url
stringlengths
63
63
repository_url
stringclasses
1 value
labels_url
stringlengths
77
77
comments_url
stringlengths
72
72
events_url
stringlengths
70
70
html_url
stringlengths
51
53
id
int64
1.57B
2.35B
node_id
stringlengths
18
19
number
int64
59.5k
69.6k
title
stringlengths
1
554
user
dict
labels
listlengths
0
8
state
stringclasses
2 values
locked
bool
2 classes
assignee
dict
assignees
listlengths
0
8
milestone
null
comments
sequencelengths
0
30
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
4 values
active_lock_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
body
stringlengths
1
65.4k
reactions
dict
timeline_url
stringlengths
72
72
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/tensorflow/tensorflow/issues/60826
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60826/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60826/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60826/events
https://github.com/tensorflow/tensorflow/issues/60826
1,749,764,442
I_kwDOArmXAs5oS0la
60,826
Unable to run RNN Model
{ "login": "abhinavchawla7", "id": 130582391, "node_id": "U_kgDOB8iHdw", "avatar_url": "https://avatars.githubusercontent.com/u/130582391?v=4", "gravatar_id": "", "url": "https://api.github.com/users/abhinavchawla7", "html_url": "https://github.com/abhinavchawla7", "followers_url": "https://api.github.com/users/abhinavchawla7/followers", "following_url": "https://api.github.com/users/abhinavchawla7/following{/other_user}", "gists_url": "https://api.github.com/users/abhinavchawla7/gists{/gist_id}", "starred_url": "https://api.github.com/users/abhinavchawla7/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhinavchawla7/subscriptions", "organizations_url": "https://api.github.com/users/abhinavchawla7/orgs", "repos_url": "https://api.github.com/users/abhinavchawla7/repos", "events_url": "https://api.github.com/users/abhinavchawla7/events{/privacy}", "received_events_url": "https://api.github.com/users/abhinavchawla7/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 4257391797, "node_id": "LA_kwDOArmXAs79wqS1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/wsl2", "name": "wsl2", "color": "A352E6", "default": false, "description": "Windows Subsystem for Linux" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@abhinavchawla7,\r\nTensorFlow 2.10 was the last TensorFlow release that supported GPUs on native-Windows. Could you please provide any specific reason you are using WSL2 for 2.10, you can directly install the v2.12 on native-Windows which was supported. \r\ndoes the tf.test.is_gpu_available return False? If that's the case, then it definitely means the GPU is not configured correctly.\r\n\r\nAlso, the error message somehow indicating that the GPU device is not there:\r\n\r\nRegistered devices: [CPU,XLA_CPU,XLA_GPU]\r\n\r\nXLA_GPU is not same as GPU.\r\n\r\nMay I know have you tried to execute the same code with the CPU only if yes is it working fine with the CPU ? If not please try it to run on either with CPU only or on Google Colab and check whether it is working as expected or not ? Thank you!", "I am on windows 11 and i have installed CUDA on native windows. \r\n\r\nAs per the link: https://www.tensorflow.org/install/pip#windows-native, it is said that TensorFlow 2.10 was the last TensorFlow release that supported GPU on native-Windows. Starting with TensorFlow 2.11, you will need to install [TensorFlow in WSL2](https://tensorflow.org/install/pip#windows-wsl2), or install tensorflow or tensorflow-cpu and, optionally, try the [TensorFlow-DirectML-Plugin](https://github.com/microsoft/tensorflow-directml-plugin#tensorflow-directml-plugin-).\r\n\r\nso when i install tensorflow >2.10.* i am unable to see the gpu on wsl2.....and on installing directml-plugin i am unable to run RNN model only CNN model works.....I have NVIDIA 16gb GPU (8gb dedicated) and 32GB CPU.....RNN model works fiine with CPU but kernel crashes on GPU....while CNN works easily on both ", "Awaiting for reply", "Still no reply", "Sorry, I don't think I can help much here. Assigning this one back to you @sachinprasadhs. " ]
2023-06-09T12:01:54
2023-06-28T20:09:37
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.10.0 ### Custom Code Yes ### OS Platform and Distribution WSL2 on Windows 11 ### Mobile device _No response_ ### Python version 3.8.12 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 11.2/8.1.0 ### GPU model and memory NVIDIA Quadro P4200, 16gb ### Current Behaviour? After setting up the system to use gpu from WSL2 on windows 11, I am able to connect to GPU. But when I run a tensorflow model, I am able to run CNN model on GPU but when i try to run RNN model I get the below mentioned message and the model does not run: "W tensorflow/core/framework/op_kernel.cc:1780] OP_REQUIRES failed at partitioned_function_ops.cc:115 : INVALID_ARGUMENT: No OpKernel was registered to support Op 'CudnnRNN' used by {{node CudnnRNN}} with these attrs: [seed=0, dropout=0, T=DT_FLOAT, input_mode="linear_input", direction="unidirectional", rnn_mode="lstm", seed2=0, is_training=true] Registered devices: [CPU, GPU] Registered kernels: <no registered kernels> [[CudnnRNN]]" ### Standalone code to reproduce the issue ```shell Trying RNN model with LSTM ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60826/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60826/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60825
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60825/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60825/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60825/events
https://github.com/tensorflow/tensorflow/issues/60825
1,749,406,280
I_kwDOArmXAs5oRdJI
60,825
What phone support tensorflow lite GPU delegate?
{ "login": "ldfandian", "id": 5018331, "node_id": "MDQ6VXNlcjUwMTgzMzE=", "avatar_url": "https://avatars.githubusercontent.com/u/5018331?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ldfandian", "html_url": "https://github.com/ldfandian", "followers_url": "https://api.github.com/users/ldfandian/followers", "following_url": "https://api.github.com/users/ldfandian/following{/other_user}", "gists_url": "https://api.github.com/users/ldfandian/gists{/gist_id}", "starred_url": "https://api.github.com/users/ldfandian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ldfandian/subscriptions", "organizations_url": "https://api.github.com/users/ldfandian/orgs", "repos_url": "https://api.github.com/users/ldfandian/repos", "events_url": "https://api.github.com/users/ldfandian/events{/privacy}", "received_events_url": "https://api.github.com/users/ldfandian/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671339633, "node_id": "MDU6TGFiZWwyNjcxMzM5NjMz", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate", "name": "TFLiteGpuDelegate", "color": "F71F04", "default": false, "description": "TFLite Gpu delegate issue" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }
[ { "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }, { "login": "grantjensen", "id": 58962643, "node_id": "MDQ6VXNlcjU4OTYyNjQz", "avatar_url": "https://avatars.githubusercontent.com/u/58962643?v=4", "gravatar_id": "", "url": "https://api.github.com/users/grantjensen", "html_url": "https://github.com/grantjensen", "followers_url": "https://api.github.com/users/grantjensen/followers", "following_url": "https://api.github.com/users/grantjensen/following{/other_user}", "gists_url": "https://api.github.com/users/grantjensen/gists{/gist_id}", "starred_url": "https://api.github.com/users/grantjensen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/grantjensen/subscriptions", "organizations_url": "https://api.github.com/users/grantjensen/orgs", "repos_url": "https://api.github.com/users/grantjensen/repos", "events_url": "https://api.github.com/users/grantjensen/events{/privacy}", "received_events_url": "https://api.github.com/users/grantjensen/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ldfandian \r\n\r\nCan you please add the following to the Android manifest in order to detect GPU delegate.\r\n\r\n```\r\n<uses-library android:name=\"libOpenCL.so\"\r\n android:required=\"false\"/>\r\n\r\n<uses-library android:name=\"libOpenCL-pixel.so\"\r\n android:required=\"false\"/>\r\n```\r\n\r\nThanks.\r\n", "> Hi @ldfandian\r\n> \r\n> Can you please add the following to the Android manifest in order to detect GPU delegate.\r\n> \r\n> ```\r\n> <uses-library android:name=\"libOpenCL.so\"\r\n> android:required=\"false\"/>\r\n> \r\n> <uses-library android:name=\"libOpenCL-pixel.so\"\r\n> android:required=\"false\"/>\r\n> ```\r\n> \r\n> Thanks.\r\n\r\nThanks for the quick response.\r\n\r\nI tried to add the following code in AndroidManifest.xml, but it does not work.\r\n\r\n```\r\n <application\r\n android:allowBackup=\"true\"\r\n android:icon=\"@mipmap/ic_launcher\"\r\n android:label=\"@string/app_name\"\r\n android:roundIcon=\"@mipmap/ic_launcher_round\"\r\n android:supportsRtl=\"true\"\r\n android:taskAffinity=\"\"\r\n tools:ignore=\"AllowBackup\">\r\n\r\n <uses-native-library\r\n android:name=\"libOpenCL.so\"\r\n android:required=\"false\" />\r\n <uses-native-library\r\n android:name=\"libOpenCL-pixel.so\"\r\n android:required=\"false\" />\r\n <uses-native-library\r\n android:name=\"libGLESv2.so\"\r\n android:required=\"false\" />\r\n <uses-native-library\r\n android:name=\"libGLESv3.so\"\r\n android:required=\"false\" />\r\n <uses-native-library\r\n android:name=\"libvulkan.so\"\r\n android:required=\"false\" />\r\n <uses-native-library\r\n android:name=\"libneuralnetworks.so\"\r\n android:required=\"false\" />\r\n\r\n <uses-library\r\n android:name=\"libOpenCL.so\"\r\n android:required=\"false\" />\r\n <uses-library\r\n android:name=\"libOpenCL-pixel.so\"\r\n android:required=\"false\" />\r\n <uses-library\r\n android:name=\"libGLESv2.so\"\r\n android:required=\"false\" />\r\n <uses-library\r\n android:name=\"libGLESv3.so\"\r\n android:required=\"false\" />\r\n <uses-library\r\n android:name=\"libvulkan.so\"\r\n android:required=\"false\" />\r\n <uses-library\r\n android:name=\"libneuralnetworks.so\"\r\n android:required=\"false\" />\r\n ...\r\n```\r\n\r\nBtw, on the Xiaomi 12s Ultra, I checked that the file \"/system/vendor/lib64/libOpenCL.so\" does exist.\r\nHowever, it looks like it does not show in the \"/system/etc/public.libraries.txt\".\r\nMaybe it is the cause? Meaning that the mobile vendor blocks the GPU delegate?\r\n\r\nThe content of \"/system/etc/public.libraries.txt\" and \"/etc/public.libraries.txt\" is like:\r\n```\r\n# See https://android.googlesource.com/platform/ndk/+/master/docs/PlatformApis.md\r\nlibandroid.so\r\nlibaaudio.so\r\nlibamidi.so\r\nlibbinder_ndk.so\r\nlibc.so\r\nlibcamera2ndk.so\r\nlibdl.so\r\nlibEGL.so\r\nlibGLESv1_CM.so\r\nlibGLESv2.so\r\nlibGLESv3.so\r\nlibicu.so\r\nlibicui18n.so\r\nlibicuuc.so\r\nlibjnigraphics.so\r\nliblog.so\r\nlibmediandk.so\r\nlibm.so\r\nlibnativehelper.so\r\nlibnativewindow.so\r\nliblistenjni.qti.so\r\nliblistensoundmodel2.qti.so\r\nlibneuralnetworks.so nopreload\r\nlibOpenMAXAL.so\r\nlibOpenSLES.so\r\nlibRS.so\r\nlibstdc++.so\r\nlibsync.so\r\nlibvulkan.so\r\nlibwebviewchromium_plat_support.so\r\nlibz.so\r\n```\r\n\r\nThe content of \"/vendor/etc/public.libraries.txt\" and \"/system/vendor/etc/public.libraries.txt\" is like:\r\n```\r\nlibqti-perfd-client.so\r\nlibadsprpc.so\r\nlibcdsprpc.so\r\nlibsdsprpc.so\r\nlibfastcvopt.so\r\nlibOpenCL.so\r\nlibSNPE.so\r\nlibmialgo_ai_vision.so\r\nlibmialgo_utils.so\r\nlibxmi_slow_motion_mein.so\r\n```\r\n\r\n\r\nHere is the logcat info:\r\n```\r\n2023-06-10 01:19:29.175 30415-22047 AdrenoGLES-0 org....examples.imageclassification I QUALCOMM build : 5e81ec0141, Icc5bd9b9d5\r\n Build Date : 11/07/22\r\n OpenGL ES Shader Compiler Version: EV031.36.08.11\r\n Local Branch : \r\n Remote Branch : \r\n Remote Branch : \r\n Reconstruct Branch : \r\n2023-06-10 01:19:29.175 30415-22047 AdrenoGLES-0 org....examples.imageclassification I Build Config : S P 12.1.1 AArch64\r\n2023-06-10 01:19:29.175 30415-22047 AdrenoGLES-0 org....examples.imageclassification I Driver Path : /vendor/lib64/egl/libGLESv2_adreno.so\r\n2023-06-10 01:19:29.175 30415-22047 AdrenoGLES-0 org....examples.imageclassification I Driver Version : 0615.50\r\n2023-06-10 01:19:29.181 30415-22047 AdrenoGLES-0 org....examples.imageclassification I PFP: 0x01730155, ME: 0x00000000\r\n\r\n...\r\n\r\n2023-06-10 01:30:26.249 6749-25290 libEGL org....examples.imageclassification E pre_cache appList: com.sina.weibo,com.ss.android.article.news,com.taobao.taobao,com.smile.gifmaker,com.ss.android.ugc.aweme,com.tencent.mm,tv.danmaku.bili,\r\n...\r\n2023-06-10 01:26:11.511 6746-24015 libEGL org....examples.imageclassification E call to OpenGL ES API with no current context (logged once per thread)\r\n...\r\n\r\n\r\n```\r\n", "An update, after adding those uses-library/uses-native-library settings in AndroidManifest.xml, OnePlus 8T works but the other three devices still don't work...\r\n\r\nI compared the their content of /system/etc/public.libraries.txt, but find nothing different among these devices.\r\n\r\nWhat's the magic here?", "Hi @ldfandian,\r\n\r\nHave you tried using our acceleration service to see which configuration might be optimal for each of your phones? https://www.tensorflow.org/lite/android/acceleration_service\r\n\r\nHave you checked the documentation here: https://www.tensorflow.org/lite/android/delegates/gpu_native ?\r\n\r\nAlso for more information, are you using an emulator or the actual phones?", "> Hi @ldfandian,\r\n> \r\n> Have you tried using our acceleration service to see which configuration might be optimal for each of your phones? https://www.tensorflow.org/lite/android/acceleration_service\r\n> \r\n> Have you checked the documentation here: https://www.tensorflow.org/lite/android/delegates/gpu_native ?\r\n> \r\n> Also for more information, are you using an emulator or the actual phones?\r\n\r\nThanks for the advice.\r\n\r\nGood to know it, but my phone does not have a Google play service installed~", "No worries, @ldfandian did the documentation help at all? Additionally please let us know if you are using emulators or actual phones or some combination of them. Thanks.", "> No worries, @ldfandian did the documentation help at all? Additionally please let us know if you are using emulators or actual phones or some combination of them. Thanks.\r\n\r\nAll of these (Xiaomi 12s Ultra, OnePlus 8, Honor Nova 10, Oppo Reno 9) are real phones sold in China.", "Hi @sirakiin, can you please take a look?", "Triage to @grantjensen . Could you help on this? Thanks!", "Hi @ldfandian, looking at the GPU's used in these devices (Adreno 730, Adreno 642L) we have full support. I was able to confirm this via the following commands:\r\n\r\n`bazel build -c opt --config=android_arm64 --copt=-DCL_DELEGATE_NO_GL third_party/tensorflow/lite/tools/benchmark:benchmark_model `\r\n\r\n`adb push blaze-bin/third_party/tensorflow/lite/tools/benchmark/benchmark_model /data/local/tmp`\r\n\r\n`adb push test.tflite /data/local/tmp`\r\n\r\n`adb shell /data/local/tmp/benchmark_model --use_gpu=true --graph=/data/local/tmp/test.tflite`\r\n\r\nThis way we can confirm whether your issue is confined to TFL code or something broader. Please run the above code & let me know how it goes, thanks.\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60825\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60825\">No</a>\n", "Actually, I have similar issue too. I cannot do GPU prediction on Phone. \r\n\r\nTensorflow : 2.9\r\nAndroind : 13\r\nPhone - Samsung A73 5G\r\n\r\nI am getting this flag as False\r\ncompatList.isDelegateSupportedOnThisDevice: false" ]
2023-06-09T08:28:44
2023-07-12T06:32:46
2023-07-12T02:08:38
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code No ### OS Platform and Distribution Android 13 ### Mobile device Android 13 ### Python version 3.8.3 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I tested multiple mobile phones (including Xiaomi 12s Ultra, OnePlus 8, Honor Nova 10, Oppo Reno 9) using the example Android apk at https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android . On all of the devices, the app tells "GPU is not supported", but NNAPI and CPU is OK. Anything I can do to enable the GPU delegate on these Qualcomm Snapdragon devices? ### Standalone code to reproduce the issue ```shell the example Android apk at https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60825/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60825/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60824
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60824/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60824/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60824/events
https://github.com/tensorflow/tensorflow/pull/60824
1,749,263,989
PR_kwDOArmXAs5SlvfN
60,824
Update list_physical_devices and list_logical_devices Argument notes
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" }, { "id": 1178505529, "node_id": "MDU6TGFiZWwxMTc4NTA1NTI5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/prtype:bugfix", "name": "prtype:bugfix", "color": "159b2e", "default": false, "description": "PR to fix a bug" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @kenfranko Can you please review this PR ? Thank you!", "Hi @SuryanarayanaY Can you please check @kenfranko's [comments](https://github.com/tensorflow/tensorflow/pull/60824#discussion_r1239106026) and keep us posted? Thank you!", "Done the suggested changes." ]
2023-06-09T07:07:50
2023-08-08T14:43:36
2023-08-04T00:26:12
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60824", "html_url": "https://github.com/tensorflow/tensorflow/pull/60824", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60824.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60824.patch", "merged_at": "2023-08-04T00:26:12" }
At present both the APIs `tf.config.list_physical_devices` and `tf.config.list_logical_devices` has an optional argument named `device_type` which takes a `string` as an argument. But When we pass a numeric value or strings other than expected('CPU' or 'GPU') both returns an empty list instead of raising the error.The behaviour is ok but this is not documented well.Hence I proposed a note for same. Also the default value of the argument `device_type` is `None` but with default value both the APIs returns available physical/logical devices. This is not `intuitive` as for value `None` the APIs returning the respective devices. This may create some confusion among users. Hence I am adding the note of same to the documentation explicitly to avoid any confusion. Attaching the [gist](https://colab.research.google.com/gist/SuryanarayanaY/68405fce0b68d53f094f875a4a7c5c42/57153.ipynb#scrollTo=C-CjbbaKu1Q6) as reference for the above results. The issue discussed in #57153 .
