (batch_size=2) in your model.fit call. You can try reducing the batch size to a smaller value, such as 1, or experiment with different batch sizes to find a value that works within the available memory of your system.\r\n>it's important to note that using very small batch sizes, such as 1, may also have an impact on training performance and convergence. \r\n* Additionally, you can consider reducing the dimensions of images before feeding them into the EfficientNetB7 model, as the larger input size of 600x600 may require more memory. For example, you can reduce the input image size to 300x300.\r\n\r\n\r\n\r\n* The error messages \"Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found\" and similar messages indicate that some GPU libraries are missing or not properly installed. You can refer to the TensorFlow installation guide for GPU support (https://www.tensorflow.org/install/gpu).\r\n \r\nBy addressing these issues and verifying your TensorFlow installation, you should be able to resolve the errors and successfully run your code with the EfficientNetB7 model.",
"Hi @nitya-khuntia,\r\n\r\nRegarding tensorflow installation, I am pretty sure that I installed everything correctly, since I previously had issues detecting GPU and I reinstalled everything following the exact same instructions that you suggested.\r\n\r\nIf my understanding is correct, EfficientNetB7 would resize images into 600x600 using bilinear interpolation, if the input image size is not 600x600. However, my images are not regular photos taken by a camera, they are synthesized artificially and each pixel value has a specific meaning, so I would not like to introduce interpolated values that previously do not exist. Is there a way to change EfficientNetB7’s interpolation method to nearest-neighbor? Also, I do not wish to have my images normalized for the same reason of not introducing new values to images. Is there a way to prevent normalization within EfficientNetB7?\r\n\r\nThank you!",
"Hi @WenTheProgrammer ,\r\n\r\nOOM error occurs due to the large input data size which can't be accommodated by the system's memory. I tried the code with smaller size of input data and its executed fine as per attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/d5a3659b320bb20e3a8d0e94443639bc/60340.ipynb). I have reduced the size of input to (200, 600, 600) from (4317, 600, 600) and it executed fine with OOM error which proves that OOM error happened in your case is purely due to Higher input size.\r\n\r\n`EfficientNetB7` is a pre-built model and the only parameters to play are the arguments that mentioned in the [API](https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet/EfficientNetB7). We can't customize the implementation of the `EfficientNet` AFAIK and for that you need to create your own custom model.\r\n\r\n",
"Hi @SuryanarayanaY,\r\n\r\nI have a few follow up questions then:\r\n\r\n- If my input image size is 600x600, then EfficientNetB7 will not resize the input images anymore?\r\n- In addition to resizing, does EfficientNetB7 function perform any other pre-processing that would alter input image pixel values, such as normalization, before training on the images?\r\n- Is there a way to generate training data \"on the go\" during training, such as instead of preparing all training data at once, only preparing the needed batch for the current training iteration, so that computer memory won't be a problem?",
"\r\n\r\n@WenTheProgrammer , PFA replies below.\r\n\r\n> * If my input image size is 600x600, then EfficientNetB7 will not resize the input images anymore?\r\n\r\n\r\n\r\ninput_shape | Optional shape tuple, only to be specified if include_top is False. It should have exactly 3 inputs channels.\r\n-- | --\r\n\r\n\r\n\r\n\r\n> * In addition to resizing, does EfficientNetB7 function perform any other pre-processing that would alter input image pixel values, such as normalization, before training on the images?\r\n\r\nEach Keras Application expects a specific kind of input preprocessing. For EfficientNet, input preprocessing is included as part of the model (as a Rescaling layer), and thus [tf.keras.applications.efficientnet.preprocess_input](https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet/preprocess_input) is actually a pass-through function. EfficientNet models expect their inputs to be float tensors of pixels with values in the [0-255] range.\r\n\r\n\r\n\r\n\r\n\r\n> * Is there a way to generate training data \"on the go\" during training, such as instead of preparing all training data at once, only preparing the needed batch for the current training iteration, so that computer memory won't be a problem?\r\n\r\nTo avoid loading all the data into memory you can use tf.data.Dataset for constructing data pipeline. Please refer to attached [source](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) for more details.\r\n\r\n",
"Thanks!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60340\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60340\">No</a>\n"
] | 2023-04-17T03:30:02 | 2023-05-13T16:49:45 | 2023-05-13T16:49:42 | NONE | null | null | null | I would like to train a EfficientNetB7 model from scratch to classify 2D arrays into two 2 classes, but it seems like I did not prepare my data in the correct format. Currently my `x_train` is a list of float64 arrays with a 600x600 size, my `y_train` is a list of integers that are either 0 or 1. Of course `x_train` and `y_train` have the same length. This is what I have so far:
```
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.applications import EfficientNetB7
from tensorflow.keras.models import Sequential
base_model = EfficientNetB7(include_top=False, weights=None, input_shape=(600,600,1), classes=2)
base_model.trainable = True
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(x_train, y_train, batch_size=8, epochs=100)
```
The last line currently gives me an error:
```
ValueError: Failed to find data adapter that can handle input: (<class 'list'> containing values of types {"<class 'numpy.ndarray'>"}), (<class 'list'> containing values of types {"<class 'int'>"})
```
What would be the right format for training data? Any help is appreciated! | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60340/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60340/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60339 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60339/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60339/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60339/events | https://github.com/tensorflow/tensorflow/issues/60339 | 1,670,117,096 | I_kwDOArmXAs5ji_bo | 60,339 | *Lookup layers scale as vocab size increases. | {
"login": "sboshin",
"id": 43187008,
"node_id": "MDQ6VXNlcjQzMTg3MDA4",
"avatar_url": "https://avatars.githubusercontent.com/u/43187008?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sboshin",
"html_url": "https://github.com/sboshin",
"followers_url": "https://api.github.com/users/sboshin/followers",
"following_url": "https://api.github.com/users/sboshin/following{/other_user}",
"gists_url": "https://api.github.com/users/sboshin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sboshin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sboshin/subscriptions",
"organizations_url": "https://api.github.com/users/sboshin/orgs",
"repos_url": "https://api.github.com/users/sboshin/repos",
"events_url": "https://api.github.com/users/sboshin/events{/privacy}",
"received_events_url": "https://api.github.com/users/sboshin/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 1463677878,
"node_id": "MDU6TGFiZWwxNDYzNjc3ODc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance",
"name": "type:performance",
"color": "159b2e",
"default": false,
"description": "Performance Issue"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"This is supposed to be a performance issue, and I thought I labeled it as such",
"Colab Link which also shows a tensorboard trace, where we don't see anything but IDLE time after the lookup\r\nhttps://colab.research.google.com/drive/1W7_VLsGW-pfW2FVpAuRqECTaEFEmalwf?usp=sharing",
"Looks to be specific to keras\r\n\r\n\r\nLots of python calls that scale with size.",
"@sboshin, Apologies for the delay. I was able to replicate the issue in Colab using Tensorflow 2.11, 2.12 and tf-nightly. Please check the gists for the same [2.11](https://colab.sandbox.google.com/gist/synandi/4606f64fe51cb02867ba50efd5bd9a70/60339_2-11.ipynb), [2.12](https://colab.sandbox.google.com/gist/synandi/f036b3d0219dada668830f88a1c3a015/60339_2-12.ipynb) and [tf-nightly(2.13.0.dev20230418)](https://colab.sandbox.google.com/gist/synandi/2639d691a5c62bba8ef30ea7fa639618/60339_nightly.ipynb). \r\n\r\nThis seems to be a keras issue. Please post this issue on [keras-team/keras repo.](https://github.com/keras-team/keras/issues)\r\nTo know more see;\r\n[https://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999](https://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999).Thanks!\"\t\r\nThank you! ",
"I was able to replicate this issue directly with statichash tables, so I don't think this is a keras issue. \r\nIll update the colab with using statichash operator directly.",
"Hi @sboshin ,\r\n\r\nIncrease on `vocabulary_size` makes the hash table bigger and time complexity may increases for worst case right ? I can see in worst case the time complexity can be O(n) as well as per the [source](https://en.wikipedia.org/wiki/Hash_table). \r\n\r\nAlso here we are comparing time complexity of two different hash tables of different sizes. IMO, normally we compare time complexity of different operations on same table. For example I have tested each table with 3 different search operations and the time is almost same for each hash table first table around 70 ms per loop and second table around 850 µs per loop.\r\n\r\nPlease refer to attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/d9be111da17510cb66eda50382b2f94b/60339.ipynb).",
"I am confused. The lookup of a hash table should be O(1), and if we claim worst case, we shouldn't hit worst case every time. You have basically shown proof TF hash tables hit the worst case, every time.\r\n",
"> Also here we are comparing time complexity of two different hash tables of different sizes. IMO, normally we compare time complexity of different operations on same table. For example I have tested each table with 3 different search operations and the time is almost same for each hash table first table around 70 ms per loop and second table around 850 µs per loop.\r\n\r\nHow else would you check the time complexity of a hash table by size? \r\n@synandi Is this also your opinion?\r\nDo TF hash table lookup operations always O(n). As per \"source\" we also see, average case should be O(1), How can you tell me this is the average case? Worst case should be rare not all the time. \r\n\r\nA worst case scenario occurs when you have constant collisions because the hash function is bad, so you are either claiming TF hash function is terrible or there is still a bug causing it to take O(n)\r\n\r\nLookup is to take a key, hash it to its location that is a constant time complexity, and it shouldn't scale with vocab size.\r\n",
"\r\n\r\nMight as well use a dictionary."
] | 2023-04-16T20:06:33 | 2023-06-29T17:27:47 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Performance
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
v2.11.0-rc2-17-gd5b57ca93e5 2.11.0
### Custom Code
No
### OS Platform and Distribution
os platform: Linux-4.19.0-23-cloud-amd64-x86_64-with-debian-10.13 linux distribution: ('debian', '10.13', '')
### Mobile device
_No response_
### Python version
python version: 3.7.12
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2
### GPU model and memory
_No response_
### Current Behaviour?
String/IntegerLookup layers underneath use the statichashtable.
I have noticed as the vocab size increases, performance decreases, as I assumed it was basically a hash table with a O(1) lookup time, this shouldn't be the case. Is my assumption wrong on the time complexity?
### Standalone code to reproduce the issue
```shell
test = tf.keras.layers.StringLookup(name=f"{100000}_string_lookup", vocabulary = list(map(str, range(100000))))
%timeit test("23")
>> 75.3 ms ± 430 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
test_100 = tf.keras.layers.StringLookup(name=f"{100}_string_lookup", vocabulary = list(map(str, range(100))))
%timeit test_10("23")
>> 610 µs ± 21.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
testi = tf.keras.layers.IntegerLookup(name=f"{100000}_int_lookup", vocabulary = list(range(100000)))
testi_100 = tf.keras.layers.IntegerLookup(name=f"{100}_string_lookup", vocabulary = list(range(100)))
%timeit testi(23)
%timeit testi_100(23)
>>75.9 ms ± 421 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>816 µs ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
### Relevant log output
```shell
75.3 ms ± 430 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
610 µs ± 21.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
75.9 ms ± 421 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
816 µs ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60339/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60339/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60338 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60338/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60338/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60338/events | https://github.com/tensorflow/tensorflow/issues/60338 | 1,670,024,961 | I_kwDOArmXAs5jio8B | 60,338 | Accuracy is not working in the compile method for TensorFlow Keras Sequential | {
"login": "airvzxf",
"id": 831380,
"node_id": "MDQ6VXNlcjgzMTM4MA==",
"avatar_url": "https://avatars.githubusercontent.com/u/831380?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/airvzxf",
"html_url": "https://github.com/airvzxf",
"followers_url": "https://api.github.com/users/airvzxf/followers",
"following_url": "https://api.github.com/users/airvzxf/following{/other_user}",
"gists_url": "https://api.github.com/users/airvzxf/gists{/gist_id}",
"starred_url": "https://api.github.com/users/airvzxf/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/airvzxf/subscriptions",
"organizations_url": "https://api.github.com/users/airvzxf/orgs",
"repos_url": "https://api.github.com/users/airvzxf/repos",
"events_url": "https://api.github.com/users/airvzxf/events{/privacy}",
"received_events_url": "https://api.github.com/users/airvzxf/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @airvzxf, Apologies for the delay. \r\n I tried replicating the issue in Colab using Tensorflow 2.12 with a similar dataset, when using the syntax `metrics=[accuracy, Precision()]` I get 0.0 accuracy. Kindly refer to the gist [here](https://colab.sandbox.google.com/gist/synandi/e4a3e2670dae347f5995bc9a032f3544/60338_2-12.ipynb) and check the screenshot below\r\n \r\n\r\n\r\nwhen using the syntax `metrics=['accuracy', Precision()]` I get the following values\r\n\r\n\r\nIn the syntax `metrics=[accuracy, Precision()]`, the term \"accuracy\" is considered as a Python object that is used to calculate the accuracy metric during model training and evaluation. Whereas, in the syntax metrics=['accuracy', Precision()], the term \"accuracy\" is a string that represents a pre-defined metric function in TensorFlow.\r\n \r\n Please find the screenshot below, where it gives a warning in Colab that accuracy is not defined when using `metrics=[accuracy, Precision()]` .\r\n \r\n\r\n\r\nIt is recommended to use `metrics=['accuracy', Precision()]`. There is no metric named accuracy in tensorflow. To import accuracy please use `from tensorflow.keras.metrics import Accuracy` instead of `from tensorflow.python.keras.metrics import accuracy`.\r\n\r\nI was able to replicate the AttributeError in tf-nightly. Please find the gist [here](https://colab.sandbox.google.com/gist/synandi/1e2e75f1b81f2d80a5c14f20bfeace7b/60338_nightly.ipynb). \r\nCould you please import keras from `tensorflow.keras` instead of `tensorflow.python.keras`.\r\nAnything under `tf.python.*` is private, intended for development only, rather than for public use.\r\nImporting from `tensorflow.python` or any other modules (including import tensorflow_core...) is not supported, and can break unannounced.So, it is suggested not to use anything with `tf.python.*`.",
"Thank you for the research and responses. It speaks highly of the humility that Tensorflow has and the desire to improve.\r\n\r\n---\r\n\r\n> Could you please import keras from tensorflow.keras instead of tensorflow.python.keras.\r\n\r\nI can't do it (`from tensorflow.keras import xxx`) because Python not recognize this way, during these two weeks I was experimenting and the best way to import is this:\r\n\r\n```python\r\nfrom tensorflow import keras\r\nfrom keras import activations\r\nfrom keras import backend\r\nfrom keras import callbacks\r\nfrom keras import layers\r\nfrom keras import losses\r\nfrom keras import metrics\r\nfrom keras import models\r\nfrom keras import utils\r\n```\r\n\r\n> In the syntax metrics=[accuracy, Precision()], the term \"accuracy\" is considered as a Python object that is used to calculate the accuracy metric during model training and evaluation. Whereas, in the syntax metrics=['accuracy', Precision()], the term \"accuracy\" is a string that represents a pre-defined metric function in TensorFlow.\r\n\r\nI modified the two versions and these are the final versions of the code. The [Bug-TensorFlow-Keras-Sequential-compile-metrics.ipynb](https://colab.research.google.com/drive/1sle0JaEl-hdRCKeMQCUdY43nNWnYY4mB), right now, has editor permissions. The original [training data is in Dropbox](https://www.dropbox.com/s/gv3k8kcenwqdfxa/tic-tac-toe-records-train.csv?dl=0) and you could download, it requests to log in or sign in, they are not necessary, you can click on cancel or “x” icon.\r\n\r\nDid you expect these changes in the follow code? Please don't hesitate to tell me if you want to change the code in other way.\r\n\r\nWithout quotes:\r\n\r\n```python\r\nmodel = models.Sequential()\r\nmodel.add(layers.Dense(512, activation=activations.relu, input_shape=train_set_x.shape[1:]))\r\nmodel.add(layers.Dense(512, activation=activations.relu))\r\nmodel.add(layers.Dense(train_set_y.shape[1], activation=activations.softmax))\r\nmodel.compile(\r\n optimizer=optimizers.Adam(),\r\n loss=losses.CategoricalCrossentropy(),\r\n metrics=[metrics.Accuracy(), metrics.Precision()]\r\n)\r\n```\r\n\r\nWith quotes:\r\n\r\n```python\r\nmodel = models.Sequential()\r\nmodel.add(layers.Dense(512, activation=activations.relu, input_shape=train_set_x.shape[1:]))\r\nmodel.add(layers.Dense(512, activation=activations.relu))\r\nmodel.add(layers.Dense(train_set_y.shape[1], activation=activations.softmax))\r\nmodel.compile(\r\n optimizer=optimizers.Adam(),\r\n loss=losses.CategoricalCrossentropy(),\r\n metrics=['accuracy', metrics.Precision()]\r\n)\r\n```\r\n\r\nWith these changes, I got these graphs.\r\n\r\n**Without quotes.**\r\n\r\nExecute 01:\r\n\r\n\r\n\r\nExecute 02:\r\n\r\n\r\n\r\nExecute 03:\r\n\r\n\r\n\r\n**With quotes.**\r\n\r\nExecute 01:\r\n\r\n\r\n\r\nExecute 02:\r\n\r\n\r\n\r\nExecute 03:\r\n\r\n\r\n\r\n---\r\n\r\n**NOTES:**\r\n\r\nI tagged this issue as a possible bug, but it looks like it is not a bug regarding your explanation, when the metrics is in between quotes, it takes some internal metric which is unknown, and it is fine. I tried to expose that the result is different from quotes and using directly the class. Just for the people who are expected some result but at the end this result will be change if you use quotes in the metrics or directly the class. I consider important because if I am using the metrics to evaluate which model is the best, using Tuner Keras or creating manual models. At the end this could affect my decision since I am seeing something that maybe is not related to the reality that I am thinking.",
"From the documentation of [compile](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential?version=nightly#compile) for metrics, it explains about the string \"accuracy\" usage as below.\r\n\r\n> _List of metrics to be evaluated by the model during training and testing. Each of this can be a string (name of a built-in function), function or a [tf.keras.metrics.Metric](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Metric) instance. See [tf.keras.metrics](https://www.tensorflow.org/api_docs/python/tf/keras/metrics). Typically you will use metrics=['accuracy']. A function is any callable with the signature result = fn(y_true,y_pred). To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as metrics={'output_a':'accuracy', 'output_b':['accuracy', 'mse']}. You can also pass a list to specify a metric or a list of metrics for each output, such as metrics=[['accuracy'], ['accuracy', 'mse']] or metrics=['accuracy', ['accuracy', 'mse']]. When you pass the strings 'accuracy' or 'acc', we convert this to one of [tf.keras.metrics.BinaryAccuracy](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/BinaryAccuracy), [tf.keras.metrics.CategoricalAccuracy](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy), [tf.keras.metrics.SparseCategoricalAccuracy](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseCategoricalAccuracy) based on the shapes of the targets and of the model output. We do a similar conversion for the strings 'crossentropy' and 'ce' as well. The metrics passed here are evaluated without sample weighting; if you would like sample weighting to apply, you can specify your metrics via the weighted_metrics argument instead._\r\n\r\nLet me know if this explains your confusion about the metric. Thanks!",
"Yes, it explains the confusion. Furthermore, it makes sense. I'll close this issue. Thank you for all.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60338\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60338\">No</a>\n"
] | 2023-04-16T15:52:19 | 2023-05-17T04:21:36 | 2023-05-17T04:21:34 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf v2.12.0-rc1-12-g0db597d0d75 2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Arch Linux | BUILD_ID: rolling | Linux kernel 6.2.10
