url
stringlengths
63
63
repository_url
stringclasses
1 value
labels_url
stringlengths
77
77
comments_url
stringlengths
72
72
events_url
stringlengths
70
70
html_url
stringlengths
51
53
id
int64
1.57B
2.35B
node_id
stringlengths
18
19
number
int64
59.5k
69.6k
title
stringlengths
1
554
user
dict
labels
listlengths
0
8
state
stringclasses
2 values
locked
bool
2 classes
assignee
dict
assignees
listlengths
0
8
milestone
null
comments
sequencelengths
0
30
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
4 values
active_lock_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
body
stringlengths
1
65.4k
reactions
dict
timeline_url
stringlengths
72
72
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/tensorflow/tensorflow/issues/60625
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60625/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60625/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60625/events
https://github.com/tensorflow/tensorflow/pull/60625
1,715,341,429
PR_kwDOArmXAs5QyoEr
60,625
Add stablehlo module to pip package
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Unit test failure introduced by https://github.com/tensorflow/tensorflow/commit/c09dcc2c7d07a84cdb9f9b5342d7803f5dbc50b3" ]
2023-05-18T09:49:52
2023-05-25T11:32:05
2023-05-23T14:18:25
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60625", "html_url": "https://github.com/tensorflow/tensorflow/pull/60625", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60625.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60625.patch", "merged_at": "2023-05-23T14:18:25" }
This will resolve a pip unit test breakage that fails due to unable to import the module tensorflow.compiler.mlir.stablehlo from an installed tensorflow wheel.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60625/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60625/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60624
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60624/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60624/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60624/events
https://github.com/tensorflow/tensorflow/issues/60624
1,715,270,513
I_kwDOArmXAs5mPPNx
60,624
metal delegate memory leak
{ "login": "mengran1234", "id": 87115287, "node_id": "MDQ6VXNlcjg3MTE1Mjg3", "avatar_url": "https://avatars.githubusercontent.com/u/87115287?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mengran1234", "html_url": "https://github.com/mengran1234", "followers_url": "https://api.github.com/users/mengran1234/followers", "following_url": "https://api.github.com/users/mengran1234/following{/other_user}", "gists_url": "https://api.github.com/users/mengran1234/gists{/gist_id}", "starred_url": "https://api.github.com/users/mengran1234/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mengran1234/subscriptions", "organizations_url": "https://api.github.com/users/mengran1234/orgs", "repos_url": "https://api.github.com/users/mengran1234/repos", "events_url": "https://api.github.com/users/mengran1234/events{/privacy}", "received_events_url": "https://api.github.com/users/mengran1234/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671339633, "node_id": "MDU6TGFiZWwyNjcxMzM5NjMz", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate", "name": "TFLiteGpuDelegate", "color": "F71F04", "default": false, "description": "TFLite Gpu delegate issue" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "impjdi", "id": 9742927, "node_id": "MDQ6VXNlcjk3NDI5Mjc=", "avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4", "gravatar_id": "", "url": "https://api.github.com/users/impjdi", "html_url": "https://github.com/impjdi", "followers_url": "https://api.github.com/users/impjdi/followers", "following_url": "https://api.github.com/users/impjdi/following{/other_user}", "gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}", "starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/impjdi/subscriptions", "organizations_url": "https://api.github.com/users/impjdi/orgs", "repos_url": "https://api.github.com/users/impjdi/repos", "events_url": "https://api.github.com/users/impjdi/events{/privacy}", "received_events_url": "https://api.github.com/users/impjdi/received_events", "type": "User", "site_admin": false }
[ { "login": "impjdi", "id": 9742927, "node_id": "MDQ6VXNlcjk3NDI5Mjc=", "avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4", "gravatar_id": "", "url": "https://api.github.com/users/impjdi", "html_url": "https://github.com/impjdi", "followers_url": "https://api.github.com/users/impjdi/followers", "following_url": "https://api.github.com/users/impjdi/following{/other_user}", "gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}", "starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/impjdi/subscriptions", "organizations_url": "https://api.github.com/users/impjdi/orgs", "repos_url": "https://api.github.com/users/impjdi/repos", "events_url": "https://api.github.com/users/impjdi/events{/privacy}", "received_events_url": "https://api.github.com/users/impjdi/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@mengran1234,\r\nCould you please provide the complete code to reproduce the issue which helps us to analyse the issue in an effective way. Thank you!", "I calls this three function loop on ios,and find memory leak\r\nuse TFLGpuDelegateCreate --》 TfLiteInterpreterModifyGraphWithDelegate --》 TFLGpuDelegateDelete\r\n\r\nxcode profile tool (memory leak)can be see.", "[](url)\r\n![IMG_8782 HEIC JPG](https://github.com/tensorflow/tensorflow/assets/87115287/dec86542-d4b5-4584-8491-f369ea2d37cf)\r\n", "please help to see it", "> I calls this three function loop on ios,and find memory leak use TFLGpuDelegateCreate --》 TfLiteInterpreterModifyGraphWithDelegate --》 TFLGpuDelegateDelete\r\n> \r\n> xcode profile tool (memory leak)can be see.\r\n\r\nI understand what you're doing, but I'd like to see your code snippet. Can you copy & paste your code snippet here?\r\n\r\nAlso, can you attach your tflite file or a link if it's an open source model? If it's not opensource, but is proprietary, how big is the model, and what kind of ops does it have?", "any tflite file, let it run gpu delegate (metal )on iphone,thank you", "https://github.com/tensorflow/tensorflow/issues/57718\r\nmy question is the same with this", "FYI, we ran into a memory usage issue in CoreML delegate when switching from Xcode 12 to 13 (see #53461). It turned out I have to add some `@autoreleasepool` as in #53468", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60624\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60624\">No</a>\n" ]
2023-05-18T08:57:48
2023-07-03T06:02:39
2023-07-03T06:02:36
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.10 or 2.11 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A bug happened! I calls this three function loop on ios,and find memory leak use TFLGpuDelegateCreate --》 TfLiteInterpreterModifyGraphWithDelegate --》 TFLGpuDelegateDelete ![191225054-cfc30bd2-cc8d-4b42-97c5-131ffdbde9d3](https://github.com/tensorflow/tensorflow/assets/87115287/908eb0f8-ac63-4b4d-8959-8e377f75b3b4) ### Standalone code to reproduce the issue ```shell From my own investigation it seems that the leak is coming from ModifyGraphWithDelegate, instead of Invoke.Attached is a screenshot of instruments, and a 5MB growth per call。 ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60624/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60624/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60623
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60623/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60623/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60623/events
https://github.com/tensorflow/tensorflow/issues/60623
1,714,866,296
I_kwDOArmXAs5mNsh4
60,623
OOB read in IdentifySharedTensors
{ "login": "SiriusHsh", "id": 20510239, "node_id": "MDQ6VXNlcjIwNTEwMjM5", "avatar_url": "https://avatars.githubusercontent.com/u/20510239?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SiriusHsh", "html_url": "https://github.com/SiriusHsh", "followers_url": "https://api.github.com/users/SiriusHsh/followers", "following_url": "https://api.github.com/users/SiriusHsh/following{/other_user}", "gists_url": "https://api.github.com/users/SiriusHsh/gists{/gist_id}", "starred_url": "https://api.github.com/users/SiriusHsh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SiriusHsh/subscriptions", "organizations_url": "https://api.github.com/users/SiriusHsh/orgs", "repos_url": "https://api.github.com/users/SiriusHsh/repos", "events_url": "https://api.github.com/users/SiriusHsh/events{/privacy}", "received_events_url": "https://api.github.com/users/SiriusHsh/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @SiriusHsh\r\n\r\nAs this https://github.com/tensorflow/tensorflow/issues/60620#issuecomment-1553442519 suggests, please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md#vulnerabilities-in-tensorflow and follow rules for responsible disclosure.\r\n\r\nThanks.", "Hi @SiriusHsh,\r\n\r\nI am unable to reproduce locally, I get a proper exception which I think is expected given the input. Are you sure you uploaded the correct file?\r\n```\r\n./benchmark_model --graph=arena_planner_IdentifySharedTensors_oob.tflite\r\nINFO: STARTING!\r\nWARN: Duplicate flags: num_threads\r\nINFO: Log parameter values verbosely: [0]\r\nINFO: Graph: [arena_planner_IdentifySharedTensors_oob.tflite]\r\nINFO: Loaded model arena_planner_IdentifySharedTensors_oob.tflite\r\nINFO: Initialized TensorFlow Lite runtime.\r\nINFO: Applying 1 TensorFlow Lite delegate(s) lazily.\r\nINFO: Created TensorFlow Lite XNNPACK delegate for CPU.\r\nERROR: tensorflow/lite/kernels/squeeze.cc:39 NumInputs(node) != 1 (0 != 1)\r\nERROR: Node number 0 (SQUEEZE) failed to prepare.\r\nERROR: Failed to apply the default TensorFlow Lite delegate indexed at 0.\r\nERROR: Failed to allocate tensors!\r\nERROR: Benchmarking failed.\r\n```", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60623\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60623\">No</a>\n" ]
2023-05-18T01:55:59
2023-06-09T02:07:33
2023-06-09T02:07:24
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.14.0 ### Custom Code No ### OS Platform and Distribution Ubuntu 18.04.6 ### Mobile device _No response_ ### Python version Python 3.8.3 ### Bazel version bazel 5.3.0 ### GCC/Compiler version gcc 7.5.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A malicious model can manipulate external data, causing the input_tensor to be an unexpectedly large integer. ```c // arena_planner.cc void ArenaPlanner::IdentifySharedTensors() { ... const auto& tflite_node = graph_info_->node(i); if (ShareFirstInputWithFirstOutputForNode(reg)) { int32_t input_tensor = tflite_node.inputs->data[0]; // input_tensor maybe an unexpectedly large integer int32_t output_tensor = tflite_node.outputs->data[0]; bool is_input_or_output_tensor = false; ... TfLiteAllocationType input_allocation_type = tensors[input_tensor].allocation_type; // OOB read ``` [arena_planner_IdentifySharedTensors_oob.zip](https://github.com/tensorflow/tensorflow/files/11503622/arena_planner_IdentifySharedTensors_oob.zip) ### Standalone code to reproduce the issue ```shell When I use the benchmark tool for PoC validation, it causes the TensorFlow Lite inference process to be subjected to a DOS(coredump). ❯ ./benchmark_model --graph=./arena_planner_IdentifySharedTensors_oob.tflite INFO: STARTING! INFO: Log parameter values verbosely: [0] INFO: Graph: [./arena_planner_IdentifySharedTensors_oob.tflite] INFO: Loaded model ./arena_planner_IdentifySharedTensors_oob.tflite [1] 8305 segmentation fault (core dumped) ./benchmark_model --graph=./arena_planner_IdentifySharedTensors_oob.tflite ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60623/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60623/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60622
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60622/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60622/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60622/events
https://github.com/tensorflow/tensorflow/issues/60622
1,714,865,712
I_kwDOArmXAs5mNsYw
60,622
FPE in conv.h
{ "login": "SiriusHsh", "id": 20510239, "node_id": "MDQ6VXNlcjIwNTEwMjM5", "avatar_url": "https://avatars.githubusercontent.com/u/20510239?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SiriusHsh", "html_url": "https://github.com/SiriusHsh", "followers_url": "https://api.github.com/users/SiriusHsh/followers", "following_url": "https://api.github.com/users/SiriusHsh/following{/other_user}", "gists_url": "https://api.github.com/users/SiriusHsh/gists{/gist_id}", "starred_url": "https://api.github.com/users/SiriusHsh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SiriusHsh/subscriptions", "organizations_url": "https://api.github.com/users/SiriusHsh/orgs", "repos_url": "https://api.github.com/users/SiriusHsh/repos", "events_url": "https://api.github.com/users/SiriusHsh/events{/privacy}", "received_events_url": "https://api.github.com/users/SiriusHsh/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @SiriusHsh \r\n\r\nAs this [comment](https://github.com/tensorflow/tensorflow/issues/60620#issuecomment-1553442519) suggests, please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md#vulnerabilities-in-tensorflow and follow rules for responsible disclosure.\r\n\r\nThanks.", "Hi @SiriusHsh,\r\n\r\nThis has been fixed in this commit: https://github.com/tensorflow/tensorflow/commit/b40420ef4c2064b7eb5e26f9d1a1c6abdc3db0f4\r\n\r\nYou may test the changes with the tf-nightly package or by building from the master/nightly branch. If you are satisfied with the resolution please feel free to close this issue.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60622\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60622\">No</a>\n" ]
2023-05-18T01:55:00
2023-06-08T02:54:39
2023-06-08T02:54:37
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.14.0 ### Custom Code No ### OS Platform and Distribution Ubuntu 18.04.6 ### Mobile device _No response_ ### Python version Python 3.8.3 ### Bazel version bazel 5.3.0 ### GCC/Compiler version gcc 7.5.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The `groups` variable and `filters_per_group` variable may be equal to 0, leading to a division by zero error. ```c inline void Conv(const ConvParams& params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& filter_shape, const float* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data, const RuntimeShape& im2col_shape, float* im2col_data) { ... TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); ... const int input_depth = input_shape.Dims(3); const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); ... const int groups = input_depth / filter_input_depth; TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0); const int filters_per_group = output_depth / groups; // FPE ... for (int batch = 0; batch < batches; ++batch) { for (int out_y = 0; out_y < output_height; ++out_y) { const int in_y_origin = (out_y * stride_height) - pad_height; for (int out_x = 0; out_x < output_width; ++out_x) { const int in_x_origin = (out_x * stride_width) - pad_width; for (int out_channel = 0; out_channel < output_depth; ++out_channel) { auto group = out_channel / filters_per_group; // FPE ``` [conv_divide_by_zero.zip](https://github.com/tensorflow/tensorflow/files/11503617/conv_divide_by_zero.zip) ### Standalone code to reproduce the issue ```shell When I use the benchmark tool for PoC validation, it causes the TensorFlow Lite inference process to be subjected to a DOS(coredump). ❯ ./benchmark_model --graph=./conv_divide_by_zero1.tflite INFO: STARTING! INFO: Log parameter values verbosely: [0] INFO: Graph: [./conv_divide_by_zero1.tflite] INFO: Loaded model ./conv_divide_by_zero1.tflite INFO: Created TensorFlow Lite XNNPACK delegate for CPU. INFO: The input model file size (MB): 0.000708 INFO: Initialized session in 0.68ms. INFO: Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds. [1] 6968 floating point exception (core dumped) ./benchmark_model --graph=./conv_divide_by_zero1.tflite ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60622/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60622/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60621
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60621/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60621/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60621/events
https://github.com/tensorflow/tensorflow/issues/60621
1,714,864,953
I_kwDOArmXAs5mNsM5
60,621
Infinite loop in the subgraph.cc
{ "login": "SiriusHsh", "id": 20510239, "node_id": "MDQ6VXNlcjIwNTEwMjM5", "avatar_url": "https://avatars.githubusercontent.com/u/20510239?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SiriusHsh", "html_url": "https://github.com/SiriusHsh", "followers_url": "https://api.github.com/users/SiriusHsh/followers", "following_url": "https://api.github.com/users/SiriusHsh/following{/other_user}", "gists_url": "https://api.github.com/users/SiriusHsh/gists{/gist_id}", "starred_url": "https://api.github.com/users/SiriusHsh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SiriusHsh/subscriptions", "organizations_url": "https://api.github.com/users/SiriusHsh/orgs", "repos_url": "https://api.github.com/users/SiriusHsh/repos", "events_url": "https://api.github.com/users/SiriusHsh/events{/privacy}", "received_events_url": "https://api.github.com/users/SiriusHsh/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1097543484, "node_id": "MDU6TGFiZWwxMDk3NTQzNDg0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime", "name": "comp:runtime", "color": "0052cc", "default": false, "description": "c++ runtime, performance issues (cpu)" } ]
open
false
{ "login": "miaout17", "id": 22063, "node_id": "MDQ6VXNlcjIyMDYz", "avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4", "gravatar_id": "", "url": "https://api.github.com/users/miaout17", "html_url": "https://github.com/miaout17", "followers_url": "https://api.github.com/users/miaout17/followers", "following_url": "https://api.github.com/users/miaout17/following{/other_user}", "gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}", "starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/miaout17/subscriptions", "organizations_url": "https://api.github.com/users/miaout17/orgs", "repos_url": "https://api.github.com/users/miaout17/repos", "events_url": "https://api.github.com/users/miaout17/events{/privacy}", "received_events_url": "https://api.github.com/users/miaout17/received_events", "type": "User", "site_admin": false }
[ { "login": "miaout17", "id": 22063, "node_id": "MDQ6VXNlcjIyMDYz", "avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4", "gravatar_id": "", "url": "https://api.github.com/users/miaout17", "html_url": "https://github.com/miaout17", "followers_url": "https://api.github.com/users/miaout17/followers", "following_url": "https://api.github.com/users/miaout17/following{/other_user}", "gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}", "starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/miaout17/subscriptions", "organizations_url": "https://api.github.com/users/miaout17/orgs", "repos_url": "https://api.github.com/users/miaout17/repos", "events_url": "https://api.github.com/users/miaout17/events{/privacy}", "received_events_url": "https://api.github.com/users/miaout17/received_events", "type": "User", "site_admin": false }, { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @SiriusHsh \r\n\r\nAs this [comment](https://github.com/tensorflow/tensorflow/issues/60620#issuecomment-1553442519) suggests, please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md#vulnerabilities-in-tensorflow and follow rules for responsible disclosure.\r\n\r\nThanks.", "I was able to replicate locally on nightly branch:\r\n\r\n```\r\n./benchmark_model --graph=subgraph_infinite_loop.tflite\r\nINFO: STARTING!\r\nWARN: Duplicate flags: num_threads\r\nINFO: Log parameter values verbosely: [0]\r\nINFO: Graph: [subgraph_infinite_loop.tflite]\r\nINFO: Loaded model subgraph_infinite_loop.tflite\r\nINFO: Initialized TensorFlow Lite runtime.\r\nINFO: Applying 1 TensorFlow Lite delegate(s) lazily.\r\nINFO: Created TensorFlow Lite XNNPACK delegate for CPU.\r\nINFO: Successfully applied the default TensorFlow Lite delegate indexed at 0.\r\n *NOTE*: because a delegate has been applied, the precision of computations should be unchanged, but the exact output tensor values may have changed. If such output values are checked in your code, like in your tests etc., please consider increasing error tolerance for the check.\r\nINFO: The input model file size (MB): 0.000488\r\nINFO: Initialized session in 1.213ms.\r\nINFO: Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.\r\nSegmentation fault\r\n```\r\n\r\nTop of Callstack (repeats last 4):\r\n```\r\n...\r\n#87231 0x0000555555a802c2 in tflite::Subgraph::Invoke (this=0x55555635acd0) at tensorflow/lite/core/subgraph.cc:1498\r\n#87232 0x00005555559dc4d5 in tflite::ops::builtin::call_once_kernel::Eval (context=0x55555635acf8, node=0x55555635e800) at tensorflow/lite/kernels/call_once.cc:98\r\n#87233 0x0000555555a7f7e5 in tflite::Subgraph::OpInvoke (this=0x55555635acd0, op_reg=..., node=0x55555635e800) at tensorflow/lite/core/subgraph.cc:1292\r\n#87234 0x0000555555a80840 in tflite::Subgraph::InvokeImpl (this=0x55555635acd0) at tensorflow/lite/core/subgraph.cc:1605\r\n#87235 0x0000555555a802c2 in tflite::Subgraph::Invoke (this=0x55555635acd0) at tensorflow/lite/core/subgraph.cc:1498\r\n#87236 0x00005555559dc4d5 in tflite::ops::builtin::call_once_kernel::Eval (context=0x55555635acf8, node=0x55555635e800) at tensorflow/lite/kernels/call_once.cc:98\r\n#87237 0x0000555555a7f7e5 in tflite::Subgraph::OpInvoke (this=0x55555635acd0, op_reg=..., node=0x55555635e800) at tensorflow/lite/core/subgraph.cc:1292\r\n#87238 0x0000555555a80840 in tflite::Subgraph::InvokeImpl (this=0x55555635acd0) at tensorflow/lite/core/subgraph.cc:1605\r\n#87239 0x0000555555a802c2 in tflite::Subgraph::Invoke (this=0x55555635acd0) at tensorflow/lite/core/subgraph.cc:1498\r\n#87240 0x0000555555a50898 in tflite::impl::Interpreter::Invoke (this=0x55555634b910) at tensorflow/lite/core/interpreter.cc:237\r\n#87241 0x000055555557bacc in tflite::benchmark::BenchmarkTfLiteModel::RunImpl (this=0x7fffffffc370) at tensorflow/lite/tools/benchmark/benchmark_tflite_model.cc:961\r\n#87242 0x000055555559ae70 in tflite::benchmark::BenchmarkModel::Run (this=0x7fffffffc370, min_num_times=1, min_secs=0.5, max_secs=150, run_type=tflite::benchmark::WARMUP, invoke_status=0x7fffffffbe8c) at tensorflow/lite/tools/benchmark/benchmark_model.cc:230\r\n#87243 0x000055555559ba3c in tflite::benchmark::BenchmarkModel::Run (this=0x7fffffffc370) at tensorflow/lite/tools/benchmark/benchmark_model.cc:318\r\n#87244 0x000055555559b313 in tflite::benchmark::BenchmarkModel::Run (this=0x7fffffffc370, argc=2, argv=0x7fffffffdac8) at tensorflow/lite/tools/benchmark/benchmark_model.cc:276\r\n#87245 0x000055555557230e in tflite::benchmark::Main (argc=2, argv=0x7fffffffdac8) at tensorflow/lite/tools/benchmark/benchmark_main.cc:27\r\n#87246 0x00005555555723b6 in main (argc=2, argv=0x7fffffffdac8) at tensorflow/lite/tools/benchmark/benchmark_main.cc:36\r\n```", "Hi @miaout17, can you take a look at this?" ]
2023-05-18T01:53:41
2023-07-19T23:22:31
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.14.0 ### Custom Code No ### OS Platform and Distribution Ubuntu 18.04.6 ### Mobile device _No response_ ### Python version Python 3.8.3 ### Bazel version bazel 5.3.0 ### GCC/Compiler version gcc 7.5.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When the `GetRegistrationFromOpCode` function parses a maliciously crafted model structure, if the `builtin_code` is `tflite::BuiltinOperator_CALL_ONCE`, it will enter an infinite loop in the subsequent inference process:`tflite::Subgraph::Invoke -> tflite::Subgraph::InvokeImpl -> tflite::Subgraph::OpInvoke -> tflite::ops::builtin::call_once_kernel::Eval`. ```c // op_resolver.cc TfLiteStatus GetRegistrationFromOpCode( const OperatorCode* opcode, const OpResolver& op_resolver, ErrorReporter* error_reporter, const TfLiteRegistration** registration) { TfLiteStatus status = kTfLiteOk; *registration = nullptr; auto builtin_code = GetBuiltinCode(opcode); int version = opcode->version(); if (builtin_code > BuiltinOperator_MAX) { TF_LITE_REPORT_ERROR( error_reporter, "Op builtin_code out of range: %d. Are you using old TFLite binary " "with newer model?", builtin_code); status = kTfLiteError; } else if (builtin_code != BuiltinOperator_CUSTOM) { *registration = op_resolver.FindOp(builtin_code, version); // here ``` At the time of the crash, the call stack would look like this: ``` #67807 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67808 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67809 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67810 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67811 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67812 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67813 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67814 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67815 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67816 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67817 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67818 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67819 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67820 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67821 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67822 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67823 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67824 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67825 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67826 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67827 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67828 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67829 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67830 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67831 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67832 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67833 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67834 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67835 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67836 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67837 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67838 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67839 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67840 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67841 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67842 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67843 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67844 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67845 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67846 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67847 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67848 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67849 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67850 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67851 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67852 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () #67853 0x00005555555ee3fe in tflite::Subgraph::Invoke() () #67854 0x000055555566cc30 in tflite::ops::builtin::call_once_kernel::Eval(TfLiteContext*, TfLiteNode*) () #67855 0x00005555555ee106 in tflite::Subgraph::InvokeImpl() () ``` [subgraph_infinite_loop.zip](https://github.com/tensorflow/tensorflow/files/11503605/subgraph_infinite_loop.zip) ### Standalone code to reproduce the issue ```shell When I use the benchmark tool for PoC validation, it causes the TensorFlow Lite inference process to be subjected to a DOS(coredump). ❯ ./benchmark_model --graph=./subgraph_infinite_loop.tflite INFO: STARTING! INFO: Log parameter values verbosely: [0] INFO: Graph: [./subgraph_infinite_loop.tflite] INFO: Loaded model ./subgraph_infinite_loop.tflite INFO: Created TensorFlow Lite XNNPACK delegate for CPU. INFO: The input model file size (MB): 0.000488 INFO: Initialized session in 0.731ms. INFO: Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds. [1] 6892 segmentation fault (core dumped) ./benchmark_model --graph=./subgraph_infinite_loop.tflite ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60621/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60621/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60620
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60620/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60620/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60620/events
https://github.com/tensorflow/tensorflow/issues/60620
1,714,864,441
I_kwDOArmXAs5mNsE5
60,620
OOB write in PlanAllocations
{ "login": "SiriusHsh", "id": 20510239, "node_id": "MDQ6VXNlcjIwNTEwMjM5", "avatar_url": "https://avatars.githubusercontent.com/u/20510239?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SiriusHsh", "html_url": "https://github.com/SiriusHsh", "followers_url": "https://api.github.com/users/SiriusHsh/followers", "following_url": "https://api.github.com/users/SiriusHsh/following{/other_user}", "gists_url": "https://api.github.com/users/SiriusHsh/gists{/gist_id}", "starred_url": "https://api.github.com/users/SiriusHsh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SiriusHsh/subscriptions", "organizations_url": "https://api.github.com/users/SiriusHsh/orgs", "repos_url": "https://api.github.com/users/SiriusHsh/repos", "events_url": "https://api.github.com/users/SiriusHsh/events{/privacy}", "received_events_url": "https://api.github.com/users/SiriusHsh/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "I'll go ahead and make this change, \r\n\r\nThere is a bigger question, \r\n\r\n1. Can we make graph_info_->outputs() as well as similar constructions (graph_info_->variables(), graph_info_->inputs(), etc.) not externally controllable?\r\n2. If not, then we need to cover those cases as well.", "I'm making this an assert so that the program will throw an exception in this case, as we shouldn't continue if this condition is reached.", "Please don't report vulnerabilities publicly!", "Hi @SiriusHsh \r\n\r\nAs this [comment](https://github.com/tensorflow/tensorflow/issues/60620#issuecomment-1553442519) suggests, please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md#vulnerabilities-in-tensorflow and follow rules for responsible disclosure.\r\n\r\nThanks.", "Hi @pjpratik \r\nActually, The Google Bug Hunter Team suggested that I should open an issue on Github for these few problems.", "I don't we'd ask for that for this specific issue.", "Hi @SiriusHsh, this is now fixed in the following commit: https://github.com/tensorflow/tensorflow/commit/c4d31b0f488f02fa7fe1bbccf3f75b34d651cf3a please test in master or nightly and let us know if it resolves your issue.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60620\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60620\">No</a>\n" ]
2023-05-18T01:52:44
2023-08-13T01:47:09
2023-08-13T01:47:05
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.14.0 ### Custom Code No ### OS Platform and Distribution Ubuntu 18.04.6 ### Mobile device _No response_ ### Python version Python 3.8.3 ### Bazel version bazel 5.3.0 ### GCC/Compiler version gcc 7.5.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The `graph_info_->outputs` are externally controllable data, which may cause the `tensor_index` value to be `-1`, leading to an out-of-bounds write in the vector. ``` // simple_planner.c TfLiteStatus ArenaPlanner::PlanAllocations() { ... // Keeps track of references to each tensor. std::vector<int> refcounts(num_tensors, 0); ... // We must make sure the output tensors are never overwritten. We do that by // artificially adding one to their ref-counts so they are never selected // for deallocation. for (int tensor_index : graph_info_->outputs()) { refcounts[tensor_index]++; } ``` Due to an out-of-bounds write of 8 bytes forward, the original chunk size increases from` 0x20` to `0x100000021`, which corrupts the chunk structure. As a result, when the `PlanAllocations` function finishes and returns, triggering the vector's destructor, the chunk is freed, causing a security check in the glibc `_int_free` function to be triggered. ```c nextchunk = chunk_at_offset(p, size); /* Or whether the next chunk is beyond the boundaries of the arena. */ if (__builtin_expect (contiguous (av) && (char *) nextchunk >= ((char *) av->top + chunksize(av->top)), 0)) malloc_printerr ("double free or corruption (out)"); ``` [arena_planner_PlanAllocations_heap_overflow.zip](https://github.com/tensorflow/tensorflow/files/11503599/arena_planner_PlanAllocations_heap_overflow.zip) ### Standalone code to reproduce the issue ```shell When I use the benchmark tool for PoC validation, it causes the TensorFlow Lite inference process to be subjected to a DOS(coredump). ❯ ./benchmark_model --graph=arena_planner_PlanAllocations_heap_overflow.tflite INFO: STARTING! INFO: Log parameter values verbosely: [0] INFO: Graph: [arena_planner_PlanAllocations_heap_overflow.tflite] INFO: Loaded model arena_planner_PlanAllocations_heap_overflow.tflite INFO: Created TensorFlow Lite XNNPACK delegate for CPU. double free or corruption (out) [1] 30982 abort (core dumped) ./benchmark_model --graph=arena_planner_PlanAllocations_heap_overflow.tflite ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60620/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60620/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60619
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60619/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60619/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60619/events
https://github.com/tensorflow/tensorflow/issues/60619
1,714,861,780
I_kwDOArmXAs5mNrbU
60,619
null pointer dereference on GetInput
{ "login": "SiriusHsh", "id": 20510239, "node_id": "MDQ6VXNlcjIwNTEwMjM5", "avatar_url": "https://avatars.githubusercontent.com/u/20510239?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SiriusHsh", "html_url": "https://github.com/SiriusHsh", "followers_url": "https://api.github.com/users/SiriusHsh/followers", "following_url": "https://api.github.com/users/SiriusHsh/following{/other_user}", "gists_url": "https://api.github.com/users/SiriusHsh/gists{/gist_id}", "starred_url": "https://api.github.com/users/SiriusHsh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SiriusHsh/subscriptions", "organizations_url": "https://api.github.com/users/SiriusHsh/orgs", "repos_url": "https://api.github.com/users/SiriusHsh/repos", "events_url": "https://api.github.com/users/SiriusHsh/events{/privacy}", "received_events_url": "https://api.github.com/users/SiriusHsh/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1097543484, "node_id": "MDU6TGFiZWwxMDk3NTQzNDg0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime", "name": "comp:runtime", "color": "0052cc", "default": false, "description": "c++ runtime, performance issues (cpu)" } ]
open
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @SiriusHsh \r\n\r\nAs this [comment](https://github.com/tensorflow/tensorflow/issues/60620#issuecomment-1553442519) suggests, please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md#vulnerabilities-in-tensorflow and follow rules for responsible disclosure.\r\n\r\nThanks." ]
2023-05-18T01:47:55
2023-07-27T17:13:53
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 18.04.6 ### Mobile device _No response_ ### Python version Python 3.8.3 ### Bazel version bazel 5.3.0 ### GCC/Compiler version gcc 7.5.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The `GetInput` function may return a null pointer, similarly, the `GetOutput` function may also return a null pointer. ```c // kernel_util.cc const TfLiteTensor* GetInput(const TfLiteContext* context, const TfLiteNode* node, int index) { return GetMutableInput(context, node, index); } inline TfLiteTensor* GetMutableInput(const TfLiteContext* context, const TfLiteNode* node, int index) { const int tensor_index = ValidateTensorIndexing( context, index, node->inputs->size, node->inputs->data); if (tensor_index < 0) { return nullptr; // here } return GetTensorAtIndex(context, tensor_index); } ``` Subsequent operations may cause null pointer dereferencing. ```c // pad.cc struct PadContext { PadContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); // null pointer paddings = GetInput(context, node, 1); if (NumInputs(node) == 3) { constant_values = GetOptionalInputTensor(context, node, 2); } else { constant_values = nullptr; } output = GetOutput(context, node, 0); dims = NumDimensions(input); // null dereference ... } inline int NumDimensions(const TfLiteTensor* t) { return t->dims->size; } ``` Similar use cases are also common. The axis of op_context may be null, leading to null pointer dereferencing when accessing op_context.axis->type. ```c //reduce.cc TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpContext op_context(context, node); TF_LITE_ENSURE_TYPES_EQ(context, op_context.axis->type, kTfLiteInt32); // op_context.axis->type ... struct OpContext { OpContext(TfLiteContext* context, TfLiteNode* node) { params = reinterpret_cast<TfLiteReducerParams*>(node->builtin_data); input = GetInput(context, node, 0); axis = GetInput(context, node, 1); // axis may be null ... ``` [getinput_getoutput_nullptr.zip](https://github.com/tensorflow/tensorflow/files/11503582/getinput_getoutput_nullptr.zip) ### Standalone code to reproduce the issue ```shell When I use the benchmark tool for PoC validation, it causes the TensorFlow Lite inference process to be subjected to a DOS(coredump). ❯ ./benchmark_model --graph=getinput_getoutput_nullptr.tflite INFO: STARTING! INFO: Log parameter values verbosely: [0] INFO: Graph: [getinput_getoutput_nullptr.tflite] INFO: Loaded model getinput_getoutput_nullptr.tflite INFO: Created TensorFlow Lite XNNPACK delegate for CPU. [1] 29697 segmentation fault (core dumped) ./benchmark_model --graph=getinput_getoutput_nullptr.tflite ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60619/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60619/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60618
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60618/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60618/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60618/events
https://github.com/tensorflow/tensorflow/issues/60618
1,714,627,875
I_kwDOArmXAs5mMyUj
60,618
Libraries missing, according to console
{ "login": "Shikamaru5", "id": 86502093, "node_id": "MDQ6VXNlcjg2NTAyMDkz", "avatar_url": "https://avatars.githubusercontent.com/u/86502093?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Shikamaru5", "html_url": "https://github.com/Shikamaru5", "followers_url": "https://api.github.com/users/Shikamaru5/followers", "following_url": "https://api.github.com/users/Shikamaru5/following{/other_user}", "gists_url": "https://api.github.com/users/Shikamaru5/gists{/gist_id}", "starred_url": "https://api.github.com/users/Shikamaru5/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Shikamaru5/subscriptions", "organizations_url": "https://api.github.com/users/Shikamaru5/orgs", "repos_url": "https://api.github.com/users/Shikamaru5/repos", "events_url": "https://api.github.com/users/Shikamaru5/events{/privacy}", "received_events_url": "https://api.github.com/users/Shikamaru5/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@Shikamaru5,\r\nTensorflow v2.10 is compatible with GCC 9.3.1, Bazel 5.1.1, cuDNN 8.1 and CUDA 11.2. Also please have a look at this officially tested build configurations for the reference.\r\nhttps://www.tensorflow.org/install/source#gpu\r\n\r\nAnd please take a glance at this issues for reference.\r\nhttps://github.com/tensorflow/tensorflow/issues/60334#issuecomment-1511468692\r\nhttps://github.com/tensorflow/tensorflow/issues/59013\r\n\r\n\r\n\r\n\r\n\r\n", "@tilakrayal Well the reason that I grabbed cuda 11.7 was because when I looked at the chart it didn't specifically say that it wouldn't work with that version just that it changed to 11.8 after TF 2.11. I'm pretty sure that I need the higher versions to get PyTorch to work effectively for my needs or all the other libraries I'm using in my current program might not be compatible. Is the reason that these libraries are missing is because they've been depreciated? I mean technically when I run the test commands that it tells me it still shows the tensor for the cpu test and the physical devices and stuff for the gpu version. The issue is that I keep getting these other errors about no numa support and not being able to load the dynamic libraries. Idk if that's actually a problem or not though, I mean perhaps it isn't and I can just safely ignore it. Also the links you sent me weren't helpful sorry.", "@Shikamaru5,\r\nFor some of the cases it might work as you mentioned. But it will be suggestible to follow the tested build [configurations](https://www.tensorflow.org/install/source#gpu) to avoid the unnecessary erros and for the smooth executions. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60618\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60618\">No</a>\n" ]
2023-05-17T20:42:32
2023-07-22T01:54:53
2023-07-22T01:54:51
NONE
null
null
null
Ok so I've got this issue where when I run my program I get a few different errors. I believe this likely has been brought up before but the issue that I did find, was all over the place with a ton of different edits and things which were frankly too difficult to follow, at least for me. I'm using tensorflow 2.10.0, cuda 11.7 and the corresponding cudnn, and I'm not sure if it's a version issue, or perhaps just a non-issue in general but I'll provide the error that I'm receiving: 2023-05-17 12:32:37.272738: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2023-05-17 12:32:38.702176: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2023-05-17 12:32:38.702271: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2023-05-17 12:32:38.702297: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. 2023-05-17 12:32:41.132568: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:966] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node Your kernel may have been built without NUMA support. 2023-05-17 12:32:41.141491: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:966] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node Your kernel may have been built without NUMA support. 2023-05-17 12:32:41.141557: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:966] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node Your kernel may have been built without NUMA support. It's just that in order to get my program to work, as far as I can tell, I need tensorflow that has GPU support which was removed in the latest versions. Anyway, would really appreciate it if anyone knows how I can solve this please and thank you.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60618/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60618/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60617
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60617/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60617/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60617/events
https://github.com/tensorflow/tensorflow/issues/60617
1,714,559,613
I_kwDOArmXAs5mMhp9
60,617
PyCharm cannot resolve Keras and Bidirectional and TimeDistributed
{ "login": "lrstolk", "id": 35999180, "node_id": "MDQ6VXNlcjM1OTk5MTgw", "avatar_url": "https://avatars.githubusercontent.com/u/35999180?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lrstolk", "html_url": "https://github.com/lrstolk", "followers_url": "https://api.github.com/users/lrstolk/followers", "following_url": "https://api.github.com/users/lrstolk/following{/other_user}", "gists_url": "https://api.github.com/users/lrstolk/gists{/gist_id}", "starred_url": "https://api.github.com/users/lrstolk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lrstolk/subscriptions", "organizations_url": "https://api.github.com/users/lrstolk/orgs", "repos_url": "https://api.github.com/users/lrstolk/repos", "events_url": "https://api.github.com/users/lrstolk/events{/privacy}", "received_events_url": "https://api.github.com/users/lrstolk/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @lrstolk ,\r\n\r\nI have replicated the reported behaviour on Colab and attached screenshot below.\r\n\r\nhttps://screenshot.googleplex.com/4hm4Zj6zXvEvasR\r\n\r\nYou can use the below code to get the Tensorflow version.\r\n\r\n`!python -c \"import tensorflow as tf; print(tf.__version__)\"\r\n`\r\n", "> Hi @lrstolk ,\r\n> \r\n> I have replicated the reported behaviour on Colab and attached screenshot below.\r\n> \r\n> https://screenshot.googleplex.com/4hm4Zj6zXvEvasR\r\n> \r\n> You can use the below code to get the Tensorflow version.\r\n> \r\n> `!python -c \"import tensorflow as tf; print(tf.__version__)\" `\r\n\r\nThanks for the fast reply @SuryanarayanaY !\r\n\r\nI tried to open your link, but sadly cannot open it, it brings me to a single sign on page. \r\n\r\nWhen I try your code, it does not recognize the exclamation mark in the PyTorch terminal or Anaconda Promt. When I use your code in a jupyter notebook, it gives the same error as I mentioned earlier.\r\nIf I ask pip show tensorflow, it gives me: Version: 2.10.1 \r\n\r\n**EDIT**\r\nI reinstalled my entire env, the Anaconda shell gives me: 2.10.0 \r\nThe powerschell is able to find keras tho: \r\n>python -c \"import tensorflow.keras as k; print(k.__version__)\"\r\n>2.10.0\r\n\r\nOn my old laptop, PyCharm is able to find keras, Bidirectional and TimeDistributed, \r\nI run the same environment with Tensorflow==2.3.0", "@SuryanarayanaY I cannot see your screenshot. ", "Hi @lrstolk ,\r\n\r\nI am attaching a colab [gist](https://colab.research.google.com/gist/SuryanarayanaY/90a0471c32f0650f2e2f0a4fb8045bec/60617.ipynb) for your reference. You please execute it and observe the behaviour.\r\n\r\nThe problem is related to auto completion of path. You can still use the functionalities without problem except auto path resolution. Now Keras is available as stand alone package which might be reason that there is no problem with keras path resolution.\r\n\r\nThanks\r\n", "> Hi @lrstolk ,\n> \n> \n> \n> I am attaching a colab [gist](https://colab.research.google.com/gist/SuryanarayanaY/90a0471c32f0650f2e2f0a4fb8045bec/60617.ipynb) for your reference. You please execute it and observe the behaviour.\n> \n> \n> \n> The problem is related to auto completion of path. You can still use the functionalities without problem except auto path resolution. Now Keras is available as stand alone package which might be reason that there is no problem with keras path resolution.\n> \n> \n> \n> Thanks\n> \n> \n\nI see, thankyou! \ntf-nightly is not an option for me. I'm on Windows Native, so I need v2.10 or lower. \nIs there a way to fix the auto path resolution? Like changing the `__init__.py`", "@lrstolk ,\r\n\r\nNow starting from 2.12v onwards Keras is a standalone package and there is no need to import tensorflow separately for this.I think this is the reason for the reported behaviour.Please try using keras as standalone package only.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60617\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60617\">No</a>\n" ]
2023-05-17T19:50:10
2023-07-07T02:08:39
2023-07-07T02:08:37
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.10.0=mkl_py38ha5c4042_0 ### Custom Code Yes ### OS Platform and Distribution Windows 10.0.22621 Build 22621 ### Mobile device _No response_ ### Python version 3.8.16 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version cudatoolkit=11.2 cudnn=8.1.0 ### GPU model and memory NVIDIA GeForce RTX 2060 - 6 GB GDDR6 ### Current Behaviour? I tried to `import` `tensorflow.keras` but `PyCharm` could not resolve it. So I tried to use `tensorflow.python.keras` (which is not advised), I could import a few modules but not `Bidirectional `or `TimeDistributed`. I have already deleted my environment and builed it from scratch with installing with pip and conda. ![PyCharm](https://github.com/tensorflow/tensorflow/assets/35999180/b085e14b-6f20-49e4-afb8-494dfc71b622) I tried the following issues, but sadly no succes: https://github.com/tensorflow/tensorflow/issues/54180 https://github.com/microsoft/pylance-release/issues/1066 ### Another issue while trying to get tensorflow.version I tried to run `python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"`, but threw the following: > Traceback (most recent call last): > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\requests\compat.py", line 11, in <module> > import chardet > ModuleNotFoundError: No module named 'chardet' > > During handling of the above exception, another exception occurred: > > Traceback (most recent call last): > File "<string>", line 1, in <module> > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\__init__.py", line 52, in <module> > from ._api.v2 import compat > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\__init__.py", line 37, in <module> > from . import v1 > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v1\__init__.py", line 31, in <module> > from . import compat > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v1\compat\__init__.py", line 38, in <module> > from . import v2 > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v1\compat\v2\__init__.py", line 28, in <module> > from tensorflow._api.v2.compat.v2 import __internal__ > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v2\__init__.py", line 33, in <module> > from . import compat > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v2\compat\__init__.py", line 38, in <module> > from . import v2 > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v2\compat\v2\__init__.py", line 37, in <module> > from tensorflow._api.v2.compat.v2 import distribute > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v2\distribute\__init__.py", line 182, in <module> > from . import experimental > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v2\distribute\experimental\__init__.py", line 10, in <module> > from . import rpc > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\_api\v2\compat\v2\distribute\experimental\rpc\__init__.py", line 8, in <module> > from tensorflow.python.distribute.experimental.rpc.rpc_ops import Client > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\python\distribute\experimental\__init__.py", line 22, in <module> > from tensorflow.python.distribute.failure_handling import failure_handling > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\python\distribute\failure_handling\failure_handling.py", line 36, in <module> > from tensorflow.python.distribute.failure_handling import failure_handling_util > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\tensorflow\python\distribute\failure_handling\failure_handling_util.py", line 19, in <module> > import requests > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\requests\__init__.py", line 45, in <module> > from .exceptions import RequestsDependencyWarning > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\requests\exceptions.py", line 9, in <module> > from .compat import JSONDecodeError as CompatJSONDecodeError > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\requests\compat.py", line 13, in <module> > import charset_normalizer as chardet > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\charset_normalizer\__init__.py", line 23, in <module> > from charset_normalizer.api import from_fp, from_path, from_bytes, normalize > File "C:\Users\lilon\miniconda3\envs\TETB\lib\site-packages\charset_normalizer\api.py", line 10, in <module> > from charset_normalizer.md import mess_ratio > AttributeError: partially initialized module 'charset_normalizer' has no attribute 'md__mypyc' (most likely due to a circular import) ### Standalone code to reproduce the issue ```shell from tensorflow.keras.layers import Bidirectional, TimeDistributed from tensorflow.python.keras.layers import Bidirectional, TimeDistributed from keras.layers import Bidirectional, TimeDistributed ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60617/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60617/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60616
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60616/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60616/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60616/events
https://github.com/tensorflow/tensorflow/issues/60616
1,713,954,970
I_kwDOArmXAs5mKOCa
60,616
Custom shuffle layer leaks memory when run on Apple M1 GPU with `tensorflow-metal`
{ "login": "sirno", "id": 11719344, "node_id": "MDQ6VXNlcjExNzE5MzQ0", "avatar_url": "https://avatars.githubusercontent.com/u/11719344?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirno", "html_url": "https://github.com/sirno", "followers_url": "https://api.github.com/users/sirno/followers", "following_url": "https://api.github.com/users/sirno/following{/other_user}", "gists_url": "https://api.github.com/users/sirno/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirno/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirno/subscriptions", "organizations_url": "https://api.github.com/users/sirno/orgs", "repos_url": "https://api.github.com/users/sirno/repos", "events_url": "https://api.github.com/users/sirno/events{/privacy}", "received_events_url": "https://api.github.com/users/sirno/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 1205765054, "node_id": "MDU6TGFiZWwxMjA1NzY1MDU0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS", "name": "subtype:macOS", "color": "b619ea", "default": false, "description": "macOS Build/Installation issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @sirno ,\r\n\r\nFirst thing I want to clear that `tensorflow-macos` was built and maintained by Apple itself . \r\n\r\nHence I tried to test the code first with Regular Tensorflow package `tensorflow`, for confirming the memory leakage problem exists with TF package also.I have executed the code on colab with GPU environment and observed no memory leakage(ran upto 175 epochs) and attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/767e352ddc144f0fa716e68eef7d9f6c/60616.ipynb) here for reference.\r\n\r\nThis indicates the issue is specific to only `tensorflow-macos` package and shall be addressed by Apple tensorflow-metal developes. You can post the issue [here](https://developer.apple.com/forums/tags/tensorflow-metal) .\r\n\r\nThanks!", "thanks for the response and the reference to the Apple forums.\r\n\r\nI will resubmit the issue in the Apple forums.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60616\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60616\">No</a>\n" ]
2023-05-17T13:44:29
2023-05-19T08:12:43
2023-05-19T08:12:40
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution macOS 13.0 (22A380) ### Mobile device Apple M1 ### Python version 3.10.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The following layer leaks memory during training with keras when running on an Apple M1 with `tensorflow-macos` and `tensorflow-metal` installed: ``` class Shuffle(keras.layers.Layer): def call(self, inputs): shape = tf.concat([tf.shape(inputs)[:-1], [1]], axis=0) rnd = tf.argsort(tf.random.uniform(shape), axis=1) return tf.gather_nd(inputs, rnd, batch_dims=2) ``` When run on the CPU alone it does not leak memory ### Standalone code to reproduce the issue ```shell import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_datasets as tfds from tensorflow_datasets.testing.mocking import mock_data import numpy as np class Shuffle(keras.layers.Layer): def call(self, inputs): shape = tf.concat([tf.shape(inputs)[:-1], [1]], axis=0) rnd = tf.argsort(tf.random.uniform(shape), axis=1) return tf.gather_nd(inputs, rnd, batch_dims=2) def build_leaky_model(input_shape): input = keras.Input(input_shape) x = Shuffle()(input) x = layers.GlobalAveragePooling2D()(x) x = layers.Flatten()(x) output = layers.Dense(1, activation="sigmoid")(x) return keras.Model( input, output, ) epochs = 1000 data_set = tf.data.Dataset.from_generator( lambda: ( ( np.ones(shape=(1000, 5000, 1), dtype=np.uint8), i % 2, ) for i in range(200) ), output_types=(tf.uint8, tf.int32), output_shapes=((1000, 5000, 1), ()), ) data_set = data_set.batch(10) model = build_leaky_model((1000, 5000, 1)) model.compile( optimizer=keras.optimizers.Adam(1e-3), loss="binary_crossentropy", metrics=["accuracy"], ) history = model.fit( data_set, epochs=epochs, ) ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60616/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60616/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60615
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60615/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60615/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60615/events
https://github.com/tensorflow/tensorflow/issues/60615
1,713,483,836
I_kwDOArmXAs5mIbA8
60,615
Tensorflow 2.10.0 conflicts with jupyterlab 4.0.0
{ "login": "FlorianFasmeyer", "id": 57519867, "node_id": "MDQ6VXNlcjU3NTE5ODY3", "avatar_url": "https://avatars.githubusercontent.com/u/57519867?v=4", "gravatar_id": "", "url": "https://api.github.com/users/FlorianFasmeyer", "html_url": "https://github.com/FlorianFasmeyer", "followers_url": "https://api.github.com/users/FlorianFasmeyer/followers", "following_url": "https://api.github.com/users/FlorianFasmeyer/following{/other_user}", "gists_url": "https://api.github.com/users/FlorianFasmeyer/gists{/gist_id}", "starred_url": "https://api.github.com/users/FlorianFasmeyer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FlorianFasmeyer/subscriptions", "organizations_url": "https://api.github.com/users/FlorianFasmeyer/orgs", "repos_url": "https://api.github.com/users/FlorianFasmeyer/repos", "events_url": "https://api.github.com/users/FlorianFasmeyer/events{/privacy}", "received_events_url": "https://api.github.com/users/FlorianFasmeyer/received_events", "type": "User", "site_admin": false }
[ { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1188421838, "node_id": "MDU6TGFiZWwxMTg4NDIxODM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows", "name": "subtype:windows", "color": "b619ea", "default": false, "description": "Windows Build/Installation Issues" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "**Temporary solution:** install jupyterlab=3.6.3 instead of jupyterlab=4.0.0", "After four reinstalls with conda, TF 2.10.0 and jupyterlab 4.0.0, with no other packages added, always in a new environment, I finally gave up. To kill time, I replaced conda with mamba.\r\n\r\nSolution(?): After installing mamba, using the default channels, I installed TF 2.10.0 and jupyterlab 4.0.0 (no other packages added) in a new environment, same procedure as the previous four times. And now jupyterlab works. The channel order might have had something to do with the issue, but I can't confirm.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60615\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60615\">No</a>\n" ]
2023-05-17T09:19:07
2023-05-18T07:47:37
2023-05-18T07:47:35
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.10.0 ### Custom Code No ### OS Platform and Distribution Windows 10 ### Mobile device _No response_ ### Python version 3.10.1 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Using Conda: 1. Install jupyterlab 2. Run jupyterlab. Notice it works. 3. Install TensorFlow 4. Run jupyterlab: Notice it doesn't start, and an error message pop-up; The c_types package is missing. Uninstalling Tensorflow fixes the problem, allowing jupyterlab to run again. Related: https://github.com/jupyterlab/jupyterlab/issues/14558 ### Standalone code to reproduce the issue ```shell conda create --name my_env activate my_env conda Install jupyterlab=4.0.0 jupyter lab conda install TensorFlow=2.10.0 jupyter lab ``` ### Relevant log output ```shell jupyter lab ImportError: DLL load failed while importing _ctypes: ... ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60615/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60615/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60614
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60614/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60614/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60614/events
https://github.com/tensorflow/tensorflow/pull/60614
1,713,456,620
PR_kwDOArmXAs5QsNmq
60,614
Flowmode
{ "login": "ightevenmckane1", "id": 71523492, "node_id": "MDQ6VXNlcjcxNTIzNDky", "avatar_url": "https://avatars.githubusercontent.com/u/71523492?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ightevenmckane1", "html_url": "https://github.com/ightevenmckane1", "followers_url": "https://api.github.com/users/ightevenmckane1/followers", "following_url": "https://api.github.com/users/ightevenmckane1/following{/other_user}", "gists_url": "https://api.github.com/users/ightevenmckane1/gists{/gist_id}", "starred_url": "https://api.github.com/users/ightevenmckane1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ightevenmckane1/subscriptions", "organizations_url": "https://api.github.com/users/ightevenmckane1/orgs", "repos_url": "https://api.github.com/users/ightevenmckane1/repos", "events_url": "https://api.github.com/users/ightevenmckane1/events{/privacy}", "received_events_url": "https://api.github.com/users/ightevenmckane1/received_events", "type": "User", "site_admin": false }
[ { "id": 1593512946, "node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid", "name": "invalid", "color": "db6f57", "default": true, "description": "Hacktoberfest spam PR" } ]
closed
true
null
[]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60614/checks?check_run_id=13544445685) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request." ]
2023-05-17T09:04:03
2023-05-17T17:30:12
2023-05-17T17:30:12
NONE
spam
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60614", "html_url": "https://github.com/tensorflow/tensorflow/pull/60614", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60614.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60614.patch", "merged_at": null }
``Converting model... Model converted successfully. Standalone code to reproduce the issue: import tensorflow as tf def my_function(x): return tf.add(x, 1) model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(1)), tf.keras.layers.Dense(1, activation='relu'), my_function, ]) model.compile(optimizer='adam', loss='mse') model.fit(x=[1, 2, 3], y=[2, 3, 4], epochs=10) tflite_model = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model.experimental_generate_debug_info = True tflite_model.target_spec.supported_ops = [ tflite.OpsSet.TFLITE_BUILTIN, tflite.OpsSet.SELECT_TF_OPS, ] tflite_model.output_format = tflite.Model.ModelFormat.TFLITE tflite_model.experimental_enable_mlir_converter = True tflite_model.experimental_enable_quantization = True tflite_model.inference_input_type = tflite.TensorType.FLOAT32 tflite_model.inference_output_type = tflite.TensorType.FLOAT32 tflite_model.input_tensors[0].name = 'x' tflite_model.output_tensors[0].name = 'y' tflite_model.output_file = 'my_model.tflite' tflite_model.convert() > `print(tflite_model.output_file)` > This code will create a TensorFlow Lite model and save it to a file called my_model.tflite. Any other info / logs: There are no other logs or source code that would be helpful to diagnose the problem. `
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60614/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60614/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60613
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60613/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60613/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60613/events
https://github.com/tensorflow/tensorflow/issues/60613
1,713,412,403
I_kwDOArmXAs5mIJkz
60,613
Flowmode
{ "login": "ightevenmckane1", "id": 71523492, "node_id": "MDQ6VXNlcjcxNTIzNDky", "avatar_url": "https://avatars.githubusercontent.com/u/71523492?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ightevenmckane1", "html_url": "https://github.com/ightevenmckane1", "followers_url": "https://api.github.com/users/ightevenmckane1/followers", "following_url": "https://api.github.com/users/ightevenmckane1/following{/other_user}", "gists_url": "https://api.github.com/users/ightevenmckane1/gists{/gist_id}", "starred_url": "https://api.github.com/users/ightevenmckane1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ightevenmckane1/subscriptions", "organizations_url": "https://api.github.com/users/ightevenmckane1/orgs", "repos_url": "https://api.github.com/users/ightevenmckane1/repos", "events_url": "https://api.github.com/users/ightevenmckane1/events{/privacy}", "received_events_url": "https://api.github.com/users/ightevenmckane1/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1593512946, "node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid", "name": "invalid", "color": "db6f57", "default": true, "description": "Hacktoberfest spam PR" } ]
closed
true
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ightevenmckane1 ,\r\n\r\nIf you have any issue to bring notification please fill the template properly. Otherwise this will be treated as spam." ]
2023-05-17T08:36:53
2023-05-17T17:31:11
2023-05-17T17:31:11
NONE
spam
null
null
**System information** - OS Platform and Distribution (e.g., Linux Ubuntu 16.04): - TensorFlow installed from (source or binary): - TensorFlow version (or github SHA if from source): **Provide the text output from tflite_convert** ``` # Copy and paste here ``` **Standalone code to reproduce the issue** Provide a reproducible test case that is the bare minimum necessary to generate the problem. If possible, please share a link to Colab/Jupyter/any notebook. Also, please include a link to a GraphDef or the model if possible. **Any other info / logs** Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60613/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60613/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60612
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60612/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60612/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60612/events
https://github.com/tensorflow/tensorflow/issues/60612
1,713,192,419
I_kwDOArmXAs5mHT3j
60,612
TFLite Model maker installation issue in google colab notebook
{ "login": "dsbyprateekg", "id": 30830541, "node_id": "MDQ6VXNlcjMwODMwNTQx", "avatar_url": "https://avatars.githubusercontent.com/u/30830541?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dsbyprateekg", "html_url": "https://github.com/dsbyprateekg", "followers_url": "https://api.github.com/users/dsbyprateekg/followers", "following_url": "https://api.github.com/users/dsbyprateekg/following{/other_user}", "gists_url": "https://api.github.com/users/dsbyprateekg/gists{/gist_id}", "starred_url": "https://api.github.com/users/dsbyprateekg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dsbyprateekg/subscriptions", "organizations_url": "https://api.github.com/users/dsbyprateekg/orgs", "repos_url": "https://api.github.com/users/dsbyprateekg/repos", "events_url": "https://api.github.com/users/dsbyprateekg/events{/privacy}", "received_events_url": "https://api.github.com/users/dsbyprateekg/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1946362326, "node_id": "MDU6TGFiZWwxOTQ2MzYyMzI2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.3", "name": "TF 2.3", "color": "1d76db", "default": false, "description": "Issues related to TF 2.3" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@dsbyprateekg,\r\nAccording to [Colab Updated to Python 3.10 7](https://medium.com/google-colab/colab-updated-to-python-3-10-27eb02daa162):\r\n\r\nColab’s fallback runtime version: Using the fallback runtime version temporarily allows access to the Python 3.9 runtime, and will be available until mid-May. This is available from the Command Palette via the Use fallback runtime version command when connected to a runtime. Of note, this setting does not persist across sessions — the command will need to be invoked on each new session.\r\n\r\nAs a temporary workaround, you can use the Colab fallback runtime version option to choose Python 3.9 and install tflite-model-maker. By doing this you will get RuntimeError and it can be ignored.\r\n\r\nTo access the command palette in Colab, presss cmd+shift+P and then type Use fallback runtime version and select it.\r\n\r\n![Screenshot 2023-05-16 2 26 22 PM](https://github.com/tensorflow/tensorflow/assets/81610181/fd03e11d-9ec6-4ba1-b5bb-8a989c94d4ce)\r\n\r\nBy following the above process, I was able to execute [Model Maker Image Classification Tutorial 9](https://colab.sandbox.google.com/gist/chunduriv/847ff8f09621935471b3fb70b23cefbd/model-maker-image-classification-tutorial.ipynb).\r\n\r\nThank you!", "@tilakrayal any time line when it will work with Python 3.10?", "@dsbyprateekg,\r\nYes, there is an issue which was raised for the similar issue where it is under the developer's priority list.\r\nhttps://github.com/tensorflow/tensorflow/issues/60431\r\nI request, could you please follow the respective issue for the updates and as the temporary workaround please try the above mentioned process. Thank you!", "Thanks, I will follow.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60612\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60612\">No</a>\n" ]
2023-05-17T06:09:17
2023-05-18T13:58:05
2023-05-18T13:58:03
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.3 ### Custom Code No ### OS Platform and Distribution linux ### Mobile device _No response_ ### Python version 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory V100 ### Current Behaviour? I am trying to install tflite model maker in colab using command `!pip install tflite-model-maker` and it is taking so much disk space to install. I have 55 GB disk space left but installation is stopped in between due to no space error- `ERROR: Could not install packages due to an OSError: [Errno 28] No space left on device` I am attaching here logs of the installation. [model-maker-issue-colab.txt](https://github.com/tensorflow/tensorflow/files/11494698/model-maker-issue-colab.txt) ### Standalone code to reproduce the issue ```shell Run following command in colab- !pip install tflite-model-maker ``` ### Relevant log output ```shell ERROR: Could not install packages due to an OSError: [Errno 28] No space left on device ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60612/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60612/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60611
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60611/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60611/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60611/events
https://github.com/tensorflow/tensorflow/pull/60611
1,712,888,902
PR_kwDOArmXAs5QqUlp
60,611
[oneDNN v3.x] Update fused instance norm kernel to support oneDNN v3.x
{ "login": "yimeisun123", "id": 42156420, "node_id": "MDQ6VXNlcjQyMTU2NDIw", "avatar_url": "https://avatars.githubusercontent.com/u/42156420?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yimeisun123", "html_url": "https://github.com/yimeisun123", "followers_url": "https://api.github.com/users/yimeisun123/followers", "following_url": "https://api.github.com/users/yimeisun123/following{/other_user}", "gists_url": "https://api.github.com/users/yimeisun123/gists{/gist_id}", "starred_url": "https://api.github.com/users/yimeisun123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yimeisun123/subscriptions", "organizations_url": "https://api.github.com/users/yimeisun123/orgs", "repos_url": "https://api.github.com/users/yimeisun123/repos", "events_url": "https://api.github.com/users/yimeisun123/events{/privacy}", "received_events_url": "https://api.github.com/users/yimeisun123/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" } ]
closed
false
{ "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }
[ { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "I checked the logs, the failed test case is \r\nMLIR tests :: replace_cast_hacks_with_tf_xla_ops_large_constants.mlir\r\nthe changes in this PR doesn't touch code related to the above test case." ]
2023-05-17T00:02:43
2023-07-16T18:43:10
2023-07-16T18:43:10
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60611", "html_url": "https://github.com/tensorflow/tensorflow/pull/60611", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60611.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60611.patch", "merged_at": "2023-07-16T18:43:10" }
This PR adds support for oneDNN v3.x in fused instance norm kernel. This PR passes all unit tests related to fused instance norm when oneDNN v3.x is enabled. This PR does not add or affect Eigen ops and is specific only to oneDNN kernel.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60611/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60611/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60610
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60610/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60610/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60610/events
https://github.com/tensorflow/tensorflow/pull/60610
1,712,885,561
PR_kwDOArmXAs5QqT3f
60,610
[tosa][fix] substitute invalid tosa op in strip-quant-types tests.