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60824/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60824/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60823
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60823/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60823/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60823/events
https://github.com/tensorflow/tensorflow/pull/60823
1,748,773,940
PR_kwDOArmXAs5SkLfp
60,823
Changes to add bfloat16 support for image rotation
{ "login": "jojivk73", "id": 14943401, "node_id": "MDQ6VXNlcjE0OTQzNDAx", "avatar_url": "https://avatars.githubusercontent.com/u/14943401?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jojivk73", "html_url": "https://github.com/jojivk73", "followers_url": "https://api.github.com/users/jojivk73/followers", "following_url": "https://api.github.com/users/jojivk73/following{/other_user}", "gists_url": "https://api.github.com/users/jojivk73/gists{/gist_id}", "starred_url": "https://api.github.com/users/jojivk73/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jojivk73/subscriptions", "organizations_url": "https://api.github.com/users/jojivk73/orgs", "repos_url": "https://api.github.com/users/jojivk73/repos", "events_url": "https://api.github.com/users/jojivk73/events{/privacy}", "received_events_url": "https://api.github.com/users/jojivk73/received_events", "type": "User", "site_admin": false }
[ { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "@cantonios, Thanks for the review. I was not able to find a testcase in the framework, (that I could test and enable) for bfloat16. Do you want me to add a python testcase or C++ testcase for this?. If you can give me a reference testcase it will be great. I tried updating and running this testcase tensorflow/python/ops/image_ops_test.py (only forImageProjectiveTransformV2) . It fails for different versions of protobuf (latest : 4.23, and based on comments in failure: 3.19, 3.20).\r\n", "> @cantonios, Thanks for the review. I was not able to find a testcase in the framework, (that I could test and enable) for bfloat16. Do you want me to add a python testcase or C++ testcase for this?. If you can give me a reference testcase it will be great. I tried updating and running this testcase tensorflow/python/ops/image_ops_test.py (only forImageProjectiveTransformV2) . It fails for different versions of protobuf (latest : 4.23, and based on comments in failure: 3.19, 3.20).\r\n\r\nYes, modifying the existing `ImagProjectiveTransformV2` python test is fine. I don't understand your comment about protobuf issues... the test is currently enabled, so should be passing. It sounds like a configuration error on your end.", "Hi @jojivk73 Any update on this PR? Please. Thank you!", "Hi @gbaned , Changes under internal review. Will upstream soon. Thanks", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "This PR was closed because it has been inactive for 14 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-06-08T23:04:09
2023-11-17T16:47:59
2023-08-23T01:46:39
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60823", "html_url": "https://github.com/tensorflow/tensorflow/pull/60823", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60823.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60823.patch", "merged_at": null }
This are changes to add bfloat16 to image rotation. When models are run in mixed bfloat16 precision, models that use image transformation would perform much better with image rotation in bfloat16.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60823/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60823/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60822
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60822/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60822/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60822/events
https://github.com/tensorflow/tensorflow/issues/60822
1,748,703,924
I_kwDOArmXAs5oOxq0
60,822
TF >= 2.7 slowdown tf.data API
{ "login": "chnzhangrui", "id": 7995787, "node_id": "MDQ6VXNlcjc5OTU3ODc=", "avatar_url": "https://avatars.githubusercontent.com/u/7995787?v=4", "gravatar_id": "", "url": "https://api.github.com/users/chnzhangrui", "html_url": "https://github.com/chnzhangrui", "followers_url": "https://api.github.com/users/chnzhangrui/followers", "following_url": "https://api.github.com/users/chnzhangrui/following{/other_user}", "gists_url": "https://api.github.com/users/chnzhangrui/gists{/gist_id}", "starred_url": "https://api.github.com/users/chnzhangrui/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/chnzhangrui/subscriptions", "organizations_url": "https://api.github.com/users/chnzhangrui/orgs", "repos_url": "https://api.github.com/users/chnzhangrui/repos", "events_url": "https://api.github.com/users/chnzhangrui/events{/privacy}", "received_events_url": "https://api.github.com/users/chnzhangrui/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1114343535, "node_id": "MDU6TGFiZWwxMTE0MzQzNTM1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data", "name": "comp:data", "color": "0052cc", "default": false, "description": "tf.data related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 3531398540, "node_id": "LA_kwDOArmXAs7SfN2M", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.7", "name": "TF 2.7", "color": "77237D", "default": false, "description": "Issues related to TF 2.7.0" } ]
closed
false
{ "login": "sushreebarsa", "id": 84765720, "node_id": "MDQ6VXNlcjg0NzY1NzIw", "avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sushreebarsa", "html_url": "https://github.com/sushreebarsa", "followers_url": "https://api.github.com/users/sushreebarsa/followers", "following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}", "gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}", "starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions", "organizations_url": "https://api.github.com/users/sushreebarsa/orgs", "repos_url": "https://api.github.com/users/sushreebarsa/repos", "events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}", "received_events_url": "https://api.github.com/users/sushreebarsa/received_events", "type": "User", "site_admin": false }
[ { "login": "sushreebarsa", "id": 84765720, "node_id": "MDQ6VXNlcjg0NzY1NzIw", "avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sushreebarsa", "html_url": "https://github.com/sushreebarsa", "followers_url": "https://api.github.com/users/sushreebarsa/followers", "following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}", "gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}", "starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions", "organizations_url": "https://api.github.com/users/sushreebarsa/orgs", "repos_url": "https://api.github.com/users/sushreebarsa/repos", "events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}", "received_events_url": "https://api.github.com/users/sushreebarsa/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi, @chnzhangrui! I tried this provided code in TF v[2.8](https://colab.research.google.com/gist/sushreebarsa/12b8d058b114457a93847bdccc7ea87c/60822-2-12.ipynb#scrollTo=tuajrZc2nTS1), TF v[2.12](https://colab.research.google.com/gist/sushreebarsa/c1ad2acaa810562a063e26bce51a2a49/60822-2-12.ipynb) and tf-[nightly](https://colab.research.google.com/gist/sushreebarsa/10f739e75d7dc06531aca5155e40fcef/untitled793.ipynb#scrollTo=wTUkrK8AnQ4D) using colab. The issue is not replicating as described here. Could you please have a look at these gists and confirm the same. Thank you!", "Hi @sushreebarsa, thanks for the quick response. I checked your gists and I can also confirm your (fast) result. However, it is not clear to me if it was running on GPU or CPU for you. The problem persist only if I run on GPU and I don't know if I can connect to a GPU for test on colab. Let's focus on v2.8.", "Hi @chnzhangrui I have tested the issue on colab using GPU runtime with TF v2.8 as well which is also not replicating the issue reported here. Please find the gist [here](https://colab.research.google.com/gist/sushreebarsa/661982f1752ab6fe6f1b4c78bd35fabf/60822-2-12.ipynb) for reference. Thank you!", "Hi @sushreebarsa, thanks for the confirmation. I am trying to confirm this with my system again and it currently encountered an issue. Will update once I have some idea. I am a little concerned that the fast result you see is really from GPU or just CPU, because this code runs very fast on CPU. I may need to come up with a code that doesn't work on CPU.", "@chnzhangrui Thank you for your response. Please let us know if there is any new update?\r\nThank you!", "Sorry for the silence. I am still waiting for response from our IT support.", "@chnzhangrui Is there any update on this issue?\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60822\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60822\">No</a>\n" ]
2023-06-08T21:56:06
2023-07-27T01:50:04
2023-07-27T01:50:02
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Performance ### Have you reproduced the bug with TF nightly? Yes ### Source installed from pip ### Tensorflow Version tf >= 2.7 ### Custom Code No ### OS Platform and Distribution Linux, CentOS Linux 7 ### Mobile device No ### Python version 3.8, 3.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Since TF >= 2.7, I observed a significant slowness when running `ds_iter.get_next()` where `ds_iter` is an iterator of tf.data.Dataset defined as `dataset.shuffle(...).cache().repeat(...).batch(..., drop_remainder=True).prefetch(tf.data.AUTOTUNE)`. The same code runs much faster on the same machine using TF <= 2.6. A reproducer is included below. Looking at the [change log from TF2.8](https://www.exxactcorp.com/blog/Deep-Learning/tensorflow-2-8-0-released), I see the following related to Dataset API `(since v2.7) Stateful ops used in tf.data.Dataset`. However I am not entirely sure if there is a workaround in higher TF version to reach the same speed. ### Standalone code to reproduce the issue ```shell import tensorflow as tf import time X = tf.random.uniform(shape=[21000, 373]) Labels = tf.random.uniform(shape=[21000, 1]) batchsize = 8192 n_shuffles = 500000 n_samples = 21000 ds = tf.data.Dataset.from_tensor_slices((X, Labels)) ds = ds.shuffle(buffer_size=n_samples).cache().repeat(n_shuffles).batch(batchsize, drop_remainder=True).prefetch(tf.data.AUTOTUNE) ds_iter = iter(ds) num_iter = 100 loop_start = time.time() for i in range(num_iter): ds_iter.get_next() loop_stop = time.time() print('loop time', f'{loop_stop-loop_start : .4f}') ``` ### Relevant log output ```shell output of the reproducer: - with TF >= 2.7: loop time 15.8203 - with TF <= 2.6: loop time 1.0519 device to run the above two tests: NVIDIA A100-PCIE-40GB NVIDIA-SMI 530.30.02 Driver Version: 530.30.02 CUDA Version: 12.1 $$ nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Thu_Jan_28_19:32:09_PST_2021 Cuda compilation tools, release 11.2, V11.2.142 Build cuda_11.2.r11.2/compiler.29558016_0 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60822/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60822/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60821
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60821/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60821/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60821/events
https://github.com/tensorflow/tensorflow/pull/60821
1,748,568,065
PR_kwDOArmXAs5SjkPt
60,821
Update version numbers for TensorFlow 2.12.1
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-06-08T20:13:39
2023-06-08T20:31:57
2023-06-08T20:31:54
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60821", "html_url": "https://github.com/tensorflow/tensorflow/pull/60821", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60821.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60821.patch", "merged_at": "2023-06-08T20:31:54" }
Before merging this PR, please double check that it has correctly updated `core/public/version.h`, `tools/pip_package/setup.py`, and `tensorflow/tensorflow.bzl`. Also review the execution notes below: ``` Major: 2 -> 2 Minor: 12 -> 12 Patch: 0 -> 1 WARNING: Below are potentially instances of lingering old version string "2.12.0" in source directory "tensorflow/" that are not updated by this script. Please check them manually! tensorflow/lite/core/c/c_api.h:115:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:183:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:191:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:315:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:355:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:360:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:397:2.12.0 tensorflow/tools/pip_package/setup.py:112:2.12.0 tensorflow/tools/pip_package/setup.py:129:2.12.0 tensorflow/tools/pip_package/setup.py:130:2.12.0 tensorflow/tools/pip_package/setup.py:132:2.12.0 tensorflow/tools/pip_package/redundant_tensorflow_gpu/setup.cfg:17:2.12.0 tensorflow/tools/pip_package/redundant_tf_nightly_gpu/setup.cfg:17:2.12.0 tensorflow/tools/ci_build/release/requirements_common.txt:28:2.12.0 tensorflow/tools/ci_build/release/requirements_common.txt:29:2.12.0 tensorflow/tools/ci_build/release/requirements_common.txt:30:2.12.0 tensorflow/tools/ci_build/release/requirements_mac.txt:4:2.12.0 tensorflow/tools/tf_sig_build_dockerfiles/devel.requirements.txt:32:2.12.0 tensorflow/tools/tf_sig_build_dockerfiles/devel.requirements.txt:33:2.12.0 tensorflow/tools/tf_sig_build_dockerfiles/devel.requirements.txt:34:2.12.0 WARNING: Below are potentially instances of lingering old version string "2.12.0" in source directory "tensorflow/" that are not updated by this script. Please check them manually! tensorflow/lite/core/c/c_api.h:115:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:183:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:191:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:315:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:355:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:360:2.12.0 tensorflow/lite/tools/versioning/runtime_version.cc:397:2.12.0 tensorflow/tools/pip_package/setup.py:112:2.12.0 tensorflow/tools/pip_package/setup.py:129:2.12.0 tensorflow/tools/pip_package/setup.py:130:2.12.0 tensorflow/tools/pip_package/setup.py:132:2.12.0 tensorflow/tools/pip_package/redundant_tensorflow_gpu/setup.cfg:17:2.12.0 tensorflow/tools/pip_package/redundant_tf_nightly_gpu/setup.cfg:17:2.12.0 tensorflow/tools/ci_build/release/requirements_common.txt:28:2.12.0 tensorflow/tools/ci_build/release/requirements_common.txt:29:2.12.0 tensorflow/tools/ci_build/release/requirements_common.txt:30:2.12.0 tensorflow/tools/ci_build/release/requirements_mac.txt:4:2.12.0 tensorflow/tools/tf_sig_build_dockerfiles/devel.requirements.txt:32:2.12.0 tensorflow/tools/tf_sig_build_dockerfiles/devel.requirements.txt:33:2.12.0 tensorflow/tools/tf_sig_build_dockerfiles/devel.requirements.txt:34:2.12.0 ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60821/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60821/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60820
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60820/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60820/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60820/events
https://github.com/tensorflow/tensorflow/pull/60820
1,748,437,054
PR_kwDOArmXAs5SjIK7
60,820
Update release notes for TensorFlow 2.12.1
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-06-08T18:29:50
2023-06-08T20:17:33
2023-06-08T20:04:39
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60820", "html_url": "https://github.com/tensorflow/tensorflow/pull/60820", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60820.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60820.patch", "merged_at": "2023-06-08T20:04:39" }
This PR is intentionally incomplete. One of the Release Owners for 2.12.1 needs to fill in the internal release notes for this version before the PR gets submitted. Click on the :pencil2: icon in the header for `RELEASE.md` under "Files Changed" above.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60820/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60820/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60819
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60819/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60819/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60819/events
https://github.com/tensorflow/tensorflow/pull/60819
1,748,403,084
PR_kwDOArmXAs5SjAyd
60,819
Cherrypick for r2.12.1 patch: [Linaro:ARM_CI] Stop using ambe config as not needed
{ "login": "venkat2469", "id": 104534215, "node_id": "U_kgDOBjsQxw", "avatar_url": "https://avatars.githubusercontent.com/u/104534215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/venkat2469", "html_url": "https://github.com/venkat2469", "followers_url": "https://api.github.com/users/venkat2469/followers", "following_url": "https://api.github.com/users/venkat2469/following{/other_user}", "gists_url": "https://api.github.com/users/venkat2469/gists{/gist_id}", "starred_url": "https://api.github.com/users/venkat2469/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/venkat2469/subscriptions", "organizations_url": "https://api.github.com/users/venkat2469/orgs", "repos_url": "https://api.github.com/users/venkat2469/repos", "events_url": "https://api.github.com/users/venkat2469/events{/privacy}", "received_events_url": "https://api.github.com/users/venkat2469/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-06-08T18:01:11
2023-06-08T20:54:52
2023-06-08T20:36:45
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60819", "html_url": "https://github.com/tensorflow/tensorflow/pull/60819", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60819.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60819.patch", "merged_at": "2023-06-08T20:36:45" }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60819/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60819/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60818
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60818/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60818/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60818/events
https://github.com/tensorflow/tensorflow/pull/60818
1,748,287,784
PR_kwDOArmXAs5SioDR
60,818
[AMD-ZENDNN] Blocked format support with new env variable
{ "login": "aadwived", "id": 82587125, "node_id": "MDQ6VXNlcjgyNTg3MTI1", "avatar_url": "https://avatars.githubusercontent.com/u/82587125?v=4", "gravatar_id": "", "url": "https://api.github.com/users/aadwived", "html_url": "https://github.com/aadwived", "followers_url": "https://api.github.com/users/aadwived/followers", "following_url": "https://api.github.com/users/aadwived/following{/other_user}", "gists_url": "https://api.github.com/users/aadwived/gists{/gist_id}", "starred_url": "https://api.github.com/users/aadwived/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aadwived/subscriptions", "organizations_url": "https://api.github.com/users/aadwived/orgs", "repos_url": "https://api.github.com/users/aadwived/repos", "events_url": "https://api.github.com/users/aadwived/events{/privacy}", "received_events_url": "https://api.github.com/users/aadwived/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "/cc @penpornk ", "Do you want to keep the old setting as well, and maybe branch depending on zendnn version? Or will everyone be using ZenDNNv4.0?", "@cantonios We do not want to keep the old setting. Everyone will be using ZenDNNv4.0." ]
2023-06-08T16:28:01
2023-06-13T16:21:41
2023-06-13T16:21:41
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60818", "html_url": "https://github.com/tensorflow/tensorflow/pull/60818", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60818.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60818.patch", "merged_at": "2023-06-13T16:21:40" }
- ZenDNNv4.0 library supports ZENDNN_CONV_ALGO environment variable instead of ZENDNN_BLOCKED_FORMAT Authors: Aakar Dwivedi ( [email protected] ) Chandra Kumar Ramasamy ( [email protected] ) Savan Anadani ( [email protected] )
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60818/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60818/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60817
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60817/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60817/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60817/events
https://github.com/tensorflow/tensorflow/issues/60817
1,748,074,890
I_kwDOArmXAs5oMYGK
60,817
TFLite Android GPU delgate cannot run: TfLiteGpuDelegate Init: STRIDED_SLICE: Output batch don't match
{ "login": "ldfandian", "id": 5018331, "node_id": "MDQ6VXNlcjUwMTgzMzE=", "avatar_url": "https://avatars.githubusercontent.com/u/5018331?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ldfandian", "html_url": "https://github.com/ldfandian", "followers_url": "https://api.github.com/users/ldfandian/followers", "following_url": "https://api.github.com/users/ldfandian/following{/other_user}", "gists_url": "https://api.github.com/users/ldfandian/gists{/gist_id}", "starred_url": "https://api.github.com/users/ldfandian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ldfandian/subscriptions", "organizations_url": "https://api.github.com/users/ldfandian/orgs", "repos_url": "https://api.github.com/users/ldfandian/repos", "events_url": "https://api.github.com/users/ldfandian/events{/privacy}", "received_events_url": "https://api.github.com/users/ldfandian/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671339633, "node_id": "MDU6TGFiZWwyNjcxMzM5NjMz", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate", "name": "TFLiteGpuDelegate", "color": "F71F04", "default": false, "description": "TFLite Gpu delegate issue" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ldfandian \r\n\r\nCan you please try in TF Nightly and let us know if you are still facing the issue?\r\n\r\n`implementation 'org.tensorflow:tensorflow-lite-*:0.0.0-nightly-SNAPSHOT'`\r\n\r\nThanks.", "> Hi @ldfandian\r\n> \r\n> Can you please try in TF Nightly and let us know if you are still facing the issue?\r\n> \r\n> `implementation 'org.tensorflow:tensorflow-lite-*:0.0.0-nightly-SNAPSHOT'`\r\n> \r\n> Thanks.\r\n\r\nOK. I will try it.\r\nAfter some tuning on the ops, now STRIDED_SLICE op is not complained any more.\r\n\r\nBut I get a new error message like this. What does it mean?\r\n\r\n```\r\n01:58:27.544 I isKeyboardTypeChanged: false\r\n01:58:27.544 I isKeyboardTypeChanged: false\r\n01:58:27.666 E call to OpenGL ES API with no current context (logged once per thread)\r\n--------- beginning of crash\r\n01:58:27.685 I Created 0 GPU delegate kernels.\r\n01:58:27.690 E FATAL EXCEPTION: Thread-23\r\n Process: com.xsmart.recall.android, PID: 22340\r\n java.lang.IllegalArgumentException: Internal error: Failed to apply delegate: Unrecognized Read selector\r\n Falling back to OpenGL\r\n TfLiteGpuDelegate Init: Batch size mismatch, expected 1 but got 49\r\n TfLiteGpuDelegate Prepare: delegate is not initialized\r\n Node number 409 (TfLiteGpuDelegateV2) failed to prepare.\r\n Restored original execution plan after delegate application failure.\r\n \tat org.tensorflow.lite.NativeInterpreterWrapper.createInterpreter(Native Method)\r\n \tat org.tensorflow.lite.NativeInterpreterWrapper.init(NativeInterpreterWrapper.java:110)\r\n \tat org.tensorflow.lite.NativeInterpreterWrapper.<init>(NativeInterpreterWrapper.java:73)\r\n \tat org.tensorflow.lite.NativeInterpreterWrapperExperimental.<init>(NativeInterpreterWrapperExperimental.java:36)\r\n \tat org.tensorflow.lite.Interpreter.<init>(Interpreter.java:214)\r\n\r\n```\r\n\r\nthe related node is like:\r\n<img width=\"300\" alt=\"image\" src=\"https://github.com/tensorflow/tensorflow/assets/5018331/e5a71a84-c510-4808-a333-0db918039442\">\r\n", "Hi @ldfandian \r\n\r\nAs suggested [here](https://github.com/tensorflow/tensorflow/issues/56545#issuecomment-1190924808), the whole path with SHAPE ->STRIDED_SLICE -> PACK is a static thing you can replace with a static tensor to support GPU delegate.\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60817\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60817\">No</a>\n" ]
2023-06-08T14:54:37
2023-07-01T02:12:18
2023-07-01T02:12:16