### Mobile device
_No response_
### Python version
Python 3.10.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
cuda 12.1.0-3 | cudnn 8.8.0.121-1
### GPU model and memory
GPU: NVIDIA GeForce GTX 1080 | Memory: 8388608 kBytes
### Current Behaviour?
I expect the same result if I used the metric with quotes and if I used without quotes. For me, it means there is something wrong at code level, maybe I am wrong.
The word accuracy with quotes, I got these values:
```python
self.__model.compile(
optimizer=Adam(),
loss=categorical_crossentropy,
metrics=['accuracy', Precision()]
)
```

The word accuracy without quotes, I got these values:
```python
from tensorflow.python.keras.metrics import accuracy, Precision
self.__model.compile(
optimizer=Adam(),
loss=categorical_crossentropy,
metrics=[accuracy, Precision()]
)
```

---
Note:
I can't reproduce my example in TF Nightly (v1.12.1-92737-g0ae43a3fd1f 2.13.0-dev20230415) because it throws an error: `AttributeError: module 'tensorflow.python.distribute.input_lib' has no attribute 'DistributedDatasetInterface'. Did you mean: 'DistributedDatasetSpec'?`
### Standalone code to reproduce the issue
```shell
As, I show in this Jupyter Notebook. With the same data, if I change the metrics in the compile method with quotes `'accuracy'` or without quotes `accuracy`, it shows different results.
I repeat three times these steps in the Jupyter notebook, to avoid any fluctuation.
Bug-TensorFlow-Keras-Sequential-compile-metrics.ipynb
https://colab.research.google.com/drive/1sle0JaEl-hdRCKeMQCUdY43nNWnYY4mB
```
### Relevant log output
```shell
Without quotes:
{'loss': [1808.695068359375, 202.96279907226562, 54.72672653198242], 'accuracy': [0.5349747538566589, 0.4256841242313385, 0.16613984107971191], 'precision_9': [0.2498059868812561, 0.24983149766921997, 0.2497267723083496], 'val_loss': [443.4054870605469, 110.1395034790039, 11.466686248779297], 'val_accuracy': [0.532325029373169, 0.38062500953674316, 0.001075000036507845], 'val_precision_9': [0.24899999797344208, 0.24692469835281372, 0.25175511837005615]}
{'loss': [1874.009521484375, 148.31224060058594, 2.5201101303100586], 'accuracy': [0.5312250256538391, 0.35342004895210266, 0.0018018229166045785], 'precision_11': [0.25014790892601013, 0.249727264046669, 0.2505243122577667], 'val_loss': [175.01815795898438, 16.236042022705078, 1.3863223791122437], 'val_accuracy': [0.44843751192092896, 0.018687499687075615, 0.0], 'val_precision_11': [0.24866242706775665, 0.2497398555278778, 0.0]}
{'loss': [1835.9310302734375, 164.72079467773438, 33.215553283691406], 'accuracy': [0.5334452986717224, 0.38880130648612976, 0.09400103986263275], 'precision_13': [0.25037264823913574, 0.2497129887342453, 0.25012683868408203], 'val_loss': [331.0498046875, 54.01085662841797, 2.3827459812164307], 'val_accuracy': [0.4865500032901764, 0.18593749403953552, 0.0], 'val_precision_13': [0.24895000457763672, 0.2504253089427948, 0.2584269642829895]}
With quotes:
{'loss': [2104.91552734375, 218.6924591064453, 41.532161712646484], 'accuracy': [0.24953334033489227, 0.25047290325164795, 0.2501385509967804], 'precision_10': [0.24953436851501465, 0.2504711151123047, 0.25022196769714355], 'val_loss': [299.38861083984375, 87.65056610107422, 1.386319637298584], 'val_accuracy': [0.24914999306201935, 0.2533999979496002, 0.24940000474452972], 'val_precision_10': [0.24914999306201935, 0.25342532992362976, 0.0]}
{'loss': [1932.6285400390625, 215.28610229492188, 62.687828063964844], 'accuracy': [0.25043436884880066, 0.24967291951179504, 0.24986353516578674], 'precision_12': [0.25043463706970215, 0.2496640384197235, 0.24984458088874817], 'val_loss': [281.5032653808594, 66.43962860107422, 21.2304744720459], 'val_accuracy': [0.2502000033855438, 0.25029999017715454, 0.25209999084472656], 'val_precision_12': [0.2502000033855438, 0.2503626048564911, 0.25167566537857056]}
{'loss': [1990.3583984375, 205.70851135253906, 56.19692611694336], 'accuracy': [0.2503645718097687, 0.24988020956516266, 0.24988438189029694], 'precision_14': [0.25036510825157166, 0.2498749941587448, 0.24987071752548218], 'val_loss': [414.74072265625, 72.6060562133789, 28.769975662231445], 'val_accuracy': [0.24705000221729279, 0.25224998593330383, 0.24639999866485596], 'val_precision_14': [0.24705000221729279, 0.2522878348827362, 0.24636809527873993]}
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60338/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60338/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60337 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60337/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60337/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60337/events | https://github.com/tensorflow/tensorflow/issues/60337 | 1,669,864,340 | I_kwDOArmXAs5jiBuU | 60,337 | have a bug about AVX2 FMA | {
"login": "stonecropa",
"id": 114655828,
"node_id": "U_kgDOBtWCVA",
"avatar_url": "https://avatars.githubusercontent.com/u/114655828?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stonecropa",
"html_url": "https://github.com/stonecropa",
"followers_url": "https://api.github.com/users/stonecropa/followers",
"following_url": "https://api.github.com/users/stonecropa/following{/other_user}",
"gists_url": "https://api.github.com/users/stonecropa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stonecropa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stonecropa/subscriptions",
"organizations_url": "https://api.github.com/users/stonecropa/orgs",
"repos_url": "https://api.github.com/users/stonecropa/repos",
"events_url": "https://api.github.com/users/stonecropa/events{/privacy}",
"received_events_url": "https://api.github.com/users/stonecropa/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@stonecropa,\r\nCould you please provide the complete code to debug the issue. Also Please don't file vulnerabilities on GitHub. Please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow rules for responsible disclosure. Thank you!",
"[Uploading RectifiedFlow-main (1).zip…]()\r\nthis ",
"@stonecropa,,\r\nThe zip file which was provided above re-directing the same issue page. Please check and confirm whether you have attached the correct file or not. Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60337\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60337\">No</a>\n"
] | 2023-04-16T11:00:00 | 2023-05-28T02:01:52 | 2023-05-28T02:01:49 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12
### Custom Code
Yes
### OS Platform and Distribution
ubuntu 2004
### Mobile device
_No response_
### Python version
Python3.8.16
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.3
### GPU model and memory
_No response_
### Current Behaviour?
don't train,I want to fix it
### Standalone code to reproduce the issue
```shell
2023-04-16 18:41:59.167857: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Segmentation fault (core dumped)
```
### Relevant log output
```shell
2023-04-16 18:41:59.167857: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Segmentation fault (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60337/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60337/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60336 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60336/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60336/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60336/events | https://github.com/tensorflow/tensorflow/issues/60336 | 1,669,804,153 | I_kwDOArmXAs5jhzB5 | 60,336 | TPU Tensorflow mapping string label to int with | {
"login": "Shiro-LK",
"id": 26505641,
"node_id": "MDQ6VXNlcjI2NTA1NjQx",
"avatar_url": "https://avatars.githubusercontent.com/u/26505641?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Shiro-LK",
"html_url": "https://github.com/Shiro-LK",
"followers_url": "https://api.github.com/users/Shiro-LK/followers",
"following_url": "https://api.github.com/users/Shiro-LK/following{/other_user}",
"gists_url": "https://api.github.com/users/Shiro-LK/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Shiro-LK/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Shiro-LK/subscriptions",
"organizations_url": "https://api.github.com/users/Shiro-LK/orgs",
"repos_url": "https://api.github.com/users/Shiro-LK/repos",
"events_url": "https://api.github.com/users/Shiro-LK/events{/privacy}",
"received_events_url": "https://api.github.com/users/Shiro-LK/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097541661,
"node_id": "MDU6TGFiZWwxMDk3NTQxNjYx",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:tpus",
"name": "comp:tpus",
"color": "0052cc",
"default": false,
"description": "tpu, tpuestimator"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@SuryanarayanaY \r\nI was able to reproduce the issue on colab using tf2.12 and TPU but it is working as expected on the GPU. Please find the gist of [TPU](https://colab.research.google.com/gist/tiruk007/9ef6fcbbf829dfad381dee7615a7b771/tpu.ipynb) & [GPU](https://colab.research.google.com/gist/tiruk007/341fc13fcaafbf96af8357e971d128ec/gpu.ipynb) for reference.\r\n\r\nThank you !",
"Hi @Shiro-LK ,\r\n\r\nAt present not all Ops are executable with TPUs. The iter operation might be one of them. Also, from the error log: \r\n\r\n`Executing non-communication op <MakeIterator> originally returned UnavailableError, and was replaced by InternalError to avoid invoking TF network error handling logic` \r\n\r\n It seems `iter` operation not supported on TPUs.\r\n\r\nYou can find the TPU supported Ops list [here](https://cloud.google.com/tpu/docs/tensorflow-ops) for reference. Please cross check the source and confirm. If you find anything missing here please revert back to us.\r\n\r\nThanks!",
"Thank, I suppose this ops is not compatible for the moment, but it is not mentionned in this documentation. I succeed to make it works without changing anything though, but it may work one time every 20 attempt. Not sure how it is possible. @SuryanarayanaY "
] | 2023-04-16T09:22:35 | 2023-05-25T16:33:19 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.12
### Custom Code
Yes
### OS Platform and Distribution
Colab
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
None
### GPU model and memory
None
### Current Behaviour?
I currently get an error when trying to get my batch from a tf.dataset. I am mapping the string label in the tfrecord into int with tf.lookup.StaticHashTable.
```
InternalError: failed to connect to all addresses; last error: UNKNOWN: ipv4:127.0.0.1:37044: Failed to connect to remote host: Connection refused
Additional GRPC error information from remote target /job:localhost/replica:0/task:0/device:CPU:0:
```
Because of that I can't get the batch of my dataset, and train a model with TPU. It works fine with GPU.
### Standalone code to reproduce the issue
```shell
https://colab.research.google.com/drive/1vAADMl5fBulmSnbmbOTrMjyzAYAgHhFl?authuser=1#scrollTo=_zv9OlXbIqDf
```
### Relevant log output
```shell
AttributeError Traceback (most recent call last)
/usr/local/lib/python3.9/dist-packages/tensorflow/python/data/ops/iterator_ops.py in _next_internal(self)
786 # Fast path for the case `self._structure` is not a nested structure.
--> 787 return self._element_spec._from_compatible_tensor_list(ret) # pylint: disable=protected-access
788 except AttributeError:
AttributeError: 'tuple' object has no attribute '_from_compatible_tensor_list'
During handling of the above exception, another exception occurred:
InternalError Traceback (most recent call last)
13 frames
InternalError: failed to connect to all addresses; last error: UNKNOWN: ipv4:127.0.0.1:37044: Failed to connect to remote host: Connection refused
Additional GRPC error information from remote target /job:localhost/replica:0/task:0/device:CPU:0:
:UNKNOWN:failed to connect to all addresses; last error: UNKNOWN: ipv4:127.0.0.1:37044: Failed to connect to remote host: Connection refused {grpc_status:14, created_time:"2023-04-16T09:15:30.550805248+00:00"}
Executing non-communication op <MakeIterator> originally returned UnavailableError, and was replaced by InternalError to avoid invoking TF network error handling logic.