{ "login": "tatwaichong", "id": 78814694, "node_id": "MDQ6VXNlcjc4ODE0Njk0", "avatar_url": "https://avatars.githubusercontent.com/u/78814694?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tatwaichong", "html_url": "https://github.com/tatwaichong", "followers_url": "https://api.github.com/users/tatwaichong/followers", "following_url": "https://api.github.com/users/tatwaichong/following{/other_user}", "gists_url": "https://api.github.com/users/tatwaichong/gists{/gist_id}", "starred_url": "https://api.github.com/users/tatwaichong/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tatwaichong/subscriptions", "organizations_url": "https://api.github.com/users/tatwaichong/orgs", "repos_url": "https://api.github.com/users/tatwaichong/repos", "events_url": "https://api.github.com/users/tatwaichong/events{/privacy}", "received_events_url": "https://api.github.com/users/tatwaichong/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @tatwaichong Can you please resolve conflicts? Thank you!", "Close it as the code has been merged into an integration in 402d4d338f2e544ad19730e845c7f9ec55758aaf." ]
2023-05-16T23:58:34
2023-08-24T00:04:04
2023-05-31T17:56:55
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60610", "html_url": "https://github.com/tensorflow/tensorflow/pull/60610", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60610.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60610.patch", "merged_at": null }
Quantized data type is used in tosa.add for the test, but the integer type suppored by this op is 32-bit only. Substitute the test set with valid tosa ops.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60610/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60610/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60609
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60609/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60609/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60609/events
https://github.com/tensorflow/tensorflow/issues/60609
1,712,799,789
I_kwDOArmXAs5mF0At
60,609
TF-Lite is 4x slower than Tensorflow on MacOS (and 2x slower in Colab)
{ "login": "petered", "id": 1148799, "node_id": "MDQ6VXNlcjExNDg3OTk=", "avatar_url": "https://avatars.githubusercontent.com/u/1148799?v=4", "gravatar_id": "", "url": "https://api.github.com/users/petered", "html_url": "https://github.com/petered", "followers_url": "https://api.github.com/users/petered/followers", "following_url": "https://api.github.com/users/petered/following{/other_user}", "gists_url": "https://api.github.com/users/petered/gists{/gist_id}", "starred_url": "https://api.github.com/users/petered/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/petered/subscriptions", "organizations_url": "https://api.github.com/users/petered/orgs", "repos_url": "https://api.github.com/users/petered/repos", "events_url": "https://api.github.com/users/petered/events{/privacy}", "received_events_url": "https://api.github.com/users/petered/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 4032183365, "node_id": "LA_kwDOArmXAs7wVjxF", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9", "name": "TF 2.9", "color": "1CF842", "default": false, "description": "Issues found in the TF 2.9 release (or RCs)" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "qukhan", "id": 13188547, "node_id": "MDQ6VXNlcjEzMTg4NTQ3", "avatar_url": "https://avatars.githubusercontent.com/u/13188547?v=4", "gravatar_id": "", "url": "https://api.github.com/users/qukhan", "html_url": "https://github.com/qukhan", "followers_url": "https://api.github.com/users/qukhan/followers", "following_url": "https://api.github.com/users/qukhan/following{/other_user}", "gists_url": "https://api.github.com/users/qukhan/gists{/gist_id}", "starred_url": "https://api.github.com/users/qukhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qukhan/subscriptions", "organizations_url": "https://api.github.com/users/qukhan/orgs", "repos_url": "https://api.github.com/users/qukhan/repos", "events_url": "https://api.github.com/users/qukhan/events{/privacy}", "received_events_url": "https://api.github.com/users/qukhan/received_events", "type": "User", "site_admin": false }
[ { "login": "qukhan", "id": 13188547, "node_id": "MDQ6VXNlcjEzMTg4NTQ3", "avatar_url": "https://avatars.githubusercontent.com/u/13188547?v=4", "gravatar_id": "", "url": "https://api.github.com/users/qukhan", "html_url": "https://github.com/qukhan", "followers_url": "https://api.github.com/users/qukhan/followers", "following_url": "https://api.github.com/users/qukhan/following{/other_user}", "gists_url": "https://api.github.com/users/qukhan/gists{/gist_id}", "starred_url": "https://api.github.com/users/qukhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qukhan/subscriptions", "organizations_url": "https://api.github.com/users/qukhan/orgs", "repos_url": "https://api.github.com/users/qukhan/repos", "events_url": "https://api.github.com/users/qukhan/events{/privacy}", "received_events_url": "https://api.github.com/users/qukhan/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "I am able to replicate locally on an Apple M1 Pro, MacOS Ventura 13.3.1, Tensorflow==2.13.0-rc0\r\n\r\nMy results are a little different but the qualitative result is similar:\r\n\r\nProcessed an image of shape (1080, 1920, 3) in 0.047 seconds\r\nTensorflow Model execution stats:\r\n Fraction of time spent detecting: 78%\r\n Average time per frame (ms): 17\r\n Average FPS: 58.99\r\n Median time per frame (ms): 16\r\n Median FPS: 60.69\r\nTFLite Model execution stats:\r\n Fraction of time spent detecting: 91%\r\n Average time per frame (ms): 47\r\n Average FPS: 21.29\r\n Median time per frame (ms): 47\r\n Median FPS: 21.40\r\nTensorflow is 2.77x times faster than TFLite", "Thanks for confirming the issue\r\n\r\nTo answer my previous question \"If this slowdown is unavoidable - is there some other way to serialize tensorflow functions so that they can be loaded again without slowdown?\"\r\n\r\nYes, just use `tf.saved_model.save` instead of `tf.lite.TFLiteConverter.convert`.\r\n\r\nHowever, it would still be good have tflite running at a reasonable speed on Mac (I also observe about a 1.8x slowdown on windows vs pure tensorflow)\r\n\r\n", "Hi @qukhan, Can you please take a look?", "@qukhan @pkgoogle I have similar observations, and in my case TF Lite performs 6x slower than TensorFlow and 17x slower than pytorch. You can find the demo colab [here](https://colab.research.google.com/drive/1escz78h-L0Puhc-POKAsb4f-olpQ9Lnu?usp=sharing). \r\n\r\nThe colab simply creates a sequential model of 4 `Dense` layers with 512 units in `pytorch` and `tensorflow`. And tests them with `4x1024x512` input tensor. Here are the test cases:\r\n* TensorFlow Eager execution\r\n* `torch`\r\n* TensorFlow with `tf.function`\r\n* TF Lite\r\n* ONNX runtime with onnx model converted from the `torch` model\r\n\r\nAnd here are the results:\r\n\r\n| Method | M2 Pro | Colab x86_64 |\r\n|--------|--------|--------|\r\n| TF Eager | 53.4 it/s | 4.6 it/s |\r\n| torch | 143.7 it/s | 7.0 it/s |\r\n| `tf.function` | 55.1 it/s | 6.7 it/s |\r\n| TF Lite | 8.3 it/s | 3.5 it/s |\r\n| ONNX runtime | 50.1 it/s | 6.7 it/s | \r\n\r\nAs one can see, TF Lite underperforms significantly on both M2 Pro and x86 processor in the colab. I could think that the performance issue in colab is caused by the lack of optimization for x86, but M2 pro is an arm64 processor and I think it should have no performance degradation on that." ]
2023-05-16T22:06:56
2023-09-15T11:57:46
null
NONE
null
null
null
Problem - Running a model with TFLite is 4x slower than running with tensorflow on my M1 MacOS. ### 1. System information - OS Platform and Distribution: **MacOS Ventura 13.2, on Apple M1 Macbook Air** - TensorFlow installation (pip package or built from source): **2.9.1, from pip** ### 2. Code Running the code in [this Colab notebook](https://colab.research.google.com/drive/1KFYbdxZicG2sQlw2kD63TM63gGm5VQJC?usp=sharing ), on MacOS, gives: ``` Tensorflow Model execution stats: Fraction of time spent detecting: 81% Average time per frame (ms): 19 Average FPS: 52.10 Median time per frame (ms): 19 Median FPS: 52.33 TFLite Model execution stats: Fraction of time spent detecting: 95% Average time per frame (ms): 86 Average FPS: 11.69 Median time per frame (ms): 85 Median FPS: 11.74 Tensorflow is 4.46x times faster than TFLite ``` ... Clearly TFLite is much slower. If I run it it in Colab, notebook, TFLite is still about 1.8x slower. What is going on here? I would expect TFLite to be faster. Can this be fixed by adjusting some flags somewhere? This has been noticed before - [see Stackoverflow question](https://stackoverflow.com/questions/54093424/why-is-tensorflow-lite-slower-than-tensorflow-on-desktop?rq=2). **If this slowdown is unavoidable - is there some other way to serialize tensorflow functions so that they can be loaded again without slowdown?**
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60609/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60609/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60608
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60608/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60608/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60608/events
https://github.com/tensorflow/tensorflow/issues/60608
1,712,567,737
I_kwDOArmXAs5mE7W5
60,608
[MKL] Manylinux wheel issue on clang
{ "login": "ke1ding", "id": 110481367, "node_id": "U_kgDOBpXP1w", "avatar_url": "https://avatars.githubusercontent.com/u/110481367?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ke1ding", "html_url": "https://github.com/ke1ding", "followers_url": "https://api.github.com/users/ke1ding/followers", "following_url": "https://api.github.com/users/ke1ding/following{/other_user}", "gists_url": "https://api.github.com/users/ke1ding/gists{/gist_id}", "starred_url": "https://api.github.com/users/ke1ding/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ke1ding/subscriptions", "organizations_url": "https://api.github.com/users/ke1ding/orgs", "repos_url": "https://api.github.com/users/ke1ding/repos", "events_url": "https://api.github.com/users/ke1ding/events{/privacy}", "received_events_url": "https://api.github.com/users/ke1ding/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1104829434, "node_id": "MDU6TGFiZWwxMTA0ODI5NDM0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl", "name": "comp:mkl", "color": "0052cc", "default": false, "description": "MKL related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ke1ding,\r\n\r\nTensorflow officially supports build with GCC as per tested configurations. Build with Clang is not documented properly and hence I don't have much information. Recommending to Concern Team.\r\n\r\n@TensorFlow-MKL , Could you please have a look into the issue.\r\n\r\nThanks!", "Hi @ke1ding,\r\n\r\nDid you build the package inside a manylinux2014 docker container? According to the [manylinux2014 policy](https://peps.python.org/pep-0599/#the-manylinux2014-policy), the maximum glibc version supported is 2.17 which might be the issue.\r\n\r\nCan you also run ldd --version and share the output?\r\n\r\nThanks!", "@ke1ding \r\nI think this issue is about manylinux usage issue instead of TensorFlow building with MKL.\r\n\r\n1. \r\nAccording to the manylinux repo readme: https://github.com/pypa/manylinux\r\n\r\n```\r\n|manylinux2014 | pip >= 19.3 | 3.7.8+, 3.8.4+, 3.9.0+|\r\n\r\n...\r\n\r\nmanylinux2014 (CentOS 7 based)\r\n\r\nToolchain: GCC 10\r\n\r\n x86_64 image: quay.io/pypa/manylinux2014_x86_64\r\n i686 image: quay.io/pypa/manylinux2014_i686\r\n aarch64 image: quay.io/pypa/manylinux2014_aarch64\r\n ppc64le image: quay.io/pypa/manylinux2014_ppc64le\r\n s390x image: quay.io/pypa/manylinux2014_s390x\r\n\r\n```\r\nIf you want to build with manylinux2014, please following the requirement of manylinux2014 as above.\r\n\r\n2.\r\nAccording to the error log, there is a long dependence chain in your case.\r\nYou could fix the last un-compliant issue (so file) firstly.\r\n\r\nThank you!\r\n\r\n\r\n\r\n\r\n", "Hi @ke1ding, @yehudaorel ,\r\n\r\nI agree to the fact that GCC version capped at 2.17 for Manylinux_2014 as mentioned in above [comment](https://github.com/tensorflow/tensorflow/issues/60608#issuecomment-1552294597) also. But here the built is done using Clang but not GCC and AFAIK, Clang builds may not need GCC.\r\n\r\nI am not much aware of the `auditwheel` package that is being used here for making the built binaries to manylinux_2014 compatible.May be the problem is with `manylinux_2_17(aka manylinux2014)` which indicates max supported GCC version is 2.17v. But the question is the shared objects generated by Clang build still depends upon GCC ? I am not much into compiler design things and liked to hear any pointers here.\r\n\r\nThanks!\r\n\r\n", "@SuryanarayanaY @ke1ding Building with a recent compiler while maintaining manylinux2014 compatibility is a very complex task. Since https://github.com/tensorflow/tensorflow/commit/ba2f7926467cd0b2b7dfea899c6f507b719e7669 the CI builds for Linux from TensorFlow are built using clang-16. You can use the SIG Build docker containers and the appropriate TensorFlow toolchain if you want to build your own or just study what needs to be done.", "Hi @ke1ding , \r\n\r\nThis issue may be caused by compiling against a newer version of glibc than manylinux_2014 supports. manylinux_2014 must be compatible with glibc 2.17, but glibc_2.29 is being used. \r\n\r\nYou may refer to this [script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/tf_sig_build_dockerfiles/builder.devtoolset/build_devtoolset.sh) and this [Dockerfile](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/tf_sig_build_dockerfiles/Dockerfile#L6-L16) to see how to install glibc 2.17 in your sysroot and build the toolchain with manylinux. ", "@ke1ding ,\r\n\r\nCould you please refer to above comments and confirm whether glibc can be downgraded to 2.17 and tried the build ?\r\n\r\nPlease confirm the status. Thanks!\r\n", "@SuryanarayanaY Yes Thank you I will try.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @kanglant @SuryanarayanaY \r\n\r\n I referred the build_devtools.sh to build a docker image [build_devtoolset.sh](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/tf_sig_build_dockerfiles/builder.devtoolset/build_devtoolset.sh) for gcc, glibc and libstdc++, after that I install llvm/clang-16. Before I build tensorflow, I checked the glibc version in the docker image by \r\n`ldd --version && getconf GNU_LIBC_VERSION`.\r\nIt displays as: \r\n`ldd (Ubuntu GLIBC 2.31-0ubuntu9.9) 2.31\r\nCopyright (C) 2020 Free Software Foundation, Inc.\r\nThis is free software; see the source for copying conditions. There is NO\r\nwarranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \r\nglibc 2.31`\r\n\r\nFor using clang-16, do we need more steps to downgrade the GLIBC version again?\r\n\r\nP.S. I will try to generate a docker image by tf_sig_build_dockerfiles [Dockerfile](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/tf_sig_build_dockerfiles/Dockerfile#L6-L16)", "@yuntaolu The downgraded glibc is installed into a sysroot under /dt9 so this will not show up in your check as it has not replaced the system glibc. To build with clang and the 2.17 version of glibc you need to pass\r\n```\r\n--crosstool_top=\"@sigbuild-r2.14-clang_config_cuda//crosstool:toolchain\"\r\n```\r\non the TensorFlow build command line.", "> @yuntaolu The downgraded glibc is installed into a sysroot under /dt9 so this will not show up in your check as it has not replaced the system glibc. To build with clang and the 2.17 version of glibc you need to pass\r\n> \r\n> ```\r\n> --crosstool_top=\"@sigbuild-r2.14-clang_config_cuda//crosstool:toolchain\"\r\n> ```\r\n> \r\n> on the TensorFlow build command line.\r\n\r\nI applied the suggestion from @elfringham, and added the parameter \"\"--crosstool_top=\\\"@sigbuild-r2.13-clang_config_cuda//crosstool:toolchain\\\"\" . Finally, I built TensorFlow manylinux2014 wheels successfully. \r\n\r\nThanks for all your help with the manylinux2014 build with clang. \r\n", "Thank you all! As problem solved I'll close this issue.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60608\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60608\">No</a>\n", "@aice-support" ]
2023-05-16T18:52:21
2023-06-23T01:32:08
2023-06-21T17:30:57
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf2.13rc0 ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device _No response_ ### Python version 3.8 ### Bazel version 5.3 ### GCC/Compiler version Clang 16 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When building with clang 16, config=mkl, we can successfully built. But when we tried to use auditwheel package to make it manylinux_2014 compatible, we faced error like: ``` _solib_k8/_U_S_Stensorflow_Stsl_Smkl_Cmkl_Ulibs_Ulinux___Uexternal_Sllvm_Uopenmp/libiomp5.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/libtensorflow_cc.so.2 is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so libc.so.6 offending versions: GLIBC_2.28, GLIBC_2.27 libm.so.6 offending versions: GLIBC_2.23, GLIBC_2.29, GLIBC_2.27 tensorflow/libtensorflow_framework.so.2 is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libm.so.6 offending versions: GLIBC_2.29, GLIBC_2.27 libiomp5.so libc.so.6 offending versions: GLIBC_2.18 tensorflow/compiler/tf2tensorrt/_pywrap_py_utils.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 tensorflow/compiler/tf2xla/ops/_xla_ops.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 tensorflow/core/kernels/libtfkernel_sobol_op.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libm.so.6 offending versions: GLIBC_2.29 tensorflow/include/external/llvm_openmp/libiomp5.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/lite/experimental/microfrontend/python/ops/_audio_microfrontend_op.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libm.so.6 offending versions: GLIBC_2.27 libtensorflow_framework.so.2 tensorflow/lite/python/analyzer_wrapper/_pywrap_analyzer_wrapper.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/lite/python/interpreter_wrapper/_pywrap_tensorflow_interpreter_wrapper.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libm.so.6 offending versions: GLIBC_2.29, GLIBC_2.27 tensorflow/lite/python/metrics/_pywrap_tensorflow_lite_metrics_wrapper.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/lite/python/optimize/_pywrap_tensorflow_lite_calibration_wrapper.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libm.so.6 offending versions: GLIBC_2.29, GLIBC_2.27 tensorflow/python/_pywrap_dtensor_device.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/_pywrap_mlir.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/_pywrap_parallel_device.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/_pywrap_py_exception_registry.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_cc.so.2 _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/_pywrap_quantize_training.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/_pywrap_sanitizers.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/_pywrap_tensorflow_internal.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_cc.so.2 libbfloat16.so.so libiomp5.so libtensorflow_framework.so.2 tensorflow/python/_pywrap_tfcompile.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libiomp5.so libtensorflow_framework.so.2 libtensorflow_cc.so.2 tensorflow/python/_pywrap_tfe.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_cc.so.2 libtensorflow_framework.so.2 libiomp5.so tensorflow/python/_pywrap_toco_api.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/flags_pybind.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/autograph/impl/testing/pybind_for_testing.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/python/client/_pywrap_debug_events_writer.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/client/_pywrap_device_lib.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/client/_pywrap_events_writer.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/client/_pywrap_tf_session.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/data/experimental/service/_pywrap_server_lib.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/data/experimental/service/_pywrap_utils.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 libm.so.6 offending versions: GLIBC_2.29 _pywrap_tensorflow_internal.so tensorflow/python/framework/_dtypes.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/framework/_errors_test_helper.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libm.so.6 offending versions: GLIBC_2.29 libtensorflow_framework.so.2 libiomp5.so tensorflow/python/framework/_op_def_library_pybind.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libiomp5.so libtensorflow_framework.so.2 tensorflow/python/framework/_op_def_registry.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/framework/_op_def_util.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/framework/_proto_comparators.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/framework/_python_memory_checker_helper.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/framework/_pywrap_python_api_dispatcher.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/framework/_pywrap_python_api_info.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/framework/_pywrap_python_api_parameter_converter.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/framework/_pywrap_python_op_gen.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/framework/_test_metrics_util.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/framework/fast_tensor_util.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/python/grappler/_pywrap_tf_cluster.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/grappler/_pywrap_tf_item.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/grappler/_pywrap_tf_optimizer.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/lib/core/_pywrap_custom_casts.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/lib/core/_pywrap_float8.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/lib/core/_pywrap_py_func.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/lib/io/_pywrap_file_io.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 tensorflow/python/lib/io/_pywrap_record_io.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/platform/_pywrap_cpu_feature_guard.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/python/platform/_pywrap_stacktrace_handler.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 tensorflow/python/platform/_pywrap_tf2.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/python/profiler/internal/_pywrap_profiler.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/profiler/internal/_pywrap_traceme.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/saved_model/pywrap_saved_model.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 tensorflow/python/util/_pywrap_checkpoint_reader.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/util/_pywrap_determinism.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/util/_pywrap_kernel_registry.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 tensorflow/python/util/_pywrap_nest.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 libiomp5.so tensorflow/python/util/_pywrap_stat_summarizer.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: _pywrap_tensorflow_internal.so libiomp5.so libtensorflow_framework.so.2 tensorflow/python/util/_pywrap_tensor_float_32_execution.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/util/_pywrap_tfprof.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 libiomp5.so _pywrap_tensorflow_internal.so tensorflow/python/util/_pywrap_transform_graph.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/util/_pywrap_util_port.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/util/_pywrap_utils.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so _pywrap_tensorflow_internal.so libtensorflow_framework.so.2 tensorflow/python/util/_tf_stack.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libiomp5.so libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so tensorflow/python/util/fast_module_type.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libtensorflow_framework.so.2 _pywrap_tensorflow_internal.so libiomp5.so tensorflow/tsl/python/lib/core/libbfloat16.so.so is manylinux_2_17(aka manylinux2014) compliant. tensorflow/tsl/python/lib/core/pywrap_bfloat16.so is not manylinux_2_17(aka manylinux2014) compliant because it links the following forbidden libraries: libbfloat16.so.so ``` ### Standalone code to reproduce the issue ```shell Bazel build option: build --copt=-O3 --features=-layering_check --copt=-Wno-gnu-offsetof-extensions --copt=-Wformat --copt=-Wformat-security --copt=-fstack-protector --copt=-fPIC --copt=-fpic --linkopt=-Wl,-z,noexecstack --linkopt=-Wl,-z,relro --linkopt=-Wl,-z,now --linkopt=-fstack-protector --config=mkl --copt=-march=sandybridge ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60608/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60608/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60607
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60607/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60607/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60607/events
https://github.com/tensorflow/tensorflow/issues/60607
1,712,349,362
I_kwDOArmXAs5mEGCy
60,607
XLA CUBIN: CUDA_ERROR_OUT_OF_MEMORY
{ "login": "artem-sereda", "id": 77972398, "node_id": "MDQ6VXNlcjc3OTcyMzk4", "avatar_url": "https://avatars.githubusercontent.com/u/77972398?v=4", "gravatar_id": "", "url": "https://api.github.com/users/artem-sereda", "html_url": "https://github.com/artem-sereda", "followers_url": "https://api.github.com/users/artem-sereda/followers", "following_url": "https://api.github.com/users/artem-sereda/following{/other_user}", "gists_url": "https://api.github.com/users/artem-sereda/gists{/gist_id}", "starred_url": "https://api.github.com/users/artem-sereda/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/artem-sereda/subscriptions", "organizations_url": "https://api.github.com/users/artem-sereda/orgs", "repos_url": "https://api.github.com/users/artem-sereda/repos", "events_url": "https://api.github.com/users/artem-sereda/events{/privacy}", "received_events_url": "https://api.github.com/users/artem-sereda/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 1133285679, "node_id": "MDU6TGFiZWwxMTMzMjg1Njc5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla", "name": "comp:xla", "color": "0052cc", "default": false, "description": "XLA" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @synandi, \r\nI noticed that you assigned some labels to the issue. Could you already tell whether this is a compiler bug, or am I doing something wrong? Or does it need further investigation? ", "@artem-sereda,\r\nApologies for the delay. The error was stating that the issue was with memory allocation. Could you please try limiting GPU memory growth using any of the methods listed in this guide.\r\nhttps://www.tensorflow.org/guide/gpu#limiting_gpu_memory_growth\r\n\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60607\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60607\">No</a>\n" ]
2023-05-16T16:26:19
2023-06-29T02:06:32
2023-06-29T02:06:30
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Others ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code No ### OS Platform and Distribution Linux Ubuntu 20.04 ### Mobile device _No response_ ### Python version 3.8 and 3.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version cuDNN version 8600 ### GPU model and memory NVIDIA A100 40GB PCIe, NVIDIA Tesla V100 ### Current Behaviour? Hi, I'm trying to fine-tune a Bert based text-classification model. If I add `model.compile(jit_compile=True)`, I receive. ``` Node: 'StatefulPartitionedCall' Failed to load in-memory CUBIN: CUDA_ERROR_OUT_OF_MEMORY: out of memory [[{{node StatefulPartitionedCall}}]] [Op:__inference_train_function_50056] ``` When I set `jit_compile=False`, everything runs fine. In the attached archive, you can find debug XLA HLOs. [xla_debug.zip](https://github.com/tensorflow/tensorflow/files/11487102/xla_debug.zip) I faced the issue for TF-hub models, tf_model_official ones and for one created manually using functional API. I also faced the issue on A100 and on V100 GPUs, with python 3.8 and 3.10 respectively. Is this a known issue? Am I missing something? ### Standalone code to reproduce the issue ```python import logging import absl.logging import numpy as np import tensorflow as tf import tensorflow_hub as hub import tensorflow_models as tfm from absl import flags, app from keras import mixed_precision from keras.utils.dataset_utils import split_dataset from keras.utils.tf_utils import can_jit_compile NUM_CLASSES = 104 PRNG_SEED = 42 tf.random.set_seed(PRNG_SEED) logging.basicConfig(level=logging.DEBUG) tf.get_logger().setLevel("DEBUG") absl.logging.set_verbosity(absl.logging.converter.ABSL_DEBUG) FLAGS = flags.FLAGS flags.DEFINE_integer("batch_size", default=32, help="batch size") flags.DEFINE_integer("epochs", default=1, help="number of epochs") def warmup_schedule(num_training_samples): steps_per_epoch = int(num_training_samples / FLAGS.batch_size) num_train_steps = steps_per_epoch * FLAGS.epochs warmup_steps = int(0.4 * num_train_steps) initial_learning_rate = 1e-3 linear_decay = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=initial_learning_rate, end_learning_rate=1e-4, decay_steps=num_train_steps, ) return tfm.optimization.lr_schedule.LinearWarmup( warmup_learning_rate=5e-3, after_warmup_lr_sched=linear_decay, warmup_steps=warmup_steps, ) @tf.function(reduce_retracing=True, jit_compile=can_jit_compile()) def macro_double_soft_f1(y, y_hat): """Compute the macro soft F1-score as a cost (average 1 - soft-F1 across all labels). Use probability values instead of binary predictions. This version uses the computation of soft-F1 for both positive and negative class for each label. Args: y (int32 Tensor): targets array of shape (BATCH_SIZE, N_LABELS) y_hat (float32 Tensor): probability matrix from forward propagation of shape (BATCH_SIZE, N_LABELS) Returns: cost (scalar Tensor): value of the cost function for the batch """ y = tf.cast(y, tf.bfloat16) y_hat = tf.cast(y_hat, tf.bfloat16) tp = tf.reduce_sum(y_hat * y, axis=0) fp = tf.reduce_sum(y_hat * (1 - y), axis=0) fn = tf.reduce_sum((1 - y_hat) * y, axis=0) tn = tf.reduce_sum((1 - y_hat) * (1 - y), axis=0) soft_f1_class1 = 2 * tp / (2 * tp + fn + fp + 1e-16) soft_f1_class0 = 2 * tn / (2 * tn + fn + fp + 1e-16) # reduce 1 - soft-f1_class1 in order to increase soft-f1 on class 1 cost_class1 = 1 - soft_f1_class1 # reduce 1 - soft-f1_class0 in order to increase soft-f1 on class 0 cost_class0 = 1 - soft_f1_class0 # take into account both class 1 and class 0 cost = 0.5 * cost_class1 + cost_class0 # average on all labels macro_cost = tf.reduce_mean(cost) return macro_cost def main(_): # Unfortunately, I can't share the actual dataset due to GDPR. pickled_dataset = dict( input_word_ids=tf.constant( [ [101, 15570, 15143, 49393, 15009, 40651, 0], [101, 18610, 23251, 107, 316053, 84805, 15954], ], dtype=tf.int32, ), input_mask=tf.constant( [[1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1]], dtype=tf.int32 ), input_type_ids=tf.constant( [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=tf.int32 ), # in reality, here I have multi-hot encoded labels. events=tf.zeros([2, NUM_CLASSES], dtype=tf.int32), return_events=tf.zeros([2, NUM_CLASSES], dtype=tf.int32) ) num_training_samples = int(len(pickled_dataset["input_word_ids"]) * 0.8) dataset = ( np.asarray(pickled_dataset["input_word_ids"]), np.asarray(pickled_dataset["input_mask"]), np.asarray(pickled_dataset["input_type_ids"]), np.asarray(pickled_dataset["events"]), np.asarray(pickled_dataset["return_events"]), ) train_ds, val_ds = split_dataset( dataset, left_size=0.8, shuffle=True, seed=PRNG_SEED ) def group_tuples(*args): return ( dict( input_word_ids=tf.cast(args[0], tf.int32), input_mask=tf.cast(args[1], tf.int32), input_type_ids=tf.cast(args[2], tf.int32), ), (tf.cast(args[3], tf.int32), tf.cast(args[4], tf.int32)), ) train_ds = ( train_ds.batch(FLAGS.batch_size) .map(group_tuples) .cache() .prefetch(tf.data.AUTOTUNE) ) val_ds = ( val_ds.batch(FLAGS.batch_size) .map(group_tuples) .cache() .prefetch(tf.data.AUTOTUNE) ) # ---------------------------------------- if can_jit_compile(): tf.config.optimizer.set_jit("autoclustering") mixed_precision.set_global_policy("mixed_bfloat16") word_ids = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_word_ids" ) mask = tf.keras.layers.Input(shape=(None,), dtype=tf.int32, name="input_mask") type_ids = tf.keras.layers.Input( shape=(None,), dtype=tf.int32, name="input_type_ids" ) x = hub.KerasLayer("https://tfhub.dev/google/LaBSE/2")( { "input_word_ids": word_ids, "input_mask": mask, "input_type_ids": type_ids, } )["pooled_output"] events = tf.keras.layers.Dense(NUM_CLASSES, activation="sigmoid", name="events")(x) return_events = tf.keras.layers.Dense( NUM_CLASSES, activation="sigmoid", name="return_events" )(x) model = tf.keras.Model( inputs={ "input_word_ids": word_ids, "input_mask": mask, "input_type_ids": type_ids, }, outputs=[events, return_events], ) model.compile( optimizer=tf.keras.optimizers.Adam( learning_rate=warmup_schedule(num_training_samples), jit_compile=can_jit_compile(), ), metrics={ "events": [ tf.keras.metrics.TruePositives(), tf.keras.metrics.TrueNegatives(), tf.keras.metrics.FalsePositives(), tf.keras.metrics.FalseNegatives(), ], "return_events": [ tf.keras.metrics.TruePositives(), tf.keras.metrics.TrueNegatives(), tf.keras.metrics.FalsePositives(), tf.keras.metrics.FalseNegatives(), ], }, loss={"events": macro_double_soft_f1, "return_events": macro_double_soft_f1}, # This is the culprit. jit_compile=can_jit_compile(), ) # --------------------------------------- model.fit(train_ds, validation_data=val_ds, epochs=FLAGS.epochs) model.save_weights("weights.keras") if __name__ == "__main__": app.run(main) ``` ### Relevant log output ```shell Node: 'StatefulPartitionedCall' Failed to load in-memory CUBIN: CUDA_ERROR_OUT_OF_MEMORY: out of memory [[{{node StatefulPartitionedCall}}]] [Op:__inference_train_function_50056] 2023-05-16 14:44:22.972682: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead. 2023-05-16 14:44:23.019609: F tensorflow/tsl/framework/bfc_allocator.cc:700] Check failed: h != kInvalidChunkHandle Fatal Python error: Aborted Current thread 0x00007f0239acd740 (most recent call first): Garbage-collecting <no Python frame> Aborted (core dumped) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60607/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60607/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60606
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60606/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60606/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60606/events
https://github.com/tensorflow/tensorflow/issues/60606
1,711,849,192
I_kwDOArmXAs5mCL7o
60,606
Calling `Model.predict` in graph mode is not supported when the `Model` instance was constructed with eager mode enabled. Please construct your `Model` instance in graph mode or call `Model.predict` with eager mode enabled.
{ "login": "Arnold2381", "id": 46752548, "node_id": "MDQ6VXNlcjQ2NzUyNTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/46752548?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Arnold2381", "html_url": "https://github.com/Arnold2381", "followers_url": "https://api.github.com/users/Arnold2381/followers", "following_url": "https://api.github.com/users/Arnold2381/following{/other_user}", "gists_url": "https://api.github.com/users/Arnold2381/gists{/gist_id}", "starred_url": "https://api.github.com/users/Arnold2381/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Arnold2381/subscriptions", "organizations_url": "https://api.github.com/users/Arnold2381/orgs", "repos_url": "https://api.github.com/users/Arnold2381/repos", "events_url": "https://api.github.com/users/Arnold2381/events{/privacy}", "received_events_url": "https://api.github.com/users/Arnold2381/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 3255468475, "node_id": "MDU6TGFiZWwzMjU1NDY4NDc1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/2.6.0", "name": "2.6.0", "color": "FA96B6", "default": false, "description": "" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@Arnold2381,\r\nCould you please provide the complete code to reproduce the issue, which helps us to analyse the issue in an effective way. Also could you please try to load your model inside the graph and take a look at this [comment](https://github.com/tensorflow/tensorflow/issues/47959#issuecomment-805986358) from the developer for the similar error. Thank you!\r\n```\r\n\r\nwith graph.as_default():\r\n #load weights into the model\r\n loaded_model.load_weights(\"model.h5\")\r\n #compile and evaluate loaded model\r\n loaded_model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy'])\r\n # perform the prediction\r\n out = loaded_model.predict(img)\r\n print(out)\r\n print(class_names[np.argmax(out)])\r\n # convert the response to a string\r\n response = class_names[np.argmax(out)]\r\n return str(response)\r\n```", "```\r\nem = tf.keras.models.load_model(model_path)\r\nmodel = {\r\n 'key': em,\r\n} \r\nem = model['key']\r\ndta = input_data['data']\r\ndf = np.array(dta).reshape(1, -1)\r\n\r\ned = em.predict(df).tolist()\r\n\r\n```", "@Arnold2381,\r\nI was facing a different error while executing the mentioned code on tensorflow v2.12. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/b3994a91362a35237ef9289d7c17115b/untitled1176.ipynb) and provide complete dependencies.\r\nAlso there is a mix of graph mode and eager mode (and by default TF2.x is eager). Error is mainly due to mix of both modes. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Closing this as stale. Please reopen if this is still a valid request. Thank you!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60606\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60606\">No</a>\n" ]
2023-05-16T11:41:00
2023-12-28T10:13:13
2023-12-28T10:13:10
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.6.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? We are using tensorflow version 2 where eager model is enabled by default. while predicting from trained model we are getting this error. ``` Calling `Model.predict` in graph mode is not supported when the `Model` instance was constructed with eager mode enabled. Please construct your `Model` instance in graph mode or call `Model.predict` with eager mode enabled. ``` As a workaround, for time being we resolved this issue, by disabling eager mode, and load the model inside graph mode. We would like to know, how can we resolve this issue without disabling the eager mode. ### Standalone code to reproduce the issue ```shell This is not an issue, which can be reproduced as its happening only for few requests. ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60606/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60606/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60605
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60605/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60605/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60605/events
https://github.com/tensorflow/tensorflow/issues/60605
1,711,820,603
I_kwDOArmXAs5mCE87
60,605
tf sometims return constant value
{ "login": "xiedeacc", "id": 8072296, "node_id": "MDQ6VXNlcjgwNzIyOTY=", "avatar_url": "https://avatars.githubusercontent.com/u/8072296?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xiedeacc", "html_url": "https://github.com/xiedeacc", "followers_url": "https://api.github.com/users/xiedeacc/followers", "following_url": "https://api.github.com/users/xiedeacc/following{/other_user}", "gists_url": "https://api.github.com/users/xiedeacc/gists{/gist_id}", "starred_url": "https://api.github.com/users/xiedeacc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xiedeacc/subscriptions", "organizations_url": "https://api.github.com/users/xiedeacc/orgs", "repos_url": "https://api.github.com/users/xiedeacc/repos", "events_url": "https://api.github.com/users/xiedeacc/events{/privacy}", "received_events_url": "https://api.github.com/users/xiedeacc/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @xiedeacc ,\r\n\r\nThanks for your time reporting the issue. Unfortunately i couldn't understand the problem with the provided information.\r\n\r\nPlease confirm whether you are using pip wheel or building from source. Please submit some code snippet to replicate and check the issue. Need more context to understand your issue. Please provide all the details. \r\n\r\nThanks!\r\n", "reason is: RunCallable input sequence was must same with .meta_graph_def input sequence", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60605\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60605\">No</a>\n" ]
2023-05-16T11:24:19
2023-05-17T08:11:15
2023-05-17T08:11:12
NONE
null
null
null
### Issue Type Bug ### Source source ### Tensorflow Version tf 2.8.4 ### OS Platform and Distribution ubuntu18.04 ### Bazel version 5.2.0 ### GCC/Compiler version gcc-11.3.0 ### Current Behaviour? my project use a fm model for ctr prediction (click through rate). I notice sometimes tf always return a constant value 1 , if want result became valid, must restart program, or reload model. I'm sure I use a same model.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60605/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60605/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60604
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60604/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60604/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60604/events
https://github.com/tensorflow/tensorflow/issues/60604
1,711,405,729
I_kwDOArmXAs5mAfqh
60,604
Lambda Layer, OperatorNotAllowedInGraphError
{ "login": "daljee10", "id": 103978824, "node_id": "U_kgDOBjKXSA", "avatar_url": "https://avatars.githubusercontent.com/u/103978824?v=4", "gravatar_id": "", "url": "https://api.github.com/users/daljee10", "html_url": "https://github.com/daljee10", "followers_url": "https://api.github.com/users/daljee10/followers", "following_url": "https://api.github.com/users/daljee10/following{/other_user}", "gists_url": "https://api.github.com/users/daljee10/gists{/gist_id}", "starred_url": "https://api.github.com/users/daljee10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/daljee10/subscriptions", "organizations_url": "https://api.github.com/users/daljee10/orgs", "repos_url": "https://api.github.com/users/daljee10/repos", "events_url": "https://api.github.com/users/daljee10/events{/privacy}", "received_events_url": "https://api.github.com/users/daljee10/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 1160540362, "node_id": "MDU6TGFiZWwxMTYwNTQwMzYy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.0", "name": "TF 2.0", "color": "e79b38", "default": false, "description": "Issues relating to TensorFlow 2.0" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@daljee10,\r\nApologies for the delay.\r\nI was facing a different error while executing the mentioned code. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/4a4950b18de4c966a3295afd9b18539d/untitled1189.ipynb) and provide the complete dependencies to reproduce the issue.\r\n\r\nAlso tf.tensor wants it's N to be a static python `int`. Try not passing it into the tf.function, and instead letting the function close over it. Also please have a look at this [issue](https://stackoverflow.com/questions/69498990/operatornotallowedingrapherror-using-a-tf-tensor-as-a-python-bool-is-not-al) with a similar error for the reference.\r\n\r\nThank you!\r\n\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60604\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60604\">No</a>\n" ]
2023-05-16T07:19:14
2023-06-21T03:56:20
2023-06-21T01:58:48
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf.2 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I created a ANN model using Keras Lambda layer to implement mathematical calculation for the output of ANN. Function of the Lambda layer was defined by a long code of calculation. I mentioned @tf.fuction, but the Lambda layer didn't work well because of OperatorNotAllowdInGraphError. The error says that "OperatorNotAllowedInGraphError: Exception encountered when calling layer "physics" (type Lambda). Using a symbolic `tf.Tensor` as a Python `bool` is not allowed: AutoGraph is disabled in this function. Try decorating it directly with @tf.function." I expect to do not only functions provided by tensorflow, such as tf.math. , but also other functions such if-else function, indexing, and other works, which did not work well, in Lambda layer. Maybe changing datatype of input_all0 from KerasTensor to Numpy could be helpful, but I did not find the way. ### Standalone code to reproduce the issue ```shell @tf.function(experimental_compile=True, autograph=False, experimental_relax_shapes=True) def physics(input_all): global ts global node_idx global ESB, glass_double, glass_triple global capacity, cap_outerwall, cap_air, cap_window_2, cap_window_3, cap_bipv, cap_innerwall global outerwall_idx, air_idx, window_2_idx, window_3_idx, bipv_idx, innerwall_idx global outerwall_layers, window_3_layers, bipv_layers, innerwall_layers tf.executing_eagerly() iOAT = input_all[None,0,0] iID = input_all[None,0,2] iIdsky = input_all[None,0,3] iIdgr = input_all[None,0,4] if input_all[None,0,6] < 90: igroup = 5 if input_all[6,] < 80: igroup = 4 if input_all[6,] < 70: igroup = 3 if input_all[6,] < 60: igroup = 2 if input_all[6,] < 50: igroup = 1 if input_all[6,] < 40: igroup = 0 X00 = tf.constant(input_all[None,0,8:-4]) X0 = np.zeros(19) nn = 0 for n in node_idx: X0[nn] = X00[0, n] nn += 1 h_in = input_all[None,0,-4] h_outg = input_all[None,0,-3] h_outw = input_all[None,0,-2] h_ca = input_all[None,0,-1] hin_win = h_in hin_wall = h_in hin_pv = h_in hin_Innerwall = h_in hca_win1 = h_ca hca_win2 = h_ca hout_win = h_outg hout_pv = h_outg hout_wall = h_outw # .... Ximp = np.linalg.solve( np.eye(len(capacity)) - amat*ts, X0 + bvector*ts) return Ximp input1 = Input(shape=size1, name = 'input_parameter') flatten_layer = Flatten()(input1) hidden1 = Dense(size[0], activation = 'relu', name = 'hidden1_1')(flatten_layer) output_parm = Dense(4, name = 'output_parameter')(hidden1) hidden2 = Dense(size[1], name = 'hidden2_1')(flatten_layer) output_VT = Dense(9, name = 'output_VirtualT')(hidden2) input2 = Input(shape=size2, name = 'input_MT') input_all0 = Concatenate(name = 'input_all')([input2, output_VT, output_parm]) output_T = Lambda(lambda x: physics(x), name="physics")(input_all0) ann_ = Model(inputs=[input1, input2], outputs=output_T) ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60604/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60604/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60603
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60603/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60603/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60603/events
https://github.com/tensorflow/tensorflow/issues/60603
1,711,336,081
I_kwDOArmXAs5mAOqR
60,603
`decode_image` can not load (or check properly) the bmp format
{ "login": "innat", "id": 17668390, "node_id": "MDQ6VXNlcjE3NjY4Mzkw", "avatar_url": "https://avatars.githubusercontent.com/u/17668390?v=4", "gravatar_id": "", "url": "https://api.github.com/users/innat", "html_url": "https://github.com/innat", "followers_url": "https://api.github.com/users/innat/followers", "following_url": "https://api.github.com/users/innat/following{/other_user}", "gists_url": "https://api.github.com/users/innat/gists{/gist_id}", "starred_url": "https://api.github.com/users/innat/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/innat/subscriptions", "organizations_url": "https://api.github.com/users/innat/orgs", "repos_url": "https://api.github.com/users/innat/repos", "events_url": "https://api.github.com/users/innat/events{/privacy}", "received_events_url": "https://api.github.com/users/innat/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@innat,\r\nThank you for the issue.\r\nI tried to replicate the issue with the provided .bmp file, as mentioned it is failing with the same error. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/3141afe73e3885105a834d5403bf5a67/untitled1150.ipynb). But when I tried with the different .bmp file it is working without any issue. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/159c5942960884e76f08336c4c04a1d6/untitled1152.ipynb).\r\n\r\n[rgb32.zip](https://github.com/tensorflow/tensorflow/files/11495512/rgb32.zip).\r\n\r\nAs you mentioned, `decode_image` was working for some files and I suspect that some files might be corrupted which were not working for some cases. Thank you!\r\n", "@tilakrayal Thanks for your quick test. \r\n\r\n> I tried to replicate the issue with the provided .bmp file, as mentioned it is failing with the same error. But when I tried with the different .bmp file it is working without any issue. \r\n\r\nThat's the primary issue, Because of that, I can't use `tf.io.decode_image` or `tf.io.decode_bmp` method inside the `tf.data` API. The above bmp file is not corrupted. It can be loaded with python libraries, please see below.\r\n\r\n```python\r\nfrom PIL import Image\r\nimage = Image.open('1.bmp')\r\nimage # OK\r\n\r\nimport matplotlib.pyplot as plt\r\nimage = plt.imread('1.bmp')\r\nplt.imshow(image) # OK\r\n\r\nimport tensorflow as tf\r\nimage = tf.io.read_file('1.bmp')\r\nimage = tf.io.decode_image(\r\n image, channels=3, expand_animations=False\r\n) # Error\r\n```", "the `1.bmp` is a 772x600 1-bit bitmap. Current the bitmap decoder only supports depth = 8-, 24-, or 32-bit\r\n\r\n```\r\n$ file /tmp/1.bmp \r\n/tmp/1.bmp: PC bitmap, Windows 3.x format, 772 x 600 x 1, image size 60000, cbSize 60062, bits offset 62\r\n```", "@tilakrayal \r\nAny update on this? As pointed out above, I think it should be supported.", "@innat,\r\nApologies for the delay.\r\n\r\n@sachinprasadhs,\r\nCould you please take a look at this issue. Thank you!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60603\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60603\">No</a>\n" ]
2023-05-16T06:35:56
2023-08-07T04:18:11
2023-08-04T18:36:06
NONE
null
null
null
### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.11 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? On a dataset that contains bmp format files, the `tf.io.decode_image` or `tf.io.decode_bmp` method can not load the bmp files for some samples. This samples can be converted to png format but as I like to use built in decoding method for bmp image, I'm trying as follows but facing the issue for some bmp files and for some cases it loads correctly. ### Standalone code to reproduce the issue [samples](https://drive.google.com/file/d/1B1w4-9EsSwvGukA_9yDZxZN7v1PeQmdm/view?usp=share_link) ``` image = tf.io.read_file('1.bmp') image = tf.io.decode_image(image, channels=3, expand_animations=False) ``` ``` InvalidArgumentError: {{function_node __wrapped__DecodeImage_device_/job:localhost/replica:0/task:0/device:CPU:0}} Number of channels inherent in the image must be 1, 3 or 4, was 0 [Op:DecodeImage] ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60603/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60603/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60602
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60602/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60602/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60602/events
https://github.com/tensorflow/tensorflow/pull/60602
1,711,323,938
PR_kwDOArmXAs5QlCRJ
60,602
Always link kernels_experimental c api
{ "login": "jianyizh", "id": 79236274, "node_id": "MDQ6VXNlcjc5MjM2Mjc0", "avatar_url": "https://avatars.githubusercontent.com/u/79236274?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jianyizh", "html_url": "https://github.com/jianyizh", "followers_url": "https://api.github.com/users/jianyizh/followers", "following_url": "https://api.github.com/users/jianyizh/following{/other_user}", "gists_url": "https://api.github.com/users/jianyizh/gists{/gist_id}", "starred_url": "https://api.github.com/users/jianyizh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jianyizh/subscriptions", "organizations_url": "https://api.github.com/users/jianyizh/orgs", "repos_url": "https://api.github.com/users/jianyizh/repos", "events_url": "https://api.github.com/users/jianyizh/events{/privacy}", "received_events_url": "https://api.github.com/users/jianyizh/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "@jianyizh,\r\nCan you please sign CLA. Thank you!", "> @jianyizh, Can you please sign CLA. Thank you!\r\n\r\nThe \"cla/google\" CI is passed, I'm covered by Corporate CLA. Do I need sign Individual CLA?", "@penpornk Can you help review this pr? It's just one line of code.", "Follow internal process and use this pr https://github.com/tensorflow/tensorflow/pull/60786", "Thank you for the PR and sorry for the delay! I have approved https://github.com/tensorflow/tensorflow/pull/60786." ]
2023-05-16T06:24:59
2023-06-06T10:48:43
2023-06-06T09:25:30
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60602", "html_url": "https://github.com/tensorflow/tensorflow/pull/60602", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60602.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60602.patch", "merged_at": null }
[PluggableDevice](https://github.com/tensorflow/community/blob/master/rfcs/20200624-pluggable-device-for-tensorflow.md) architecture relies on C APIs to communicate with the TensorFlow binary. To support pluggable device for tensorflow serving (https://github.com/tensorflow/serving/pull/2144), we need add always_link=1 for `kernels_experimental`.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60602/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60602/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60601
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60601/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60601/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60601/events
https://github.com/tensorflow/tensorflow/issues/60601
1,711,095,792
I_kwDOArmXAs5l_T_w
60,601
tf performance deteriorated very sharply when qps arrived a level
{ "login": "xiedeacc", "id": 8072296, "node_id": "MDQ6VXNlcjgwNzIyOTY=", "avatar_url": "https://avatars.githubusercontent.com/u/8072296?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xiedeacc", "html_url": "https://github.com/xiedeacc", "followers_url": "https://api.github.com/users/xiedeacc/followers", "following_url": "https://api.github.com/users/xiedeacc/following{/other_user}", "gists_url": "https://api.github.com/users/xiedeacc/gists{/gist_id}", "starred_url": "https://api.github.com/users/xiedeacc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xiedeacc/subscriptions", "organizations_url": "https://api.github.com/users/xiedeacc/orgs", "repos_url": "https://api.github.com/users/xiedeacc/repos", "events_url": "https://api.github.com/users/xiedeacc/events{/privacy}", "received_events_url": "https://api.github.com/users/xiedeacc/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @xiedeacc ,\r\n\r\nThanks for reporting. I am unable to quiet follow through your issue. Actually AFAIK there is no such benchmark to compare the qps and what the average qps. I am not quite sure whether the issue is due to network overload or something. Is that possible that can we replicate this behaviour with TF code snippet ? With the provided information I can't infer much.\r\n\r\nAlso could you explain what is the value 99% represents here. Is that CPU usage? And the second one is average time for a query right? \r\n\r\nPlease submit more context along with some code snippet to replicate the behaviour.\r\n\r\nThanks!\r\n\r\n", "99% means 99% request return at that latency. under stress test, cpu olny achive 50%, cannot achive highier. after a lot perf, it seems too many memory copy, I use jemalloc relief this problem a lot. maybe I need split ads into many batches to avoid big memory allocation and copy", "Hi, \r\n\r\nCould you please test your findings using latest Tensorflow stable version 2.12,\r\n\r\n `2.13rc0` using `pip install tensorflow==2.13.0rc0` ,\r\n\r\nTensorflow Nightly version using `pip install tf-nightly`\r\n\r\n to see if there is any improvement in qps. Thank you.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "> Hi,\r\n> \r\n> Could you please test your findings using latest Tensorflow stable version 2.12,\r\n> \r\n> `2.13rc0` using `pip install tensorflow==2.13.0rc0` ,\r\n> \r\n> Tensorflow Nightly version using `pip install tf-nightly`\r\n> \r\n> to see if there is any improvement in qps. Thank you.\r\n\r\nok I will try, thanks", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60601\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60601\">No</a>\n", "I run into this same issue on tf2.9.0 rc2 built from source, would you share the test result? @xiedeacc " ]
2023-05-16T02:09:05
2023-09-18T02:31:17
2023-06-22T02:01:50
NONE
null
null
null
### Source source ### Tensorflow Version tf 2.8.4 ### OS Platform and Distribution ubuntu18.04 ### Python version 3.10 ### Bazel version 5.2.0 ### GCC/Compiler version gcc-11.3.0 ### Current Behaviour? our project use tf2.8.4. we meet two problem, 1. performance deteriorated very sharply, does this normally? 50q/s 35ms 99% 100q/s 62ms 99% 120q/s 75ms 99% 130q/s 100ms 99% 140q/s 150ms 99% 150q/s 370ms 99% 2. qps cannot archive to expected level, our cpu model is Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, two cpu, so we have 24 physical cores. assume each request cost 100ms, qps at least can archive 1000 / 100 * 24 = 240qps, but permance is so bad when qps archive 150. ps. our model was fm with 4000000 * 6 matrix
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60601/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60601/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60600
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60600/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60600/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60600/events
https://github.com/tensorflow/tensorflow/pull/60600
1,710,318,110
PR_kwDOArmXAs5QhptL
60,600
Update the RBE images to the latest container versions
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-15T15:17:58
2023-05-18T15:24:38
2023-05-17T23:34:31
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60600", "html_url": "https://github.com/tensorflow/tensorflow/pull/60600", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60600.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60600.patch", "merged_at": "2023-05-17T23:34:31" }
This PR was created by a GitHub Actions workflow to update all the SIG Build-based RBE containers to the most recent containers. See: - https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/toolchains/remote_config/configs.bzl - https://github.com/tensorflow/tensorflow/blob/master/.github/workflows/update-rbe.yml
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60600/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60600/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60599
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60599/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60599/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60599/events
https://github.com/tensorflow/tensorflow/issues/60599
1,710,270,822
I_kwDOArmXAs5l8Klm
60,599
Weird memory usage of shuffling in `tf.data.Dataset`
{ "login": "massquantity", "id": 28751760, "node_id": "MDQ6VXNlcjI4NzUxNzYw", "avatar_url": "https://avatars.githubusercontent.com/u/28751760?v=4", "gravatar_id": "", "url": "https://api.github.com/users/massquantity", "html_url": "https://github.com/massquantity", "followers_url": "https://api.github.com/users/massquantity/followers", "following_url": "https://api.github.com/users/massquantity/following{/other_user}", "gists_url": "https://api.github.com/users/massquantity/gists{/gist_id}", "starred_url": "https://api.github.com/users/massquantity/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/massquantity/subscriptions", "organizations_url": "https://api.github.com/users/massquantity/orgs", "repos_url": "https://api.github.com/users/massquantity/repos", "events_url": "https://api.github.com/users/massquantity/events{/privacy}", "received_events_url": "https://api.github.com/users/massquantity/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1114343535, "node_id": "MDU6TGFiZWwxMTE0MzQzNTM1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data", "name": "comp:data", "color": "0052cc", "default": false, "description": "tf.data related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "wilsingosti", "id": 93937952, "node_id": "U_kgDOBZlhIA", "avatar_url": "https://avatars.githubusercontent.com/u/93937952?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wilsingosti", "html_url": "https://github.com/wilsingosti", "followers_url": "https://api.github.com/users/wilsingosti/followers", "following_url": "https://api.github.com/users/wilsingosti/following{/other_user}", "gists_url": "https://api.github.com/users/wilsingosti/gists{/gist_id}", "starred_url": "https://api.github.com/users/wilsingosti/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wilsingosti/subscriptions", "organizations_url": "https://api.github.com/users/wilsingosti/orgs", "repos_url": "https://api.github.com/users/wilsingosti/repos", "events_url": "https://api.github.com/users/wilsingosti/events{/privacy}", "received_events_url": "https://api.github.com/users/wilsingosti/received_events", "type": "User", "site_admin": false }