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code No ### OS Platform and Distribution Android ### Mobile device Android 13 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I am trying to run a modified resnet-50 (as follows) on Android platform using TFLite GPU Delegate, I already replaced unsupported GATHER ops with STRIDED_SLICE ops. It works fine on my Linux server, Android CPU mode but not able to run on Adroid GPU delegate. As https://www.tensorflow.org/lite/performance/gpu said, STRIDED_SLICE should be a supported ops on GPU delegate... Anything can shed some lights on what I can do here? ![image](https://github.com/tensorflow/tensorflow/assets/5018331/613a4b60-93f5-456b-9db3-18c55a8215e3) == Analyzer said: Your model looks compatible with GPU delegate with TFLite runtime version 2.12.0. But it doesn't guarantee that your model works well with GPU delegate. There could be some runtime incompatibililty happen. --------------------------------------------------------------- Your TFLite model has '1' signature_def(s). == 22:25:53.970 W Accessing hidden field Ljava/lang/Throwable;->detailMessage:Ljava/lang/String; (unsupported, reflection, allowed) 22:25:53.971 E java.lang.IllegalArgumentException: Internal error: Failed to apply delegate: TfLiteGpuDelegate Init: STRIDED_SLICE: Output batch don't match TfLiteGpuDelegate Prepare: delegate is not initialized Node number 409 (TfLiteGpuDelegateV2) failed to prepare. Restored original execution plan after delegate application failure. 22:25:53.971 E at org.tensorflow.lite.NativeInterpreterWrapper.createInterpreter(Native Method) 22:25:53.971 E at org.tensorflow.lite.NativeInterpreterWrapper.init(NativeInterpreterWrapper.java:110) 22:25:53.972 E at org.tensorflow.lite.NativeInterpreterWrapper.<init>(NativeInterpreterWrapper.java:58) 22:25:53.972 E at org.tensorflow.lite.NativeInterpreterWrapperExperimental.<init>(NativeInterpreterWrapperExperimental.java:32) 22:25:53.972 E at org.tensorflow.lite.Interpreter.<init>(Interpreter.java:184) ### Standalone code to reproduce the issue ```shell // if the device has a supported GPU, add the GPU delegate GpuDelegate gpuDelegate = new GpuDelegate( new GpuDelegate.Options() .setPrecisionLossAllowed(false) .setQuantizedModelsAllowed(false) ); options.addDelegate(gpuDelegate); Log.d("ImageEncoder", "Device = GPU, hasGPU=" + hasGPU); // if the GPU is not supported, run on 4 threads as a backup plan options.setNumThreads(4); Log.d("ImageEncoder", "Device = CPU"); interpreter = new Interpreter(file, options); implementation 'org.tensorflow:tensorflow-lite:2.12.0' implementation 'org.tensorflow:tensorflow-lite-api:2.10.0' implementation 'org.tensorflow:tensorflow-lite-gpu:2.12.0' implementation 'org.tensorflow:tensorflow-lite-gpu-api:2.12.0' implementation 'org.tensorflow:tensorflow-lite-gpu-delegate-plugin:0.4.3' implementation 'org.tensorflow:tensorflow-lite-select-tf-ops:2.12.0' implementation 'org.tensorflow:tensorflow-lite-support:0.4.2' ``` ### Relevant log output ```shell 22:25:53.970 W Accessing hidden field Ljava/lang/Throwable;->detailMessage:Ljava/lang/String; (unsupported, reflection, allowed) 22:25:53.971 E java.lang.IllegalArgumentException: Internal error: Failed to apply delegate: TfLiteGpuDelegate Init: STRIDED_SLICE: Output batch don't match TfLiteGpuDelegate Prepare: delegate is not initialized Node number 409 (TfLiteGpuDelegateV2) failed to prepare. Restored original execution plan after delegate application failure. 22:25:53.971 E at org.tensorflow.lite.NativeInterpreterWrapper.createInterpreter(Native Method) 22:25:53.971 E at org.tensorflow.lite.NativeInterpreterWrapper.init(NativeInterpreterWrapper.java:110) 22:25:53.972 E at org.tensorflow.lite.NativeInterpreterWrapper.<init>(NativeInterpreterWrapper.java:58) 22:25:53.972 E at org.tensorflow.lite.NativeInterpreterWrapperExperimental.<init>(NativeInterpreterWrapperExperimental.java:32) 22:25:53.972 E at org.tensorflow.lite.Interpreter.<init>(Interpreter.java:184) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60817/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60817/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60816
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60816/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60816/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60816/events
https://github.com/tensorflow/tensorflow/issues/60816
1,748,064,316
I_kwDOArmXAs5oMVg8
60,816
2.13 support for TensorflowLiteSwift and tensorflow-lite android (Maven)
{ "login": "ramonhollands", "id": 20172454, "node_id": "MDQ6VXNlcjIwMTcyNDU0", "avatar_url": "https://avatars.githubusercontent.com/u/20172454?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ramonhollands", "html_url": "https://github.com/ramonhollands", "followers_url": "https://api.github.com/users/ramonhollands/followers", "following_url": "https://api.github.com/users/ramonhollands/following{/other_user}", "gists_url": "https://api.github.com/users/ramonhollands/gists{/gist_id}", "starred_url": "https://api.github.com/users/ramonhollands/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ramonhollands/subscriptions", "organizations_url": "https://api.github.com/users/ramonhollands/orgs", "repos_url": "https://api.github.com/users/ramonhollands/repos", "events_url": "https://api.github.com/users/ramonhollands/events{/privacy}", "received_events_url": "https://api.github.com/users/ramonhollands/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ramonhollands,\r\n\r\nThe release will be notified here: https://cocoapods.org/pods/TensorFlowLiteSwift. Unfortunately, we don't have a publicly available planned release date currently. Please close if this answers your question.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-06-08T14:48:45
2023-06-29T02:06:19
2023-06-29T02:06:18
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.13.0 ### Custom Code Yes ### OS Platform and Distribution Ios/Android ### Mobile device Ios/Android ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I'm interested in the planned release date for TensorflowLite 2.13.0 IOS/Android ### Standalone code to reproduce the issue ```shell I'm interested in the planned release date for TensorflowLite 2.13.0 IOS/Android ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60816/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 1, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60816/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60815
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60815/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60815/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60815/events
https://github.com/tensorflow/tensorflow/issues/60815
1,747,973,452
I_kwDOArmXAs5oL_VM
60,815
int8 quantization fails with "Aborted (core dumped)" because real_output_multiplier > 1 in tensorflow/lite/kernels/add.cc
{ "login": "akrapukhin", "id": 34278438, "node_id": "MDQ6VXNlcjM0Mjc4NDM4", "avatar_url": "https://avatars.githubusercontent.com/u/34278438?v=4", "gravatar_id": "", "url": "https://api.github.com/users/akrapukhin", "html_url": "https://github.com/akrapukhin", "followers_url": "https://api.github.com/users/akrapukhin/followers", "following_url": "https://api.github.com/users/akrapukhin/following{/other_user}", "gists_url": "https://api.github.com/users/akrapukhin/gists{/gist_id}", "starred_url": "https://api.github.com/users/akrapukhin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/akrapukhin/subscriptions", "organizations_url": "https://api.github.com/users/akrapukhin/orgs", "repos_url": "https://api.github.com/users/akrapukhin/repos", "events_url": "https://api.github.com/users/akrapukhin/events{/privacy}", "received_events_url": "https://api.github.com/users/akrapukhin/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @akrapukhin, go ahead and make the PR stating that it fixes this issue. We will review internally and if we need a more general solution it will likely be part of the review (or of course if you figure it out feel free to update the PR). We appreciate your contribution!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "> \r\n\r\nOk, will make a PR then, thanks", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60815\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60815\">No</a>\n" ]
2023-06-08T14:10:10
2023-07-07T02:08:30
2023-07-07T02:08:28
NONE
null
null
null
### 1. System information - OS Platform and Distribution: Linux Ubuntu 20.04: - TensorFlow installation: pip package - TensorFlow library: v2.12.0 ### 2. Problem When I quantize my model in int8 format it fails with "Aborted (core dumped)". The quantization code is pretty standard: ``` model = some_model() converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = some_repr_dataset() converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 ``` Unfortunately, I cannot provide this model. However, I was able to find the exact reason why it fails. My model has some add operations with real_output_multiplier larger than one (see https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/add.cc#L197). When QuantizeMultiplierSmallerThanOneExp is called with this real_output_multiplier, it hits TFLITE_CHECK_LT (https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/internal/quantization_util.cc#L117) and calls TFLITE_ABORT without printing any useful info. Here is a patch which fixes the problem, and my model is successfully quantized: ``` diff --git a/tensorflow/lite/kernels/add.cc b/tensorflow/lite/kernels/add.cc index 6cad1883750..ebe71222f7c 100644 --- a/tensorflow/lite/kernels/add.cc +++ b/tensorflow/lite/kernels/add.cc @@ -189,8 +189,14 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { QuantizeMultiplierSmallerThanOneExp( real_input2_multiplier, &data->input2_multiplier, &data->input2_shift); - QuantizeMultiplierSmallerThanOneExp( - real_output_multiplier, &data->output_multiplier, &data->output_shift); + if (real_output_multiplier > 1){ + QuantizeMultiplierGreaterThanOne( + real_output_multiplier, &data->output_multiplier, &data->output_shift); + } + else { + QuantizeMultiplierSmallerThanOneExp( + real_output_multiplier, &data->output_multiplier, &data->output_shift); + } TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( context, params->activation, output, &data->output_activation_min, ``` It seems that some operations were fixed to work with multiplier > 1 (see https://github.com/tensorflow/tensorflow/issues/20451). I could make a pull request, but I'm not sure that my solution is universal enough. It's also not clear to me how it should behave if real_output_multiplier == 1.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60815/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60815/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60814
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60814/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60814/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60814/events
https://github.com/tensorflow/tensorflow/issues/60814
1,747,790,999
I_kwDOArmXAs5oLSyX
60,814
GPU Delegate dynamic tensor input shape (Feature Request)
{ "login": "OleksandrGrument", "id": 20426405, "node_id": "MDQ6VXNlcjIwNDI2NDA1", "avatar_url": "https://avatars.githubusercontent.com/u/20426405?v=4", "gravatar_id": "", "url": "https://api.github.com/users/OleksandrGrument", "html_url": "https://github.com/OleksandrGrument", "followers_url": "https://api.github.com/users/OleksandrGrument/followers", "following_url": "https://api.github.com/users/OleksandrGrument/following{/other_user}", "gists_url": "https://api.github.com/users/OleksandrGrument/gists{/gist_id}", "starred_url": "https://api.github.com/users/OleksandrGrument/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/OleksandrGrument/subscriptions", "organizations_url": "https://api.github.com/users/OleksandrGrument/orgs", "repos_url": "https://api.github.com/users/OleksandrGrument/repos", "events_url": "https://api.github.com/users/OleksandrGrument/events{/privacy}", "received_events_url": "https://api.github.com/users/OleksandrGrument/received_events", "type": "User", "site_admin": false }
[ { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671339633, "node_id": "MDU6TGFiZWwyNjcxMzM5NjMz", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate", "name": "TFLiteGpuDelegate", "color": "F71F04", "default": false, "description": "TFLite Gpu delegate issue" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @OleksandrGrument, in order to keep TFLite light, we have to compromise on some design choices such as dynamic input shapes. Currently we do not plan to implement this feature in the near future. Apologies we can't help you here soon." ]
2023-06-08T12:25:39
2023-06-14T21:38:36
2023-06-14T21:38:36
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12.0 ### Custom Code Yes ### OS Platform and Distribution Android ### Mobile device Android ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Hello, I'm writing you to ask, are there plans to implement dynamic input shape in gpu delegate in near future ? Right now dynamic input shape working fine on cpu, but on gpu delegate I'm getting the issue `java.lang.IllegalArgumentException: Internal error: Error applying delegate: ` This is very important feature, if this feature already exist and it is possible somehow to rung with dynamic shape will be good to have some information in documentation. ### Standalone code to reproduce the issue ```shell @Throws(IOException::class) private fun initInterpreter(context: Context): Interpreter { val tfliteOptions = Interpreter .Options() if (delegate != null) { tfliteOptions.addDelegate(delegate) tfliteOptions.numThreads = 1 } else { tfliteOptions.numThreads = 4 } val interpreter = Interpreter(loadModelFile(context), tfliteOptions) interpreter.resizeInput(0, intArrayOf(1, modelHeight, modelWidth, 3), true) interpreter.allocateTensors() return interpreter } ``` ### Relevant log output ```shell java.lang.IllegalArgumentException: Internal error: Error applying delegate: org.tensorflow.lite.NativeInterpreterWrapper.createInterpreter(Native Method) org.tensorflow.lite.NativeInterpreterWrapper.init(NativeInterpreterWrapper.java:110) org.tensorflow.lite.NativeInterpreterWrapper.<init>(NativeInterpreterWrapper.java:73) org.tensorflow.lite.NativeInterpreterWrapperExperimental.<init>(NativeInterpreterWrapperExperimental.java:36) org.tensorflow.lite.Interpreter.<init>(Interpreter.java:214) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60814/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60814/timeline
null
not_planned
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60813
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60813/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60813/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60813/events
https://github.com/tensorflow/tensorflow/issues/60813
1,747,576,779
I_kwDOArmXAs5oKefL
60,813
tf.keras.Model.predict passing x=tf.keras.utils.Sequence causing exceptions ValueError: Data is expected to be in format `x`, `(x,)`, `(x, y)`, or `(x, y, sample_weight)`
{ "login": "Yuanjimengmengda", "id": 45007045, "node_id": "MDQ6VXNlcjQ1MDA3MDQ1", "avatar_url": "https://avatars.githubusercontent.com/u/45007045?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Yuanjimengmengda", "html_url": "https://github.com/Yuanjimengmengda", "followers_url": "https://api.github.com/users/Yuanjimengmengda/followers", "following_url": "https://api.github.com/users/Yuanjimengmengda/following{/other_user}", "gists_url": "https://api.github.com/users/Yuanjimengmengda/gists{/gist_id}", "starred_url": "https://api.github.com/users/Yuanjimengmengda/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Yuanjimengmengda/subscriptions", "organizations_url": "https://api.github.com/users/Yuanjimengmengda/orgs", "repos_url": "https://api.github.com/users/Yuanjimengmengda/repos", "events_url": "https://api.github.com/users/Yuanjimengmengda/events{/privacy}", "received_events_url": "https://api.github.com/users/Yuanjimengmengda/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Yuanjimengmengda ,\r\n\r\nAs per documentation of [model.predict](https://www.tensorflow.org/api_docs/python/tf/keras/Model#predict) the argument 'x' can be:\r\n\r\n`A generator or [keras.utils.Sequence](https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence) returning (inputs, targets) or (inputs, targets, sample_weights)`\r\n\r\nThe generator should confirms the above behaviour. Can you please cross check whether the generator you are testing confirms the same.\r\n\r\nAlso unfortunately I am unable to find reproducible code snippet. Please submit the same for looking into the issue.\r\n\r\nThanks!", "> Hi @Yuanjimengmengda ,\r\n> \r\n> As per documentation of [model.predict](https://www.tensorflow.org/api_docs/python/tf/keras/Model#predict) the argument 'x' can be:\r\n> \r\n> `A generator or [keras.utils.Sequence](https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence) returning (inputs, targets) or (inputs, targets, sample_weights)`\r\n> \r\n> The generator should confirms the above behaviour. Can you please cross check whether the generator you are testing confirms the same.\r\n> \r\n> Also unfortunately I am unable to find reproducible code snippet. Please submit the same for looking into the issue.\r\n> \r\n> Thanks!\r\n\r\nHi @SuryanarayanaY,\r\nThx for your reply. I updated the test codes with a sample triggers the error.\r\n\r\nI can confirm the generator is legitmate as I have been using it for years on tf==2.4.0. Moreover, on tf==2.12.0, the generator works well in `model.fit` if a `y` is specified(I'm adding this to the sample codes so you could make sure the generator is legitmate).\r\nI also tried the same code on version tf==2.11.1, no exceptions occurred.\r\nTherefore, I think the problem lies in the changes between 2.11.1 and 2.12.0.\r\n\r\nThanks.", "Hi @Yuanjimengmengda ,\r\n\r\nIt seems with the updated code I can able to replicate the error. The code fails with TF2.12v and success with TF2.11 version.\r\nAttached [gist](https://colab.research.google.com/gist/SuryanarayanaY/24bbd76ff2cad6125edd946f686b23d2/60813-tf2-12v-and-2-11v.ipynb) for reference.\r\n\r\nWe need to dig more further for commenting on this issue. Thanks!\r\n", "The same problem exists in [tf-nightly ](https://colab.research.google.com/gist/SuryanarayanaY/1acf0dfe05e502f86aa8d0c8485c2346/60813-nightly-2-14.ipynb#scrollTo=G6P4bilN4OK2) also." ]
2023-06-08T10:16:56
2023-08-08T12:59:47
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.12.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? ```Python tf_model.predict(test_generator) ``` will cause exceptions ```Python ValueError: in user code: File "/DATA/home/yuehc/.local/lib/python3.8/site-packages/keras/engine/training.py", line 2169, in predict_function * return step_function(self, iterator) File "/DATA/home/yuehc/.local/lib/python3.8/site-packages/keras/engine/training.py", line 2155, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "/DATA/home/yuehc/.local/lib/python3.8/site-packages/keras/engine/training.py", line 2143, in run_step ** outputs = model.predict_step(data) File "/DATA/home/yuehc/.local/lib/python3.8/site-packages/keras/engine/training.py", line 2110, in predict_step x, _, _ = data_adapter.unpack_x_y_sample_weight(data) File "/DATA/home/yuehc/.local/lib/python3.8/site-packages/keras/engine/data_adapter.py", line 1775, in unpack_x_y_sample_weight raise ValueError(error_msg) ValueError: Data is expected to be in format `x`, `(x,)`, `(x, y)`, or `(x, y, sample_weight)`, found: (<tf.Tensor 'IteratorGetNext:0' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:2' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:3' shape=(None, None, None) dtype=float32>, <tf.Tensor 'IteratorGetNext:4' shape=(None, None, None) dtype=float32>) ``` The codes works well back in tf 2.4.0 and should still be working per release notes and the latest documentations. the `test_generator` is a sub-class of `tf.keras.utils.Sequence` which works normally in tf 2.4.0 The return format for `__getitem__` is a tuple with a List element that indicate multiple inputs of the model ```Python def __getitem__(self, i) -> Tuple[List[numpy.array]]: ... ``` For an example, see below ![image](https://github.com/tensorflow/tensorflow/assets/45007045/b8948609-693e-4918-8f1b-990fb1fa8bc8) ![image](https://github.com/tensorflow/tensorflow/assets/45007045/0c41d2ce-7460-405b-867a-103e6a794cd2) ![image](https://github.com/tensorflow/tensorflow/assets/45007045/51b80f7a-9c39-4ea4-93ee-7812c9765fa7) I assume some behavors behind the `predict` interface are changed after the 2.4.0 to 2.12.0 upgrades. Any idea how to fix it? Thx in advance. ### Standalone code to reproduce the issue ```Python import tensorflow as tf import math import numpy as np from tensorflow.keras.models import Model from tensorflow.keras.layers import LSTM, Dense, Input class BasicGenerator(tf.keras.utils.Sequence): def __init__(self, x, y=None, w=None, *, obj=None, batch_size=256, **kwargs): """ a simple example of data generator by utilizing tf.keras.utils.Sequence Parameters ---------- x: List[np.array], input data, the array size: (n_samples, n_features) y: np.arrya, input label, size: (n_samples, n_labels) w: sample weights, default None batch_size: batch_size, default 256 """ super(BasicGenerator, self).__init__() # basic params self.x = x self.y = y self.w = w self.batch_size = batch_size def __len__(self): return math.ceil(self.x[0].shape[0] / self.batch_size) def __getitem__(self, index): res = () b_x = [_x[index * self.batch_size:(index + 1) * self.batch_size] for _x in self.x] res += (b_x,) if self.y is not None: b_y = self.y[index * self.batch_size:(index + 1) * self.batch_size] res += (b_y,) if self.w is not None: b_w = self.w[index * self.batch_size:(index + 1) * self.batch_size] res += (b_w,) return res # Define the model input1 = Input(shape=(3, 1)) input2 = Input(shape=(3, 1)) lstm1 = LSTM(50, activation='relu')(input1) lstm2 = LSTM(50, activation='relu')(input2) concat = tf.keras.layers.concatenate([lstm1, lstm2]) output = Dense(1)(concat) model = Model(inputs=[input1, input2], outputs=output) model.compile(optimizer='adam', loss='mse') # Generate some fake data n_samples = 10000 X_1 = np.random.rand(n_samples, 3, 1) X_2 = np.random.rand(n_samples, 3, 1) y = np.random.rand(n_samples, 1) # generator sub-classing from utils.Sequence train_generator = BasicGenerator(x=[X_1, X_2], y=y) test_generator = BasicGenerator(x=[X_1, X_2]) # fit model.fit(train_generator) # the problem occurs model.predict( test_generator, verbose=1, max_queue_size=30, workers=1, use_multiprocessing=False ) ``` ### Relevant log output ```Python 40/40 [==============================] - 7s 14ms/step - loss: 0.1985 --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-13-82ba4c04abb5> in <module> 76 77 # the problem occurs ---> 78 model.predict( 79 test_generator, 80 verbose=1, /DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/utils/traceback_utils.py in error_handler(*args, **kwargs) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb /DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/engine/training.py in tf__predict_function(iterator) 13 try: 14 do_return = True ---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) 16 except: 17 do_return = False ValueError: in user code: File "/DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/engine/training.py", line 2169, in predict_function * return step_function(self, iterator) File "/DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/engine/training.py", line 2155, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "/DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/engine/training.py", line 2143, in run_step ** outputs = model.predict_step(data) File "/DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/engine/training.py", line 2111, in predict_step return self(x, training=False) File "/DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "/DATA1/anaconda3/envs/py38tf2.4/lib/python3.8/site-packages/keras/engine/input_spec.py", line 219, in assert_input_compatibility raise ValueError( ValueError: Layer "model_3" expects 2 input(s), but it received 1 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(None, None, None) dtype=float32>] ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60813/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60813/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60812
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60812/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60812/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60812/events
https://github.com/tensorflow/tensorflow/issues/60812
1,747,471,974
I_kwDOArmXAs5oKE5m
60,812
Ragged String Input not working with GPU - > non-DMA-copy attempted of tensor type: string
{ "login": "citizenkeynes", "id": 32489895, "node_id": "MDQ6VXNlcjMyNDg5ODk1", "avatar_url": "https://avatars.githubusercontent.com/u/32489895?v=4", "gravatar_id": "", "url": "https://api.github.com/users/citizenkeynes", "html_url": "https://github.com/citizenkeynes", "followers_url": "https://api.github.com/users/citizenkeynes/followers", "following_url": "https://api.github.com/users/citizenkeynes/following{/other_user}", "gists_url": "https://api.github.com/users/citizenkeynes/gists{/gist_id}", "starred_url": "https://api.github.com/users/citizenkeynes/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/citizenkeynes/subscriptions", "organizations_url": "https://api.github.com/users/citizenkeynes/orgs", "repos_url": "https://api.github.com/users/citizenkeynes/repos", "events_url": "https://api.github.com/users/citizenkeynes/events{/privacy}", "received_events_url": "https://api.github.com/users/citizenkeynes/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@citizenkeynes,\r\nBasically, RaggedTensorVariant objects should never be copied to GPU, because we can't do anything useful with them there. But Placer isn't currently smart enough to figure that out (it just sees a Variant tensor, and doesn't know what kind of value it contains). \r\nhttps://github.com/keras-team/tf-keras/issues/128\r\nhttps://github.com/keras-team/tf-keras/issues/638\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60812\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60812\">No</a>\n" ]