During handling of the above exception, another exception occurred:
InternalError Traceback (most recent call last)
/usr/local/lib/python3.9/dist-packages/tensorflow/python/eager/executor.py in wait(self)
63 def wait(self):
64 """Waits for ops dispatched in this executor to finish."""
---> 65 pywrap_tfe.TFE_ExecutorWaitForAllPendingNodes(self._handle)
66
67 def clear_error(self):
InternalError: failed to connect to all addresses; last error: UNKNOWN: ipv4:127.0.0.1:37044: Failed to connect to remote host: Connection refused
Additional GRPC error information from remote target /job:localhost/replica:0/task:0/device:CPU:0:
:UNKNOWN:failed to connect to all addresses; last error: UNKNOWN: ipv4:127.0.0.1:37044: Failed to connect to remote host: Connection refused {grpc_status:14, created_time:"2023-04-16T09:15:30.550805248+00:00"}
Executing non-communication op <MakeIterator> originally returned UnavailableError, and was replaced by InternalError to avoid invoking TF network error handling logic.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60336/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60336/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60335 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60335/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60335/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60335/events | https://github.com/tensorflow/tensorflow/issues/60335 | 1,669,648,557 | I_kwDOArmXAs5jhNCt | 60,335 | Smart watch | {
"login": "Rexblk81",
"id": 114974888,
"node_id": "U_kgDOBtpgqA",
"avatar_url": "https://avatars.githubusercontent.com/u/114974888?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Rexblk81",
"html_url": "https://github.com/Rexblk81",
"followers_url": "https://api.github.com/users/Rexblk81/followers",
"following_url": "https://api.github.com/users/Rexblk81/following{/other_user}",
"gists_url": "https://api.github.com/users/Rexblk81/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Rexblk81/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Rexblk81/subscriptions",
"organizations_url": "https://api.github.com/users/Rexblk81/orgs",
"repos_url": "https://api.github.com/users/Rexblk81/repos",
"events_url": "https://api.github.com/users/Rexblk81/events{/privacy}",
"received_events_url": "https://api.github.com/users/Rexblk81/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 1593512946,
"node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid",
"name": "invalid",
"color": "db6f57",
"default": true,
"description": "Hacktoberfest spam PR"
}
] | closed | true | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @Rexblk81, We see that the issue [template]( https://github.com/tensorflow/tensorflow/issues/new/choose) has not been filled, could you please do so as it helps us analyze the issue [tf version, steps followed before you ran into this error or stand alone code/colab gist to reproduce the issue] faced. Thank you!\t ",
"Please don't spam."
] | 2023-04-16T03:07:24 | 2023-04-18T15:34:50 | 2023-04-18T15:34:50 | NONE | spam | null | null | <spam removed> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60335/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60335/timeline | null | not_planned | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60334 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60334/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60334/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60334/events | https://github.com/tensorflow/tensorflow/issues/60334 | 1,669,269,445 | I_kwDOArmXAs5jfwfF | 60,334 | Is there some way to set the data type of the tflite model to int8 here? | {
"login": "linuxlonelyeagle",
"id": 75576166,
"node_id": "MDQ6VXNlcjc1NTc2MTY2",
"avatar_url": "https://avatars.githubusercontent.com/u/75576166?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/linuxlonelyeagle",
"html_url": "https://github.com/linuxlonelyeagle",
"followers_url": "https://api.github.com/users/linuxlonelyeagle/followers",
"following_url": "https://api.github.com/users/linuxlonelyeagle/following{/other_user}",
"gists_url": "https://api.github.com/users/linuxlonelyeagle/gists{/gist_id}",
"starred_url": "https://api.github.com/users/linuxlonelyeagle/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/linuxlonelyeagle/subscriptions",
"organizations_url": "https://api.github.com/users/linuxlonelyeagle/orgs",
"repos_url": "https://api.github.com/users/linuxlonelyeagle/repos",
"events_url": "https://api.github.com/users/linuxlonelyeagle/events{/privacy}",
"received_events_url": "https://api.github.com/users/linuxlonelyeagle/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1093464312,
"node_id": "MDU6TGFiZWwxMDkzNDY0MzEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others",
"name": "type:others",
"color": "159b2e",
"default": false,
"description": "issues not falling in bug, perfromance, support, build and install or feature"
},
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Yes, it is possible to convert the data type of a TensorFlow Lite (TFLite) model to int8. One way to do this is to use the TensorFlow Lite Converter, which provides options for quantizing and converting the data type of a TFLite model.\r\n\r\nTo convert the data type of a TFLite model to int8, you can use the tf.lite.TFLiteConverter class in TensorFlow. Here's an example code snippet:\r\n\r\n```sh\r\nimport tensorflow as tf\r\n\r\n# Load the original TFLite model\r\nmodel_path = 'original_model.tflite'\r\ninterpreter = tf.lite.Interpreter(model_path=model_path)\r\ninterpreter.allocate_tensors()\r\n\r\n# Create a TFLite converter with the int8 quantization configuration\r\nconverter = tf.lite.TFLiteConverter.from_saved_model('saved_model')\r\nconverter.optimizations = [tf.lite.Optimize.DEFAULT]\r\nconverter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]\r\n\r\n# Convert the model to int8\r\ntflite_model = converter.convert()\r\n\r\n# Save the converted model to a file\r\nwith open('int8_model.tflite', 'wb') as f:\r\n f.write(tflite_model)\r\n```\r\nIn this example, the original TFLite model is loaded using the tf.lite.Interpreter class, and a new TFLite converter is created with the int8 quantization configuration. The optimizations attribute is set to [tf.lite.Optimize.DEFAULT] to enable default optimizations, and the supported_ops attribute is set to [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] to specify that the converter should use the int8 quantization scheme.\r\n\r\nFinally, the convert() method of the TFLite converter is called to convert the model to int8, and the resulting model is saved to a file using the open() function.\r\n\r\nNote that the conversion to int8 may cause some loss of precision, which can affect the accuracy of the model. It is recommended to test the converted model thoroughly to ensure that it performs adequately for your use case.",
"I'll try it later.Thanks!\r\n\r\n> Yes, it is possible to convert the data type of a TensorFlow Lite (TFLite) model to int8. One way to do this is to use the TensorFlow Lite Converter, which provides options for quantizing and converting the data type of a TFLite model.\r\nI'll try it later.Thanks!",
"> converter = tf.lite.TFLiteConverter.from_saved_model('saved_model')\r\n\r\nWhen i run `converter = tf.lite.TFLiteConverter.from_saved_model('saved_model')`\r\nIt says\r\n```\r\nOSError: SavedModel file does not exist at: saved_model/{saved_model.pbtxt|saved_model.pb}\r\n```\r\nThen I create saved_model.\r\n```\r\n$:pwd\r\n/home/sen/saved_model\r\n$:ls\r\nsaved_model.pb saved_model.pbtxt\r\n```\r\nIt says \r\n```\r\nRuntimeError: MetaGraphDef associated with tags {'serve'} could not be found in SavedModel, with available tags '[]'. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`.\r\n```",
"The error message suggests that the SavedModel file you provided as input to the from_saved_model method does not contain the expected content. Specifically, the method is looking for a MetaGraphDef with the 'serve' tag, but it cannot find it in the SavedModel file you provided.\r\n\r\nTo investigate further, you can use the saved_model_cli command line tool to inspect the contents of your SavedModel file. Here is an example command you can use:\r\n\r\n```sh\r\nsaved_model_cli show --dir /home/sen/saved_model --all\r\n```\r\nThis will show you all the available tag-sets in the SavedModel file, and you can check if the 'serve' tag is present or not.\r\n\r\nIf the 'serve' tag is not present, it is likely that the SavedModel was not exported with the correct signature or signature key. You can try exporting the model again with the correct signature, or you can modify the signature_def_map argument in the from_saved_model method to point to the correct signature key.\r\n\r\nHere is an example of how to specify the signature_def_map argument:\r\n\r\n```sh\r\nconverter = tf.lite.TFLiteConverter.from_saved_model('saved_model', signature_def_map={'serving_default': input_signature})\r\n```\r\nHere, serving_default is the name of the signature key, and input_signature is the input signature for the model. You should replace these with the correct values for your model.",
"One other question, the tflite file I downloaded only has a `'1?lite-format=tflite'`, do I need to do something else with it?\r\n\r\n",
"The `resnet_v2_101_1_default_1` directory holds my model.There is only `'1?lite-format=tflite' ` inside.The saved_model directory was created by me and I use `touch` to create `saved_model.pbtxt|saved_model.pb`,I think I did it wrong.Should I do something else on `'1?lite-format=tflite'`.\r\n```\r\n$:saved_model_cli show --dir resnet_v2_101_1_default_1 --all\r\n2023-04-16 15:48:45.766142: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\r\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-16 15:48:45.887963: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\r\n2023-04-16 15:48:45.891985: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\r\n2023-04-16 15:48:45.892027: I tensorflow/compiler/xla/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\r\n2023-04-16 15:48:46.582788: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\r\n2023-04-16 15:48:46.582869: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\r\n2023-04-16 15:48:46.582883: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\r\n```",
"> One other question, the tflite file I downloaded only has a `'1?lite-format=tflite'`, do I need to do something else with it?\r\n\r\nThis is the standard file format for models that have been optimized for use on mobile and embedded devices.\r\n\r\nOnce you have downloaded the .tflite file, you can use it directly in your mobile or embedded application without any further processing. You will need to load the model into your application and use it to perform inference on your input data.\r\n\r\nTo load the model into your application, you can use the TensorFlow Lite Interpreter API. The exact steps for loading the model and running inference will depend on the programming language and framework you are using in your application.",
"> The `resnet_v2_101_1_default_1` directory holds my model.There is only `'1?lite-format=tflite' ` inside.The saved_model directory was created by me and I use `touch` to create `saved_model.pbtxt|saved_model.pb`,I think I did it wrong.Should I do something else on `'1?lite-format=tflite'`.\r\n> \r\n> ```\r\n> $:saved_model_cli show --dir resnet_v2_101_1_default_1 --all\r\n> 2023-04-16 15:48:45.766142: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\r\n> To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n> 2023-04-16 15:48:45.887963: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\r\n> 2023-04-16 15:48:45.891985: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\r\n> 2023-04-16 15:48:45.892027: I tensorflow/compiler/xla/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\r\n> 2023-04-16 15:48:46.582788: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\r\n> 2023-04-16 15:48:46.582869: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\r\n> 2023-04-16 15:48:46.582883: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\r\n> ```\r\n\r\nBased on the information provided, it seems like you have saved your model in TensorFlow Lite format (.tflite) in the \"resnet_v2_101_1_default_1\" directory. However, you have manually created a \"saved_model\" directory and its associated files (\"saved_model.pbtxt\" and \"saved_model.pb\") in the same directory. This may have caused the files to be overwritten or not saved correctly.\r\n\r\nIf you intend to use the TensorFlow SavedModel format instead of the TensorFlow Lite format, you can save your model using the following code:\r\n\r\n```sh\r\nimport tensorflow as tf\r\n\r\n# Load your ResNet model\r\nmodel = tf.keras.applications.ResNet101V2(weights=\"imagenet\")\r\n\r\n# Save the model in SavedModel format\r\ntf.saved_model.save(model, \"saved_model\")\r\n```\r\nThis will create a directory named \"saved_model\" with the SavedModel files inside it.\r\n\r\nAlternatively, if you intend to use the TensorFlow Lite format, you can convert the SavedModel to TensorFlow Lite using the following code:\r\n\r\n```sh\r\nconverter = tf.lite.TFLiteConverter.from_saved_model(\"saved_model\")\r\ntflite_model = converter.convert()\r\n\r\n# Save the TensorFlow Lite model to a file\r\nwith open(\"model.tflite\", \"wb\") as f:\r\n f.write(tflite_model)\r\n```\r\nThis will create a file named \"model.tflite\" containing the TensorFlow Lite model.\r\n\r\nRegarding the warnings related to missing libraries, it seems like TensorFlow is unable to load some GPU-related libraries because you are running on a CPU-only system. These warnings can be safely ignored if you do not intend to use GPU acceleration for your model.",
"Sorry, I still can't solve this problem.Here is my current progress. the saved_model.pb and saved_model.pbtxt are ampty.\r\n```\r\n$ pwd \r\n/home/sen/resnet_v2_101_1_default_1\r\n$ ls \r\n'1?lite-format=tflite' saved_model.pb saved_model.pbtxt \r\n```\r\nThen I run python.\r\n```\r\n>>> model_path = '/home/sen/resnet_v2_101_1_default_1/1?lite-format=tflite'\r\n>>> interpreter = tf.lite.Interpreter(model_path=model_path)\r\n>>> interpreter.allocate_tensors() \r\nINFO: Created TensorFlow Lite XNNPACK delegate for CPU.\r\n>>> converter = tf.lite.TFLiteConverter.from_saved_model('/home/sen/resnet_v2_101_1_default_1')\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/sen/iree.venv/lib/python3.10/site-packages/tensorflow/lite/python/lite.py\", line 1792, in from_saved_model\r\n saved_model = _load(saved_model_dir, tags)\r\n File \"/home/sen/iree.venv/lib/python3.10/site-packages/tensorflow/python/saved_model/load.py\", line 828, in load\r\n result = load_partial(export_dir, None, tags, options)[\"root\"]\r\n File \"/home/sen/iree.venv/lib/python3.10/site-packages/tensorflow/python/saved_model/load.py\", line 977, in load_partial\r\n root = load_v1_in_v2.load(export_dir, tags)\r\n File \"/home/sen/iree.venv/lib/python3.10/site-packages/tensorflow/python/saved_model/load_v1_in_v2.py\", line 284, in load\r\n result = loader.load(tags=tags)\r\n File \"/home/sen/iree.venv/lib/python3.10/site-packages/tensorflow/python/saved_model/load_v1_in_v2.py\", line 209, in load\r\n meta_graph_def = self.get_meta_graph_def_from_tags(tags)\r\n File \"/home/sen/iree.venv/lib/python3.10/site-packages/tensorflow/python/saved_model/load_v1_in_v2.py\", line 88, in get_meta_graph_def_from_tags\r\n return super(_EagerSavedModelLoader, self).get_meta_graph_def_from_tags(\r\n File \"/home/sen/iree.venv/lib/python3.10/site-packages/tensorflow/python/saved_model/loader_impl.py\", line 391, in get_meta_graph_def_from_tags\r\n raise RuntimeError(\r\nRuntimeError: MetaGraphDef associated with tags {'serve'} could not be found in SavedModel, with available tags '[]'. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`.\r\n>>> converter = tf.lite.TFLiteConverter.from_saved_model('saved_model', signature_def_map={'serving_default': input_signature})\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\nNameError: name 'input_signature' is not defined\r\n```",
"It seems that you are still facing issues with your TensorFlow Lite model conversion. Based on the error message you provided, it appears that the from_saved_model() function is unable to find the MetaGraphDef associated with the 'serve' tag in your SavedModel directory.\r\n\r\nTo troubleshoot this issue, you can try using the saved_model_cli command-line tool to inspect the available tags in your SavedModel directory. Here's an example command you can use:\r\n\r\n```sh\r\nsaved_model_cli show --dir /home/sen/resnet_v2_101_1_default_1 --tag_set serve --all\r\n```\r\nThis should display information about the available tags and their associated MetaGraphDef signatures in your SavedModel directory.\r\n\r\nAs for the NameError you encountered when running the from_saved_model() function with the signature_def_map parameter, it seems that the variable input_signature was not defined before it was used in the function call. You may need to define input_signature as a dictionary that maps the input tensor names to their corresponding shapes and types, like this:\r\n\r\n```sh\r\ninput_signature = {\r\n 'input_tensor_name': (batch_size, height, width, channels),\r\n # define additional inputs as needed\r\n}\r\n```\r\nMake sure to replace the placeholder values (batch_size, height, width, channels) with the actual input shapes and types that your model expects.\r\n\r\nI hope this helps you make progress in converting your TensorFlow Lite model. Let me know if you have any further questions or issues!\r\n",
"The following command will not output anything\r\n> ```shell\r\n> saved_model_cli show --dir /home/sen/resnet_v2_101_1_default_1 --tag_set serve --all\r\n> ```\r\nAn error will be reported, I think we are using a different version of tensorflow.\r\n```\r\n converter = tf.lite.TFLiteConverter.from_saved_model('saved_model', signature_def_map={'serving_default': input_signature})\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\nTypeError: TFLiteConverterV2.from_saved_model() got an unexpected keyword argument 'signature_def_map'\r\n```\r\n> ```shell\r\n> input_signature = {\r\n> 'input_tensor_name': (batch_size, height, width, channels),\r\n> # define additional inputs as needed\r\n> }\r\n> ```\r\nThis is my [model](https://hub.tensorflow.google.cn/tensorflow/lite-model/resnet_v2_101/1/default/1), I think you can try it.Thanks!\r\n\r\n",
"\r\nHi @linuxlonelyeagle \r\n\r\nThe TFLite has `full integer quantization` which converts 32-bit floating-point numbers (such as weights and activation outputs) to the nearest 8-bit fixed-point numbers. We can enable that while converting the tensorflow/keras models to tflite model.\r\n\r\nPlease refer this [documentation](https://www.tensorflow.org/lite/performance/post_training_integer_quant) on post training integer quantization.\r\n\r\nThe [model](https://hub.tensorflow.google.cn/tensorflow/lite-model/resnet_v2_101/1/default/1) which you are trying is a tflite model and it seems to be missing. We can get `resnet_v2_101` from [TF hub](https://hub.tensorflow.google.cn/google/imagenet/resnet_v2_101/classification/5) and convert to TF Lite model with int8 quantization.\r\n\r\nPlease find the [gist](https://colab.research.google.com/gist/pjpratik/86968ff929acb61fe09c4af40d6cf6e7/60334.ipynb) here doing the same.\r\n\r\nThanks.\r\n",
"> Hi @linuxlonelyeagle\r\n> \r\n> The TFLite has `full integer quantization` which converts 32-bit floating-point numbers (such as weights and activation outputs) to the nearest 8-bit fixed-point numbers. We can enable that while converting the tensorflow/keras models to tflite model.\r\n> \r\n> Please refer this [documentation](https://www.tensorflow.org/lite/performance/post_training_integer_quant) on post training integer quantization.\r\n> \r\n> The [model](https://hub.tensorflow.google.cn/tensorflow/lite-model/resnet_v2_101/1/default/1) which you are trying is a tflite model and it seems to be missing. We can get `resnet_v2_101` from [TF hub](https://hub.tensorflow.google.cn/google/imagenet/resnet_v2_101/classification/5) and convert to TF Lite model with int8 quantization.\r\n> \r\n> Please find the [gist](https://colab.research.google.com/gist/pjpratik/86968ff929acb61fe09c4af40d6cf6e7/60334.ipynb) here doing the same.\r\n> \r\n> Thanks.\r\n\r\nThank you for your reply!\r\n",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60334\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60334\">No</a>\n"
] | 2023-04-15T09:17:33 | 2023-04-17T14:47:30 | 2023-04-17T14:47:28 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Others