[ { "login": "wilsingosti", "id": 93937952, "node_id": "U_kgDOBZlhIA", "avatar_url": "https://avatars.githubusercontent.com/u/93937952?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wilsingosti", "html_url": "https://github.com/wilsingosti", "followers_url": "https://api.github.com/users/wilsingosti/followers", "following_url": "https://api.github.com/users/wilsingosti/following{/other_user}", "gists_url": "https://api.github.com/users/wilsingosti/gists{/gist_id}", "starred_url": "https://api.github.com/users/wilsingosti/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wilsingosti/subscriptions", "organizations_url": "https://api.github.com/users/wilsingosti/orgs", "repos_url": "https://api.github.com/users/wilsingosti/repos", "events_url": "https://api.github.com/users/wilsingosti/events{/privacy}", "received_events_url": "https://api.github.com/users/wilsingosti/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi massquantity,\r\n\r\nAfter reviewing your issue and the code you provided, I believe I have found a solution that can help reduce the memory usage during data shuffling in TensorFlow.\r\n\r\nThe key to reducing memory usage is to explicitly set the buffer size to a reasonable value. To resolve this issue, you can explicitly set the buffer_size to a smaller value that is appropriate for your use case. As a rule of thumb, the buffer size should be set to a value that is small enough to fit into memory but large enough to provide good shuffling performance. A buffer size of 1024, as you mentioned, may be too small and may result in poor shuffling performance. A buffer size of 10000 is generally a good default value.\r\n\r\nyou can use the prefetch() method in conjunction with shuffle(). This method allows you to overlap the shuffling process with other parts of your data pipeline, which can help reduce memory usage. \r\n\r\nHere's an updated version of your code that incorporates these changes:\r\n\r\n```python\r\nimport numpy as np\r\nimport tensorflow as tf\r\n\r\ndata_size = 50000000\r\n\r\ntf_dataset = tf.data.Dataset.from_tensor_slices(np.arange(data_size))\r\ntf_dataset = tf_dataset.shuffle(buffer_size=10000).prefetch(buffer_size=tf.data.experimental.AUTOTUNE)\r\ntf_dataset = iter(tf_dataset)\r\n\r\nprint(next(tf_dataset))\r\n```\r\n**Memory Usage**\r\n![Figure_3](https://github.com/tensorflow/tensorflow/assets/83278020/1bfa294d-0791-4f4d-9763-061f454e1d7a)\r\n\r\nI tested this code on my machine and found that it reduces memory usage to less than 500MiB.\r\nPlease let me know if this solution works for you. \r\n\r\nBest regards,\r\nNitya", "Thanks to Nitya, for your kind and detailed explanation! I'm also aware that the buffer_size should be set as large as possible for shuffling performance. `buffer_size=1024` is just an example, and what I'm seeking in this issue is some clarification on the memory usage of buffer_size. \r\n\r\nWhen a user set `buffer_size=1024`, she expects the underlying code will only use the memory of 1024 element rather than the memory of equivalent to 10240 elements, which is a \"surprise\" we generally want to avoid when using an open source library like TensorFlow. That's why I'm surprised when seeing the full shuffling of 50,000,000 `int` data cost 10 GB of memory.\r\n\r\nIf the code uses more memory than the specified buffer_size, that's totally OK to me, provided that the doc is clear about this. But the [shuffle doc](https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle) says \"This dataset fills a buffer with buffer_size elements, then randomly samples elements from this buffer, replacing the selected elements with new elements.\" From my understanding, it only uses `buffer_size` elements of memory.", "@nitya-khuntia \r\n\r\nIf the `.shuffle(10_000)` operation increases memory usage by 500 megabyte then each number is using up around 50 kilobyte each. They should not. If we assume they are 64 bit numbers then they should be using 8 byte plus overhead. If the overhead is 50'000 byte minus 8 byte then that seems like a lot. It's about 6000 x the actual data.", "I did a small benchmark to find the actual value of the shuffle memory overhead in a more realistic scenario: took 1000 samples of 1,69 MB each and tested different shuffle buffer sizes to see the delta memory/buffer_size ratio which turned out to be pretty constant (the first data point is at 10):\r\n\r\n![image](https://github.com/tensorflow/tensorflow/assets/11353865/78953b37-82d2-4e96-acff-265efad81a14)\r\n\r\nSo, as a general rule of thumb, if you do a shuffle, plan to have 8.4 (!) times your buffer_size memory available. 😉 \r\n\r\n" ]
2023-05-15T14:54:49
2023-09-21T11:47:46
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version tf 2.12 ### Custom Code No ### OS Platform and Distribution Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Hi, I've read the [tf.data doc](https://www.tensorflow.org/guide/data#randomly_shuffling_input_data), which says using a large `buffer size` in data shuffling is not recommended, but still the shuffling behavior costs way more memory than I would expect. For example, I expect the full shuffling of 50,000,000 `int` data may only use 1 GB of memory, but the following code after `print` essentially uses 10 GB. This leads to some practical concerns. If I set `buffer_size=1024` in data shuffling, would the *actual* memory usage of the buffer size be 10 times that of 1024 elements? ### Standalone code to reproduce the issue ```shell import numpy as np import tensorflow as tf data_size = 50000000 tf_dataset = tf.data.Dataset.from_tensor_slices(np.arange(data_size)) tf_dataset = iter(tf_dataset.shuffle(data_size)) print(next(tf_dataset)) ``` ### Relevant log output ```shell <tf.Tensor: shape=(), dtype=int64, numpy=24774043> ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60599/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60599/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60598
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60598/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60598/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60598/events
https://github.com/tensorflow/tensorflow/issues/60598
1,709,967,478
I_kwDOArmXAs5l7Ah2
60,598
Issue while installing tensorflow-lite-maker on Google Colab
{ "login": "carl-krikorian", "id": 59343296, "node_id": "MDQ6VXNlcjU5MzQzMjk2", "avatar_url": "https://avatars.githubusercontent.com/u/59343296?v=4", "gravatar_id": "", "url": "https://api.github.com/users/carl-krikorian", "html_url": "https://github.com/carl-krikorian", "followers_url": "https://api.github.com/users/carl-krikorian/followers", "following_url": "https://api.github.com/users/carl-krikorian/following{/other_user}", "gists_url": "https://api.github.com/users/carl-krikorian/gists{/gist_id}", "starred_url": "https://api.github.com/users/carl-krikorian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/carl-krikorian/subscriptions", "organizations_url": "https://api.github.com/users/carl-krikorian/orgs", "repos_url": "https://api.github.com/users/carl-krikorian/repos", "events_url": "https://api.github.com/users/carl-krikorian/events{/privacy}", "received_events_url": "https://api.github.com/users/carl-krikorian/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@carl-krikorian,\r\nAccording to [Colab Updated to Python 3.10 7](https://medium.com/google-colab/colab-updated-to-python-3-10-27eb02daa162):\r\n\r\n**Colab’s fallback runtime version:** Using the fallback runtime version temporarily allows access to the Python 3.9 runtime, and will be available until mid-May. This is available from the Command Palette via the Use fallback runtime version command when connected to a runtime. Of note, this setting does not persist across sessions — the command will need to be invoked on each new session.\r\n\r\nAs a temporary workaround, you can use the Colab fallback runtime version option to choose Python 3.9 and install tflite-model-maker. By doing this you will get RuntimeError and it can be ignored.\r\n\r\nTo access the command palette in Colab, presss cmd+shift+P and then type Use fallback runtime version and select it.\r\n\r\n![Screenshot 2023-05-16 2 26 22 PM](https://github.com/tensorflow/tensorflow/assets/81610181/677e2a4a-ca91-4c6e-b314-c3c382748687)\r\n\r\nBy following the above process, I was able to execute [Model Maker Image Classification Tutorial 9](https://colab.sandbox.google.com/gist/chunduriv/847ff8f09621935471b3fb70b23cefbd/model-maker-image-classification-tutorial.ipynb).\r\n\r\nThank you!", "Hello @tilakrayal, \r\nThis indeed seems to have solved my issue. I managed to access the command palette through tools and after starting the notebook, the use fallback runtime became available.\r\nMany Thanks! As this workaround is temporary (and it seems it will be impossible after may), are there any plans to fix the issue with 3.10?", "@carl-krikorian,\r\nYes, there is an issue which was raised for the similar issue where it is under the developer's priority list. \r\nhttps://github.com/tensorflow/tensorflow/issues/60431\r\nI request, could you please follow the respective issue for the updates and as the alternative workaround is working in your case, Could you please feel free to move this issue to closed status. Thank you!", "@tilakrayal \r\nI see, keep up the great work! Thanks again for the support!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60598\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60598\">No</a>\n", "> @carl-krikorian, According to [Colab Updated to Python 3.10 7](https://medium.com/google-colab/colab-updated-to-python-3-10-27eb02daa162):\r\n> \r\n> **Colab’s fallback runtime version:** Using the fallback runtime version temporarily allows access to the Python 3.9 runtime, and will be available until mid-May. This is available from the Command Palette via the Use fallback runtime version command when connected to a runtime. Of note, this setting does not persist across sessions — the command will need to be invoked on each new session.\r\n> \r\n> As a temporary workaround, you can use the Colab fallback runtime version option to choose Python 3.9 and install tflite-model-maker. By doing this you will get RuntimeError and it can be ignored.\r\n> \r\n> To access the command palette in Colab, presss cmd+shift+P and then type Use fallback runtime version and select it.\r\n> \r\n> ![Screenshot 2023-05-16 2 26 22 PM](https://user-images.githubusercontent.com/81610181/238590614-677e2a4a-ca91-4c6e-b314-c3c382748687.png)\r\n> \r\n> By following the above process, I was able to execute [Model Maker Image Classification Tutorial 9](https://colab.sandbox.google.com/gist/chunduriv/847ff8f09621935471b3fb70b23cefbd/model-maker-image-classification-tutorial.ipynb).\r\n> \r\n> Thank you!\r\n\r\nUnfortunately, the fall-down command has not been vailable now. " ]
2023-05-15T12:09:26
2023-06-21T03:19:56
2023-05-16T17:15:38
NONE
null
null
null
While trying to install and run tensorflow-lite-maker on google Colab I encountered many issues. I even tried following the example notebooks shown in the documentation [here](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/models/modify/model_maker/object_detection.ipynb#scrollTo=qhl8lqVamEty) and encountered similar issues. Find output here: ``` Reading package lists... Done Building dependency tree Reading state information... Done The following NEW packages will be installed: libportaudio2 0 upgraded, 1 newly installed, 0 to remove and 24 not upgraded. Need to get 65.4 kB of archives. After this operation, 223 kB of additional disk space will be used. Get:1 http://archive.ubuntu.com/ubuntu focal/universe amd64 libportaudio2 amd64 19.6.0-1build1 [65.4 kB] Fetched 65.4 kB in 4s (17.5 kB/s) debconf: unable to initialize frontend: Dialog debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 1.) debconf: falling back to frontend: Readline debconf: unable to initialize frontend: Readline debconf: (This frontend requires a controlling tty.) debconf: falling back to frontend: Teletype dpkg-preconfigure: unable to re-open stdin: Selecting previously unselected package libportaudio2:amd64. (Reading database ... 122519 files and directories currently installed.) Preparing to unpack .../libportaudio2_19.6.0-1build1_amd64.deb ... Unpacking libportaudio2:amd64 (19.6.0-1build1) ... Setting up libportaudio2:amd64 (19.6.0-1build1) ... Processing triggers for libc-bin (2.31-0ubuntu9.9) ... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 577.3/577.3 kB 14.7 MB/s eta 0:00:00 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 840.9/840.9 kB 22.9 MB/s eta 0:00:00 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 25.4 MB/s eta 0:00:00 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 88.3/88.3 kB 10.0 MB/s eta 0:00:00 Preparing metadata (setup.py) ... done ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.0/128.0 kB 14.2 MB/s eta 0:00:00 ERROR: Could not find a version that satisfies the requirement tflite-support>=0.4.2 (from tflite-model-maker) (from versions: 0.1.0a0.dev3, 0.1.0a0.dev4, 0.1.0a0.dev5, 0.1.0a0, 0.1.0a1) ERROR: No matching distribution found for tflite-support>=0.4.2 (from tflite-model-maker) ERROR: Could not find a version that satisfies the requirement opencv-python-headless==4.1.2.30 (from versions: 3.4.10.37, 3.4.11.39, 3.4.11.41, 3.4.11.43, 3.4.11.45, 3.4.13.47, 3.4.15.55, 3.4.16.59, 3.4.17.61, 3.4.17.63, 3.4.18.65, 4.3.0.38, 4.4.0.40, 4.4.0.42, 4.4.0.44, 4.4.0.46, 4.5.1.48, 4.5.3.56, 4.5.4.58, 4.5.4.60, 4.5.5.62, 4.5.5.64, 4.6.0.66, 4.7.0.68, 4.7.0.72) ERROR: No matching distribution found for opencv-python-headless==4.1.2.30 ``` The issue seems to be with python 3.10 version, unfortunately it doesn't seem possible to downgraded to previous versions of python on colab without running into errors. Please advise.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60598/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60598/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60597
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60597/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60597/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60597/events
https://github.com/tensorflow/tensorflow/issues/60597
1,709,700,934
I_kwDOArmXAs5l5_dG
60,597
Tensorflow global random generator is unable to generate integers
{ "login": "estenhl", "id": 1785307, "node_id": "MDQ6VXNlcjE3ODUzMDc=", "avatar_url": "https://avatars.githubusercontent.com/u/1785307?v=4", "gravatar_id": "", "url": "https://api.github.com/users/estenhl", "html_url": "https://github.com/estenhl", "followers_url": "https://api.github.com/users/estenhl/followers", "following_url": "https://api.github.com/users/estenhl/following{/other_user}", "gists_url": "https://api.github.com/users/estenhl/gists{/gist_id}", "starred_url": "https://api.github.com/users/estenhl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/estenhl/subscriptions", "organizations_url": "https://api.github.com/users/estenhl/orgs", "repos_url": "https://api.github.com/users/estenhl/repos", "events_url": "https://api.github.com/users/estenhl/events{/privacy}", "received_events_url": "https://api.github.com/users/estenhl/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 1205765054, "node_id": "MDU6TGFiZWwxMjA1NzY1MDU0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS", "name": "subtype:macOS", "color": "b619ea", "default": false, "description": "macOS Build/Installation issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @estenhl ,\r\n\r\nThe issue exists only on Mac M1/M2 it seems.I have replicated the issue on Mac M1.\r\n\r\n```\r\n(tf-metal) suryanarayanay-macbookpro:~ suryanarayanay$ python 60597.py\r\n2.14.0-dev20230515\r\nMetal device set to: Apple M1 Pro\r\n\r\nsystemMemory: 16.00 GB\r\nmaxCacheSize: 5.33 GB\r\n\r\nTraceback (most recent call last):\r\n File \"/Users/suryanarayanay/60597.py\", line 17, in <module>\r\n generator.uniform(shape=(), minval=0, maxval=3, dtype=tf.int32)\r\n File \"/Users/suryanarayanay/miniconda/envs/tf-metal/lib/python3.9/site-packages/tensorflow/python/ops/stateful_random_ops.py\", line 788, in uniform\r\n return gen_stateless_random_ops_v2.stateless_random_uniform_int_v2(\r\n File \"/Users/suryanarayanay/miniconda/envs/tf-metal/lib/python3.9/site-packages/tensorflow/python/ops/gen_stateless_random_ops_v2.py\", line 477, in stateless_random_uniform_int_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/Users/suryanarayanay/miniconda/envs/tf-metal/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6577, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__StatelessRandomUniformIntV2_device_/job:localhost/replica:0/task:0/device:GPU:0}} minval must be 0-D, got shape [2]\r\n\t [[{{node StatelessRandomUniformIntV2}}]] [Op:StatelessRandomUniformIntV2] name: \r\n(tf-metal) suryanarayanay-macbookpro:~ suryanarayanay$ \r\n```\r\nHowever on Colal(Linux) the code executes fine as per [gist](https://colab.research.google.com/gist/SuryanarayanaY/77af814354eb337fee46527856a30f39/60597.ipynb).\r\n\r\nSince Mac M1 installs Apple's TF Package the issue needs to be addressed by Apple itself.Please report the issue [here](https://developer.apple.com/forums/tags/tensorflow-metal).\r\n\r\nThanks!", "Ah, of course, thanks for looking into it!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60597\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60597\">No</a>\n" ]
2023-05-15T09:35:04
2023-05-16T08:00:09
2023-05-16T08:00:06
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.14.0-dev20230514 ### Custom Code Yes ### OS Platform and Distribution macOS Ventura 13.2.1 ### Mobile device _No response_ ### Python version 3.10.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory Apple M2 ### Current Behaviour? An error is raised when trying to generate a random integer using the global random generator. Does not occur for float data types ### Standalone code to reproduce the issue ```shell import tensorflow as tf generator = tf.random.get_global_generator() generator.uniform(shape=(), minval=0, maxval=3, dtype=tf.int32) ``` ### Relevant log output ```shell 2023-05-15 11:34:30.621515: I tensorflow/core/common_runtime/executor.cc:1210] [/job:localhost/replica:0/task:0/device:GPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: minval must be 0-D, got shape [2] [[{{node StatelessRandomUniformIntV2}}]] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/esten/miniconda3/envs/ml/lib/python3.10/site-packages/tensorflow/python/ops/stateful_random_ops.py", line 788, in uniform return gen_stateless_random_ops_v2.stateless_random_uniform_int_v2( File "/Users/esten/miniconda3/envs/ml/lib/python3.10/site-packages/tensorflow/python/ops/gen_stateless_random_ops_v2.py", line 477, in stateless_random_uniform_int_v2 _ops.raise_from_not_ok_status(e, name) File "/Users/esten/miniconda3/envs/ml/lib/python3.10/site-packages/tensorflow/python/framework/ops.py", line 6577, in raise_from_not_ok_status raise core._status_to_exception(e) from None # pylint: disable=protected-access tensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__StatelessRandomUniformIntV2_device_/job:localhost/replica:0/task:0/device:GPU:0}} minval must be 0-D, got shape [2] [[{{node StatelessRandomUniformIntV2}}]] [Op:StatelessRandomUniformIntV2] name: ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60597/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60597/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60596
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60596/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60596/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60596/events
https://github.com/tensorflow/tensorflow/issues/60596
1,709,223,528
I_kwDOArmXAs5l4K5o
60,596
TfLiteGpuDelegateBindGlBufferToTensor
{ "login": "picard314", "id": 80811676, "node_id": "MDQ6VXNlcjgwODExNjc2", "avatar_url": "https://avatars.githubusercontent.com/u/80811676?v=4", "gravatar_id": "", "url": "https://api.github.com/users/picard314", "html_url": "https://github.com/picard314", "followers_url": "https://api.github.com/users/picard314/followers", "following_url": "https://api.github.com/users/picard314/following{/other_user}", "gists_url": "https://api.github.com/users/picard314/gists{/gist_id}", "starred_url": "https://api.github.com/users/picard314/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/picard314/subscriptions", "organizations_url": "https://api.github.com/users/picard314/orgs", "repos_url": "https://api.github.com/users/picard314/repos", "events_url": "https://api.github.com/users/picard314/events{/privacy}", "received_events_url": "https://api.github.com/users/picard314/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671339633, "node_id": "MDU6TGFiZWwyNjcxMzM5NjMz", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate", "name": "TFLiteGpuDelegate", "color": "F71F04", "default": false, "description": "TFLite Gpu delegate issue" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
open
false
{ "login": "impjdi", "id": 9742927, "node_id": "MDQ6VXNlcjk3NDI5Mjc=", "avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4", "gravatar_id": "", "url": "https://api.github.com/users/impjdi", "html_url": "https://github.com/impjdi", "followers_url": "https://api.github.com/users/impjdi/followers", "following_url": "https://api.github.com/users/impjdi/following{/other_user}", "gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}", "starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/impjdi/subscriptions", "organizations_url": "https://api.github.com/users/impjdi/orgs", "repos_url": "https://api.github.com/users/impjdi/repos", "events_url": "https://api.github.com/users/impjdi/events{/privacy}", "received_events_url": "https://api.github.com/users/impjdi/received_events", "type": "User", "site_admin": false }
[ { "login": "impjdi", "id": 9742927, "node_id": "MDQ6VXNlcjk3NDI5Mjc=", "avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4", "gravatar_id": "", "url": "https://api.github.com/users/impjdi", "html_url": "https://github.com/impjdi", "followers_url": "https://api.github.com/users/impjdi/followers", "following_url": "https://api.github.com/users/impjdi/following{/other_user}", "gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}", "starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/impjdi/subscriptions", "organizations_url": "https://api.github.com/users/impjdi/orgs", "repos_url": "https://api.github.com/users/impjdi/repos", "events_url": "https://api.github.com/users/impjdi/events{/privacy}", "received_events_url": "https://api.github.com/users/impjdi/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "`TfLiteGpuDelegateBindGlBufferToTensor` was consciously removed in v2 because we saw minor adoption due to complicated API. Chances are very low that it'll be re-introduced. If you want to use `TfLiteGpuDelegateBindGlBufferToTensor`, the usage above is probably not sufficient: You would have to do a lot of plumbing that `gl_delegate.cc` does (see logic around `bhwc_objects_`) and apply it to `delegate.cc`.", "Hi @impjdi\r\n\r\nThanks a lot for your kind reply.\r\n\r\nSo,, is there any other template, for v2, which takes textures as the input and output of tflite inference?\r\n\r\nCould you please let me know if there is a v1 version (gl_delegate.cc supported) which has an opencl engine as fast as a v2 engine? I've heard that tflite engine on opencl is about twice faster than that on opengl..\r\n\r\nI am looking forward to hearing from you. Thanks again.\r\n\r\nBest,\r\nPicard314 ", "Hm, that's complicated.\r\n\r\n> So,, is there any other template, for v2, which takes textures as the input and output of tflite inference?\r\n\r\nNot exactly OpenGL textures, but OpenGL SSBO, you can see examples of using the internals of the GPU inference in the MediaPipe's inference_calculator_gl_advanced.cc MediaPipe wasn't okay with the CPU / GPU copy that you're mentioning, but doesn't have the BindTensor functions, so they are using the GPU inference internal APIs directly.\r\n\r\n> Could you please let me know if there is a v1 version (gl_delegate.cc supported) which has an opencl engine\r\n\r\nUnfortunately, there has been no standalone OpenCL delegate IIRC. I think when we introduced OpenCL, we merged them together into the v2 (delegate.cc).", "Hi @impjdi \r\n\r\nAh, I am so grateful and quite shocked on your professional explanations~\r\n\r\nIf possible, I would like to request for informations (codes template) of implementing the MediaPipe from you. \r\n\r\nI found no \"inference_calculator_gl_advanced.cc\" in the source codes of tflite v2.10 I am using. Is MediaPipe a tflite branch and does it have a v2/opencl engine/delegate please?\r\n\r\nBest,\r\nPicard314\r\n\r\n\r\n\r\n\r\n\r\n\r\n", "> Hi @impjdi\r\n> \r\n> Ah, I am so grateful and quite shocked on your professional explanations~\r\n> \r\n> If possible, I would like to request for informations (codes template) of implementing the MediaPipe from you.\r\n> \r\n> I found no \"inference_calculator_gl_advanced.cc\" in the source codes of tflite v2.10 I am using. Is MediaPipe a tflite branch and does it have a v2/opencl engine/delegate please?\r\n> \r\n> Best, Picard314\r\n\r\nMediaPipe is a different project - https://github.com/google/mediapipe/blob/master/mediapipe/calculators/tensor/inference_calculator_gl_advanced.cc" ]
2023-05-15T02:55:58
2023-11-03T16:54:42
null
NONE
null
null
null
Hi, dear developers I would like to ask if "TfLiteGpuDelegateBindGlBufferToTensor" can be used in implementing DelegateV2 (tflite version 2.10), as I hope to avoid cpu-gpu memory copy letting textures be the input and output of tflite inference. Below is my pseudo code, could you please let me know if the implementation is correct? ####################################################### TfLiteStatus tf_status = kTfLiteOk; std::unique_ptr<tflite::Interpreter> tf_interpreter_; TfLiteDelegate* tf_delegate_ = nullptr; GLuint ssboR; GLuint ssboW; int net_input_tensor_index = xxx; int net_output_tensor_index = xxx; TfLiteGpuDelegateOptionsV2 tf_gpu_delegate_option; tf_gpu_delegate_option = TfLiteGpuDelegateOptionsV2Default(); tf_gpu_delegate_option.inference_preference = TFLITE_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED; tf_gpu_delegate_option.inference_priority1 = TFLITE_GPU_INFERENCE_PRIORITY_MIN_LATENCY; tf_delegate_ = TfLiteGpuDelegateV2Create(&tf_gpu_delegate_option); tf_status = TfLiteGpuDelegateBindGlBufferToTensor(tf_delegate_, ssboR, net_input_tensor_index, kTfLiteFloat32, TFLITE_GPU_DATA_LAYOUT_BHWC); tf_status = TfLiteGpuDelegateBindGlBufferToTensor(tf_delegate_, ssboW, net_output_tensor_index, kTfLiteFloat32, TFLITE_GPU_DATA_LAYOUT_BHWC); tf_status = tf_interpreter_->ModifyGraphWithDelegate(tf_delegate_); tf_status = tf_interpreter_->AllocateTensors(); ####################################################### Best, Picard314
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60596/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60596/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60595
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60595/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60595/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60595/events
https://github.com/tensorflow/tensorflow/issues/60595
1,708,923,565
I_kwDOArmXAs5l3Bqt
60,595
tf.config.list_physical_devices('CPU')
{ "login": "jsxzhub", "id": 6895480, "node_id": "MDQ6VXNlcjY4OTU0ODA=", "avatar_url": "https://avatars.githubusercontent.com/u/6895480?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jsxzhub", "html_url": "https://github.com/jsxzhub", "followers_url": "https://api.github.com/users/jsxzhub/followers", "following_url": "https://api.github.com/users/jsxzhub/following{/other_user}", "gists_url": "https://api.github.com/users/jsxzhub/gists{/gist_id}", "starred_url": "https://api.github.com/users/jsxzhub/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jsxzhub/subscriptions", "organizations_url": "https://api.github.com/users/jsxzhub/orgs", "repos_url": "https://api.github.com/users/jsxzhub/repos", "events_url": "https://api.github.com/users/jsxzhub/events{/privacy}", "received_events_url": "https://api.github.com/users/jsxzhub/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@jsxzhub,\r\nCould you please try to execute the below mentioned code and you will get the output for the cpu devices which are available in the machine. \r\n\r\n```\r\nimport os\r\nprint(\"Number of physical CPUs:\", os.cpu_count())\r\n```\r\n\r\nor \r\n\r\n```\r\nimport multiprocessing\r\nmultiprocessing.cpu_count()\r\n```\r\nPlease find the below screenshot for the reference. Thank you!\r\n![Screenshot 2023-05-15 4 41 17 PM](https://github.com/tensorflow/tensorflow/assets/81610181/e9e15e3b-f52e-43bc-8112-827bf510140c)\r\n", "![image](https://github.com/tensorflow/tensorflow/assets/6895480/461ee918-8386-4fc4-9e57-96059db5c37b)\r\n\r\nIs this tensorflow bug? \r\n\r\nHow does TensorFlow utilize multiple CPUs in this situation?", "I think this is not an issue. I don't believe that this is supposed to print the number of CPU cores. I think it just prints the actual physical device.\r\n\r\n`tf.config.list_physical_devices(\"CPU\")`\r\n\r\nHere is my output:\r\n\r\n```\r\nprint(tf.config.list_physical_devices())\r\n\r\n[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]\r\n```", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60595\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60595\">No</a>\n", "@jsxzhub,\r\n**tf.config.list_physical_devices** will return a list of physical devices visible to the host runtime. Physical devices are hardware devices present on the host machine. By default all discovered CPU and GPU devices are considered visible.\r\n\r\nThis API allows querying the physical hardware resources prior to runtime initialization. Thus, giving an opportunity to call any additional configuration APIs. This is in contrast to [tf.config.list_logical_devices](https://www.tensorflow.org/api_docs/python/tf/config/list_logical_devices), which triggers runtime initialization in order to list the configured devices.\r\n\r\nhttps://www.tensorflow.org/api_docs/python/tf/config/list_physical_devices\r\nThank you!", "That means the machine has 48 CPUs, but I can only use one CPU?\r\n![image](https://github.com/tensorflow/tensorflow/assets/6895480/73b7fe76-f45d-4d4b-8a7b-043583165bdc)\r\n", "Hi, \r\n\r\nBoth `os.cpu_count()` and `multiprocessing.cpu_count()` will give you the number of cores across all the CPUs in your machine.\r\n\r\n`tf.config.list_physical_devices('CPU')` will return the physical CPU devices.\r\n\r\nTensorflow uses all the cores in the available CPU. \r\n\r\n\r\n\r\n![image](https://github.com/tensorflow/tensorflow/assets/73069040/1b6418fc-369a-4c6a-884e-7cae1b4b37aa)\r\n", "Thank you!\r\nIt is recommended that tensorflow be modified to display as many cpus as there are cpus.\r\nfor example:\r\nPhysicalDevice(name='/physical_device:CPU:0', device_type='CPU') \r\nPhysicalDevice(name='/physical_device:CPU:1', device_type='CPU')\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60595\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60595\">No</a>\n" ]
2023-05-14T12:14:57
2023-06-27T01:08:56
2023-06-27T01:08:53
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version v2.12.0 ### Custom Code Yes ### OS Platform and Distribution Linux Debain 11 ### Mobile device _No response_ ### Python version 3.9.2 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? "tf.config.list_physical_devices('CPU')" only show one CPU, but my machine has multiple CPUs. ### Standalone code to reproduce the issue ```shell import tensorflow as tf physical_devices = tf.config.list_physical_devices("CPU") for device in physical_devices: print(device) ``` ### Relevant log output ```shell PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU') ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60595/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60595/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60594
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60594/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60594/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60594/events
https://github.com/tensorflow/tensorflow/issues/60594
1,708,880,115
I_kwDOArmXAs5l23Dz
60,594
Cannot install tf-nightly-gpu on ubuntu with Python 3.9.16 or 3.10
{ "login": "boxabirds", "id": 147305, "node_id": "MDQ6VXNlcjE0NzMwNQ==", "avatar_url": "https://avatars.githubusercontent.com/u/147305?v=4", "gravatar_id": "", "url": "https://api.github.com/users/boxabirds", "html_url": "https://github.com/boxabirds", "followers_url": "https://api.github.com/users/boxabirds/followers", "following_url": "https://api.github.com/users/boxabirds/following{/other_user}", "gists_url": "https://api.github.com/users/boxabirds/gists{/gist_id}", "starred_url": "https://api.github.com/users/boxabirds/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/boxabirds/subscriptions", "organizations_url": "https://api.github.com/users/boxabirds/orgs", "repos_url": "https://api.github.com/users/boxabirds/repos", "events_url": "https://api.github.com/users/boxabirds/events{/privacy}", "received_events_url": "https://api.github.com/users/boxabirds/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @boxabirds ,\r\n\r\nPlease use `pip install tf-nightly` and it will take care of GPU package also. Starting from TF2.12 GPU package made redundant and both `tensorflow-gpu` and `tf-nightly-gpu` were removed and replaced with packages that direct users to switch to `tensorflow` or `tf-nightly` respectively. Please refer to release notes [here](https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0).", "Thanks. YesI just noticed that in the tf-nightly-gpu package README. I\ntried tg-nightly and it said it didn’t detect my GPU. I have CUDA 12.1 on\nmy RTX 4090.\n\nOn Mon, 15 May 2023 at 05:04, SuryanarayanaY ***@***.***>\nwrote:\n\n> Hi @boxabirds <https://github.com/boxabirds> ,\n>\n> Please use pip install tf-nightly and it will take care of GPU package\n> also. Starting from TF2.12 GPU package made redundant and both\n> tensorflow-gpu and tf-nightly-gpu were removed and replaced with packages\n> that direct users to switch to tensorflow or tf-nightly respectively.\n> Please refer to release notes here\n> <https://github.com/tensorflow/tensorflow/releases/tag/v2.12.0>.\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/tensorflow/tensorflow/issues/60594#issuecomment-1547160580>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AABD62P2CB5BWHLERYC46F3XGGTMRANCNFSM6AAAAAAYBBQA3M>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n", "Hi @boxabirds ,\r\n\r\nFor GPU support please follow the official instructions mentioned [here](https://www.tensorflow.org/install/pip#step-by-step_instructions). Please go through the instructions and let us know if it helps and if not please let us know the commands you have used.\r\n\r\nPlease ensure GPU driver has been installed and running. It can be confirmed with `nvidia-smi` command. Please verify this first and if this command displays info about CUDA driver then we need to go for CUDA toolkit and cuDNN installations and path settings as instructed in attached documentation resource.\r\n\r\nThanks!", "Thanks so much — apologies for being thick on this: the release notes I\r\ncouldn’t find any instructions for installation, only build. I really want\r\nto avoid building TF myself. Are you saying I need to build TF to work with\r\nCUDA 12 and support the RTX 4090? Or was there another link?\r\n\r\nApologies again and thanks very much in advance— I’m asking for specifics\r\non this because I’ve spent over a day trying to get this going and my\r\ncontingency of using a docker container with older TF versions and CUDA 11 seems to\r\ncome with very significant performance impacts.\r\n\r\nOn Mon, 15 May 2023 at 08:07, SuryanarayanaY ***@***.***>\r\nwrote:\r\n\r\n> Hi @boxabirds <https://github.com/boxabirds> ,\r\n>\r\n> For GPU support please follow the official instructions mentioned here.\r\n> Please go through the instructions and let us know if it helps and if not\r\n> please let us know the commands you have used.\r\n>\r\n> Please ensure GPU driver has been installed and running. It can be\r\n> confirmed with nvidia-smi command. Please verify this first and if this\r\n> command displays info about CUDA driver then we need to go for CUDA toolkit\r\n> and cuDNN installations and path settings as instructed in attached\r\n> documentation resource.\r\n>\r\n> Thanks!\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/tensorflow/tensorflow/issues/60594#issuecomment-1547302149>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AABD62NNEZBOVUKQXC7M6ULXGHI2PANCNFSM6AAAAAAYBBQA3M>\r\n> .\r\n> You are receiving this because you were mentioned.Message ID:\r\n> ***@***.***>\r\n>\r\n", "@boxabirds ,\r\n\r\n> Thanks so much — apologies for being thick on this: the release notes I couldn’t find any instructions for installation, only build. I really want to avoid building TF myself. Are you saying I need to build TF to work with CUDA 12 and support the RTX 4090? Or was there another link?\r\n\r\nYou need to setup GPU manually by following the instructions mentioned in documentation. It's not for Building Tensorflow itself. Even with Pip wheel of Tensorflow to enable GPU support you have to do some manual setups. The same mentioned [here](https://www.tensorflow.org/install/pip#step-by-step_instructions).\r\n\r\nHowever if you are using Docker container then you need to install and run nvidia-docker image first followed by tensorflow-image. The instructions are mentioned [here](https://www.tensorflow.org/install/docker#gpu_support).\r\n\r\nPlease check and come back if still having queries. Thanks!\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60594\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60594\">No</a>\n" ]
2023-05-14T09:37:16
2023-05-31T02:05:30
2023-05-31T02:05:28
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf-nightly-gpu ### Custom Code No ### OS Platform and Distribution Linux Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.9.16 and 3.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I'm trying to run `pip install tf-nightly-gpu` with Ubuntu 22.04, CUDA 12.1 on an RTX 4090 GPU with 24GB RAM and both Python 3.9.16 and Python 3.10. Installing just `tf-nightly` installs ok but prevents my setup from using my GPU at all which is… not ideal :) My script also uses pytorch those bits are running fine so I don't think it's an issue with the CUDA setup itself. ### Standalone code to reproduce the issue ```shell pip install tf-nightly-gpu ``` ### Relevant log output **Note while the logs below show python 3.10 I have the same errors against Python 3.9.16** ```shell Collecting tf-nightly-gpu Downloading tf-nightly-gpu-2.12.0.tar.gz (2.6 kB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [41 lines of output] Traceback (most recent call last): File "/home/…/python3.10/site-packages/setuptools/_vendor/packaging/requirements.py", line 35, in __init__ parsed = parse_requirement(requirement_string) File "/home/…/python3.10/site-packages/setuptools/_vendor/packaging/_parser.py", line 64, in parse_requirement return _parse_requirement(Tokenizer(source, rules=DEFAULT_RULES)) File "/home/…/python3.10/site-packages/setuptools/_vendor/packaging/_parser.py", line 82, in _parse_requirement url, specifier, marker = _parse_requirement_details(tokenizer) File "/home/…/python3.10/site-packages/setuptools/_vendor/packaging/_parser.py", line 126, in _parse_requirement_details marker = _parse_requirement_marker( File "/home/…python3.10/site-packages/setuptools/_vendor/packaging/_parser.py", line 147, in _parse_requirement_marker tokenizer.raise_syntax_error( File "/home/…python3.10/site-packages/setuptools/_vendor/packaging/_tokenizer.py", line 163, in raise_syntax_error raise ParserSyntaxError( setuptools.extern.packaging._tokenizer.ParserSyntaxError: Expected end or semicolon (after name and no valid version specifier) python_version>"3.7" ^ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/tmp/pip-install-rweboy03/tf-nightly-gpu_e9119949fe52419d9624f697273ca4ab/setup.py", line 40, in <module> setuptools.setup() File "/home/…/python3.10/site-packages/setuptools/__init__.py", line 106, in setup _install_setup_requires(attrs) File "/home/…/python3.10/site-packages/setuptools/__init__.py", line 77, in _install_setup_requires dist.parse_config_files(ignore_option_errors=True) File "/home/…python3.10/site-packages/_virtualenv.py", line 22, in parse_config_files result = old_parse_config_files(self, *args, **kwargs) File "/home/…python3.10/site-packages/setuptools/dist.py", line 910, in parse_config_files self._finalize_requires() File "/home/…/python3.10/site-packages/setuptools/dist.py", line 607, in _finalize_requires self._move_install_requirements_markers() File "/home/…/python3.10/site-packages/setuptools/dist.py", line 647, in _move_install_requirements_markers inst_reqs = list(_reqs.parse(spec_inst_reqs)) File "/home/…/python3.10/site-packages/setuptools/_vendor/packaging/requirements.py", line 37, in __init__ raise InvalidRequirement(str(e)) from e setuptools.extern.packaging.requirements.InvalidRequirement: Expected end or semicolon (after name and no valid version specifier) python_version>"3.7" ^ [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60594/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60594/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60593
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60593/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60593/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60593/events
https://github.com/tensorflow/tensorflow/pull/60593
1,708,820,588
PR_kwDOArmXAs5QctLV
60,593
update gtest version to 1.12.1
{ "login": "dskkato", "id": 46243939, "node_id": "MDQ6VXNlcjQ2MjQzOTM5", "avatar_url": "https://avatars.githubusercontent.com/u/46243939?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dskkato", "html_url": "https://github.com/dskkato", "followers_url": "https://api.github.com/users/dskkato/followers", "following_url": "https://api.github.com/users/dskkato/following{/other_user}", "gists_url": "https://api.github.com/users/dskkato/gists{/gist_id}", "starred_url": "https://api.github.com/users/dskkato/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dskkato/subscriptions", "organizations_url": "https://api.github.com/users/dskkato/orgs", "repos_url": "https://api.github.com/users/dskkato/repos", "events_url": "https://api.github.com/users/dskkato/events{/privacy}", "received_events_url": "https://api.github.com/users/dskkato/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "FYI: Currently, following configuration files are referencing gtest `release-1.12.1`.\r\n\r\n- tensorflow/workspace2.bzl\r\n- tensorflow/tools/pip_package/xla_build/pip_test/CMakeLists.txt" ]
2023-05-14T05:14:21
2023-06-13T21:34:18
2023-06-13T20:30:41
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60593", "html_url": "https://github.com/tensorflow/tensorflow/pull/60593", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60593.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60593.patch", "merged_at": "2023-06-13T20:30:40" }
When I tried to build tf-lite with kernel test via cmake, I encounted build error. This patch fixes the gtest version to resolve this problem.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60593/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60593/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60592
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60592/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60592/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60592/events
https://github.com/tensorflow/tensorflow/issues/60592
1,708,703,619
I_kwDOArmXAs5l2L-D
60,592
Using TensorFlow on Clusters/Supercomputers.
{ "login": "abhaskumarsinha", "id": 31654395, "node_id": "MDQ6VXNlcjMxNjU0Mzk1", "avatar_url": "https://avatars.githubusercontent.com/u/31654395?v=4", "gravatar_id": "", "url": "https://api.github.com/users/abhaskumarsinha", "html_url": "https://github.com/abhaskumarsinha", "followers_url": "https://api.github.com/users/abhaskumarsinha/followers", "following_url": "https://api.github.com/users/abhaskumarsinha/following{/other_user}", "gists_url": "https://api.github.com/users/abhaskumarsinha/gists{/gist_id}", "starred_url": "https://api.github.com/users/abhaskumarsinha/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhaskumarsinha/subscriptions", "organizations_url": "https://api.github.com/users/abhaskumarsinha/orgs", "repos_url": "https://api.github.com/users/abhaskumarsinha/repos", "events_url": "https://api.github.com/users/abhaskumarsinha/events{/privacy}", "received_events_url": "https://api.github.com/users/abhaskumarsinha/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 996845227, "node_id": "MDU6TGFiZWw5OTY4NDUyMjc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:dist-strat", "name": "comp:dist-strat", "color": "0052cc", "default": false, "description": "Distribution Strategy related issues" }, { "id": 2012480497, "node_id": "MDU6TGFiZWwyMDEyNDgwNDk3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-feature", "name": "type:docs-feature", "color": "159b2e", "default": false, "description": "Doc issues for new feature, or clarifications about functionality" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "We are presently amidst an effort to refresh the documentation for distributed training. We plan to include guidance on setting up workflows on platforms like Google Cloud, along with clearer recommendations about when to use one distribution strategy vs. another.\r\n\r\nIn the meantime, the easy answer is that \"yes,\" TF support training on multiple network-linked machines with CPUs, GPUs, or TPUs. TF can also leverage the dedicated high-speed interconnects of TPUs and GPUs (e.g., NCCL). If you're planning to train on multiple machines without GPUs/TPUs, you may consider using `ParameterServerStrategy`. Here is the relevant section of the docs for setting up a cluster:\r\nhttps://www.tensorflow.org/tutorials/distribute/parameter_server_training#real_clusters\r\n\r\nPlease let me know if you have any further questions or topics you would like the docs to cover.", "Hello @jszaday \r\n\r\nSorry for the late reply, I'm currently on a holiday. Thank you so much for your response. \r\n\r\nI'm currently having trouble understanding a few more things from the docs I hope if you are able to clear me up. \r\n\r\nI'm not able to understand how different distribution strategies work. For example - if each device (GPU or a separate computer system node) creates a copy of the model and calculates a specific subset of gradient which master worker collects and forms a union gradient (or full model gradient) and applies it to the model weights, then why batches are segmented? Because few parts of the documentation say - the batches are divided for each device and then averaged. I'm not able to understand these two things going simultaneously here, because it's impossible to calculate gradient of each portion of the model with a batch of data which is different for each device. \r\n\r\n\r\nThis is because I've plans to implement a certain special optimizer which requires variable batch size, where the order of dataset is important and distribution and averaging wouldn't work - but partial gradient calculation at each worker might work. \r\n\r\n\r\nThank you so much. Hopefully you might clear my this doubt as well. \r\n", "TF's distribution strategies primarily employ data parallelism, wherein all the devices run a mirrored copy of the model and train on a local subset (or _shard_) of an unordered dataset. For example, if one distributes a dataset of 128 samples across eight devices, each device would train on 16 (random) samples. The cross-device weight update aggregation at the end of each training step ensures that all the devices have identical weights at the start of the next training step. Thus, one can imagine that each device shares any insights it learns from its samples with all the other devices during aggregation. Since all the devices' copies of the models are always kept in sync and, by aggregation, learn from all the samples in the dataset, the numerical results of this scheme are, theoretically, identical to those from training on a single device (for unordered datasets). \r\n\r\nThat's all to say that your dataset may not be eligible for data parallelism if the model/optimizer must consume its samples in a particular order. Instead of processing samples in parallel, each device would have to wait on the weight updates from the previous device, inducing serialization.\r\n\r\nData parallelism is a special kind of model parallelism. One can imagine other model-parallel schemes that preserve the ordering of a dataset. For example, one may shard the individual samples of a dataset rather than the dataset itself; then, all the devices in the system may process one sample at a time, in parallel. TensorFlow's experimental API for model parallelism is called DTensor. Here, it's worth noting that variable batch sizes and order-sensitive datasets stray from the conventional path for good distributed performance in TF.", "Hello @jszaday \r\n\r\nSorry for one more stupid question. I wish to know:\r\n\r\nSuppose a dataset of 1024 instances, I use batch size = 1024 using Keras API like this:\r\n`keras.fit(X, Y, batch_size = 1024, epochs = 1)`\r\n\r\non number of GPUs = 2.\r\n\r\nDoes that mean, each GPU would calculate the model weights of 512 instances and average them in `tf.distribute.MirroredStrategy()` in Keras to get the final model weight if trained on batch_size = 1024?\r\n\r\nSorry if I'm misunderstanding anything here...", "There are no stupid questions--I had to double-check on this myself.\r\n\r\nThe answer is that it depends on how the dataset is sharded.\r\n\r\nWhen using distributed datasets:\r\n- Each device will run a batch of `global_batch_size // strategy.num_replicas_in_sync` instances; see [this doc](https://www.tensorflow.org/api_docs/python/tf/distribute/Strategy#experimental_distribute_dataset).\r\n- You should not specify `batch_size` as an argument to `model.fit`.\r\n\r\nOtherwise, the semantics are less clear; I'd recommend building a dataset to be safe:\r\n\r\n```\r\nds = tf.data.Dataset.from_tensor_slices((X, Y)).batch(1024)\r\nds = strategy.experimental_distribute_dataset(ds)\r\nmodel.fit(ds, epochs=1, steps_per_epoch=1)\r\n```", "Hello @jszaday \r\n\r\nThank you so much for the clarity on it.\r\n\r\nSee the problem is that - the specific problem we are working on is a special case of non-convex optimization over very powerful hardware. The optimizer is specific to two things - 1. Variable batch sizes 2. Distribution over the hardware.\r\n\r\nWhile your advice of using `tf.data.Dataset` to load the dataset is helpful, it doesn't give full control over the dataset. For some reason, I'd need to stick to batch_size = 1024 parameter on Keras API. I wish to know if I'm using the same model.fit() under strategy.scope() block, with batch_size parameter to train a model, will Multi-training strategy would work? We'll use some sort of Python generators to load dataset instances in some specific order.\r\n\r\nSecond, to deal with variable batch sizes, I guess, I need to put an upper bound to the optimizer batch size and mask the non required batches of data instances with 0 and train them on GPUs distributed (is it possible, from my experience - Custom Optimizers use `update_step` function doesn't has feature to deal with batch indices of the tensor).\r\n\r\nThank you", "Apologies for the delayed response.\r\n\r\nThe snippet I provided earlier is essentially what Keras does internally when it's given (X, Y) as inputs; it creates a dataset through the strategy, and batches it using the `batch_size` argument to `model.fit`. Subsequently, the `batch_size` argument will always represents the global batch size, and each device will run a shard of `batch_size // num_replicas` instances. ([Relevant link](https://github.com/keras-team/keras/blob/master/keras/engine/data_adapter.py#L1323).)", "Thank you so much @jszaday , that clears up my confusion.\r\n\r\nMy second concern is - batch-level editing. I want to mask a certain batch number of the inputs passed to the `model.fit()` to 0 using a custom optimizer. Is there any way to edit certain batches to 0 while keeping the rest of the gradients? As far I understand now since the batches are distributed among the devices, it becomes much more difficult to control i.e. assign grads = 0 to i-th entry of batch and keep the rest.\r\n\r\nThank you.", "Rather than trying to correlate input batches with masks, there may be a way to pass the mask as an input to the model and have it \"skip\" past all the other layers to be applied immediately before the outputs. However, I would recommend routing further inquiries into masking with `model.fit` to the [keras-team/keras repo](https://github.com/keras-team/keras/issues); I am unable to offer specific advice on this matter.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-05-13T18:15:33
2023-06-16T02:01:04
2023-06-16T02:01:04
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Documentation Feature Request ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version v2.9.0-18-gd8ce9f9c301 2.9.1 ### Custom Code No ### OS Platform and Distribution Windows 11 ### Mobile device _No response_ ### Python version 3.9.5 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Hello Folks! There is a very little idea about the type of hardware/software that can be used with Distributed training on TensorFlow. I've access to some supercomputer instances (pardon me for ignorance, this isn't the field where I usually work, so bit daunting for me), the problem is to train some very large model on it. The documentation featuring distribution strategy: https://www.tensorflow.org/guide/distributed_training doesn't gives much idea about the devices that are supported on TensorFlow: CPU clusters/GPU clusters or TPU Clusters. I hope it supports multiple machines with no GPU/TPU access. Second, it doesn't give much idea about configuration of machines for the use either - I suppose if they are connected on Ethernet or Kubernetes (or something like that), they should show up in `mirrored_strategy = tf.distribute.MirroredStrategy()` as a list? Right? So, basically no third party installation is needed in the cluster nodes or anything like that, one ethernet cable should suffice? (I guess). Kindly update the docs with better clear answers to the above questions for newbies like me. Thank You. ### Standalone code to reproduce the issue ```shell `mirrored_strategy = tf.distribute.MirroredStrategy()` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60592/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60592/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60591
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60591/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60591/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60591/events
https://github.com/tensorflow/tensorflow/pull/60591
1,708,685,112
PR_kwDOArmXAs5QcT1a
60,591
Modify the data type of the operator parameter under math_ops.py from math.cumsum
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-13T17:03:04
2023-06-08T20:18:02
2023-05-14T19:24:35
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60591", "html_url": "https://github.com/tensorflow/tensorflow/pull/60591", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60591.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60591.patch", "merged_at": null }
Modify the official document information of the operator under **tf.math.cumsum**. Kindly find the [gist](https://colab.research.google.com/gist/tilakrayal/56bc95c39c5f278b7d8cc39115c8e113/untitled1142.ipynb) for the reference. Fixes #60485
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60591/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60591/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60590
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60590/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60590/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60590/events
https://github.com/tensorflow/tensorflow/issues/60590
1,708,581,424
I_kwDOArmXAs5l1uIw
60,590
Eigenvectors from `tf.linalg.eig` differ drastically compared to NumPy and other frameworks
{ "login": "hmahmood24", "id": 70361308, "node_id": "MDQ6VXNlcjcwMzYxMzA4", "avatar_url": "https://avatars.githubusercontent.com/u/70361308?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hmahmood24", "html_url": "https://github.com/hmahmood24", "followers_url": "https://api.github.com/users/hmahmood24/followers", "following_url": "https://api.github.com/users/hmahmood24/following{/other_user}", "gists_url": "https://api.github.com/users/hmahmood24/gists{/gist_id}", "starred_url": "https://api.github.com/users/hmahmood24/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hmahmood24/subscriptions", "organizations_url": "https://api.github.com/users/hmahmood24/orgs", "repos_url": "https://api.github.com/users/hmahmood24/repos", "events_url": "https://api.github.com/users/hmahmood24/events{/privacy}", "received_events_url": "https://api.github.com/users/hmahmood24/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@sachinprasadhs,\r\nI was able to reproduce the issue on tensorflow v2.12 and nightly. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/96674a9bf99783bd35591caa12500f44/untitled1143.ipynb).", "i am looking the implementation hope will be able to find about it\r\n", "**``` tf.linalg.eig ```**\r\nis implemented with the help of **``` from tensorflow.python.ops import gen_linalg_ops```** but i am unable to find the implemetation of **``` gen_linalg_ops```** so someone can help me here", "> **`tf.linalg.eig`** is implemented with the help of **` from tensorflow.python.ops import gen_linalg_ops`** but i am unable to find the implemetation of **` gen_linalg_ops`** so someone can help me here\r\n\r\nAnything with `gen_` in front is an auto-generated wrapper around C++ code. In this case, the `Eig\" op. The implementation is [here]( https://github.com/tensorflow/tensorflow/blob/efcc8ded70356d66755f1b00b7f4efc69d5db44d/tensorflow/core/kernels/linalg/eig_op_impl.h#L35), but it just uses the Eigen math library to compute eigenvectors.\r\n\r\nAs for why they are different: if they are all correct (i.e. TF's result is different but still satisfies the eigenvalue equations) it might just be because it uses a different algorithm. Other libraries might all use the same, or even the same underlying implementation. Eigenvectors are unique up to choice of sign in the case of unique eigenvalues, but if you have a repeated eigenvalue, then the corresponding vectors form subspaces, so there are infinitely many that bases that are valid.\r\n\r\n", "so, tensorflow is just providing the different basis of the eigenvectors in this case", "Verified that TF's results are equally correct. Didn't notice earlier we were talking about complex eigenvectors, in which case eigenvectors are unique up to multiplying by any complex constant - which is what we're seeing here.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60590\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60590\">No</a>\n" ]
2023-05-13T12:15:50
2023-05-18T15:55:03
2023-05-18T15:55:00
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.11.1 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 20.04.6 LTS Github Codespaces ### Mobile device _No response_ ### Python version 3.10.4 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The `tf.linalg.eig` function seems to return eigenvectors that vastly deviate from NumPy and other popular frameworks like PaddlePaddle and PyTorch, even though the eigenvalues returned are practically identical. All the rest of the frameworks also return identical eigenvectors within a tolerance of `1e-5` at the very least. What might be the reason behind this? Framework versions: `numpy==1.24.2` `paddlepaddle==2.4.2` `torch==2.0.0+cu117` ### Standalone code to reproduce the issue ```shell import torch import paddle import numpy as np import tensorflow as tf x = np.array([[1.+1.j, 1.+1.j], [1.+1.j, 1.+2.j]], dtype="complex64") eigenvalues_np, eigenvectors_np = np.linalg.eig(x) eigenvalues_tf, eigenvectors_tf = tf.linalg.eig(tf.constant(x)) eigenvalues_paddle, eigenvectors_paddle = paddle.linalg.eig(paddle.to_tensor(x)) eigenvalues_torch, eigenvectors_torch = torch.linalg.eig(torch.tensor(x)) print(eigenvectors_np) # [[0.79041606+0.j, 0.5943483-0.14829884j], [-0.5943483+0.14829884j, 0.79041606+0.j]] print(eigenvectors_tf.numpy()) # [[-0.790416 +0.j, 0.4592307 +0.40540066j], [0.59434843-0.14829884j, 0.44829237+0.65099263j]] print(eigenvectors_paddle.numpy()) # [[0.790416 +0.j, 0.5943484 -0.14829883j], [-0.5943483 +0.1482988j, 0.79041606+0.j]] print(eigenvectors_torch.numpy()) # [[0.7904161 +0.j, 0.5943483 -0.1482988j], [-0.5943483 +0.14829884j, 0.79041606+0.j]] print(np.allclose(eigenvalues_np, eigenvalues_tf.numpy(), atol=1e-5)) # True print(np.allclose(eigenvalues_np, eigenvalues_paddle.numpy(), atol=1e-5)) # True print(np.allclose(eigenvalues_np, eigenvalues_torch.numpy(), atol=1e-5)) # True print(np.allclose(eigenvectors_np, eigenvectors_tf.numpy(), atol=1e-5)) # False print(np.allclose(eigenvectors_np, eigenvectors_paddle.numpy(), atol=1e-5)) # True print(np.allclose(eigenvectors_np, eigenvectors_torch.numpy(), atol=1e-5)) # True ``` ### Relevant log output ```shell [[ 0.79041606+0.j 0.5943483 -0.14829884j] [-0.5943483 +0.14829884j 0.79041606+0.j ]] [[-0.790416 +0.j 0.4592307 +0.40540066j] [ 0.59434843-0.14829884j 0.44829237+0.65099263j]] [[ 0.790416 +0.j 0.5943484 -0.14829883j] [-0.5943483 +0.1482988j 0.79041606+0.j ]] [[ 0.7904161 +0.j 0.5943483 -0.1482988j ] [-0.5943483 +0.14829884j 0.79041606+0.j ]] True True True False True True ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60590/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60590/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60589
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60589/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60589/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60589/events
https://github.com/tensorflow/tensorflow/issues/60589
1,708,454,172
I_kwDOArmXAs5l1PEc
60,589
Shuffle flag is true in make_dataset function
{ "login": "hemantnyadav", "id": 1570289, "node_id": "MDQ6VXNlcjE1NzAyODk=", "avatar_url": "https://avatars.githubusercontent.com/u/1570289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hemantnyadav", "html_url": "https://github.com/hemantnyadav", "followers_url": "https://api.github.com/users/hemantnyadav/followers", "following_url": "https://api.github.com/users/hemantnyadav/following{/other_user}", "gists_url": "https://api.github.com/users/hemantnyadav/gists{/gist_id}", "starred_url": "https://api.github.com/users/hemantnyadav/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hemantnyadav/subscriptions", "organizations_url": "https://api.github.com/users/hemantnyadav/orgs", "repos_url": "https://api.github.com/users/hemantnyadav/repos", "events_url": "https://api.github.com/users/hemantnyadav/events{/privacy}", "received_events_url": "https://api.github.com/users/hemantnyadav/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @hemantnyadav ,\r\n\r\nthanks for reaching us. I believe shuffle=True can be used for some cases. But before that we might need to split the dataset first to train,test/validation datasets. Here `shuffle=True` means it will shuffle means only the rows will be shuffled but not the columns(Features).\r\n\r\nSuppose if we have some time series data and we want to make a dataset such that it will choose 6 data points in sequence and 5 among them are as inputs and 6th one as label. Here we are trying to predict some output based on previous 5 time stamps. Please note that here the 5 time stamps will be in order only i.e columns(Features) are not being shuffled. But we are not establishing relationship between one data point to other but rather we are trying to create relationship between the same datapoint(sequence of 5 timesteps with 6th one as output).Sometimes we may need to shuffle the data in terms of batches only. We should carefully choose `shuffle=True` based on use case.\r\n\r\nPlease refer to some more web resources for better understanding [link1](https://stackoverflow.com/questions/70326567/shuffling-a-classification-timeseries-data), [link2](https://datascience.stackexchange.com/questions/54237/is-it-valid-to-shuffle-time-series-data-for-a-prediction-task) and [link3](https://www.analyticsvidhya.com/blog/2021/06/deep-dive-into-time-series-data-with-single-neuron/).\r\n\r\nThanks!", "Thank you for your reasonable explanation.\r\nbut my question is specifically indicating the response you have given is not mentioned in the article.\r\nAs the article is for an audience who wants to get started with it or someone who wants to create a testbed for such an experiment.\r\nIn such cases, they need to verify it with original data rather than relying on API-based error rate.\r\nWhen the sequence of data points (not features but rows) changes, verification of results manually becomes very difficult. So it would be great if you incorporated these details about shuffle flag in the article itself.\r\nThank you.\r\n\r\n", "Hi @hemantnyadav,\r\n\r\nDocumentation is not exhaustive and I agree that. Because the concept is general only and not specific to Tensorflow and hence it might not be documented specifically.Sometimes adding exhaustive documentation for general concepts may gives feeling of overloaded documentation.Hence it might have ignored.If you still feel adding it might be useful then will see what can be done here.\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60589\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60589\">No</a>\n" ]