2023-06-08T09:26:02
2023-09-22T18:22:45
2023-07-06T02:09:58
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12 ### Custom Code No ### OS Platform and Distribution linux ### Mobile device _No response_ ### Python version 3.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? consider this trivial tf.keras Model: ``` def some_model(): x = tf.keras.layers.Input(shape=(None, 1), name="string_input",dtype="string",ragged=True) some_function = tf.keras.layers.Lambda(lambda x: x) model = tf.keras.models.Model([x],some_function(x)) return model ``` ``` with tf.distribute.OneDeviceStrategy("gpu:0").scope(): m = some_model() ``` passing a ragged tensor will fail : ``` x = tf.ragged.constant([[["somestring"],["somestring"]],[["somestring"],["somestring"],["somestring"]]]) m.predict(x) ``` with "non-DMA-copy attempted of tensor type: string" whereas this works just fine ``` x = tf.constant([[["somestring"],["somestring"]],[["somestring"],["somestring"]]]) m.predict(x) ``` I am aware that there are many related issue open / i hope the small self-contained example above is useful ### Standalone code to reproduce the issue ```shell https://colab.research.google.com/drive/1cf669jKVUlIjC0JGU42VNyZTWEywAgT0?usp=sharing ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60812/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60812/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60811
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60811/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60811/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60811/events
https://github.com/tensorflow/tensorflow/issues/60811
1,747,345,282
I_kwDOArmXAs5oJl-C
60,811
Setting memory_limit inside docker does not have an effect
{ "login": "michaeldiener", "id": 22852609, "node_id": "MDQ6VXNlcjIyODUyNjA5", "avatar_url": "https://avatars.githubusercontent.com/u/22852609?v=4", "gravatar_id": "", "url": "https://api.github.com/users/michaeldiener", "html_url": "https://github.com/michaeldiener", "followers_url": "https://api.github.com/users/michaeldiener/followers", "following_url": "https://api.github.com/users/michaeldiener/following{/other_user}", "gists_url": "https://api.github.com/users/michaeldiener/gists{/gist_id}", "starred_url": "https://api.github.com/users/michaeldiener/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/michaeldiener/subscriptions", "organizations_url": "https://api.github.com/users/michaeldiener/orgs", "repos_url": "https://api.github.com/users/michaeldiener/repos", "events_url": "https://api.github.com/users/michaeldiener/events{/privacy}", "received_events_url": "https://api.github.com/users/michaeldiener/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }
[ { "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@michaeldiener,\r\nThe **memory_limit** in **tf.config.LogicalDeviceConfiguration** API mainly funtions for Maximum memory (in MB) to allocate on the virtual device. Currently it is only supported for GPUs. \r\nCould you please confirm whether it is having the problem whenever you are running inside a docker container and also provide if there is any error log? Thank you!", "@tilakrayal \r\nThanks for responding!\r\nYes, this is for a GPU and Tensorflow is running inside a docker container. \r\n\r\nThis is how I call docker:\r\n`docker run --gpus all -it --rm -v ~/tmp2:/exttmp -v ~/jupyter:/extjupyter --shm-size=1g --ulimit memlock=-1 -p 8889:8889 nvcr.io/nvidia/tensorflow:23.05-tf2-py3`\r\n\r\nThis is the output from setting the memory_limit. No log after setting it:\r\n```\r\nPython 3.10.6 (main, Mar 10 2023, 10:55:28) [GCC 11.3.0] on linux\r\nType \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>>> import tensorflow as tf\r\n2023-06-12 07:33:41.210045: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\r\n2023-06-12 07:33:41.232097: I tensorflow/core/platform/cpu_feature_guard.cc:183] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: SSE3 SSE4.1 SSE4.2 AVX, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n>>> gpus = tf.config.experimental.list_physical_devices('GPU')\r\n2023-06-12 07:34:12.541732: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:1013] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-06-12 07:34:12.545833: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:1013] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-06-12 07:34:12.545905: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:1013] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n>>> tf.config.set_logical_device_configuration(\r\n... gpus[0],\r\n... [tf.config.LogicalDeviceConfiguration(memory_limit=4096)]\r\n... )\r\n>>> \r\n```", "@michaeldiener,\r\nCurrently we have --per_process_gpu_memory_fraction to limit the memory usage of model server and there is no such method available to limit GPU usage on the model level.\r\n\r\n\r\nExample code to run model server image with memory limit enabled:\r\n\r\n`docker run --runtime=nvidia -p 8501:8501 \\ --mount type=bind,\\ source=/tmp/tfserving/serving/tensorflow_serving/servables/tensorflow/testdata/saved_model_half_plus_two_gpu,\\ target=/models/half_plus_two \\ -e MODEL_NAME=half_plus_two -t tensorflow/serving:latest-gpu --per_process_gpu_memory_fraction=0.5\r\n`\r\n\r\nhttps://github.com/keras-team/tf-keras/issues/125\r\nThank you!\r\n", "Thanks, didn't know about the model server. This might come handy eventually, but I need to be able to limit GPU memory while training in Jupyter inside docker. There is no way to do that? Again, setting set_logical_device_configuration does not have any effect.", "I cannot reproduce on a Titan V. I started the docker container with `docker run --privileged --gpus all -it --rm --shm-size=1g --ulimit memlock=-1 -p 8889:8889 nvcr.io/nvidia/tensorflow:23.05-tf2-py3`.\r\n\r\nThen I ran the following program in the container to set the memory limit, initialize the GPU and print the memory usage with `nvidia-smi`\r\n\r\n```python\r\nimport tensorflow as tf\r\nimport subprocess\r\n\r\ngpus = tf.config.experimental.list_physical_devices('GPU')\r\ntf.config.set_logical_device_configuration(\r\n gpus[0],\r\n [tf.config.LogicalDeviceConfiguration(memory_limit=4096)]\r\n)\r\n\r\ntf.constant(0.) # Run GPU initialization\r\nsubprocess.run(['nvidia-smi'])\r\n```\r\n\r\nnvidia-smi showed only a bit more than 4096 MiB of memory being used.\r\n\r\n@michaeldiener are there any extra steps needed to reproduce the issue for you? I doubt the fact I have a different GPU is causing `set_logical_device_configuration` to work correctly only for me.", "@reedwm Strangely enough, this works now! \r\nNot sure if there was an update in the meantime for any of the involved components, but either way, problem solved. Thanks for looking into this, I appreciate it.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60811\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60811\">No</a>\n" ]
2023-06-08T08:14:36
2023-09-22T13:36:04
2023-07-19T09:41:18
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12.0 ### Custom Code No ### OS Platform and Distribution Ubuntu 22.04 (inside docker) ### Mobile device _No response_ ### Python version 3.10.6 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 12.1 ### GPU model and memory Nvidia GeForce RTX 4090 ### Current Behaviour? Setting the memory_limit does not have any effect whatsoever when running inside a docker container. I use the following NGC https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel-23-05.html ### Standalone code to reproduce the issue ```shell import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') tf.config.set_logical_device_configuration( gpus[0], [tf.config.LogicalDeviceConfiguration(memory_limit=4096)] ) ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60811/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60811/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60810
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60810/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60810/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60810/events
https://github.com/tensorflow/tensorflow/issues/60810
1,746,976,740
I_kwDOArmXAs5oIL_k
60,810
TensorFlow device (GPU:0) is being mapped to multiple devices when using tf.estimator api and set visible_device_list with hvd.local_rank()
{ "login": "mmseerrttt", "id": 88369095, "node_id": "MDQ6VXNlcjg4MzY5MDk1", "avatar_url": "https://avatars.githubusercontent.com/u/88369095?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mmseerrttt", "html_url": "https://github.com/mmseerrttt", "followers_url": "https://api.github.com/users/mmseerrttt/followers", "following_url": "https://api.github.com/users/mmseerrttt/following{/other_user}", "gists_url": "https://api.github.com/users/mmseerrttt/gists{/gist_id}", "starred_url": "https://api.github.com/users/mmseerrttt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mmseerrttt/subscriptions", "organizations_url": "https://api.github.com/users/mmseerrttt/orgs", "repos_url": "https://api.github.com/users/mmseerrttt/repos", "events_url": "https://api.github.com/users/mmseerrttt/events{/privacy}", "received_events_url": "https://api.github.com/users/mmseerrttt/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @mmseerrttt ,\r\n\r\nIt seems you are using TF1.x related code which is not supported now. I have gone through the [horovod](https://horovod.readthedocs.io/en/stable/tensorflow.html) documentation and found below notes.\r\n\r\n<img width=\"821\" alt=\"Screenshot 2023-06-08 at 9 50 23 AM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/e0dc1706-ee31-4638-85f6-faa55ff57373\">\r\n\r\nAlso [Estimator](https://www.tensorflow.org/guide/estimator) API is deprecated now.Please refer below note for same.\r\n\r\nWarning: Estimators are not recommended for new code. Estimators run [v1.Session](https://www.tensorflow.org/api_docs/python/tf/compat/v1/Session)-style code which is more difficult to write correctly, and can behave unexpectedly, especially when combined with TF 2 code. Estimators do fall under our [compatibility guarantees](https://tensorflow.org/guide/versions), but will receive no fixes other than security vulnerabilities. See the [migration guide](https://tensorflow.org/guide/migrate) for details.\r\n\r\n\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60810\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60810\">No</a>\n" ]
2023-06-08T02:39:01
2023-06-08T08:47:40
2023-06-08T08:47:37
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version tf 2.11 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 20.04.1 ### Mobile device _No response_ ### Python version 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 12.0 ### GPU model and memory _No response_ ### Current Behaviour? I know there is a same issue, https://github.com/tensorflow/tensorflow/issues/58952, but it has been closed. The model implemented with tf.estimator api. horovod multi-cards job (horovodrun -np 2 python xxx.py). it works well using 2.10, but throws Device mapping error when using TF2.11. FROM [issue58952]( https://github.com/tensorflow/tensorflow/issues/58952), It seems that this error is relative to this [commit]( https://github.com/tensorflow/tensorflow/commit/16ea0f8995a9b087ff7e50bbf5a03e58e3c5002e#:~:text=if-,context.is_custom_device,-(device_string)%3A). When calling context.is_cutom_device(), this API would create TFE_Context that would create TF devices. However, program would also create TF devices when create Session with the aboved mentioned config, and these two TF device creation would conflicts. It seems that the [session_options used in the ensure_initialized](https://github.com/tensorflow/tensorflow/blob/301f145ca3979b5155a166cbe6cb8c2a3af1bab1/tensorflow/python/eager/context.py#L581) function to [create NewContext](https://github.com/tensorflow/tensorflow/blob/301f145ca3979b5155a166cbe6cb8c2a3af1bab1/tensorflow/python/eager/context.py#L598) are inconsistent with the options used by the NewSession. The options used by NewSession are explicitly set through tf.ConfigProto.gpu_options.visible_device_list=hvd.localrank(). session_config should be at least consistent, or loaded once at most To reproduce this error, you need to install horovod and using multi card machine to run below code with: horovodrun -np N python xxx.py where N denotes the number of processes to be started. ### Standalone code to reproduce the issue ```shell mport pandas as pd import tensorflow as tf import tensorflow.compat.v1 as tf1 global is_mpi try: import horovod.tensorflow as hvd hvd.init() is_mpi = hvd.size() except ImportError: is_mpi = 0 print("No MPI horovod support, this is running in no-MPI mode!") session_config = tf1.ConfigProto() if is_mpi: session_config.gpu_options.visible_device_list = str(hvd.local_rank()) run_config = tf.estimator.RunConfig(session_config=session_config) x_train = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') x_train['sex'].replace(('male', 'female'), (0, 1), inplace=True) x_train['alone'].replace(('n', 'y'), (0, 1), inplace=True) x_train['class'].replace(('First', 'Second', 'Third'), (1, 2, 3), inplace=True) x_train.drop(['embark_town', 'deck'], axis=1, inplace=True) y_train = x_train.pop('survived') # Data setup for TensorFlow 1 with `tf.estimator` def _input_fn(): return tf1.data.Dataset.from_tensor_slices((dict(x_train), y_train)).batch(32) FEATURE_NAMES = [ 'age', 'fare', 'sex', 'n_siblings_spouses', 'parch', 'class', 'alone' ] feature_columns = [] for fn in FEATURE_NAMES: feat_col = tf1.feature_column.numeric_column(fn, dtype=tf.float32) feature_columns.append(feat_col) linear_estimator = tf.estimator.LinearEstimator( head=tf.estimator.BinaryClassHead(), feature_columns=feature_columns, model_dir="./model", config=run_config) linear_estimator.train(input_fn=_input_fn, steps=1000) ``` ### Relevant log output ```shell [1,0]<stderr>:2023-06-08 02:16:09.394853: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:357] MLIR V1 optimization pass is not enabled [1,1]<stderr>:2023-06-08 02:16:09.397900: E tensorflow/core/common_runtime/session.cc:91] Failed to create session: ALREADY_EXISTS: TensorFlow device (GPU:0) is being mapped to multiple devices (1 now, and 0 previously), which is not supported. This may be the result of providing different GPU configurations (ConfigProto.gpu_options, for example different visible_device_list) when creating multiple Sessions in the same process. This is not currently supported, see https://github.com/tensorflow/tensorflow/issues/19083 [1,1]<stderr>:2023-06-08 02:16:09.397922: E tensorflow/c/c_api.cc:2209] ALREADY_EXISTS: TensorFlow device (GPU:0) is being mapped to multiple devices (1 now, and 0 previously), which is not supported. This may be the result of providing different GPU configurations (ConfigProto.gpu_options, for example different visible_device_list) when creating multiple Sessions in the same process. This is not currently supported, see https://github.com/tensorflow/tensorflow/issues/19083 [1,1]<stderr>:Traceback (most recent call last): [1,1]<stderr>: File "test.py", line 43, in <module> [1,1]<stderr>: linear_estimator.train(input_fn=_input_fn, steps=1000) [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 360, in train [1,1]<stderr>: loss = self._train_model(input_fn, hooks, saving_listeners) [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1186, in _train_model [1,1]<stderr>: return self._train_model_default(input_fn, hooks, saving_listeners) [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1217, in _train_model_default [1,1]<stderr>: return self._train_with_estimator_spec(estimator_spec, worker_hooks, [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1512, in _train_with_estimator_spec [1,1]<stderr>: with training.MonitoredTrainingSession( [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/monitored_session.py", line 606, in MonitoredTrainingSession [1,1]<stderr>: return MonitoredSession( [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/monitored_session.py", line 1050, in __init__ [1,1]<stderr>: super(MonitoredSession, self).__init__( [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/monitored_session.py", line 753, in __init__ [1,1]<stderr>: self._sess = _RecoverableSession(self._coordinated_creator) [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/monitored_session.py", line 1259, in __init__ [1,1]<stderr>: _WrappedSession.__init__(self, self._create_session()) [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/monitored_session.py", line 1264, in _create_session [1,1]<stderr>: return self._sess_creator.create_session() [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/monitored_session.py", line 906, in create_session [1,1]<stderr>: self.tf_sess = self._session_creator.create_session() [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/monitored_session.py", line 665, in create_session [1,1]<stderr>: return self._get_session_manager().prepare_session( [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/session_manager.py", line 309, in prepare_session [1,1]<stderr>: sess, is_loaded_from_checkpoint = self._restore_checkpoint( [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/session_manager.py", line 218, in _restore_checkpoint [1,1]<stderr>: sess = session.Session(self._target, graph=self._graph, config=config) [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 1604, in __init__ [1,1]<stderr>: super(Session, self).__init__(target, graph, config=config) [1,1]<stderr>: File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/client/session.py", line 712, in __init__ [1,1]<stderr>: self._session = tf_session.TF_NewSessionRef(c_graph, opts) [1,1]<stderr>:tensorflow.python.framework.errors_impl.AlreadyExistsError: TensorFlow device (GPU:0) is being mapped to multiple devices (1 now, and 0 previously), which is not supported. This may be the result of providing different GPU configurations (ConfigProto.gpu_options, for example different visible_device_list) when creating multiple Sessions in the same process. This is not currently supported, see https://github.com/tensorflow/tensorflow/issues/19083 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60810/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60810/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60809
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60809/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60809/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60809/events
https://github.com/tensorflow/tensorflow/issues/60809
1,746,807,275
I_kwDOArmXAs5oHinr
60,809
tf-mlir-translate and flatbuffer_translate failure for the ERF function
{ "login": "Jerry-Ge", "id": 24451859, "node_id": "MDQ6VXNlcjI0NDUxODU5", "avatar_url": "https://avatars.githubusercontent.com/u/24451859?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Jerry-Ge", "html_url": "https://github.com/Jerry-Ge", "followers_url": "https://api.github.com/users/Jerry-Ge/followers", "following_url": "https://api.github.com/users/Jerry-Ge/following{/other_user}", "gists_url": "https://api.github.com/users/Jerry-Ge/gists{/gist_id}", "starred_url": "https://api.github.com/users/Jerry-Ge/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jerry-Ge/subscriptions", "organizations_url": "https://api.github.com/users/Jerry-Ge/orgs", "repos_url": "https://api.github.com/users/Jerry-Ge/repos", "events_url": "https://api.github.com/users/Jerry-Ge/events{/privacy}", "received_events_url": "https://api.github.com/users/Jerry-Ge/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" } ]
closed
false
{ "login": "haozha111", "id": 6316921, "node_id": "MDQ6VXNlcjYzMTY5MjE=", "avatar_url": "https://avatars.githubusercontent.com/u/6316921?v=4", "gravatar_id": "", "url": "https://api.github.com/users/haozha111", "html_url": "https://github.com/haozha111", "followers_url": "https://api.github.com/users/haozha111/followers", "following_url": "https://api.github.com/users/haozha111/following{/other_user}", "gists_url": "https://api.github.com/users/haozha111/gists{/gist_id}", "starred_url": "https://api.github.com/users/haozha111/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/haozha111/subscriptions", "organizations_url": "https://api.github.com/users/haozha111/orgs", "repos_url": "https://api.github.com/users/haozha111/repos", "events_url": "https://api.github.com/users/haozha111/events{/privacy}", "received_events_url": "https://api.github.com/users/haozha111/received_events", "type": "User", "site_admin": false }
[ { "login": "haozha111", "id": 6316921, "node_id": "MDQ6VXNlcjYzMTY5MjE=", "avatar_url": "https://avatars.githubusercontent.com/u/6316921?v=4", "gravatar_id": "", "url": "https://api.github.com/users/haozha111", "html_url": "https://github.com/haozha111", "followers_url": "https://api.github.com/users/haozha111/followers", "following_url": "https://api.github.com/users/haozha111/following{/other_user}", "gists_url": "https://api.github.com/users/haozha111/gists{/gist_id}", "starred_url": "https://api.github.com/users/haozha111/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/haozha111/subscriptions", "organizations_url": "https://api.github.com/users/haozha111/orgs", "repos_url": "https://api.github.com/users/haozha111/repos", "events_url": "https://api.github.com/users/haozha111/events{/privacy}", "received_events_url": "https://api.github.com/users/haozha111/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Jerry-Ge, \r\n\r\nI tried both the commands but I'm getting different errors... did you upload the right files?\r\n\r\n```\r\n../tensorflow/bazel-bin/tensorflow/compiler/mlir/tf-mlir-translate --graphdef-to-mlir --tf-enable-shape-inference-on-import --tf-output-arrays=result erf_model.pb -o test_tf.preopt.mlir --tf-input-arrays=placeholder_0 --tf-input-shapes=1\r\n2023-06-08 23:20:41.144947: E tensorflow/compiler/mlir/tensorflow/utils/import_utils.cc:48] Error parsing Protobuf\r\n2023-06-08 23:20:41.145026: E tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.cc:129] Graph import failed: INVALID_ARGUMENT: Could not parse input proto\r\n```\r\n\r\n```\r\n../tensorflow/bazel-bin/tensorflow/compiler/mlir/lite/flatbuffer_translate --tflite-flatbuffer-to-mlir erf_model.tflite --output-arrays=PartitionedCall:0 -o test_tflite.preopt.mlir\r\nERROR: The model is not a valid Flatbuffer buffer\r\nerf_model.tflite:0:0: error: couldn't parse flatbuffer\r\n```\r\n\r\nalternatively, did I translate your commands incorrectly to my environment?", "thanks @pkgoogle for helping on this. I cloned the model repo again and still couldn't get those Protobuff/Flatbuffer errors. Also double-checked your command and that looks fine. \r\n\r\n### A few options: \r\n- Maybe something wrong when you're downloading the model files which is causing some corruptions\r\n- It's a very dummy model and it you can easily generate those by the following definition\r\n```\r\n @tf.function(input_signature=[tf.TensorSpec(shape=[1, ], dtype=tf.float32)])\r\n def erf(self, x):\r\n return tf.math.erf(x)\r\n```\r\n\r\n### Some more progress/issues for TF\r\nIn the tf model generated, there seems missing a result there and I could get the following errors: \r\n```\r\nINVALID_ARGUMENT: Output result was not found in graph\r\n```\r\nBy running this command: \r\n```\r\ntensorflow/bazel-bin/tensorflow/compiler/mlir/tf-mlir-translate --graphdef-to-mlir --tf-enable-shape-inference-on-import --tf-output-arrays result erf_model.pb -o test_tf.preopt.mlir --tf-input-arrays placeholder_0 --tf-input-shapes=1\r\n```\r\nIf we remove `--tf-output-arrays result` flag, this gonna work and I can see the tf.Erf in the generated ir\r\n\r\n### For TFL\r\nthe same error as described on the top. ", "@Jerry-Ge, What branch are you working out of? Master? Nightly? A release branch?", "> @Jerry-Ge, What branch are you working out of? Master? Nightly? A release branch?\r\n\r\nit's an internal mirror branch from master. The lash commit is: 45f08a0fcc90145b9c2b7057310762d6b0ebae85", "So I went to the exact same commit and recompiled those binaries\r\n\r\nI was able to get the tflite command to work:\r\n```\r\n../tensorflow/bazel-bin/tensorflow/compiler/mlir/lite/flatbuffer_translate --tflite-flatbuffer-to-mlir erf.tflite --output-arrays=PartitionedCall:0 -o test_tflite.preopt.mlir\r\n```\r\ntest_tflite.preopt.mlir:\r\n```\r\nmodule attributes {tf_saved_model.semantics, tfl.description = \"MLIR Converted.\", tfl.schema_version = 3 : i32} {\r\n func.func @main(%arg0: tensor<1xf32> {tf_saved_model.index_path = [\"x\"]}) -> (tensor<1xf32> {tf_saved_model.index_path = [\"output_0\"]}) attributes {tf.entry_function = {inputs = \"serving_defa\r\nult_x:0\", outputs = \"PartitionedCall:0\"}, tf_saved_model.exported_names = [\"serving_default\"]} {\r\n %0 = \"tfl.custom\"(%arg0) {custom_code = \"FlexErf\", custom_option = #tfl<const_bytes : \"0x03457266001212034572661A002A070A0154120230013200000219151414042801\">} : (tensor<1xf32>) -> tensor<1x\r\nf32>\r\n return %0 : tensor<1xf32>\r\n }\r\n}\r\n```\r\n\r\nI'm still getting the previous error with the \"regular\" TF version:\r\n```\r\n../tensorflow/bazel-bin/tensorflow/compiler/mlir/tf-mlir-translate --graphdef-to-mlir --tf-enable-shape-inference-on-import --tf-output-arrays=result saved_model.pb -o test_tf.preopt.mlir --tf-input-arrays=placeholder_0 --tf-input-shapes=1\r\n2023-06-09 21:00:13.685096: E tensorflow/compiler/mlir/tensorflow/utils/import_utils.cc:48] Error parsing Protobuf\r\n2023-06-09 21:00:13.685157: E tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.cc:129] Graph import failed: INVALID_ARGUMENT: Could not parse input proto\r\n```\r\n\r\nMy exact code to produce the .pb and .tflite files:\r\ncreate_model.py:\r\n```\r\nimport tensorflow as tf\r\n\r\n\r\nclass Erfer(tf.Module):\r\n @tf.function(input_signature=[tf.TensorSpec(shape=[1, ], dtype=tf.float32)])\r\n def erf(self, x):\r\n return tf.math.erf(x)\r\n\r\n\r\nmodel = Erfer()\r\ntf.saved_model.save(model, 'saved_model')\r\n```\r\nand\r\nconvert_model.py:\r\n```\r\nimport tensorflow as tf\r\n\r\n# Path to the saved model directory\r\nsaved_model_dir = 'saved_model'\r\n\r\n# Convert the saved model to TFLite format\r\nconverter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\r\nconverter.target_spec.supported_ops = [\r\n tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\r\n tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\r\n]\r\ntflite_model = converter.convert()\r\n\r\n# Save the TFLite model to a file\r\ntflite_model_file = 'erf.tflite'\r\nwith open(tflite_model_file, 'wb') as f:\r\n f.write(tflite_model)\r\n```\r\n\r\nSo I believe the flatbuffer to MLIR is expected given that this is a FlexOp i.e. it is not natively built for TFLite (It essentially just makes it work with the original TF implementation)\r\n\r\nIs this ticket a feature request to make ERF a \"BUILTIN\" TFLite Op or to just make ERF \"work\"? i.e. do you run into any errors when attempting to use the .tflite model? Let me you know if you need any clarity on what I'm asking.", "# TF \r\nIt's quite weird for TF. my code looks very similar except I'm using something like this\r\n```\r\nmodel = Model()\r\nconcrete_function = model.erf.get_concrete_function()\r\ntf.io.write_graph(concrete_function.graph, \".\", \"model_file_name\", True)\r\n```\r\n# TFL \r\nFor TFLite, I'm requesting to make ERF a \"BUILTIN\" Op if I understood that correctly. i.e., I want to see the tfl.erf in the mlir file which currently it's a customOp\r\n", "Hi @haozha111, would you know if/when ERF will make it into TFLite as a BUILTIN op? Thanks!", "Hi all, bring this up again and see if there're any updates. ", "Hi all, bring this up again and see if there're any updates.\r\n\r\n", "Hi all, bring this up again and see if there're any updates.\r\n\r\n", "@pkgoogle seems no responses for a long time. ", "Fixed it. " ]