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.11
### Custom Code
Yes
### OS Platform and Distribution
linux ubuntu 20
### Mobile device
linux ubuntu 20
### Python version
3.10.6
### Bazel version
No bazel
### GCC/Compiler version
9.4
### CUDA/cuDNN version
No cuda
### GPU model and memory
No Gpu
### Current Behaviour?
I'm new to tensorflow, I was doing mlir related work before, I'm trying to download a model to test what I'm doing, but I'm having a problem, the conv and matmul I implemented on mlir only support int8, I'd like to ask if there is a way to convert the data type of the tflite model here to int8.
### Standalone code to reproduce the issue
```shell
I just want to ask if there is a way to convert data types.
```
### Relevant log output
```shell
No log.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60334/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60334/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60333 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60333/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60333/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60333/events | https://github.com/tensorflow/tensorflow/issues/60333 | 1,669,095,738 | I_kwDOArmXAs5jfGE6 | 60,333 | AttributeError: module 'tensorflow' has no attribute '__version__' | {
"login": "stonecropa",
"id": 114655828,
"node_id": "U_kgDOBtWCVA",
"avatar_url": "https://avatars.githubusercontent.com/u/114655828?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stonecropa",
"html_url": "https://github.com/stonecropa",
"followers_url": "https://api.github.com/users/stonecropa/followers",
"following_url": "https://api.github.com/users/stonecropa/following{/other_user}",
"gists_url": "https://api.github.com/users/stonecropa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stonecropa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stonecropa/subscriptions",
"organizations_url": "https://api.github.com/users/stonecropa/orgs",
"repos_url": "https://api.github.com/users/stonecropa/repos",
"events_url": "https://api.github.com/users/stonecropa/events{/privacy}",
"received_events_url": "https://api.github.com/users/stonecropa/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1188421838,
"node_id": "MDU6TGFiZWwxMTg4NDIxODM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows",
"name": "subtype:windows",
"color": "b619ea",
"default": false,
"description": "Windows Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"The error message \"AttributeError: module 'tensorflow' has no attribute 'version'\" suggests that TensorFlow is not properly installed or loaded in your Python environment.\r\n\r\nHere are some suggestions that you can try to resolve the issue:\r\n\r\n- Check the TensorFlow installation: Make sure that TensorFlow is properly installed in your Python environment. You can check the TensorFlow installation by running the following command in your Python environment:\r\n\r\n```sh\r\nimport tensorflow as tf\r\nprint(tf.__version__)\r\n```\r\nIf this returns an error, you may need to reinstall TensorFlow.\r\n\r\n- Check for naming conflicts: It's possible that there is a naming conflict with another module or package that is causing the issue. Try renaming any variables or modules that have the same name as TensorFlow.\r\n\r\n- Check the Python environment: Make sure that you are running your code in the correct Python environment. You can verify the Python environment by checking the output of the which python command in your terminal or command prompt.\r\n\r\n- Upgrade TensorFlow: Try upgrading TensorFlow to the latest version using pip install --upgrade tensorflow.\r\n- Make sure TensorFlow is properly installed and up-to-date. You can check the installation and version by running\r\n ```pip list | grep tensorflow``` in your command prompt or terminal.\r\n\r\n- Try importing TensorFlow in a separate Python shell to check if it's properly installed and the version is correct.\r\n\r\nIf none of these suggestions work, please provide more details such as the full error message and any other relevant information about your system or code.",
"The error message \"AttributeError: module 'tensorflow' has no attribute 'version'\" is indicating that the version of TensorFlow you are using does not have the \"version\" attribute, which is usually present in TensorFlow versions. This could be due to a number of reasons, including an incorrect installation or an issue with the Python environment.\r\n\r\nHere are some steps that you can follow to resolve the issue:\r\n\r\nMake sure that TensorFlow is installed correctly. You can do this by running the following command:\r\n\r\nperl\r\nCopy code\r\npip list | grep tensorflow\r\nIf TensorFlow is installed, you should see it listed in the output. If it is not installed, you can install it using the following command:\r\n\r\nCopy code\r\npip install tensorflow\r\nCheck the version of TensorFlow that you are using. You can do this by running the following command:\r\n\r\nscss\r\nCopy code\r\npython -c \"import tensorflow as tf; print(tf.__version__)\"\r\nIf you see an error message or an incorrect version number, it is possible that you have multiple versions of TensorFlow installed, or that your Python environment is not set up correctly.\r\n\r\nMake sure that you are using the correct version of TensorFlow in your Python environment. If you have multiple versions of TensorFlow installed, you can specify which version to use by adding the following line of code at the beginning of your script:\r\n\r\npython\r\nCopy code\r\nimport tensorflow as tf\r\ntf.compat.v1.disable_eager_execution() # disabling eager execution\r\nThis will ensure that your script is using the correct version of TensorFlow.\r\n\r\nIf none of the above steps work, try creating a new Python environment and installing TensorFlow in it. This will ensure that there are no conflicts with other packages or dependencies.\r\n\r\nHopefully, one of these steps will resolve the issue you are facing",
"@stonecropa,\r\nThe error message which was mentioned \"AttributeError: module 'tensorflow' has no attribute '__version__'\" suggested that the TensorFlow is not properly installed or loaded.\r\n\r\nPlease check the above comments provided by the community and adding to the above comments, here you might have tried to uninstall and install tensorflow. There might be the chances of the environment using two kinds of tensorflows. Could you please try creating a new environment and start fresh it would work. And never place two tensorflow versions at a time. [Reference](https://stackoverflow.com/questions/61554548/attributeerror-module-tensorflow-has-no-attribute-version) \r\nhttps://github.com/matterport/Mask_RCNN/issues/795\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60333\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60333\">No</a>\n",
"Hi, \r\n\r\nCould you please try installing Tensorflow 2.13 using WSL2 for Windows and let us know if that solves your problem.\r\n\r\nRefer this link for more details: https://www.tensorflow.org/install/pip",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60333\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60333\">No</a>\n",
"verifica que tus archivos no se llamen tensorflow.py"
] | 2023-04-15T01:28:54 | 2024-05-16T20:17:20 | 2023-07-29T01:50:21 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12
### Custom Code
Yes
### OS Platform and Distribution
win10
### Mobile device
_No response_
### Python version
Python3.8.16
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.7
### GPU model and memory
_No response_
### Current Behaviour?
A bug happened!
### Standalone code to reproduce the issue
```shell
code is too long
```
### Relevant log output
```shell
(reflow1) PS E:\Googledownload\RectifiedFlow-main\ImageGeneration> python ./main.py --config ./configs/rectified_flow/cifar10_rf_gaussian_ddpmpp.py --eval_folder eval --mode eval --workdir ./logs/1_rectified_flow --config.eval.enable_sampling --config.eval.batch_size 250 --config.eval.num_samples 3000 --config.eval.begin_ckpt 8
Traceback (most recent call last):
File "./main.py", line 18, in <module>
import run_lib
File "E:\Googledownload\RectifiedFlow-main\ImageGeneration\run_lib.py", line 26, in <module>
import tensorflow_gan as tfgan
File "D:\conda\envs\reflow1\lib\site-packages\tensorflow_gan\__init__.py", line 108, in <module>
_ensure_tf_install()
File "D:\conda\envs\reflow1\lib\site-packages\tensorflow_gan\__init__.py", line 60, in _ensure_tf_install
if (distutils.version.LooseVersion(tf.__version__) <
AttributeError: module 'tensorflow' has no attribute '__version__'
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60333/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60333/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60332 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60332/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60332/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60332/events | https://github.com/tensorflow/tensorflow/issues/60332 | 1,668,950,354 | I_kwDOArmXAs5jeilS | 60,332 | KerasLegacyOptimizer fails type check in keras.optimizers.get (ValueError: Could not interpret optimizer identifier) | {
"login": "ben-arnao",
"id": 8053809,
"node_id": "MDQ6VXNlcjgwNTM4MDk=",
"avatar_url": "https://avatars.githubusercontent.com/u/8053809?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ben-arnao",
"html_url": "https://github.com/ben-arnao",
"followers_url": "https://api.github.com/users/ben-arnao/followers",
"following_url": "https://api.github.com/users/ben-arnao/following{/other_user}",
"gists_url": "https://api.github.com/users/ben-arnao/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ben-arnao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ben-arnao/subscriptions",
"organizations_url": "https://api.github.com/users/ben-arnao/orgs",
"repos_url": "https://api.github.com/users/ben-arnao/repos",
"events_url": "https://api.github.com/users/ben-arnao/events{/privacy}",
"received_events_url": "https://api.github.com/users/ben-arnao/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@ben-arnao \r\nTensorFlow Addons (TFA) has ended development and introduction of new features.\r\nTFA has entered a minimal maintenance and release mode until a planned end of life in May 2024.\r\nPlease modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). \r\n\r\nFor more information see: https://github.com/tensorflow/addons/issues/2807 \r\n\r\nPlease refer to this official document for further assistance:\r\nhttps://github.com/ianstenbit/keras-cv/blob/master/.github/CONTRIBUTING.md#contributing-custom-ops\r\n\r\n\r\nThank you !",
"@ben-arnao -\r\nThere are two issues in the code provided -\r\n1. `tensorflow.python.keras` is deprecated. Please use `from tensorflow import keras` or `import keras`. See Readme.md here - https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/keras\r\n\r\n2. You can sublcass Legacy Optimizer directly from `keras.optimizers.legacy.Optimizer` and don't see a need to use TF Addons here.",
"I mean just sounds like at this point I have to re-write the optimizer then. Maybe it should be noted somewhere a bit more explicitly that something like KerasLegacyOptimizer doesn't work with TF2. There are many examples online of writing optimizers the old way so it is a bit confusing.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60332\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60332\">No</a>\n"
] | 2023-04-14T21:03:27 | 2023-04-21T04:25:09 | 2023-04-21T04:25:06 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12
### Custom Code
Yes
### OS Platform and Distribution
Windows 10
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
RTX 2070
### Current Behaviour?
I am trying to create a customer optimizer using KerasLegacyOptimizer as a lot of the examples in https://github.com/tensorflow/addons/tree/master/tensorflow_addons/optimizers are using. Looks like we are failing at this line https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/optimizers.py#L118
Any ideas?