2023-05-13T06:17:23
2023-05-31T02:05:33
2023-05-31T02:05:30
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Just replicating an example of Time Series forecasting from link [TSF](https://www.tensorflow.org/tutorials/structured_data/time_series#recurrent_neural_network) There is a function make_dataset which uses timeseries_dataset_from_array. The function timeseries_dataset_from_array shuffle flag is set to true which is not allowed in time series forecasting. ### Standalone code to reproduce the issue ```shell def make_dataset(self, data): data = np.array(data, dtype=np.float32) ds = tf.keras.utils.timeseries_dataset_from_array( data=data, targets=None, sequence_length=self.total_window_size, sequence_stride=1, shuffle=True, batch_size=32,) ds = ds.map(self.split_window) return ds WindowGenerator.make_dataset = make_dataset ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60589/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60589/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60588
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60588/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60588/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60588/events
https://github.com/tensorflow/tensorflow/issues/60588
1,708,278,996
I_kwDOArmXAs5l0kTU
60,588
Error "Genrules without outputs don't make sense" when building the package builder for building TF from source
{ "login": "berrylizzard", "id": 127892894, "node_id": "U_kgDOB599ng", "avatar_url": "https://avatars.githubusercontent.com/u/127892894?v=4", "gravatar_id": "", "url": "https://api.github.com/users/berrylizzard", "html_url": "https://github.com/berrylizzard", "followers_url": "https://api.github.com/users/berrylizzard/followers", "following_url": "https://api.github.com/users/berrylizzard/following{/other_user}", "gists_url": "https://api.github.com/users/berrylizzard/gists{/gist_id}", "starred_url": "https://api.github.com/users/berrylizzard/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/berrylizzard/subscriptions", "organizations_url": "https://api.github.com/users/berrylizzard/orgs", "repos_url": "https://api.github.com/users/berrylizzard/repos", "events_url": "https://api.github.com/users/berrylizzard/events{/privacy}", "received_events_url": "https://api.github.com/users/berrylizzard/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@berrylizzard,\r\nTensorflow v2.12 is compatible with the python 3.8-3.1, GCC -9.3.1, Bazel - 5.3.0, cuDNN 8.6, CUDA 11.8 which are mentioned on the official tensorflow document. \r\nhttps://www.tensorflow.org/install/source#gpu\r\n\r\nCould you please try with the tested build configurations and let us know if the installation was completed. Thank you!\r\n\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60588\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60588\">No</a>\n" ]
2023-05-12T22:20:17
2023-06-29T02:06:35
2023-06-29T02:06:33
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version r2.12 ### Custom Code No ### OS Platform and Distribution Linux Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.9 ### Bazel version 5.3.0 ### GCC/Compiler version 11.3.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? FYI this looks similar to https://github.com/tensorflow/tensorflow/issues/12008, but that issue has been abandoned in 2018 hence I am creating a new one. When following this [guide](https://www.tensorflow.org/install/source#setup_for_linux_and_macos) on building TensorFlow from source, I first encountered error like in https://github.com/tensorflow/tensorflow/issues/57761 and the solution described there (adding the `--define=no_tensorflow_py_deps=true`) helped get past it. Now I am encountering error "Genrules without outputs don't make sense" when trying to build the package builder with bazel. Included below are commands I run (just like in the guide) and their output. What actions can I take to resolve this error? I have tried to `bazel clean --expunge`, `rm -rf tensorflow`, and start again with steps provided in the guide with no success. Any pointers are appreciated. Thanks. ### Standalone code to reproduce the issue ```shell (N/A since I'm not running any special code, just trying to build/install TF) ``` ### Relevant log output ```shell (py3.9_openvino_env) user@userPC:~/Downloads$ git clone https://github.com/tensorflow/tensorflow.git Cloning into 'tensorflow'... remote: Enumerating objects: 1575336, done. remote: Counting objects: 100% (1575336/1575336), done. remote: Compressing objects: 100% (282486/282486), done. remote: Total 1575336 (delta 1278490), reused 1575252 (delta 1278412), pack-reused 0 Receiving objects: 100% (1575336/1575336), 961.31 MiB | 13.81 MiB/s, done. Resolving deltas: 100% (1278490/1278490), done. Updating files: 100% (29704/29704), done. (py3.9_openvino_env) user@userPC:~/Downloads$ cd tensorflow/ (py3.9_openvino_env) user@userPC:~/Downloads/tensorflow$ git checkout r2.12 Updating files: 100% (6855/6855), done. Branch 'r2.12' set up to track remote branch 'r2.12' from 'origin'. Switched to a new branch 'r2.12' (py3.9_openvino_env) user@userPC:~/Downloads/tensorflow$ ./configure You have bazel 5.3.0 installed. Please specify the location of python. [Default is /home/user/py3.9_openvino_env/bin/python3]: Found possible Python library paths: /home/user/py3.9_openvino_env/lib/python3.9/site-packages Please input the desired Python library path to use. Default is [/home/user/py3.9_openvino_env/lib/python3.9/site-packages] Do you wish to build TensorFlow with ROCm support? [y/N]: n No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: n No CUDA support will be enabled for TensorFlow. Do you wish to download a fresh release of clang? (Experimental) [y/N]: n Clang will not be downloaded. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=mkl_aarch64 # Build with oneDNN and Compute Library for the Arm Architecture (ACL). --config=monolithic # Config for mostly static monolithic build. --config=numa # Build with NUMA support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. --config=v1 # Build with TensorFlow 1 API instead of TF 2 API. Preconfigured Bazel build configs to DISABLE default on features: --config=nogcp # Disable GCP support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished (py3.9_openvino_env) user@userPC:~/Downloads/tensorflow$ bazel build --define=no_tensorflow_py_deps=true //tensorflow/tools/pip_package:build_pip_package Starting local Bazel server and connecting to it... INFO: Options provided by the client: Inherited 'common' options: --isatty=1 --terminal_columns=176 INFO: Reading rc options for 'build' from /home/user/Downloads/tensorflow/.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Reading rc options for 'build' from /home/user/Downloads/tensorflow/.bazelrc: 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for 'build' from /home/user/Downloads/tensorflow/.tf_configure.bazelrc: 'build' options: --action_env PYTHON_BIN_PATH=/home/user/py3.9_openvino_env/bin/python3 --action_env PYTHON_LIB_PATH=/home/user/py3.9_openvino_env/lib/python3.9/site-packages --python_path=/home/user/py3.9_openvino_env/bin/python3 INFO: Reading rc options for 'build' from /home/user/Downloads/tensorflow/.bazelrc: 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils INFO: Found applicable config definition build:short_logs in file /home/user/Downloads/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /home/user/Downloads/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:linux in file /home/user/Downloads/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --distinct_host_configuration=false --experimental_guard_against_concurrent_changes INFO: Found applicable config definition build:dynamic_kernels in file /home/user/Downloads/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS ERROR: /home/user/.cache/bazel/_bazel_user/4f29e91194527f9a06235ff817954d09/external/local_config_python/BUILD:78:8: in outs attribute of genrule rule @local_config_python//:python_include: Genrules without outputs don't make sense ERROR: /home/user/.cache/bazel/_bazel_user/4f29e91194527f9a06235ff817954d09/external/local_config_python/BUILD:78:8: Analysis of target '@local_config_python//:python_include' failed ERROR: Analysis of target '//tensorflow/tools/pip_package:build_pip_package' failed; build aborted: INFO: Elapsed time: 52.246s INFO: 0 processes. FAILED: Build did NOT complete successfully (371 packages loaded, 5088 targets configured) (py3.9_openvino_env) user@userPC:~/Downloads/tensorflow$ ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60588/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60588/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60587
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60587/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60587/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60587/events
https://github.com/tensorflow/tensorflow/issues/60587
1,708,200,965
I_kwDOArmXAs5l0RQF
60,587
can't import tensorflow on mac
{ "login": "syfxie", "id": 116769135, "node_id": "U_kgDOBvXBbw", "avatar_url": "https://avatars.githubusercontent.com/u/116769135?v=4", "gravatar_id": "", "url": "https://api.github.com/users/syfxie", "html_url": "https://github.com/syfxie", "followers_url": "https://api.github.com/users/syfxie/followers", "following_url": "https://api.github.com/users/syfxie/following{/other_user}", "gists_url": "https://api.github.com/users/syfxie/gists{/gist_id}", "starred_url": "https://api.github.com/users/syfxie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/syfxie/subscriptions", "organizations_url": "https://api.github.com/users/syfxie/orgs", "repos_url": "https://api.github.com/users/syfxie/repos", "events_url": "https://api.github.com/users/syfxie/events{/privacy}", "received_events_url": "https://api.github.com/users/syfxie/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205765054, "node_id": "MDU6TGFiZWwxMjA1NzY1MDU0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS", "name": "subtype:macOS", "color": "b619ea", "default": false, "description": "macOS Build/Installation issues" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@syfxie,\r\nThe problem here was, with the tensorflow v2.8 you are trying to use the python v3.11 which is not compatible. For TF **v2.8**, python **v3.7-3.10** is compatible. Could you please try to check a look at the official doc link for the tested build configurations. \r\nhttps://www.tensorflow.org/install/source#cpu_2\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60587\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60587\">No</a>\n" ]
2023-05-12T20:55:48
2023-05-30T01:58:38
2023-05-30T01:58:36
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.8 ### Custom Code Yes ### OS Platform and Distribution MacOS 10.14.6 ### Mobile device _No response_ ### Python version 3.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I can import Tensorflow on VS Code (no warning shows up) but when I run my program it produces an error I've installed tensorflow again using pip, and it produces the same error ### Standalone code to reproduce the issue ```shell import tensorflow ``` ### Relevant log output ```shell Traceback (most recent call last): File "/Users/username/folderxx/xx.py", line 1, in <module> import tensorflow File "/usr/local/lib/python3.11/site-packages/tensorflow/__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/tensorflow/python/__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "/usr/local/lib/python3.11/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "/usr/local/lib/python3.11/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 114 def TFE_ContextOptionsSetAsync(arg1, async): ^^^^^ SyntaxError: invalid syntax ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60587/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60587/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60586
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60586/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60586/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60586/events
https://github.com/tensorflow/tensorflow/pull/60586
1,707,803,727
PR_kwDOArmXAs5QZbD4
60,586
Fixes to build and run TFLite evaluation ios app
{ "login": "martin-etchart", "id": 1056375, "node_id": "MDQ6VXNlcjEwNTYzNzU=", "avatar_url": "https://avatars.githubusercontent.com/u/1056375?v=4", "gravatar_id": "", "url": "https://api.github.com/users/martin-etchart", "html_url": "https://github.com/martin-etchart", "followers_url": "https://api.github.com/users/martin-etchart/followers", "following_url": "https://api.github.com/users/martin-etchart/following{/other_user}", "gists_url": "https://api.github.com/users/martin-etchart/gists{/gist_id}", "starred_url": "https://api.github.com/users/martin-etchart/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/martin-etchart/subscriptions", "organizations_url": "https://api.github.com/users/martin-etchart/orgs", "repos_url": "https://api.github.com/users/martin-etchart/repos", "events_url": "https://api.github.com/users/martin-etchart/events{/privacy}", "received_events_url": "https://api.github.com/users/martin-etchart/received_events", "type": "User", "site_admin": false }
[ { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "As discussed with @mihaimaruseac at https://github.com/tensorflow/tensorflow/pull/60019, this PR cherry-picks the single commit starting from the latest point in master branch.", "@terryheo can you review please? Or assign to someone in TFLite team that can?", "This need manual changes internally to the copybara config due to the renamed file.", "> This need manual changes internally to the copybara config due to the renamed file.\r\n\r\nIs there anything I can do to advance this?", "@terryheo can you shepherd this please? Looks like the renamed file requires copybara changes, so this needs to be manually imported" ]
2023-05-12T15:11:31
2023-05-19T17:12:21
2023-05-19T17:12:21
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60586", "html_url": "https://github.com/tensorflow/tensorflow/pull/60586", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60586.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60586.patch", "merged_at": "2023-05-19T17:12:21" }
Minimal changes to build and run the TFLite evaluation tool on iOS.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60586/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60586/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60585
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60585/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60585/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60585/events
https://github.com/tensorflow/tensorflow/pull/60585
1,707,624,934
PR_kwDOArmXAs5QY0hd
60,585
[oneDNN] Make cross_entropy calculations parallel on CPU
{ "login": "AnetaKaczynska", "id": 32893299, "node_id": "MDQ6VXNlcjMyODkzMjk5", "avatar_url": "https://avatars.githubusercontent.com/u/32893299?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AnetaKaczynska", "html_url": "https://github.com/AnetaKaczynska", "followers_url": "https://api.github.com/users/AnetaKaczynska/followers", "following_url": "https://api.github.com/users/AnetaKaczynska/following{/other_user}", "gists_url": "https://api.github.com/users/AnetaKaczynska/gists{/gist_id}", "starred_url": "https://api.github.com/users/AnetaKaczynska/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AnetaKaczynska/subscriptions", "organizations_url": "https://api.github.com/users/AnetaKaczynska/orgs", "repos_url": "https://api.github.com/users/AnetaKaczynska/repos", "events_url": "https://api.github.com/users/AnetaKaczynska/events{/privacy}", "received_events_url": "https://api.github.com/users/AnetaKaczynska/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @penpornk Can you please review this PR ? Thank you!", "Hi @AnetaKaczynska Can you please check @cantonios's comments and keep us posted? Thank you!", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @AnetaKaczynska Any update on this PR? Please. Thank you!", "Hi @cantonios, I just ran benchmarks again and it still has better performance. Can you please give me more details to reproduce the worse performance case? Was it on CPU or GPU?", "> Hi @cantonios, I just ran benchmarks again and it still has better performance. Can you please give me more details to reproduce the worse performance case? Was it on CPU or GPU?\r\n\r\nCPU. It's only the CPU kernel that's modified, and the benchmark numbers in the revert commit list the CPU benchmark numbers.", "@cantonios One more thing, can you please share system specifications that were used to run this benchmark? What CPU did you use?", "> @cantonios One more thing, can you please share system specifications that were used to run this benchmark? What CPU did you use?\r\n\r\nSimilar results on both haswell and skylake.", "> > @cantonios One more thing, can you please share system specifications that were used to run this benchmark? What CPU did you use?\r\n> \r\n> Similar results on both haswell and skylake.\r\n\r\n@cantonios I ran it on skylake machine and got better results after optimization:\r\n\r\nBenchmark | Items with optimization | Items without optimization\r\n-- | -- | --\r\nBM_Xent_16_10000_cpu_float/real_time | 182.368M/s | 103.502M/s\r\nBM_Xent_32_10000_cpu_float/real_time | 289.048M/s | 176.654M/s\r\nBM_Xent_64_10000_cpu_float/real_time | 428.617M/s | 298.246M/s\r\nBM_Xent_16_10000_cpu_bfloat16/real_time | 151.684M/s | 86.4855M/s\r\nBM_Xent_32_10000_cpu_bfloat16/real_time | 358.028M/s | 149.516M/s\r\nBM_Xent_64_10000_cpu_bfloat16/real_time | 390.276M/s | 254.699M/s\r\n\r\nI'm trying to get down to the bottom of why we're getting better performance. Can you please provide me more details about the system that was used for benchmarking and significant run options such as cores used? If possible it would be great if I could use the machine you ran it on. \r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n", "> > > @cantonios One more thing, can you please share system specifications that were used to run this benchmark? What CPU did you use?\r\n> > \r\n> > \r\n> > Similar results on both haswell and skylake.\r\n> \r\n> @cantonios I ran it on skylake machine and got better results after optimization:\r\n> \r\n> Benchmark\tItems with optimization\tItems without optimization\r\n> BM_Xent_16_10000_cpu_float/real_time\t182.368M/s\t103.502M/s\r\n> BM_Xent_32_10000_cpu_float/real_time\t289.048M/s\t176.654M/s\r\n> BM_Xent_64_10000_cpu_float/real_time\t428.617M/s\t298.246M/s\r\n> BM_Xent_16_10000_cpu_bfloat16/real_time\t151.684M/s\t86.4855M/s\r\n> BM_Xent_32_10000_cpu_bfloat16/real_time\t358.028M/s\t149.516M/s\r\n> BM_Xent_64_10000_cpu_bfloat16/real_time\t390.276M/s\t254.699M/s\r\n> I'm trying to get down to the bottom of why we're getting better performance. Can you please provide me more details about the system that was used for benchmarking and significant run options such as cores used? If possible it would be great if I could use the machine you ran it on.\r\n\r\nIt's on our Google perflab machines. You cannot access them. This is without oneDNN, using TF's defaults.\r\n\r\nPlus, this is only half the battle. We also received reports from several teams within Google that their models no longer converged after this change - so there are numerical differences as well." ]
2023-05-12T13:18:01
2024-03-25T15:54:34
2024-01-11T13:24:07
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60585", "html_url": "https://github.com/tensorflow/tensorflow/pull/60585", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60585.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60585.patch", "merged_at": "2024-01-11T13:24:07" }
This optimization maximizes performance on CPU by implementing specialized CPU [XentEigenImpl](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/xent_op.h#L52) class, which makes cross entropy parallel, while possibly using oneDNN for softmax calculations. Original implementation calculates softmax_cross_entropy for a whole batch on a single thread. After optimization, each batch item is processed separately in parallel. ### Microbenchmarks | Tensor Dims | Numeric Type | Before (ns) | After (ns) | Speed up | |:----------:|:------------:|:-----------:|:----------:|:--------:| | 1x10000 | FLOAT32 | 593,294 | 641,580 | 0.92x | | 2x10000 | FLOAT32 | 1,027,291 | 1,027,994 | 1.00x | | 4x10000 | FLOAT32 | 1,363,172 | 1,225,472 | 1.11x | | 8x10000 | FLOAT32 | 2,871,685 | 1,177,349 | 2.44x | | 16x10000 | FLOAT32 | 3,395,105 | 1,468,886 | 2.31x | | 32x10000 | FLOAT32 | 4,318,577 | 1,643,422 | 2.63x | | 64x10000 | FLOAT32 | 5,095,850 | 1,786,184 | 2.85x | | 128x10000 | FLOAT32 | 6,130,740 | 2,179,011 | 2.81x | | 256x10000 | FLOAT32 | 6,216,732 | 2,858,630 | 2.17x | | 512x10000 | FLOAT32 | 7,033,319 | 3,207,006 | 2.19x | | 1024x10000 | FLOAT32 | 25,139,020 | 3,905,827 | 6.44x | | 1x10000 | BFLOAT16 | 1,449,381 | 1,655,900 | 0.88x | | 2x10000 | BFLOAT16 | 2,225,481 | 2,906,942 | 0.77x | | 4x10000 | BFLOAT16 | 3,543,601 | 2,921,440 | 1.21x | | 8x10000 | BFLOAT16 | 4,690,691 | 2,354,173 | 1.99x | | 16x10000 | BFLOAT16 | 6,033,001 | 2,568,764 | 2.35x | | 32x10000 | BFLOAT16 | 7,195,912 | 2,782,907 | 2.59x | | 64x10000 | BFLOAT16 | 7,901,942 | 3,114,311 | 2.54x | | 128x10000 | BFLOAT16 | 8,063,111 | 3,522,027 | 2.29x | | 256x10000 | BFLOAT16 | 10,001,815 | 4,475,105 | 2.23x | | 512x10000 | BFLOAT16 | 12,569,523 | 4,468,942 | 2.81x | | 1024x10000 | BFLOAT16 | 15,845,288 | 7,066,050 | 2.24x |
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60585/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60585/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60584
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60584/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60584/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60584/events
https://github.com/tensorflow/tensorflow/pull/60584
1,707,573,738
PR_kwDOArmXAs5QYpe8
60,584
Update Args data types of tf.ones and tf.zeros
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1178505529, "node_id": "MDU6TGFiZWwxMTc4NTA1NTI5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/prtype:bugfix", "name": "prtype:bugfix", "color": "159b2e", "default": false, "description": "PR to fix a bug" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "No, not useful. Python bools are just another type of integer, so end up being converted to int32 automatically. There is no valid semantic meaning to `tf.ones(True)`, and we do _not_ accept boolean tensors in general: `tf.ones(tf.constant(True, dtype=tf.bool))` fails." ]
2023-05-12T12:45:14
2023-06-08T20:18:03
2023-06-01T15:22:04
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60584", "html_url": "https://github.com/tensorflow/tensorflow/pull/60584", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60584.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60584.patch", "merged_at": null }
At present as per documentation of `tf.zeros` and `tf.ones`, both APIs have argument `shape` which accepts "A list of integers, a tuple of integers, or a 1-D Tensor of type int32 ". But its find out that when Boolean data types `True, False` passed to the `shape` argument it also accepts it and convert them into 1, 0 respectively and outputs correct results. Hence i am proposing to add a note under the '`shape`' argument description that it also accepts boolean data types. Attaching the [gist](https://colab.research.google.com/gist/SuryanarayanaY/837bf1888c618e3585f4f7247c329885/tf-ones_tf-zeros_tf-eye.ipynb) also for referring the results. Also fixes #60457
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60584/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60584/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60583
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60583/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60583/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60583/events
https://github.com/tensorflow/tensorflow/issues/60583
1,707,360,410
I_kwDOArmXAs5lxECa
60,583
rejection_resample loses track of ragged tensors
{ "login": "chris-remedy", "id": 107429228, "node_id": "U_kgDOBmc9bA", "avatar_url": "https://avatars.githubusercontent.com/u/107429228?v=4", "gravatar_id": "", "url": "https://api.github.com/users/chris-remedy", "html_url": "https://github.com/chris-remedy", "followers_url": "https://api.github.com/users/chris-remedy/followers", "following_url": "https://api.github.com/users/chris-remedy/following{/other_user}", "gists_url": "https://api.github.com/users/chris-remedy/gists{/gist_id}", "starred_url": "https://api.github.com/users/chris-remedy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/chris-remedy/subscriptions", "organizations_url": "https://api.github.com/users/chris-remedy/orgs", "repos_url": "https://api.github.com/users/chris-remedy/repos", "events_url": "https://api.github.com/users/chris-remedy/events{/privacy}", "received_events_url": "https://api.github.com/users/chris-remedy/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1114343535, "node_id": "MDU6TGFiZWwxMTE0MzQzNTM1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data", "name": "comp:data", "color": "0052cc", "default": false, "description": "tf.data related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }, { "login": "wilsingosti", "id": 93937952, "node_id": "U_kgDOBZlhIA", "avatar_url": "https://avatars.githubusercontent.com/u/93937952?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wilsingosti", "html_url": "https://github.com/wilsingosti", "followers_url": "https://api.github.com/users/wilsingosti/followers", "following_url": "https://api.github.com/users/wilsingosti/following{/other_user}", "gists_url": "https://api.github.com/users/wilsingosti/gists{/gist_id}", "starred_url": "https://api.github.com/users/wilsingosti/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wilsingosti/subscriptions", "organizations_url": "https://api.github.com/users/wilsingosti/orgs", "repos_url": "https://api.github.com/users/wilsingosti/repos", "events_url": "https://api.github.com/users/wilsingosti/events{/privacy}", "received_events_url": "https://api.github.com/users/wilsingosti/received_events", "type": "User", "site_admin": false } ]
null
[ "It appears this can be worked around like this:\r\n```python\r\ninput = tf.ragged.constant([[1, 2, 3], [4, 5], [7, 8, 9]])\r\nds = tf.data.Dataset.from_tensor_slices(input)\r\noriginal_spec = ds.element_spec\r\ntf.random.set_seed(0)\r\nds = ds.rejection_resample(\r\n class_func=lambda t: 1,\r\n target_dist=(0.1, 0.9),\r\n).map(lambda class_func_result, data: data)\r\nds = ds.batch(1).map(lambda elem: tf.map_fn(\r\n fn=lambda e: e,\r\n elems=elem,\r\n fn_output_signature=original_spec,\r\n )).unbatch()\r\nds = ds.batch(2)\r\nds.take(1).get_single_element()\r\n```\r\n\r\nBut that's pretty annoying. IDK if there's a shorter way to express the same thing.\r\n\r\nAlso, it appears that the same problem applies generally to `Dataset.map`, i.e. this breaks in the same way:\r\n```python\r\ninput = tf.ragged.constant([[1, 2, 3], [4, 5], [7, 8, 9]])\r\nds = tf.data.Dataset.from_tensor_slices(input)\r\nds = ds.map(lambda e: e)\r\nds = ds.batch(2)\r\nds.take(1).get_single_element()\r\n```", "Hi @chris-remedy ,\r\n\r\nI have replicated the reported behaviour and attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/6e2138c261058cb31dfae033f5a7061b/60583.ipynb) for reference. This needs to dig into more to confirm the root cause. Thanks!" ]
2023-05-12T10:16:39
2023-06-06T22:26:10
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.14.0-dev20230512 ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04.6 ### Mobile device _No response_ ### Python version 3.8.14 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A `tf.data.Dataset` initialized from RaggedTensors normally will successfully batch into ragged batches. However after passing it through `rejection_resample`, it loses track of which input tensors were ragged, and so batching fails. ### Standalone code to reproduce the issue ```shell import tensorflow as tf input = tf.ragged.constant([[1,2,3], [4,5], [7,8,9]]) ds = tf.data.Dataset.from_tensor_slices(input) tf.random.set_seed(0) # Removing this line makes everything work fine ds = ds.rejection_resample( class_func=lambda t: 1, target_dist=(0.1, 0.9), ) ds = ds.batch(2) ds.take(1).get_single_element() ``` ### Relevant log output ```shell tensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__DatasetToSingleElement_output_types_2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Cannot batch tensors with different shapes in component 1. First element had shape [3] and element 1 had shape [2]. [Op:DatasetToSingleElement] name: ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60583/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60583/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60582
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60582/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60582/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60582/events
https://github.com/tensorflow/tensorflow/issues/60582
1,707,360,054
I_kwDOArmXAs5lxD82
60,582
BrokenPipeError: [Errno 32] Broken pipe
{ "login": "NoteDance", "id": 63648431, "node_id": "MDQ6VXNlcjYzNjQ4NDMx", "avatar_url": "https://avatars.githubusercontent.com/u/63648431?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NoteDance", "html_url": "https://github.com/NoteDance", "followers_url": "https://api.github.com/users/NoteDance/followers", "following_url": "https://api.github.com/users/NoteDance/following{/other_user}", "gists_url": "https://api.github.com/users/NoteDance/gists{/gist_id}", "starred_url": "https://api.github.com/users/NoteDance/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NoteDance/subscriptions", "organizations_url": "https://api.github.com/users/NoteDance/orgs", "repos_url": "https://api.github.com/users/NoteDance/repos", "events_url": "https://api.github.com/users/NoteDance/events{/privacy}", "received_events_url": "https://api.github.com/users/NoteDance/received_events", "type": "User", "site_admin": false }
[ { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" } ]
closed
false
{ "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false }
[ { "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false } ]
null
[ "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60582\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60582\">No</a>\n" ]
2023-05-12T10:16:23
2023-05-14T03:08:03
2023-05-14T03:08:01
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.11.0 ### Custom Code Yes ### OS Platform and Distribution Windows 11 ### Mobile device _No response_ ### Python version 3.7.16 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When I run the program I get BrokenPipeError: [Errno 32] Broken pipe. ### Standalone code to reproduce the issue ```shell https://colab.research.google.com/drive/1yTfJ-fcHMdwQxxoylyUFq5cFqloTKFYi?usp=sharing ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60582/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60582/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60581
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60581/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60581/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60581/events
https://github.com/tensorflow/tensorflow/issues/60581
1,707,270,100
I_kwDOArmXAs5lwt_U
60,581
TF 2.13.0-rc0 fails to compile on Ubuntu 22.04
{ "login": "feranick", "id": 35967, "node_id": "MDQ6VXNlcjM1OTY3", "avatar_url": "https://avatars.githubusercontent.com/u/35967?v=4", "gravatar_id": "", "url": "https://api.github.com/users/feranick", "html_url": "https://github.com/feranick", "followers_url": "https://api.github.com/users/feranick/followers", "following_url": "https://api.github.com/users/feranick/following{/other_user}", "gists_url": "https://api.github.com/users/feranick/gists{/gist_id}", "starred_url": "https://api.github.com/users/feranick/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/feranick/subscriptions", "organizations_url": "https://api.github.com/users/feranick/orgs", "repos_url": "https://api.github.com/users/feranick/repos", "events_url": "https://api.github.com/users/feranick/events{/privacy}", "received_events_url": "https://api.github.com/users/feranick/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 1205765054, "node_id": "MDU6TGFiZWwxMjA1NzY1MDU0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS", "name": "subtype:macOS", "color": "b619ea", "default": false, "description": "macOS Build/Installation issues" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Log when compiling using CUDA:\r\n[mochi_O3.txt](https://github.com/tensorflow/tensorflow/files/11461476/mochi_O3.txt)\r\n", "A similar issue is present for MacOS 13.3 using python 3.10. Log attached. \r\n[MacOS.txt](https://github.com/tensorflow/tensorflow/files/11461636/MacOS.txt)\r\n", "I'm trying to reproduce in Ubuntu 22.04 with all of the above conditions. I'll let you know if I'm able to.", "@SuryanarayanaY,\r\nNotes: I tried to replicate the issue using tf v2.13.0-rc0 and CUDA 12.0 and was facing the below error when trying to configure the setup using ./configure.\r\n![Screenshot 2023-05-16 2 40 47 PM](https://github.com/tensorflow/tensorflow/assets/81610181/39715001-4b2c-49e2-9127-1394e2ad0668)\r\n", "> @SuryanarayanaY, Notes: I tried to replicate the issue using tf v2.13.0-rc0 and CUDA 12.0 and was facing the below error when trying to configure the setup using ./configure. ![Screenshot 2023-05-16 2 40 47 PM](https://user-images.githubusercontent.com/81610181/238594523-39715001-4b2c-49e2-9127-1394e2ad0668.png)\r\nThis is not related to the issue and in fact it is not a bug. Make sure you have Cuda 12.0 properly installed.", "In both cases it's x86_64.\r\n\r\nThe issue here seem to point to a configuration issue (see below). Yet, I am using a stock configuration, unless there is a specific python package with a non-compatible package...\r\n\r\nERROR: \r\n/home/nicola/.cache/bazel/_bazel_nicola/c53ed0be17816f9e0970b1ba234e403c/external/local_config_python/BUILD:78:8: \r\nin outs attribute of genrule rule @local_config_python//:python_include: \r\nGenrules without outputs don't make sense\r\nERROR: \r\n/home/nicola/.cache/bazel/_bazel_nicola/c53ed0be17816f9e0970b1ba234e403c/external/local_config_python/BUILD:78:8: \r\nAnalysis of target ***@***.***_config_python//:python_include' failed\r\nINFO: Repository cython instantiated at:\r\n   /home/nicola/Software/tensorflow/gpu/tensorflow/WORKSPACE:15:14: in \r\n<toplevel>\r\n/home/nicola/Software/tensorflow/gpu/tensorflow/tensorflow/workspace2.bzl:972:21: \r\nin workspace\r\n/home/nicola/Software/tensorflow/gpu/tensorflow/tensorflow/workspace2.bzl:706:20: \r\nin _tf_repositories\r\n/home/nicola/Software/tensorflow/gpu/tensorflow/third_party/repo.bzl:136:21: \r\nin tf_http_archive\r\nRepository rule _tf_http_archive defined at:\r\n/home/nicola/Software/tensorflow/gpu/tensorflow/third_party/repo.bzl:89:35: \r\nin <toplevel>\r\nERROR: Analysis of target \r\n'//tensorflow/tools/pip_package:build_pip_package' failed; build aborted:\r\nINFO: Elapsed time: 88.076s\r\nINFO: 0 processes.\r\nFAILED: Build did NOT complete successfully (388 packages loaded, 6429 \r\ntargets configured)\r\n\r\nOn 5/16/23 9:11 AM, Yeison Rodriguez wrote:\r\n>\r\n> I was not able to reproduce the error, my build succeeded. What is \r\n> your system arch?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub \r\n> <https://github.com/tensorflow/tensorflow/issues/60581#issuecomment-1549112759>, \r\n> or unsubscribe \r\n> <https://github.com/notifications/unsubscribe-auth/AAAIY7Y24PVXJBBXVXRPIVDXGMSATANCNFSM6AAAAAAX7IC5YE>.\r\n> You are receiving this because you authored the thread.Message ID: \r\n> ***@***.***>\r\n>\r\n", "Hi, Thanks for reporting the bug, Since we are trying to figure out if this is regression issue. \r\nCould you please help us with the below analysis and let us know if you see change in behavior.\r\n\r\nPlease test against the 2.12.0 version with below configurations.\r\n\r\n<h4 id=\"gpu\" data-text=\"GPU\" role=\"presentation\" style=\"box-sizing: inherit; margin: 32px 0px 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: ; font-stretch: ; font-size: 16px; line-height: ; font-family: Roboto, &quot;Noto Sans&quot;, &quot;Noto Sans JP&quot;, &quot;Noto Sans KR&quot;, &quot;Noto Naskh Arabic&quot;, &quot;Noto Sans Thai&quot;, &quot;Noto Sans Hebrew&quot;, &quot;Noto Sans Bengali&quot;, sans-serif; font-optical-sizing: ; font-kerning: ; font-feature-settings: ; font-variation-settings: ; letter-spacing: normal; overflow: hidden; text-overflow: ellipsis; margin-inline-end: -40px; padding-inline-end: 40px; color: rgb(32, 33, 36); orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\"><span class=\"devsite-heading\" role=\"heading\" aria-level=\"4\" style=\"box-sizing: inherit;\">GPU</span><button type=\"button\" class=\"devsite-heading-link button-flat material-icons\" aria-label=\"Copy link to this section: GPU\" data-title=\"Copy link to this section: GPU\" data-id=\"gpu\" style=\"box-sizing: border-box; appearance: none; background: 0px center; border: 0px; border-radius: var(--devsite-button-border-radius,2px); box-shadow: none; color: var(--devsite-icon-color,var(--devsite-secondary-text-color)); cursor: pointer; display: inline-block; font-style: normal; font-variant-ligatures: ; font-variant-caps: ; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: normal; font-stretch: ; font-size: 24px; font-family: &quot;Material Icons&quot;; font-optical-sizing: ; font-kerning: ; font-feature-settings: &quot;liga&quot;; font-variation-settings: ; height: 24px; letter-spacing: normal; line-height: 1; margin: var(--devsite-button-margin,0); margin-inline-end: var(--devsite-button-margin-x-end); max-width: var(--devsite-button-max-width,none); min-width: 36px; outline: 0px; overflow: hidden; padding: 0px 8px; text-align: center; text-decoration: none; text-overflow: ellipsis; text-transform: none; transition: background-color 0.2s ease 0s, border 0.2s ease 0s, box-shadow 0.2s ease 0s; vertical-align: bottom; white-space: nowrap; width: var(--devsite-button-width,auto); overflow-wrap: normal; direction: ltr; -webkit-font-smoothing: antialiased; opacity: 0;\"></button></h4><div class=\"devsite-table-wrapper\" style=\"box-sizing: inherit; margin: var(--devsite-table-margin,16px 0); padding: 0px; overflow: auto; color: rgb(32, 33, 36); font-family: Roboto, &quot;Noto Sans&quot;, &quot;Noto Sans JP&quot;, &quot;Noto Sans KR&quot;, &quot;Noto Naskh Arabic&quot;, &quot;Noto Sans Thai&quot;, &quot;Noto Sans Hebrew&quot;, &quot;Noto Sans Bengali&quot;, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\">\r\n\r\nVersion | Python version | Compiler | Build tools | cuDNN | CUDA\r\n-- | -- | -- | -- | -- | --\r\ntensorflow-2.12.0 | 3.8-3.11 | GCC 9.3.1 | Bazel 5.3.0 | 8.6 | 11.8\r\n\r\n</div>", "On MacOS, the error is related but slightly different:\r\n\r\nERROR: /Users/feranick/Desktop/tensorflow/tensorflow/BUILD:1134:21: declared output 'tensorflow/libtensorflow_framework.2.dylib' was not created by genrule. This is probably because the genrule actually didn't create this output, or because the output was a directory and the genrule was run remotely (note that only the contents of declared file outputs are copied from genrules run remotely)\r\nERROR: /Users/feranick/Desktop/tensorflow/tensorflow/BUILD:1134:21: Executing genrule //tensorflow:libtensorflow_framework.2.dylib_sym failed: not all outputs were created or valid\r\nrealpath: illegal option -- -\r\nusage: realpath [-q] [path ...]\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build", "> Hi, Thanks for reporting the bug, Since we are trying to figure out if this is regression issue. Could you please help us with the below analysis and let us know if you see change in behavior.\r\n> \r\n> Please test against the 2.12.0 version with below configurations.\r\n> \r\n> #### GPU\r\n> Version\tPython version\tCompiler\tBuild tools\tcuDNN\tCUDA\r\n> tensorflow-2.12.0\t3.8-3.11\tGCC 9.3.1\tBazel 5.3.0\t8.6\t11.8\r\n\r\nOn Ubuntu 22.04. TF 2.12.0 fails just as well (using the parameters below). \r\ntensorflow-2.12.0\r\npython: 3.10.6\t\r\nGCC gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0\r\nBazel 5.3.0\r\ncuDNN: 8.6 (or nothing)\r\nCUDA: 11.8 (or nothing)\r\n(i.e. the issue is present regardless of using CUDA or not).\r\n\r\nWeirdly enough, it compiled just fine when released. I am not sure what changed, suggestions welcome.\r\n\r\nI am testing MacOS, will report shortly.", "> I'm trying to reproduce in Ubuntu 22.04 with all of the above conditions. I'll let you know if I'm able to.\r\n\r\nIf you are successful, can you please list your system configuration (including your list of python packages and version)?", "I was not able to reproduce it in a fresh docker environment.", "On MacOS 13.3.1, TF 2.12.0 compiles just fine. \r\n\r\ntensorflow-2.12.0\r\npython: 3.10.11\r\nApple clang version 14.0.3 (clang-1403.0.22.14.1)\r\nBazel 5.3.0", "[UPDATE] I finally figured out the issue with Ubuntu. Compilation fails when Cython is newer than 0.29.28 is installed (currently the latest is 0.29.32). Cython needs to be v0.29.28, which is also that provided by Ubuntu via apt. Maybe this should be listed in the recommended list of required software. \r\n\r\nI am still trying to identifying the issue with MacOS, which seems to be related (and yet compilation fails also with Cytin 0.29.28).", "[UPDATE 2 - MacOS] It turns out that for MacOS the issue is with realpath, as listed in issue #60179. While that issue is closed, the complete lack of documentation on how to fix it (which involves third-party libraries installed) in the documentation is still an issue. So for MacOS the issue is a duplicate of #60179, so I removed the MacOS from the issue title. It would be great to update the documentation to reflect the needs of realpath from Coreutils (via brew or macports) to successfully complete the build.", "For Ubuntu the issue is not a duplicate, but again, documentation needs to be updated with information on the correct version number for Cython.", "@feranick ,\r\n\r\nSorry for the late response. I have tried simple CPU build with r2.13 and its success. Is this issue is specific to any optimizations ? \r\n\r\n<img width=\"1500\" alt=\"r2 13 Ubuntu22 CPU build\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/e23a9b58-c85c-4ead-bc33-391eeef0d50e\">\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Action is on Google here. I suggested a solution above. ", "@feranick ,\r\n\r\nFrom Tf2.13 onwards TF uses Clang 16.0.0 as compiler instead of GCC as per updated [documentation](https://www.tensorflow.org/install/source#linux). I will also test the build with Clang and update you results.", "Hi @feranick , Could you please try to compile it in the 2.13.0 or 2.13.0-rc2 and let us know if that works for you. Thanks!", "Yes, it compiles fine with 2.13.0. But that is not because of this specific release (compared to earlier rcs), but because, as mentioned above the use of the correct libraries. The issue is in the lack of any documentation of what version of cython is needed for compilation. Such info should be listed in the required libraries.", "Hi, \r\n\r\nWould it be possible for you to create a PR with the specific version of cython which worked for you.Thanks!", "As described above there is no change needed in TF, just making sure that Cython is in the correct version:\r\n\r\nCompilation fails when Cython is newer than 0.29.28 is installed (currently the latest is 0.29.32). Cython needs to be v0.29.28, which is also that provided by Ubuntu via apt. \r\n\r\nI am not sure what I should push as PR. Rather, this should be listed within the set of requirements for compilation...", "I have also not been able to build on lubuntu 22.04.3 using docker.io.\r\n\r\nI follow the instructions on https://www.tensorflow.org/install/source#linux\r\n\r\nThe following appears to work OK\r\n\r\ndocker pull tensorflow/tensorflow:devel\r\ndocker run -it -w /tensorflow_src -v $PWD:/mnt -e HOST_PERMS=\"$(id -u):$(id -g)\" \\\r\n tensorflow/tensorflow:devel bash\r\n\r\ngit pull \r\n\r\nHowever, when running ./configure it fails to see the clang directories\r\n\r\nroot@54f07d1ee3ba:/tensorflow_src# ./configure \r\nYou have bazel 6.1.0 installed.\r\nPlease specify the location of python. [Default is /usr/bin/python3]: \r\n\r\nFound possible Python library paths:\r\n /usr/lib/python3/dist-packages\r\n /usr/local/lib/python3.8/dist-packages\r\nPlease input the desired Python library path to use. Default is [/usr/lib/python3/dist-packages]\r\n\r\nDo you wish to build TensorFlow with ROCm support? [y/N]: \r\nNo ROCm support will be enabled for TensorFlow.\r\n\r\nDo you wish to build TensorFlow with CUDA support? [y/N]: \r\nNo CUDA support will be enabled for TensorFlow.\r\n\r\nDo you want to use Clang to build TensorFlow? [Y/n]: Y \r\nClang will be used to compile TensorFlow.\r\n\r\nPlease specify the path to clang executable. [Default is ]: \r\n\r\n\r\nIf I try to compile not using clang it does download and start to compile but fails at many points.\r\n\r\nBazel command used is either:\r\n\r\nbazel build --config=opt --config=v2 //tensorflow/tools/pip_package:build_pip_package\r\n\r\nor \r\n\r\nbazel build --config=opt //tensorflow/tools/pip_package:build_pip_package\r\n\r\nWhen it starts is tells me python 3.9 chosen.\r\n\r\nI am compiling this on an old pre avx system.\r\n\r\n\r\n", "Don't use clang when asked. Should work.\n\nOn 9/12/23 9:43 AM, cuchio wrote:\n>\n> I have also not been able to build on lubuntu 22.04.3 using docker.io.\n>\n> I follow the instructions on \n> https://www.tensorflow.org/install/source#linux\n>\n> The following appears to work OK\n>\n> docker pull tensorflow/tensorflow:devel\n> docker run -it -w /tensorflow_src -v $PWD:/mnt -e HOST_PERMS=\"$(id \n> -u):$(id -g)\"\n> tensorflow/tensorflow:devel bash\n>\n> git pull\n>\n> However, when running ./configure it fails to see the clang directories\n>\n> ***@***.***:/tensorflow_src# ./configure\n> You have bazel 6.1.0 installed.\n> Please specify the location of python. [Default is /usr/bin/python3]:\n>\n> Found possible Python library paths:\n> /usr/lib/python3/dist-packages\n> /usr/local/lib/python3.8/dist-packages\n> Please input the desired Python library path to use. Default is \n> [/usr/lib/python3/dist-packages]\n>\n> Do you wish to build TensorFlow with ROCm support? [y/N]:\n> No ROCm support will be enabled for TensorFlow.\n>\n> Do you wish to build TensorFlow with CUDA support? [y/N]:\n> No CUDA support will be enabled for TensorFlow.\n>\n> Do you want to use Clang to build TensorFlow? [Y/n]: Y\n> Clang will be used to compile TensorFlow.\n>\n> Please specify the path to clang executable. [Default is ]:\n>\n> If I try to compile not using clang it does download and start to \n> compile but fails at many points.\n>\n> Bazel command used is either:\n>\n> bazel build --config=opt --config=v2 \n> //tensorflow/tools/pip_package:build_pip_package\n>\n> or\n>\n> bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package\n>\n> When it starts is tells me python 3.9 chosen.\n>\n> I am compiling this on an old pre avx system.\n>\n> —\n> Reply to this email directly, view it on GitHub \n> <https://github.com/tensorflow/tensorflow/issues/60581#issuecomment-1715753213>, \n> or unsubscribe \n> <https://github.com/notifications/unsubscribe-auth/AAAIY76YGMCL6OPMGTQL6HLX2BRHLANCNFSM6AAAAAAX7IC5YE>.\n> You are receiving this because you were mentioned.Message ID: \n> ***@***.***>\n>\n\n--------------uhVVUHL7PrMAlHCnksw33Bcd\nContent-Type: text/html; charset=UTF-8\nContent-Transfer-Encoding: 8bit\n\n<!DOCTYPE html><html><head>\n<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\">\n </head>\n <body>\n Don't use clang when asked. Should work.<br>\n <br>\n <div class=\"moz-cite-prefix\">On 9/12/23 9:43 AM, cuchio wrote:<br>\n </div>\n <blockquote type=\"cite\" ***@***.***\">\n \n <p dir=\"auto\">I have also not been able to build on lubuntu\n 22.04.3 using docker.io.</p>\n <p dir=\"auto\">I follow the instructions on <a href=\"https://www.tensorflow.org/install/source#linux\" rel=\"nofollow\" moz-do-not-send=\"true\" class=\"moz-txt-link-freetext\">https://www.tensorflow.org/install/source#linux</a></p>\n <p dir=\"auto\">The following appears to work OK</p>\n <p dir=\"auto\">docker pull tensorflow/tensorflow:devel<br>\n docker run -it -w /tensorflow_src -v <math-renderer class=\"js-inline-math\" style=\"display: inline\" data-static-url=\"https://github.githubassets.com/static\" data-run-id=\"b0d76be046d4ad734683225467a7b462\">$PWD:/mnt -e\n HOST_PERMS=&quot;$</math-renderer>(id -u):$(id -g)&quot; <br>\n tensorflow/tensorflow:devel bash</p>\n <p dir=\"auto\">git pull</p>\n <p dir=\"auto\">However, when running ./configure it fails to see\n the clang directories</p>\n <p ***@***.***:/tensorflow_src# ./configure<br>\n You have bazel 6.1.0 installed.<br>\n Please specify the location of python. [Default is\n /usr/bin/python3]:</p>\n <p dir=\"auto\">Found possible Python library paths:<br>\n /usr/lib/python3/dist-packages<br>\n /usr/local/lib/python3.8/dist-packages<br>\n Please input the desired Python library path to use. Default is\n [/usr/lib/python3/dist-packages]</p>\n <p dir=\"auto\">Do you wish to build TensorFlow with ROCm support?\n [y/N]:<br>\n No ROCm support will be enabled for TensorFlow.</p>\n <p dir=\"auto\">Do you wish to build TensorFlow with CUDA support?\n [y/N]:<br>\n No CUDA support will be enabled for TensorFlow.</p>\n <p dir=\"auto\">Do you want to use Clang to build TensorFlow? [Y/n]:\n Y<br>\n Clang will be used to compile TensorFlow.</p>\n <p dir=\"auto\">Please specify the path to clang executable.\n [Default is ]:</p>\n <p dir=\"auto\">If I try to compile not using clang it does download\n and start to compile but fails at many points.</p>\n <p dir=\"auto\">Bazel command used is either:</p>\n <p dir=\"auto\">bazel build --config=opt --config=v2\n //tensorflow/tools/pip_package:build_pip_package</p>\n <p dir=\"auto\">or</p>\n <p dir=\"auto\">bazel build --config=opt\n //tensorflow/tools/pip_package:build_pip_package</p>\n <p dir=\"auto\">When it starts is tells me python 3.9 chosen.</p>\n <p dir=\"auto\">I am compiling this on an old pre avx system.</p>\n <p style=\"font-size:small;-webkit-text-size-adjust:none;color:#666;\">—<br>\n Reply to this email directly, <a href=\"https://github.com/tensorflow/tensorflow/issues/60581#issuecomment-1715753213\" moz-do-not-send=\"true\">view it on GitHub</a>, or <a href=\"https://github.com/notifications/unsubscribe-auth/AAAIY76YGMCL6OPMGTQL6HLX2BRHLANCNFSM6AAAAAAX7IC5YE\" moz-do-not-send=\"true\">unsubscribe</a>.<br>\n You are receiving this because you were mentioned.<img src=\"https://github.com/notifications/beacon/AAAIY7YJCZC4WSJB5N72WK3X2BRHLA5CNFSM6AAAAAAX7IC5YGWGG33NNVSW45C7OR4XAZNMJFZXG5LFINXW23LFNZ2KUY3PNVWWK3TUL5UWJTTGIRIP2.gif\" alt=\"\" moz-do-not-send=\"true\" width=\"1\" height=\"1\"><span style=\"color: transparent; font-size: 0; display: none; visibility: hidden; overflow: hidden; opacity: 0; width: 0; height: 0; max-width: 0; max-height: 0; mso-hide: all\">Message\n ID: <span>&lt;tensorflow/tensorflow/issues/60581/1715753213</span><span>@</span><span>github</span><span>.</span><span>com&gt;</span></span></p>\n <script type=\"application/ld+json\">[\n{\n***@***.***\": \"http://schema.org\",\n***@***.***\": \"EmailMessage\",\n\"potentialAction\": {\n***@***.***\": \"ViewAction\",\n\"target\": \"https://github.com/tensorflow/tensorflow/issues/60581#issuecomment-1715753213\",\n\"url\": \"https://github.com/tensorflow/tensorflow/issues/60581#issuecomment-1715753213\",\n\"name\": \"View Issue\"\n},\n\"description\": \"View this Issue on GitHub\",\n\"publisher\": {\n***@***.***\": \"Organization\",\n\"name\": \"GitHub\",\n\"url\": \"https://github.com\"\n}\n}\n]</script>\n </blockquote>\n <br>\n </body>\n</html>\n\n--------------uhVVUHL7PrMAlHCnksw33Bcd--\n", "To be clear: You can install clang (from Ubuntu's repos via apt), it will be recognized, and compilation will start. However, it will fail later on for the lack of the atomic library (if I remember correctly). \r\n\r\nEasiest path is not to use clang for compilation.", "I have tried, but it does still have problems. Many stops in build occurs.", "> I have tried, but it does still have problems. Many stops in build occurs.\r\n\r\nFile separate and detailed issue reports.", "Will do.\r\n\r\nFYI, I do have the clang libraries on my machine.\r\n", "Have you tried TF2.14.0-rc?" ]
2023-05-12T09:18:28
2023-09-15T03:08:12
2023-09-14T14:30:17
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.13.0-rc0 ### Custom Code No ### OS Platform and Distribution Linux Ubuntu 22.04 / MacOS 13.3 ### Mobile device _No response_ ### Python version 3.10.6 ### Bazel version 5.3.0 ### GCC/Compiler version gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 ### CUDA/cuDNN version 11.8 ### GPU model and memory Quadro RTX 6000 ### Current Behaviour? When compiling TF 2.13.0-rc0 from source with default bazel parameters (see attached log) compilation fails. ### Standalone code to reproduce the issue ```shell Use version of TF 2.13.0-rc0. Follow the default bazel ./configure parameters. The issues happens regardless of compilation with or without CUDA. Please input the desired Python library path to use. Default is [/usr/lib/python3/dist-packages] Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: No CUDA support will be enabled for TensorFlow. Do you wish to download a fresh release of clang? (Experimental) [y/N]: Clang will not be downloaded. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -Wno-sign-compare]: -Wno-sign-compare Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=mkl_aarch64 # Build with oneDNN and Compute Library for the Arm Architecture (ACL). --config=monolithic # Config for mostly static monolithic build. --config=numa # Build with NUMA support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. --config=v1 # Build with TensorFlow 1 API instead of TF 2 API. Preconfigured Bazel build configs to DISABLE default on features: --config=nogcp # Disable GCP support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished ``` ### Relevant log output ```shell INFO: Options provided by the client: Inherited 'common' options: --isatty=1 --terminal_columns=100 INFO: Reading rc options for 'build' from /home/nicola/Software/tensorflow/gpu/tensorflow/.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Reading rc options for 'build' from /home/nicola/Software/tensorflow/gpu/tensorflow/.bazelrc: 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for 'build' from /home/nicola/Software/tensorflow/gpu/tensorflow/.tf_configure.bazelrc: 'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3 INFO: Reading rc options for 'build' from /home/nicola/Software/tensorflow/gpu/tensorflow/.bazelrc: 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug INFO: Found applicable config definition build:short_logs in file /home/nicola/Software/tensorflow/gpu/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /home/nicola/Software/tensorflow/gpu/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:opt in file /home/nicola/Software/tensorflow/gpu/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare INFO: Found applicable config definition build:linux in file /home/nicola/Software/tensorflow/gpu/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes INFO: Found applicable config definition build:dynamic_kernels in file /home/nicola/Software/tensorflow/gpu/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/tensorflow/runtime/archive/7d879c8b161085a4374ea481b93a52adb19c0529.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/llvm/llvm-project/archive/dc275fd03254d67d29cc70a5a0569acf24d2280d.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/benchmark/archive/f7547e29ccaed7b64ef4f7495ecfff1c9f6f3d03.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://mirror.bazel.build/github.com/bazelbuild/rules_cc/archive/081771d4a0e9d7d3aa0eed2ef389fa4700dfb23e.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/flatbuffers/archive/v23.1.21.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/abseil/abseil-cpp/archive/b971ac5250ea8de900eae9f95e06548d14cd95fe.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/glennrp/libpng/archive/v1.6.39.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/b9d4073a6913891ce9cbd8965c8d506075d2a45a.zip failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/openxla/stablehlo/archive/43d81c6883ade82052920bd367c61f9e52f09954.zip failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/boringssl/archive/c00d7ca810e93780bd0c8ee4eea28f4f2ea4bcdc.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/pybind/pybind11_abseil/archive/2c4932ed6f6204f1656e245838f4f5eae69d2e29.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found ERROR: /home/nicola/.cache/bazel/_bazel_nicola/c53ed0be17816f9e0970b1ba234e403c/external/local_config_python/BUILD:78:8: in outs attribute of genrule rule @local_config_python//:python_include: Genrules without outputs don't make sense ERROR: /home/nicola/.cache/bazel/_bazel_nicola/c53ed0be17816f9e0970b1ba234e403c/external/local_config_python/BUILD:78:8: Analysis of target '@local_config_python//:python_include' failed INFO: Repository cython instantiated at: /home/nicola/Software/tensorflow/gpu/tensorflow/WORKSPACE:15:14: in <toplevel> /home/nicola/Software/tensorflow/gpu/tensorflow/tensorflow/workspace2.bzl:972:21: in workspace /home/nicola/Software/tensorflow/gpu/tensorflow/tensorflow/workspace2.bzl:706:20: in _tf_repositories /home/nicola/Software/tensorflow/gpu/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive Repository rule _tf_http_archive defined at: /home/nicola/Software/tensorflow/gpu/tensorflow/third_party/repo.bzl:89:35: in <toplevel> ERROR: Analysis of target '//tensorflow/tools/pip_package:build_pip_package' failed; build aborted: INFO: Elapsed time: 87.858s INFO: 0 processes. FAILED: Build did NOT complete successfully (389 packages loaded, 6975 targets configured) Fetching https://storage.googleapis.com/.../github.com/cython/cython/archive/3.0.0a11.tar.gz ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60581/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60581/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60580
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60580/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60580/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60580/events
https://github.com/tensorflow/tensorflow/pull/60580
1,707,228,687
PR_kwDOArmXAs5QXecU
60,580
Update version of tb-nightly used for CI
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-12T08:53:34
2023-05-15T11:28:08
2023-05-12T21:02:12
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60580", "html_url": "https://github.com/tensorflow/tensorflow/pull/60580", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60580.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60580.patch", "merged_at": "2023-05-12T21:02:12" }
tb-nightly versions have been updated so need to update version pulled in by CI
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60580/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60580/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60579
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60579/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60579/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60579/events
https://github.com/tensorflow/tensorflow/issues/60579
1,706,832,425
I_kwDOArmXAs5lvDIp
60,579
label_image CPU inference: Up to 4 CPUs are invoked, and other CPUs are idle
{ "login": "megleo", "id": 50650564, "node_id": "MDQ6VXNlcjUwNjUwNTY0", "avatar_url": "https://avatars.githubusercontent.com/u/50650564?v=4", "gravatar_id": "", "url": "https://api.github.com/users/megleo", "html_url": "https://github.com/megleo", "followers_url": "https://api.github.com/users/megleo/followers", "following_url": "https://api.github.com/users/megleo/following{/other_user}", "gists_url": "https://api.github.com/users/megleo/gists{/gist_id}", "starred_url": "https://api.github.com/users/megleo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/megleo/subscriptions", "organizations_url": "https://api.github.com/users/megleo/orgs", "repos_url": "https://api.github.com/users/megleo/repos", "events_url": "https://api.github.com/users/megleo/events{/privacy}", "received_events_url": "https://api.github.com/users/megleo/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1097543484, "node_id": "MDU6TGFiZWwxMDk3NTQzNDg0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime", "name": "comp:runtime", "color": "0052cc", "default": false, "description": "c++ runtime, performance issues (cpu)" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Since you are using .tflite model, I assume what you used was the the [tflite label_image](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/examples/label_image) rather than the tf one. If you run `./label_image -h`, you can find\r\n```\r\n--threads, -t: number of threads\r\n```\r\n\r\nHowever, setting the number of threads to be > 4 may not be what you want. As far as I know, no 8-core Android devices have homogeneous cores, but usually multi-thread libraries do not deal with non-homogeneous cores well. ", "Hi @megleo \r\n\r\nCould you please refer the above [comment](https://github.com/tensorflow/tensorflow/issues/60579#issuecomment-1545062464) and let us know if it helps.\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60579\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60579\">No</a>\n" ]
2023-05-12T02:43:45
2023-06-01T02:15:34
2023-06-01T02:15:32
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf2.8 ### Custom Code Yes ### OS Platform and Distribution Ubuntu18.04 ### Mobile device android ### Python version 2.0 ### Bazel version 2.8 ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Hello, TF teams: When using the **label_image** tool ([path: tensorflow_src/tensorflow/tree/master/tensorflow/examples/label_image](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/label_image)) to my device CPU with command `./label_image -m mobilenet_quant_v1_224.tflite -c 1000`, fond that **Up to 4 CPUs are invoked, and other CPUs are idle**; I would like to ask, does your company have such settings _**Up to 4 CPUs can be invoked**_ in the code? --- The status of the CPUs is shown in the figure (obtained by Qualcomm Snapdragon Profiler software). ![726e6d15-884e-4e4e-a275-2c07c3f06c3b](https://github.com/tensorflow/tensorflow/assets/50650564/130d7742-32fe-44b8-a0af-b33cc03a4e47) This device has 4 CPUs, so all of them are invoked. ![2](https://github.com/tensorflow/tensorflow/assets/50650564/4cec653b-e6f3-49a9-a3a0-bedd8b0b5b70) This device has 8 CPUs, so only 4 of them are invoked. Very thanks megleo ### Standalone code to reproduce the issue ```shell adb push label_image to android device: adb wait-for-device adb root adb remount adb shell "mkdir -p /data/tf" adb push ./label_image/mobilenet_quant_v1_224.tflite /data/tf adb push ./label_image/labels.txt /data/tf adb push ./label_image/grace_hopper.bmp /data/tf adb push ./label_image/label_image /data/tf 2. adb shell && cd data/tf ./label_image -m mobilenet_quant_v1_224.tflite -c 1000 ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60579/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60579/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60578
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60578/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60578/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60578/events
https://github.com/tensorflow/tensorflow/issues/60578
1,706,753,794
I_kwDOArmXAs5luv8C
60,578
Building from source with clang and nvcc?