2023-06-07T23:07:13
2023-08-23T20:35:19
2023-08-23T20:35:18
CONTRIBUTOR
null
null
null
### For TF ``` Results INVALID_MLIR test_erf_1_f32: Error 1 running command: /tensorflow/bazel-bin/tensorflow/compiler/mlir/tf-mlir-translate --graphdef-to-mlir --tf-enable-shape-inference-on-import --tf-output-arrays=result erf/test_erf_1_f32/model.pb -o erf/test_erf_1_f32/test_tf.preopt.mlir --tf-input-arrays placeholder_0 --tf-input-shapes 1, ``` You can find the dummy tf erf model here: https://github.com/Jerry-Ge/tfl_models/blob/main/erf_model.pb ### For TFL After running ``` /tensorflow/compiler/mlir/lite/flatbuffer_translate --tflite-flatbuffer-to-mlir erf/test_erf_1_f32/model.tflite --output-arrays=PartitionedCall:0 -o erf/test_erf_1_f32/test_tflite.preopt.mlir ``` You can find the dummy tfl erf model here: https://github.com/Jerry-Ge/tfl_models/blob/main/erf_model.tflite It's generating a `tfl.custom` operator here which is not tfl.erf ``` module attributes {tf_saved_model.semantics, tfl.description = "MLIR Converted.", tfl.schema_version = 3 : i32} { func.func @main(%arg0: tensor<1xf32> {tf_saved_model.index_path = ["placeholder_0"]}) -> (tensor<1xf32> {tf_saved_model.index_path = ["output_0"]}) attributes {tf.entry_function = {inputs = "serving_default_placeholder_0:0", outputs = "PartitionedCall:0"}, tf_saved_model.exported_names = ["serving_default"]} { %0 = "tfl.custom"(%arg0) {custom_code = "FlexErf", custom_option = #tfl<const_bytes : "0x03457266001212034572661A002A070A0154120230013200000219151414042801">} : (tensor<1xf32>) -> tensor<1xf32> return %0 : tensor<1xf32> } } ``` I think there requires some fair amount of support to the erf function for mlir. Related ticket: https://github.com/tensorflow/tensorflow/issues/60663
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60809/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60809/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60808
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60808/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60808/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60808/events
https://github.com/tensorflow/tensorflow/pull/60808
1,746,698,272
PR_kwDOArmXAs5SdOtG
60,808
Update RealDiv arguments
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1178505529, "node_id": "MDU6TGFiZWwxMTc4NTA1NTI5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/prtype:bugfix", "name": "prtype:bugfix", "color": "159b2e", "default": false, "description": "PR to fix a bug" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Same caveat as the other one, @changm may be able to help coordinate ", "I think this may be a weird case where it's ok to update the generated file as I can't find how else it's done. Still looping in @rohan100jain for API changes.", "Actually I think you'd have to update [math_ops.cc](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc#L525) and run the instructions at the top of tf_generated.td to do the right thing.", "Hi @sachinprasadhs Can you please take a look on the above comment from @changm. Thank you!", "Hi @sachinprasadhs Any update on this PR? Please. Thank you!", "Hi @sachinprasadhs Any update on this PR? Please. Thank you!", "Hi @sachinprasadhs Any update on this PR? Please. Thank you!", "Hi @sachinprasadhs Any update on this PR? Please. Thank you!", "Hi @sachinprasadhs Any update on this PR? Please. Thank you!", "Hi @sachinprasadhs Any update on this PR? Please. Thank you!", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "This PR was closed because it has been inactive for 14 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-06-07T21:15:55
2024-04-07T01:48:58
2024-04-07T01:48:45
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60808", "html_url": "https://github.com/tensorflow/tensorflow/pull/60808", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60808.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60808.patch", "merged_at": null }
Update realDiv argument details to display only registered dtypes. Fixes #59181
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60808/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60808/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60807
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60807/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60807/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60807/events
https://github.com/tensorflow/tensorflow/pull/60807
1,746,653,693
PR_kwDOArmXAs5SdEtw
60,807
FP8 Convolutions in XLA
{ "login": "philipphack", "id": 80296164, "node_id": "MDQ6VXNlcjgwMjk2MTY0", "avatar_url": "https://avatars.githubusercontent.com/u/80296164?v=4", "gravatar_id": "", "url": "https://api.github.com/users/philipphack", "html_url": "https://github.com/philipphack", "followers_url": "https://api.github.com/users/philipphack/followers", "following_url": "https://api.github.com/users/philipphack/following{/other_user}", "gists_url": "https://api.github.com/users/philipphack/gists{/gist_id}", "starred_url": "https://api.github.com/users/philipphack/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/philipphack/subscriptions", "organizations_url": "https://api.github.com/users/philipphack/orgs", "repos_url": "https://api.github.com/users/philipphack/repos", "events_url": "https://api.github.com/users/philipphack/events{/privacy}", "received_events_url": "https://api.github.com/users/philipphack/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1133285679, "node_id": "MDU6TGFiZWwxMTMzMjg1Njc5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla", "name": "comp:xla", "color": "0052cc", "default": false, "description": "XLA" }, { "id": 1173072136, "node_id": "MDU6TGFiZWwxMTczMDcyMTM2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL", "name": "size:XL", "color": "adafea", "default": false, "description": "CL Change Size:Extra Large" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "CC @reedwm, @nluehr.", "Can you resolve conflicts?" ]
2023-06-07T20:46:33
2023-07-28T23:10:14
2023-07-28T23:10:13
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60807", "html_url": "https://github.com/tensorflow/tensorflow/pull/60807", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60807.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60807.patch", "merged_at": "2023-07-28T23:10:13" }
Enables scaled convolutions of the form (X, W, x_scale, w_scale, y_scale) -> Y, where the input X, the filter W and the output Y are based on the `F8E4M3FN` and `F8E5M2` data types and x_scale, w_scale and y_scale are their scaling factors.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60807/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60807/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60806
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60806/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60806/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60806/events
https://github.com/tensorflow/tensorflow/pull/60806
1,746,591,328
PR_kwDOArmXAs5Sc20e
60,806
Update version numbers for TensorFlow 2.13.0
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-06-07T20:05:19
2023-06-07T22:19:29
2023-06-07T22:02:23
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60806", "html_url": "https://github.com/tensorflow/tensorflow/pull/60806", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60806.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60806.patch", "merged_at": "2023-06-07T22:02:23" }
Before merging this PR, please double check that it has correctly updated `core/public/version.h`, `tools/pip_package/setup.py`, and `tensorflow/tensorflow.bzl`. Also review the execution notes below: ``` Major: 2 -> 2 Minor: 13 -> 13 Patch: 0 -> 0 No lingering old version strings "2.13.0-rc1" found in source directory "tensorflow/". Good. No lingering old version strings "2.13.0rc1" found in source directory "tensorflow/". Good. ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60806/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60806/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60805
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60805/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60805/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60805/events
https://github.com/tensorflow/tensorflow/issues/60805
1,746,253,580
I_kwDOArmXAs5oFbcM
60,805
Exception in tf.function due to operation in inactive condition branch
{ "login": "javidcf", "id": 1098280, "node_id": "MDQ6VXNlcjEwOTgyODA=", "avatar_url": "https://avatars.githubusercontent.com/u/1098280?v=4", "gravatar_id": "", "url": "https://api.github.com/users/javidcf", "html_url": "https://github.com/javidcf", "followers_url": "https://api.github.com/users/javidcf/followers", "following_url": "https://api.github.com/users/javidcf/following{/other_user}", "gists_url": "https://api.github.com/users/javidcf/gists{/gist_id}", "starred_url": "https://api.github.com/users/javidcf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/javidcf/subscriptions", "organizations_url": "https://api.github.com/users/javidcf/orgs", "repos_url": "https://api.github.com/users/javidcf/repos", "events_url": "https://api.github.com/users/javidcf/events{/privacy}", "received_events_url": "https://api.github.com/users/javidcf/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 2691123225, "node_id": "MDU6TGFiZWwyNjkxMTIzMjI1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:tf.function", "name": "comp:tf.function", "color": "0052cc", "default": false, "description": "tf.function related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@sachinprasadhs,\r\nI was able to reproduce the issue on tensorflow v2.12 and tf-nightly. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/f4758eb0ec3f8d66c124cb67f0988566/untitled1193.ipynb).", "I found something in the docs that explained this:\r\n\r\n![AutoGraphDocs](https://github.com/tensorflow/tensorflow/assets/95854922/0607ec3c-55c9-4a15-8f3d-79d15447c073)\r\n\r\n![EffectsoftheTracingProcess](https://github.com/tensorflow/tensorflow/assets/95854922/1afb2b38-f7df-4d5e-a54b-ed799c6ebf2d)\r\n\r\nhttps://www.tensorflow.org/guide/function\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/control_flow.md#effects-of-the-tracing-process\r\n\r\nIn a @tf.function, the code executes each branch of the conditional block whether the condition is true or not, which gives you this error.", "@0Waffle I appreciate the comment, but I am not sure your connclusion is accurate. As I initially posted, the issue does not happen when the shape of the input spec is left completely undefined (with `@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])`), which suggests the operation is not really being executed. I think (although I'm not completely sure) that the error may come from some shape-checking logic that is executed once the inputs are known (but which does not kick in with fully undefined shapes for some reason).\r\n\r\nBesides that, it would be inefficient to execute both branches of the conditional in all cases. It would also be rather limiting, it was easy to work around this case, but it may not be so in other cases. It was also a pain to find the cause, as the problematic operation was much deeper in the call stack in my case.\r\n\r\nAs an example, consider this other function which works as expected in all cases, even when the inactive conditional branch cannot be executed.\r\n\r\n```python\r\nimport tensorflow as tf\r\n\r\[email protected](input_signature=[tf.TensorSpec([None], tf.int32), tf.TensorSpec([None], tf.int32)])\r\ndef f(x, y):\r\n return tf.cond(tf.size(y) > 0, lambda: x[y[0]], lambda: x[0])\r\n\r\n# Works\r\ntf.print(f(tf.constant([1, 2, 3]), tf.constant([1])))\r\n# 2\r\n\r\n# Works too, even though true branch of conditional cannot be executed with these inputs\r\ntf.print(f(tf.constant([1, 2, 3]), tf.constant([], tf.int32)))\r\n# 1\r\n```", "I'm sorry I was inaccurate. From debugging, in case None it executes lambda: x at the pywrap_tfe line, while in case [None] it executes lambda: tf.fill(...) at the pywrap_tfe line and I don't know where in the call stack it decides which one to execute since it should depend on tf.size(x)==1. It doesn't seem to be an autograph problem because it gives the error with autograph=False in the @tf.function parameters.\r\n\r\nIt gives the error with case None and jit_compile=True, so the behavior might have something to do with the way it compiles functions non-XLA." ]
2023-06-07T16:12:49
2023-06-12T18:06:01
null
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.14.0-dev20230606 ### Custom Code Yes ### OS Platform and Distribution Windows 11 x64 ### Mobile device NA ### Python version 3.10 ### Bazel version NA ### GCC/Compiler version NA ### CUDA/cuDNN version NA ### GPU model and memory NA ### Current Behaviour? A function decorated with `@tf.function` may fail to execute if it contains a conditional operation where the non-executing branch cannot be executed correctly for the current inputs. Whether the issue arises or not may depend on the input signature given to `tf.function`. See example for clarity. ### Standalone code to reproduce the issue ```shell import tensorflow as tf @tf.function(input_signature=[tf.TensorSpec([None], tf.int32)]) def f(x): return tf.cond(tf.size(x) == 1, # The reshape in this branch can only execute properly when the condition is true lambda: tf.fill(tf.shape(x), tf.reshape(x, ())), lambda: x) # Works: this input is valid for both condition branches tf.print(f(tf.constant([1]))) # [1] # Fails: this input is only valid for the false branch, which is the active one tf.print(f(tf.constant([1, 2]))) # tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error: (see below) # If the shape in the function input signature is left completely undefined it works # If the tf.function is defined with no input signature it works correctly as well @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def f(x): return tf.cond(tf.size(x) == 1, lambda: tf.fill(tf.shape(x), tf.reshape(x, ())), lambda: x) tf.print(f(tf.constant([1]))) # [1] tf.print(f(tf.constant([1, 2]))) # [1 2] ``` ### Relevant log output ```shell Traceback (most recent call last): File ... File "...\site-packages\tensorflow\python\util\traceback_utils.py", line 153, in error_handler raise e.with_traceback(filtered_tb) from None File "...\site-packages\tensorflow\python\eager\execute.py", line 53, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error: Detected at node cond/Reshape defined at (most recent call last): ... Input to reshape is a tensor with 2 values, but the requested shape has 1 [[{{node cond/Reshape}}]] [Op:__inference_f_23] ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60805/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60805/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60804
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60804/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60804/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60804/events
https://github.com/tensorflow/tensorflow/pull/60804
1,746,210,136
PR_kwDOArmXAs5SbjQq
60,804
Tensorflow translate readme
{ "login": "NidaaAlshoreet", "id": 133226339, "node_id": "U_kgDOB_DfYw", "avatar_url": "https://avatars.githubusercontent.com/u/133226339?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NidaaAlshoreet", "html_url": "https://github.com/NidaaAlshoreet", "followers_url": "https://api.github.com/users/NidaaAlshoreet/followers", "following_url": "https://api.github.com/users/NidaaAlshoreet/following{/other_user}", "gists_url": "https://api.github.com/users/NidaaAlshoreet/gists{/gist_id}", "starred_url": "https://api.github.com/users/NidaaAlshoreet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NidaaAlshoreet/subscriptions", "organizations_url": "https://api.github.com/users/NidaaAlshoreet/orgs", "repos_url": "https://api.github.com/users/NidaaAlshoreet/repos", "events_url": "https://api.github.com/users/NidaaAlshoreet/events{/privacy}", "received_events_url": "https://api.github.com/users/NidaaAlshoreet/received_events", "type": "User", "site_admin": false }
[ { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" }, { "id": 1593512946, "node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid", "name": "invalid", "color": "db6f57", "default": true, "description": "Hacktoberfest spam PR" } ]
closed
true
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-06-07T15:49:37
2023-06-07T19:01:35
2023-06-07T19:00:59
NONE
spam
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60804", "html_url": "https://github.com/tensorflow/tensorflow/pull/60804", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60804.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60804.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60804/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60804/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60803
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60803/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60803/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60803/events
https://github.com/tensorflow/tensorflow/pull/60803
1,745,861,847
PR_kwDOArmXAs5SaXm_
60,803
[tosa] Fix legalization of tfl.slice for -1 size
{ "login": "RoboTux", "id": 272327, "node_id": "MDQ6VXNlcjI3MjMyNw==", "avatar_url": "https://avatars.githubusercontent.com/u/272327?v=4", "gravatar_id": "", "url": "https://api.github.com/users/RoboTux", "html_url": "https://github.com/RoboTux", "followers_url": "https://api.github.com/users/RoboTux/followers", "following_url": "https://api.github.com/users/RoboTux/following{/other_user}", "gists_url": "https://api.github.com/users/RoboTux/gists{/gist_id}", "starred_url": "https://api.github.com/users/RoboTux/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/RoboTux/subscriptions", "organizations_url": "https://api.github.com/users/RoboTux/orgs", "repos_url": "https://api.github.com/users/RoboTux/repos", "events_url": "https://api.github.com/users/RoboTux/events{/privacy}", "received_events_url": "https://api.github.com/users/RoboTux/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Errors on the ARM CI seem to be:\r\n```\r\nERROR: /workspace/bazel_pip/tensorflow/dtensor/python/tests/BUILD:22:15: in py_library rule //bazel_pip/tensorflow/dtensor/python/tests:test_util: target '//tensorflow/dtensor/python:api' is not visible from target '//bazel_pip/tensorflow/dtensor/python/tests:test_util'. Check the visibility declaration of the former target if you think the dependency is legitimate\r\n(...)\r\nERROR: command succeeded, but not all targets were analyzed\r\n```\r\n\r\nAll tests built passed though:\r\n`Executed 1359 out of 1359 tests: 1359 tests pass.`", "Ping?" ]
2023-06-07T13:07:11
2023-08-28T09:09:56
2023-06-27T18:44:13
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60803", "html_url": "https://github.com/tensorflow/tensorflow/pull/60803", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60803.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60803.patch", "merged_at": "2023-06-27T18:44:12" }
TOSA does not support -1 size so convert to the equivalent size - begin behaviour.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60803/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60803/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60802
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60802/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60802/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60802/events
https://github.com/tensorflow/tensorflow/pull/60802
1,745,810,789
PR_kwDOArmXAs5SaMdQ
60,802
Issue template and Translation
{ "login": "franknganmo", "id": 130893798, "node_id": "U_kgDOB81H5g", "avatar_url": "https://avatars.githubusercontent.com/u/130893798?v=4", "gravatar_id": "", "url": "https://api.github.com/users/franknganmo", "html_url": "https://github.com/franknganmo", "followers_url": "https://api.github.com/users/franknganmo/followers", "following_url": "https://api.github.com/users/franknganmo/following{/other_user}", "gists_url": "https://api.github.com/users/franknganmo/gists{/gist_id}", "starred_url": "https://api.github.com/users/franknganmo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/franknganmo/subscriptions", "organizations_url": "https://api.github.com/users/franknganmo/orgs", "repos_url": "https://api.github.com/users/franknganmo/repos", "events_url": "https://api.github.com/users/franknganmo/events{/privacy}", "received_events_url": "https://api.github.com/users/franknganmo/received_events", "type": "User", "site_admin": false }
[ { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" }, { "id": 1593512946, "node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid", "name": "invalid", "color": "db6f57", "default": true, "description": "Hacktoberfest spam PR" } ]
closed
true
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-06-07T12:40:28
2023-06-07T19:01:25
2023-06-07T19:00:56
NONE
spam
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60802", "html_url": "https://github.com/tensorflow/tensorflow/pull/60802", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60802.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60802.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60802/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60802/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60801