### Standalone code to reproduce the issue
```shell
from tensorflow.python.keras.models import Sequential
from tensorflow_addons.optimizers import KerasLegacyOptimizer
class CustomerOptimizer(KerasLegacyOptimizer):
def __init__(
self,
name: str = "CustomerOptimize",
**kwargs,
):
super().__init__(name, **kwargs)
model = Sequential()
optimizer = CustomerOptimizer()
model.compile(optimizer=optimizer)
```
### Relevant log output
```shell
Traceback (most recent call last):
File "C:\Users\Ben\PycharmProjects\AutoTab\test2.py", line 17, in <module>
model.compile(optimizer=optimizer)
File "C:\Users\Ben\PycharmProjects\AutoTab\venv\Lib\site-packages\tensorflow\python\keras\engine\training.py", line 568, in compile
self.optimizer = self._get_optimizer(optimizer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Ben\PycharmProjects\AutoTab\venv\Lib\site-packages\tensorflow\python\keras\engine\training.py", line 606, in _get_optimizer
return nest.map_structure(_get_single_optimizer, optimizer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Ben\PycharmProjects\AutoTab\venv\Lib\site-packages\tensorflow\python\util\nest.py", line 917, in map_structure
structure[0], [func(*x) for x in entries],
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\Ben\PycharmProjects\AutoTab\venv\Lib\site-packages\tensorflow\python\util\nest.py", line 917, in <listcomp>
structure[0], [func(*x) for x in entries],
^^^^^^^^
File "C:\Users\Ben\PycharmProjects\AutoTab\venv\Lib\site-packages\tensorflow\python\keras\engine\training.py", line 597, in _get_single_optimizer
opt = optimizers.get(opt)
^^^^^^^^^^^^^^^^^^^
File "C:\Users\Ben\PycharmProjects\AutoTab\venv\Lib\site-packages\tensorflow\python\keras\optimizers.py", line 131, in get
raise ValueError(
ValueError: Could not interpret optimizer identifier: <__main__.CustomerOptimizer object at 0x0000024363063350>
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60332/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60332/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60331 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60331/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60331/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60331/events | https://github.com/tensorflow/tensorflow/pull/60331 | 1,668,913,253 | PR_kwDOArmXAs5OXLS5 | 60,331 | Create testchild.py | {
"login": "Ranaokasha",
"id": 101127095,
"node_id": "U_kgDOBgcTtw",
"avatar_url": "https://avatars.githubusercontent.com/u/101127095?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Ranaokasha",
"html_url": "https://github.com/Ranaokasha",
"followers_url": "https://api.github.com/users/Ranaokasha/followers",
"following_url": "https://api.github.com/users/Ranaokasha/following{/other_user}",
"gists_url": "https://api.github.com/users/Ranaokasha/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Ranaokasha/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Ranaokasha/subscriptions",
"organizations_url": "https://api.github.com/users/Ranaokasha/orgs",
"repos_url": "https://api.github.com/users/Ranaokasha/repos",
"events_url": "https://api.github.com/users/Ranaokasha/events{/privacy}",
"received_events_url": "https://api.github.com/users/Ranaokasha/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60331/checks?check_run_id=12762224894) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.",
"want to change in master branch",
"Please don't spam"
] | 2023-04-14T20:28:32 | 2023-04-15T00:11:13 | 2023-04-14T20:43:15 | NONE | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60331",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60331",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60331.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60331.patch",
"merged_at": null
} | # Adding one line in child branch
print("Test child branch") | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60331/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60331/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60330 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60330/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60330/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60330/events | https://github.com/tensorflow/tensorflow/issues/60330 | 1,668,704,151 | I_kwDOArmXAs5jdmeX | 60,330 | element-wise multiplication overflow with large dimension tensors | {
"login": "yufang67",
"id": 23123536,
"node_id": "MDQ6VXNlcjIzMTIzNTM2",
"avatar_url": "https://avatars.githubusercontent.com/u/23123536?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yufang67",
"html_url": "https://github.com/yufang67",
"followers_url": "https://api.github.com/users/yufang67/followers",
"following_url": "https://api.github.com/users/yufang67/following{/other_user}",
"gists_url": "https://api.github.com/users/yufang67/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yufang67/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yufang67/subscriptions",
"organizations_url": "https://api.github.com/users/yufang67/orgs",
"repos_url": "https://api.github.com/users/yufang67/repos",
"events_url": "https://api.github.com/users/yufang67/events{/privacy}",
"received_events_url": "https://api.github.com/users/yufang67/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 1097547538,
"node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu",
"name": "comp:gpu",
"color": "0052cc",
"default": false,
"description": "GPU related issues"
},
{
"id": 4032183365,
"node_id": "LA_kwDOArmXAs7wVjxF",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9",
"name": "TF 2.9",
"color": "1CF842",
"default": false,
"description": "Issues found in the TF 2.9 release (or RCs)"
}
] | closed | false | {
"login": "akuegel",
"id": 14309772,
"node_id": "MDQ6VXNlcjE0MzA5Nzcy",
"avatar_url": "https://avatars.githubusercontent.com/u/14309772?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/akuegel",
"html_url": "https://github.com/akuegel",
"followers_url": "https://api.github.com/users/akuegel/followers",
"following_url": "https://api.github.com/users/akuegel/following{/other_user}",
"gists_url": "https://api.github.com/users/akuegel/gists{/gist_id}",
"starred_url": "https://api.github.com/users/akuegel/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/akuegel/subscriptions",
"organizations_url": "https://api.github.com/users/akuegel/orgs",
"repos_url": "https://api.github.com/users/akuegel/repos",
"events_url": "https://api.github.com/users/akuegel/events{/privacy}",
"received_events_url": "https://api.github.com/users/akuegel/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "akuegel",
"id": 14309772,
"node_id": "MDQ6VXNlcjE0MzA5Nzcy",
"avatar_url": "https://avatars.githubusercontent.com/u/14309772?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/akuegel",
"html_url": "https://github.com/akuegel",
"followers_url": "https://api.github.com/users/akuegel/followers",
"following_url": "https://api.github.com/users/akuegel/following{/other_user}",
"gists_url": "https://api.github.com/users/akuegel/gists{/gist_id}",
"starred_url": "https://api.github.com/users/akuegel/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/akuegel/subscriptions",
"organizations_url": "https://api.github.com/users/akuegel/orgs",
"repos_url": "https://api.github.com/users/akuegel/repos",
"events_url": "https://api.github.com/users/akuegel/events{/privacy}",
"received_events_url": "https://api.github.com/users/akuegel/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @yufang67, Apologies for the delay.\r\nThank you for reporting the issue. I was able to replicate the issue using Tensorflow 2.9.2 in Ubuntu 20.04. Please find the screenshot below. \r\n\r\n It seems like we have to dig deep into the issue, we'll update here soon. Thank you! ",
"@synandi Thanks. for the tests, if you increases a little the dimension, you will get CUDA illegal memory.",
"@yufang67, I was able to replicate the CUDA illegal memory, kindly find the screenshot below for the same.\r\n\r\n\r\n Could you please try again with the CUDA 11.2 and cuDNN 8.1 as these are the [tested build configurations](https://www.tensorflow.org/install/source#gpu) and let us know if the issue persists. Thank you! ",
"Hi @synandi,\r\nI tested on cuda11.2 and cuDNN8.1.1 and got\r\ntensorflow.python.framework.errors_impl.InternalError: Failed copying input tensor from /job:localhost/replica:0/task:0/device:GPU:0 to /job:localhost/replica:0/task:0/device:CPU:0 in order to run Identity: Could not synchronize CUDA stream: CUDA_ERROR_ILLEGAL_ADDRESS: an illegal memory access was encountered [Op:Identity]",
"Hi @synandi, any update on this issue ? thanks !",
"I can reproduce the CUDA_ERROR_ILLEGAL_ADDRESS error on a simpler example (I didn't test the value mismatch error since it was taking too long to run on my machine):\r\n\r\n```\r\nimport tensorflow as tf\r\n\r\nx = tf.constant(1., shape=(1, 1))\r\ny = tf.tile(x, (2**28, 9)) # Number of elements cannot fit in int32 value\r\ny.numpy()\r\nz = y * 2\r\nz.numpy()\r\n```\r\n\r\nThe CUDA_ERROR_ILLEGAL_ADDRESS occurs for ops with MLIR-generated kernels like multiply and relu, but not for non-MLIR-generated kernels like relu6. So this is likely an issue with MLIR-generated kernels on tensors whose number of elements is overflowing an int32 value.\r\n\r\n@akuegel, can you take a look?\r\n\r\n",
"@kushanam was working on jit-based kernels with int64 index types. I see that only atanh was enabled as experimental kernel.\r\nI am not sure what the plan forward is.\r\n@frgossen or @sherhut might know.",
"We added experimental support for some kernels. You can build Tensorflow at head with the experimental flag: `--//tensorflow/tensorflow/core/kernels/mlir_generated:enable_experimental`. We are in the process of enabling these kernels by default. ",
"They are now enabled by default. See https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60330\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60330\">No</a>\n",
"Thanks @frgossen for the info. I tried the latest nightly version of tensorflow tf_nightly-2.14.0.dev20230706, i still get the CUDA_ERROR_ILLEGAL_ADDRESS from the example of reedwm. The experimental kernel will be used automatically ? how can i use these experimental kernel ?\r\nThanks,\r\n",
"The experimental kernels will be enabled if you build TF with `--//tensorflow/core/kernels/mlir_generated:enable_experimental` flag. The nightly will not have that. \r\n\r\nAll the currently supported i64-indexing kernels are enabled by default though, so they are not experimental anymore. Do you know which kernel fails for you? ",
"Thanks @frgossen . it failed on multiplication. \r\nSo if i compile the current master branch with the mention flag, the kernels should support i64-indexing right ?",
"I would think you do not need the flag at this point since the kernels are enabled by default. I will add a test for mul and see if I can reproduce this. What dtype is this? ",
"I use this example:\r\n\r\n```\r\nimport tensorflow as tf\r\n\r\nx = tf.constant(1., shape=(1, 1))\r\ny = tf.tile(x, (2**28, 9)) # Number of elements cannot fit in int32 value\r\ny.numpy()\r\nz = y * 2\r\nz.numpy()\r\n\r\n```\r\ni suppose the default dtype is float32.\r\n\r\n",
"I did a little extra testing and it turns out the threshold for \"large tensors\" is wrong. Thanks for finding this! I will land a fix soon. In the meantime, it will work with tensors > 2**32 elements ",
"https://github.com/tensorflow/tensorflow/commit/cb2b5456ee5f74d5bacd96672db9251d519e1f02",
"hey @frgossen, could it solve https://github.com/tensorflow/tensorflow/issues/57950?\r\n",
"Hi @frgossen , i confirmed that it works for multiplication now. Great thanks. \r\nHowever, i still found some ops does not work:\r\ntf.math.softmax\r\ntf.raw_ops.BiasAddGrad\r\ntf.math.sigmoid\r\n\r\nCould you have a look ? Thanks",
"64-bit indexing is not enabled for all kernels atm, including the cases you found. It requires a little bit of work to enable it for the fully JIT-compiled kernels of which there are more and more. ",
"Hi @frgossen, \r\nis there any plan to fix these frequently used ops ?\r\nThanks ",
"Sorry for the late reply. This is not a priority at the moment. Feel free to add support for more kernels though and send them my way. "
] | 2023-04-14T17:54:42 | 2023-09-22T13:35:53 | 2023-06-28T02:08:54 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.9.3
### Custom Code
Yes
### OS Platform and Distribution
ubuntu 20.04
### Mobile device
_No response_
### Python version
3.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.6/8
### GPU model and memory
single A100 80G
### Current Behaviour?
tested with tensorflow==2.9.3 and numpy==1.24.2 on single A100 80G GPU. If use small memory GPU, you may get OOM before reproducing the issue.
when using dimension (524288, 16, 9, 32), get illegal memory.
when using dimension (524288, 16, 8, 32), get Mismatched elements: 1024 / 2147483648 (4.77e-05%)
when using dimension (524288, 16, 7, 32), get correct values.
same behavior on eager mode and graph mode.
note: one related issue has been reported https://github.com/keras-team/tf-keras/issues/124
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
import numpy as np
def test_mul_eager(input_shape):
rng = np.random.RandomState(42)
grad = rng.exponential(size=input_shape).astype(np.float32)
grad_loss = rng.exponential(size=(input_shape[0],1,1,1)).astype(np.float32)
with tf.device('/GPU:0'):
tf_grad = tf.convert_to_tensor(grad)
tf_grad_loss = tf.convert_to_tensor(grad_loss)
out = tf_grad * tf_grad_loss
#tf.print("==== shape ", tf_grad.shape, tf_grad_loss.shape, out.shape)
with tf.device('/CPU:0'):
out_cpu = tf.identity(out)
tf_grad_cpu = tf.identity(tf_grad)
tf_grad_loss_cpu = tf.identity(tf_grad_loss)
#
np.testing.assert_allclose(grad, tf_grad_cpu.numpy(), rtol=1e-5, atol=1e-4)
np.testing.assert_allclose(grad_loss, tf_grad_loss_cpu.numpy(), rtol=1e-5, atol=1e-4)
np.testing.assert_allclose(grad*grad_loss, out_cpu.numpy(), rtol=1e-5, atol=1e-4)
@tf.function
def compute_mul(b,t,u,v):
with tf.device('/CPU:0'):
x = tf.random.normal((1,t,u,v), dtype=tf.float32)
y = tf.random.normal((1,1,1,1), dtype=tf.float32)
tf_grad = tf.tile(x, (b,1,1,1))
tf_grad_loss = tf.tile(y, (b,1,1,1))
with tf.device('/GPU:0'):
out = tf_grad * tf_grad_loss
#out = tf.raw_ops.Mul(x=tf_grad, y=tf_grad_loss)
#out = tf.multiply(tf_grad, tf_grad_loss)
with tf.device('/CPU:0'):
out_cpu = tf.identity(out)
tf_grad_cpu = tf.identity(tf_grad)
tf_grad_loss_cpu = tf.identity(tf_grad_loss)
return out_cpu, tf_grad_cpu, tf_grad_loss_cpu
def test_mul_graph(input_shape):
b,t,u,v = input_shape
out_cpu, tf_grad_cpu, tf_grad_loss_cpu = compute_mul(b,t,u,v)
np.testing.assert_allclose(tf_grad_cpu.numpy()*tf_grad_loss_cpu.numpy(), out_cpu.numpy(), rtol=1e-5, atol=1e-4)
if __name__ == '__main__':
#input_shape = (524288, 16, 7, 32) # pass <2^31
input_shape = (524288, 16, 8, 32) # value mismatch at 2^31
#input_shape = (524288, 16, 9, 32) # illegal memory access
#test_mul_eager(input_shape)
test_mul_graph(input_shape)
```
### Relevant log output
```shell
when using (524288, 16, 8, 32), got
Traceback (most recent call last):
File "multiplication_mismatch.py", line 93, in <module>
test_mul_graph(input_shape)
File "multiplication_mismatch.py", line 85, in test_mul_graph
np.testing.assert_allclose(tf_grad_cpu.numpy()*tf_grad_loss_cpu.numpy(), out_cpu.numpy(), rtol=1e-5, atol=1e-4)
File "/fs/scratch/work/yu_fang/warp-transducer/venv_tf_29/lib/python3.8/site-packages/numpy/testing/_private/utils.py", line 1592, in assert_allclose
assert_array_compare(compare, actual, desired, err_msg=str(err_msg),
File "/usr/lib/python3.8/contextlib.py", line 75, in inner
return func(*args, **kwds)
File "/fs/scratch/work/yu_fang/warp-transducer/venv_tf_29/lib/python3.8/site-packages/numpy/testing/_private/utils.py", line 862, in assert_array_compare
raise AssertionError(msg)
AssertionError:
Not equal to tolerance rtol=1e-05, atol=0.0001
Mismatched elements: 1024 / 2147483648 (4.77e-05%)
Max absolute difference: 2.2970564
Max relative difference: 0.
x: array([[[[ 1.605678, -0.261173, -1.222985, ..., -1.186496, -0.111071,
0.792078],
[ 0.307934, 0.016565, -0.576156, ..., -0.17745 , -0.993849,...
y: array([[[[ 0. , 0. , 0. , ..., 0. , 0. ,
0. ],
[ 0. , 0. , 0. , ..., 0. , 0. ,...