{ "login": "p3achyjr", "id": 8763808, "node_id": "MDQ6VXNlcjg3NjM4MDg=", "avatar_url": "https://avatars.githubusercontent.com/u/8763808?v=4", "gravatar_id": "", "url": "https://api.github.com/users/p3achyjr", "html_url": "https://github.com/p3achyjr", "followers_url": "https://api.github.com/users/p3achyjr/followers", "following_url": "https://api.github.com/users/p3achyjr/following{/other_user}", "gists_url": "https://api.github.com/users/p3achyjr/gists{/gist_id}", "starred_url": "https://api.github.com/users/p3achyjr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/p3achyjr/subscriptions", "organizations_url": "https://api.github.com/users/p3achyjr/orgs", "repos_url": "https://api.github.com/users/p3achyjr/repos", "events_url": "https://api.github.com/users/p3achyjr/events{/privacy}", "received_events_url": "https://api.github.com/users/p3achyjr/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @p3achyjr ,\r\n\r\nStarting from TF2.13v, Linux builds are being built with Clang and the instructions for same also can be found [here](https://www.tensorflow.org/install/source#install_clang_recommended_linux_only). \r\n\r\nYou may try the build for Tf21.3 and let us know the outcome. Thanks.\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60578\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60578\">No</a>\n" ]
2023-05-12T00:44:02
2023-06-23T02:08:46
2023-06-23T02:08:44
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.11 ### Custom Code Yes ### OS Platform and Distribution Debian GNU/Linux 10 ### Mobile device _No response_ ### Python version 3.9 ### Bazel version _No response_ ### GCC/Compiler version gcc9/clang12 ### CUDA/cuDNN version 11.3 ### GPU model and memory Nvidia T4 ### Current Behaviour? The docs say that TF 2.11 is supported with gcc 9, but clang/llvm builds significantly faster. How can I use bazel to at least try to build using clang and nvcc at the same time? Changing GCC_HOST_COMPILER_PATH="<clang-path>" fails. Using my own crosstool-top with clang seems to work, but I'm not sure if this ends up building the CUDA kernels with clang as well. ### Standalone code to reproduce the issue ```shell # from .bazelrc build --crosstool_top=//toolchain:clang_suite build:cuda --repo_env TF_NEED_CUDA=1 # build:cuda --crosstool_top=@local_config_cuda//crosstool:toolchain build:cuda --@local_config_cuda//:enable_cuda build:tf_gpu --action_env PYTHON_BIN_PATH="/opt/conda/bin/python3" build:tf_gpu --action_env PYTHON_LIB_PATH="/bin" build:tf_gpu --python_path="/opt/conda/bin/python3" build:tf_gpu --action_env PYTHONPATH="/home/axlui/p3achyGo/python:/usr/lib/llvm-12/bin:/home/axlui/.local/bin:/usr/local/cuda/bin:/opt/conda/bin:/opt/conda/condabin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/usr/local/go/bin" build:tf_gpu --define=with_xla_support=true build:tf_gpu --action_env TF_CUDA_VERSION="11" build:tf_gpu --action_env TF_CUDNN_VERSION="8" build:tf_gpu --action_env CUDA_TOOLKIT_PATH="/usr/local/cuda-11.3" build:tf_gpu --action_env CUDNN_INSTALL_PATH="/usr/local/cuda" build:tf_gpu --action_env TF_CUDA_COMPUTE_CAPABILITIES="7.5" build:tf_gpu --action_env LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/nccl2/lib:/usr/local/cuda/extras/CUPTI/lib64" build:tf_gpu --action_env GCC_HOST_COMPILER_PATH="/usr/bin/x86_64-linux-gnu-gcc-9" # build:tf_gpu --action_env CC="/usr/lib/llvm-12/bin/clang" # build:tf_gpu --action_env CXX="/usr/lib/llvm-12/bin/clang++" # build:tf_gpu --action_env GCC_HOST_COMPILER_PATH="/usr/lib/llvm-12/bin/clang" build:tf_gpu --config=cuda ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60578/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60578/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60577
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60577/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60577/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60577/events
https://github.com/tensorflow/tensorflow/issues/60577
1,706,745,982
I_kwDOArmXAs5luuB-
60,577
Failed to build r2.12 from sources (ShardedLRUCache)
{ "login": "aquirin", "id": 11461466, "node_id": "MDQ6VXNlcjExNDYxNDY2", "avatar_url": "https://avatars.githubusercontent.com/u/11461466?v=4", "gravatar_id": "", "url": "https://api.github.com/users/aquirin", "html_url": "https://github.com/aquirin", "followers_url": "https://api.github.com/users/aquirin/followers", "following_url": "https://api.github.com/users/aquirin/following{/other_user}", "gists_url": "https://api.github.com/users/aquirin/gists{/gist_id}", "starred_url": "https://api.github.com/users/aquirin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aquirin/subscriptions", "organizations_url": "https://api.github.com/users/aquirin/orgs", "repos_url": "https://api.github.com/users/aquirin/repos", "events_url": "https://api.github.com/users/aquirin/events{/privacy}", "received_events_url": "https://api.github.com/users/aquirin/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @aquirin ,\r\n\r\nGCC 13.1.0 not a tested configuration for TF2.12 and I am not sure of compatibility as it is not yet tested by TF team atleast for Tf2.12 version. Please find the Tested build configurations source [here](https://www.tensorflow.org/install/source#linux).\r\n\r\n\r\n\r\nVersion | Python version | Compiler | Build tools\r\n-- | -- | -- | --\r\ntensorflow-2.12.0 | 3.8-3.11 | GCC 9.3.1 | Bazel 5.3.0\r\n\r\n\r\nI request you to test with above configurations and let us know if still having problem. Thanks!\r\n", "Hi @SuryanarayanaY ,\r\n\r\nThank you for the details. Yes GCC 13.1.0 is probably too recent. I compiled successfully TF-2.11 with GCC-9.3 and it is working fine. I will close this ticket,\r\n\r\nThanks!\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60577\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60577\">No</a>\n", "simple fix by including the header\r\n\r\n```\r\ndiff --git a/tensorflow/tsl/lib/io/cache.h.orig b/tensorflow/tsl/lib/io/cache.h\r\nindex f894c59..7b1cf32 100644\r\n--- a/tensorflow/tsl/lib/io/cache.h.orig\r\n+++ b/tensorflow/tsl/lib/io/cache.h\r\n@@ -17,6 +17,7 @@ limitations under the License.\r\n #define TENSORFLOW_TSL_LIB_IO_CACHE_H_\r\n \r\n #include \"tensorflow/tsl/platform/stringpiece.h\"\r\n+#include <cstdint>\r\n \r\n // A Cache is an interface that maps keys to values. It has internal\r\n // synchronization and may be safely accessed concurrently from\r\n```", "> simple fix by including the header\r\n\r\n> +#include <cstdint>\r\n\r\nbut does this break builds on GCC 9.3.1?\r\n\r\n", "> > simple fix by including the header\r\n> \r\n> > +#include\r\n> \r\n> but does this break builds on GCC 9.3.1?\r\n\r\nno" ]
2023-05-12T00:37:18
2023-06-22T15:55:39
2023-05-15T07:49:44
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.12 ### Custom Code No ### OS Platform and Distribution Debian GNU/Linux 12 (bookworm) (docker) ### Mobile device _No response_ ### Python version 3.11.2 ### Bazel version Bazelisk version: v1.16.0 ### GCC/Compiler version c++ (GCC) 13.1.0 ### CUDA/cuDNN version CPU only ### GPU model and memory CPU only ### Current Behaviour? I got a `marked 'override', but does not override` error while compiling TF r2.12 Step I have followed: 1. Install the latest GCC docker image: https://registry.hub.docker.com/_/gcc/ 2. Install Bazelisk 3. Install a Python virtual env 4. Install the relevant libraries (pip, numpy, wheel, packaging, requests, opt_einsum, keras_preprocessing, see [1]) 5. Cloned git clone https://github.com/tensorflow/tensorflow.git 6. git checkout r2.12 7. `./configure` (with the default options) 8. `bazel build //tensorflow/tools/pip_package:build_pip_package` References: [1] https://www.tensorflow.org/install/source?hl=fr ### Standalone code to reproduce the issue ```shell bazel build //tensorflow/tools/pip_package:build_pip_package ``` ### Relevant log output ```shell INFO: Options provided by the client: Inherited 'common' options: --isatty=0 --terminal_columns=80 INFO: Reading rc options for 'build' from /root/repos/tensorflow/.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Reading rc options for 'build' from /root/repos/tensorflow/.bazelrc: 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for 'build' from /root/repos/tensorflow/.tf_configure.bazelrc: 'build' options: --action_env PYTHON_BIN_PATH=/root/python/envs/base/bin/python3 --action_env PYTHON_LIB_PATH=/root/python/envs/base/lib/python3.11/site-packages --python_path=/root/python/envs/base/bin/python3 INFO: Reading rc options for 'build' from /root/repos/tensorflow/.bazelrc: 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils INFO: Found applicable config definition build:short_logs in file /root/repos/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /root/repos/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:linux in file /root/repos/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --distinct_host_configuration=false --experimental_guard_against_concurrent_changes INFO: Found applicable config definition build:dynamic_kernels in file /root/repos/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS Loading: Loading: 0 packages loaded WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/llvm/llvm-project/archive/10939d1d580b9d3c9c2f3539c6bdb39f408179c0.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/tensorflow/runtime/archive/91d765cad5599f9710973d3e34d4dc22583e2e79.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found Analyzing: target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 0 targets configured) WARNING: Download from https://mirror.bazel.build/github.com/bazelbuild/rules_cc/archive/081771d4a0e9d7d3aa0eed2ef389fa4700dfb23e.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/659147817805d17c7be2d60bd7bbca7e780f9c82.zip failed: class java.io.FileNotFoundException GET returned 404 Not Found WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/boringssl/archive/b9232f9e27e5668bc0414879dcdedb2a59ea75f2.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 0 targets configured). INFO: Found 1 target... [0 / 389] [Prepa] BazelWorkspaceStatusAction stable-status.txt [1 / 396] Compiling tensorflow/tsl/platform/default/logging.cc; 3s local ... (4 actions running) [1 / 396] Compiling tensorflow/tsl/platform/default/logging.cc; 11s local ... (4 actions running) [4 / 418] Compiling tensorflow/core/data/dataset_utils.cc; 17s local ... (4 actions, 3 running) [5 / 418] Compiling tensorflow/core/data/dataset_utils.cc; 23s local ... (4 actions running) [7 / 418] Compiling tensorflow/core/data/dataset_utils.cc; 29s local ... (4 actions running) [13 / 418] Compiling tensorflow/core/data/dataset_utils.cc; 35s local ... (4 actions running) [22 / 418] Compiling tensorflow/core/data/dataset_utils.cc; 43s local ... (4 actions, 3 running) [26 / 418] Compiling tensorflow/core/data/dataset_utils.cc; 58s local ... (4 actions running) [27 / 418] Compiling tensorflow/core/data/dataset_utils.cc; 71s local ... (4 actions, 3 running) [31 / 418] Compiling tensorflow/core/framework/dataset.cc; 44s local ... (4 actions, 3 running) [36 / 418] Compiling tensorflow/core/lib/wav/wav_io.cc; 7s local ... (4 actions running) ERROR: /root/repos/tensorflow/tensorflow/tsl/lib/io/BUILD:202:11: Compiling tensorflow/tsl/lib/io/cache.cc failed: (Exit 1): gcc failed: error executing command /usr/local/bin/gcc -U_FORTIFY_SOURCE -fstack-protector -Wall -Wunused-but-set-parameter -Wno-free-nonheap-object -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG -ffunction-sections ... (remaining 59 arguments skipped) In file included from tensorflow/tsl/lib/io/cache.cc:16: ./tensorflow/tsl/lib/io/cache.h:99:11: error: 'uint64_t' does not name a type 99 | virtual uint64_t NewId() = 0; | ^~~~~~~~ ./tensorflow/tsl/lib/io/cache.h:20:1: note: 'uint64_t' is defined in header '<cstdint>'; did you forget to '#include <cstdint>'? 19 | #include "tensorflow/tsl/platform/stringpiece.h" +++ |+#include <cstdint> 20 | tensorflow/tsl/lib/io/cache.cc:391:12: error: 'uint64_t tsl::table::{anonymous}::ShardedLRUCache::NewId()' marked 'override', but does not override 391 | uint64_t NewId() override { | ^~~~~ Target //tensorflow/tools/pip_package:build_pip_package failed to build Use --verbose_failures to see the command lines of failed build steps. INFO: Elapsed time: 139.504s, Critical Path: 82.86s INFO: 43 processes: 5 internal, 38 local. FAILED: Build did NOT complete successfully FAILED: Build did NOT complete successfully ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60577/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60577/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60576
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60576/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60576/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60576/events
https://github.com/tensorflow/tensorflow/issues/60576
1,706,601,915
I_kwDOArmXAs5luK27
60,576
Nested namespaces in TF Lite profiler/telemetry headers require clients to support C++ 17
{ "login": "nathanmartz", "id": 14067326, "node_id": "MDQ6VXNlcjE0MDY3MzI2", "avatar_url": "https://avatars.githubusercontent.com/u/14067326?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nathanmartz", "html_url": "https://github.com/nathanmartz", "followers_url": "https://api.github.com/users/nathanmartz/followers", "following_url": "https://api.github.com/users/nathanmartz/following{/other_user}", "gists_url": "https://api.github.com/users/nathanmartz/gists{/gist_id}", "starred_url": "https://api.github.com/users/nathanmartz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nathanmartz/subscriptions", "organizations_url": "https://api.github.com/users/nathanmartz/orgs", "repos_url": "https://api.github.com/users/nathanmartz/repos", "events_url": "https://api.github.com/users/nathanmartz/events{/privacy}", "received_events_url": "https://api.github.com/users/nathanmartz/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "terryheo", "id": 2908505, "node_id": "MDQ6VXNlcjI5MDg1MDU=", "avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4", "gravatar_id": "", "url": "https://api.github.com/users/terryheo", "html_url": "https://github.com/terryheo", "followers_url": "https://api.github.com/users/terryheo/followers", "following_url": "https://api.github.com/users/terryheo/following{/other_user}", "gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}", "starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/terryheo/subscriptions", "organizations_url": "https://api.github.com/users/terryheo/orgs", "repos_url": "https://api.github.com/users/terryheo/repos", "events_url": "https://api.github.com/users/terryheo/events{/privacy}", "received_events_url": "https://api.github.com/users/terryheo/received_events", "type": "User", "site_admin": false }
[ { "login": "terryheo", "id": 2908505, "node_id": "MDQ6VXNlcjI5MDg1MDU=", "avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4", "gravatar_id": "", "url": "https://api.github.com/users/terryheo", "html_url": "https://github.com/terryheo", "followers_url": "https://api.github.com/users/terryheo/followers", "following_url": "https://api.github.com/users/terryheo/following{/other_user}", "gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}", "starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/terryheo/subscriptions", "organizations_url": "https://api.github.com/users/terryheo/orgs", "repos_url": "https://api.github.com/users/terryheo/repos", "events_url": "https://api.github.com/users/terryheo/events{/privacy}", "received_events_url": "https://api.github.com/users/terryheo/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi, Thanks for reporting the issue.\r\n\r\nTensorflow has migrated it's codebase to support C++ 17 and it is suggested for the users to follow the same.\r\n\r\nIs there any challenge to use C++ 17 in your use case?\r\n ", "In our case, building tflite itself with C++ 17 is fine, but we're not ready to move our codebase to C++17 because some of our customers are still locked to earlier versions, so the fact that these changes are in a header that we have to include is the main issue of concern.\r\n\r\nGiven that this is just syntactic sugar on namespace declaration and the majority of TF Lite headers don't use this style, it would be great to either revert these namespace changes or use the pre C++ 17 syntax.", "Hi @nathanmartz, apologies, but we don't intend to revert our support for C++17 moving forward, as such we cannot make this change. If you are able to use v2.11 or earlier, I suggest you do so. Alternatively, you are free to fork the repo and maintain your own version with your required changes. If there are no more open items for this, please feel free to close as not planned.", "Understood. thanks for the clarification.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60576\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60576\">No</a>\n" ]
2023-05-11T21:43:32
2023-09-07T21:26:38
2023-09-07T21:26:35
NONE
null
null
null
### 1. System information - OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Windows (possibly others) - TensorFlow installation (pip package or built from source): Built from source - TensorFlow library (version, if pip package or github SHA, if built from source): 2.12 ### 2. Code Compile TF Lite C++ 2.12 on Windows in a project that does not support C++ 17. ### 3. Failure after conversion Any files that directly include profiler.h and/or telemetry_status.h will fail to compile with the error: language feature 'nested-namespace-definition' requires compiler flag '/std:c++17' but compiler flag is set ### 4. (optional) RNN conversion support N/A ### 5. (optional) Any other info / logs This issue appears to have been introduced in https://github.com/tensorflow/tensorflow/commit/082c562ec7a6a33da2a6b60c191474b5ae6b73e2 and appeared starting in 2.12.0 Prior to this commit/release, these objects were in the vanilla TF Lite interface. From what I can tell, these two files are the only users of C++ 17 style nested namespaces, so seems like these could simply match the rest of the codebase and use a syntax compatible with older versions of C++
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60576/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60576/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60575
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60575/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60575/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60575/events
https://github.com/tensorflow/tensorflow/pull/60575
1,706,329,546
PR_kwDOArmXAs5QUdAv
60,575
Apple arm64 ci
{ "login": "cjflan", "id": 89868659, "node_id": "MDQ6VXNlcjg5ODY4NjU5", "avatar_url": "https://avatars.githubusercontent.com/u/89868659?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cjflan", "html_url": "https://github.com/cjflan", "followers_url": "https://api.github.com/users/cjflan/followers", "following_url": "https://api.github.com/users/cjflan/following{/other_user}", "gists_url": "https://api.github.com/users/cjflan/gists{/gist_id}", "starred_url": "https://api.github.com/users/cjflan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cjflan/subscriptions", "organizations_url": "https://api.github.com/users/cjflan/orgs", "repos_url": "https://api.github.com/users/cjflan/repos", "events_url": "https://api.github.com/users/cjflan/events{/privacy}", "received_events_url": "https://api.github.com/users/cjflan/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1173072136, "node_id": "MDU6TGFiZWwxMTczMDcyMTM2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL", "name": "size:XL", "color": "adafea", "default": false, "description": "CL Change Size:Extra Large" } ]
closed
false
{ "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }
[ { "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }, { "login": "MichaelHudgins", "id": 30155094, "node_id": "MDQ6VXNlcjMwMTU1MDk0", "avatar_url": "https://avatars.githubusercontent.com/u/30155094?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MichaelHudgins", "html_url": "https://github.com/MichaelHudgins", "followers_url": "https://api.github.com/users/MichaelHudgins/followers", "following_url": "https://api.github.com/users/MichaelHudgins/following{/other_user}", "gists_url": "https://api.github.com/users/MichaelHudgins/gists{/gist_id}", "starred_url": "https://api.github.com/users/MichaelHudgins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MichaelHudgins/subscriptions", "organizations_url": "https://api.github.com/users/MichaelHudgins/orgs", "repos_url": "https://api.github.com/users/MichaelHudgins/repos", "events_url": "https://api.github.com/users/MichaelHudgins/events{/privacy}", "received_events_url": "https://api.github.com/users/MichaelHudgins/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-11T18:28:02
2023-05-19T00:51:34
2023-05-19T00:51:34
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60575", "html_url": "https://github.com/tensorflow/tensorflow/pull/60575", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60575.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60575.patch", "merged_at": "2023-05-19T00:51:34" }
Adding files that run arm64 macOS CI
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60575/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60575/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60574
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60574/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60574/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60574/events
https://github.com/tensorflow/tensorflow/issues/60574
1,706,101,120
I_kwDOArmXAs5lsQmA
60,574
TensorFlow Lite Converter: Full Integer Quantization Failure
{ "login": "oniigiirii", "id": 133243645, "node_id": "U_kgDOB_Ei_Q", "avatar_url": "https://avatars.githubusercontent.com/u/133243645?v=4", "gravatar_id": "", "url": "https://api.github.com/users/oniigiirii", "html_url": "https://github.com/oniigiirii", "followers_url": "https://api.github.com/users/oniigiirii/followers", "following_url": "https://api.github.com/users/oniigiirii/following{/other_user}", "gists_url": "https://api.github.com/users/oniigiirii/gists{/gist_id}", "starred_url": "https://api.github.com/users/oniigiirii/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/oniigiirii/subscriptions", "organizations_url": "https://api.github.com/users/oniigiirii/orgs", "repos_url": "https://api.github.com/users/oniigiirii/repos", "events_url": "https://api.github.com/users/oniigiirii/events{/privacy}", "received_events_url": "https://api.github.com/users/oniigiirii/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @oniigiirii \r\n\r\nI have tried to reproduce the issue and observed that model has INT8 qunatization which can be analyzed with [TensorFlow Lite Model Analyzer](https://www.tensorflow.org/lite/guide/model_analyzer) and netron.\r\n```\r\nTensors of Subgraph#0\r\n T#0(serving_default_input_1:0) shape_signature:[-1, 1], type:INT8\r\n T#1(sequential/dense_2/MatMul) shape:[1, 16], type:INT8 RO 16 bytes, buffer: 2, data:[., ., ., ., r, ...]\r\n T#2(sequential/dense_1/MatMul) shape:[16, 16], type:INT8 RO 256 bytes, buffer: 3, data:[., ., 8, ., -, ...]\r\n T#3(sequential/dense/MatMul1) shape:[16, 1], type:INT8 RO 16 bytes, buffer: 4, data:[:, |, ., ., ., ...]\r\n T#4(sequential/dense/MatMul;sequential/re_lu/Relu;sequential/dense/BiasAdd) shape_signature:[-1, 16], type:INT8\r\n T#5(sequential/dense_1/MatMul;sequential/re_lu_1/Relu;sequential/dense_1/BiasAdd) shape_signature:[-1, 16], type:INT8\r\n T#6(StatefulPartitionedCall:0) shape_signature:[-1, 1], type:INT8\r\n```\r\nPlease find the [gist](https://colab.research.google.com/gist/pjpratik/fca14d42222bb05454921de63d44714a/60574.ipynb) here and let us know if it helps.\r\n\r\nThanks.\r\n ", "Oh. Thank you. The 'fully_quantize: 0' included in the warning message confused me and made me think that the converter failed at doing a full integer quantization. \r\nI tested the model with int8 inputs and it worked as expected.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60574\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60574\">No</a>\n" ]
2023-05-11T15:51:38
2023-05-12T13:46:51
2023-05-12T13:46:48
NONE
null
null
null
### 1. System information - OS Platform and Distribution: Linux Ubuntu 22.04.2 LTS - TensorFlow installation: pip package - TensorFlow library: v2.11.0 - Python Version: 3.9 ### 2. Code Provide code to help us reproduce your issues using one of the following options: #### Code Snippet Example Full Integer Quantization performed on a simple model with 1x input of shape (1,), 2x Fully Connected layers with Relu Activations. ``` import tensorflow as tf import os tf.get_logger().setLevel('ERROR') import tensorboard as tb import numpy as np import librosa import matplotlib.pyplot as plt import datetime def converter_issue(): input_shape = (1,) def representative_ds(): for _ in range(100): x = np.random.uniform(0, 2*np.pi, size=input_shape) yield [x.astype(np.float32)] model = tf.keras.Sequential([ tf.keras.layers.Input(input_shape), tf.keras.layers.Dense(16), tf.keras.layers.ReLU(), tf.keras.layers.Dense(16), tf.keras.layers.ReLU(), tf.keras.layers.Dense(1) ]) model.summary() model.compile(optimizer="adam", loss="mse", metrics=["mae"]) converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_ds converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_type = tf.int8 converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 tflite_quant_model = converter.convert() return tflite_quant_model if __name__ == "__main__": model = converter_issue() ``` ### 3. Failure after conversion The conversion is successful but the converter prints out the following message: ``` WARNING:absl:Found untraced functions such as _update_step_xla while saving (showing 1 of 1). These functions will not be directly callable after loading. /home/edge-ml/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/lite/python/convert.py:765: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway. warnings.warn("Statistics for quantized inputs were expected, but not " fully_quantize: 0, inference_type: 6, input_inference_type: INT8, output_inference_type: INT8 ``` which indicates that the converter was not able to do a full integer quantization although [https://www.tensorflow.org/lite/performance/post_training_quantization#integer_only](url) clearly states that a full integer quantization is possible as long as a representative data set is presented and the inference input type and inference output type are correctly set.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60574/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60574/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60573
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60573/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60573/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60573/events
https://github.com/tensorflow/tensorflow/pull/60573
1,706,060,857
PR_kwDOArmXAs5QTjIa
60,573
[TF-TRT] Support conversion of FakeQuantWithMinMaxVars in explicit Q/DQ mode
{ "login": "aboubezari", "id": 126983138, "node_id": "U_kgDOB5Gb4g", "avatar_url": "https://avatars.githubusercontent.com/u/126983138?v=4", "gravatar_id": "", "url": "https://api.github.com/users/aboubezari", "html_url": "https://github.com/aboubezari", "followers_url": "https://api.github.com/users/aboubezari/followers", "following_url": "https://api.github.com/users/aboubezari/following{/other_user}", "gists_url": "https://api.github.com/users/aboubezari/gists{/gist_id}", "starred_url": "https://api.github.com/users/aboubezari/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aboubezari/subscriptions", "organizations_url": "https://api.github.com/users/aboubezari/orgs", "repos_url": "https://api.github.com/users/aboubezari/repos", "events_url": "https://api.github.com/users/aboubezari/events{/privacy}", "received_events_url": "https://api.github.com/users/aboubezari/received_events", "type": "User", "site_admin": false }
[ { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" }, { "id": 1754777628, "node_id": "MDU6TGFiZWwxNzU0Nzc3NjI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu:tensorrt", "name": "comp:gpu:tensorrt", "color": "ea98ba", "default": false, "description": "Issues specific to TensorRT" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "@meena-at-work can you give it a look ?", "> @meena-at-work can you give it a look ?\r\n\r\nI'm just going to add some notes to make everything more clear, then will mark the PR as ready for review in a few minutes, thanks!", "@meena-at-work @DEKHTIARJonathan All ready now, please take a look when you can, thanks!", "Hi @meena-at-work / @DEKHTIARJonathan Can you please review this PR ? Thank you!", "Hi @meena-at-work / @DEKHTIARJonathan Can you please review this PR ? Thank you!", "Hi @aboubezari, @meena-at-work, @DEKHTIARJonathan I'm going to go ahead and close this PR, because it seems to have stalled. If you're still interested in pursing this (and responding to my comments), please feel free to reopen! Thank you!" ]
2023-05-11T15:32:58
2023-11-03T05:45:15
2023-11-03T05:45:12
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60573", "html_url": "https://github.com/tensorflow/tensorflow/pull/60573", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60573.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60573.patch", "merged_at": null }
## Overview Support the keras quantization API by adding support for the FakeQuantWithMinMaxVars in explicit Q/DQ mode in TF-TRT. This is currently unimplemented in TF-TRT converter code. ## Change summary ### Use explicit precision **use_explicit_precision** is the indicator if this specific layer is quantized or not. With the current implementation, TF-TRT converter will assume that **all** Conv2D layers are quantized in an engine. This is changed to checking if the Conv2D second input is a weight (not explicit) or tensor (explicit). This is more robust since keras training can decide to not quantize some layers. ### Transposing Conv2D input In the explicit precision mode for Conv2D, the second input (which will be a tensor) is not transposed properly as required by TRT. From my extensive testing, building the cuda engine fails unless we add the transpose **before** adding the `iConvolutionLayer` to the TensorRT network. Will add more notes to make this clear. ### Explicit precision converter for Keras-QAT API Keras-QAT will use the `FakeQuantWithMinMaxVars` layer, which is not implemented in explicit precision mode. Implemented it using the other explicit converters as an example. Note that we found that `narrow_range` **must** be set to false otherwise conversion fails. See this issue for more details: https://github.com/tensorflow/tensorflow/issues/60168 ## Tested Internally, we were unable to optimize TF-QAT keras models with TensorRT due to the unimplemented issues. With these changes, are able to now convert a fully quantization-aware trained perception model (1500+ layers) with no performance regressions. Please let me know if there are more unittests I can add on the tensorflow side.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60573/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60573/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60572
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60572/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60572/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60572/events
https://github.com/tensorflow/tensorflow/pull/60572
1,705,622,073
PR_kwDOArmXAs5QSFYU
60,572
[Linaro:ARM_CI] Run the non-pip tests for all python versions
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }, { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-11T11:22:19
2023-05-15T11:27:08
2023-05-11T16:55:33
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60572", "html_url": "https://github.com/tensorflow/tensorflow/pull/60572", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60572.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60572.patch", "merged_at": "2023-05-11T16:55:33" }
As the arm-ci-extended tests are only run once overnight then it should be run for all supported versions of Python.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60572/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60572/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60571
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60571/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60571/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60571/events
https://github.com/tensorflow/tensorflow/issues/60571
1,705,257,180
I_kwDOArmXAs5lpCjc
60,571
Cannot convert serving signature function to concrete function for Large Language Models (Protobuf error)
{ "login": "Spycsh", "id": 39623753, "node_id": "MDQ6VXNlcjM5NjIzNzUz", "avatar_url": "https://avatars.githubusercontent.com/u/39623753?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Spycsh", "html_url": "https://github.com/Spycsh", "followers_url": "https://api.github.com/users/Spycsh/followers", "following_url": "https://api.github.com/users/Spycsh/following{/other_user}", "gists_url": "https://api.github.com/users/Spycsh/gists{/gist_id}", "starred_url": "https://api.github.com/users/Spycsh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Spycsh/subscriptions", "organizations_url": "https://api.github.com/users/Spycsh/orgs", "repos_url": "https://api.github.com/users/Spycsh/repos", "events_url": "https://api.github.com/users/Spycsh/events{/privacy}", "received_events_url": "https://api.github.com/users/Spycsh/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting the issue.\r\n\r\nCould you please let us know the reason behind converting the model to Tensorflow 1.x version as you mentioned here \r\n\r\n> `convert the LLM from Huggingface to Tensorflow v1.x`", "\r\n\r\n\r\n> Thanks for reporting the issue.\r\n> \r\n> Could you please let us know the reason behind converting the model to Tensorflow 1.x version as you mentioned here\r\n> \r\n> > `convert the LLM from Huggingface to Tensorflow v1.x`\r\n\r\nYes absolutely. We want to do int8 quantization on some large language models (LLM) such as Facebook OPT and GPT, so we download the models from Huggingface, which are in Keras format. The path we use is to convert the Keras formatted LLMs to SavedModel, parse the GraphDef and insert our quantization steps.\r\n\r\nThe problem we met is that we need to freeze the concrete function of that SavedModel to do further parsing and int8 quantization. The error occurred at https://github.com/intel/neural-compressor/blob/master/neural_compressor/model/tensorflow_model.py#L277. One related question would be https://stackoverflow.com/questions/60974077/how-to-save-keras-model-as-frozen-graph. Just as what is done shown in the example, we called `func = model.get_concrete_function()` and invoke the `convert_variables_to_constants_v2(func)`, and when we do the `convert_variables_to_constants_v2`, we met this protobuf exceed max size problem. (*** RuntimeError: size too big: 18446744072513763888 details: string length exceeds max size). However for much smaller model, we verify that we did not meet that problem. (GPT2-large failed, but GPT2-medium succeeded)\r\n\r\nI have no idea on the number 18446744072513763888 and this looks super big. I do not think it is the size of a model or weights. The only hint is that this number is very close to 2^64. However the GPT2-large on Huggingface only occupies about 3GB, which is far less than 2^64 bit. Another hint is that the `convert_variables_to_constants_v2` (https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/convert_to_constants.py#L1138) expect models with no control flow or embedding related ops. However it is out of my knowledge scope.", "Thanks for the clear explanation, The above steps which you have mentioned can be achieved through latest Tensorflow version 2.12.\r\nWe don't encourage users to use Tensorflow 1.x version, since it is out of the support window. We don't have any plan to fix such old versions. \r\nFor Int8 quantization, you can refer the guide here https://www.tensorflow.org/lite/performance/post_training_quantization.\r\n\r\nFor converting your model to TFLite specific format, you can refer the guide here https://www.tensorflow.org/lite/models/convert#input_model_formats.\r\nSaving the model saves the file in .pb format also.\r\nPlease try with the latest version and let us know the outcome of it. Thanks!", "Hi Sachin, TFLite is not the same path with ours, and I wonder whether there are any examples of TFLite to quantize models that have more than 1 billion parameters. Anyway, thanks for suggestions.", "Hi @Spycsh , For `LLM` models you can refer to our new tutorial which was published in our Google I/O annual developer conference.\r\nhttps://www.tensorflow.org/lite/examples/auto_complete/overview\r\nThis tutorial walks you though Auto complete based on [PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html) model, fine tuned on 1.5 Billion parameters.\r\n\r\nThis model is based on `Keras NLP` and then converted to `TFLite` and TFLite runtime.\r\nThis shows the quantization details and can be quantized into `Dynamic`, `FP16`, `Full Integer Quantization` specific. \r\n\r\nHope this helps you. Thank you!", "Hi @sachinprasadhs , thanks for sharing! But it seems the first link needs a google SSO login and is invisible to outside. Is that tutorial opensource?", "My bad, I updated the public link, PTAL. Thanks!", "Thanks! We will check that.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60571\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60571\">No</a>\n" ]
2023-05-11T07:46:16
2023-06-03T02:03:14
2023-06-03T02:03:11
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version tf 2.12.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04.4 LTS (Focal Fossa) ### Mobile device _No response_ ### Python version 3.8 ### Bazel version None ### GCC/Compiler version None ### CUDA/cuDNN version None ### GPU model and memory None (only CPU) ### Current Behaviour? Hi! I am quantizing large language models. One step is to convert the LLM from Huggingface to Tensorflow v1.x. I found that when it comes to small models such as facebook/opt-125m, gpt2 and gpt2-medium, I succeeded to convert the model signatures serving function to a concrete function using `tensorflow.python.framework.convert_to_constants.convert_variables_to_constants_v2`. However, I failed when I applied that method to the serving function for some larger language models: such as gpt2-large, EleutherAI/gpt-j-6b and opt-1.3b. They shared the same error as follows: Starting new session [libprotobuf FATAL external/com_google_protobuf/src/google/protobuf/stubs/stringpiece.cc:50] size too big: 18446744072513763888 details: string length exceeds max size *** RuntimeError: size too big: 18446744072513763888 details: string length exceeds max size Could we fix or avoid that problem? ### Standalone code to reproduce the issue ```shell Install https://github.com/intel/neural-compressor, cd neural-compressor pip install the requirements, and checkout to branch smooth_quant_tf, cd to neural-compressor/examples/tensorflow/large_language_model, pip install tensorflow and pip install datasets and then run export PYTHONPATH=<...>/neural-compressor python main.py --model_name_or_path gpt2-large --int8 ``` ``` ### Relevant log output ```shell Gpt-large error log: 2023-05-09 23:53:43.708718: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'serving_default_input_ids' with dtype int32 and shape [?,?] [[{{node serving_default_input_ids}}]] 2023-05-09 23:54:23.234169: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0 2023-05-09 23:54:23.234360: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session [libprotobuf FATAL external/com_google_protobuf/src/google/protobuf/stubs/stringpiece.cc:50] size too big: 18446744072513763888 details: string length exceeds max size 2023-05-09 23:54:42.771457: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0 2023-05-09 23:54:42.771614: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session [libprotobuf FATAL external/com_google_protobuf/src/google/protobuf/stubs/stringpiece.cc:50] size too big: 18446744072280791549 details: string length exceeds max size ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60571/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60571/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60570
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60570/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60570/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60570/events
https://github.com/tensorflow/tensorflow/issues/60570
1,704,972,283
I_kwDOArmXAs5ln8_7
60,570
[TFLite] flatbuffer64 support for TFlite
{ "login": "huanyingjun", "id": 29744812, "node_id": "MDQ6VXNlcjI5NzQ0ODEy", "avatar_url": "https://avatars.githubusercontent.com/u/29744812?v=4", "gravatar_id": "", "url": "https://api.github.com/users/huanyingjun", "html_url": "https://github.com/huanyingjun", "followers_url": "https://api.github.com/users/huanyingjun/followers", "following_url": "https://api.github.com/users/huanyingjun/following{/other_user}", "gists_url": "https://api.github.com/users/huanyingjun/gists{/gist_id}", "starred_url": "https://api.github.com/users/huanyingjun/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/huanyingjun/subscriptions", "organizations_url": "https://api.github.com/users/huanyingjun/orgs", "repos_url": "https://api.github.com/users/huanyingjun/repos", "events_url": "https://api.github.com/users/huanyingjun/events{/privacy}", "received_events_url": "https://api.github.com/users/huanyingjun/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "miaout17", "id": 22063, "node_id": "MDQ6VXNlcjIyMDYz", "avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4", "gravatar_id": "", "url": "https://api.github.com/users/miaout17", "html_url": "https://github.com/miaout17", "followers_url": "https://api.github.com/users/miaout17/followers", "following_url": "https://api.github.com/users/miaout17/following{/other_user}", "gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}", "starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/miaout17/subscriptions", "organizations_url": "https://api.github.com/users/miaout17/orgs", "repos_url": "https://api.github.com/users/miaout17/repos", "events_url": "https://api.github.com/users/miaout17/events{/privacy}", "received_events_url": "https://api.github.com/users/miaout17/received_events", "type": "User", "site_admin": false }
[ { "login": "miaout17", "id": 22063, "node_id": "MDQ6VXNlcjIyMDYz", "avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4", "gravatar_id": "", "url": "https://api.github.com/users/miaout17", "html_url": "https://github.com/miaout17", "followers_url": "https://api.github.com/users/miaout17/followers", "following_url": "https://api.github.com/users/miaout17/following{/other_user}", "gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}", "starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/miaout17/subscriptions", "organizations_url": "https://api.github.com/users/miaout17/orgs", "repos_url": "https://api.github.com/users/miaout17/repos", "events_url": "https://api.github.com/users/miaout17/events{/privacy}", "received_events_url": "https://api.github.com/users/miaout17/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-11T03:02:39
2023-05-11T20:54:02
null
NONE
null
null
null
Dear, flatbuffer has limit of 2G size. but for now, many models like stable-diffusion, llama has the size larger than 2G, can not be convertted to tflite. Is there any plan TFlite update to flatbuffer64 ? Thanks
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60570/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60570/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60569
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60569/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60569/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60569/events
https://github.com/tensorflow/tensorflow/issues/60569
1,704,843,321
I_kwDOArmXAs5lndg5
60,569
zsh: illegal hardware instruction python on python 3.10 Mac M1
{ "login": "Spartanzhao", "id": 15102146, "node_id": "MDQ6VXNlcjE1MTAyMTQ2", "avatar_url": "https://avatars.githubusercontent.com/u/15102146?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Spartanzhao", "html_url": "https://github.com/Spartanzhao", "followers_url": "https://api.github.com/users/Spartanzhao/followers", "following_url": "https://api.github.com/users/Spartanzhao/following{/other_user}", "gists_url": "https://api.github.com/users/Spartanzhao/gists{/gist_id}", "starred_url": "https://api.github.com/users/Spartanzhao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Spartanzhao/subscriptions", "organizations_url": "https://api.github.com/users/Spartanzhao/orgs", "repos_url": "https://api.github.com/users/Spartanzhao/repos", "events_url": "https://api.github.com/users/Spartanzhao/events{/privacy}", "received_events_url": "https://api.github.com/users/Spartanzhao/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205765054, "node_id": "MDU6TGFiZWwxMjA1NzY1MDU0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS", "name": "subtype:macOS", "color": "b619ea", "default": false, "description": "macOS Build/Installation issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "I trying to install tensorflow by anaconda but only has 2.10 version, miniconda only as 2.11 version, pip install has bugs when import tensorflow: zsh: illegal hardware instruction python\r\n", "I'd recommend installing tensorflow-deps using conda first and then installing other stuff using pip.\r\n1. `conda install -c apple tensorflow-deps`\r\n2. `pip install -r requirements.txt`\r\n\r\nrequirements.txt containing: \r\n```\r\ntensorflow-macos\r\ntensorflow-metal\r\njupyter\r\n# other packages\r\n...\r\n```", "> I'd recommend installing tensorflow-deps using conda first and then installing other stuff using pip.\r\n> \r\n> 1. `conda install -c apple tensorflow-deps`\r\n> 2. `pip install -r requirements.txt`\r\n> \r\n> requirements.txt containing:\r\n> \r\n> ```\r\n> tensorflow-macos\r\n> tensorflow-metal\r\n> jupyter\r\n> # other packages\r\n> ...\r\n> ```\r\n\r\nThanks a lot, but where can I get requirements.txt? are there any official one?", "@Spartanzhao,\r\nI tried to install Tensorflow on Apple M1 oand it is working, so you can install Tensorlflow by using one of the Conda, Miniconda or Miniforge approach. I tried to follow [Get started with tensorflow-metal](https://developer.apple.com/metal/tensorflow-plugin/) with Miniconda3 instructions. \r\nCould you please try with `arm64:Apple silicon`\r\n\r\nDuring the instructions [Download Conda environment ](https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh) Miniconda3-latest-MacOSX-arm64.sh file will be downloaded and replace **.sh file** with miniconda.sh in command bash **~/miniconda.sh -b -p $HOME/miniconda** as mentioned in first step \r\n1. Set up and please follow all steps from\r\n 2. Install base TensorFlow as below:\r\n\r\n\r\n```\r\nbash ~/Miniconda3-latest-MacOSX-arm64.sh -b -p $HOME/miniconda\r\nsource ~/miniconda/bin/activate\r\nconda install -c apple tensorflow-deps\r\n```\r\nPlease use the command source **~/miniconda/bin/activate** if you want to use/activate Miniconda environment\r\n\r\nIf you are specifically looking to go with Miniforge approach then please have a look at this [link](https://caffeinedev.medium.com/how-to-install-tensorflow-on-m1-mac-8e9b91d93706) and for [Miniconda-Article](https://medium.com/mlearning-ai/install-tensorflow-on-mac-m1-m2-with-gpu-support-c404c6cfb580) and also please refer [Releases-Table](https://developer.apple.com/metal/tensorflow-plugin/#:~:text=Releases-,tensorflow%2Dmacos,Distributed%20training,-Troubleshooting)\r\n\r\nhttps://developer.apple.com/metal/tensorflow-plugin/ -- reference. Thank you!", "Thank you, I think I had solved the issue!", "@Spartanzhao,\r\nGlad the issue got resolved. Could you please feel free to move this issue to closed status. Thank you!", "Okay!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60569\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60569\">No</a>\n", "> Thank you, I think I had solved the issue!\r\n\r\n@Spartanzhao How did you solve it?\r\n\r\nI have a conda environment with tensorflow installed; but still getting `zsh: illegal hardware instruction python desc_classifier.py` when I import tensorflow" ]
2023-05-11T01:19:34
2024-01-08T09:12:07
2023-06-02T02:05:55
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12 ### Custom Code Yes ### OS Platform and Distribution Mac M1 ### Mobile device Mac M1 ### Python version 3.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? zsh: illegal hardware instruction python on python 3.10 Mac M1 ### Standalone code to reproduce the issue ```shell It shows zsh: illegal hardware instruction python on python 3.10 Mac M1 ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60569/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60569/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60568
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60568/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60568/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60568/events
https://github.com/tensorflow/tensorflow/pull/60568
1,704,723,084
PR_kwDOArmXAs5QPC4f
60,568
[INTEL oneDNN][Bug Fix] Fix incorrect use of int for dim size related to oneDNN gemm and matmul op
{ "login": "gzmkl", "id": 29215195, "node_id": "MDQ6VXNlcjI5MjE1MTk1", "avatar_url": "https://avatars.githubusercontent.com/u/29215195?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gzmkl", "html_url": "https://github.com/gzmkl", "followers_url": "https://api.github.com/users/gzmkl/followers", "following_url": "https://api.github.com/users/gzmkl/following{/other_user}", "gists_url": "https://api.github.com/users/gzmkl/gists{/gist_id}", "starred_url": "https://api.github.com/users/gzmkl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gzmkl/subscriptions", "organizations_url": "https://api.github.com/users/gzmkl/orgs", "repos_url": "https://api.github.com/users/gzmkl/repos", "events_url": "https://api.github.com/users/gzmkl/events{/privacy}", "received_events_url": "https://api.github.com/users/gzmkl/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1104829434, "node_id": "MDU6TGFiZWwxMTA0ODI5NDM0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl", "name": "comp:mkl", "color": "0052cc", "default": false, "description": "MKL related issues" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }
[ { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-10T22:51:54
2023-05-16T17:53:17
2023-05-16T17:53:17
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60568", "html_url": "https://github.com/tensorflow/tensorflow/pull/60568", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60568.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60568.patch", "merged_at": "2023-05-16T17:53:16" }
This fixes incorrect use of int for dim size when invoking oneDNN gemm and matmul primitive. This causes overflow here: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/mkl/mkl_matmul_ops_common.h#L52 and thus results in some large matmuls running single thread.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60568/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60568/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60567
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60567/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60567/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60567/events
https://github.com/tensorflow/tensorflow/pull/60567
1,704,710,588
PR_kwDOArmXAs5QPASS
60,567
Preserve Operands in Bias Fusion into FP8 GEMMs in XLA
{ "login": "philipphack", "id": 80296164, "node_id": "MDQ6VXNlcjgwMjk2MTY0", "avatar_url": "https://avatars.githubusercontent.com/u/80296164?v=4", "gravatar_id": "", "url": "https://api.github.com/users/philipphack", "html_url": "https://github.com/philipphack", "followers_url": "https://api.github.com/users/philipphack/followers", "following_url": "https://api.github.com/users/philipphack/following{/other_user}", "gists_url": "https://api.github.com/users/philipphack/gists{/gist_id}", "starred_url": "https://api.github.com/users/philipphack/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/philipphack/subscriptions", "organizations_url": "https://api.github.com/users/philipphack/orgs", "repos_url": "https://api.github.com/users/philipphack/repos", "events_url": "https://api.github.com/users/philipphack/events{/privacy}", "received_events_url": "https://api.github.com/users/philipphack/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1133285679, "node_id": "MDU6TGFiZWwxMTMzMjg1Njc5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla", "name": "comp:xla", "color": "0052cc", "default": false, "description": "XLA" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "CC @reedwm." ]
2023-05-10T22:32:47
2023-05-11T11:03:11
2023-05-11T11:03:11
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60567", "html_url": "https://github.com/tensorflow/tensorflow/pull/60567", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60567.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60567.patch", "merged_at": "2023-05-11T11:03:11" }
Fixes an issue which can cause the erroneous deletion of operands when fusing a matrix bias into an FP8 GEMM.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60567/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60567/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60566
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60566/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60566/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60566/events
https://github.com/tensorflow/tensorflow/issues/60566
1,704,420,766
I_kwDOArmXAs5ll2We
60,566
Could not find a version that satisfies the requirement tensorflow==2.11.1 (from versions: 2.13.0rc0)
{ "login": "rgaufman", "id": 33842342, "node_id": "MDQ6VXNlcjMzODQyMzQy", "avatar_url": "https://avatars.githubusercontent.com/u/33842342?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rgaufman", "html_url": "https://github.com/rgaufman", "followers_url": "https://api.github.com/users/rgaufman/followers", "following_url": "https://api.github.com/users/rgaufman/following{/other_user}", "gists_url": "https://api.github.com/users/rgaufman/gists{/gist_id}", "starred_url": "https://api.github.com/users/rgaufman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rgaufman/subscriptions", "organizations_url": "https://api.github.com/users/rgaufman/orgs", "repos_url": "https://api.github.com/users/rgaufman/repos", "events_url": "https://api.github.com/users/rgaufman/events{/privacy}", "received_events_url": "https://api.github.com/users/rgaufman/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205765054, "node_id": "MDU6TGFiZWwxMjA1NzY1MDU0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS", "name": "subtype:macOS", "color": "b619ea", "default": false, "description": "macOS Build/Installation issues" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "That is correct. Compare [platforms supported in 2.11.1](https://pypi.org/project/tensorflow/2.11.1/#files) and [those supported in 2.13.0-rc0](https://pypi.org/project/tensorflow/2.13.0rc0/#files)", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60566\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60566\">No</a>\n" ]
2023-05-10T18:16:04
2023-05-27T01:54:12
2023-05-27T01:54:09
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version v2.13.0-rc0-0-g525da8a93ec 2.13.0-rc0 ### Custom Code Yes ### OS Platform and Distribution MacOS 13.3.1 ### Mobile device _No response_ ### Python version Python 3.11.3 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I need to install an older version of tensorflow to use with other libraries, but it appears none are available except for " 2.13.0rc0" - is this because I am on Apple Silicon? ``` $ pip3 install tensorflow==2.11.1 ERROR: Could not find a version that satisfies the requirement tensorflow==2.11.1 (from versions: 2.13.0rc0) ERROR: No matching distribution found for tensorflow==2.11.1 ``` From the output, the only versions I can choose from is just "2.13.0rc0" ### Standalone code to reproduce the issue ```shell $ pip3 install tensorflow==2.11.1 ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60566/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60566/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60565
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60565/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60565/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60565/events
https://github.com/tensorflow/tensorflow/pull/60565
1,704,289,251
PR_kwDOArmXAs5QNnh-
60,565
Fix badge style on README
{ "login": "angerson", "id": 32465472, "node_id": "MDQ6VXNlcjMyNDY1NDcy", "avatar_url": "https://avatars.githubusercontent.com/u/32465472?v=4", "gravatar_id": "", "url": "https://api.github.com/users/angerson", "html_url": "https://github.com/angerson", "followers_url": "https://api.github.com/users/angerson/followers", "following_url": "https://api.github.com/users/angerson/following{/other_user}", "gists_url": "https://api.github.com/users/angerson/gists{/gist_id}", "starred_url": "https://api.github.com/users/angerson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/angerson/subscriptions", "organizations_url": "https://api.github.com/users/angerson/orgs", "repos_url": "https://api.github.com/users/angerson/repos", "events_url": "https://api.github.com/users/angerson/events{/privacy}", "received_events_url": "https://api.github.com/users/angerson/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 703812914, "node_id": "MDU6TGFiZWw3MDM4MTI5MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/kokoro:force-run", "name": "kokoro:force-run", "color": "1d76db", "default": false, "description": "Tests on submitted change" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-10T16:38:33
2023-06-08T20:18:04
2023-05-10T18:45:58
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60565", "html_url": "https://github.com/tensorflow/tensorflow/pull/60565", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60565.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60565.patch", "merged_at": "2023-05-10T18:45:57" }
This is a minor adjustment to one of the badges on the README, so that it looks similar to the other badges.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60565/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60565/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60564
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60564/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60564/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60564/events
https://github.com/tensorflow/tensorflow/pull/60564
1,704,208,616
PR_kwDOArmXAs5QNWmJ
60,564
Update refcount.h
{ "login": "junaidmirani", "id": 93932162, "node_id": "U_kgDOBZlKgg", "avatar_url": "https://avatars.githubusercontent.com/u/93932162?v=4", "gravatar_id": "", "url": "https://api.github.com/users/junaidmirani", "html_url": "https://github.com/junaidmirani", "followers_url": "https://api.github.com/users/junaidmirani/followers", "following_url": "https://api.github.com/users/junaidmirani/following{/other_user}", "gists_url": "https://api.github.com/users/junaidmirani/gists{/gist_id}", "starred_url": "https://api.github.com/users/junaidmirani/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/junaidmirani/subscriptions", "organizations_url": "https://api.github.com/users/junaidmirani/orgs", "repos_url": "https://api.github.com/users/junaidmirani/repos", "events_url": "https://api.github.com/users/junaidmirani/events{/privacy}", "received_events_url": "https://api.github.com/users/junaidmirani/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1593512946, "node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid", "name": "invalid", "color": "db6f57", "default": true, "description": "Hacktoberfest spam PR" } ]
closed
true
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60564/checks?check_run_id=13379033943) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "Please don't use \"add file\"/\"update file\"/\"fix file\"/etc. commit messages. These are hard to reason about when looking at the history of the file/repository. Instead, please write explanatory git commit messages.\r\n\r\nThe commit message is also the title of the PR if the PR has only one commit. It is thus twice important to have commit messages that are relevant, as PRs would be easier to understand and easier to analyze in search results.\r\n\r\nFor how to write good quality git commit messages, please consult https://cbea.ms/git-commit/ " ]
2023-05-10T15:44:37
2023-06-03T16:46:35
2023-05-10T19:03:14
NONE
spam
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60564", "html_url": "https://github.com/tensorflow/tensorflow/pull/60564", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60564.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60564.patch", "merged_at": null }
just edit the description
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60564/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60564/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60563
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60563/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60563/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60563/events
https://github.com/tensorflow/tensorflow/issues/60563
1,703,925,475
I_kwDOArmXAs5lj9bj
60,563
TFLite interpreter stops working after a high cpu load on a different thread
{ "login": "FSet89", "id": 8984671, "node_id": "MDQ6VXNlcjg5ODQ2NzE=", "avatar_url": "https://avatars.githubusercontent.com/u/8984671?v=4", "gravatar_id": "", "url": "https://api.github.com/users/FSet89", "html_url": "https://github.com/FSet89", "followers_url": "https://api.github.com/users/FSet89/followers", "following_url": "https://api.github.com/users/FSet89/following{/other_user}", "gists_url": "https://api.github.com/users/FSet89/gists{/gist_id}", "starred_url": "https://api.github.com/users/FSet89/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FSet89/subscriptions", "organizations_url": "https://api.github.com/users/FSet89/orgs", "repos_url": "https://api.github.com/users/FSet89/repos", "events_url": "https://api.github.com/users/FSet89/events{/privacy}", "received_events_url": "https://api.github.com/users/FSet89/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2477739347, "node_id": "MDU6TGFiZWwyNDc3NzM5MzQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.4", "name": "TF 2.4", "color": "5319e7", "default": false, "description": "for issues related to TF 2.4" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @FSet89 \r\n\r\nWe see that you are using TF 2.4. Can you please check on latest stable version (TF 2.12) and let us know if the issue still persists?\r\n\r\nThanks.", "Hi,\r\nI think that the issue is more related to the tflite_runtime version on my embedded system (2.3.1) than the TF version on my PC that I used for training. However I can't update tflite_runtime at the moment.\r\nAs for TF version, if needed I can try retraining and quantizing the model with the latest version", "Hi @FSet89 \r\n\r\nThanks for the clarification. \r\n\r\nIs there anyway to update the tflite_runtime to 2.12 and check the issue?\r\n\r\nThanks.", "I will try as soon as I manage to update my Yocto. In the meantime it would be great is someone could test my example code", "Update: the issue is not encountered on my PC running TF 2.12. Is it possible that it has something to do with NNAPI?\r\n", "Glad that your issue is resolved with the latest version.\r\n\r\nTensorflow team continuously work on improving the product by adding new features or by fixing the bugs to make the experience seamless for the user community. \r\n\r\nSince there a huge version difference between 2.12 and the version which you were using it, \r\nwith the information we have from your code, it is hard to point to a specific area where the\r\nproblem could be coming from.\r\n\r\nIt is always suggested to use the latest version to make use of new updates and features.\r\n\r\nFeel free to close the issue since the issue is resolved, Thank You!\r\n\r\n\r\n", "Hi, the issue is not resolved: it just does not occur on my PC. I am not sure if it is related to the TF version. I would like to update the version on the environment of interest (my iMX8MP board) but by looking at the [repo](https://github.com/nxp-imx/tensorflow-imx) it seems that the latest available release is the 2.3.", "In the documentation which you have shared above shows that the latest Tensorflow version is <p dir=\"auto\" style=\"box-sizing: border-box; margin-top: 0px; margin-bottom: 16px; color: rgb(31, 35, 40); font-family: -apple-system, &quot;system-ui&quot;, &quot;Segoe UI&quot;, &quot;Noto Sans&quot;, Helvetica, Arial, sans-serif, &quot;Apple Color Emoji&quot;, &quot;Segoe UI Emoji&quot;; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\"><a href=\"https://badge.fury.io/py/tensorflow\" rel=\"nofollow\" style=\"box-sizing: border-box; background-color: transparent; color: var(--color-accent-fg); text-decoration: none;\"><img src=\"https://camo.githubusercontent.com/a7b5b417de938c1faf3602c7f48f26fde8761a977be85390fd6c0d191e210ba8/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f74656e736f72666c6f772e7376673f7374796c653d706c6173746963\" alt=\"Python\" data-canonical-src=\"https://img.shields.io/pypi/pyversions/tensorflow.svg?style=plastic\" style=\"box-sizing: content-box; border-style: none; max-width: 100%; background-color: var(--color-canvas-default);\"></a><span> </span><a href=\"https://badge.fury.io/py/tensorflow\" rel=\"nofollow\" style=\"box-sizing: border-box; background-color: transparent; color: var(--color-accent-fg); text-decoration: none;\"><img src=\"https://camo.githubusercontent.com/52c9f14cae5a90816da6b63cc5c6b57c20fbe2788e643cf0ab8160d3cd9a9ecf/68747470733a2f2f62616467652e667572792e696f2f70792f74656e736f72666c6f772e737667\" alt=\"PyPI\" data-canonical-src=\"https://badge.fury.io/py/tensorflow.svg\" style=\"box-sizing: content-box; border-style: none; max-width: 100%; background-color: var(--color-canvas-default);\"></a><span> </span><a href=\"https://doi.org/10.5281/zenodo.4724125\" rel=\"nofollow\" style=\"box-sizing: border-box; background-color: transparent; color: var(--color-accent-fg); text-decoration: none;\"><img src=\"https://camo.githubusercontent.com/cbb1b583e9445f1dc96b629d833b9f51c1b32971f0def04f0bf4be181d08bff1/68747470733a2f2f7a656e6f646f2e6f72672f62616467652f444f492f31302e353238312f7a656e6f646f2e343732343132352e737667\" alt=\"DOI\" data-canonical-src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4724125.svg\" style=\"box-sizing: content-box; border-style: none; max-width: 100%; background-color: var(--color-canvas-default);\"></a></p>\r\nThe repository `nxp-imx/tensorflow-imx` is something we don't have control on since this repository is not maintained or owned by Google.\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60563\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60563\">No</a>\n" ]
2023-05-10T13:21:31
2023-05-31T02:05:36
2023-05-31T02:05:33
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.4.1 ### Custom Code Yes ### OS Platform and Distribution Yocto Linux ### Mobile device _No response_ ### Python version 3.7 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I have a python script running on a IMX8MP device equipped with a NPU and NNAPI. The code performs inference using tflite_runtime and a quantized tflite model. I noticed that if I start a thread with a task that causes a high CPU load, the tflite interpreter stops working, producing always the same output regardless of the input. The problem persists even when the thread finishes. Is there a way to prevent this problem or, at least, to catch it? ### Standalone code to reproduce the issue ```shell import multiprocessing from multiprocessing import Queue, Process import numpy as np from threading import Thread from random import random, randint import tflite_runtime.interpreter as tflite import time import cv2 import os import sys import psutil class ClassificationModel(object): def __init__(self, path, mask_path=None): self.interpreter = tflite.Interpreter(model_path=path) self.interpreter.allocate_tensors() self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() self.input_shape = self.input_details[0]['shape'] def predict(self, img, resize=True): if resize: img = cv2.resize(img, (self.input_shape[2], self.input_shape[1])) img = (img/255.0).astype(np.float32) img = np.expand_dims(img, 0) self.interpreter.set_tensor(self.input_details[0]['index'], img) self.interpreter.invoke() output = self.interpreter.get_tensor(self.output_details[0]['index']) output = np.squeeze(output) return output def my_thread_1(): print("Start threaded task 1") simulate_cpu_load() print("Task 1 completed") def worker(): while True: pass def simulate_cpu_load(): num_cores = multiprocessing.cpu_count() processes = [] for _ in range(num_cores): p = multiprocessing.Process(target=worker) p.start() processes.append(p) time.sleep(3) for p in processes: p.terminate() if __name__ == '__main__': classifier_1 = ClassificationModel('mymodel.tflite) cap = cv2.VideoCapture() for i in range(5): cap.open(i) if cap.isOpened(): break if not cap.isOpened(): print("Could not open camera") exit() cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) try: while True: # get image ret, img = cap.read() # predict p1 = classifier_1.predict(img) print(p1) # threaded task if random() < 0.1: t = Thread(target=my_thread_1) t.start() except(KeyboardInterrupt): exit() ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60563/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60563/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60562
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60562/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60562/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60562/events
https://github.com/tensorflow/tensorflow/issues/60562
1,703,848,341
I_kwDOArmXAs5ljqmV
60,562
when identifier is None, tf.keras.initializers.get works
{ "login": "cheyennee", "id": 45327670, "node_id": "MDQ6VXNlcjQ1MzI3Njcw", "avatar_url": "https://avatars.githubusercontent.com/u/45327670?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cheyennee", "html_url": "https://github.com/cheyennee", "followers_url": "https://api.github.com/users/cheyennee/followers", "following_url": "https://api.github.com/users/cheyennee/following{/other_user}", "gists_url": "https://api.github.com/users/cheyennee/gists{/gist_id}", "starred_url": "https://api.github.com/users/cheyennee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cheyennee/subscriptions", "organizations_url": "https://api.github.com/users/cheyennee/orgs", "repos_url": "https://api.github.com/users/cheyennee/repos", "events_url": "https://api.github.com/users/cheyennee/events{/privacy}", "received_events_url": "https://api.github.com/users/cheyennee/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@cheyennee,\r\nIn the case that the **identifier** is a class, this method will return a new instance of the class by its constructor.\r\n\r\n\r\n\r\nNoneType is the type for the None object, which is an object that indicates no value. None is the return value of functions that \"don't return anything\". It is also a common default return value for functions that search for something and may or may not find it;\r\nKindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/62716fbe12937cc867d1a8232fa783d7/untitled1140.ipynb). Thank you!", "\r\nI think the Issue in above code are\r\n# 1. Identifier is assigned with None value but get methods takes valid initializer as its argument in the string format. \r\n# 2. Extra comman which is at get method after identifier causing syntax error because get method does not take any extra argument after identifier.\r\nAnd correct code might be this \r\n\r\nimport tensorflow as tf\r\nresults={}\r\ntry:\r\n identifier = \"glorot_uniform\"\r\n results[\"res\"] = tf.keras.initializers.get(identifier=identifier,)\r\nexcept Exception as e:\r\n results[\"err\"] = \"Error:\"+str(e)\r\nprint(results)\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60562\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60562\">No</a>\n" ]
2023-05-10T12:44:53
2023-05-29T03:52:58
2023-05-29T01:58:31
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Not sure if this is an issue. According to [doc](https://www.tensorflow.org/api_docs/python/tf/keras/initializers/get), the `identifier` should be string or dict. And when it is not a supported type, the API will throw an ValueError. But in following snippet code, when `identifier` is None, the API works. ### Standalone code to reproduce the issue ```shell import tensorflow as tf results={} try: identifier = None results["res"] = tf.keras.initializers.get(identifier=identifier,) except Exception as e: results["err"] = "Error:"+str(e) print(results) #results={'res': None} ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60562/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60562/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60561
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60561/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60561/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60561/events
https://github.com/tensorflow/tensorflow/issues/60561
1,703,831,547
I_kwDOArmXAs5ljmf7
60,561
error message of tf.abs is not the same with documentation
{ "login": "cheyennee", "id": 45327670, "node_id": "MDQ6VXNlcjQ1MzI3Njcw", "avatar_url": "https://avatars.githubusercontent.com/u/45327670?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cheyennee", "html_url": "https://github.com/cheyennee", "followers_url": "https://api.github.com/users/cheyennee/followers", "following_url": "https://api.github.com/users/cheyennee/following{/other_user}", "gists_url": "https://api.github.com/users/cheyennee/gists{/gist_id}", "starred_url": "https://api.github.com/users/cheyennee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cheyennee/subscriptions", "organizations_url": "https://api.github.com/users/cheyennee/orgs", "repos_url": "https://api.github.com/users/cheyennee/repos", "events_url": "https://api.github.com/users/cheyennee/events{/privacy}", "received_events_url": "https://api.github.com/users/cheyennee/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@cheyennee,\r\nIt was mentioned in the official document that it returns for complex64 or complex128 input, the returned Tensor will be of type float32 or float64, respectively. This might be the reason that complex64 or complex128 are not included in the error. Thank you!\r\nhttps://tensorflow.google.cn/api_docs/python/tf/math/abs#returns", "@tilakrayal Got that. Thanks.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60561\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60561\">No</a>\n" ]
2023-05-10T12:35:35
2023-05-11T12:49:03
2023-05-11T12:48:57
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The error message in following code miss the type `complex64` and `complex128` in [doc](https://tensorflow.google.cn/api_docs/python/tf/math/abs). The doc contains type `float16, float32, float64, int32, int64, complex64, complex128`. ### Standalone code to reproduce the issue ```shell import tensorflow as tf results={} try: x_0 = True x_1 = False x_2 = False x_3 = False x_4 = False x = (x_0,x_1,x_2,x_3,x_4,) results["res"] = tf.abs(x=x,) except Exception as e: results["err"] = "Error:"+str(e) print(results) # results={'err': "Error:Value for attr 'T' of bool is not in the list of allowed values: bfloat16, half, float, double, int8, int16, int32, int64\n\t; NodeDef: {{node Abs}}; Op<name=Abs; signature=x:T -> y:T; attr=T:type,allowed=[DT_BFLOAT16, DT_HALF, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64]> [Op:Abs]"} ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60561/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60561/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60560
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60560/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60560/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60560/events
https://github.com/tensorflow/tensorflow/issues/60560
1,703,742,273
I_kwDOArmXAs5ljQtB
60,560
How to load a model locally, while the model is saved in distributed training remote machines (number of PS(parameter server)>1)?