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60801/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60801/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60801/events
https://github.com/tensorflow/tensorflow/pull/60801
1,745,709,959
PR_kwDOArmXAs5SZ2V6
60,801
Frtrnsor
{ "login": "franknganmo", "id": 130893798, "node_id": "U_kgDOB81H5g", "avatar_url": "https://avatars.githubusercontent.com/u/130893798?v=4", "gravatar_id": "", "url": "https://api.github.com/users/franknganmo", "html_url": "https://github.com/franknganmo", "followers_url": "https://api.github.com/users/franknganmo/followers", "following_url": "https://api.github.com/users/franknganmo/following{/other_user}", "gists_url": "https://api.github.com/users/franknganmo/gists{/gist_id}", "starred_url": "https://api.github.com/users/franknganmo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/franknganmo/subscriptions", "organizations_url": "https://api.github.com/users/franknganmo/orgs", "repos_url": "https://api.github.com/users/franknganmo/repos", "events_url": "https://api.github.com/users/franknganmo/events{/privacy}", "received_events_url": "https://api.github.com/users/franknganmo/received_events", "type": "User", "site_admin": false }
[ { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" }, { "id": 1593512946, "node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid", "name": "invalid", "color": "db6f57", "default": true, "description": "Hacktoberfest spam PR" } ]
closed
true
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60801/checks?check_run_id=14072016623) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "Hi, thanks for taking the time to make a PR, but we can't start adding translations of files. Reviews & Maintenance would be impossible. " ]
2023-06-07T11:46:56
2023-06-08T15:40:27
2023-06-08T13:04:30
NONE
spam
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60801", "html_url": "https://github.com/tensorflow/tensorflow/pull/60801", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60801.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60801.patch", "merged_at": null }
Translation in French
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60801/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60801/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60800
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60800/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60800/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60800/events
https://github.com/tensorflow/tensorflow/issues/60800
1,745,610,702
I_kwDOArmXAs5oC-fO
60,800
Tensorflow freezes during training on Mac Studio
{ "login": "hovavalon", "id": 73662452, "node_id": "MDQ6VXNlcjczNjYyNDUy", "avatar_url": "https://avatars.githubusercontent.com/u/73662452?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hovavalon", "html_url": "https://github.com/hovavalon", "followers_url": "https://api.github.com/users/hovavalon/followers", "following_url": "https://api.github.com/users/hovavalon/following{/other_user}", "gists_url": "https://api.github.com/users/hovavalon/gists{/gist_id}", "starred_url": "https://api.github.com/users/hovavalon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hovavalon/subscriptions", "organizations_url": "https://api.github.com/users/hovavalon/orgs", "repos_url": "https://api.github.com/users/hovavalon/repos", "events_url": "https://api.github.com/users/hovavalon/events{/privacy}", "received_events_url": "https://api.github.com/users/hovavalon/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205765054, "node_id": "MDU6TGFiZWwxMjA1NzY1MDU0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS", "name": "subtype:macOS", "color": "b619ea", "default": false, "description": "macOS Build/Installation issues" }, { "id": 4032183365, "node_id": "LA_kwDOArmXAs7wVjxF", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9", "name": "TF 2.9", "color": "1CF842", "default": false, "description": "Issues found in the TF 2.9 release (or RCs)" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Try to update TensorFlow version with \"pip install --upgrade tensorflow\"", "I did, and the problem still appears with tensorflow `2.12`.", "Hi @hovavalon ,\r\n\r\nIt seems the issue is Mac specific and Mac M1 related issues has to be addressed in the Apple metal plugin forum.\r\n\r\nBut I observed earlier there is some issues related to the optimizer. Can you please replace the optimizer with legacy optimizer as below and test it with TF2.9, TF2.11, TF2.12 and let us know the outcome.\r\n\r\n`opt = tf.keras.optimizers.legacy.SGD()`", "Hi @SuryanarayanaY, I am already using the legacy optimizer, at some point I got an error recommending that I do so.", "@hovavalon ,\r\n\r\nI tried to replicate the issue on Mac with tf-nightly(2.14.0-dev20230515) with `epochs=100` with the same test code you provided and its running fine.Please refer to logs below. \r\n\r\n```\r\n(tf-metal) suryanarayanay-macbookpro:~ suryanarayanay$ python Downloads/60800.py\r\n2.14.0-dev20230515\r\nMetal device set to: Apple M1 Pro\r\n\r\nsystemMemory: 16.00 GB\r\nmaxCacheSize: 5.33 GB\r\n\r\nEpoch 1/100\r\n10/10 [==============================] - 1s 3ms/step - loss: 7.0479\r\nEpoch 2/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 4.2836\r\nEpoch 3/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 2.6105\r\nEpoch 4/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 1.5956\r\nEpoch 5/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.9820\r\nEpoch 6/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.6105\r\nEpoch 7/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.3856\r\nEpoch 8/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.2490\r\nEpoch 9/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.1656\r\nEpoch 10/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.1148\r\nEpoch 11/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0843\r\nEpoch 12/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0653\r\nEpoch 13/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0537\r\nEpoch 14/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0463\r\nEpoch 15/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0416\r\nEpoch 16/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0385\r\nEpoch 17/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0364\r\nEpoch 18/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0348\r\nEpoch 19/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0337\r\nEpoch 20/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0328\r\nEpoch 21/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0320\r\nEpoch 22/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0313\r\nEpoch 23/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0306\r\nEpoch 24/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0300\r\nEpoch 25/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0295\r\nEpoch 26/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0290\r\nEpoch 27/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0285\r\nEpoch 28/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0280\r\nEpoch 29/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0275\r\nEpoch 30/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0271\r\nEpoch 31/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0266\r\nEpoch 32/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0261\r\nEpoch 33/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0257\r\nEpoch 34/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0253\r\nEpoch 35/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0249\r\nEpoch 36/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0245\r\nEpoch 37/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0241\r\nEpoch 38/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0237\r\nEpoch 39/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0234\r\nEpoch 40/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0230\r\nEpoch 41/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0226\r\nEpoch 42/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0223\r\nEpoch 43/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0220\r\nEpoch 44/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0216\r\nEpoch 45/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0213\r\nEpoch 46/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0211\r\nEpoch 47/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0208\r\nEpoch 48/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0205\r\nEpoch 49/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0202\r\nEpoch 50/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0199\r\nEpoch 51/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0197\r\nEpoch 52/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0194\r\nEpoch 53/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0191\r\nEpoch 54/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0189\r\nEpoch 55/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0187\r\nEpoch 56/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0184\r\nEpoch 57/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0182\r\nEpoch 58/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0180\r\nEpoch 59/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0178\r\nEpoch 60/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0176\r\nEpoch 61/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0173\r\nEpoch 62/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0172\r\nEpoch 63/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0170\r\nEpoch 64/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0168\r\nEpoch 65/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0166\r\nEpoch 66/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0164\r\nEpoch 67/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0163\r\nEpoch 68/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0161\r\nEpoch 69/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0159\r\nEpoch 70/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0158\r\nEpoch 71/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0156\r\nEpoch 72/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0155\r\nEpoch 73/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0153\r\nEpoch 74/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0152\r\nEpoch 75/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0150\r\nEpoch 76/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0149\r\nEpoch 77/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0148\r\nEpoch 78/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0147\r\nEpoch 79/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0145\r\nEpoch 80/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0144\r\nEpoch 81/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0143\r\nEpoch 82/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0142\r\nEpoch 83/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0140\r\nEpoch 84/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0139\r\nEpoch 85/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0138\r\nEpoch 86/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0137\r\nEpoch 87/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0136\r\nEpoch 88/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0136\r\nEpoch 89/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0134\r\nEpoch 90/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0134\r\nEpoch 91/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0132\r\nEpoch 92/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0132\r\nEpoch 93/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0131\r\nEpoch 94/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0130\r\nEpoch 95/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0129\r\nEpoch 96/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0128\r\nEpoch 97/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0128\r\nEpoch 98/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0127\r\nEpoch 99/100\r\n10/10 [==============================] - 0s 2ms/step - loss: 0.0126\r\nEpoch 100/100\r\n10/10 [==============================] - 0s 3ms/step - loss: 0.0125\r\n(tf-metal) suryanarayanay-macbookpro:~ suryanarayanay$ \r\n```\r\nCan you try with latest nightly version and please confirm the behaviour.\r\n\r\nAlso please confirm you have followed the Apple [metal](https://developer.apple.com/metal/tensorflow-plugin/) plugin instructions correctly.Please confirm you have installed tensorflow-metal and try retesting the code in a Fresh environment.\r\n\r\nThanks!\r\n\r\n", "I have followed the instructions given in the link when installing the application.\r\nEven on my computer 100 short epochs are not necessarily enough to replicate (even though at some times it is enough). ", "Hi @hovavalon ,\r\n\r\nThanks for confirmation. I tried with 1000 epohs and executed 3 times successfully without the reported behaviour.Please refer to attached logs below.\r\n\r\n[#60800_logs.txt](https://github.com/tensorflow/tensorflow/files/11742629/60800_logs.txt)\r\n\r\nCould you try with fresh environment and with tf-nightly version.\r\n\r\nThanks!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60800\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60800\">No</a>\n" ]
2023-06-07T10:47:45
2023-06-29T02:06:26
2023-06-29T02:06:23
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf2.9 ### Custom Code No ### OS Platform and Distribution MacOS Ventura 13.4/13.1 ### Mobile device Mac Studio ### Python version 3.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory Apple M1 ### Current Behaviour? When training a model on my Mac Studio, from time to time it seems that the training freezes, and an epoch takes much more time than usual, from x10 to x200. I have tried contacting Apple's support, and they are clueless about this phenomena. I also went through recent Mac related issues in this repository and found nothing relevant. Here is an example of the phenomena as seen in the training's output: ``` 28/28 [==============================] - 5s 195ms/step - loss: 6.2743e-04 - accuracy: 0.0113 - val_loss: 3.4481e-04 - val_accuracy: 0.0147 Epoch 597/1000 28/28 [==============================] - 61s 2s/step - loss: 8.0337e-04 - accuracy: 0.0055 - val_loss: 3.4126e-04 - val_accuracy: 0.0244 Epoch 598/1000 28/28 [==============================] - 5s 195ms/step - loss: 7.9272e-04 - accuracy: 0.0101 - val_loss: 3.3659e-04 - val_accuracy: 0.0208 ``` ### Standalone code to reproduce the issue ```shell import tensorflow as tf import numpy as np # Generate random training data np.random.seed(0) x_train = np.random.rand(100, 1) y_train = 3 * x_train + 2 + np.random.randn(100, 1) * 0.1 # Define the neural network architecture model = tf.keras.models.Sequential([ tf.keras.layers.Dense(1, input_shape=(1,)) ]) # Compile the model model.compile(optimizer='sgd', loss='mean_squared_error') # Train the model model.fit(x_train, y_train, epochs=1000, batch_size=10) ``` (Thank ChatGPT for the minimal working example) ``` ### Relevant log output ```shell Metal device set to: Apple M1 Ultra systemMemory: 128.00 GB maxCacheSize: 48.00 GB 2023-06-07 13:46:01.901374: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support. 2023-06-07 13:46:01.901665: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>) 2023-06-07 13:46:01.992101: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz Epoch 1/1000 2023-06-07 13:46:02.108687: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled. 10/10 [==============================] - 0s 3ms/step - loss: 14.7499 Epoch 2/1000 10/10 [==============================] - 0s 10ms/step - loss: 9.1414 ... Epoch 33/1000 10/10 [==============================] - 0s 13ms/step - loss: 0.0382 Epoch 34/1000 10/10 [==============================] - 6s 716ms/step - loss: 0.0374 Epoch 35/1000 10/10 [==============================] - 0s 5ms/step - loss: 0.0367 ... ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60800/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60800/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60799
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60799/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60799/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60799/events
https://github.com/tensorflow/tensorflow/issues/60799
1,745,559,984
I_kwDOArmXAs5oCyGw
60,799
RuntimeError during 16x8 quantization in TFLite converter - "Max and min for dynamic tensors should be recorded during calibration"
{ "login": "danielr55", "id": 103025973, "node_id": "U_kgDOBiQNNQ", "avatar_url": "https://avatars.githubusercontent.com/u/103025973?v=4", "gravatar_id": "", "url": "https://api.github.com/users/danielr55", "html_url": "https://github.com/danielr55", "followers_url": "https://api.github.com/users/danielr55/followers", "following_url": "https://api.github.com/users/danielr55/following{/other_user}", "gists_url": "https://api.github.com/users/danielr55/gists{/gist_id}", "starred_url": "https://api.github.com/users/danielr55/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/danielr55/subscriptions", "organizations_url": "https://api.github.com/users/danielr55/orgs", "repos_url": "https://api.github.com/users/danielr55/repos", "events_url": "https://api.github.com/users/danielr55/events{/privacy}", "received_events_url": "https://api.github.com/users/danielr55/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1097543484, "node_id": "MDU6TGFiZWwxMDk3NTQzNDg0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime", "name": "comp:runtime", "color": "0052cc", "default": false, "description": "c++ runtime, performance issues (cpu)" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 2671351731, "node_id": "MDU6TGFiZWwyNjcxMzUxNzMx", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ModelOptimizationToolkit", "name": "ModelOptimizationToolkit", "color": "BFD629", "default": false, "description": "TF Model Optimization Toolkit" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "arfaian", "id": 1106365, "node_id": "MDQ6VXNlcjExMDYzNjU=", "avatar_url": "https://avatars.githubusercontent.com/u/1106365?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arfaian", "html_url": "https://github.com/arfaian", "followers_url": "https://api.github.com/users/arfaian/followers", "following_url": "https://api.github.com/users/arfaian/following{/other_user}", "gists_url": "https://api.github.com/users/arfaian/gists{/gist_id}", "starred_url": "https://api.github.com/users/arfaian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arfaian/subscriptions", "organizations_url": "https://api.github.com/users/arfaian/orgs", "repos_url": "https://api.github.com/users/arfaian/repos", "events_url": "https://api.github.com/users/arfaian/events{/privacy}", "received_events_url": "https://api.github.com/users/arfaian/received_events", "type": "User", "site_admin": false }
[ { "login": "arfaian", "id": 1106365, "node_id": "MDQ6VXNlcjExMDYzNjU=", "avatar_url": "https://avatars.githubusercontent.com/u/1106365?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arfaian", "html_url": "https://github.com/arfaian", "followers_url": "https://api.github.com/users/arfaian/followers", "following_url": "https://api.github.com/users/arfaian/following{/other_user}", "gists_url": "https://api.github.com/users/arfaian/gists{/gist_id}", "starred_url": "https://api.github.com/users/arfaian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arfaian/subscriptions", "organizations_url": "https://api.github.com/users/arfaian/orgs", "repos_url": "https://api.github.com/users/arfaian/repos", "events_url": "https://api.github.com/users/arfaian/events{/privacy}", "received_events_url": "https://api.github.com/users/arfaian/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @danielr55 \r\n\r\nI was able to reproduce this issue. Please find the gist [here](https://colab.research.google.com/gist/pjpratik/56093b4a375c85812ab245637bbb5d74/60799.ipynb).\r\n\r\nSeems like int16x8 support is not available for `tf.minimum` built-in op which might be causing the issue.\r\n\r\nYou can try `tf.lite.OpsSet.TFLITE_BUILTINS_INT8` if it works for your case.\r\n\r\nThanks.", "Thanks for your response, @pjpratik.\r\n\r\nIn line with your comment, I've reworked the `CircularBufferLayer` to avoid using the `tf.minimum` operation.\r\n\r\nHowever, when I attempted to convert the `StreamingModel`, I encountered this error:\r\n\r\n`RuntimeError: Max and min for dynamic tensors should be recorded during calibration: Failed for tensor streaming_model_3/circular_buffer_layer_3/add\r\nEmpty min/max for tensor streaming_model_3/circular_buffer_layer_3/add`\r\n\r\nIt seems strange to me that even the `tf.add` built-in operation is not supported by the tflite converter.\r\n\r\nCould it be possible that I'm incorrectly implementing the `CircularBufferLayer`? I'd appreciate your insight.\r\n\r\nThanks!\r\n\r\n-------------------------------------\r\nHere's the revised implementation for the `CircularBufferLayer`:\r\n\r\n```python\r\nclass CircularBufferLayer(tf.keras.layers.Layer):\r\n def __init__(self, num_features, buffer_size, stride, **kwargs):\r\n super().__init__(**kwargs)\r\n self.num_features = num_features\r\n self.buffer_size = buffer_size\r\n self.stride = stride\r\n self.buffer = self.add_weight(name='buffer', shape=(1, buffer_size, self.num_features),\r\n initializer='zeros', trainable=False, dtype=tf.float32)\r\n self.call_count = self.add_weight(name='call_count', shape=(), initializer='zeros',\r\n dtype=tf.int32, trainable=False)\r\n # total count, this count will never reset\r\n self.total_call_count = self.add_weight(name='total_call_count', shape=(), initializer='zeros',\r\n dtype=tf.int32, trainable=False)\r\n\r\n def call(self, inputs, **kwargs):\r\n # inputs should be reshaped to (1, 1, num_features) to match the buffer shape\r\n inputs = tf.reshape(inputs, [1, 1, self.num_features])\r\n\r\n # Update the buffer with the new data\r\n self.buffer.assign(tf.concat([self.buffer[:, 1:], inputs], axis=1))\r\n\r\n # Update the call count \r\n self.call_count.assign(\r\n tf.cond(\r\n tf.greater_equal(self.call_count + 1, self.stride),\r\n true_fn=lambda: self.stride,\r\n false_fn=lambda: self.call_count + 1\r\n )\r\n )\r\n\r\n # Update the total call count\r\n self.total_call_count.assign(\r\n tf.cond(\r\n tf.greater_equal(self.total_call_count + 1, self.buffer_size),\r\n true_fn=lambda: self.buffer_size,\r\n false_fn=lambda: self.total_call_count + 1\r\n )\r\n )\r\n\r\n # If-else condition\r\n self.call_count.assign(\r\n tf.cond(tf.logical_and(tf.equal(self.call_count, self.stride), tf.greater_equal(self.total_call_count, self.buffer_size)),\r\n true_fn=lambda: 0,\r\n false_fn=lambda: self.call_count,\r\n )\r\n )\r\n\r\n # Create a boolean flag indicating if self.call_count is 0\r\n # and the total number of calls to this layer is at least self.buffer_size\r\n flag = tf.equal(self.call_count, 0)\r\n\r\n # Return the buffer data and the flag\r\n return [self.buffer, flag]\r\n\r\n def reset(self):\r\n self.buffer.assign(tf.zeros_like(self.buffer))\r\n self.call_count.assign(tf.zeros_like(self.call_count))\r\n self.total_call_count.assign(tf.zeros_like(self.total_call_count))\r\n\r\n def get_config(self):\r\n config = {\r\n 'buffer': self.buffer,\r\n 'total_call_count': self.total_call_count,\r\n 'call_count': self.call_count\r\n }\r\n base_config = super(CircularBufferLayer, self).get_config()\r\n return dict(list(base_config.items()) + list(config.items()))\r\n```", "Hi @danielr55, currently this looks like a bug with the new experimental feature. My current guess is that it is somehow not calibrating on the representative data set correctly for this type of conversion.\r\n\r\n@arfaian, can you please take a look?\r\n\r\nI am able to replicate on tf-nightly w/ the following script (model save path modified):\r\nAlso as a [gist](https://colab.sandbox.google.com/gist/pkgoogle/d68636dfe54697b9eb1866c48707245d/60799.ipynb)\r\n```python\r\nimport tensorflow as tf\r\nimport os\r\nimport numpy as np\r\nimport pandas as pd\r\nimport time\r\n\r\n\r\n# Set up the environment to use CPU\r\ntf.config.set_visible_devices([], 'GPU')\r\n\r\n\r\n#######################\r\n# CircularBuffer\r\n#######################\r\nclass CircularBufferLayer(tf.keras.layers.Layer):\r\n def __init__(self, num_features, buffer_size, stride, **kwargs):\r\n super().