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60330/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60330/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60329 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60329/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60329/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60329/events | https://github.com/tensorflow/tensorflow/issues/60329 | 1,668,432,224 | I_kwDOArmXAs5jckFg | 60,329 | Getting error while importing tensorflow | {
"login": "sanket-2712",
"id": 89974733,
"node_id": "MDQ6VXNlcjg5OTc0NzMz",
"avatar_url": "https://avatars.githubusercontent.com/u/89974733?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanket-2712",
"html_url": "https://github.com/sanket-2712",
"followers_url": "https://api.github.com/users/sanket-2712/followers",
"following_url": "https://api.github.com/users/sanket-2712/following{/other_user}",
"gists_url": "https://api.github.com/users/sanket-2712/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanket-2712/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanket-2712/subscriptions",
"organizations_url": "https://api.github.com/users/sanket-2712/orgs",
"repos_url": "https://api.github.com/users/sanket-2712/repos",
"events_url": "https://api.github.com/users/sanket-2712/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanket-2712/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@sanket-2712 \r\nCould you please provide more information(like TensorFlow version, OS, Python version, e.t.c) and detailed steps to replicate the issue reported here ?\r\n\r\nThank you !",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"@sanket-2712,\r\nI tried to execute the mentioned code on tensorflow v2.12 and it was executed without any errors. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/ac86b36ebca3c097c0d9ef84d79e465c/untitled1089.ipynb) and also please try to test the code on a new virtual environment with the latest stable version. Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"I had the same issue. I was using tensorflow (V2.12.0) on jupyterlab with anaconda3, python version (Python 3.9.12), to make a CNN for NLP and had to restart the kernel after a while. Suddenly I could not import tensorflow or keras, same error message as above. Tried uninstalling both tensorflow and keras, and reinstalling - many times. Tried the suggested fixes by the error message (including --user and -/I with installation) - no luck here either. Eventually went to file directory ->(anaconda3, etc) -> tensorflow -> compiler -> jit -> ops -> xla_ops.py (where the error was). Opened in VS code and deleted line 13 \"from tensorflow.security.fuzzing.py import annotation_types as _atypes\". Looked to see if \"_atypes\" was used anywhere else in the file - it wasn't. Saved it. Restarted kernel and ran all cells back in jupyterlab, and it works again. Seems to have solved the issue!",
"@N-cizauskas,\r\nThe code mentioned by the actual user was able to execute without any issues/error. So, could you please raise another request from your side with all the required details to analyse the issue. Thank you!",
"I now believe the error came from installing and uninstalling a tensorflow nightly package ",
"Closing this as stale. Please reopen if this is still a valid request. Thank you!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60329\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60329\">No</a>\n"
] | 2023-04-14T15:05:51 | 2024-02-09T08:55:24 | 2024-02-09T08:55:21 | NONE | null | null | null | ```
import os
import pickle
import numpy as np
from tqdm.notebook import tqdm
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout, add
```
I was trying to import above modules in my PC
Getting below error as no module found.
Installed and reinstalled Tensorflow several times even in virtual environment this error is not going anywhere please help!
```
File D:\PY\Lib\site-packages\tensorflow\compiler\jit\ops\xla_ops.py:13
11 from tensorflow.python.eager import execute as _execute
12 from tensorflow.python.framework import dtypes as _dtypes
---> 13 from tensorflow.security.fuzzing.py import annotation_types as _atypes
15 from tensorflow.python.framework import op_def_registry as _op_def_registry
16 from tensorflow.python.framework import ops as _ops
ModuleNotFoundError: No module named 'tensorflow.security'
```
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60329/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60329/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60328 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60328/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60328/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60328/events | https://github.com/tensorflow/tensorflow/issues/60328 | 1,668,111,214 | I_kwDOArmXAs5jbVtu | 60,328 | Unit test failures on ARM_CI | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
}
] | closed | false | {
"login": "ddunl",
"id": 31703846,
"node_id": "MDQ6VXNlcjMxNzAzODQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/31703846?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ddunl",
"html_url": "https://github.com/ddunl",
"followers_url": "https://api.github.com/users/ddunl/followers",
"following_url": "https://api.github.com/users/ddunl/following{/other_user}",
"gists_url": "https://api.github.com/users/ddunl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ddunl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ddunl/subscriptions",
"organizations_url": "https://api.github.com/users/ddunl/orgs",
"repos_url": "https://api.github.com/users/ddunl/repos",
"events_url": "https://api.github.com/users/ddunl/events{/privacy}",
"received_events_url": "https://api.github.com/users/ddunl/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "ddunl",
"id": 31703846,
"node_id": "MDQ6VXNlcjMxNzAzODQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/31703846?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ddunl",
"html_url": "https://github.com/ddunl",
"followers_url": "https://api.github.com/users/ddunl/followers",
"following_url": "https://api.github.com/users/ddunl/following{/other_user}",
"gists_url": "https://api.github.com/users/ddunl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ddunl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ddunl/subscriptions",
"organizations_url": "https://api.github.com/users/ddunl/orgs",
"repos_url": "https://api.github.com/users/ddunl/repos",
"events_url": "https://api.github.com/users/ddunl/events{/privacy}",
"received_events_url": "https://api.github.com/users/ddunl/received_events",
"type": "User",
"site_admin": false
},
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Fixed by merge of #60347 ",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60328\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60328\">No</a>\n"
] | 2023-04-14T11:55:07 | 2023-04-19T08:24:43 | 2023-04-19T08:24:40 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
git HEAD
### Custom Code
No
### OS Platform and Distribution
Ubuntu 20.04
### Mobile device
n/a
### Python version
3.9.16
### Bazel version
5.3.0
### GCC/Compiler version
10.2.1
### CUDA/cuDNN version
n/a
### GPU model and memory
n/a
### Current Behaviour?
Since the commit https://github.com/tensorflow/tensorflow/commit/11c29fb2c3e508c3459b55d6357d8ff1d18412ea ARM_CI has been showing unit test failures on
//bazel_pip/tensorflow/python/compiler/xla:xla_test_gpu
//bazel_pip/tensorflow/python/data/experimental/kernel_tests:checkpoint_input_pipeline_hook_test
//bazel_pip/tensorflow/python/distribute:parameter_server_strategy_test_cpu
//bazel_pip/tensorflow/python/compiler/xla:xla_test_cpu
//bazel_pip/tensorflow/python/distribute:parameter_server_strategy_test_gpu
//bazel_pip/tensorflow/core/platform:ram_file_system_test
### Standalone code to reproduce the issue
```shell
bazel --bazelrc /usertools/aarch64.bazelrc test --config=mkl_aarch64_threadpool --copt=-flax-vector-conversions --test_env=TF_ENABLE_ONEDNN_OPTS=1 --test_env=TF2_BEHAVIOR=1 --define=tf_api_version=2 --flaky_test_attempts=3 --test_output=errors --verbose_failures=true --test_keep_going --jobs=75 --notest_verbose_timeout_warnings --build_tests_only -- //tensorflow/core/platform:ram_file_system_test //tensorflow/python/distribute:parameter_server_strategy_test_gpu //tensorflow/python/compiler/xla:xla_test_cpu //tensorflow/python/distribute:parameter_server_strategy_test_cpu //tensorflow/python/data/experimental/kernel_tests:checkpoint_input_pipeline_hook_test //tensorflow/python/compiler/xla:xla_test_gpu
```
### Relevant log output
```shell
All tests fail with similar backtrace
INFO: From Testing //bazel_pip/tensorflow/core/platform:ram_file_system_test:
File "/tmpfs/bazel_output/_bazel_ubuntu/eab0d61a99b6696edb3d2aff87b585e8/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/bazel_pip/tensorflow/core/platform/ram_file_system_test.runfiles/org_tensorflow/bazel_pip/tensorflow/core/platform/ram_file_system_test.py", line 21, in <module>
from tensorflow.python.estimator.estimator import Estimator
File "/tmpfs/bazel_output/_bazel_ubuntu/eab0d61a99b6696edb3d2aff87b585e8/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/bazel_pip/tensorflow/core/platform/ram_file_system_test.runfiles/org_tensorflow/tensorflow/python/estimator/estimator.py", line 22, in <module>
from tensorflow_estimator.python.estimator import estimator
File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow_estimator/__init__.py", line 8, in <module>
from tensorflow_estimator._api.v1 import estimator
File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow_estimator/_api/v1/estimator/__init__.py", line 11, in <module>
from tensorflow_estimator._api.v1.estimator import tpu
File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow_estimator/_api/v1/estimator/tpu/__init__.py", line 12, in <module>
from tensorflow_estimator.python.estimator.tpu.tpu_estimator import TPUEstimator
File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py", line 118, in <module>
to_proto=resource_variable_ops._to_proto_fn, # pylint: disable=protected-access
AttributeError: module 'tensorflow.python.ops.resource_variable_ops' has no attribute '_to_proto_fn'
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60328/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60328/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60327 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60327/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60327/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60327/events | https://github.com/tensorflow/tensorflow/pull/60327 | 1,668,024,683 | PR_kwDOArmXAs5OUMSP | 60,327 | Fixed the broken link in overview.md file | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @tilakrayal Can you please check @fergushenderson's comments ? Thank you!",
"This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Hi @tilakrayal Any update on this PR? Please. Thank you!",
"Hi @tilakrayal Any update on this PR? Please. Thank you!",
"Hi @tilakrayal Any update on this PR? Please. Thank you!"
] | 2023-04-14T10:52:29 | 2023-08-08T14:43:53 | 2023-06-21T07:18:00 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60327",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60327",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60327.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60327.patch",
"merged_at": null
} | Fixed the broken link for **Object detection model** in `overview.md` file | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60327/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60327/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60326 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60326/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60326/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60326/events | https://github.com/tensorflow/tensorflow/issues/60326 | 1,667,913,377 | I_kwDOArmXAs5jalah | 60,326 | ImportError: libtensorflow_cc.so.2: cannot open shared object file: No such file or directory | {
"login": "ProgrammerPeter",
"id": 19322870,
"node_id": "MDQ6VXNlcjE5MzIyODcw",
"avatar_url": "https://avatars.githubusercontent.com/u/19322870?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ProgrammerPeter",
"html_url": "https://github.com/ProgrammerPeter",
"followers_url": "https://api.github.com/users/ProgrammerPeter/followers",
"following_url": "https://api.github.com/users/ProgrammerPeter/following{/other_user}",
"gists_url": "https://api.github.com/users/ProgrammerPeter/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ProgrammerPeter/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ProgrammerPeter/subscriptions",
"organizations_url": "https://api.github.com/users/ProgrammerPeter/orgs",
"repos_url": "https://api.github.com/users/ProgrammerPeter/repos",
"events_url": "https://api.github.com/users/ProgrammerPeter/events{/privacy}",
"received_events_url": "https://api.github.com/users/ProgrammerPeter/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5508003926,
"node_id": "LA_kwDOArmXAs8AAAABSE14Vg",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13",
"name": "TF 2.13",
"color": "B13ACB",
"default": false,
"description": "For issues related to Tensorflow 2.13"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@ProgrammerPeter \r\nHi, Thanks for opening the issue,\r\n\r\nIt seems like the libtensorflow_cc.so.2 file is not being included in the generated TensorFlow wheel file. Here are a few suggestions to fix the issue:\r\n\r\nTry building the TensorFlow package again with the following command:\r\n```sh\r\nbazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package\r\n```\r\nThis command will build the TensorFlow package with support for CUDA-enabled GPUs. If you don't have a GPU, you can skip the --config=cuda flag.\r\n\r\nCheck the contents of the generated wheel file to see if the libtensorflow_cc.so.2 file is present. You can do this using the following command:\r\n```sh\r\npip show tensorflow\r\n```\r\nThis command will display information about the installed TensorFlow package, including its location on your system. Once you have the location of the package, you can navigate to the package directory and inspect its contents.\r\n\r\nIf the libtensorflow_cc.so.2 file is missing from the package, you can manually copy it into the appropriate directory. The directory structure of the TensorFlow package should be similar to the following:\r\n```sh\r\ntensorflow/\r\n __init__.py\r\n _api/\r\n ...\r\n _api_v1/\r\n ...\r\n _api.v2/\r\n ...\r\n ...\r\n```\r\nThe libtensorflow_cc.so.2 file should be placed in the tensorflow directory alongside the other Python modules.\r\n\r\nIf none of the above solutions work, try building TensorFlow from source again, but this time with the following command:\r\n```sh\r\nbazel build --config=monolithic //tensorflow/tools/pip_package:build_pip_package\r\n```\r\nThis command will build a monolithic TensorFlow package, which includes all of the necessary shared libraries.",
"It seems like the issue is related to the missing shared library libtensorflow_cc.so.2. This can happen if the library is not found in the expected location or if it is not included in the TensorFlow package.\r\n\r\nHere are some things you could try to resolve the issue:\r\n\r\nCheck if the library is installed:\r\nUse the find command to search for the library in your system. If it is found, check if the path to the library is included in the LD_LIBRARY_PATH environment variable.\r\n\r\nTry rebuilding TensorFlow:\r\nThe issue could be related to a problem during the build process. Try rebuilding TensorFlow using the --config=monolithic flag to ensure that all libraries are included.\r\n\r\nCheck if there are any conflicts:\r\nIf you have multiple versions of TensorFlow installed, there may be conflicts between the different versions. Make sure that you are importing the correct version of TensorFlow.\r\n\r\nTry installing TensorFlow using pip:\r\nInstead of building TensorFlow from source, try installing it using pip. This should ensure that all the required libraries are included in the package.\r\n\r\nHopefully, one of these suggestions will help you resolve the issue.",
"> @ProgrammerPeter Hi, Thanks for opening the issue,\r\n> \r\n> It seems like the libtensorflow_cc.so.2 file is not being included in the generated TensorFlow wheel file. Here are a few suggestions to fix the issue:\r\n> \r\n> Try building the TensorFlow package again with the following command:\r\n> \r\n> ```shell\r\n> bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package\r\n> ```\r\n> \r\n> This command will build the TensorFlow package with support for CUDA-enabled GPUs. If you don't have a GPU, you can skip the --config=cuda flag.\r\n> \r\n> Check the contents of the generated wheel file to see if the libtensorflow_cc.so.2 file is present. You can do this using the following command:\r\n> \r\n> ```shell\r\n> pip show tensorflow\r\n> ```\r\n> \r\n> This command will display information about the installed TensorFlow package, including its location on your system. Once you have the location of the package, you can navigate to the package directory and inspect its contents.\r\n> \r\n> If the libtensorflow_cc.so.2 file is missing from the package, you can manually copy it into the appropriate directory. The directory structure of the TensorFlow package should be similar to the following:\r\n> \r\n> ```shell\r\n> tensorflow/\r\n> __init__.py\r\n> _api/\r\n> ...\r\n> _api_v1/\r\n> ...\r\n> _api.v2/\r\n> ...\r\n> ...\r\n> ```\r\n> \r\n> The libtensorflow_cc.so.2 file should be placed in the tensorflow directory alongside the other Python modules.\r\n> \r\n> If none of the above solutions work, try building TensorFlow from source again, but this time with the following command:\r\n> \r\n> ```shell\r\n> bazel build --config=monolithic //tensorflow/tools/pip_package:build_pip_package\r\n> ```\r\n> \r\n> This command will build a monolithic TensorFlow package, which includes all of the necessary shared libraries.\r\n\r\nCopying the libtensorflow_cc.so.2 file into installed TensorFlow package fixes my issue. I will try build a monolithic TensorFlow package later. Thanks for your quick reply!",