{ "login": "cnglen", "id": 4279208, "node_id": "MDQ6VXNlcjQyNzkyMDg=", "avatar_url": "https://avatars.githubusercontent.com/u/4279208?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cnglen", "html_url": "https://github.com/cnglen", "followers_url": "https://api.github.com/users/cnglen/followers", "following_url": "https://api.github.com/users/cnglen/following{/other_user}", "gists_url": "https://api.github.com/users/cnglen/gists{/gist_id}", "starred_url": "https://api.github.com/users/cnglen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cnglen/subscriptions", "organizations_url": "https://api.github.com/users/cnglen/orgs", "repos_url": "https://api.github.com/users/cnglen/repos", "events_url": "https://api.github.com/users/cnglen/events{/privacy}", "received_events_url": "https://api.github.com/users/cnglen/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 996845227, "node_id": "MDU6TGFiZWw5OTY4NDUyMjc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:dist-strat", "name": "comp:dist-strat", "color": "0052cc", "default": false, "description": "Distribution Strategy related issues" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @cnglen ,\r\n\r\nThere is a list of known limitations documented [here](https://www.tensorflow.org/tutorials/distribute/parameter_server_training#parameterserverstrategy_general) regarding `ParameterServerStrategy` .\r\n\r\nIt is not supported to load a saved_model via `tf.saved_model.load` containing sharded variables. \r\n\r\nYou may try loading such a saved_model using TensorFlow Serving is expected to work (refer to the [serving tutorial](https://www.tensorflow.org/tfx/tutorials/serving/rest_simple) for details).\r\n\r\nHope this helps. Thanks!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60560\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60560\">No</a>\n" ]
2023-05-10T11:46:30
2023-05-25T01:54:28
2023-05-25T01:54:25
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf2.8 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Can't load the saved model(saved in distributed training, while number of PS(parameter server)>1). ``` python # run in local machine # model is trained in remote machines model = tf.keras.models.load_model(d_model) ``` Error Message: ``` bash Loading a saved_model containing ShardedVariable via `tf.saved_model.load` is not supported. If the model is built using Keras, please use `tf.keras.models.load_model` instead ``` Tried the following saving options, not work. 1. save_options = tf.saved_model.SaveOptions(experimental_io_device="/job:chief/replica:0/task:0/device:CPU:0") 2. save_options = tf.saved_model.SaveOptions(experimental_io_device="/job:localhost/replica:0/task:0/device:CPU:0") ### Standalone code to reproduce the issue ```shell self.model = tf.keras.models.load_model(d_model, options=load_locally) File "lib/python3.7/site-packages/keras/utils/traceback_utils.py", line 71, in error_handler raise e.with_traceback(filtered_tb) from None File "lib/python3.7/site-packages/tensorflow/python/distribute/sharded_variable.py", line 864, in _raise_when_load 'Loading a saved_model containing ShardedVariable via ' ValueError: Loading a saved_model containing ShardedVariable via `tf.saved_model.load` is not supported. If the model is built using Keras, please use `tf.keras.models.load_model` instead. ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60560/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60560/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60559
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60559/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60559/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60559/events
https://github.com/tensorflow/tensorflow/pull/60559
1,703,715,444
PR_kwDOArmXAs5QLqTw
60,559
Reenabling unit tests for ROCm
{ "login": "ekuznetsov139", "id": 12205429, "node_id": "MDQ6VXNlcjEyMjA1NDI5", "avatar_url": "https://avatars.githubusercontent.com/u/12205429?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ekuznetsov139", "html_url": "https://github.com/ekuznetsov139", "followers_url": "https://api.github.com/users/ekuznetsov139/followers", "following_url": "https://api.github.com/users/ekuznetsov139/following{/other_user}", "gists_url": "https://api.github.com/users/ekuznetsov139/gists{/gist_id}", "starred_url": "https://api.github.com/users/ekuznetsov139/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ekuznetsov139/subscriptions", "organizations_url": "https://api.github.com/users/ekuznetsov139/orgs", "repos_url": "https://api.github.com/users/ekuznetsov139/repos", "events_url": "https://api.github.com/users/ekuznetsov139/events{/privacy}", "received_events_url": "https://api.github.com/users/ekuznetsov139/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @jurahul / @frgossen Can you please review this PR ? Thank you!", "Hi @ekuznetsov139 Can you please check @frgossen's [comments](https://github.com/tensorflow/tensorflow/pull/60559#pullrequestreview-1607003961) and keep us posted? Thank you!", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you." ]
2023-05-10T11:30:52
2023-11-20T21:36:33
2023-11-20T21:36:33
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60559", "html_url": "https://github.com/tensorflow/tensorflow/pull/60559", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60559.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60559.patch", "merged_at": "2023-11-20T21:36:33" }
An upstream of https://github.com/ROCmSoftwarePlatform/tensorflow-upstream/pull/2061 This reenables a number of unit tests or subtests which were disabled for ROCm but were passing, or which could be fixed with minimal effort.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60559/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60559/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60558
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60558/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60558/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60558/events
https://github.com/tensorflow/tensorflow/issues/60558
1,703,631,219
I_kwDOArmXAs5li1lz
60,558
google.protobuf.message.DecodeError: Error parsing message when using hlo_pb2.HloModeuleProto
{ "login": "songh11", "id": 75419275, "node_id": "MDQ6VXNlcjc1NDE5Mjc1", "avatar_url": "https://avatars.githubusercontent.com/u/75419275?v=4", "gravatar_id": "", "url": "https://api.github.com/users/songh11", "html_url": "https://github.com/songh11", "followers_url": "https://api.github.com/users/songh11/followers", "following_url": "https://api.github.com/users/songh11/following{/other_user}", "gists_url": "https://api.github.com/users/songh11/gists{/gist_id}", "starred_url": "https://api.github.com/users/songh11/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/songh11/subscriptions", "organizations_url": "https://api.github.com/users/songh11/orgs", "repos_url": "https://api.github.com/users/songh11/repos", "events_url": "https://api.github.com/users/songh11/events{/privacy}", "received_events_url": "https://api.github.com/users/songh11/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" } ]
closed
false
{ "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false }
[ { "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false } ]
null
[ "there are a couple of bugs or typos in your code\r\n\r\nIn line 8, instead of `tf.compat.v1.global_variables_initalizer()`, it should be `tf.compat.v1.global_variables_initializer()` (notice the typo in 'initializer').\r\n", "> there are a couple of bugs or typos in your code\r\n> \r\n> In line 8, instead of `tf.compat.v1.global_variables_initalizer()`, it should be `tf.compat.v1.global_variables_initializer()` (notice the typo in 'initializer').\r\n\r\nOk, thanks for the warning", "@songh11, Apologies for the delay. I was able to replicate the issue in Colab using TF v2.12. Please find the gist [here](https://colab.sandbox.google.com/gist/synandi/9e55948a51ef30cffae02aa4165d53ab/untitled363.ipynb). \r\n\r\nIt seems like you're trying to load a TensorFlow SavedModel and parse the contents of the .pb file using the hlo_pb2.HloModuleProto class from the XLA module.\r\n\r\nPlease note that the `hlo_pb2.HloModuleProto` class is specifically designed for parsing HLO (High-Level Operator) module protos used in XLA, and it may not be compatible with the .pb file, which contains a serialized TensorFlow GraphDef or MetaGraphDef.\r\nThank you! ", "> @songh11, Apologies for the delay. I was able to replicate the issue in Colab using TF v2.12. Please find the gist [here](https://colab.sandbox.google.com/gist/synandi/9e55948a51ef30cffae02aa4165d53ab/untitled363.ipynb).\r\n> \r\n> It seems like you're trying to load a TensorFlow SavedModel and parse the contents of the .pb file using the hlo_pb2.HloModuleProto class from the XLA module.\r\n> \r\n> Please note that the `hlo_pb2.HloModuleProto` class is specifically designed for parsing HLO (High-Level Operator) module protos used in XLA, and it may not be compatible with the .pb file, which contains a serialized TensorFlow GraphDef or MetaGraphDef. Thank you!\r\n\r\nI found jax.xla_computation().as_serialized_hlo_module_proto() to solve this problem. So this is a problom when I serialize my .pb file.\r\nThank you for your reply", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60558\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60558\">No</a>\n" ]
2023-05-10T10:42:19
2023-05-22T10:47:00
2023-05-22T10:46:57
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.8 ### Custom Code Yes ### OS Platform and Distribution ubuntu 16.04 ### Mobile device _No response_ ### Python version 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A bug happened! I use hlo_pb2.HloModuleProto.ParseFromString to get the hlo model, but 'google.protobuf.message.DecodeError: Error parsing message' will be reported. In addition, I can use tf.compat.v1.GraphDef() to load the model. May I ask if there is something wrong with the method I used ### Standalone code to reproduce the issue ```shell import tensorflow as tf pb_file_path = os.getcwd() with tf.compat.v1.Session(graph=tf.Graph()) as sess: x = tf.compat.v1.placeholder(tf.float32, name='x') y = tf.compat.v1.placeholder(tf.float32, name='y') b = tf.Variable(1.0, name='b') xy = tf.multiply(x, y) op = tf.add(xy, b, name='op_to_store') sess.run(tf.compat.v1.global_variables_initalizer()) constant_graph = tf.compat.v1.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['op_to_store']) with tf.io.gfile.GFile('./model/test.pb', 'wb') as f: f.write(constant_graph.SerializeToString()) from tensorflow.compiler.xla.service import hlo_pb2 with tf.io.gfile.GFile('./tmp.pb', 'rb') as f: module = hlo_pb2.HloModuleProto() module.ParseFromString(f.read()) # module = tf.compat.v1.GraphDef() # module.ParseFromString(f.read()) ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60558/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60558/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60557
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60557/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60557/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60557/events
https://github.com/tensorflow/tensorflow/issues/60557
1,703,516,636
I_kwDOArmXAs5liZnc
60,557
crosstool_wrapper_driver_is_not_gcc failed: error executing command
{ "login": "Ternity", "id": 50951115, "node_id": "MDQ6VXNlcjUwOTUxMTE1", "avatar_url": "https://avatars.githubusercontent.com/u/50951115?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Ternity", "html_url": "https://github.com/Ternity", "followers_url": "https://api.github.com/users/Ternity/followers", "following_url": "https://api.github.com/users/Ternity/following{/other_user}", "gists_url": "https://api.github.com/users/Ternity/gists{/gist_id}", "starred_url": "https://api.github.com/users/Ternity/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Ternity/subscriptions", "organizations_url": "https://api.github.com/users/Ternity/orgs", "repos_url": "https://api.github.com/users/Ternity/repos", "events_url": "https://api.github.com/users/Ternity/events{/privacy}", "received_events_url": "https://api.github.com/users/Ternity/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 2498949452, "node_id": "MDU6TGFiZWwyNDk4OTQ5NDUy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.5", "name": "TF 2.5", "color": "5319e7", "default": false, "description": "Issues related to TF 2.5" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@Ternity,\r\nTensorflow 2.5 is compatible with GCC 7.3.1, Bazel 3.7.2, cuDNN 8.1 and CUDA 11.2. Could you please take a look at this official testing build configurations from [here](https://www.tensorflow.org/install/source#gpu) and also tensorflow v2.5 is considered as older version, so I request to update to latest stable version 2.12 for better performance and assistance. Thank you!\r\n\r\n\r\n\r\n", "Thank you, please let me try with GCC 7.3.1. \r\nFor CUDA, in my mechine, CUDA Driver version does not allow me to install CUDA 11.2. \r\nThankyou again.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60557\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60557\">No</a>\n" ]
2023-05-10T09:39:23
2023-05-27T01:54:15
2023-05-27T01:54:13
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version v2.5.0-160-g8222c1cfc86 2.5.1 ### Custom Code Yes ### OS Platform and Distribution Linux CentOS 3.10.0-1160.49.1.el7.x86_64 ### Mobile device _No response_ ### Python version 3.9 ### Bazel version 3.7.2 ### GCC/Compiler version 7.3.0 ### CUDA/cuDNN version CUDA-11.1; cuDNN-8.0.5.39 for cuda-11.1 ### GPU model and memory Tesla V100; 32GB ### Current Behaviour? I want to build libtensorflow_cc.so The operation and error reporting are as follows: ### Standalone code to reproduce the issue ```shell My configure: You have bazel 3.7.2 installed. location of python /home/yuqinghan/anaconda3/envs/deepmd/bin/python3 input the desired Python library path to use. /home/yuqinghan/anaconda3/envs/deepmd/lib/python3.9/site-packages No ROCm support will be enabled for TensorFlow. CUDA support will be enabled for TensorFlow. No TensorRT support will be enabled for TensorFlow. Found CUDA 11.1 in: /usr/local/cuda-11.1/targets/x86_64-linux/lib /usr/local/cuda-11.1/targets/x86_64-linux/include Found cuDNN 8 in: /home/yuqinghan/Systemtools/cudnn-8.0.5.39+cuda-11.1/lib /home/yuqinghan/Systemtools/cudnn-8.0.5.39+cuda-11.1/include Please note that each additional compute capability significantly increases your build time and binary size, and that TensorFlow only supports compute capabilities >= 3.5 [Default is: 7.0,7.0]: sm_70 nvcc will be used as CUDA compiler. specify which gcc should be used by nvcc as the host compiler. Default is /home/yuqinghan/Systemtools/gcc-7.3.0/bin/gcc Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -Wno-sign-compare]: Not configuring the WORKSPACE for Android builds. Configuration finished And then, I Command entered: bazel build -c opt --copt=-msse4.2 --copt=-mavx --copt=-mavx2 --copt=-mfma --verbose_failures //tensorflow:libtensorflow_cc.so ``` ### Relevant log output ```shell The error is: INFO: Analyzed target //tensorflow:libtensorflow_cc.so (0 packages loaded, 0 targets configured). INFO: Found 1 target... ERROR: /home/yuqinghan/Software/Setup/TensorFlow-setup/tensorflow/compiler/tf2xla/cc/BUILD:31:21: Linking of rule '//tensorflow/compiler/tf2xla/cc:ops/xla_jit_ops_gen_cc' failed (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (cd /home/yuqinghan/.cache/bazel/_bazel_yuqinghan/81bc5fe21e90260ab76069b6616023e5/execroot/org_tensorflow && \ exec env - \ LD_LIBRARY_PATH= To highlight the BUG, specific paths have been omitted here \ PATH= To highlight the BUG, specific paths have been omitted here \ PWD=/proc/self/cwd \ external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc @bazel-out/host/bin/tensorflow/compiler/tf2xla/cc/ops/xla_jit_ops_gen_cc-2.params) Execution platform: @local_execution_config_platform//:platform bazel-out/host/bin/_solib_local/_U_S_Stensorflow_Scompiler_Stf2xla_Scc_Cops_Sxla_Ujit_Uops_Ugen_Ucc___Utensorflow/libtensorflow_framework.so.2: undefined reference to `std::allocator<absl::lts_2020_09_23::string_view>::allocator()' collect2: error: ld returned 1 exit status Target //tensorflow:libtensorflow_cc.so failed to build INFO: Elapsed time: 1.729s, Critical Path: 0.56s INFO: 54 processes: 52 internal, 2 local. FAILED: Build did NOT complete successfully ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60557/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60557/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60556
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60556/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60556/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60556/events
https://github.com/tensorflow/tensorflow/issues/60556
1,703,452,721
I_kwDOArmXAs5liKAx
60,556
Inconsistent heoretical and numeric gradient for tf.math.floor
{ "login": "drewshark", "id": 128925028, "node_id": "U_kgDOB689ZA", "avatar_url": "https://avatars.githubusercontent.com/u/128925028?v=4", "gravatar_id": "", "url": "https://api.github.com/users/drewshark", "html_url": "https://github.com/drewshark", "followers_url": "https://api.github.com/users/drewshark/followers", "following_url": "https://api.github.com/users/drewshark/following{/other_user}", "gists_url": "https://api.github.com/users/drewshark/gists{/gist_id}", "starred_url": "https://api.github.com/users/drewshark/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/drewshark/subscriptions", "organizations_url": "https://api.github.com/users/drewshark/orgs", "repos_url": "https://api.github.com/users/drewshark/repos", "events_url": "https://api.github.com/users/drewshark/events{/privacy}", "received_events_url": "https://api.github.com/users/drewshark/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @drewshark,\r\n\r\nI was able to replicate the issue in Google Colab using Tensorflow 2.10, 2.12 and tf-nightly(2.14.0.dev20230510). Please find the gists- [TF v2.10](https://colab.sandbox.google.com/gist/synandi/bd080f93b862f9680ba3fdaa51b15335/60556_2-10.ipynb), [TF v2.12](https://colab.sandbox.google.com/gist/synandi/102cb5ec11d6e35ae928852af5764ca6/60556_2-12.ipynb) & [TF-nightly](https://colab.sandbox.google.com/gist/synandi/57e9b3b50464b102d84361d106aedd7a/60556_tfnightly.ipynb). Thank you!", "from inconsistent you mean when **``` x = [2.] ```** or **``` x = [4.]```** getting numerical jacobians as **```array([[512.]], dtype=float32)```** ,am i right?", "Hi @Shivachauhan17 , yes this is my observation. Since the numerical Jacobins are sometime considered as the ground truth when testing gradient computations, it would be nice if numerical jacobians are also array([[0.]]).", "okay, i will look at the implemtation ", "I noticed that a few other functions suffer from similar issues, this includes `tf.math.ceil`, `tf.experimental.numpy.ceil`, `tf.math.round`, `tf.math.rint`, `tf.experimental.numpy.heaviside`.\r\n\r\nSee the [gist here](https://colab.research.google.com/drive/1G_3GnYqSxIvLRTNB99YjqwE_kBcE9mB_?usp=sharing).", "This is an artifact of how the \"numerical\" gradient is computed. It uses central differences, so evaluates\r\n```\r\ndf/dx = [f(x + delta) - f(x - delta)] / (2*delta)\r\n```\r\nFloor (and the other functions you mention) have a discontinuous gap at whole numbers. So it evaluates\r\n```\r\ndf/dx(4.0) = f(4.0 + delta) - f(4.0 - delta) / (2 * delta)\r\n = (4.0 - 3.0) / (2 * delta) // for any delta < 1\r\n```\r\nIt uses a default delta of 1.0/1024, so you're getting `1.0 / (2.0 / 1024) = 512`. The theoretical gradient is more correct, since the derivative is zero at either side of the discontinuity.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60556\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60556\">No</a>\n" ]
2023-05-10T09:06:52
2023-06-29T22:15:59
2023-06-29T22:15:56
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.10.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version 3.9 ### Bazel version N/A ### GCC/Compiler version N/A ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When input is `tf.constant([4.])`, the theoretical gradient and numerical gradient of tf.math.floor are inconsistent. Same applies for tf.experimental.numpy.floor. Expected behavior of tf.math.floor and tf.experimental.numpy.floor: consistent result between theoretical gradient and numerical gradient. Interestingly, if I set `x = tf.constant([1.8])`, this issue does not happen. If I set `x=tf.constant([2.])`, this issue still occurs. ### Standalone code to reproduce the issue ```shell import tensorflow as tf x = tf.constant([4.]) th, nu= tf.test.compute_gradient(tf.math.floor, [x]) print(th, nu) # (array([[0.]], dtype=float32),) (array([[512.]], dtype=float32),) th, nu= tf.test.compute_gradient(tf.experimental.numpy.floor, [x]) print(th, nu) # (array([[0.]], dtype=float32),) (array([[512.]], dtype=float32),) ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60556/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60556/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60555
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60555/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60555/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60555/events
https://github.com/tensorflow/tensorflow/issues/60555
1,703,153,385
I_kwDOArmXAs5lhA7p
60,555
Training and validation accuracy and loss not changing?
{ "login": "WennPaper", "id": 67032259, "node_id": "MDQ6VXNlcjY3MDMyMjU5", "avatar_url": "https://avatars.githubusercontent.com/u/67032259?v=4", "gravatar_id": "", "url": "https://api.github.com/users/WennPaper", "html_url": "https://github.com/WennPaper", "followers_url": "https://api.github.com/users/WennPaper/followers", "following_url": "https://api.github.com/users/WennPaper/following{/other_user}", "gists_url": "https://api.github.com/users/WennPaper/gists{/gist_id}", "starred_url": "https://api.github.com/users/WennPaper/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/WennPaper/subscriptions", "organizations_url": "https://api.github.com/users/WennPaper/orgs", "repos_url": "https://api.github.com/users/WennPaper/repos", "events_url": "https://api.github.com/users/WennPaper/events{/privacy}", "received_events_url": "https://api.github.com/users/WennPaper/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1105108936, "node_id": "MDU6TGFiZWwxMTA1MTA4OTM2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:model", "name": "comp:model", "color": "0052cc", "default": false, "description": "Model related issues" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @WenTheProgrammer, \r\nCould you please provide the dataset along with the pre-processing steps, so that we can replicate the issue from our end. Thank you! ", "Hi @synandi,\r\nAttached dataset is a tiny subset of my actual dataset. I was able to recreate my issue using this dataset by splitting it randomly for training (70%) and validation (30%). I did not have any preprocessing steps other than normalization. \r\n[Sample Data.zip](https://github.com/tensorflow/tensorflow/files/11471347/Sample.Data.zip)\r\n\r\n", "Check this code once. \r\n\r\nbatch_size = 1\r\nnum_epochs = 1000\r\nmodel = tf.keras.models.Sequential([\r\n tf.keras.layers.Conv2D(16, (5,2), activation='relu', input_shape=(252,4,1)),\r\n tf.keras.layers.Conv2D(32, (4,2), activation='relu'),\r\n tf.keras.layers.Conv2D(64, (3,2), activation='relu'),\r\n tf.keras.layers.Conv2D(128, (2,1), activation='relu'),\r\n tf.keras.layers.Flatten(),\r\n tf.keras.layers.Dense(128, activation='relu'),\r\n tf.keras.layers.Dense(64, activation='relu'),\r\n tf.keras.layers.Dense(32, activation='relu'),\r\n tf.keras.layers.Dense(16, activation='relu'),\r\n tf.keras.layers.Dense(1, activation='sigmoid')\r\n])\r\n\r\nopt = Adam(learning_rate=0.001)\r\nmodel.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\r\n\r\n\r\nhistory = model.fit(\r\n data_generator(x_train_list, y_train_list, batch_size),\r\n batch_size=batch_size,\r\n epochs=num_epochs,\r\n steps_per_epoch=len(x_train_list)//batch_size,\r\n validation_data=(x_val, y_val))\r\n\r\nI am assuming there is an incorrect definition of input_shape = (242,4,1) but correct input_shape = (4, 252, 1) should be in my view because the First dimension represents the number of channels, and channels should be 4 instead of 252. Also, Order of the dimension is heights, width, channels. All the others look pretty good", "But my input image size is 252x4. I don't see how transposing the images would make a difference, Maybe my input shape should be (1,252,4) since my images are grayscale?", "@WenTheProgrammer,\r\nUnfortunately with the code provided above, we were not able to analyse the issue where it went wrong. Could you please provide the complete standalone code or the colab gist which helps us to debug the issue in an effective way. Thank you! ", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @tilakrayal,\r\n\r\nHere it is:\r\n\r\n```\r\nimport os\r\nimport glob\r\nimport numpy as np\r\nimport random\r\nimport tensorflow as tf\r\nfrom tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping\r\nfrom tensorflow.keras.optimizers import Adam\r\n\r\nos.chdir(r'Sample Data')\r\n\r\n# Get x and y list\r\nx_list = glob.glob(\"*.npy\")[:len(glob.glob(\"*.npy\")) // 2]\r\ny_list = glob.glob(\"*.npy\")[len(glob.glob(\"*.npy\")) // 2:]\r\n\r\n# Calculate the number of elements for each segment\r\nlen_train = int(len(x_list) * 0.7)\r\nlen_val = int(len(x_list) * 0.2)\r\n\r\n# Randomly select elements from the original list for each segment\r\nindices_random = random.sample(range(len(x_list)), len(x_list))\r\n\r\nx_train_list = [x_list[i] for i in indices_random[:len_train]]\r\nx_val_list = [x_list[i] for i in indices_random[len_train:len_train+len_val]]\r\nx_test_list = [x_list[i] for i in indices_random[len_train+len_val:]]\r\n\r\ny_train_list = [y_list[i] for i in indices_random[:len_train]]\r\ny_val_list = [y_list[i] for i in indices_random[len_train:len_train+len_val]]\r\ny_test_list = [y_list[i] for i in indices_random[len_train+len_val:]]\r\n\r\nbatch_x = []\r\nbatch_y = []\r\n\r\nfor x_file, y_file in zip(x_val_list, y_val_list):\r\n x = np.load(x_file)\r\n batch_x.append(x)\r\n y = np.load(y_file)\r\n batch_y.append(y)\r\nx_val = np.stack(batch_x, axis=0)\r\ny_val = np.array(batch_y)\r\n\r\ndef data_generator(x_train_list, y_train_list, batch_size):\r\n num_samples = len(x_train_list)\r\n while True:\r\n for i in range(0, num_samples, batch_size):\r\n batch_x_files = x_train_list[i:i+batch_size]\r\n batch_y_files = y_train_list[i:i+batch_size]\r\n batch_x = []\r\n batch_y = []\r\n for x_file, y_file in zip(batch_x_files, batch_y_files):\r\n x = np.load(x_file)\r\n batch_x.append(x)\r\n y = np.load(y_file)\r\n batch_y.append(y)\r\n batch_x = np.stack(batch_x, axis=0)\r\n batch_y = np.array(batch_y)\r\n yield batch_x, batch_y\r\n\r\nbatch_size = 1\r\nnum_epochs = 1000\r\n\r\nmodel = tf.keras.models.Sequential([\r\n\r\n tf.keras.layers.Conv2D(16, (5, 2), activation='relu', input_shape=(np.load(x_train_list[0]).shape[0],np.load(x_train_list[0]).shape[1], 1)),\r\n tf.keras.layers.Conv2D(32, (4,2), activation='relu'),\r\n tf.keras.layers.Conv2D(64, (3,2), activation='relu'),\r\n tf.keras.layers.Conv2D(128, (2,1), activation='relu'),\r\n tf.keras.layers.Flatten(),\r\n tf.keras.layers.Dense(128, activation='relu'),\r\n tf.keras.layers.Dense(64, activation='relu'),\r\n tf.keras.layers.Dense(32, activation='relu'),\r\n tf.keras.layers.Dense(16, activation='relu'),\r\n tf.keras.layers.Dense(1, activation='sigmoid')\r\n])\r\n\r\nopt = Adam(learning_rate=0.001)\r\n\r\n# Compile the model\r\nmodel.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\r\n\r\n# Define the callbacks to save the best model and early stopping\r\ncheckpoint_callback = ModelCheckpoint(\"best_model_weights.h5\", save_best_only=True, monitor='val_accuracy', mode='max')\r\nearly_stop_callback = EarlyStopping(monitor='val_accuracy', patience=num_epochs*0.5)\r\n\r\n# Train the model\r\nhistory = model.fit(\r\n data_generator(x_train_list, y_train_list, batch_size),\r\n batch_size=batch_size,\r\n epochs=num_epochs,\r\n steps_per_epoch=len(x_train_list)//batch_size,\r\n validation_data=(x_val, y_val),\r\n callbacks=[checkpoint_callback, early_stop_callback])\r\n\r\n# Save the trained model\r\nmodel.save_weights('final_model_weights.h5')\r\n```", "@WenTheProgrammer,\r\nI tried to execute the mentioned code and it was failing with the different issue. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/64e9cead5aa1595b4581d332850d83bb/untitled1222.ipynb) and provide the complete dependencies to analyse the issue in an effective way. Thank you!", "Hi @tilakrayal,\r\n\r\nThe error was regarding the \"Sample Data\" folder location. I have attached my sample data in a zip file above. If you unzip that and use the correct folder address containing all the sample data in your computer for `os.chdir(r'Sample Data')`, the error should disappear.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60555\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60555\">No</a>\n" ]
2023-05-10T05:28:50
2023-12-29T22:40:56
2023-12-29T22:40:52
NONE
null
null
null
I am trying to train the following model for a binary classification task: ``` batch_size = 1 num_epochs = 1000 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, (5,2), activation='relu', input_shape=(252,4,1)), tf.keras.layers.Conv2D(32, (4,2), activation='relu'), tf.keras.layers.Conv2D(64, (3,2), activation='relu'), tf.keras.layers.Conv2D(128, (2,1), activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(16, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) opt = Adam(learning_rate=0.001) model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) history = model.fit( data_generator(x_train_list, y_train_list, batch_size), batch_size=batch_size, epochs=num_epochs, steps_per_epoch=len(x_train_list)//batch_size, validation_data=(x_val, y_val)) ``` However, for some reason my training and validation accuracy and loss are not changing: ``` Epoch 1/1000 157595/157595 [==============================] - 990s 6ms/step - loss: 0.6960 - accuracy: 0.5215 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 2/1000 157595/157595 [==============================] - 648s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 3/1000 157595/157595 [==============================] - 641s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 4/1000 157595/157595 [==============================] - 662s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 5/1000 157595/157595 [==============================] - 667s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 6/1000 157595/157595 [==============================] - 648s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 7/1000 157595/157595 [==============================] - 651s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 8/1000 157595/157595 [==============================] - 646s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 9/1000 157595/157595 [==============================] - 646s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 10/1000 157595/157595 [==============================] - 645s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 11/1000 157595/157595 [==============================] - 648s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 12/1000 157595/157595 [==============================] - 650s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 13/1000 157595/157595 [==============================] - 653s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 14/1000 157595/157595 [==============================] - 644s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 15/1000 157595/157595 [==============================] - 646s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 16/1000 157595/157595 [==============================] - 645s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 17/1000 157595/157595 [==============================] - 667s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 18/1000 157595/157595 [==============================] - 642s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 19/1000 157595/157595 [==============================] - 683s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 20/1000 157595/157595 [==============================] - 677s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 21/1000 157595/157595 [==============================] - 678s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 22/1000 157595/157595 [==============================] - 669s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 23/1000 157595/157595 [==============================] - 697s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 24/1000 157595/157595 [==============================] - 875s 6ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 25/1000 157595/157595 [==============================] - 971s 6ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 26/1000 157595/157595 [==============================] - 639s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 27/1000 157595/157595 [==============================] - 639s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 28/1000 157595/157595 [==============================] - 638s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 Epoch 29/1000 157595/157595 [==============================] - 649s 4ms/step - loss: 0.6927 - accuracy: 0.5217 - val_loss: 0.6918 - val_accuracy: 0.5283 ``` I have tried different optimizers and learning rates but they did not seem to help. Is there something wrong with my model? I know my data is pretty noisy. Thanks for any insights and help!
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60555/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60555/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60554
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60554/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60554/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60554/events
https://github.com/tensorflow/tensorflow/pull/60554
1,703,098,896
PR_kwDOArmXAs5QJlgp
60,554
upgrade to curl 8.0.1
{ "login": "justkw", "id": 32109466, "node_id": "MDQ6VXNlcjMyMTA5NDY2", "avatar_url": "https://avatars.githubusercontent.com/u/32109466?v=4", "gravatar_id": "", "url": "https://api.github.com/users/justkw", "html_url": "https://github.com/justkw", "followers_url": "https://api.github.com/users/justkw/followers", "following_url": "https://api.github.com/users/justkw/following{/other_user}", "gists_url": "https://api.github.com/users/justkw/gists{/gist_id}", "starred_url": "https://api.github.com/users/justkw/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/justkw/subscriptions", "organizations_url": "https://api.github.com/users/justkw/orgs", "repos_url": "https://api.github.com/users/justkw/repos", "events_url": "https://api.github.com/users/justkw/events{/privacy}", "received_events_url": "https://api.github.com/users/justkw/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-10T04:21:07
2023-05-13T06:07:07
2023-05-13T06:07:07
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60554", "html_url": "https://github.com/tensorflow/tensorflow/pull/60554", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60554.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60554.patch", "merged_at": "2023-05-13T06:07:07" }
upgrade curl to 8.0.1
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60554/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60554/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60553
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60553/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60553/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60553/events
https://github.com/tensorflow/tensorflow/pull/60553
1,702,804,606
PR_kwDOArmXAs5QIndF
60,553
Minor fixes for RELEASE.md
{ "login": "anirudh161", "id": 7845481, "node_id": "MDQ6VXNlcjc4NDU0ODE=", "avatar_url": "https://avatars.githubusercontent.com/u/7845481?v=4", "gravatar_id": "", "url": "https://api.github.com/users/anirudh161", "html_url": "https://github.com/anirudh161", "followers_url": "https://api.github.com/users/anirudh161/followers", "following_url": "https://api.github.com/users/anirudh161/following{/other_user}", "gists_url": "https://api.github.com/users/anirudh161/gists{/gist_id}", "starred_url": "https://api.github.com/users/anirudh161/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/anirudh161/subscriptions", "organizations_url": "https://api.github.com/users/anirudh161/orgs", "repos_url": "https://api.github.com/users/anirudh161/repos", "events_url": "https://api.github.com/users/anirudh161/events{/privacy}", "received_events_url": "https://api.github.com/users/anirudh161/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-09T21:55:02
2023-05-26T00:14:54
2023-05-26T00:14:51
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60553", "html_url": "https://github.com/tensorflow/tensorflow/pull/60553", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60553.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60553.patch", "merged_at": "2023-05-26T00:14:51" }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60553/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60553/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60552
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60552/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60552/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60552/events
https://github.com/tensorflow/tensorflow/issues/60552
1,702,785,749
I_kwDOArmXAs5lfnLV
60,552
Unable to inspect variables after loading weights to not fully built FlexibleDenseModule
{ "login": "WenjieZ", "id": 6860682, "node_id": "MDQ6VXNlcjY4NjA2ODI=", "avatar_url": "https://avatars.githubusercontent.com/u/6860682?v=4", "gravatar_id": "", "url": "https://api.github.com/users/WenjieZ", "html_url": "https://github.com/WenjieZ", "followers_url": "https://api.github.com/users/WenjieZ/followers", "following_url": "https://api.github.com/users/WenjieZ/following{/other_user}", "gists_url": "https://api.github.com/users/WenjieZ/gists{/gist_id}", "starred_url": "https://api.github.com/users/WenjieZ/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/WenjieZ/subscriptions", "organizations_url": "https://api.github.com/users/WenjieZ/orgs", "repos_url": "https://api.github.com/users/WenjieZ/repos", "events_url": "https://api.github.com/users/WenjieZ/events{/privacy}", "received_events_url": "https://api.github.com/users/WenjieZ/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@WenjieZ,\r\nCould you please find the [gist](https://colab.research.google.com/gist/tilakrayal/b24b294178cb7ad454a0af3a62d7984b/untitled1128.ipynb) for the mentioned code and confirm whether your observation and concern is the same or different and also let us know which tensorflow version you are using. Thank you!", "@tilakrayal,\r\nThe mentioned gist shows the same outcome as on my laptop: unable to inspect the variables without first calling the model.\r\n\r\n- Tensorflow version: 2.12.0, installed via pip\r\n- Python version: 3.11.3, installed via conda-forge\r\n- OS: MacOS Ventura 13.3.1 (a) ", "Hi @WenjieZ, this is intended. Checkpoint restoration doesn't create any variables. It restores all existing variables, and for the ones that are missing (i.e. in the Checkpoint but not in the model), it stores some metadata. After variables are created and added to the model, the values are restored.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60552\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60552\">No</a>\n" ]
2023-05-09T21:34:46
2023-06-06T20:47:03
2023-06-06T20:47:01
CONTRIBUTOR
null
null
null
I found it unable to inspect variables after loading weights to not fully built FlexibleDenseModule. Is it intended or a bug? How to replicate: 1. Define the `FlexibleDenseModule` and `MySequentialModule` according to the [doc](https://www.tensorflow.org/guide/intro_to_modules). `FlexibleDenseModule` defines the weights only after being called. `MySequentialModule` is composed of two `FlexibleDenseModule`. 2. Instantialize a `MySequentialModule`, called it, and checkpoint-saved its weights. 3. Instantialize a new `MySequentialModule` and checkpoint-loaded its weights. 4. The `variables` attribute does not show anything. 5. After calling it, its `variables` attribute shows the saved weights. ```python class FlexibleDenseModule(tf.Module): # Note: No need for `in_features` def __init__(self, out_features, name=None): super().__init__(name=name) self.is_built = False self.out_features = out_features def __call__(self, x): # Create variables on first call. if not self.is_built: self.w = tf.Variable( tf.random.normal([x.shape[-1], self.out_features]), name='w' ) self.b = tf.Variable(tf.zeros([self.out_features]), name='b') self.is_built = True y = tf.matmul(x, self.w) + self.b return tf.nn.relu(y) class MySequentialModule(tf.Module): def __init__(self, name=None): super().__init__(name=name) self.dense_1 = FlexibleDenseModule(out_features=3) self.dense_2 = FlexibleDenseModule(out_features=2) def __call__(self, x): x = self.dense_1(x) return self.dense_2(x) my_model = MySequentialModule(name="flexible") result = my_model(tf.constant([[2.0, 2.0, 2.0]])) chkp_path = "my_checkpoint" checkpoint = tf.train.Checkpoint(model=my_model) checkpoint.write(chkp_path) print(my_model.variables) new_model = MySequentialModule(name="new") new_checkpoint = tf.train.Checkpoint(model=new_model) new_checkpoint.restore("my_checkpoint") print(new_model.variables) # shows () new_model(tf.constant([[2.0, 2.0, 2.0]])) print(new_model.variables) # shows the loaded weights ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60552/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60552/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60551
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60551/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60551/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60551/events
https://github.com/tensorflow/tensorflow/pull/60551
1,702,714,195
PR_kwDOArmXAs5QIUOZ
60,551
Add CI badges to README
{ "login": "angerson", "id": 32465472, "node_id": "MDQ6VXNlcjMyNDY1NDcy", "avatar_url": "https://avatars.githubusercontent.com/u/32465472?v=4", "gravatar_id": "", "url": "https://api.github.com/users/angerson", "html_url": "https://github.com/angerson", "followers_url": "https://api.github.com/users/angerson/followers", "following_url": "https://api.github.com/users/angerson/following{/other_user}", "gists_url": "https://api.github.com/users/angerson/gists{/gist_id}", "starred_url": "https://api.github.com/users/angerson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/angerson/subscriptions", "organizations_url": "https://api.github.com/users/angerson/orgs", "repos_url": "https://api.github.com/users/angerson/repos", "events_url": "https://api.github.com/users/angerson/events{/privacy}", "received_events_url": "https://api.github.com/users/angerson/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-09T20:31:15
2023-06-08T20:18:05
2023-05-10T01:07:40
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60551", "html_url": "https://github.com/tensorflow/tensorflow/pull/60551", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60551.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60551.patch", "merged_at": "2023-05-10T01:07:40" }
This adds status badges from the TF SIG Build Dashboard, which tracks TF's official OSS-branch CI test suites.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60551/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60551/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60550
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60550/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60550/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60550/events
https://github.com/tensorflow/tensorflow/pull/60550
1,702,707,728
PR_kwDOArmXAs5QIS4n
60,550
[NVIDIA TF] Disable TF32 in remapper_test on A100+ GPUs.
{ "login": "nluehr", "id": 1873655, "node_id": "MDQ6VXNlcjE4NzM2NTU=", "avatar_url": "https://avatars.githubusercontent.com/u/1873655?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nluehr", "html_url": "https://github.com/nluehr", "followers_url": "https://api.github.com/users/nluehr/followers", "following_url": "https://api.github.com/users/nluehr/following{/other_user}", "gists_url": "https://api.github.com/users/nluehr/gists{/gist_id}", "starred_url": "https://api.github.com/users/nluehr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nluehr/subscriptions", "organizations_url": "https://api.github.com/users/nluehr/orgs", "repos_url": "https://api.github.com/users/nluehr/repos", "events_url": "https://api.github.com/users/nluehr/events{/privacy}", "received_events_url": "https://api.github.com/users/nluehr/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-09T20:25:36
2023-05-10T21:54:54
2023-05-10T21:54:54
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60550", "html_url": "https://github.com/tensorflow/tensorflow/pull/60550", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60550.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60550.patch", "merged_at": "2023-05-10T21:54:54" }
On H100 the convs in the remapper_test will use TensorFloat32 by default, leading to results that do not match tolerances as they are calibrated for FP32 results. This test disables TF32 in the relevant test cases. Attn @pkanwar23
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60550/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60550/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60549
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60549/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60549/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60549/events
https://github.com/tensorflow/tensorflow/issues/60549
1,702,695,118
I_kwDOArmXAs5lfRDO
60,549
Large inconsistencies in tf.signal.stft's and tf.signal.inverse_stft's results with @tf.function decorator for certain inputs
{ "login": "jiannanWang", "id": 29331256, "node_id": "MDQ6VXNlcjI5MzMxMjU2", "avatar_url": "https://avatars.githubusercontent.com/u/29331256?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jiannanWang", "html_url": "https://github.com/jiannanWang", "followers_url": "https://api.github.com/users/jiannanWang/followers", "following_url": "https://api.github.com/users/jiannanWang/following{/other_user}", "gists_url": "https://api.github.com/users/jiannanWang/gists{/gist_id}", "starred_url": "https://api.github.com/users/jiannanWang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jiannanWang/subscriptions", "organizations_url": "https://api.github.com/users/jiannanWang/orgs", "repos_url": "https://api.github.com/users/jiannanWang/repos", "events_url": "https://api.github.com/users/jiannanWang/events{/privacy}", "received_events_url": "https://api.github.com/users/jiannanWang/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1190546177, "node_id": "MDU6TGFiZWwxMTkwNTQ2MTc3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:autograph", "name": "comp:autograph", "color": "0052cc", "default": false, "description": "Autograph related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @jiannanWang ,\r\n\r\nThanks for your time to bringing back this again. Yes, with CPU I also replicated the reported behaviour and the results are inconsistent and sometimes quiet large which indicates its not just Precision Errors as you mentioned.The behaviour replacted in attached gists [stft_cpu](https://colab.research.google.com/gist/SuryanarayanaY/78448ec0c8d2e8902fdd4464eca01328/60549_stft-cpu.ipynb) and [inverse_stft_cpu](https://colab.research.google.com/gist/SuryanarayanaY/b04b3190a3d09deb7eb88d92f4dd44fa/60549-inverse_stft-tf-cpu.ipynb).\r\n\r\nAs per documentation, both these APIs are implemented with GPU/TPU compatible Ops and hence with CPU I expected there might be inconsistency.You can find the source for this at the official documentations of both APIs [stft](https://www.tensorflow.org/api_docs/python/tf/signal/stft#:~:text=Implemented%20with%20TPU/GPU%2Dcompatible%20ops%20and%20supports%20gradients.) and [inverse_stft](https://www.tensorflow.org/api_docs/python/tf/signal/inverse_stft#:~:text=Implemented%20with%20TPU/GPU%2Dcompatible%20ops%20and%20supports%20gradients.).\r\n\r\nHence I tried with tf-nightly version and with GPU environment and explicitly under `tf.device('GPU')` . The results here also inconsistent.But relatively `inverse_stft` has very less inconsistency and the differences in results are small compared to `stft` Please refer to GPU gists [stft_gpu](https://colab.research.google.com/gist/SuryanarayanaY/043c1010734c55b3f0a5db41192deb84/60549_stft-tf-nightly_gpu.ipynb) and [inverse_stft](https://colab.research.google.com/gist/SuryanarayanaY/8fa578a2c7afffc8b1da247dd44ec7b7/60549-inverse_stft-tf-gpu.ipynb) .\r\n\r\nI believe this needs to be checked for inconsistency.\r\n" ]
2023-05-09T20:14:39
2023-05-18T04:11:43
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0-dev20230509 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version N/A ### GPU model and memory _No response_ ### Current Behaviour? `tf.signal.stft` and `tf.signal.inverse_stft` has large inconsistencies in their results with or without @tf.function for some inputs. This issue seems to be unrelated to precision errors, as previously discussed under issues (#57960 and #57961), given that the inconsistencies can reach very high values, such as 7.530909102308483e+252+6.2143661415679e-310j. I open this issue because the behavior still exists in the latest nightly version of tensorfow. Further investigation finds that it is because the results are different during each run and thus the inconsistencies are different, where sometimes the discrepancies are extremely large, while at other times they are relatively small. It appears that the inconsistencies are non-deterministic, which indicates a potential issue with the underlying implementation. I rerun the reproduction code several times and record the large inconsistencies below in the log file. The reproduction colab links are here: For tf.signal.stft, https://colab.research.google.com/drive/1WleKXby71iZXOL12r8nIN8B_jd2wJQks?usp=sharing. For tf.signal.inverse_stft, https://colab.research.google.com/drive/1MhNfkZgltqQqHw8kKG2zQi8ivwvKfRoj?usp=sharing. ### Standalone code to reproduce the issue ```shell # for tf.signal.stft import tensorflow as tf import numpy as np print(tf.__version__) input = {'fft_length': 46, 'frame_step': 19, 'frame_length': 0, 'signals': np.array([[[[-8.75314539e+307, -4.03838038e+307, 8.23775798e+307, -1.32627219e+307, 1.19815521e+307, 4.57117750e+307], [-4.74761327e+307, -4.71580522e+307, -5.88832102e+307, -6.48759076e+307, -4.36028464e+307, -4.77775171e+307], [ 1.20113701e+307, -7.60106094e+307, 7.22716917e+307, 2.17687950e+307, -5.25271143e+306, 5.41182394e+307]]]])} output1 = tf.signal.stft(**input) @tf.function def fun_wrapper(x): return tf.signal.stft(**x) output2 = fun_wrapper(input) print(np.allclose(output1, output2)) print(np.max(np.subtract(output1, output2))) # for tf.signal.inverse_stft import tensorflow as tf import numpy as np print(tf.__version__) input = {'frame_step': 29343, 'frame_length': 61, 'stfts': np.array([[]], dtype=np.complex64)} output1 = tf.signal.inverse_stft(**input) @tf.function def fun_wrapper(x): return tf.signal.inverse_stft(**x) output2 = fun_wrapper(input) print(np.allclose(output1, output2)) print(np.max(np.subtract(output1, output2))) ``` ### Relevant log output ```shell ### for tf.signal.stft False (1.2623837153272947e+180+2.19373012209e-312j) False (6.443468248812391e+278-3.2e-322j) False (2.347922071768121e+228+1.74e-321j) ### for tf.signal.inverse_stft False 1.4412957e+32 False 7.529253e+23 False 7800730000.0 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60549/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60549/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60548
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60548/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60548/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60548/events
https://github.com/tensorflow/tensorflow/pull/60548
1,702,663,257
PR_kwDOArmXAs5QIJhq
60,548
Fix nits in release notes
{ "login": "mihaimaruseac", "id": 323199, "node_id": "MDQ6VXNlcjMyMzE5OQ==", "avatar_url": "https://avatars.githubusercontent.com/u/323199?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mihaimaruseac", "html_url": "https://github.com/mihaimaruseac", "followers_url": "https://api.github.com/users/mihaimaruseac/followers", "following_url": "https://api.github.com/users/mihaimaruseac/following{/other_user}", "gists_url": "https://api.github.com/users/mihaimaruseac/gists{/gist_id}", "starred_url": "https://api.github.com/users/mihaimaruseac/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mihaimaruseac/subscriptions", "organizations_url": "https://api.github.com/users/mihaimaruseac/orgs", "repos_url": "https://api.github.com/users/mihaimaruseac/repos", "events_url": "https://api.github.com/users/mihaimaruseac/events{/privacy}", "received_events_url": "https://api.github.com/users/mihaimaruseac/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-09T19:48:46
2023-05-26T00:12:33
2023-05-26T00:04:37
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60548", "html_url": "https://github.com/tensorflow/tensorflow/pull/60548", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60548.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60548.patch", "merged_at": "2023-05-26T00:04:36" }
Removed the `*` in `tf.nest` which was not displayed as a bullet item in a sublist. Removed spurious `:` at the end of some bullets to make it consistent throughout the relnotes. Removed `tf.keras` in Keras section as it doesn't make sense to introduce one extra level of indentation for just one single bullet. This involves also removing 4 spaces in front of every bullet point in the corresponding section to make sure the content is not interpreted as code. To be merged __only__ after RC0 is finalized Signed-off-by: [email protected]
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60548/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60548/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60547
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60547/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60547/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60547/events
https://github.com/tensorflow/tensorflow/issues/60547
1,702,656,197
I_kwDOArmXAs5lfHjF
60,547
tf.linalg.matrix_rank results has different results with or without @tf.function for numpy inputs under tensorflow-cpu
{ "login": "jiannanWang", "id": 29331256, "node_id": "MDQ6VXNlcjI5MzMxMjU2", "avatar_url": "https://avatars.githubusercontent.com/u/29331256?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jiannanWang", "html_url": "https://github.com/jiannanWang", "followers_url": "https://api.github.com/users/jiannanWang/followers", "following_url": "https://api.github.com/users/jiannanWang/following{/other_user}", "gists_url": "https://api.github.com/users/jiannanWang/gists{/gist_id}", "starred_url": "https://api.github.com/users/jiannanWang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jiannanWang/subscriptions", "organizations_url": "https://api.github.com/users/jiannanWang/orgs", "repos_url": "https://api.github.com/users/jiannanWang/repos", "events_url": "https://api.github.com/users/jiannanWang/events{/privacy}", "received_events_url": "https://api.github.com/users/jiannanWang/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 2691123225, "node_id": "MDU6TGFiZWwyNjkxMTIzMjI1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:tf.function", "name": "comp:tf.function", "color": "0052cc", "default": false, "description": "tf.function related issues" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "In the first case, `tf.linalg.matrix_rank(**input)` is executed eagerly, meaning that the computation is immediately performed when the code is run. This is the default execution model in TensorFlow 2.x.\r\nIn the second case, `fun_wrapper(input)` is decorated with `tf.function`, which compiles the function into a TensorFlow graph. This graph is then executed using the TensorFlow runtime\r\nTo ensure consistency in the output, you can explicitly convert the numpy array to a TensorFlow tensor before passing it to `tf.linalg.matrix_rank`. For example:\r\n```\r\ninput = {'name': 'matrix_rank', 'a': tf.constant(np.array([[-7.24721292e+307, 4.66389010e+307, -5.40181227e+307,\r\n 7.28793100e+307, 5.19885794e+307],\r\n [-5.74381106e+307, 2.21923437e+307, 4.96898538e+307,\r\n 4.26402766e+307, 7.42174751e+307],\r\n [-2.62810171e+307, 1.71425915e+307, -6.99349881e+307,\r\n -8.11519519e+307, 4.04358640e+307],\r\n [-8.52726304e+307, 1.44214314e+307, -4.53927548e+307,\r\n -4.79571993e+307, -4.59672928e+307]]))}\r\n```\r\nPlease refer to the gist with the same output in both the cases [here](https://colab.sandbox.google.com/gist/synandi/89f91d42bf0a7e2e5add961b67b88d2b/60547_nightly.ipynb). Thank you!", "Hi synandi,\r\n\r\nThank you for your response! \r\n\r\nAs stated in the issue, I'm wondering why the user needs to do the conversion explicitly. Because in the tutorial (https://www.tensorflow.org/tutorials/customization/basics#:~:text=TensorFlow%20operations%20automatically%20convert%20NumPy%20ndarrays%20to%20Tensors), it states that \"TensorFlow operations automatically convert NumPy ndarrays to Tensors\". I would assume TensorFlow would handle numpy inputs by automatically converting it to tensors, instead of requiring the users to explicitly do the conversion." ]
2023-05-09T19:42:32
2023-07-19T21:34:30
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0-dev20230509 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version N/A ### GPU model and memory _No response_ ### Current Behaviour? `tf.linalg.matrix_rank` has different results with or without `@tf.function` when the input is a numpy tensor and **tensorFlow-cpu** is used. Interestingly, this issue does not occur when the numpy array is explicitly converted to a TensorFlow tensor before being passed as an argument to tf.linalg.matrix_rank. This explicit conversion shouldn't be necessary, as per the TensorFlow tutorial (https://www.tensorflow.org/tutorials/customization/basics#:~:text=TensorFlow%20operations%20automatically%20convert%20NumPy%20ndarrays%20to%20Tensors), which states that "TensorFlow operations automatically convert NumPy ndarrays to Tensors". This discrepancy seems to indicate a bug that prevents the utilization of this automatic conversion feature. This issue was previously raised and discussed under issue (#57959), where the proposed solution was the explicit conversion of numpy arrays to TensorFlow tensors. While this solution works, it does not align with the functionality of TensorFlow's automatic conversion of numpy arrays to tensors, and it requires users to perform an additional step that should not be necessary. In essence, this bug seems to affect the user's ability to leverage TensorFlow's automatic conversion of numpy arrays to tensors, particularly when using TensorFlow-CPU. I open this issue because the same behavior still exists in the latest nightly version and I believe it should not be a user issue according to the tutorial. The reproduction colab link is here: https://colab.research.google.com/drive/1wEYxe5b-m7_3pqBP1iTrjSvydMd_jD_B?usp=sharing. ### Standalone code to reproduce the issue ```shell import numpy as np import tensorflow as tf print(tf.__version__) input = {'name': 'matrix_rank', 'a': np.array([[-7.24721292e+307, 4.66389010e+307, -5.40181227e+307, 7.28793100e+307, 5.19885794e+307], [-5.74381106e+307, 2.21923437e+307, 4.96898538e+307, 4.26402766e+307, 7.42174751e+307], [-2.62810171e+307, 1.71425915e+307, -6.99349881e+307, -8.11519519e+307, 4.04358640e+307], [-8.52726304e+307, 1.44214314e+307, -4.53927548e+307, -4.79571993e+307, -4.59672928e+307]])} print(input['a'].dtype) output1 = tf.linalg.matrix_rank(**input) print(output1) @tf.function def fun_wrapper(x): return tf.linalg.matrix_rank(**x) output2 = fun_wrapper(input) print(output2) ``` ### Relevant log output ```shell 2.14.0-dev20230509 float64 tf.Tensor(0, shape=(), dtype=int32) tf.Tensor(4, shape=(), dtype=int32) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60547/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60547/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60546
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60546/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60546/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60546/events
https://github.com/tensorflow/tensorflow/issues/60546
1,702,244,295
I_kwDOArmXAs5ldi_H
60,546
Issue when importing pix2pix in Google Colab
{ "login": "matheovlk", "id": 92208149, "node_id": "U_kgDOBX78FQ", "avatar_url": "https://avatars.githubusercontent.com/u/92208149?v=4", "gravatar_id": "", "url": "https://api.github.com/users/matheovlk", "html_url": "https://github.com/matheovlk", "followers_url": "https://api.github.com/users/matheovlk/followers", "following_url": "https://api.github.com/users/matheovlk/following{/other_user}", "gists_url": "https://api.github.com/users/matheovlk/gists{/gist_id}", "starred_url": "https://api.github.com/users/matheovlk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/matheovlk/subscriptions", "organizations_url": "https://api.github.com/users/matheovlk/orgs", "repos_url": "https://api.github.com/users/matheovlk/repos", "events_url": "https://api.github.com/users/matheovlk/events{/privacy}", "received_events_url": "https://api.github.com/users/matheovlk/received_events", "type": "User", "site_admin": false }
[ { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@matheovlk,\r\nCould you please try to clone the TensorFlow example repository from GitHub. Use from `examples.tensorflow_examples.models.pix2pix import pix2pix` instead of from `tensorflow_examples.models.pix2pix `import pix2pix, Now you can use 'pix2pix' package. Kindly find the gist [here](https://colab.research.google.com/gist/tiruk007/180bc730fb886639f987ba4c993c50ec/segmentation.ipynb#scrollTo=YQX7R4bhZy5h) for reference.\r\n\r\nAlso please have a look at this [comment](https://github.com/tensorflow/tensorflow/issues/60213#issuecomment-1495942281) from the community. Thank you!", "It is working now, thank you!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60546\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60546\">No</a>\n" ]
2023-05-09T15:10:48
2023-05-10T09:26:20
2023-05-10T09:26:17
NONE
null
null
null
Hello, I wanted to use pix2pix in Google Colab and here is the command I used to import it: !pip install git+https://github.com/tensorflow/examples.git I also tried !pip install -q git+https://github.com/tensorflow/examples.git But for both request, I get this error: Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting git+https://github.com/tensorflow/examples.git Cloning https://github.com/tensorflow/examples.git to /tmp/pip-req-build-z5dheb37 Running command git clone --filter=blob:none --quiet https://github.com/tensorflow/examples.git /tmp/pip-req-build-z5dheb37 Resolved https://github.com/tensorflow/examples.git to commit 1ca61321294cd2e97efc021ff1b3700b42befd0b error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. Preparing metadata (setup.py) ... error error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details. Could you please repair it? Best regards P.S.: If there is any way for me to use pix2pix in an alternative way, could you please indicate me on how to do it because I did not found an alternative.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60546/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60546/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60545
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60545/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60545/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60545/events
https://github.com/tensorflow/tensorflow/pull/60545
1,702,216,387
PR_kwDOArmXAs5QGoUO
60,545
Fix unit test failures
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Fixes test failure introduced with https://github.com/tensorflow/tensorflow/commit/ce26e300f41d831606bf31b9095ef769486c23cf" ]
2023-05-09T14:57:11
2023-05-10T08:26:31
2023-05-09T19:55:33
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60545", "html_url": "https://github.com/tensorflow/tensorflow/pull/60545", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60545.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60545.patch", "merged_at": "2023-05-09T19:55:33" }
Add tag to tensor_float_32_test to prevent its running on pip where it will fail due to being unable to import xla_test from tensorflow.compiler.tests
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60545/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60545/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60544
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60544/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60544/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60544/events
https://github.com/tensorflow/tensorflow/issues/60544
1,702,054,300
I_kwDOArmXAs5lc0mc
60,544
TfLite.initialize failure - android.os.RemoteException: Error loading TFLite GPU delegate module Caused by: lh: No acceptable module com.google.android.gms.tflite_gpu_dynamite found. Local version is 0 and remote version is 0.