__init__(**kwargs)\r\n self.num_features = num_features\r\n self.buffer_size = buffer_size\r\n self.stride = stride\r\n self.buffer = self.add_weight(name='buffer', shape=(1, buffer_size, self.num_features),\r\n initializer='zeros', trainable=False, dtype=tf.float32)\r\n self.call_count = self.add_weight(name='call_count', shape=(), initializer='zeros',\r\n dtype=tf.int32, trainable=False)\r\n # total count, this count will never reset\r\n self.total_call_count = self.add_weight(name='total_call_count', shape=(), initializer='zeros',\r\n dtype=tf.int32, trainable=False)\r\n\r\n def call(self, inputs, **kwargs):\r\n # inputs should be reshaped to (1, 1, num_features) to match the buffer shape\r\n inputs = tf.reshape(inputs, [1, 1, self.num_features])\r\n\r\n # Update the buffer with the new data\r\n self.buffer.assign(tf.concat([self.buffer[:, 1:], inputs], axis=1))\r\n\r\n # Update the call count \r\n self.call_count.assign(\r\n tf.cond(\r\n tf.greater_equal(self.call_count + 1, self.stride),\r\n true_fn=lambda: self.stride,\r\n false_fn=lambda: self.call_count + 1\r\n )\r\n )\r\n\r\n # Update the total call count\r\n self.total_call_count.assign(\r\n tf.cond(\r\n tf.greater_equal(self.total_call_count + 1, self.buffer_size),\r\n true_fn=lambda: self.buffer_size,\r\n false_fn=lambda: self.total_call_count + 1\r\n )\r\n )\r\n\r\n # If-else condition\r\n self.call_count.assign(\r\n tf.cond(tf.logical_and(tf.equal(self.call_count, self.stride), tf.greater_equal(self.total_call_count, self.buffer_size)),\r\n true_fn=lambda: 0,\r\n false_fn=lambda: self.call_count,\r\n )\r\n )\r\n\r\n # Create a boolean flag indicating if self.call_count is 0\r\n # and the total number of calls to this layer is at least self.buffer_size\r\n flag = tf.equal(self.call_count, 0)\r\n\r\n # Return the buffer data and the flag\r\n return [self.buffer, flag]\r\n\r\n def reset(self):\r\n self.buffer.assign(tf.zeros_like(self.buffer))\r\n self.call_count.assign(tf.zeros_like(self.call_count))\r\n self.total_call_count.assign(tf.zeros_like(self.total_call_count))\r\n\r\n def get_config(self):\r\n config = {\r\n 'buffer': self.buffer,\r\n 'total_call_count': self.total_call_count,\r\n 'call_count': self.call_count\r\n }\r\n base_config = super(CircularBufferLayer, self).get_config()\r\n return dict(list(base_config.items()) + list(config.items()))\r\n\r\n\r\n#######################\r\n# Streaming Model\r\n#######################\r\nclass StreamingModel(tf.keras.Model):\r\n def __init__(self, input_channel, output_channel, kernel_size, stride, **kwargs):\r\n super().__init__(**kwargs)\r\n\r\n self.input_channel = input_channel\r\n self.output_channel = output_channel\r\n self.kernel_size = kernel_size\r\n self.stride = stride\r\n\r\n # set acoustic model buffer\r\n self.buffer = CircularBufferLayer(\r\n num_features=input_channel,\r\n buffer_size=kernel_size,\r\n stride=stride\r\n )\r\n\r\n # set filters\r\n self.conv1d = tf.keras.layers.Conv1D(\r\n output_channel,\r\n kernel_size=kernel_size,\r\n strides=1,\r\n use_bias=False,\r\n padding='valid',\r\n data_format='channels_last'\r\n )\r\n\r\n def call(self, inputs, **kwargs):\r\n # buffer:\r\n [x, flag] = self.buffer(inputs) # output shape = [1, kernel_size, input_channel]\r\n\r\n x = tf.cond(flag, # output shape = [1, 1, output_channel]\r\n true_fn=lambda: self.conv1d(x),\r\n false_fn=lambda: tf.zeros([1, 1, self.output_channel])\r\n )\r\n\r\n x = tf.reshape(x, [1, self.output_channel]) # output shape = [1, output_channel]\r\n\r\n return [x, flag]\r\n\r\n def reset(self):\r\n self.buffer.reset()\r\n\r\nif __name__ == '__main__':\r\n model = StreamingModel(\r\n input_channel=32,\r\n output_channel=64,\r\n kernel_size=5,\r\n stride=2\r\n )\r\n\r\n # create some dummy data with the correct shapes\r\n seq_len = 50\r\n input_data = tf.random.normal([1, seq_len, model.input_channel])\r\n\r\n # call the model on the dummy data - crucial to build all sub-graphs\r\n for t in range(seq_len):\r\n output = model(input_data[:, t])\r\n\r\n # reset the buffer after executing\r\n model.reset()\r\n\r\n # print the model's summary weights\r\n model.summary()\r\n\r\n #####################################\r\n # TFLite Conversion\r\n #####################################\r\n tflite_path = 'here'\r\n saved_model_dir = os.path.expanduser(tflite_path)\r\n tf.saved_model.save(obj=model, export_dir=saved_model_dir)\r\n converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\r\n converter.experimental_enable_resource_variables = True\r\n\r\n # Quantize the model to 16x8\r\n def representative_data_gen():\r\n input_channel = 32\r\n seq_len = 50\r\n for t in range(seq_len):\r\n x = tf.random.normal([1, input_channel])\r\n yield [x]\r\n\r\n converter.inference_input_type = tf.float32\r\n converter.inference_output_type = tf.float32\r\n converter.optimizations = [tf.lite.Optimize.DEFAULT]\r\n converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8]\r\n converter.representative_dataset = representative_data_gen\r\n converter.allow_custom_ops = True\r\n tflite_model = converter.convert()\r\n\r\n # Save the TFLite model.\r\n with tf.io.gfile.GFile(tflite_path + '.tflite', 'wb') as f:\r\n f.write(tflite_model)\r\n```" ]
2023-06-07T10:18:58
2023-10-04T21:56:54
null
NONE
null
null
null
### 1. System information - **OS Platform and Distribution**: *Ubuntu 22.04.1 LTS* - **TensorFlow installation**: *pip install tensorflow* - **TensorFlow library**: *tensorflow 2.12.0* *tensorflow-cpu 2.12.0* *tensorflow-estimator 2.12.0* *tensorflow-io-gcs-filesystem 0.23.1* *tensorflow-model-optimization 0.7.5* ### 2. Code Here is the Python script that can reproduce the issue: ```python import tensorflow as tf import os import numpy as np import pandas as pd import time # Set up the environment to use CPU tf.config.set_visible_devices([], 'GPU') ####################### # CircularBuffer ####################### class CircularBufferLayer(tf.keras.layers.Layer): def __init__(self, num_features, buffer_size, stride, **kwargs): super().__init__(**kwargs) self.num_features = num_features self.buffer_size = buffer_size self.stride = stride self.buffer = self.add_weight(name='buffer', shape=(1, buffer_size, self.num_features), initializer='zeros', trainable=False, dtype=tf.float32) self.call_count = self.add_weight(name='call_count', shape=(), initializer='zeros', dtype=tf.int32, trainable=False) # total count, this count will never reset self.total_call_count = self.add_weight(name='total_call_count', shape=(), initializer='zeros', dtype=tf.int32, trainable=False) def call(self, inputs, **kwargs): # inputs should be reshaped to (1, 1, num_features) to match the buffer shape inputs = tf.reshape(inputs, [1, 1, self.num_features]) # Update the buffer with the new data self.buffer.assign(tf.concat([self.buffer[:, 1:], inputs], axis=1)) # Update the call count self.call_count.assign(tf.minimum(self.call_count + 1, self.stride)) # self.total_call_count.assign(self.total_call_count + 1) self.total_call_count.assign(tf.minimum(self.total_call_count + 1, self.buffer_size)) # If-else condition self.call_count.assign( tf.cond(tf.logical_and(tf.equal(self.call_count, self.stride), tf.greater_equal(self.total_call_count, self.buffer_size)), true_fn=lambda: 0, false_fn=lambda: self.call_count, ) ) # Create a boolean flag indicating if self.call_count is 0 # and the total number of calls to this layer is at least self.buffer_size flag = tf.equal(self.call_count, 0) # Return the buffer data and the flag return [self.buffer, flag] def reset(self): self.buffer.assign(tf.zeros_like(self.buffer)) self.call_count.assign(tf.zeros_like(self.call_count)) self.total_call_count.assign(tf.zeros_like(self.total_call_count)) def get_config(self): config = { 'buffer': self.buffer, 'total_call_count': self.total_call_count, 'call_count': self.call_count } base_config = super(CircularBufferLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) ####################### # Streaming Model ####################### class StreamingModel(tf.keras.Model): def __init__(self, input_channel, output_channel, kernel_size, stride, **kwargs): super().__init__(**kwargs) self.input_channel = input_channel self.output_channel = output_channel self.kernel_size = kernel_size self.stride = stride # set acoustic model buffer self.buffer = CircularBufferLayer( num_features=input_channel, buffer_size=kernel_size, stride=stride ) # set filters self.conv1d = tf.keras.layers.Conv1D( output_channel, kernel_size=kernel_size, strides=1, use_bias=False, padding='valid', data_format='channels_last' ) def call(self, inputs, **kwargs): # buffer: [x, flag] = self.buffer(inputs) # output shape = [1, kernel_size, input_channel] x = tf.cond(flag, # output shape = [1, 1, output_channel] true_fn=lambda: self.conv1d(x), false_fn=lambda: tf.zeros([1, 1, self.output_channel]) ) x = tf.reshape(x, [1, self.output_channel]) # output shape = [1, output_channel] return [x, flag] def reset(self): self.buffer.reset() if __name__ == '__main__': model = StreamingModel( input_channel=32, output_channel=64, kernel_size=5, stride=2 ) # create some dummy data with the correct shapes seq_len = 50 input_data = tf.random.normal([1, seq_len, model.input_channel]) # call the model on the dummy data - crucial to build all sub-graphs for t in range(seq_len): output = model(input_data[:, t]) # reset the buffer after executing model.reset() # print the model's summary weights model.summary() ##################################### # TFLite Conversion ##################################### tflite_path = '/data/netapp2/git-repos/danielr/sbu_whispro_tflm/tflite_models/open_issue_8-16' saved_model_dir = os.path.expanduser(tflite_path) tf.saved_model.save(obj=model, export_dir=saved_model_dir) converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) converter.experimental_enable_resource_variables = True # Quantize the model to 16x8 def representative_data_gen(): input_channel = 32 seq_len = 50 for t in range(seq_len): x = tf.random.normal([1, input_channel]) yield [x] converter.inference_input_type = tf.float32 converter.inference_output_type = tf.float32 converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8] converter.representative_dataset = representative_data_gen converter.allow_custom_ops = True tflite_model = converter.convert() # Save the TFLite model. with tf.io.gfile.GFile(tflite_path + '.tflite', 'wb') as f: f.write(tflite_model) ``` The script defines a custom layer (CircularBufferLayer) and model (StreamingModel), uses the model on dummy data, and then attempts to quantize and convert the model into a TFLite model. The error seems to be related to the lack of dynamic range data for a particular tensor. ### 3. Failure after conversion The conversion process fails with a `RuntimeError: Max and min for dynamic tensors should be recorded during calibration`. The error specifically highlights the tensor `streaming_model/circular_buffer_layer/Minimum`. Here is the full traceback: ``` Traceback (most recent call last): File "/data/netapp2/git-repos/danielr/sbu_whispro_tflm/sbu_whispro_tflm/scripts/open_issue_8_16_bit.py", line 161, in <module> tflite_model = converter.convert() File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/lite.py", line 962, in wrapper return self._convert_and_export_metrics(convert_func, *args, **kwargs) File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/lite.py", line 940, in _convert_and_export_metrics result = convert_func(self, *args, **kwargs) File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/lite.py", line 1247, in convert return self._convert_from_saved_model(graph_def) File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/lite.py", line 1131, in _convert_from_saved_model return self._optimize_tflite_model( File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py", line 215, in wrapper raise error from None # Re-throws the exception. File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py", line 205, in wrapper return func(*args, **kwargs) File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/lite.py", line 899, in _optimize_tflite_model model = self._quantize(model, q_in_type, q_out_type, q_activations_type, File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/lite.py", line 654, in _quantize return calibrate_quantize.calibrate_and_quantize( File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py", line 215, in wrapper raise error from None # Re-throws the exception. File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/convert_phase.py", line 205, in wrapper return func(*args, **kwargs) File "/home/danielr/.virtualenvs/ASR_3.8/lib/python3.8/site-packages/tensorflow/lite/python/optimize/calibrator.py", line 176, in calibrate_and_quantize return self._calibrator.QuantizeModel( RuntimeError: Max and min for dynamic tensors should be recorded during calibration: Failed for tensor streaming_model/circular_buffer_layer/Minimum Empty min/max for tensor streaming_model/circular_buffer_layer/Minimum Process finished with exit code 1 ``` ### 4. (optional) RNN conversion support Not applicable. ### 5. (optional) Any other info / logs I have attempted to use the `converter.experimental_enable_resource_variables = True` and `converter.allow_custom_ops = True` options in the TFLite converter to allow handling of the custom layer, but the issue persists.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60799/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60799/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60798
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60798/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60798/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60798/events
https://github.com/tensorflow/tensorflow/issues/60798
1,745,434,100
I_kwDOArmXAs5oCTX0
60,798
Error building Tensorflow from source on Windows with /MT
{ "login": "fizmatbfu", "id": 36421069, "node_id": "MDQ6VXNlcjM2NDIxMDY5", "avatar_url": "https://avatars.githubusercontent.com/u/36421069?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fizmatbfu", "html_url": "https://github.com/fizmatbfu", "followers_url": "https://api.github.com/users/fizmatbfu/followers", "following_url": "https://api.github.com/users/fizmatbfu/following{/other_user}", "gists_url": "https://api.github.com/users/fizmatbfu/gists{/gist_id}", "starred_url": "https://api.github.com/users/fizmatbfu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fizmatbfu/subscriptions", "organizations_url": "https://api.github.com/users/fizmatbfu/orgs", "repos_url": "https://api.github.com/users/fizmatbfu/repos", "events_url": "https://api.github.com/users/fizmatbfu/events{/privacy}", "received_events_url": "https://api.github.com/users/fizmatbfu/received_events", "type": "User", "site_admin": false }
[ { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 4032183365, "node_id": "LA_kwDOArmXAs7wVjxF", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9", "name": "TF 2.9", "color": "1CF842", "default": false, "description": "Issues found in the TF 2.9 release (or RCs)" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "can you show the Error?\r\n", "Hi @fizmatbfu, please follow the steps mentioned in https://www.tensorflow.org/install/source_windows.\r\nI ran the build on my end and didn't get the above error.", "@fizmatbfu,\r\nCould you please follow the steps mentioned on the official website of [Tensorflow](https://www.tensorflow.org/install/source_windows) to build Tensorflow from source. Tensorflow suggests install all the pre-requisite packages to avoid errors. Thank you!", "Ok, I fixed the errors as follows: instead of using the --copt flag, I added the following lines to the .bazelrc file:\r\n```\r\nbuild: windows --cxxopt=/MT\r\nbuild: windows --host_copt=/MT\r\n```\r\nI also replaced MD with MT in all .bzl and .bzl.tpl files. But the /MD flag still appears in the generated .params files. How can I build a library with the /MT flag?\r\n\r\n(Build is successful, but DLL still requires vcruntime libraries).", "I rechecked. The /MT flag I added appears in the .params files after the /MD flag. The compiler issues a message that the /MT flag overrides /MD (Command line warning D9025 : overriding '/MD' with '/MT'). But still the DLL requires the vcruntime library to run.", "In order for the DLL to not require the vcruntime library to run, you also need to remove the `/DEFAULTLIB:msvcrt.lib` line from the tensorflow.dll-2.params file before linking.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60798\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60798\">No</a>\n" ]
2023-06-07T09:16:18
2023-06-14T15:38:56
2023-06-14T11:18:26
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.9.3 ### Custom Code Yes ### OS Platform and Distribution Windows 10 ### Mobile device _No response_ ### Python version 3.10 ### Bazel version 5.4 ### GCC/Compiler version MSVC (Visual Studio 2022) ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I am trying to build Tensorflow from source with flag /MT (I require this so that the tensorflow.dll does not require the vcruntime libraries on startup). I tried this command: bazel build tensorflow:tensorflow.dll --copt=/MT But i got errors: c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory (I run this in Git Bash). It seems, like something is wrong with spaces in path. But i builded tensorflow successfully without /MT flag. ### Standalone code to reproduce the issue ```shell ./configure bazel build tensorflow:tensorflow.dll --copt=/MT ``` ### Relevant log output ```shell WARNING: Running Bazel server needs to be killed, because the startup options are different. Starting local Bazel server and connecting to it... INFO: Options provided by the client: Inherited 'common' options: --isatty=0 --terminal_columns=80 INFO: Reading rc options for 'build' from c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Options provided by the client: 'build' options: --python_path=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe INFO: Reading rc options for 'build' from c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.bazelrc: 'build' options: --define framework_shared_object=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library INFO: Reading rc options for 'build' from c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.tf_configure.bazelrc: 'build' options: --action_env PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe --action_env PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages --python_path=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions --define=override_eigen_strong_inline=true INFO: Reading rc options for 'build' from c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.bazelrc: 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils INFO: Found applicable config definition build:short_logs in file c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:windows in file c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.bazelrc: --copt=/W0 --copt=/D_USE_MATH_DEFINES --host_copt=/D_USE_MATH_DEFINES --cxxopt=/std:c++14 --host_cxxopt=/std:c++14 --config=monolithic --copt=-DWIN32_LEAN_AND_MEAN --host_copt=-DWIN32_LEAN_AND_MEAN --copt=-DNOGDI --host_copt=-DNOGDI --copt=/experimental:preprocessor --host_copt=/experimental:preprocessor --linkopt=/DEBUG --host_linkopt=/DEBUG --linkopt=/OPT:REF --host_linkopt=/OPT:REF --linkopt=/OPT:ICF --host_linkopt=/OPT:ICF --verbose_failures --features=compiler_param_file --distinct_host_configuration=false INFO: Found applicable config definition build:monolithic in file c:\projects\_thirdparty\sources\tensorflow\mt4\tensorflow-2.9.3\.bazelrc: --define framework_shared_object=false Loading: Loading: 0 packages loaded Analyzing: target //tensorflow:tensorflow.dll (1 packages loaded, 0 targets configured) Analyzing: target //tensorflow:tensorflow.dll (35 packages loaded, 11 targets configured) Analyzing: target //tensorflow:tensorflow.dll (185 packages loaded, 4734 targets configured) Analyzing: target //tensorflow:tensorflow.dll (243 packages loaded, 12995 targets configured) Analyzing: target //tensorflow:tensorflow.dll (259 packages loaded, 20104 targets configured) INFO: Analyzed target //tensorflow:tensorflow.dll (259 packages loaded, 20104 targets configured). INFO: Found 1 target... [0 / 1,325] [Prepa] BazelWorkspaceStatusAction stable-status.txt [32 / 2,100] checking cached actions [157 / 2,250] [Scann] Compiling snappy.cc ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/counter.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/counter.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling platform/win32/src/pthread_key_win32.cc failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/pthread_key_win32.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/cv.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/cv.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/note.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/note.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling platform/c++11/src/yield.cc failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/yield.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/dll.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/dll.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling platform/win32/src/clock_gettime.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/clock_gettime.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/once.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/once.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/sem_wait.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/sem_wait.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/time_internal.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/time_internal.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/mu.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/mu.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/wait.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/wait.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/debug.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/debug.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/common.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/common.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling platform/win32/src/per_thread_waiter.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/per_thread_waiter.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... ERROR: C:/users/a/_bazel_a/lyw6tvlp/external/nsync/BUILD:467:11: Compiling internal/mu_wait.c failed: (Exit 2): cl.exe failed: error executing command cd /d C:/users/a/_bazel_a/lyw6tvlp/execroot/org_tensorflow SET INCLUDE=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\ATLMFC\include;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\VS\include;C:\Program Files (x86)\Windows Kits\10\include\10.0.22621.0\ucrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\um;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\shared;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\winrt;C:\Program Files (x86)\Windows Kits\10\\include\10.0.22621.0\\cppwinrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um SET PATH=C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\VCPackages;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Current\bin\Roslyn;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\Team Tools\Performance Tools;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\HTML Help Workshop;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\FSharp\Tools;C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\\x64;C:\Program Files (x86)\Windows Kits\10\bin\\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\\MSBuild\Current\Bin\amd64;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\Tools\;;C:\Windows\system32;C:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\VC\Linux\bin\ConnectionManagerExe SET PWD=/proc/self/cwd SET PYTHON_BIN_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/python.exe SET PYTHON_LIB_PATH=C:/Users/a/AppData/Local/Programs/Python/Python310/lib/site-packages SET RUNFILES_MANIFEST_ONLY=1 SET TEMP=C:\Users\a\AppData\Local\Temp SET TF2_BEHAVIOR=1 SET TMP=C:\Users\a\AppData\Local\Temp C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.35.32215\bin\HostX64\x64\cl.exe @bazel-out/x64_windows-opt/bin/external/nsync/_objs/nsync_cpp/mu_wait.obj.params # Configuration: 5bf462d48c9f4c479b4b597fa29c1ae712e6bc33826ef977f3e3753aaa13def1 # Execution platform: @local_execution_config_platform//:platform cl : Command line warning D9035 : option 'experimental:preprocessor' has been deprecated and will be removed in a future release cl : Command line warning D9036 : use 'Zc:preprocessor' instead of 'experimental:preprocessor' c1xx: fatal error C1083: Cannot open source file: 'C:/Program\': No such file or directory MT c1xx: fatal error C1083: Cannot open source file: 'Files/Git/MT': No such file or directory Generating Code... Target //tensorflow:tensorflow.dll failed to build INFO: Elapsed time: 11.426s, Critical Path: 0.97s INFO: 22 processes: 20 internal, 2 local. FAILED: Build did NOT complete successfully FAILED: Build did NOT complete successfully ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60798/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60798/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60797
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60797/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60797/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60797/events
https://github.com/tensorflow/tensorflow/pull/60797
1,745,361,605
PR_kwDOArmXAs5SYqH_
60,797
TFLITE fix inconsistencies in using std/absl for variant/any_cast functions.