"> It seems like the issue is related to the missing shared library libtensorflow_cc.so.2. This can happen if the library is not found in the expected location or if it is not included in the TensorFlow package.\r\n> \r\n> Here are some things you could try to resolve the issue:\r\n> \r\n> Check if the library is installed: Use the find command to search for the library in your system. If it is found, check if the path to the library is included in the LD_LIBRARY_PATH environment variable.\r\n> \r\n> Try rebuilding TensorFlow: The issue could be related to a problem during the build process. Try rebuilding TensorFlow using the --config=monolithic flag to ensure that all libraries are included.\r\n> \r\n> Check if there are any conflicts: If you have multiple versions of TensorFlow installed, there may be conflicts between the different versions. Make sure that you are importing the correct version of TensorFlow.\r\n> \r\n> Try installing TensorFlow using pip: Instead of building TensorFlow from source, try installing it using pip. This should ensure that all the required libraries are included in the package.\r\n> \r\n> Hopefully, one of these suggestions will help you resolve the issue.\r\n\r\nThe libtensorflow_cc.so.2 file can be found in path `tensorflow/bazel-bin/tensorflow`. So I think adding this path to LD_LIBRARY_PATH can work. I just don't understand why it wasn't packed into the whl file. I will try to build using the --config=monolithic flag later. Thanks for your kind help!",
"Hi @ProgrammerPeter ,\r\n\r\nApologies for the delayed response. By default Tensorflow builds are not monolithic. Please refer to attached source file for same.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/f0b8b9a1457bcc8d83716b2034d3d6501693c7d0/.bazelrc#L98C1\r\n\r\nTo get a single shared file we need to use `--config=monolithic` flag. Could you please confirm whether you have tested the build with this flag ?\r\n\r\nIMO, even with non monolithic builds the SO file also should be added to the wheel. Starting from TF2.13, tensorflow builds for Linux uses clang compiler inplace of GCC.Please refer attached [documentation](https://www.tensorflow.org/install/source#install_clang_recommended_linux_only). Can you try the build with clang 16.0 and let us know if that makes difference.\r\n\r\nThanks!\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60326\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60326\">No</a>\n",
"I need to build a .whl that actually works, and \"--config monolithic\" fails due to issue #60052.\r\n\r\nWhy is the pip package missing libtensorflow_cc.so.2? r2.12 does not have this problem. Is it possible to reopen this issue?",
"@plopresti ,\r\n\r\nReopened the issue as requested. COuld you confirm this is not an issue in TF2.12v ?",
"Hi @SuryanarayanaY. Thank you for reopening.\r\n\r\nAs far as I can tell, this is not an issue in r2.12 nor on master. I am unsure what change on master fixes it however.",
"I have reproduced this issue with v2.13.0 and found it is related to Bazel:\r\nBazel 5.1 through 5.4 don't have this issue (the library exists in the correct place), with Bazel 6.0 and 6.3 the library is missing.\r\nI.e. after the `bazel build` command `bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/org_tensorflow/tensorflow/libtensorflow_cc.so.2` doesn't exist ",
"@plopresti Is that the same for you or does it work for you in r2.12 and master with Bazel 6+?",
"I traced this to this commit: https://github.com/bazelbuild/bazel/commit/26d882f92943587d39460320694b17865ea74f91\r\n\r\nDescription:\r\n> [...] we would be adding the library itself to runfiles as well as the symlink created in the solib directory. Although harmless, it is unnecessary to add the original library [...]\r\n\r\nThe commit removes adding `precompiled_dynamic_library.resolved_symlink_dynamic_library`. Reverting the commit or replacing it by the [likely intended code](https://github.com/bazelbuild/bazel/pull/19378/commits/05687ed6e28e95ee576962c1e40b81c83610c8c5) fixes this.\r\n\r\nI'm not sure why this causes the issue though as `libtensorflow_cc.so.2` is a symlink but only the resolved file ` libtensorflow_cc.so.2.13.0` is present. The following code part seems to be meant to include that file in the runfiles although I don't exactly understand how: https://github.com/tensorflow/tensorflow/blob/be88ba0aefb1b778c2c0d0d896a342a70579740c/tensorflow/tensorflow.bzl#L2415-L2420\r\n\r\nIt might also be a Bazel bug which confuses `resolved_symlink_dynamic_library` with `dynamic_library` in the properties but checking the sources I wasn't able to find how/where they are set. Possibly due to the symlink creation likely happening here: https://github.com/tensorflow/tensorflow/blob/41bd95012de90138d1cfad86e89347f7472df376/tensorflow/tensorflow.bzl#L913-L914"
] | 2023-04-14T09:42:40 | 2023-09-04T11:19:07 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.13.0
### Custom Code
Yes
### OS Platform and Distribution
Linux
### Mobile device
_No response_
### Python version
3.9
### Bazel version
6.1.1
### GCC/Compiler version
9.5.0
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I build the lastest TensorFlow code from source successfully with
`bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package`
Then I generate a TensorFlow whl successfully with
`./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg`
But when I pip install this whl, import tensorflow got "ImportError: libtensorflow_cc.so.2: cannot open shared object file: No such file or directory".
I found the whl file generated is only 80.64M. But I think it should be about 200M.
But there has libtensorflow_cc.so.2 file under path tensorflow/bazel-bin/tensorflow. I don't know why it wasn't packed into the whl file.
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
```
### Relevant log output
```shell
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/data1/envs/xtc3.9/lib/python3.9/site-packages/tensorflow/__init__.py", line 38, in <module>
from tensorflow.python.tools import module_util as _module_util
File "/data1/envs/xtc3.9/lib/python3.9/site-packages/tensorflow/python/__init__.py", line 36, in <module>
from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow
File "/data1/envs/xtc3.9/lib/python3.9/site-packages/tensorflow/python/pywrap_tensorflow.py", line 26, in <module>
self_check.preload_check()
File "/data1/envs/xtc3.9/lib/python3.9/site-packages/tensorflow/python/platform/self_check.py", line 63, in preload_check
from tensorflow.python.platform import _pywrap_cpu_feature_guard
ImportError: libtensorflow_cc.so.2: cannot open shared object file: No such file or directory
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60326/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60326/timeline | null | reopened | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60325 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60325/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60325/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60325/events | https://github.com/tensorflow/tensorflow/issues/60325 | 1,667,773,791 | I_kwDOArmXAs5jaDVf | 60,325 | Issue with obtaining files from this repo via Google Colab | {
"login": "ShreeVishal",
"id": 93562563,
"node_id": "U_kgDOBZOmww",
"avatar_url": "https://avatars.githubusercontent.com/u/93562563?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ShreeVishal",
"html_url": "https://github.com/ShreeVishal",
"followers_url": "https://api.github.com/users/ShreeVishal/followers",
"following_url": "https://api.github.com/users/ShreeVishal/following{/other_user}",
"gists_url": "https://api.github.com/users/ShreeVishal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ShreeVishal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ShreeVishal/subscriptions",
"organizations_url": "https://api.github.com/users/ShreeVishal/orgs",
"repos_url": "https://api.github.com/users/ShreeVishal/repos",
"events_url": "https://api.github.com/users/ShreeVishal/events{/privacy}",
"received_events_url": "https://api.github.com/users/ShreeVishal/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@ShreeVishal,\r\nThe TensorFlow example package is not available on PyPI. We can clone the TensorFlow example repository from GitHub and try to run the examples.\r\n\r\nCould you please try to use the following command\r\n `!git clone https://github.com/tensorflow/examples.git`\r\n\r\nThe above statement will download the repo.\r\n\r\nThen try to navigate to the following example which was needed. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/2caf95b23d957e3f26f73149e7861fc8/segmentation.ipynb).\r\n\r\n\r\nThank you!\r\n\r\n\r\n\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60325\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60325\">No</a>\n"
] | 2023-04-14T08:26:21 | 2023-04-29T01:54:09 | 2023-04-29T01:54:07 | NONE | null | null | null | 
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60325/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60325/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60324 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60324/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60324/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60324/events | https://github.com/tensorflow/tensorflow/issues/60324 | 1,667,691,004 | I_kwDOArmXAs5jZvH8 | 60,324 | Custom loss function with multiple arguments from generator | {
"login": "harborsarah",
"id": 65909204,
"node_id": "MDQ6VXNlcjY1OTA5MjA0",
"avatar_url": "https://avatars.githubusercontent.com/u/65909204?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/harborsarah",
"html_url": "https://github.com/harborsarah",
"followers_url": "https://api.github.com/users/harborsarah/followers",
"following_url": "https://api.github.com/users/harborsarah/following{/other_user}",
"gists_url": "https://api.github.com/users/harborsarah/gists{/gist_id}",
"starred_url": "https://api.github.com/users/harborsarah/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/harborsarah/subscriptions",
"organizations_url": "https://api.github.com/users/harborsarah/orgs",
"repos_url": "https://api.github.com/users/harborsarah/repos",
"events_url": "https://api.github.com/users/harborsarah/events{/privacy}",
"received_events_url": "https://api.github.com/users/harborsarah/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"p.s. these 4 parameters have different type and size, so it is not possible to concatenate them as a single parameter",
"@harborsarah \r\nCould you please provide reproducible code or Colab gist to replicate the issue reported here ? Also Could you please try something as mentioned below. \r\n\r\nThis is the alternative workaround which might help to resolve the issue. \r\nhttps://stackoverflow.com/questions/76059542/found-unexpected-losses-or-metrics-that-do-not-correspond-to-any-model-output\r\n\r\n```\r\ndef preprocess(data):\r\n labels = list(dict(filter(lambda x: x[0] != 'vectorizer_input', data.items())).values())\r\n return data['vectorizer_input'], labels\r\n\r\ntfdataset = tfdataset.map(preprocess)\r\nvectorizer = tf.keras.layers.TextVectorization(max_tokens=4000, output_sequence_length=4)\r\nvectorizer.adapt(tfdataset.map(lambda x, y: x))\r\nmodel = tf.keras.Sequential(\r\n [\r\n vectorizer,\r\n tf.keras.layers.Embedding(4000, 64),\r\n tf.keras.layers.GlobalMaxPool1D(),\r\n tf.keras.layers.Dense(97, activation='sigmoid')\r\n ]\r\n)\r\n```\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60324\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60324\">No</a>\n"
] | 2023-04-14T07:33:08 | 2023-05-11T01:54:11 | 2023-05-11T01:53:55 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf 2.8
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I would like to know if it is possible to create a loss function not only get y_true and y_pred as parameters.
So basically, I want to return 4 parameters in the custom generator but these 4 parameters are all used to calculate one single loss function. I haven't found any example or document about this issue.
### Standalone code to reproduce the issue
```shell
ValueError: Found unexpected losses or metrics that do not correspond to any Model output: dict_keys(['custom_metric']). Valid mode output names: ['association']. Received struct is: {'custom_metric': ((<tf.Tensor 'IteratorGetNext:2' shape=(None, None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:3' shape=(None, None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:4' shape=(None, None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:5' shape=(None, None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:6' shape=(None, None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:7' shape=(None, None, None, None) dtype=float32>), (<tf.Tensor 'IteratorGetNext:8' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:9' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:10' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:11' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:12' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:13' shape=(None, None, None) dtype=float32>), (<tf.Tensor 'IteratorGetNext:14' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:15' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:16' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:17' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:18' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:19' shape=(None, None) dtype=int32>), (<tf.Tensor 'IteratorGetNext:20' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:21' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:22' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:23' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:24' shape=(None, None) dtype=int32>, <tf.Tensor 'IteratorGetNext:25' shape=(None, None) dtype=int32>))}.
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60324/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60324/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60323 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60323/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60323/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60323/events | https://github.com/tensorflow/tensorflow/pull/60323 | 1,667,664,870 | PR_kwDOArmXAs5OS_fU | 60,323 | Allow merging streams in one stream group. | {
"login": "buptzyb",
"id": 38978109,
"node_id": "MDQ6VXNlcjM4OTc4MTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38978109?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/buptzyb",
"html_url": "https://github.com/buptzyb",
"followers_url": "https://api.github.com/users/buptzyb/followers",
"following_url": "https://api.github.com/users/buptzyb/following{/other_user}",
"gists_url": "https://api.github.com/users/buptzyb/gists{/gist_id}",
"starred_url": "https://api.github.com/users/buptzyb/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/buptzyb/subscriptions",
"organizations_url": "https://api.github.com/users/buptzyb/orgs",
"repos_url": "https://api.github.com/users/buptzyb/repos",
"events_url": "https://api.github.com/users/buptzyb/events{/privacy}",
"received_events_url": "https://api.github.com/users/buptzyb/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1169365682,
"node_id": "MDU6TGFiZWwxMTY5MzY1Njgy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L",
"name": "size:L",
"color": "adafea",
"default": false,
"description": "CL Change Size: Large"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @ezhulenev Can you please review this PR ? Thank you!",
"Adding @jyingl3 here because I'm not super familiar with this part of TF.",
"Discussed with @chuanhaozhuge. Chuanhao is working on changes related to GPU so will let Chuanhao review this PR."
] | 2023-04-14T07:17:11 | 2023-07-07T01:00:35 | 2023-07-07T01:00:32 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60323",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60323",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60323.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60323.patch",
"merged_at": null
} | This works as one part of the whole multi-stream feature, which is proposed in this [PR](https://github.com/tensorflow/tensorflow/pull/59843), but can also be used independently.
In TensorFlow, there are at least three streams in one stream group: 1 compute stream, 1 h2d stream, and 1 d2h stream. This is designed to overlap the computation and memory copy on GPU. However, for some copy-frequent and launch-bound models, there are significant stream-synchronization overhead caused by the frequent switching between the three kinds of streams. So, let the operations use the same stream may bring acceleration. This PR provides an option to do so, just by setting the environment variable `TF_GPU_STREAM_MERGE=true`. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60323/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60323/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60322 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60322/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60322/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60322/events | https://github.com/tensorflow/tensorflow/pull/60322 | 1,667,664,717 | PR_kwDOArmXAs5OS_dc | 60,322 | Enable graph-level multiple streams execution. | {
"login": "buptzyb",
"id": 38978109,
"node_id": "MDQ6VXNlcjM4OTc4MTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38978109?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/buptzyb",
"html_url": "https://github.com/buptzyb",
"followers_url": "https://api.github.com/users/buptzyb/followers",
"following_url": "https://api.github.com/users/buptzyb/following{/other_user}",
"gists_url": "https://api.github.com/users/buptzyb/gists{/gist_id}",
"starred_url": "https://api.github.com/users/buptzyb/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/buptzyb/subscriptions",
"organizations_url": "https://api.github.com/users/buptzyb/orgs",
"repos_url": "https://api.github.com/users/buptzyb/repos",
"events_url": "https://api.github.com/users/buptzyb/events{/privacy}",
"received_events_url": "https://api.github.com/users/buptzyb/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1173072136,
"node_id": "MDU6TGFiZWwxMTczMDcyMTM2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL",
"name": "size:XL",
"color": "adafea",
"default": false,
"description": "CL Change Size:Extra Large"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"See some related documentation here: https://docs.google.com/document/d/1yL3lWk_iFKqLTyekkuaiKXZ78I0lPmD5kM1fghHRs4Y/edit"
] | 2023-04-14T07:17:03 | 2023-07-07T01:00:43 | 2023-07-07T01:00:40 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60322",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60322",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60322.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60322.patch",
"merged_at": null
} | This works as the basic implementation of the whole multi-stream feature, which is proposed in this [PR](https://github.com/tensorflow/tensorflow/pull/59843).