{ "login": "jplipata", "id": 11450465, "node_id": "MDQ6VXNlcjExNDUwNDY1", "avatar_url": "https://avatars.githubusercontent.com/u/11450465?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jplipata", "html_url": "https://github.com/jplipata", "followers_url": "https://api.github.com/users/jplipata/followers", "following_url": "https://api.github.com/users/jplipata/following{/other_user}", "gists_url": "https://api.github.com/users/jplipata/gists{/gist_id}", "starred_url": "https://api.github.com/users/jplipata/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jplipata/subscriptions", "organizations_url": "https://api.github.com/users/jplipata/orgs", "repos_url": "https://api.github.com/users/jplipata/repos", "events_url": "https://api.github.com/users/jplipata/events{/privacy}", "received_events_url": "https://api.github.com/users/jplipata/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671339633, "node_id": "MDU6TGFiZWwyNjcxMzM5NjMz", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate", "name": "TFLiteGpuDelegate", "color": "F71F04", "default": false, "description": "TFLite Gpu delegate issue" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hello!\r\n\r\nIt looks like the GPU delegate is not available on the device you are running on. This can happen due to several reasons, and in this case it might be transient, but in general we recommend to [check for availability of the GPU delegate ](https://www.tensorflow.org/lite/android/play_services#checking_device_compatibility) and only request the GPU delegate when it is supported.", "I've added the check, and the result is `true`\r\n\r\nHowever now when I call `InterpreterApi.create(...)` I'm getting another error. \r\n\r\n```\r\nNo implementation found for void com.google.android.gms.tflite.gpu.GpuDelegateNative.nativeDoNothing() ...\r\njava.lang.IllegalStateException: Error creating GPU delegate at org.tensorflow.lite.gpu.GpuDelegateFactory.create(GpuDelegateFactory.java:189)...\r\nCaused by: java.lang.reflect.InvocationTargetException at java.lang.reflect.Constructor.newInstance0(Native Method)...\r\nCaused by: java.lang.UnsatisfiedLinkError: Failed to load native GpuDelegate methods. Check that the correct native libraries are present, and, if using a custom native library, have been properly loaded via System.loadLibrary(): java.lang.UnsatisfiedLinkError: No implementation found for void ...\r\nCaused by: [CIRCULAR REFERENCE: java.lang.UnsatisfiedLinkError: No implementation found for void com.google.android.gms.tflite.gpu.GpuDelegateNative.nativeDoNothing() (tried Java_com_google_android_gms_tflite_gpu_GpuDelegateNative_nativeDoNothing and Java_com_google_android_gms_tflite_gpu_GpuDelegateNative_nativeDoNothing__)\r\n```\r\n\r\nFull log: [crashlog-gpudelegate.txt](https://github.com/tensorflow/tensorflow/files/11471906/crashlog-gpudelegate.txt)\r\n\r\nI have verified that calling `TfLite.initialize(...)` is successful before calling `InterpreterApi.create(...)`", "It looks like the version of the `com.google.android.gms:play-services-tflite-java` dependency (16.0.0) is too old for the `com.google.android.gms:play-services-tflite-gpu` version (16.2.0). Normally we add POM-level dependencies to automatically update dependencies to the required version, but it looks like we missed that in this instance.\r\n\r\nIn the meantime, updating your `com.google.android.gms:play-services-tflite-java` dependency to the latest version (16.1.0) should hopefully fix this issue.", "@sheepmaster thank you for your reply\r\n\r\nHowever I am not using `com.google.android.gms:play-services-tflite-java` (at least not directly)\r\n\r\nMy full dependencies are here:\r\n\r\n```\r\ndependencies {\r\n implementation 'org.jetbrains.kotlin:kotlin-stdlib-jdk8'\r\n\r\n // App compat and UI things\r\n implementation 'androidx.appcompat:appcompat:1.3.1'\r\n implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.3.1'\r\n implementation 'androidx.constraintlayout:constraintlayout:2.0.4'\r\n implementation 'com.google.android.material:material:1.4.0'\r\n\r\n implementation \"androidx.concurrent:concurrent-futures-ktx:1.1.0\"\r\n testImplementation 'org.junit.jupiter:junit-jupiter:5.9.1'\r\n\r\n // CameraX\r\n def camerax_version = '1.3.0-SNAPSHOT'\r\n implementation \"androidx.camera:camera-core:${camerax_version}\"\r\n implementation \"androidx.camera:camera-camera2:${camerax_version}\"\r\n implementation \"androidx.camera:camera-lifecycle:${camerax_version}\"\r\n implementation \"androidx.camera:camera-view:${camerax_version}\"\r\n implementation \"androidx.camera:camera-video:${camerax_version}\"\r\n\r\n\r\n // Tensorflow lite dependencies\r\n implementation 'org.tensorflow:tensorflow-lite-task-vision-play-services:0.4.2'\r\n implementation 'com.google.android.gms:play-services-tflite-gpu:16.2.0'\r\n\r\n testImplementation 'org.robolectric:robolectric:4.4'\r\n testImplementation 'junit:junit:4.13.2'\r\n}\r\n```", "OK, in that case just add a line\r\n```\r\nimplementation 'com.google.android.gms:play-services-tflite-java:16.1.0'\r\n```\r\nto the `Tensorflow lite dependencies` section :) \r\n\r\n(OTOH, you _might_ not need the `org.tensorflow:tensorflow-lite-task-vision-play-services` dependency if you are using `InterpreterApi`).", "Ahh yes that seemed to be the issue. I had the Task dependencies instead of [Interpreter API dependencies](https://www.tensorflow.org/lite/android/play_services#1_add_project_dependencies_2) 👍 Thank you for your help!", "Hi @jplipata \r\n\r\nGlad the issue is resolved for you. Feel free to close the issue.\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60544\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60544\">No</a>\n" ]
2023-05-09T13:35:06
2023-05-31T02:05:39
2023-05-31T02:05:35
NONE
null
null
null
My implementation was working before adding GPU delegate (following instructions [here](https://www.tensorflow.org/lite/android/play_services#gpu_with_interpreter_apis)). After following those instructions I get this error when initializing TfLite TfLite.initialize failure ``` android.os.RemoteException: Error loading TFLite GPU delegate module at pi.a(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:0) at com.google.android.gms.tflite.dynamite.TfLiteDynamiteLoaderImpl.b(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:8) at com.google.android.gms.tflite.dynamite.TfLiteDynamiteLoaderImpl.getInternalNativeInitializationHandleWithParams(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:0) at oi.w(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:5) at bs.onTransact(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:4) at android.os.Binder.transact(Binder.java:1200) at com.google.android.gms.internal.tflite.zza.zzb(com.google.android.gms:play-services-tflite-impl@@16.0.0:2) at com.google.android.gms.tflite.dynamite.zza.zze(com.google.android.gms:play-services-tflite-impl@@16.0.0:4) at com.google.android.gms.internal.tflite.zzr.zzc(com.google.android.gms:play-services-tflite-impl@@16.0.0:11) at com.google.android.gms.internal.tflite.zzp.zza(com.google.android.gms:play-services-tflite-impl@@16.0.0:7) at com.google.android.gms.internal.tflite.zzn.then(Unknown Source:6) at com.google.android.gms.tasks.zzo.run(com.google.android.gms:play-services-tasks@@18.0.2:1) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1137) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:637) at java.lang.Thread.run(Thread.java:1012) Caused by: lh: No acceptable module com.google.android.gms.tflite_gpu_dynamite found. Local version is 0 and remote version is 0. at ll.c(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:88) at com.google.android.gms.tflite.dynamite.TfLiteDynamiteLoaderImpl.b(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:4) at com.google.android.gms.tflite.dynamite.TfLiteDynamiteLoaderImpl.getInternalNativeInitializationHandleWithParams(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:0)  at oi.w(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:5)  at bs.onTransact(:com.google.android.gms.policy_tflite_dynamite_dynamite@[email protected]:4)  at android.os.Binder.transact(Binder.java:1200)  at com.google.android.gms.internal.tflite.zza.zzb(com.google.android.gms:play-services-tflite-impl@@16.0.0:2)  at com.google.android.gms.tflite.dynamite.zza.zze(com.google.android.gms:play-services-tflite-impl@@16.0.0:4)  at com.google.android.gms.internal.tflite.zzr.zzc(com.google.android.gms:play-services-tflite-impl@@16.0.0:11)  at com.google.android.gms.internal.tflite.zzp.zza(com.google.android.gms:play-services-tflite-impl@@16.0.0:7)  at com.google.android.gms.internal.tflite.zzn.then(Unknown Source:6)  at com.google.android.gms.tasks.zzo.run(com.google.android.gms:play-services-tasks@@18.0.2:1)  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1137)  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:637)  at java.lang.Thread.run(Thread.java:1012)  ---------------------------- PROCESS ENDED (24111) for package com.android.example.camerax.tflite --------- ``` **System information** - Android Device information: samsung/o1quew/o1q:13/TP1A.220624.014/G991U1UEU6EWD1:user/release-keys - TensorFlow Lite in Play Services SDK version (found in `build.gradle`): - org.tensorflow:tensorflow-lite-task-vision-play-services:0.4.2 - com.google.android.gms:play-services-tflite-gpu:16.2.0 - Google Play Services version (`Settings` > `Apps` > `Google Play Services` > `App details`): 23.16.13 **Standalone code to reproduce the issue** ``` implementation 'org.tensorflow:tensorflow-lite-task-vision-play-services:0.4.2' implementation 'com.google.android.gms:play-services-tflite-gpu:16.2.0' ``` Activity class ``` override fun onCreate... { val initializeTask: Task<Void> by lazy { TfLite.initialize( this, TfLiteInitializationOptions.builder() .setEnableGpuDelegateSupport(true) .build() ) } } ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60544/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60544/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60543
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60543/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60543/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60543/events
https://github.com/tensorflow/tensorflow/issues/60543
1,701,947,878
I_kwDOArmXAs5lcanm
60,543
tf.meshgrid not working with tf.function
{ "login": "josefondrej", "id": 16517929, "node_id": "MDQ6VXNlcjE2NTE3OTI5", "avatar_url": "https://avatars.githubusercontent.com/u/16517929?v=4", "gravatar_id": "", "url": "https://api.github.com/users/josefondrej", "html_url": "https://github.com/josefondrej", "followers_url": "https://api.github.com/users/josefondrej/followers", "following_url": "https://api.github.com/users/josefondrej/following{/other_user}", "gists_url": "https://api.github.com/users/josefondrej/gists{/gist_id}", "starred_url": "https://api.github.com/users/josefondrej/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/josefondrej/subscriptions", "organizations_url": "https://api.github.com/users/josefondrej/orgs", "repos_url": "https://api.github.com/users/josefondrej/repos", "events_url": "https://api.github.com/users/josefondrej/events{/privacy}", "received_events_url": "https://api.github.com/users/josefondrej/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60543\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60543\">No</a>\n" ]
2023-05-09T12:42:34
2023-05-09T13:22:17
2023-05-09T13:22:14
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.4.4 ### Custom Code Yes ### OS Platform and Distribution Windows 10 ### Mobile device _No response_ ### Python version 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When running the code, I would expect it to pass without error. But I am getting the following error. When deleting the @tf.function decorator, it works as expected ``` Traceback (most recent call last): File "C:\Users\Josef.ondrej\AppData\Roaming\JetBrains\PyCharm2022.3\scratches\scratch_236.py", line 11, in <module> print(my_function()) File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\eager\def_function.py", line 828, in __call__ result = self._call(*args, **kwds) File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\eager\def_function.py", line 871, in _call self._initialize(args, kwds, add_initializers_to=initializers) File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\eager\def_function.py", line 725, in _initialize self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\eager\function.py", line 2969, in _get_concrete_function_internal_garbage_collected graph_function, _ = self._maybe_define_function(args, kwargs) File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\eager\function.py", line 3361, in _maybe_define_function graph_function = self._create_graph_function(args, kwargs) File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\eager\function.py", line 3196, in _create_graph_function func_graph_module.func_graph_from_py_func( File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 990, in func_graph_from_py_func func_outputs = python_func(*func_args, **func_kwargs) File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\eager\def_function.py", line 634, in wrapped_fn out = weak_wrapped_fn().__wrapped__(*args, **kwds) File "C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\framework\func_graph.py", line 977, in wrapper raise e.ag_error_metadata.to_exception(e) NotImplementedError: in user code: C:\Users\Josef.ondrej\AppData\Roaming\JetBrains\PyCharm2022.3\scratches\scratch_236.py:8 my_function * tf.meshgrid(b, a) C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper ** return target(*args, **kwargs) C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\ops\array_ops.py:3552 meshgrid mult_fact = ones(shapes, output_dtype) C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper return target(*args, **kwargs) C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\ops\array_ops.py:3120 ones output = _constant_if_small(one, shape, dtype, name) C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\ops\array_ops.py:2804 _constant_if_small if np.prod(shape) < 1000: <__array_function__ internals>:180 prod C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\numpy\core\fromnumeric.py:3088 prod return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\numpy\core\fromnumeric.py:86 _wrapreduction return ufunc.reduce(obj, axis, dtype, out, **passkwargs) C:\Users\Josef.ondrej\Anaconda3\envs\foobar-env\lib\site-packages\tensorflow\python\framework\ops.py:852 __array__ raise NotImplementedError( NotImplementedError: Cannot convert a symbolic Tensor (meshgrid/Size_1:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported ``` ### Standalone code to reproduce the issue ```shell import tensorflow as tf @tf.function def my_function(): a = tf.constant([1.0]) b = tf.constant([1.0]) tf.meshgrid(b, a) ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60543/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60543/timeline
null
not_planned
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60542
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60542/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60542/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60542/events
https://github.com/tensorflow/tensorflow/pull/60542
1,701,690,838
PR_kwDOArmXAs5QE4Bw
60,542
[tflite] delegate cos to NNAPI
{ "login": "freedomtan", "id": 3395998, "node_id": "MDQ6VXNlcjMzOTU5OTg=", "avatar_url": "https://avatars.githubusercontent.com/u/3395998?v=4", "gravatar_id": "", "url": "https://api.github.com/users/freedomtan", "html_url": "https://github.com/freedomtan", "followers_url": "https://api.github.com/users/freedomtan/followers", "following_url": "https://api.github.com/users/freedomtan/following{/other_user}", "gists_url": "https://api.github.com/users/freedomtan/gists{/gist_id}", "starred_url": "https://api.github.com/users/freedomtan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/freedomtan/subscriptions", "organizations_url": "https://api.github.com/users/freedomtan/orgs", "repos_url": "https://api.github.com/users/freedomtan/repos", "events_url": "https://api.github.com/users/freedomtan/events{/privacy}", "received_events_url": "https://api.github.com/users/freedomtan/received_events", "type": "User", "site_admin": false }
[ { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "@gbaned and @qukhan could you tell me why Google internal checks FAILED?", "The failures are unrelated to your pull request. I'm working on getting around the issue." ]
2023-05-09T09:20:47
2023-05-26T22:52:37
2023-05-26T14:07:48
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60542", "html_url": "https://github.com/tensorflow/tensorflow/pull/60542", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60542.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60542.patch", "merged_at": "2023-05-26T14:07:48" }
We need cosine for some networks, such as transformer positional encoding. Cosine is not directly supported by NNAPI, but we know $cos(x) = sin(\frac{\pi}{2} - x)$
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60542/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60542/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60541
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60541/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60541/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60541/events
https://github.com/tensorflow/tensorflow/pull/60541
1,701,019,727
PR_kwDOArmXAs5QCnzk
60,541
[tosa] Disable non-1.0 beta parameter for Softmax
{ "login": "Jerry-Ge", "id": 24451859, "node_id": "MDQ6VXNlcjI0NDUxODU5", "avatar_url": "https://avatars.githubusercontent.com/u/24451859?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Jerry-Ge", "html_url": "https://github.com/Jerry-Ge", "followers_url": "https://api.github.com/users/Jerry-Ge/followers", "following_url": "https://api.github.com/users/Jerry-Ge/following{/other_user}", "gists_url": "https://api.github.com/users/Jerry-Ge/gists{/gist_id}", "starred_url": "https://api.github.com/users/Jerry-Ge/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jerry-Ge/subscriptions", "organizations_url": "https://api.github.com/users/Jerry-Ge/orgs", "repos_url": "https://api.github.com/users/Jerry-Ge/repos", "events_url": "https://api.github.com/users/Jerry-Ge/events{/privacy}", "received_events_url": "https://api.github.com/users/Jerry-Ge/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-08T22:12:22
2023-05-10T21:17:40
2023-05-10T21:17:40
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60541", "html_url": "https://github.com/tensorflow/tensorflow/pull/60541", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60541.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60541.patch", "merged_at": "2023-05-10T21:17:40" }
- beta is not supported from TF: https://github.com/tensorflow/tensorflow/issues/60435 - no real use-cases of non-1.0 beta found - seems dead functionality
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60541/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60541/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60540
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60540/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60540/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60540/events
https://github.com/tensorflow/tensorflow/pull/60540
1,700,885,149
PR_kwDOArmXAs5QCKyQ
60,540
Add stricter type checking for tf.math.real
{ "login": "alexrosen45", "id": 64982042, "node_id": "MDQ6VXNlcjY0OTgyMDQy", "avatar_url": "https://avatars.githubusercontent.com/u/64982042?v=4", "gravatar_id": "", "url": "https://api.github.com/users/alexrosen45", "html_url": "https://github.com/alexrosen45", "followers_url": "https://api.github.com/users/alexrosen45/followers", "following_url": "https://api.github.com/users/alexrosen45/following{/other_user}", "gists_url": "https://api.github.com/users/alexrosen45/gists{/gist_id}", "starred_url": "https://api.github.com/users/alexrosen45/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alexrosen45/subscriptions", "organizations_url": "https://api.github.com/users/alexrosen45/orgs", "repos_url": "https://api.github.com/users/alexrosen45/repos", "events_url": "https://api.github.com/users/alexrosen45/events{/privacy}", "received_events_url": "https://api.github.com/users/alexrosen45/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-08T20:25:25
2023-06-14T16:24:19
2023-06-14T16:24:19
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60540", "html_url": "https://github.com/tensorflow/tensorflow/pull/60540", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60540.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60540.patch", "merged_at": "2023-06-14T16:24:18" }
Fix for tf.math.real so that it only accepts tensors with numeric entries as input. This makes it consistent with its documentation at https://www.tensorflow.org/api_docs/python/tf/math/real and raises a TypeError saying input must have numeric entries when called incorrectly. For more details, see issue #60526.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60540/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60540/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60539
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60539/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60539/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60539/events
https://github.com/tensorflow/tensorflow/issues/60539
1,700,725,836
I_kwDOArmXAs5lXwRM
60,539
Support/Feature Request: Pre-processing very large corpus text file as tokens to train GPT Models.
{ "login": "abhaskumarsinha", "id": 31654395, "node_id": "MDQ6VXNlcjMxNjU0Mzk1", "avatar_url": "https://avatars.githubusercontent.com/u/31654395?v=4", "gravatar_id": "", "url": "https://api.github.com/users/abhaskumarsinha", "html_url": "https://github.com/abhaskumarsinha", "followers_url": "https://api.github.com/users/abhaskumarsinha/followers", "following_url": "https://api.github.com/users/abhaskumarsinha/following{/other_user}", "gists_url": "https://api.github.com/users/abhaskumarsinha/gists{/gist_id}", "starred_url": "https://api.github.com/users/abhaskumarsinha/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhaskumarsinha/subscriptions", "organizations_url": "https://api.github.com/users/abhaskumarsinha/orgs", "repos_url": "https://api.github.com/users/abhaskumarsinha/repos", "events_url": "https://api.github.com/users/abhaskumarsinha/events{/privacy}", "received_events_url": "https://api.github.com/users/abhaskumarsinha/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1114343535, "node_id": "MDU6TGFiZWwxMTE0MzQzNTM1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data", "name": "comp:data", "color": "0052cc", "default": false, "description": "tf.data related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }, { "login": "wilsingosti", "id": 93937952, "node_id": "U_kgDOBZlhIA", "avatar_url": "https://avatars.githubusercontent.com/u/93937952?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wilsingosti", "html_url": "https://github.com/wilsingosti", "followers_url": "https://api.github.com/users/wilsingosti/followers", "following_url": "https://api.github.com/users/wilsingosti/following{/other_user}", "gists_url": "https://api.github.com/users/wilsingosti/gists{/gist_id}", "starred_url": "https://api.github.com/users/wilsingosti/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wilsingosti/subscriptions", "organizations_url": "https://api.github.com/users/wilsingosti/orgs", "repos_url": "https://api.github.com/users/wilsingosti/repos", "events_url": "https://api.github.com/users/wilsingosti/events{/privacy}", "received_events_url": "https://api.github.com/users/wilsingosti/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @abhaskumarsinha ,\r\n\r\nIf the text data is in a directory then you can use the API `tf.keras.utils.text_dataset_from_directory` to generate a tf.data.Dataset object from text files in the directory. Please refer the API [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/utils/text_dataset_from_directory) for more details.\r\n\r\nYou can also refer this documentation [guide](https://www.tensorflow.org/guide/data?_gl=1*1orjui2*_ga*MTM4Mzg1ODAxNi4xNjY1OTkwMTQ1*_ga_W0YLR4190T*MTY4MzYxMTczMi44ODMuMS4xNjgzNjEzMjc0LjAuMC4w#consuming_text_data) on how to consume text data.\r\n\r\nPlease refer to an end to end tutorial for handling text data [here](https://www.tensorflow.org/tutorials/load_data/text).\r\n\r\nPlease go through and let us know if this is helpful. Thanks!", "Hello @SuryanarayanaY \r\n\r\nThank you for your response.\r\n\r\nI've already checked all of them before and I don't see how they would be helpful to me in this case.\r\n1. `tf.keras.utils.text_dataset_from_directory` loads the text from different files. The output is an array of strings in the order of text. This is typically in contrast to my requirement - where I require output in the form of an array of tokens (or words, separated with a spacebar), not a sentence. For example: `[b'Hello', b'World!', b'I', b'love', b'TensorFlow']` and then pre-process them back to sentence and token (as in the example in my first post).\r\n2. The second guide link on consuming text data is similar. It processes the data in the form of sentences and not tokens.\r\n3. I've also checked the handling text data tutorial before. The goal of the preprocessing I require is fundamentally different from the one discussed in the tutorial.\r\n\r\nI also noticed `tf.strings.split` method to split the strings and map each sentence to one token, **this is again different from my requirement, where I actually require a flattened version of the tf.strings.split output** in the form of an array [1, m].\r\n\r\nOne way I can think to solve the issue is to write a generator function in Python that yields a pre-processed tokenized array of text tokens in the required array by reading a file in fragments each time and moving to the next iterator corresponding to the next fragment of the file, and use this generator with `tf.data`. But again, Python natively offers no such feature to **read files in the fragment of tokens** (but rather bytes, which I don't require).", "Hello @SuryanarayanaY \r\n\r\nThe best I've got to do till now is this code:\r\n\r\n```\r\ndataset = './dataset/output_dataset.txt'\r\n\r\ndata = tf.data.TextLineDataset(dataset)\r\n\r\ndef split(string):\r\n return tf.strings.split(string, sep=' ')\r\n\r\ndef filter_empty_string(string):\r\n if tf.strings.length(tf.strings.reduce_join(string)) == 0:\r\n return False\r\n else:\r\n return True\r\n\r\ndata.map(split).filter(filter_empty_string)\r\n\r\nfor i in data.map(split).filter(filter_empty_string).take(10):\r\n print(i.numpy())\r\n```\r\n\r\n\r\nwhich produces an output like this:\r\n```\r\n[b'***' b'START' b'OF' b'THIS' b'PROJECT' b'GUTENBERG' b'EBOOK' b'COM@@'\r\n b'ING' b'AT@@' b'TRA@@' b'C@@' b'TION' b'***']\r\n[b'Produced' b'by' b'Greg' b'Weeks,' b'Mary' b'Me@@' b'ehan' b'and' b'the'\r\n b'Online']\r\n[b'Distributed' b'Proofreading' b'Team' b'at' b'http://www.pgdp.net']\r\n[b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b''\r\n b'' b'' b'' b'' b'' b'' b'' b'' b'' b'Coming' b'At@@' b'trac@@' b'tion']\r\n[b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b''\r\n b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'BY' b'F@@' b'R@@' b'IT@@' b'Z'\r\n b'LE@@' b'I@@' b'B@@' b'ER']\r\n[b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b''\r\n b'' b'' b'' b'' b'' b'Illustr@@' b'ated' b'by' b'Paul' b'C@@' b'alle']\r\n[b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'[T@@' b'ran@@' b\"scriber's\"\r\n b'Note:' b'This' b'et@@' b'ext' b'was' b'produced' b'from']\r\n[b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b'' b''\r\n b'Gal@@' b'ax@@' b'y' b'Sci@@' b'ence' b'F@@' b'ic@@' b'tion' b'November'\r\n b'19@@' b'50@@' b'.']\r\n[b'' b'' b'' b'' b'' b'' b'' b'' b'' b'Extensive' b'research' b'did'\r\n b'not' b'uncover' b'any' b'evidence' b'that']\r\n[b'' b'' b'' b'' b'' b'' b'' b'' b'' b'the' b'U.S.' b'copyright' b'on'\r\n b'this' b'publication' b'was' b'rene@@' b'we@@' b'd.]']\r\n```\r\n\r\nThis is far, far from what I need, that you can see in the example I've provided in the very first post. Somewhat similar to this:\r\n```\r\n[b'*** START OF' ], [b'THIS'] \r\n[b'START OF THIS'], [b'PROJECT']\r\n[b'OF THIS PROJECT'], [b'GUTENBERG'] \r\n...\r\n```\r\n\r\nfor `gpt_input = 3`", "Hi @abhaskumarsinha ,\r\n\r\nFor data preprocessing of `tf.data.Dataset` outputs you need to use `pre-processing` layers.\r\n\r\nFor text vectorization TF have `tf.keras.layers.TextVectorization` layer and it has some built-in methods which may be helpful. Please refer the documentation [source](https://www.tensorflow.org/guide/keras/preprocessing_layers#text_preprocessing) for more details.\r\n\r\nThanks!", "Hello @SuryanarayanaY \r\n\r\n`tf.keras.layers.TextVectorization` has methods to deal with pre-processing **texts** into the matrices of numbers and arrays. But, for casting the text into numbers of the fixed array, I must get them in the desired format (or order), this is what `TextVectorization` doesn't seem to offer here.\r\n\r\nThank you.", "Hello @SuryanarayanaY \r\n\r\nHere's my latest effort to help me load dataset using `tf.data.Dataset.from_generator`:\r\n\r\n```\r\nstarting_chunk = 5\r\nending_chunk = 10\r\nchunk_size = 1024\r\n\r\ndef read_file(f, vectorizer, chunk_size = 1024, starting_chunk = 0, ending_chunk = 2, gpt_input = 10):\r\n i = 0\r\n chunk = []\r\n \r\n while True:\r\n data = f.read(chunk_size)\r\n \r\n if not data or i > ending_chunk:\r\n break\r\n \r\n if i >= starting_chunk and i <= ending_chunk:\r\n file_contents = data.split()\r\n input_tokens, output_tokens = [], []\r\n for i in range(len(file_contents) - gpt_input - 1):\r\n input_tokens += [file_contents[i : i + gpt_input]]\r\n output_tokens += [file_contents[i + gpt_input]]\r\n \r\n \r\n X = [' '.join(input_tokens[i]) for i in range(len(input_tokens))]\r\n Y = output_tokens\r\n \r\n X = vectorizer(X)\r\n Y = vectorizer(Y)\r\n \r\n output = tf.concat([X, Y], 1)\r\n \r\n yield output\r\n \r\n i += 1\r\n```\r\n \r\nand using the generator above with `tf.data.Dataset.from.generator`:\r\n\r\n```\r\ndataset = tf.data.Dataset.from_generator(\r\n read_file,\r\n args = (tf.io.read_file(\"./dataset/output_dataset.txt\"), vectorizer),\r\n output_signature = tf.TensorSpec(shape = (None, None, None), dtype = tf.int64)\r\n )\r\n```\r\n\r\nNevertheless, I get greeted with an error:\r\n\r\n`ValueError: Attempt to convert a value (<keras.layers.preprocessing.text_vectorization.TextVectorization object at 0x0000016EC7E3F370>) with an unsupported type (<class 'keras.layers.preprocessing.text_vectorization.TextVectorization'>) to a Tensor.`\r\n\r\n\r\nIt sounds like it is almost impossible to do it using TensorFlow library functions...\r\n\r\n Thank You." ]
2023-05-08T18:34:35
2023-07-14T23:21:36
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version v2.9.0-18-gd8ce9f9c301 2.9.1 ### Custom Code Yes ### OS Platform and Distribution Windows 11 ### Mobile device _No response_ ### Python version 3.9.5 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Suppose I've a very simple Python code like this: ``` corpus = file.read() file_contents = corpus.split()[token_start : token_end] input_tokens, output_tokens = [], [] for i in tqdm(range(len(file_contents) - gpt_input - 1)): input_tokens += [file_contents[i : i + gpt_input]] output_tokens += [file_contents[i + gpt_input]] X = [' '.join(input_tokens[i]) for i in tqdm(range(len(input_tokens)))] Y = output_tokens ``` The code does three things: 1. Load a file into RAM, split the contents of the file into words, i.e. - we have a list of words from the file in the order of the sentences. 2. Next, use two variables - input_tokens, output_tokens as list and append list of first `gpt_input` words in input_token and `gpt-input`-th word in output_token. This ensures that we have all `i` to `i + gpt_input` words in input_tokens and `i + 1` tokens in output_tokens, for all i = 0 to i = `total_tokens - 1`. 3. Now, we reconstruct sentences with words input_tokens, i.e. - we condensate gpt_input words back to the sentences. Example: If the file has contents like this: ``` Hello World, I'm writing a new cool code in TensorFlow, please don't forget to check it! ``` The end result: input_tokens for gpt_input = 3: ``` Hello World, I'm World, I'm writing I'm writing a writing a new a new cool ... ``` output_tokens for gpt_input = 3: ``` writing a new cool code ... ``` So, now the problem is - the file or the text corpus which is needed to train a GPT Model can be very large! like upto - 200-300 GB and can't be loaded into RAM/memory directly. So, TensorFlow offers - tf.data class, with the set of tools to help loading, caching and training from very large datasets. But the problem is that, I don't see any way to create and pre-process text file corpus using tf.data class from the documentation. To me, it seems pretty much impossible to do. If there is any way to load corpus fragments with a window size defined by words, kindly let me know. Thank you in advance. ### Standalone code to reproduce the issue ```shell corpus = file.read() file_contents = corpus.split()[token_start : token_end] input_tokens, output_tokens = [], [] for i in tqdm(range(len(file_contents) - gpt_input - 1)): input_tokens += [file_contents[i : i + gpt_input]] output_tokens += [file_contents[i + gpt_input]] X = [' '.join(input_tokens[i]) for i in tqdm(range(len(input_tokens)))] Y = output_tokens ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60539/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60539/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60538
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60538/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60538/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60538/events
https://github.com/tensorflow/tensorflow/issues/60538
1,700,700,308
I_kwDOArmXAs5lXqCU
60,538
TF 2.12 Failing to Build for ROCm - missing dependency declarations
{ "login": "Mushoz", "id": 18422243, "node_id": "MDQ6VXNlcjE4NDIyMjQz", "avatar_url": "https://avatars.githubusercontent.com/u/18422243?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Mushoz", "html_url": "https://github.com/Mushoz", "followers_url": "https://api.github.com/users/Mushoz/followers", "following_url": "https://api.github.com/users/Mushoz/following{/other_user}", "gists_url": "https://api.github.com/users/Mushoz/gists{/gist_id}", "starred_url": "https://api.github.com/users/Mushoz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mushoz/subscriptions", "organizations_url": "https://api.github.com/users/Mushoz/orgs", "repos_url": "https://api.github.com/users/Mushoz/repos", "events_url": "https://api.github.com/users/Mushoz/events{/privacy}", "received_events_url": "https://api.github.com/users/Mushoz/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false }
[ { "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false } ]
null
[ "Looks like the `third_party/gpus/rocm_configure.bzl` file does not include a path for clang 16.0.0. I have manually included it now. Will report back whether this allows it to compile successfully. If not, downgrading to clang 15.0.0 (which has probably been tested since it's already defined) is probably the solution.", "\r\n\r\nHi @Mushoz, Apologies for the delay.\r\nAs it is tested with clang 15.0.0 as mentioned [here](https://github.com/tensorflow/tensorflow/blob/v2.12.0/third_party/gpus/rocm_configure.bzl), it is recommended to use the tested configurations. Please confirm if the issue is resolved. Thank you!", "@synandi Sorry for not reporting back earlier! I do confirm adding the path to clang 16.0.0 fixes the issue. It also compiles successfully, so I did not have to downgrade to clang 15.0.0. ", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60538\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60538\">No</a>\n", "> @synandi Sorry for not reporting back earlier! I do confirm adding the path to clang 16.0.0 fixes the issue. It also compiles successfully, so I did not have to downgrade to clang 15.0.0.\r\n\r\n@Mushoz It's already merged in the latest TF, thanks a lot for the issue!\r\n\r\nhttps://github.com/tensorflow/tensorflow/commit/c97cec76fc145c25543b0e7545d5ea3ad4f8e764\r\nhttps://github.com/openxla/xla/pull/2972", "How do you add the path?", "Can you teach me? Thank you very much", "Hi @s1mplezpc AMD has its own Tensorflow repo https://github.com/ROCm/tensorflow-upstream and we have [build script](https://github.com/ROCm/tensorflow-upstream/blob/develop-upstream/build_rocm_python3#L33) and you can change the ROCm version here https://github.com/ROCm/tensorflow-upstream/blob/develop-upstream/build_rocm_python3#L33" ]
2023-05-08T18:14:36
2024-03-30T14:42:54
2023-05-10T13:41:00
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.12 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.10.6 ### Bazel version 5.3.0 ### GCC/Compiler version Clang 16.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The Bazel build is failing. It is complaining about missing dependency declarations, yet the files mentioned do exist just fine. I have reproduced the issue in a Dockerfile to make it reproducable (see below). ### Standalone code to reproduce the issue Building this Dockerfile should show the error: ```shell FROM ubuntu RUN apt update RUN apt install sudo -y RUN useradd -m tensorflow-rocm -g sudo RUN echo "%sudo ALL=(ALL:ALL) NOPASSWD: ALL" >> /etc/sudoers USER tensorflow-rocm WORKDIR /home/tensorflow-rocm RUN sudo apt update RUN sudo apt install apt-transport-https curl gnupg -y RUN curl -fsSL https://bazel.build/bazel-release.pub.gpg | gpg --dearmor >bazel-archive-keyring.gpg RUN sudo mv bazel-archive-keyring.gpg /usr/share/keyrings RUN echo "deb [arch=amd64 signed-by=/usr/share/keyrings/bazel-archive-keyring.gpg] https://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list RUN sudo apt update && sudo apt install bazel-5.3.0 -y RUN sudo ln -s /usr/bin/bazel-5.3.0 /usr/bin/bazel RUN sudo apt install wget RUN wget https://repo.radeon.com/amdgpu-install/5.5/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb RUN sudo apt-get install ./amdgpu-install_5.5.50500-1_all.deb -y RUN sudo amdgpu-install --usecase=rocm --no-dkms -y RUN sudo apt install python3-dev python3-pip -y RUN pip install -U --user pip numpy wheel packaging requests opt_einsum RUN pip install -U --user keras_preprocessing --no-deps RUN sudo ln -s /usr/bin/python3 /usr/bin/python RUN sudo apt install patchelf -y RUN sudo apt install git -y RUN git clone https://github.com/tensorflow/tensorflow.git WORKDIR /home/tensorflow-rocm/tensorflow RUN git checkout v2.12.0 ENV TF_NEED_ROCM=1 ENV TF_ROCM_AMDGPU_TARGETS=gfx900 ENV ROCM_PATH=/opt/rocm-5.5.0 ENV PYTHON_BIN_PATH=/usr/bin/python3 RUN ./configure RUN bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package --verbose_failures ``` ### Relevant log output ```shell ERROR: /home/tensorflow-rocm/tensorflow/tensorflow/compiler/xla/stream_executor/rocm/BUILD:406:11: Compiling tensorflow/compiler/xla/stream_executor/rocm/rocm_helpers.cu.cc failed: undeclared inclusion(s) in rule '//tensorflow/compiler/xla/stream_executor/rocm:rocm_helpers': this rule is missing dependency declarations for the following files included by 'tensorflow/compiler/xla/stream_executor/rocm/rocm_helpers.cu.cc': '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/__clang_hip_runtime_wrapper.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/stddef.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/__clang_hip_libdevice_declares.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/__clang_hip_math.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/cuda_wrappers/algorithm' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/cuda_wrappers/new' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/limits.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/stdint.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/__clang_cuda_math_forward_declares.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/__clang_hip_cmath.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/__clang_cuda_complex_builtins.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/cuda_wrappers/complex' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/__stddef_max_align_t.h' '/opt/rocm-5.5.0/llvm/lib/clang/16.0.0/include/stdarg.h' clang-16: warning: argument unused during compilation: '-fcuda-flush-denormals-to-zero' [-Wunused-command-line-argument] Target //tensorflow/tools/pip_package:build_pip_package failed to build ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60538/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60538/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60537
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60537/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60537/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60537/events
https://github.com/tensorflow/tensorflow/issues/60537
1,700,631,345
I_kwDOArmXAs5lXZMx
60,537
Unable to run model.fit() in WSL environment
{ "login": "TP066335", "id": 132931947, "node_id": "U_kgDOB-xhaw", "avatar_url": "https://avatars.githubusercontent.com/u/132931947?v=4", "gravatar_id": "", "url": "https://api.github.com/users/TP066335", "html_url": "https://github.com/TP066335", "followers_url": "https://api.github.com/users/TP066335/followers", "following_url": "https://api.github.com/users/TP066335/following{/other_user}", "gists_url": "https://api.github.com/users/TP066335/gists{/gist_id}", "starred_url": "https://api.github.com/users/TP066335/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TP066335/subscriptions", "organizations_url": "https://api.github.com/users/TP066335/orgs", "repos_url": "https://api.github.com/users/TP066335/repos", "events_url": "https://api.github.com/users/TP066335/events{/privacy}", "received_events_url": "https://api.github.com/users/TP066335/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 4257391797, "node_id": "LA_kwDOArmXAs79wqS1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/wsl2", "name": "wsl2", "color": "A352E6", "default": false, "description": "Windows Subsystem for Linux" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "![Issue](https://user-images.githubusercontent.com/132931947/236890298-8cb15098-86bd-403e-b20a-7cec6a7ed140.png)\r\n", "@TP066335,\r\nI was facing a different error while executing the given code. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/0066ddfd8c3aed29b5301667bb9dce44/untitled1122.ipynb) and provide complete dependencies to analyse the issue and complete error as well. \r\n\r\nAlso if you are trying to execute the code on multi-gpu, Usually when you run the multi GPU distributed training in the eager mode, for each GPU it creates a new session and these sessions will not be synchronized since these are running in the eager mode and executes immediately.\r\nEven though `tf.distribute.Srategy` works well with both **eager** and **tf.function**, it works best with tf.function and eager mode is recommended for debug mode. ", "I was getting same error on my single GPU also while trying model.fit(). However it worked perfectly on my cpu and google collab GPU. Not really sure why I was getting that error. Same GPU and memory as his. Followed the installation from this: https://www.tensorflow.org/install/pip#windows-wsl2", "Hi @tilakrayal ,\r\n\r\nI check your gist, actually you can remove that code because Google Colab needs to install scikeras separately. My issue is not with Google Colab, it is related to WSL in my own machine. \r\n\r\nBesides, I'm using single gpu, not multi-gpu.\r\n\r\nSteps:\r\n1. I setup my GPU for tensorflow according to this video, you may refer to this video for all my dependecies. https://www.youtube.com/watch?v=KinTNHO-6IY\r\n3. You may get the complete error from my attached IPNYB file. \r\n4. I also attached a small dataset for your debugging. \r\n\r\n[data.zip](https://github.com/tensorflow/tensorflow/files/11431804/data.zip)\r\n\r\nHi @eimiss, yes, I'm having the same problem as yours.", " Hi @tilakrayal,\r\n\r\nFyi, you may use my IPNYB file (data.zip) for debugging because I had simplified the codes to help your debugging.\r\n\r\nBesides, can you help me to remove \"DL_TP066335_xxxx.docx\". I accidentally uploaded the document here, I only able to remove the link, but not the physical document.", "@TP066335,\r\nI request you to take a look at this [issue](https://github.com/tensorflow/tensorflow/issues/59779) and comment from the [developer](https://github.com/tensorflow/tensorflow/issues/59779#issuecomment-1540864610) where users are facing similar error and the issue is still open.Also I request to follow the similar issue which has been proposed to have the updates on the similar issue.Thank you!", "@tilakrayal,\r\n\r\nIf you read their error message, you will notice their case is different from mine case. Besides, they are not using GPU. \r\n\r\nPlease ignore the rest of the alerts in my IPNYB file, because those aleart messages are common when using GPU.\r\n\r\nThe only problem is the last error message which stop my training.\r\n2023-05-09 01:04:47.558215: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype int32\r\n\t [[{{node Placeholder/_0}}]]\r\n\r\nPlease take note that I have no issue running the same code using my CPU in windows environment, the error message prompted when I'm using GPU to train the model in WSL environment. \r\n\r\nBelow is the statement from Tensorflow. In other words, we have no choice but to use WSL in order to use GPU. \r\n\"Starting with TensorFlow 2.11, you will need to install [TensorFlow in WSL2](https://tensorflow.org/install/pip#windows-wsl2).\"\r\n\r\nIf you follow the same stesps to setup WSL, most likely you will get the same error when running my Python code in WSL environment.\r\n\r\n\r\n\r\n\r\n\r\n", "Yeah I also fixed it, thanks.", "@eimiss,\r\n\r\nIt would be greatly appreciated if you could share with me the steps on how to fix the issue.", "I uninstalled everything and followed this guide:\r\nhttps://www.youtube.com/watch?v=ttxtV966jyQ\r\nthen I isntalled tensorflow as it's shown in the tensorflow page", "Thanks @eimiss.\r\n\r\nThe method to uninstalled everything not feasible for my machine.\r\nMaybe I will wait for @tilakrayal for solution on WSL.", "Hi @TP066335 ,\r\n\r\nCould you please share the outputs of following commands. I want to ensure whether GPU driver and CUDA path has been set or not properly.\r\n\r\n`nvidia-smi`\r\n\r\n`python3 -c \"import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))\"`", "Hi @SuryanarayanaY,\r\n\r\nThank you so much for your kind attention to this issue. \r\nPlease find the attached screenshot as per requested.\r\n\r\n[Doc1.docx](https://github.com/tensorflow/tensorflow/files/11508259/Doc1.docx)\r\n", "Hi. I am having the same issue as @TP066335. I get the same result running model.fit() as shown in the screenshot. I also followed the same instructions from tensorflow.org about how to install for Windows WSL2.\r\n\r\nI am submitting screenshots since my GPU and drivers are not quite the same. It appears to be a problem with running a GPU under WSL2.\r\n![Screenshot 2023-05-25 211001](https://github.com/tensorflow/tensorflow/assets/289085/ad3d4da6-87c8-4a2d-a4a1-683e7c94f959)\r\n\r\n![Screenshot 2023-05-25 211607](https://github.com/tensorflow/tensorflow/assets/289085/a3276e18-f4ce-4153-9666-a670e4665651)\r\n\r\nHope this helps. Thank you for your attention to this. I look forward to running TensorFlow on this GPU.\r\n", "Hi @TP066335 , \r\n\r\nCould you please try to import keras as a backend to Tensorflow .\r\n\r\n```\r\nimport tensorflow as tf\r\nfrom tensorflow import keras\r\nfrom tensorflow.keras import layers\r\n```\r\n\r\nLet us know the outcome. Thanks!\r\n", "Hi @sachinprasadhs ,\r\n\r\nThank you so much for your kind assistance, I really appreciate it.\r\n\r\nIt appears that the issue is still stuck at the model.fit() step.\r\n\r\nI have attached the ipynb file for yor reference.\r\n\r\nThank you.\r\n\r\n[GPU.zip](https://github.com/tensorflow/tensorflow/files/12102117/GPU.zip)", "Hi @TP066335 Are you still stuck. Search \"WSL libcuda is not a symbolic link\"", "Hi @forthmedia, \r\n\r\nThanks for the suggestion.\r\n\r\nI follow the instructions from this [link ](https://superuser.com/questions/1707681/wsl-libcuda-is-not-a-symbolic-link) with regards to \"WSL libcuda is not a symbolic link\". I replaced the libcuda.so and libcuda.so.1 from C:\\Windows\\System32\\lxss\\lib.\r\n\r\nI'm pleased to share that I've made significant progress, as I am now **able to execute the model.fit() function**. However, an unfortunate **challenge remains - the GPU is not being utilized during the process**, as depicted in the attached screenshot.\r\n\r\nIn conclusion, I am still unable to leverage the GPU for efficient model training.\r\n\r\nThank you.\r\n\r\n[GPU Screenshot.zip](https://github.com/tensorflow/tensorflow/files/12329044/GPU.Screenshot.zip)\r\n\r\n\r\n\r\n", "Hello All,\r\n\r\nI have successfully resolved the issue by following the comprehensive steps provided by KGP Talkie in their tutorial on [YouTube](https://www.youtube.com/watch?v=OHCPGvf06EA), which was posted two weeks ago. \r\n\r\nAdditionally, to enhance the solution, I executed the command \"conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0\". As a result, my CNN training can run perfectly within the WSL environment.\r\n\r\nLast but not least, thanks a lot for your kind assistance and support.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60537\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60537\">No</a>\n" ]
2023-05-08T17:24:15
2023-11-17T18:27:31
2023-11-17T18:27:27
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution Windows 11 installed with WSL Ubuntu ### Mobile device _No response_ ### Python version python=3.9 and 3.11.3 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version cudatoolkit=11.8.0, nvidia-cudnn-cu11==8.6.0.163 ### GPU model and memory NVIDIA GeForce RTX 3070 Laptop GPU and 32GB memory ### Current Behaviour? A bug happened! I have no issue running the same code under windows environment (IDE: Jupyter Notebook). However, I have problem to run the same code in WSL environment (IDE: Jupyter Notebook). The code below is the root cause of the error message. (Note: train_set and validate_set is the output from imagedatagenerator flow_from_directory) history = model.fit(train_set, validation_data = validate_set, epochs = 10, verbose = 2) Error message: 2023-05-09 01:04:47.558215: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype int32 [[{{node Placeholder/_0}}]] ### Standalone code to reproduce the issue ```shell import os import csv import time import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt from keras import regularizers from keras.models import Sequential, load_model from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout from keras.callbacks import EarlyStopping from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import GridSearchCV from scikeras.wrappers import KerasClassifier # Get list of physical GPU devices gpu_list = tf.config.list_physical_devices('GPU') if len(gpu_list) > 0: # Check Number of GPUs print('number of GPUs available:', len(gpu_list)) print('\nGPU name:') # Check GPU Name for i in range(len(gpu_list)): print(str(i + 1) + '.', gpu_list[i].name.split(':', 1)[1]) # Set memory growth for the GPU tf.config.experimental.set_memory_growth(gpu_list[0], True) # Set visible devices to only use the first GPU tf.config.experimental.set_visible_devices(gpu_list[0], 'GPU') # Verify that the GPU is being used print('\nUsing GPU:', gpu_list[0]) # Set attribute variable attr = 'gender' # Set directories root_dir = '/mnt/c/Users/Ang/Desktop/11 DL/Assignment/DeepFashion/images' data_dir = os.path.join(root_dir, 'data') label_path = os.path.join(data_dir, attr + ' label.csv') model_path = os.path.join(data_dir, attr + ' model.h5') # Set data augmentation for train set train_generator = ImageDataGenerator( rescale = 1./255, # Normalize the data rotation_range = 0, # Randomly rotate images by up to certain degrees width_shift_range = 0, # Randomly shift images horizontally by up to certain percentage of the width height_shift_range = 0, # Randomly shift images vertically by up to certain percentage of the height shear_range = 0, # Randomly apply shear transformation with a max shear of certain percentage zoom_range = 0, # Randomly zoom in/out of images by up to certain percentage horizontal_flip = True, # Randomly flip images horizontally vertical_flip = False, # Do not randomly flip images vertically fill_mode = 'nearest' # Fill any newly created pixels with the nearest pixel value ) # Data augmentation not applicable to validate and test set validate_test_generator = ImageDataGenerator(rescale = 1./255) # Set directories train_dir = os.path.join(data_dir, 'train', attr) validate_dir = os.path.join(data_dir, 'validate', attr) test_dir = os.path.join(data_dir, 'test', attr) # Set variables target_size = (110, 75) batch_size = 10 # Import and generate the image data for train set train_set = train_generator.flow_from_directory( train_dir, target_size = target_size, color_mode = 'rgb', class_mode = 'categorical', batch_size = batch_size, shuffle = True, seed = 0 ) # Import and generate the image data for validate set validate_set = validate_test_generator.flow_from_directory( validate_dir, target_size = target_size, color_mode = 'rgb', class_mode = 'categorical', batch_size = batch_size, shuffle = True, seed = 0 ) # Import and generate the image data for test set test_set = validate_test_generator.flow_from_directory( test_dir, target_size = target_size, color_mode = 'rgb', class_mode = 'categorical', batch_size = batch_size, shuffle = True, seed = 0 ) # Save the label code to csv file label_dict = train_set.class_indices with open(label_path, 'w', newline = '') as csv_file: writer = csv.writer(csv_file) writer.writerow(['code', 'label']) for label, code in label_dict.items(): writer.writerow([code, label]) # Get the classes for all sets train_classes = train_set.num_classes validate_classes = validate_set.num_classes test_classes = test_set.num_classes # Get the shape for all sets train_shape = train_set.image_shape validate_shape = validate_set.image_shape test_shape = test_set.image_shape # Print the classes and shape for all sets print() print(label_dict) print() print('train classes:', train_classes) print('validate classes:', validate_classes) print('test classes:', test_classes) print() print('train shape:', train_shape) print('validate shape:', validate_shape) print('test shape:', test_shape) # Set variables c1 = 16 c2 = 32 h1 = 64 activation = 'relu' # Build model model = Sequential() model.add(Conv2D(c1, (3, 3), input_shape = train_shape, padding = 'same', activation = activation)) model.add(Conv2D(c2, (3, 3), input_shape = train_shape, padding = 'same', activation = activation)) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(h1, activation = activation)) model.add(Dense(train_classes, activation = 'softmax')) # Compile the model model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) # Show the model summary model.summary(line_length = 80) # Train the model print('\nModel Training:') history = model.fit(train_set, validation_data = validate_set, epochs = 10, verbose = 2) ``` ### Relevant log output ```shell 2023-05-09 01:04:47.558215: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype int32 [[{{node Placeholder/_0}}]] ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60537/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60537/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60536
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60536/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60536/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60536/events
https://github.com/tensorflow/tensorflow/pull/60536
1,700,622,714
PR_kwDOArmXAs5QBRW8
60,536
Create Dockerfile
{ "login": "Bobarshad", "id": 31414094, "node_id": "MDQ6VXNlcjMxNDE0MDk0", "avatar_url": "https://avatars.githubusercontent.com/u/31414094?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Bobarshad", "html_url": "https://github.com/Bobarshad", "followers_url": "https://api.github.com/users/Bobarshad/followers", "following_url": "https://api.github.com/users/Bobarshad/following{/other_user}", "gists_url": "https://api.github.com/users/Bobarshad/gists{/gist_id}", "starred_url": "https://api.github.com/users/Bobarshad/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Bobarshad/subscriptions", "organizations_url": "https://api.github.com/users/Bobarshad/orgs", "repos_url": "https://api.github.com/users/Bobarshad/repos", "events_url": "https://api.github.com/users/Bobarshad/events{/privacy}", "received_events_url": "https://api.github.com/users/Bobarshad/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60536/checks?check_run_id=13319978687) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "Hi @Bobarshad Can you please sign CLA. Thank you!", "I will test all the above suggestions and update the Dockerfile accordingly.", "Can you update the description for this PR to describe more about what you're trying to accomplish here and how it's going?\r\n\r\nThe container in its current form is quite far away from our goals (refer to the internal bug that spurred this work, cv-101). It hasn't been demonstrated that it will work with RBE, with tests, or for anything more than building the TF package on an unspecified Windows system. What's your assessment of how the work is going? What do you see happening next?\r\n", "Hi @angerson, Can you please review this PR ? Thank you!", "Hi @angerson, Can you please review this PR ? Thank you!", "I'm thinking this can be closed and restarted with the needed changes.", "Hi @Bobarshad Can you please check @mihaimaruseac 's [comments](https://github.com/tensorflow/tensorflow/pull/60536#issuecomment-1858166038) and keep us posted ? Thank you!\r\n \r\n", "This can be closed for now. We will be reinvestigating a new container here in the early part of this year. " ]
2023-05-08T17:17:14
2024-01-02T14:30:26
2024-01-02T14:30:20
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60536", "html_url": "https://github.com/tensorflow/tensorflow/pull/60536", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60536.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60536.patch", "merged_at": null }
Dockerfile to great new Windows Container to build tensorflow
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60536/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60536/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60535
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60535/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60535/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60535/events
https://github.com/tensorflow/tensorflow/issues/60535
1,700,594,631
I_kwDOArmXAs5lXQPH
60,535
Getting error with using coco-ssd model with the latest tensorflow
{ "login": "hacktronics", "id": 62869751, "node_id": "MDQ6VXNlcjYyODY5NzUx", "avatar_url": "https://avatars.githubusercontent.com/u/62869751?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hacktronics", "html_url": "https://github.com/hacktronics", "followers_url": "https://api.github.com/users/hacktronics/followers", "following_url": "https://api.github.com/users/hacktronics/following{/other_user}", "gists_url": "https://api.github.com/users/hacktronics/gists{/gist_id}", "starred_url": "https://api.github.com/users/hacktronics/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hacktronics/subscriptions", "organizations_url": "https://api.github.com/users/hacktronics/orgs", "repos_url": "https://api.github.com/users/hacktronics/repos", "events_url": "https://api.github.com/users/hacktronics/events{/privacy}", "received_events_url": "https://api.github.com/users/hacktronics/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @hacktronics ,\r\n\r\nI believe this issue to be reported at TFJS repo. We have separate repo for TFJS which can be found [here](https://github.com/tensorflow/tfjs/issues).\r\n\r\nThanks!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60535\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60535\">No</a>\n" ]
2023-05-08T16:55:32
2023-05-09T09:04:31
2023-05-09T09:04:28
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 4.5.0 ### Custom Code Yes ### OS Platform and Distribution Windows ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? when I try to use the net.detect(frame), it throws me error: TypeError: _tensorflow_tfjs_core__WEBPACK_IMPORTED_MODULE_0__.util.convertBackendValuesAndArrayBuffer is not a function at MathBackendCPU.readSync (backend_cpu.js:99:1) at Engine.readSync (engine.js:943:1) at Tensor.dataSync (tensor.js:297:1) at d.infer (coco-ssd.es2017.esm.min.js:17:1) Even though I am using the latest tensorflow JS libraries. ### Standalone code to reproduce the issue ```shell I am trying to use the coco-ssd model to do object detection. In my package.json I have: "@tensorflow-models/coco-ssd": "^2.2.2", "@tensorflow/tfjs": "^4.5.0", "@tensorflow/tfjs-backend-cpu": "^4.5.0", "@tensorflow/tfjs-backend-webgl": "^4.5.0", for some reasons, I want to use the latest tensorflow libraries, as my project uses other things also. I have the following code: const tf = require('@tensorflow/tfjs'); const _tfCPUBackend = require('@tensorflow/tfjs-backend-cpu'); const _tfWebglBackend = require('@tensorflow/tfjs-backend-webgl'); const cocoSsd = require('@tensorflow-models/coco-ssd'); I have also set the tf.setBackend('webgl'), and tf.ready() before cocoSsd.load() but when I try to use the net.detect(frame), it throws me error: TypeError: _tensorflow_tfjs_core__WEBPACK_IMPORTED_MODULE_0__.util.convertBackendValuesAndArrayBuffer is not a function at MathBackendCPU.readSync (backend_cpu.js:99:1) at Engine.readSync (engine.js:943:1) at Tensor.dataSync (tensor.js:297:1) at d.infer (coco-ssd.es2017.esm.min.js:17:1) Even though I am using the latest tensorflow JS libraries. ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60535/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60535/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60534
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60534/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60534/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60534/events
https://github.com/tensorflow/tensorflow/issues/60534
1,700,464,387
I_kwDOArmXAs5lWwcD
60,534
Pybind11 Exception