Multi-stream greatly speed up the execution of the model in high concurrency scenarios by putting different queries on different stream groups. The total number of stream groups to create can be set via the environment variable `TF_GPU_STREAM_GROUP_COUNT=N`, where `N` is a positive integer. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60322/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60322/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60321 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60321/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60321/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60321/events | https://github.com/tensorflow/tensorflow/pull/60321 | 1,667,604,536 | PR_kwDOArmXAs5OSywm | 60,321 | Disable the Eigen max align check for MacOS. | {
"login": "kulinseth",
"id": 453004,
"node_id": "MDQ6VXNlcjQ1MzAwNA==",
"avatar_url": "https://avatars.githubusercontent.com/u/453004?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kulinseth",
"html_url": "https://github.com/kulinseth",
"followers_url": "https://api.github.com/users/kulinseth/followers",
"following_url": "https://api.github.com/users/kulinseth/following{/other_user}",
"gists_url": "https://api.github.com/users/kulinseth/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kulinseth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kulinseth/subscriptions",
"organizations_url": "https://api.github.com/users/kulinseth/orgs",
"repos_url": "https://api.github.com/users/kulinseth/repos",
"events_url": "https://api.github.com/users/kulinseth/events{/privacy}",
"received_events_url": "https://api.github.com/users/kulinseth/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"> \r\n\r\nThanks @penpornk for the review and providing the fix. We have tested on networks and it has no functional issues . I haven’t done a full nopip test run . Let me kick off locally . Does CI cover the who suite ?",
"@kulinseth Thank you!\r\n\r\n> Does CI cover the who suite ?\r\n\r\nYes, the MacOS CI should cover all tests we want to run on Mac. It's [failing](https://source.cloud.google.com/results/invocations/c58053b5-6b9d-41c8-b4be-8f366f6df676/log) for this PR, but it seems to be an existing failure though (numpy not found).",
"> @kulinseth Thank you!\r\n> \r\n> > Does CI cover the who suite ?\r\n> \r\n> Yes, the MacOS CI should cover all tests we want to run on Mac. It's [failing](https://source.cloud.google.com/results/invocations/c58053b5-6b9d-41c8-b4be-8f366f6df676/log) for this PR, but it seems to be an existing failure though (numpy not found).\r\n\r\nShould I rebase to kick off another round of testing ? ",
"Hi @kulinseth Can you please check @cantonios's comments and keep us posted ? Thank you!",
"This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.",
"> Hi @kulinseth Can you please check @cantonios's comments and keep us posted ? Thank you!\r\n\r\nYes. We had an offline discussion about this. Currently we don’t need this change."
] | 2023-04-14T06:37:25 | 2023-05-20T15:42:59 | 2023-05-20T15:42:53 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60321",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60321",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60321.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60321.patch",
"merged_at": null
} | Disable the Eigen max align check as we use custom device memory allocator in Metal plugin.
Skip one os the Jacobian gradient test which is failing as a result of this.
cc @penpornk | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60321/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60321/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60320 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60320/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60320/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60320/events | https://github.com/tensorflow/tensorflow/issues/60320 | 1,667,396,911 | I_kwDOArmXAs5jYnUv | 60,320 | protobuf have a problem | {
"login": "stonecropa",
"id": 114655828,
"node_id": "U_kgDOBtWCVA",
"avatar_url": "https://avatars.githubusercontent.com/u/114655828?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stonecropa",
"html_url": "https://github.com/stonecropa",
"followers_url": "https://api.github.com/users/stonecropa/followers",
"following_url": "https://api.github.com/users/stonecropa/following{/other_user}",
"gists_url": "https://api.github.com/users/stonecropa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stonecropa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stonecropa/subscriptions",
"organizations_url": "https://api.github.com/users/stonecropa/orgs",
"repos_url": "https://api.github.com/users/stonecropa/repos",
"events_url": "https://api.github.com/users/stonecropa/events{/privacy}",
"received_events_url": "https://api.github.com/users/stonecropa/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@stonecropa,\r\nHi, Thanks for opening the issue.\r\n\r\n```\r\nStep 1: pip uninstall protobuf\r\nStep 2: pip install protobuf==3.20.0\r\n\r\nor any other lower version:\r\nhttps://pypi.org/project/protobuf/#history\r\n```\r\nWe have upgraded the protobuf dependency to 3.21.9 (4.21.9) for python from Tensorflow version 2.12, which was long awaited ask.\r\n**For Tensorflow and Tensorboard 2.12 version, the protobuf minimum version requirement is 'protobuf>=3.20.3,<5.0.0dev,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5'.**\r\nFor any older Tensorflow version and new Tensorboard version the only version which acts as bridge between both is 3.20.3\r\nThe Tensorflow 2.12 is released, you can use Tensorboard 2.12 without any package conflict. Please have a look at this issue for the [reference](https://github.com/tensorflow/tensorflow/issues/58247). Thank you!",
"@tilakrayal I installed tensorflow==2.12.0 in conda, and the conda list also shows that it is version 12, but it shows that it is version 11 in the VScode terminal, and the original error is still reported. My python is 3.8.16. Thanks.",
"@stonecropa,\r\n\r\nApologies for the delay. It seems the error might be related to protobuf version. Could you please confirm the protobuf version installed? And also for the Tf2.11 version the required range versions should be **protobuf >= 3.9.2, < 3.20** . Could you please check and confirm the same. Thank you!\r\n\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60320\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60320\">No</a>\n"
] | 2023-04-14T02:06:39 | 2023-05-17T01:56:32 | 2023-05-17T01:56:30 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf2.11.0
### Custom Code
Yes
### OS Platform and Distribution
win10
### Mobile device
_No response_
### Python version
3.9.16
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.7
### GPU model and memory
_No response_
### Current Behaviour?
I don't know if there is a problem with my download or the version of tensorflow, that is, how to recompile protobuf. Can I download the tensorflow compressed package directly from GitHub and uninstall tensorflow-Intel without uninstalling the gpu version.
### Standalone code to reproduce the issue
```shell
PS E:\Googledownload\RectifiedFlow-main> & D:/conda/envs/reflow/python.exe e:/Googledownload/RectifiedFlow-main/ImageGeneration/1.py
Traceback (most recent call last):
File "e:\Googledownload\RectifiedFlow-main\ImageGeneration\1.py", line 1, in <module>
import tensorflow as tf
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\__init__.py", line 37, in <module>
from tensorflow.python.tools import module_util as _module_util
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\python\__init__.py", line 37, in <module>
from tensorflow.python.eager import context
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\python\eager\context.py", line 28, in <module>
from tensorflow.core.framework import function_pb2
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\core\framework\function_pb2.py", line 16, in <module>
from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py", line 16, in <module>
from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\core\framework\tensor_pb2.py", line 16, in <module>
from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py", line 16, in <module>
from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2
File "D:\conda\envs\reflow\lib\site-packages\tensorflow\core\framework\tensor_shape_pb2.py", line 36, in <module>
_descriptor.FieldDescriptor(
File "D:\conda\envs\reflow\lib\site-packages\google\protobuf\descriptor.py", line 561, in __new__
_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60320/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60320/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60319 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60319/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60319/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60319/events | https://github.com/tensorflow/tensorflow/pull/60319 | 1,666,935,365 | PR_kwDOArmXAs5OQlEN | 60,319 | [NVIDIA XLA] FP8 Matmul BiasAdd fusion for high rank input | {
"login": "wenscarl",
"id": 25590028,
"node_id": "MDQ6VXNlcjI1NTkwMDI4",
"avatar_url": "https://avatars.githubusercontent.com/u/25590028?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wenscarl",
"html_url": "https://github.com/wenscarl",
"followers_url": "https://api.github.com/users/wenscarl/followers",
"following_url": "https://api.github.com/users/wenscarl/following{/other_user}",
"gists_url": "https://api.github.com/users/wenscarl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wenscarl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wenscarl/subscriptions",
"organizations_url": "https://api.github.com/users/wenscarl/orgs",
"repos_url": "https://api.github.com/users/wenscarl/repos",
"events_url": "https://api.github.com/users/wenscarl/events{/privacy}",
"received_events_url": "https://api.github.com/users/wenscarl/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @wenscarl Can you please resolve conflicts? Thank you!",
"This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This PR is not stale. It requires https://github.com/tensorflow/tensorflow/pull/60409 to be merged first. I'll reopen if automatically closed.",
"This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.",
"@reedwm The top of master seems to fail those tests in `gemm_rewrite_test.cc` which prevents from rebasing. ",
"Hi @reedwm Can you please review this PR ? Thank you!",
"@wenscarl thanks for addressing all my comments! Can you resolve conflicts?",
"> @wenscarl thanks for addressing all my comments! Can you resolve conflicts?\r\n\r\nThe gemm_rewrite_test did not pass for the current master. Could you take a look?",
"> The gemm_rewrite_test did not pass for the current master. Could you take a look?\r\n\r\nIt's passing for me. I tried on https://github.com/openxla/xla/commit/d7b3b230abca3bc7adafeff7344aaafc6e6994dc with `bazel test //xla/service/gpu/tests:gemm_rewrite_test` and it passes. What commit are you synced to and what command are you using to run?\r\n\r\n",
"I also tried on the TF repo at 35af49017480ee112fc8c9850862f1eb61d611ee, since this PR is on the TF repo. It still passes for me.",
"> I also tried on the TF repo at [35af490](https://github.com/tensorflow/tensorflow/commit/35af49017480ee112fc8c9850862f1eb61d611ee), since this PR is on the TF repo. It still passes for me.\r\n\r\nI tried the same commit, Used `TF_CUDA_CLANG=0` in .bazelrc. BatchRowTransposeFoldCheck, BatchFromMinorDimTransposeIsNotFolded, BatchedInstrLayoutTransposed, BatchedInstrLayoutBatchNotInMinorDim failed.\r\n",
"I'm also using `TF_CUDA_CLANG=0`. I'm using CUDA 12.1.1 with cuDNN 8.9.1. What version of CUDA/cuDNN are you using? And what's the error message?",
"> I'm also using `TF_CUDA_CLANG=0`. I'm using CUDA 12.1.1 with cuDNN 8.9.1. What version of CUDA/cuDNN are you using? And what's the error message?\r\nSeeing :\r\n```\r\nMismatch count 4 (10.0000%) in shape f32[2,5,4] (40 elements), abs bound 1e-05, rel bound 1e-05\r\nTop relative error mismatches:\r\n actual 0.000914607197, expected 0.000930683687, index {1,2,2}, rel error 0.0173, abs error 1.61e-05\r\n```\r\nwhile testing BatchedInstrLayoutTransposed on Hopper.\r\n",
"What version of CUDA and cuDNN are you using?",
"> What version of CUDA and cuDNN are you using?\r\n\r\ncuda 12.1 + cudnn 8.9.2\r\n",
"I think it's fine to just increase the test tolerance, since the error is almost within tolerances already.",
"> I think it's fine to just increase the test tolerance, since the error is almost within tolerances already.\r\n\r\nFixes by #61415 ",
"@wenscarl can you sync past #61415?"
] | 2023-04-13T18:32:06 | 2023-07-31T11:56:54 | 2023-07-31T11:56:53 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60319",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60319",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60319.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60319.patch",
"merged_at": "2023-07-31T11:56:53"
} | This PR complete the coverage for FP8 matmul when input is high rank tensor. @philipphack | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60319/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60319/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60318 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60318/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60318/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60318/events | https://github.com/tensorflow/tensorflow/pull/60318 | 1,666,930,890 | PR_kwDOArmXAs5OQkIZ | 60,318 | [lite]Add int64 type support for split builtin op | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @alankelly Can you please review this PR ? Thank you!",
"Hi @alankelly Can you please review this PR ? Thank you!",
"Hi @alankelly Can you please review this PR ? Thank you!",
"Hi @JunyoungLim Can you please review this PR ? Thank you!",
"Hi @JunyoungLim Can you please review this PR ? Thank you!",
"Hi @JunyoungLim Can you please review this PR ? Thank you!",
"Hi @JunyoungLim Can you please review this PR ? Thank you!",
"Hi @JunyoungLim Can you please review this PR ? Thank you!",
"Hi @JunyoungLim Can you please review this PR ? Thank you!"
] | 2023-04-13T18:28:27 | 2023-11-14T18:51:07 | 2023-11-14T18:51:06 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60318",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60318",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60318.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60318.patch",
"merged_at": "2023-11-14T18:51:06"
} | This commit adds the support for int64 for the split op.
As mentioned in #50636
- int64 is already supported for concat and split_v ops
- Adding the support for int64 minimizes the use of SELECT_TF_OPS
Fixes #50636
Thanks. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60318/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60318/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60317 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60317/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60317/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60317/events | https://github.com/tensorflow/tensorflow/pull/60317 | 1,666,660,271 | PR_kwDOArmXAs5OPpo1 | 60,317 | add missing floor operation | {
"login": "jeandsp",
"id": 122597762,
"node_id": "U_kgDOB06xgg",
"avatar_url": "https://avatars.githubusercontent.com/u/122597762?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jeandsp",
"html_url": "https://github.com/jeandsp",
"followers_url": "https://api.github.com/users/jeandsp/followers",
"following_url": "https://api.github.com/users/jeandsp/following{/other_user}",
"gists_url": "https://api.github.com/users/jeandsp/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jeandsp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jeandsp/subscriptions",
"organizations_url": "https://api.github.com/users/jeandsp/orgs",
"repos_url": "https://api.github.com/users/jeandsp/repos",
"events_url": "https://api.github.com/users/jeandsp/events{/privacy}",
"received_events_url": "https://api.github.com/users/jeandsp/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | open | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60317/checks?check_run_id=12726881670) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.",
"Hi @alankelly Can you please review this PR ? Thank you!",
"Hi @alankelly Can you please review this PR ? Thank you!",
"Hi @alankelly Can you please review this PR ? Thank you!",
"@terryheo can you please take a look at this?",
"Hi @terryheo, Can you please review this PR ? Thank you!",
"Hi @sirakiin Can you please review this PR ? Thank you!",
"Hi @sirakiin Can you please review this PR ? Thank you!",
"Hi @sirakiin Can you please review this PR ? Thank you!",
"Hi @sirakiin Can you please review this PR ? Thank you!",
"Please add corresponding tests in tensorflow/lite/delegates/gpu/cl/kernels/elementwise_test.cc and tensorflow/lite/delegates/gpu/gl/kernels/elementwise_test.cc. Thanks!",
"Hi @jeandsp Can you please check @sirakiin's [comments](https://github.com/tensorflow/tensorflow/pull/60317#issuecomment-2110577247) and keep us posted ? Thank you!",
"Hi @jeandsp Any update on this PR? Please. Thank you!"
] | 2023-04-13T15:33:48 | 2024-06-07T16:06:59 | null | NONE | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60317",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60317",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60317.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60317.patch",
"merged_at": null
} | Currently, the "FLOOR" operation is not properly supported on the GPU delegate. The underlying opencl/opengl implementation exists but the operation type is missing in operation_selector.cc, which prevents from using the floor op. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60317/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60317/timeline | null | null | true |
Subsets and Splits