{ "login": "yahyanik", "id": 24399893, "node_id": "MDQ6VXNlcjI0Mzk5ODkz", "avatar_url": "https://avatars.githubusercontent.com/u/24399893?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yahyanik", "html_url": "https://github.com/yahyanik", "followers_url": "https://api.github.com/users/yahyanik/followers", "following_url": "https://api.github.com/users/yahyanik/following{/other_user}", "gists_url": "https://api.github.com/users/yahyanik/gists{/gist_id}", "starred_url": "https://api.github.com/users/yahyanik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yahyanik/subscriptions", "organizations_url": "https://api.github.com/users/yahyanik/orgs", "repos_url": "https://api.github.com/users/yahyanik/repos", "events_url": "https://api.github.com/users/yahyanik/events{/privacy}", "received_events_url": "https://api.github.com/users/yahyanik/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1188421838, "node_id": "MDU6TGFiZWwxMTg4NDIxODM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows", "name": "subtype:windows", "color": "b619ea", "default": false, "description": "Windows Build/Installation Issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi, Could you please test it with the latest Tensorflow version and with the below configuration.\r\n<h4 id=\"gpu\" data-text=\"GPU\" role=\"presentation\" style=\"box-sizing: inherit; margin: 32px 0px 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: ; font-stretch: ; font-size: 16px; line-height: ; font-family: Roboto, &quot;Noto Sans&quot;, &quot;Noto Sans JP&quot;, &quot;Noto Sans KR&quot;, &quot;Noto Naskh Arabic&quot;, &quot;Noto Sans Thai&quot;, &quot;Noto Sans Hebrew&quot;, &quot;Noto Sans Bengali&quot;, sans-serif; font-optical-sizing: ; font-kerning: ; font-feature-settings: ; font-variation-settings: ; letter-spacing: normal; overflow: hidden; text-overflow: ellipsis; margin-inline-end: -40px; padding-inline-end: 40px; color: rgb(32, 33, 36); orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\"><span class=\"devsite-heading\" role=\"heading\" aria-level=\"4\" style=\"box-sizing: inherit;\">GPU</span><button type=\"button\" class=\"devsite-heading-link button-flat material-icons\" aria-label=\"Copy link to this section: GPU\" data-title=\"Copy link to this section: GPU\" data-id=\"gpu\" style=\"box-sizing: border-box; appearance: none; background: 0px center; border: 0px; border-radius: var(--devsite-button-border-radius,2px); box-shadow: none; color: var(--devsite-icon-color,var(--devsite-secondary-text-color)); cursor: pointer; display: inline-block; font-style: normal; font-variant-ligatures: ; font-variant-caps: ; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: normal; font-stretch: ; font-size: 24px; font-family: &quot;Material Icons&quot;; font-optical-sizing: ; font-kerning: ; font-feature-settings: &quot;liga&quot;; font-variation-settings: ; height: 24px; letter-spacing: normal; line-height: 1; margin: var(--devsite-button-margin,0); margin-inline-end: var(--devsite-button-margin-x-end); max-width: var(--devsite-button-max-width,none); min-width: 36px; outline: 0px; overflow: hidden; padding: 0px 8px; text-align: center; text-decoration: none; text-overflow: ellipsis; text-transform: none; transition: background-color 0.2s ease 0s, border 0.2s ease 0s, box-shadow 0.2s ease 0s; vertical-align: bottom; white-space: nowrap; width: var(--devsite-button-width,auto); overflow-wrap: normal; direction: ltr; -webkit-font-smoothing: antialiased; opacity: 0;\"></button></h4><div class=\"devsite-table-wrapper\" style=\"box-sizing: inherit; margin: var(--devsite-table-margin,16px 0); padding: 0px; overflow: auto; color: rgb(32, 33, 36); font-family: Roboto, &quot;Noto Sans&quot;, &quot;Noto Sans JP&quot;, &quot;Noto Sans KR&quot;, &quot;Noto Naskh Arabic&quot;, &quot;Noto Sans Thai&quot;, &quot;Noto Sans Hebrew&quot;, &quot;Noto Sans Bengali&quot;, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\">\r\n\r\nVersion | Python version | Compiler | Build tools | cuDNN | CUDA\r\n-- | -- | -- | -- | -- | --\r\ntensorflow-2.12.0 | 3.8-3.11 | GCC 9.3.1 | Bazel 5.3.0 | 8.6 | 11.8\r\n\r\n</div>\r\n\r\nLatest Tensorflow supports c++ 17 version, make sure your test is inline with the supported versions.\r\nLet us know the outcome after your test with the latest version. Thanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi, @sachinprasadhs. thanks for the reply. I have tried TensorFlow 2.12 with Python 3.8. and Python 3.9.\r\n\r\nAs I mentioned initially, there is no need for GPU processing (although the same can be seen there). I am not using C++ code and so there is no compiler or Build tools in my environment. In case Tensorflow requires packages it may have installed them. The command I used for installing TensorFlow 2.12 is ```pip install tensorflow```. After core dump with ```procdump -e 2 -l -f \"\" <PID of the process python running tensorflow code>``` I still see that pybind11 is generating many exceptions.", "@mraunak, Could you please take a look into this, this seems to be happening with CPU build also. ", "Hi @yahyanik, sorry for the delayed response. I was unable to reproduce the error. Could you please provide us with the steps to replicate the issue and view the exceptions you see?\r\n\r\nI didn't get any exception messages when I ran the code snippet and capture the dump. Below is the screenshot of what output I got when I tried to replicate it:\r\n\r\n![image](https://github.com/tensorflow/tensorflow/assets/83710963/4da75eaf-2449-4a08-ad7b-58a177fcf220)\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @mraunak and thanks for getting back to me. \r\n\r\nThe problem statement is the same as I mentioned before. I can still see the same problem using Windows 10. These are not seen in the training phase of the sample code, they appear in the inferencing step. Here are two screenshots of what I see attached. \r\n\r\n![Capture1 (1)](https://github.com/tensorflow/tensorflow/assets/24399893/c32c496d-7ea4-44a7-a743-887d04344bcf)\r\n![Capture2](https://github.com/tensorflow/tensorflow/assets/24399893/0eccb3a0-4ff3-450e-92c7-ccf0aa6b1d53)\r\n\r\nHere is the code I used in python3.7 and tensorflow 2.9 today. I have tested other package variations as well, as we discussed before:\r\n\r\n```\r\nimport tensorflow as tf\r\nmnist = tf.keras.datasets.mnist\r\n\r\n(x_train, y_train), (x_test, y_test) = mnist.load_data()\r\nx_train, x_test = x_train / 255.0, x_test / 255.0\r\n\r\n\r\nmodel = tf.keras.models.Sequential([\r\n tf.keras.layers.Flatten(input_shape=(28, 28)),\r\n tf.keras.layers.Dense(128, activation='relu'),\r\n tf.keras.layers.Dropout(0.2),\r\n tf.keras.layers.Dense(10)\r\n])\r\n\r\n\r\npredictions = model(x_train[:1]).numpy()\r\npredictions\r\n\r\n\r\ntf.nn.softmax(predictions).numpy()\r\nloss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\r\nloss_fn(y_train[:1], predictions).numpy()\r\n\r\nmodel.compile(optimizer='adam',\r\n loss=loss_fn,\r\n metrics=['accuracy'])\r\n\r\nmodel.fit(x_train, y_train, epochs=5)\r\nmodel.evaluate(x_test, y_test, verbose=2)\r\n\r\nprobability_model = tf.keras.Sequential([\r\n model,\r\n tf.keras.layers.Softmax()\r\n])\r\n\r\nprobability_model(x_test[:5])\r\n```", "Hi @yahyanik, I see 13:05:26 on the above screenshot, is it 13 hrs? The entire code run including training and inferencing completes successfully within a minute on my system(Windows CPU) and I don't see any exceptions in the other command prompt with Procdump. How much does it take on your system? " ]
2023-05-08T15:21:53
2023-07-08T08:27:53
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.9, 2.7, 2.6, 2.5, 2.4, 2.3 ### Custom Code No ### OS Platform and Distribution Windows 10 ### Mobile device _No response_ ### Python version 3.7, 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 10.1, 11.2 and coresponding CuDNN ### GPU model and memory 3090, 1650 ### Current Behaviour? Running TensorFlow custom code or sample code provided the TensorFlow website creates exceptions when looking at the dump file from C++ side. I used procdump.exe to see the exceptions in Windows 10 as follows: Open a separate CMD.exe and run: ``` procdump -e 2 -l -f "" <PID of the process python running tensorflow code>``` sample code used: ``` from time import sleep import tensorflow as tf def fn_raw(inputs): return inputs*2 while True: fn = tf.function(fn_raw) r = fn(2) print(r) sleep(1) ``` sample code tested from the TensorFLow website is located at https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/quickstart/beginner.ipynb exceptions are seen at inference time (after the training period) hundreds of exceptions, as follows, are dumped: ``` Exception: [E06D7363.?AVerror_already_set@pybind11@@]``` I tested TnesorFlow GPU and CPU with several versions of TensorFlow 2.x According to Pybind11 documentation page, https://pybind11.readthedocs.io/en/stable/advanced/exceptions.html, this shows an issue with the Python code which is captured on C++ side. PS: The code runs with no issues and completes the task. However, these exceptions are concerning. ### Standalone code to reproduce the issue ```shell from time import sleep import tensorflow as tf def fn_raw(inputs): return inputs*2 while True: fn = tf.function(fn_raw) r = fn(2) print(r) sleep(1) ``` ``` ### Relevant log output ```shell Exception: [E06D7363.?AVerror_already_set@pybind11@@]``` ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60534/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60534/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60533
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60533/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60533/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60533/events
https://github.com/tensorflow/tensorflow/issues/60533
1,700,362,224
I_kwDOArmXAs5lWXfw
60,533
the output of tf.image.adjust_gamma is different in CPU and GPU
{ "login": "cheyennee", "id": 45327670, "node_id": "MDQ6VXNlcjQ1MzI3Njcw", "avatar_url": "https://avatars.githubusercontent.com/u/45327670?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cheyennee", "html_url": "https://github.com/cheyennee", "followers_url": "https://api.github.com/users/cheyennee/followers", "following_url": "https://api.github.com/users/cheyennee/following{/other_user}", "gists_url": "https://api.github.com/users/cheyennee/gists{/gist_id}", "starred_url": "https://api.github.com/users/cheyennee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cheyennee/subscriptions", "organizations_url": "https://api.github.com/users/cheyennee/orgs", "repos_url": "https://api.github.com/users/cheyennee/repos", "events_url": "https://api.github.com/users/cheyennee/events{/privacy}", "received_events_url": "https://api.github.com/users/cheyennee/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@cheyennee,\r\n\r\n**tf.image.adjust_gamma** converts the input images at first to float representation, then transforms them pixelwise according to the equation **Out = gain * In**gamma**, and then converts the back to the original data type. I suspect that the problem here might be due to -ve value provided for the image_1. \r\n\r\nWhen I tried with the different +ve and -ve data, I was able to get the output for the +ve values. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/580e3184139a87bf2653b3e4b55d5031/untitled1139.ipynb). Thank you!\r\n\r\n", "@tilakrayal I agree with you. But I think CPU should output the same result with GPU.", "@cheyennee,\r\nThe issue might be due to casting behaviour on CPU vs GPU with undefined/overflow values.\r\n\r\nCould you please refer to the developer comment for a similar issue https://github.com/tensorflow/tensorflow/issues/58749#issuecomment-1467086661. Thank you!", "@tilakrayal Sure. You have done a great job.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60533\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60533\">No</a>\n" ]
2023-05-08T14:26:29
2023-05-22T10:53:38
2023-05-22T10:53:35
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12.0 ### Custom Code Yes ### OS Platform and Distribution win11 ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I'm not sure if this is a bug as following snippet shows. The results on GPU is different from on CPU. ### Standalone code to reproduce the issue ```shell results = dict() import tensorflow as tf with tf.device('/CPU'): image_0 = 1024 image_1 = -1 image = (image_0,image_1,) gamma = 0.2 results["res_cpu"] = tf.image.adjust_gamma(image=image,gamma=gamma,) with tf.device('/GPU:0'): image = (image_0,image_1,) results["res_gpu"] = tf.image.adjust_gamma(image=image,gamma=gamma,) print(results) # results={'res_cpu': <tf.Tensor: shape=(2,), dtype=int32, numpy=array([ 116843312, -2147483648], dtype=int32)>, 'res_gpu': <tf.Tensor: shape=(2,), dtype=int32, numpy=array([116843320, 0], dtype=int32)>} ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60533/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60533/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60532
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60532/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60532/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60532/events
https://github.com/tensorflow/tensorflow/issues/60532
1,700,295,796
I_kwDOArmXAs5lWHR0
60,532
Op request: layer normalization
{ "login": "vk1214", "id": 87983167, "node_id": "MDQ6VXNlcjg3OTgzMTY3", "avatar_url": "https://avatars.githubusercontent.com/u/87983167?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vk1214", "html_url": "https://github.com/vk1214", "followers_url": "https://api.github.com/users/vk1214/followers", "following_url": "https://api.github.com/users/vk1214/following{/other_user}", "gists_url": "https://api.github.com/users/vk1214/gists{/gist_id}", "starred_url": "https://api.github.com/users/vk1214/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vk1214/subscriptions", "organizations_url": "https://api.github.com/users/vk1214/orgs", "repos_url": "https://api.github.com/users/vk1214/repos", "events_url": "https://api.github.com/users/vk1214/events{/privacy}", "received_events_url": "https://api.github.com/users/vk1214/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2691740411, "node_id": "MDU6TGFiZWwyNjkxNzQwNDEx", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite-kernels", "name": "comp:lite-kernels", "color": "D97FB4", "default": false, "description": "TensorFlow Lite kernel issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "zichuan-wei", "id": 10928342, "node_id": "MDQ6VXNlcjEwOTI4MzQy", "avatar_url": "https://avatars.githubusercontent.com/u/10928342?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zichuan-wei", "html_url": "https://github.com/zichuan-wei", "followers_url": "https://api.github.com/users/zichuan-wei/followers", "following_url": "https://api.github.com/users/zichuan-wei/following{/other_user}", "gists_url": "https://api.github.com/users/zichuan-wei/gists{/gist_id}", "starred_url": "https://api.github.com/users/zichuan-wei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zichuan-wei/subscriptions", "organizations_url": "https://api.github.com/users/zichuan-wei/orgs", "repos_url": "https://api.github.com/users/zichuan-wei/repos", "events_url": "https://api.github.com/users/zichuan-wei/events{/privacy}", "received_events_url": "https://api.github.com/users/zichuan-wei/received_events", "type": "User", "site_admin": false }
[ { "login": "zichuan-wei", "id": 10928342, "node_id": "MDQ6VXNlcjEwOTI4MzQy", "avatar_url": "https://avatars.githubusercontent.com/u/10928342?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zichuan-wei", "html_url": "https://github.com/zichuan-wei", "followers_url": "https://api.github.com/users/zichuan-wei/followers", "following_url": "https://api.github.com/users/zichuan-wei/following{/other_user}", "gists_url": "https://api.github.com/users/zichuan-wei/gists{/gist_id}", "starred_url": "https://api.github.com/users/zichuan-wei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zichuan-wei/subscriptions", "organizations_url": "https://api.github.com/users/zichuan-wei/orgs", "repos_url": "https://api.github.com/users/zichuan-wei/repos", "events_url": "https://api.github.com/users/zichuan-wei/events{/privacy}", "received_events_url": "https://api.github.com/users/zichuan-wei/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Bump ^", "We are also interested in this. It appears that exporting a model that uses `LayerNormalization` will disable the TfLite XNNPack delegate, thus reducing performance of our model by a lot. \r\n\r\nDetails:\r\nAfter exporting the model, one of the layer norm tensors has `allocation_type==kTfLiteDynamic`. Since TfLiteXNNPackDelegate does not support dynamically allocated tensors (`delegate->flags & kTfLiteDelegateFlagsAllowDynamicTensors == 0`), the delegate is disabled and TF lite switches to using the default backend.", "I also would be very interested in this. While layer norms can be decomposed into multiple operators (`Mean`, `SquaredDifference`, `Rsqrt` etc..), this becomes problematic when doing quantisation (what operators should a quantised layer norm be converted into?)" ]
2023-05-08T13:50:59
2024-05-15T07:03:07
null
NONE
null
null
null
Layer normalization is available in tensorflow https://www.tensorflow.org/api_docs/python/tf/keras/layers/LayerNormalization It is not part of the tflite supported ops https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/builtin_ops.h I would like to request support for this op. Please let me know if it is in development or scoped for future release.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60532/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60532/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60531
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60531/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60531/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60531/events
https://github.com/tensorflow/tensorflow/issues/60531
1,700,265,726
I_kwDOArmXAs5lV_7-
60,531
when argument batch_size is bool, tf.data.experimental.dense_to_ragged_batch works
{ "login": "cheyennee", "id": 45327670, "node_id": "MDQ6VXNlcjQ1MzI3Njcw", "avatar_url": "https://avatars.githubusercontent.com/u/45327670?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cheyennee", "html_url": "https://github.com/cheyennee", "followers_url": "https://api.github.com/users/cheyennee/followers", "following_url": "https://api.github.com/users/cheyennee/following{/other_user}", "gists_url": "https://api.github.com/users/cheyennee/gists{/gist_id}", "starred_url": "https://api.github.com/users/cheyennee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cheyennee/subscriptions", "organizations_url": "https://api.github.com/users/cheyennee/orgs", "repos_url": "https://api.github.com/users/cheyennee/repos", "events_url": "https://api.github.com/users/cheyennee/events{/privacy}", "received_events_url": "https://api.github.com/users/cheyennee/received_events", "type": "User", "site_admin": false }
[ { "id": 284443156, "node_id": "MDU6TGFiZWwyODQ0NDMxNTY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-bug", "name": "type:docs-bug", "color": "159b2e", "default": false, "description": "Document issues" }, { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @cheyennee \r\nThank you for reporting the issue.\r\nI was able to replicate the issue in Colab using Tensorflow version 2.12 and tf-nightly(2.14.0.dev20230510). Please find the gists here - [TF v2.12](https://colab.sandbox.google.com/gist/synandi/b88c93c8a40e2db065ba8d181e4e23e0/60531_2-12.ipynb) & [tf-nightly](https://colab.sandbox.google.com/gist/synandi/0da24695a925fc59e0683daa127ff81d/60531_nightly.ipynb). ", "Hi @cheyennee, Apologies for the delay.\r\n\r\nThe `tf.data.experimental.dense_to_ragged_batch` API works with `tf.dataset.Data`. As you are not applying the `tf.data.experimental.dense_to_ragged_batch` to a dataset, you are not seeing any error when passing invalid inputs. Kindly check the following code with an error when using batch_size=False.\r\n```\r\nimport tensorflow as tf\r\nimport numpy as np\r\n\r\ndataset = tf.data.Dataset.from_tensor_slices(np.arange(6))\r\ndataset = dataset.map(lambda x: tf.range(x))\r\ndataset.element_spec.shape\r\n\r\nbatch_size = False\r\n\r\ndataset = dataset.apply(\r\n tf.data.experimental.dense_to_ragged_batch(batch_size=batch_size))\r\nfor batch in dataset:\r\n print(batch)\r\n```\r\n**Error:**\r\n```\r\nInvalidArgumentError: {{function_node __wrapped__BatchDatasetV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Batch size must be greater than zero. [Op:BatchDatasetV2]\r\n```\r\n Kindly refer to this [gist](https://colab.sandbox.google.com/gist/synandi/0513dbd7513ba30de6606f1a2ed8cda3/60531_2-12.ipynb#scrollTo=HqiLMxxciArL). Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "@synandi Why when I am not applying the tf.data.experimental.dense_to_ragged_batch to a dataset, I cannot see any error when passing invalid inputs? I think maybe you should consider other data format rather than dataset, is this possible? Or does it need a lot of efforts to do validate on other data format?", "@cheyennee,\r\nLooks like there is already an issue that was still open for the similar feature/issue. Could you please take a look at the issue and try to follow the similar thread for the update.\r\nhttps://github.com/tensorflow/tensorflow/issues/42349\r\n Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60531\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60531\">No</a>\n" ]
2023-05-08T13:32:25
2023-07-06T02:10:11
2023-07-06T02:10:08
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12.0 ### Custom Code Yes ### OS Platform and Distribution win11 ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? According to [doc](https://tensorflow.google.cn/api_docs/python/tf/data/experimental/dense_to_ragged_batch), the argument `batch_size` should be int64. But in following snippet code, when it's bool type, the API `tf.data.experimental.dense_to_ragged_batch` also works. If this is due to the type cast in API, then the documentation should make it clear that the argument `batch_size` can be bool type as well. If this is an unexpected type cast, then this issue should be fixed. ### Standalone code to reproduce the issue ```shell results = dict() import tensorflow as tf with tf.device('/CPU'): batch_size = False results["res_cpu"] = tf.data.experimental.dense_to_ragged_batch(batch_size=batch_size,) with tf.device('/GPU:0'): results["res_gpu"] = tf.data.experimental.dense_to_ragged_batch(batch_size=batch_size,) print(results) #results={'res_cpu': <function dense_to_ragged_batch.<locals>._apply_fn at 0x7f0f5974a3b0>, 'res_gpu': <function dense_to_ragged_batch.<locals>._apply_fn at 0x7f0f5974a710>} ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60531/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60531/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60530
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60530/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60530/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60530/events
https://github.com/tensorflow/tensorflow/issues/60530
1,700,213,711
I_kwDOArmXAs5lVzPP
60,530
Failed to load in-memory CUBIN: CUDA_ERROR_NO_BINARY_FOR_GPU: no kernel image is available for execution on the device [[node Generador/conv2d_4/Tanh] [Op:__inference_predict_function_1081]
{ "login": "ivolis", "id": 39422659, "node_id": "MDQ6VXNlcjM5NDIyNjU5", "avatar_url": "https://avatars.githubusercontent.com/u/39422659?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ivolis", "html_url": "https://github.com/ivolis", "followers_url": "https://api.github.com/users/ivolis/followers", "following_url": "https://api.github.com/users/ivolis/following{/other_user}", "gists_url": "https://api.github.com/users/ivolis/gists{/gist_id}", "starred_url": "https://api.github.com/users/ivolis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ivolis/subscriptions", "organizations_url": "https://api.github.com/users/ivolis/orgs", "repos_url": "https://api.github.com/users/ivolis/repos", "events_url": "https://api.github.com/users/ivolis/events{/privacy}", "received_events_url": "https://api.github.com/users/ivolis/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 2477739347, "node_id": "MDU6TGFiZWwyNDc3NzM5MzQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.4", "name": "TF 2.4", "color": "5319e7", "default": false, "description": "for issues related to TF 2.4" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@ivolis,\r\nThere are changes in the paths with the latest versions and I have changed the target to **tensorflow/core/kernels/mlir_generated:gpu_binary_ops_test.cc** and tested the bazel build which was success. \r\n\r\nThere have been changes in paths compared to your earlier tested targets and bugs fixed in recent versions. Also you are trying to install tensorflow v2.4 with CUDA 12.1 which is not compatible. Please have a look at the official tested build configurations and follow the instructions. \r\nhttps://www.tensorflow.org/install/source#gpu\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60530\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60530\">No</a>\n", "Hi,\r\nI am running into the same problem with NVIDIA A100 80GB. But same code and Conda environment works in Tesla V100 16GB. Both having same cuda version and nvidia driver.\r\nWhat was the solution?\r\n\r\nMore details:\r\nIt works in: Graphic card: Tesla V100 16GB, CUDA Version: 11.4, Driver version: 470.161.03\r\nIt has the CUBIN error in: Graphic card: NVIDIA A100 80GB, CUDA Version: 11.4, Driver Version: 470.161.03\r\nConda Environment (same for both): Python 3.9.16, tensorflow 2.4.1\r\n\r\nThanks" ]
2023-05-08T13:01:59
2023-10-11T23:47:10
2023-05-24T01:58:00
NONE
null
null
null
Hi everyone, I'm currently using tensorflow in order to use a GAN Network I coded myself (custom code). I am quite new when it comes to Linux and TF. # Relevant information - Version of TensorFlow: 2.4.1 (installed using `pip install tensorflow-gpu`) - OS: Zorin OS 16.2 (Ubuntu 20.04) - Python version: 3.9.16 - CUDA version: 12.1 - GPU : NVIDIA RTX A2000 12GB - Nvidia driver version: 530.30.02 - CUDNN version: 8.9.0 # Problem My model is created and stored on the GPU memory correctly (with the following **warnings**) ``` 2023-05-08 09:37:30.383063: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1 2023-05-08 09:37:31.619864: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set 2023-05-08 09:37:31.630697: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1 2023-05-08 09:37:31.692075: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:37:31.692323: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties: pciBusID: 0000:01:00.0 name: NVIDIA RTX A2000 12GB computeCapability: 8.6 coreClock: 1.2GHz coreCount: 26 deviceMemorySize: 11.75GiB deviceMemoryBandwidth: 268.26GiB/s 2023-05-08 09:37:31.692349: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1 2023-05-08 09:37:31.756689: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.10 2023-05-08 09:37:31.756793: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.10 2023-05-08 09:37:31.792431: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10 2023-05-08 09:37:31.801029: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10 2023-05-08 09:37:31.866009: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10 2023-05-08 09:37:31.874931: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.10 2023-05-08 09:37:31.988965: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.7 2023-05-08 09:37:31.989159: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:37:31.989419: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:37:31.989544: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0 2023-05-08 09:37:31.990621: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-08 09:37:31.993043: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set 2023-05-08 09:37:31.993197: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:37:31.993380: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties: pciBusID: 0000:01:00.0 name: NVIDIA RTX A2000 12GB computeCapability: 8.6 coreClock: 1.2GHz coreCount: 26 deviceMemorySize: 11.75GiB deviceMemoryBandwidth: 268.26GiB/s 2023-05-08 09:37:31.993406: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1 2023-05-08 09:37:31.993436: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.10 2023-05-08 09:37:31.993451: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.10 2023-05-08 09:37:31.993467: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10 2023-05-08 09:37:31.993484: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10 2023-05-08 09:37:31.993502: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10 2023-05-08 09:37:31.993518: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.10 2023-05-08 09:37:31.993535: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.7 2023-05-08 09:37:31.993600: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:37:31.993763: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:37:31.993881: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0 2023-05-08 09:37:31.994703: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1 2023-05-08 09:39:47.663704: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix: 2023-05-08 09:39:47.663723: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 0 2023-05-08 09:39:47.663727: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N 2023-05-08 09:39:47.664624: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:39:47.664707: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:39:47.664753: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-08 09:39:47.664800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10694 MB memory) -> physical GPU (device: 0, name: NVIDIA RTX A2000 12GB, pci bus id: 0000:01:00.0, compute capability: 8.6) ``` I think these are common warnings. Besides, I printed the summary after this and it showed correctly (see extra information at the end of the issue). After that, when make some **prediction** to make some sort of visual control over the generator images, the output looks like this: ``` 2023-05-08 09:39:47.890873: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2) 2023-05-08 09:39:47.918809: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2112000000 Hz 2023-05-08 09:39:48.043219: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.10 2023-05-08 09:40:39.040740: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.7 2023-05-08 09:42:07.469816: W tensorflow/core/framework/op_kernel.cc:1763] OP_REQUIRES failed at cwise_op_gpu_base.cc:89 : Internal: Failed to load in-memory CUBIN: CUDA_ERROR_NO_BINARY_FOR_GPU: no kernel image is available for execution on the device Traceback (most recent call last): File "/home/calculin/Desktop/DCGAN_MELUS-main/GAN_train.py", line 110, in <module> aux_generated_images = generator.predict(aux_noise, verbose = 0) #Create the images from the GAN. File "/home/calculin/miniconda3/envs/tensorflow/lib/python3.9/site-packages/tensorflow/python/keras/engine/training.py", line 1629, in predict tmp_batch_outputs = self.predict_function(iterator) File "/home/calculin/miniconda3/envs/tensorflow/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py", line 828, in __call__ result = self._call(*args, **kwds) File "/home/calculin/miniconda3/envs/tensorflow/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py", line 894, in _call return self._concrete_stateful_fn._call_flat( File "/home/calculin/miniconda3/envs/tensorflow/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 1918, in _call_flat return self._build_call_outputs(self._inference_function.call( File "/home/calculin/miniconda3/envs/tensorflow/lib/python3.9/site-packages/tensorflow/python/eager/function.py", line 555, in call outputs = execute.execute( File "/home/calculin/miniconda3/envs/tensorflow/lib/python3.9/site-packages/tensorflow/python/eager/execute.py", line 59, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.InternalError: Failed to load in-memory CUBIN: CUDA_ERROR_NO_BINARY_FOR_GPU: no kernel image is available for execution on the device [[node Generador/conv2d_4/Tanh (defined at /Desktop/DCGAN_MELUS-main/GAN_train.py:110) ]] [Op:__inference_predict_function_1081] Function call stack: predict_function ``` **And then the kernel just dies. I am running it on terminal just by doing `python3 mycode.py`** ## [Context: this is the code runned in order to get the error] ``` aux_noise = np.random.normal(0, 1, size=(5, noise_dim)) aux_generated_images = generator.predict(aux_noise, verbose = 0) #Create the images from the GAN. ``` # Some extra information from terminal: ``` (tensorflow) calculin@pcGAN:~$ dpkg -l | grep cudnn ii cudnn-local-repo-ubuntu2004-8.9.0.131 1.0-1 amd64 cudnn-local repository configuration files ii libcudnn8 8.9.0.131-1+cuda12.1 amd64 cuDNN runtime libraries ii libcudnn8-dev 8.9.0.131-1+cuda12.1 amd64 cuDNN development libraries and headers ii libcudnn8-samples 8.9.0.131-1+cuda12.1 amd64 cuDNN samples ``` ``` (tensorflow) calculin@pcGAN:~$ dpkg -l | grep cuda ii cuda 12.1.1-1 amd64 CUDA meta-package ii cuda-12-1 12.1.1-1 amd64 CUDA 12.1 meta-package ii cuda-cccl-12-1 12.1.109-1 amd64 CUDA CCCL ii cuda-command-line-tools-12-1 12.1.1-1 amd64 CUDA command-line tools ii cuda-compiler-12-1 12.1.1-1 amd64 CUDA compiler ii cuda-cudart-12-1 12.1.105-1 amd64 CUDA Runtime native Libraries ii cuda-cudart-dev-12-1 12.1.105-1 amd64 CUDA Runtime native dev links, headers ii cuda-cuobjdump-12-1 12.1.111-1 amd64 CUDA cuobjdump ii cuda-cupti-12-1 12.1.105-1 amd64 CUDA profiling tools runtime libs. ii cuda-cupti-dev-12-1 12.1.105-1 amd64 CUDA profiling tools interface. ii cuda-cuxxfilt-12-1 12.1.105-1 amd64 CUDA cuxxfilt ii cuda-demo-suite-12-1 12.1.105-1 amd64 Demo suite for CUDA ii cuda-documentation-12-1 12.1.105-1 amd64 CUDA documentation ii cuda-driver-dev-12-1 12.1.105-1 amd64 CUDA Driver native dev stub library ii cuda-drivers 530.30.02-1 amd64 CUDA Driver meta-package, branch-agnostic ii cuda-drivers-530 530.30.02-1 amd64 CUDA Driver meta-package, branch-specific ii cuda-gdb-12-1 12.1.105-1 amd64 CUDA-GDB ii cuda-libraries-12-1 12.1.1-1 amd64 CUDA Libraries 12.1 meta-package ii cuda-libraries-dev-12-1 12.1.1-1 amd64 CUDA Libraries 12.1 development meta-package ii cuda-nsight-12-1 12.1.105-1 amd64 CUDA nsight ii cuda-nsight-compute-12-1 12.1.1-1 amd64 NVIDIA Nsight Compute ii cuda-nsight-systems-12-1 12.1.1-1 amd64 NVIDIA Nsight Systems ii cuda-nvcc-12-1 12.1.105-1 amd64 CUDA nvcc ii cuda-nvdisasm-12-1 12.1.105-1 amd64 CUDA disassembler ii cuda-nvml-dev-12-1 12.1.105-1 amd64 NVML native dev links, headers ii cuda-nvprof-12-1 12.1.105-1 amd64 CUDA Profiler tools ii cuda-nvprune-12-1 12.1.105-1 amd64 CUDA nvprune ii cuda-nvrtc-12-1 12.1.105-1 amd64 NVRTC native runtime libraries ii cuda-nvrtc-dev-12-1 12.1.105-1 amd64 NVRTC native dev links, headers ii cuda-nvtx-12-1 12.1.105-1 amd64 NVIDIA Tools Extension ii cuda-nvvp-12-1 12.1.105-1 amd64 CUDA Profiler tools ii cuda-opencl-12-1 12.1.105-1 amd64 CUDA OpenCL native Libraries ii cuda-opencl-dev-12-1 12.1.105-1 amd64 CUDA OpenCL native dev links, headers ii cuda-profiler-api-12-1 12.1.105-1 amd64 CUDA Profiler API ii cuda-repo-ubuntu2004-12-1-local 12.1.1-530.30.02-1 amd64 cuda repository configuration files ii cuda-runtime-12-1 12.1.1-1 amd64 CUDA Runtime 12.1 meta-package ii cuda-sanitizer-12-1 12.1.105-1 amd64 CUDA Sanitizer ii cuda-toolkit-12-1 12.1.1-1 amd64 CUDA Toolkit 12.1 meta-package ii cuda-toolkit-12-1-config-common 12.1.105-1 all Common config package for CUDA Toolkit 12.1. ii cuda-toolkit-12-config-common 12.1.105-1 all Common config package for CUDA Toolkit 12. ii cuda-toolkit-config-common 12.1.105-1 all Common config package for CUDA Toolkit. ii cuda-tools-12-1 12.1.1-1 amd64 CUDA Tools meta-package ii cuda-visual-tools-12-1 12.1.1-1 amd64 CUDA visual tools ii libcudart10.1:amd64 10.1.243-3 amd64 NVIDIA CUDA Runtime Library ii libcudnn8 8.9.0.131-1+cuda12.1 amd64 cuDNN runtime libraries ii libcudnn8-dev 8.9.0.131-1+cuda12.1 amd64 cuDNN development libraries and headers ii libcudnn8-samples 8.9.0.131-1+cuda12.1 amd64 cuDNN samples ii nvidia-cuda-dev 10.1.243-3 amd64 NVIDIA CUDA development files ii nvidia-cuda-doc 10.1.243-3 all NVIDIA CUDA and OpenCL documentation ii nvidia-cuda-gdb 10.1.243-3 amd64 NVIDIA CUDA Debugger (GDB) ii nvidia-cuda-toolkit 10.1.243-3 amd64 NVIDIA CUDA development toolkit ``` ``` (tensorflow) calculin@inti-013308:~$ ls /usr/local | grep cuda cuda cuda-12 cuda-12.1 ``` ``` (tensorflow) calculin@inti-013308:~$ nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2023 NVIDIA Corporation Built on Mon_Apr__3_17:16:06_PDT_2023 Cuda compilation tools, release 12.1, V12.1.105 Build cuda_12.1.r12.1/compiler.32688072_0 ``` ``` Model: "Discriminador" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 128, 128, 64) 640 _________________________________________________________________ batch_normalization (BatchNo (None, 128, 128, 64) 256 _________________________________________________________________ leaky_re_lu (LeakyReLU) (None, 128, 128, 64) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 64, 64, 128) 73856 _________________________________________________________________ batch_normalization_1 (Batch (None, 64, 64, 128) 512 _________________________________________________________________ leaky_re_lu_1 (LeakyReLU) (None, 64, 64, 128) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 32, 32, 128) 147584 _________________________________________________________________ batch_normalization_2 (Batch (None, 32, 32, 128) 512 _________________________________________________________________ leaky_re_lu_2 (LeakyReLU) (None, 32, 32, 128) 0 _________________________________________________________________ conv2d_3 (Conv2D) (None, 16, 16, 256) 295168 _________________________________________________________________ batch_normalization_3 (Batch (None, 16, 16, 256) 1024 _________________________________________________________________ leaky_re_lu_3 (LeakyReLU) (None, 16, 16, 256) 0 _________________________________________________________________ flatten (Flatten) (None, 65536) 0 _________________________________________________________________ dropout (Dropout) (None, 65536) 0 _________________________________________________________________ dense (Dense) (None, 1) 65537 ================================================================= Total params: 585,089 Trainable params: 583,937 Non-trainable params: 1,152 _________________________________________________________________ Model: "Generador" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_1 (Dense) (None, 65536) 6619136 _________________________________________________________________ batch_normalization_4 (Batch (None, 65536) 262144 _________________________________________________________________ leaky_re_lu_4 (LeakyReLU) (None, 65536) 0 _________________________________________________________________ reshape (Reshape) (None, 16, 16, 256) 0 _________________________________________________________________ conv2d_transpose (Conv2DTran (None, 32, 32, 128) 524416 _________________________________________________________________ batch_normalization_5 (Batch (None, 32, 32, 128) 512 _________________________________________________________________ leaky_re_lu_5 (LeakyReLU) (None, 32, 32, 128) 0 _________________________________________________________________ conv2d_transpose_1 (Conv2DTr (None, 64, 64, 128) 262272 _________________________________________________________________ batch_normalization_6 (Batch (None, 64, 64, 128) 512 _________________________________________________________________ leaky_re_lu_6 (LeakyReLU) (None, 64, 64, 128) 0 _________________________________________________________________ conv2d_transpose_2 (Conv2DTr (None, 128, 128, 64) 131136 _________________________________________________________________ batch_normalization_7 (Batch (None, 128, 128, 64) 256 _________________________________________________________________ leaky_re_lu_7 (LeakyReLU) (None, 128, 128, 64) 0 _________________________________________________________________ conv2d_4 (Conv2D) (None, 128, 128, 1) 577 ================================================================= Total params: 7,800,961 Trainable params: 7,669,249 Non-trainable params: 131,712 _________________________________________________________________ Model: "GAN_completa" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 100)] 0 _________________________________________________________________ Generador (Sequential) (None, 128, 128, 1) 7800961 _________________________________________________________________ Discriminador (Sequential) (None, 1) 585089 ================================================================= Total params: 8,386,050 Trainable params: 7,669,249 Non-trainable params: 716,801 ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60530/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60530/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60529
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60529/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60529/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60529/events
https://github.com/tensorflow/tensorflow/issues/60529
1,699,909,963
I_kwDOArmXAs5lUpFL
60,529
Sparse Tensor adds more memory size to .tflite file.
{ "login": "bywmm", "id": 42718268, "node_id": "MDQ6VXNlcjQyNzE4MjY4", "avatar_url": "https://avatars.githubusercontent.com/u/42718268?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bywmm", "html_url": "https://github.com/bywmm", "followers_url": "https://api.github.com/users/bywmm/followers", "following_url": "https://api.github.com/users/bywmm/following{/other_user}", "gists_url": "https://api.github.com/users/bywmm/gists{/gist_id}", "starred_url": "https://api.github.com/users/bywmm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bywmm/subscriptions", "organizations_url": "https://api.github.com/users/bywmm/orgs", "repos_url": "https://api.github.com/users/bywmm/repos", "events_url": "https://api.github.com/users/bywmm/events{/privacy}", "received_events_url": "https://api.github.com/users/bywmm/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @bywmm Thanks for reporting the issue.\r\n\r\nI have tried to reproduce this issue and I have observed adding sparse tensors results in `.tflite` model which is of size `~15k` with both TF 2.11 and TF 2.12.\r\n\r\nPlease find the gist [here](https://colab.research.google.com/gist/pjpratik/cb7b0451f7338c39747f93f5bfdad272/60529.ipynb). Can you please check and let us know If I'm missing anything here?\r\n\r\nThanks.", "Hi @pjpratik , thanks for your relpy.\r\n\r\nI think this difference is caused by the value of `batch_size`.\r\n```python\r\nbatch_size = 2700 # 512\r\nX_in = tf.keras.layers.Input(shape=(64,), batch_size=batch_size)\r\nidx = tf.keras.layers.Input(shape=(5,), batch_size=batch_size)\r\n```\r\nThe reported 58K memory size is under the settings of `batch_size = 2700`. It seems that the `batch_size` is larger, the size of `.tflite` is larger, in this case. For example, in my test, when `batch_size = 27000`, the size of `.tflite` becomes 532K.", "Hi @bywmm \r\n\r\nI guess this is intended as the model is filled with zero value buffers with increase in batch size given the tflites design choice to materialise arrays.\r\n\r\nTensorFlow Lite [Model Analyzer](https://www.tensorflow.org/lite/guide/model_analyzer) API helps us to analyze models in TensorFlow Lite format by listing a model's structure.\r\n\r\nBy using `tf.lite.experimental.Analyzer.analyze(model_content=tflite_model)`, I have observed that\r\n\r\n```\r\n Model size: 58580 bytes\r\n Non-data buffer size: 2660 bytes (04.54 %)\r\n Total data buffer size: 55920 bytes (95.46 %)\r\n (Zero value buffers): 54004 bytes (92.19 %)\r\n\r\n* Buffers of TFLite model are mostly used for constant tensors.\r\n And zero value buffers are buffers filled with zeros.\r\n Non-data buffers area are used to store operators, subgraphs and etc.\r\n\r\n```\r\nAlso, as given in https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs\r\nhttps://github.com/tensorflow/tensorflow/blob/d77a84432d779df135613f5272d7e9c1f2ea57b0/tensorflow/lite/schema/schema.fbs#L98-L123\r\n\r\nThanks.", "Hi @pjpratik \r\n\r\nThanks for your reply. I have known the major of the data buffer size is caused by the zero buffers (shape: [27000, 5]).\r\n```txt\r\nTensors of Subgraph#0\r\n T#0(serving_default_input_1:0) shape:[27000, 64], type:FLOAT32\r\n T#1(serving_default_input_2:0) shape:[27000, 5], type:FLOAT32\r\n T#2(model/my_layer/dense_to_sparse/zeros_like) shape:[27000, 5], type:FLOAT32 RO 540000 bytes, buffer: 3, data:[0, 0, 0, 0, 0, ...]\r\n```\r\nBut I still don't know what is the purpose of this design. Most importantly, how can I remove these zero buffers in my `.tflite`?\r\n\r\nThank you.", "Hi @bywmm \r\n\r\nThe flatbuffers are designed to have a little dependency on input in such a way that it can be accessed directly without parsing/unpacking. \r\n\r\nReducing batch size is a way for a smaller TFLite model as TFLite intends the model for inferencing on mobile and edge devices.\r\n\r\nThanks.", "@pjpratik Thanks for your patient response. I still have one more question. Besides the operators, why `TFLite` saves some data buffers? What kind of data will be saved?", "Hi @bywmm \r\n\r\nThe data buffers are used to store the tensors like weights, biases, scaling and quantization parameters(if applied) and other parameters which are required by model for inferencing. \r\n\r\nYou can also check ways to reduce by the binary size by doing selective build. Please check this [documentation](https://www.tensorflow.org/lite/guide/reduce_binary_size) for the reference.\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60529\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60529\">No</a>\n" ]
2023-05-08T09:43:18
2023-05-25T01:54:32
2023-05-25T01:54:29
NONE
null
null
null
Hi there, I'm now working to benchmark my neural network with tflite. I implement my NN with Keras and convert it to `.tflite`. However, the actual size of my `.tflite` is much bigger than the theoretical parameter size. I find that the extra size is mostly introduced by the `Sparse Tensor`. I use the following toy model for illustration. ```python class MyLayer(Layer): def __init__(self, **kwargs): super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): self.build = True def call(self, inputs, mask=None): features = inputs[0] idx = inputs[1] # These two lines add the sparse tensor to the computation graph. idx = tf.sparse.from_dense(idx) idx = tf.sparse.to_dense(idx) output = K.dot(K.dot(idx, tf.transpose(idx)), features) return output def get_config(self): config = {} base_config = super(MyLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) X_in = Input(shape=(64,), batch_size=512) idx = Input(shape=(5,), batch_size=512) H = Dropout(0.5)(X_in) H = MyLayer()([H]+[idx]) Y = tf.keras.layers.Dense(7, activation='softmax')(H) model = Model(inputs=[X_in, idx], outputs=Y) ``` Once converting the model to tflite, the size of `.tflite` is 58K, while removing the line of `H = MyLayer()([H]+[idx])`, its size becomes 3.0K. It means the non-parameter `MyLayer()` brings about 55K to the `.tflite` file. <img src="https://user-images.githubusercontent.com/42718268/236790239-75ca12d7-d39c-46e3-b783-87ffcc4a332b.png" width = "300" align=center /> Then, I remove the `Sparse Tensor` in `MyLayer()` The new `call()` function is as follows. ```python def call(self, inputs, mask=None): features = inputs[0] idx = inputs[1] output = K.dot(K.dot(idx, tf.transpose(idx)), features) return output ``` Now, the size of `.tflite` only becomes to 3.5K. So, I'm wondering **why the sparse tensor introduces so much extra size of** `.tflite`, and how I lower it. Besides, I want to implement the `Sparse-Dense Matrix Multiplication` operator, which can be used in TFLite. Can you give me some hint? Thank you. Note: My env is `python=3.8.16`, `tensorflow=2.11.0`.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60529/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60529/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60528
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60528/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60528/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60528/events
https://github.com/tensorflow/tensorflow/pull/60528
1,699,712,971
PR_kwDOArmXAs5P-LDW
60,528
Add more c apis correponding to python c apis.
{ "login": "AsakusaRinne", "id": 47343601, "node_id": "MDQ6VXNlcjQ3MzQzNjAx", "avatar_url": "https://avatars.githubusercontent.com/u/47343601?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AsakusaRinne", "html_url": "https://github.com/AsakusaRinne", "followers_url": "https://api.github.com/users/AsakusaRinne/followers", "following_url": "https://api.github.com/users/AsakusaRinne/following{/other_user}", "gists_url": "https://api.github.com/users/AsakusaRinne/gists{/gist_id}", "starred_url": "https://api.github.com/users/AsakusaRinne/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AsakusaRinne/subscriptions", "organizations_url": "https://api.github.com/users/AsakusaRinne/orgs", "repos_url": "https://api.github.com/users/AsakusaRinne/repos", "events_url": "https://api.github.com/users/AsakusaRinne/events{/privacy}", "received_events_url": "https://api.github.com/users/AsakusaRinne/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60528/checks?check_run_id=13305627362) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "@sagunb Sorry for the interruption but I met some problem of ci while I'm fresh to tensorflow. The ci `AMD ROCm -- Community CI Build` said the bazel version does not match. However I didn't change any bazel version setting in this PR. Could you please help to see what I should do resolve this error?", "Could you please help with the ci error? The result showed `__main__.UserInputError: Invalid CLANG_COMPILER_PATH setting was provided 10 times in a row. Assuming to be a scripting mistake.`, which seems to be a clang config error. However I didn't modify related settings in this PR.", "Hi @AsakusaRinne I've ported over this PR to the internal tool and am running it against the internal checks to see what all might be failing. I will update you if anything pops up. Nothing new should be required from you at this point." ]
2023-05-08T07:40:07
2023-07-12T18:49:17
2023-07-12T18:49:16
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60528", "html_url": "https://github.com/tensorflow/tensorflow/pull/60528", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60528.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60528.patch", "merged_at": "2023-07-12T18:49:16" }
Hello everyone, I would like to submit this PR that adds some C APIs corresponding to those in `tensorflow/c/python_api.h`. The background behind this is that I am a developer of [Tensorflow.NET](http://tensorflow.net/), which is a .NET binding of Tensorflow and is still actively maintained. When adding new features, the best approach for us is to write C# code by referring to Python code. However, sometimes Python uses C APIs defined in `tensorflow/c/python_api.h` but these APIs are not included in common externed C APIs, making it difficult for us to add the particular feature. To address this issue, I have added APIs in `tensorflow/c/python_api.h` to `tensorflow/c/c_api.h`, as these APIs are commonly required when adding features, with Tensorflow Python being the only reliable reference. I have tested this PR by compiling this branch on both Windows and Linux and it works. For example, the latest versions of [Tensorflow.Redist 2.11](https://www.nuget.org/packages/SciSharp.TensorFlow.Redist) and [Tensorflow.Redist-Windows-GPU 2.10](https://www.nuget.org/packages/SciSharp.TensorFlow.Redist-Windows-GPU) both work smoothly. (We also successfully compiled the Linux GPU version, but it has not been released due to package size limits of NuGet) If adding too many APIs once is not encouraged, then I kindly request to add `TF_SetAttr`, `TF_UpdateEdge`, `TF_GetHandleShapeAndType`, and `TF_SetHandleShapeAndType`. Thank you very much for your consideration. :)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60528/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60528/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60527
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60527/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60527/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60527/events
https://github.com/tensorflow/tensorflow/issues/60527
1,699,166,484
I_kwDOArmXAs5lRzkU
60,527
skin cancer detection
{ "login": "SAI557752", "id": 132842748, "node_id": "U_kgDOB-sE_A", "avatar_url": "https://avatars.githubusercontent.com/u/132842748?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SAI557752", "html_url": "https://github.com/SAI557752", "followers_url": "https://api.github.com/users/SAI557752/followers", "following_url": "https://api.github.com/users/SAI557752/following{/other_user}", "gists_url": "https://api.github.com/users/SAI557752/gists{/gist_id}", "starred_url": "https://api.github.com/users/SAI557752/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SAI557752/subscriptions", "organizations_url": "https://api.github.com/users/SAI557752/orgs", "repos_url": "https://api.github.com/users/SAI557752/repos", "events_url": "https://api.github.com/users/SAI557752/events{/privacy}", "received_events_url": "https://api.github.com/users/SAI557752/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "code is this \r\nhistory = model.fit (X_train, y_train, validation_split=0.2,epochs= 5, \r\n batch_size= batch_size, verbose=1, callbacks=[learning_rate_reduction]) \r\n# list all data in history\r\nprint(history.keys())\r\nplt.plot('acc')\r\nplt.plot('val_acc')\r\nplt.title('model accuracy')\r\nplt.ylabel('accuracy')\r\nplt.xlabel('epoch')\r\nplt.legend(['train', 'test'], loc='upper left')\r\nplt.show()\r\n\r\nerror is this\r\nValueError Traceback (most recent call last)\r\nCell In[12], line 1\r\n----> 1 history = model.fit (X_train, y_train, validation_split=0.2,epochs= 5, \r\n 2 batch_size= batch_size, verbose=1, callbacks=[learning_rate_reduction]) \r\n 3 # list all data in history\r\n 4 print(history.keys())\r\n\r\nFile [~\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\utils\\traceback_utils.py:70](https://file+.vscode-resource.vscode-cdn.net/c%3A/Users/saiva/Downloads/~/AppData/Roaming/Python/Python311/site-packages/keras/utils/traceback_utils.py:70), in filter_traceback..error_handler(*args, **kwargs)\r\n 67 filtered_tb = _process_traceback_frames(e.__traceback__)\r\n 68 # To get the full stack trace, call:\r\n 69 # `tf.debugging.disable_traceback_filtering()`\r\n---> 70 raise e.with_traceback(filtered_tb) from None\r\n 71 finally:\r\n 72 del filtered_tb\r\n\r\nFile [~\\AppData\\Local\\Temp\\__autograph_generated_file6gyezdc5.py:15](https://file+.vscode-resource.vscode-cdn.net/c%3A/Users/saiva/Downloads/~/AppData/Local/Temp/__autograph_generated_file6gyezdc5.py:15), in outer_factory..inner_factory..tf__train_function(iterator)\r\n 13 try:\r\n 14 do_return = True\r\n---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)\r\n 16 except:\r\n 17 do_return = False\r\n\r\nValueError: in user code:\r\n\r\n File \"[C:\\Users\\saiva\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\engine\\training.py](file:///C:/Users/saiva/AppData/Roaming/Python/Python311/site-packages/keras/engine/training.py)\", line 1284, in train_function *\r\n return step_function(self, iterator)\r\n File \"[C:\\Users\\saiva\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\engine\\training.py](file:///C:/Users/saiva/AppData/Roaming/Python/Python311/site-packages/keras/engine/training.py)\", line 1268, in step_function **\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n File \"[C:\\Users\\saiva\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\engine\\training.py](file:///C:/Users/saiva/AppData/Roaming/Python/Python311/site-packages/keras/engine/training.py)\", line 1249, in run_step **\r\n outputs = model.train_step(data)\r\n File \"[C:\\Users\\saiva\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\engine\\training.py](file:///C:/Users/saiva/AppData/Roaming/Python/Python311/site-packages/keras/engine/training.py)\", line 1050, in train_step\r\n y_pred = self(x, training=True)\r\n File \"[C:\\Users\\saiva\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\utils\\traceback_utils.py](file:///C:/Users/saiva/AppData/Roaming/Python/Python311/site-packages/keras/utils/traceback_utils.py)\", line 70, in error_handler\r\n raise e.with_traceback(filtered_tb) from None\r\n File \"[C:\\Users\\saiva\\AppData\\Roaming\\Python\\Python311\\site-packages\\keras\\engine\\input_spec.py](file:///C:/Users/saiva/AppData/Roaming/Python/Python311/site-packages/keras/engine/input_spec.py)\", line 298, in assert_input_compatibility\r\n raise ValueError(\r\n\r\n ValueError: Input 0 of layer \"sequential_1\" is incompatible with the layer: expected shape=(None, 224, 224, 3), found shape=(None, 300, 300, 3)", "Hi @SAI557752 \r\nThank you for reporting the issue.\r\nPlease share complete reproducible code in order to expedite the troubleshooting process. It seems like the error is due to the shape mismatch. Your input image is of shape (300, 300, 3) but the shape in the input layer is (244, 244, 3). Both the shapes should be the same. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi , here the input size of images is 300*300 but expected size is 224*224. you can do the image resize before using them for training the model. using resize method you can do it.", "Hi @SAI557752 ,\r\n\r\nAs you can see the error log which clearly states the reason.\r\n\r\n`ValueError: Input 0 of layer \"sequential_1\" is incompatible with the layer: expected shape=(None, 224, 224, 3), found shape=(None, 300, 300, 3)`\r\n\r\nAs the Log itself suggests you are feeding the dataset of images which are of size (300, 300) but model is built to accept (224,224). Please change the argument `input_shape` of first layer model to `input_shape=(300,300,3)` like `model.add(layers.Dense(..., input_shape=(300,300,3)))`.\r\n\r\nOr If you have Input layer defined explicitly then `model.add(keras.Input(shape=(300, 300, 3)))` should resolve the error.\r\n\r\nThanks!", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60527\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60527\">No</a>\n" ]
2023-05-07T17:48:03
2023-07-14T02:10:02
2023-07-14T02:09:59
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version vs code ### Custom Code Yes ### OS Platform and Distribution vs code ### Mobile device vs code ### Python version vs code ### Bazel version vs code ### GCC/Compiler version vs code ### CUDA/cuDNN version vs code ### GPU model and memory vs code ### Current Behaviour? A bug happened! ### Standalone code to reproduce the issue ```shell ValueError Traceback (most recent call last) Cell In[12], line 1 ----> 1 history = model.fit (X_train, y_train, validation_split=0.2,epochs= 5, 2 batch_size= batch_size, verbose=1, callbacks=[learning_rate_reduction]) 3 # list all data in history 4 print(history.keys()) File ~\AppData\Roaming\Python\Python311\site-packages\keras\utils\traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~\AppData\Local\Temp\__autograph_generated_file6gyezdc5.py:15, in outer_factory..inner_factory..tf__train_function(iterator) 13 try: 14 do_return = True ---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) 16 except: 17 do_return = False ValueError: in user code: File "C:\Users\saiva\AppData\Roaming\Python\Python311\site-packages\keras\engine\training.py", line 1284, in train_function * return step_function(self, iterator) File "C:\Users\saiva\AppData\Roaming\Python\Python311\site-packages\keras\engine\training.py", line 1268, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\saiva\AppData\Roaming\Python\Python311\site-packages\keras\engine\training.py", line 1249, in run_step ** outputs = model.train_step(data) File "C:\Users\saiva\AppData\Roaming\Python\Python311\site-packages\keras\engine\training.py", line 1050, in train_step y_pred = self(x, training=True) File "C:\Users\saiva\AppData\Roaming\Python\Python311\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\saiva\AppData\Roaming\Python\Python311\site-packages\keras\engine\input_spec.py", line 298, in assert_input_compatibility raise ValueError( ValueError: Input 0 of layer "sequential_1" is incompatible with the layer: expected shape=(None, 224, 224, 3), found shape=(None, 300, 300, 3) ``` ### Relevant log output ```shell Epoch 1/5 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60527/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60527/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60526
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60526/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60526/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60526/events
https://github.com/tensorflow/tensorflow/issues/60526
1,698,953,363
I_kwDOArmXAs5lQ_iT
60,526
tf.math.real can accept string tensor, inconsistent with the documentation.
{ "login": "drewshark", "id": 128925028, "node_id": "U_kgDOB689ZA", "avatar_url": "https://avatars.githubusercontent.com/u/128925028?v=4", "gravatar_id": "", "url": "https://api.github.com/users/drewshark", "html_url": "https://github.com/drewshark", "followers_url": "https://api.github.com/users/drewshark/followers", "following_url": "https://api.github.com/users/drewshark/following{/other_user}", "gists_url": "https://api.github.com/users/drewshark/gists{/gist_id}", "starred_url": "https://api.github.com/users/drewshark/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/drewshark/subscriptions", "organizations_url": "https://api.github.com/users/drewshark/orgs", "repos_url": "https://api.github.com/users/drewshark/repos", "events_url": "https://api.github.com/users/drewshark/events{/privacy}", "received_events_url": "https://api.github.com/users/drewshark/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi, I also notice that tf.math.imag has the same issue. To reproduce:\r\n```\r\nimport tensorflow as tf\r\nx = tf.constant([\"Hello\"])\r\nres = tf.math.imag(x)\r\nprint(res)\r\n```\r\nExpected output: a proper exception\r\nActual output: pass without exception\r\n", "This issue has been resolved as of https://github.com/tensorflow/tensorflow/pull/60540.", "@drewshark,\r\nI tried to execute the code on tf-nightly(2.14.0-dev20230615) and it was providing the error for **tf.math.real** . Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/6b8ef392fe64fddcd374c69d28f3a89a/untitled1205.ipynb) and also the related PR #60540 was also merged.\r\n\r\n```\r\n .def_property_readonly(\r\n \"is_numeric\",\r\n [](tensorflow::DataType self) {\r\n return tensorflow::DataTypeIsNumeric(tensorflow::BaseType(self));\r\n },\r\n \"Returns whether this is a numeric data type.\")\r\n\r\n```\r\nhttps://github.com/tensorflow/tensorflow/pull/60540/files\r\n\r\nThank you!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60526\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60526\">No</a>\n" ]
2023-05-07T08:20:14
2023-07-01T02:12:31
2023-07-01T02:12:29
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf-nightly ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version 3.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Following the documentation: https://www.tensorflow.org/api_docs/python/tf/math/real, the input of tf.math.real should be a numeric tensor. However, this API can still pass when processing the string tensor. In contrast, other math operators such as tf.math.reduce_all, tf.math.log will raises an InvalidArgumentError. ### Standalone code to reproduce the issue ```shell import tensorflow as tf x = tf.constant(["Hello"]) res = tf.math.real(x) print(res) ``` ### Relevant log output ```shell tf.Tensor([b'Hello'], shape=(1,), dtype=string) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60526/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60526/timeline
null
completed
false