{ "login": "radekzc", "id": 135813129, "node_id": "U_kgDOCBhYCQ", "avatar_url": "https://avatars.githubusercontent.com/u/135813129?v=4", "gravatar_id": "", "url": "https://api.github.com/users/radekzc", "html_url": "https://github.com/radekzc", "followers_url": "https://api.github.com/users/radekzc/followers", "following_url": "https://api.github.com/users/radekzc/following{/other_user}", "gists_url": "https://api.github.com/users/radekzc/gists{/gist_id}", "starred_url": "https://api.github.com/users/radekzc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/radekzc/subscriptions", "organizations_url": "https://api.github.com/users/radekzc/orgs", "repos_url": "https://api.github.com/users/radekzc/repos", "events_url": "https://api.github.com/users/radekzc/events{/privacy}", "received_events_url": "https://api.github.com/users/radekzc/received_events", "type": "User", "site_admin": false }
[ { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Here are the internal errors, @radekzc can you please verify ? Thank you!\r\n\r\nld: error: undefined reference due to --no-allow-shlib-undefined: util_graphics_giza::BlendRgbaToRgbaIcon::DrawScanlines(int, int, int, int, int, util_graphics_giza::GizaOperator, Callback5<int, int, int, unsigned int, util_graphics_giza::GizaOperator>*) const\r\n>>> referenced by blaze-out/k8-opt/bin/_solib_k8/libutil_Sgraphics_Sgiza_Sinternal_Slibgiza.ifso\r\n\r\nld: error: undefined reference due to --no-allow-shlib-undefined: util_graphics_giza::BlendRgbaToRgbaIcon::DrawIntoIndexcolorBuffer(int, int, int, int, int, int, unsigned char const*, unsigned char*) const\r\n>>> referenced by blaze-out/k8-opt/bin/_solib_k8/libutil_Sgraphics_Sgiza_Sinternal_Slibgiza.ifso\r\n\r\nld: error: undefined reference due to --no-allow-shlib-undefined: util_graphics_giza::BlendRgbaToRgbaIcon::DrawIntoRgbaBuffer(int, int, int, int, int, int, util_graphics_giza::GizaOperator, unsigned char*) const\r\n>>> referenced by blaze-out/k8-opt/bin/_solib_k8/libutil_Sgraphics_Sgiza_Sinternal_Slibgiza.ifso\r\nclang: error: linker command failed with exit code 1 (use -v to see invocation)", "Seems not relevant to the commit.", "Hi @radekzc,\r\n\r\nCould you provide the steps to reproduce the issue (breakages under Windows build)?", "Will try to prepare minimal example, but it may take time. \r\n\r\nIf you are unsure what this PR fixes, its like if you wrote code like\r\n\r\n```\r\nint * a = new int;\r\n...\r\nfree(a); // free instead of delete\r\n```\r\n\r\nwhich would \"work\" if the compiler used\r\n\r\n```\r\nvoid free(void *ptr)\r\n{\r\n delete(ptr);\r\n}\r\n```\r\n\r\nwhich is often the case, but there is zero guarantee it works always, because the behavior is undefined.\r\n\r\n\r\n\r\n\r\n", "Hi @radekzc Any update on this PR? Please. Thank you!", "Hi @radekzc,\r\n\r\nAccording to Google's policy, we are deprecating the usage of absl::any_cast and absl::variant in our codebase. To avoid the scenario you mentioned, Is it ok to fix all uses of absl::variant/any_cast to std::variant/any_cast?", "Yes, perfectly ok.", "Hi @radekzc Any update on the above [comments](https://github.com/tensorflow/tensorflow/pull/60797#issuecomment-1690990772)? Please. Thank you!", "Hi @radekzc Any update on the above https://github.com/tensorflow/tensorflow/pull/60797#issuecomment-1709240974? Please. Thank you!", "Hi @radekzc Any update on the above https://github.com/tensorflow/tensorflow/pull/60797#issuecomment-1709240974? Please. Thank you!", "Hi @radekzc Any update on the above https://github.com/tensorflow/tensorflow/pull/60797#issuecomment-1709240974? Please. Thank you!", "Hi @radekzc Any update on the above https://github.com/tensorflow/tensorflow/pull/60797#issuecomment-1709240974? Please. Thank you!", "Hello\r\nPlease also delete \r\n#include <variant> \r\non top of header\r\n\"tensorflow/lite/delegates/gpu/common/operations.h\"\r\n\r\nIt's broking builds with old compilers (require c++17). \r\n", "> Hello Please also delete #include on top of header \"tensorflow/lite/delegates/gpu/common/operations.h\"\r\n> \r\n> It's broking builds with old compilers (require c++17).\r\n\r\nBased on previous comments the agreed upon way is to completely remove absl and switch to std instead, which is the direct opposite of this commit. I can look into this when our next backend upgrade task (switching to newer TF version in our product) begins, which is due in April. If the absl/std hell still exist, I will refactor it to std and sent a new pull request." ]
2023-06-07T08:38:10
2024-01-03T09:21:56
2024-01-03T09:21:55
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60797", "html_url": "https://github.com/tensorflow/tensorflow/pull/60797", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60797.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60797.patch", "merged_at": "2024-01-03T09:21:55" }
Fix using std::any_cast instead of absl::any_cast Inconsistencies exist in Lite repo using std::variant/absl::variant and std::any_cast/absl::any_cast. When abseil is built with ABSL_USES_STD_ANY (Linux), everything works even with this bug. But if not (on Windows build), this uses std::any_cast on variable created by absl::variant, causing a throwing of exception at runtime.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60797/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60797/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60796
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60796/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60796/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60796/events
https://github.com/tensorflow/tensorflow/pull/60796
1,745,343,700
PR_kwDOArmXAs5SYmUJ
60,796
TfLite fix some inconsistent usage of std/absl::variant/any_cast
{ "login": "radekzc", "id": 135813129, "node_id": "U_kgDOCBhYCQ", "avatar_url": "https://avatars.githubusercontent.com/u/135813129?v=4", "gravatar_id": "", "url": "https://api.github.com/users/radekzc", "html_url": "https://github.com/radekzc", "followers_url": "https://api.github.com/users/radekzc/followers", "following_url": "https://api.github.com/users/radekzc/following{/other_user}", "gists_url": "https://api.github.com/users/radekzc/gists{/gist_id}", "starred_url": "https://api.github.com/users/radekzc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/radekzc/subscriptions", "organizations_url": "https://api.github.com/users/radekzc/orgs", "repos_url": "https://api.github.com/users/radekzc/repos", "events_url": "https://api.github.com/users/radekzc/events{/privacy}", "received_events_url": "https://api.github.com/users/radekzc/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60796/checks?check_run_id=14066704200) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request." ]
2023-06-07T08:27:16
2023-06-07T08:37:19
2023-06-07T08:37:19
CONTRIBUTOR
null
true
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60796", "html_url": "https://github.com/tensorflow/tensorflow/pull/60796", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60796.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60796.patch", "merged_at": null }
Fix using std::any_cast instead of absl::any_cast Inconsistencies exist in Lite repo using std::variant/absl::variant and std::any_cast/absl::any_cast. When abseil is built with ABSL_USES_STD_ANY (Linux), everything works even with this bug. But if not (on Windows build), this uses std::any_cast on variable created by absl::variant, causing a throwing of exception at runtime.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60796/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60796/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60795
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60795/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60795/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60795/events
https://github.com/tensorflow/tensorflow/issues/60795
1,745,222,473
I_kwDOArmXAs5oBftJ
60,795
Add docs reference to latest numpy version for `tf.experimental.numpy` functions
{ "login": "fnhirwa", "id": 67042527, "node_id": "MDQ6VXNlcjY3MDQyNTI3", "avatar_url": "https://avatars.githubusercontent.com/u/67042527?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fnhirwa", "html_url": "https://github.com/fnhirwa", "followers_url": "https://api.github.com/users/fnhirwa/followers", "following_url": "https://api.github.com/users/fnhirwa/following{/other_user}", "gists_url": "https://api.github.com/users/fnhirwa/gists{/gist_id}", "starred_url": "https://api.github.com/users/fnhirwa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fnhirwa/subscriptions", "organizations_url": "https://api.github.com/users/fnhirwa/orgs", "repos_url": "https://api.github.com/users/fnhirwa/repos", "events_url": "https://api.github.com/users/fnhirwa/events{/privacy}", "received_events_url": "https://api.github.com/users/fnhirwa/received_events", "type": "User", "site_admin": false }
[ { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 2012480497, "node_id": "MDU6TGFiZWwyMDEyNDgwNDk3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-feature", "name": "type:docs-feature", "color": "159b2e", "default": false, "description": "Doc issues for new feature, or clarifications about functionality" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @hirwa-nshuti ,\r\n\r\nThanks for your observation and time for bringing this to our attention. Yeah the Numpy version that the Tensorflow API is referring is older and the link can be updated to latest/stable version.\r\n\r\nWe will discuss internally and let you know because this is external link which may change with time. But for time being the provided link in TF documentation has note along another link pointed to latest stable release of numpy.", "I noticed that all numpy functions have same issue. But every function has note and link redirecting to latest release.\r\n", "@hirwa-nshuti ,\r\n\r\nAn internal PR has been done for the requested changes and will be updated soon. Thanks!" ]
2023-06-07T07:16:25
2023-06-08T13:10:32
2023-06-08T13:10:32
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Documentation Feature Request ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code No ### OS Platform and Distribution Linux ubuntu 18.04 ### Mobile device _No response_ ### Python version 3.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? As the tf version requirements for running the latest version we need the latest version of numpy and all `tf.experimental.numpy` functions point to the `numpy` `v1.16` https://www.tensorflow.org/api_docs/python/tf/experimental/numpy/allclose I am thinking if we can update the referencing docs link. Thanks ### Standalone code to reproduce the issue ```shell Check this https://www.tensorflow.org/api_docs/python/tf/experimental/numpy/allclose ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60795/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60795/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60794
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60794/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60794/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60794/events
https://github.com/tensorflow/tensorflow/pull/60794
1,745,137,874
PR_kwDOArmXAs5SX5a2
60,794
[TfLite][GPU/CPU] Added GroupNormalization CPU/GPU kernel
{ "login": "mgokulkrish", "id": 130030473, "node_id": "U_kgDOB8AbiQ", "avatar_url": "https://avatars.githubusercontent.com/u/130030473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mgokulkrish", "html_url": "https://github.com/mgokulkrish", "followers_url": "https://api.github.com/users/mgokulkrish/followers", "following_url": "https://api.github.com/users/mgokulkrish/following{/other_user}", "gists_url": "https://api.github.com/users/mgokulkrish/gists{/gist_id}", "starred_url": "https://api.github.com/users/mgokulkrish/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mgokulkrish/subscriptions", "organizations_url": "https://api.github.com/users/mgokulkrish/orgs", "repos_url": "https://api.github.com/users/mgokulkrish/repos", "events_url": "https://api.github.com/users/mgokulkrish/events{/privacy}", "received_events_url": "https://api.github.com/users/mgokulkrish/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1173072136, "node_id": "MDU6TGFiZWwxMTczMDcyMTM2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL", "name": "size:XL", "color": "adafea", "default": false, "description": "CL Change Size:Extra Large" } ]
open
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60794/checks?check_run_id=14063992701) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "Hi @mgokulkrish Can you please sign CLA. Thank you!", "> Hi @mgokulkrish Can you please sign CLA. Thank you!\r\n\r\nHi @gbaned, I have already signed CLA in this PR, should i do it again ? #60749 ", "Hi @yijie-yang, could you please review this PR. Doing open-source contribution for the first time, would love to learn from the mistakes and improve.", "> > Hi @mgokulkrish Can you please sign CLA. Thank you!\r\n> \r\n> Hi @gbaned, I have already signed CLA in this PR, should i do it again ? #60749\r\n\r\nHi @mgokulkrish Sorry for the delay, It shows cla check failed. Can you please make sure to use same GitHub username and email-id associated with it. Thank you!", "Hi @gbaned, I think the cla now is approved.", "> Hi @gbaned, I think the cla now is approved.\r\n\r\nHi @mgokulkrish Yes, it is good now. Thank you!", "Come on, somebody needs check the this merging problem. \r\nBtw @mgokulkrish did u have interest to make a repo to show how to use GPU to acclerate sd model on Android? sounds very interest for me", "> Come on, somebody needs check the this merging problem. Btw @mgokulkrish did u have interest to make a repo to show how to use GPU to acclerate sd model on Android? sounds very interest for me\r\n\r\nHi @fuerpy, sorry I do not have open-source setup for it. The main issue for the main model executing via gpu delegate is 5 dimensional tensors due to group normalization, current opensource tflite gpu delegate does not support it. If you are able to combine the whole block on group norm into a single block through MLIR changes in TFLiteConvertor, you can use the kernel in this commit to execute it through custom layer features.", "@mgokulkrish hello,If I run tflite with the project https://github.com/mgokulkrish/tensorflow\r\n\r\ndoes it mean that this model can also use the GPU on Android\r\n\r\nhttps://huggingface.co/keras-sd/diffusion-model-tflite/tree/main", "> Hi @mgokulkrish, the recommended way of adding custom op (only supported in C++) is documented in https://www.tensorflow.org/lite/guide/ops_custom.\r\n> \r\n> This PR makes a lot of changes to the TFLite kernel, which we cannot approve. Please follow the above guide and if there's any issue with it, please create a GitHub issue to follow up.\r\n> \r\n> Thanks.\r\n\r\nThanks for the review @JunyoungLim , based on the guide of custom op you shared, I think CPU side changes for the kernel should be fine. \r\n\r\nMaybe you could point out which part of GPU changes are wrong or where it is too big for kernel changes, I could learn from it.\r\nSummary of my changes:-\r\n1. added a transformation - adding connections for two sub kernels to calculate mean and variance sum.\r\n2. Added three kernels (tasks) for group norm, group mean sum and group var sum.\r\n3. Added parser and selectors for it (as a custom layer, similar to MaxUnpooing2D which was done similarly before).\r\n\r\nI have not modified any existing kernels in my changes. I have not included any changes with respect to MLIR, tflite convertor or tf.experimental_implements ( https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/models/convert/operation_fusion.md ), that I used to merge group normalization to single block. The change just has additional kernels.\r\n\r\nThanks again for reviewing the change, I would like to learn and make contribution in GPU delegate. So, a deep review will be a good learning and review process for me.", "Hi @sirakiin Can you please review this PR ? Thank you!", "Hi @sirakiin Can you please review this PR ? Thank you!", "> Hi @sirakiin Can you please review this PR ? Thank you!\r\n\r\n@gbaned Hello, do you have the release aar of this pr? I tried to custom build the release, but it failed. I am trying to develop the Android version of stable diffusion. This is the Android version of stable diffusion I made using onnxruntime https://github.com/ZTMIDGO/Android-Stable-diffusion-ONNX . I hope to develop the Android version of TensorFlow.\r\n\r\n", "Hi @sirakiin Can you please assist on above comments from @ZTMIDGO. Thank you!", "Hi @JunyoungLim Can you please assist on above comments from @ZTMIDGO. Thank you!", "Hi @JunyoungLim Any update on this PR? Please. Thank you!", "Hi @JunyoungLim Any update on this PR? Please. Thank you!", "Hi @JunyoungLim Any update on this PR? Please. Thank you!", "Hi @JunyoungLim Any update on this PR? Please. Thank you!", "Hi @sirakiin Any update on this PR? Please. Thank you!", "Hi @sirakiin Any update on this PR? Please. Thank you!", "Hi @sirakiin Any update on this PR? Please. Thank you!" ]
2023-06-07T06:31:01
2024-06-07T16:08:04
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60794", "html_url": "https://github.com/tensorflow/tensorflow/pull/60794", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60794.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60794.patch", "merged_at": null }
Added custom layer GroupNormalization in TfLite -> Needed for executing StableDiffusion Model on GPU in tflite. ``` from keras_cv.models.stable_diffusion.diffusion_model import DiffusionModel from keras_cv.models.stable_diffusion.decoder import Decoder ``` -> limitations of GPU kernel - defined for axis=-1 - scale and centre should be true - channels/groups >= 4 -> single layer group norm accuracy on s23 ultra - mean absolute error of e^-5 on fp32 execution for gpu for the configurations present in stable diffusion.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60794/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60794/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60793
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60793/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60793/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60793/events
https://github.com/tensorflow/tensorflow/issues/60793
1,745,115,324
I_kwDOArmXAs5oBFi8
60,793
RESHAPE: OP is supported, but tensor type/shape isn't compatible
{ "login": "Ramees025", "id": 15998417, "node_id": "MDQ6VXNlcjE1OTk4NDE3", "avatar_url": "https://avatars.githubusercontent.com/u/15998417?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Ramees025", "html_url": "https://github.com/Ramees025", "followers_url": "https://api.github.com/users/Ramees025/followers", "following_url": "https://api.github.com/users/Ramees025/following{/other_user}", "gists_url": "https://api.github.com/users/Ramees025/gists{/gist_id}", "starred_url": "https://api.github.com/users/Ramees025/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Ramees025/subscriptions", "organizations_url": "https://api.github.com/users/Ramees025/orgs", "repos_url": "https://api.github.com/users/Ramees025/repos", "events_url": "https://api.github.com/users/Ramees025/events{/privacy}", "received_events_url": "https://api.github.com/users/Ramees025/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "@Ramees025,\r\nCould you please provide complete code and more information about the issue which was mentioned. It helps to analyse the issue in an effective way. Thank you!", "![image](https://github.com/tensorflow/tensorflow/assets/15998417/9b125b2a-acf3-4f29-81bf-3be83af466be)\r\n\r\nAttached is the single layer model causing the issue when running in GPU.", "Model run fine in CPU. But while running with GPU, it showing the error \"RESHAPE: OP is supported, but tensor type/shape isn't compatible\" and fallback to CPU.\r\nBasically the reshape will convert 5D tensor to 4D tensor.", "@Ramees025,\r\nUnfortunately with the above details provided, we were not able to provide the correct information. Could you please provide the complete code or the colab gist which helps us to debug the issue in an effective way. Thank you!", "TfLiteIntArray* GetOpsToReplace(\r\n TfLiteContext* context, bool allow_quant_ops, int max_delegated_partitions,\r\n const absl::flat_hash_set<TfLiteBuiltinOperator>* excluded_ops) {\r\n delegates::IsNodeSupportedFn node_supported_fn =\r\n [=](TfLiteContext* context, TfLiteNode* node,\r\n TfLiteRegistration* registration,\r\n std::string* unsupported_details) -> bool {\r\n const auto status =\r\n IsSupported(context, node, registration, allow_quant_ops, excluded_ops);\r\n if (!status.ok()) {\r\n if (unsupported_details) {\r\n *unsupported_details = std::string(status.message());\r\n }\r\n return false;\r\n }\r\n std::vector<TfLiteType> allowed_in_types = {kTfLiteFloat32, kTfLiteFloat16};\r\n std::vector<TfLiteType> allowed_out_types = {kTfLiteFloat32,\r\n kTfLiteFloat16};\r\n if (!IsAllAllowedTensors(context, node->inputs, allowed_in_types) ||\r\n !IsAllAllowedTensors(context, node->outputs, allowed_out_types)) {\r\n if (unsupported_details) {\r\n *unsupported_details =\r\n **\"OP is supported, but tensor type/shape isn't compatible.\";**\r\n }\r\n return false;\r\n }\r\n return true;\r\n };\r\n}\r\n\r\n\r\ncode:\r\n\r\n\\tensorflow\\lite\\delegates\\gpu\\common\\model_builder.cc\r\n\r\n", "Hi @Ramees025 \r\n\r\nThe Reshape op might not be supporting the 5D tensors on GPU delegate which is why the error is thrown. \r\n\r\nThanks.", "Hi, is there any plan/roadmap to support 5D RESHAPE ops in tflite gpu delegate?", "Hi @Ramees025 \r\n\r\nThe the support for 5D might be on roadmap of Reshape.\r\n\r\n You can also use [Model Analyzer](https://www.tensorflow.org/lite/guide/model_analyzer) to check the [GPU delegate](https://www.tensorflow.org/lite/performance/gpu) compatibility of the given model by providing `gpu_compatibility=True` option.\r\n\r\nThanks.\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60793\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60793\">No</a>\n" ]
2023-06-07T06:13:41
2023-07-01T02:12:21
2023-07-01T02:12:19
NONE
null
null
null
**System information** - OS Platform and Distribution: Android, Galaxy S23. - TensorFlow installed from (source or binary):2.12 - TensorFlow version (or github SHA if from source):2.12 Input tensor shape (1,16,32,256,12) Output tensor shape (1,16,32,3072) **Any other info / logs**: RESHAPE: OP is supported, but tensor type/shape isn't compatible
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60793/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60793/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60792
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60792/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60792/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60792/events
https://github.com/tensorflow/tensorflow/issues/60792
1,744,973,279
I_kwDOArmXAs5oAi3f
60,792
About using C to call tflite
{ "login": "panhu", "id": 11703018, "node_id": "MDQ6VXNlcjExNzAzMDE4", "avatar_url": "https://avatars.githubusercontent.com/u/11703018?v=4", "gravatar_id": "", "url": "https://api.github.com/users/panhu", "html_url": "https://github.com/panhu", "followers_url": "https://api.github.com/users/panhu/followers", "following_url": "https://api.github.com/users/panhu/following{/other_user}", "gists_url": "https://api.github.com/users/panhu/gists{/gist_id}", "starred_url": "https://api.github.com/users/panhu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/panhu/subscriptions", "organizations_url": "https://api.github.com/users/panhu/orgs", "repos_url": "https://api.github.com/users/panhu/repos", "events_url": "https://api.github.com/users/panhu/events{/privacy}", "received_events_url": "https://api.github.com/users/panhu/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi:\r\nWhat I would like to add is how to significantly reduce tflite shared libraries when using cmake", "Hi @panhu \r\n\r\nTensorFlow Lite enables you to reduce model binary sizes by using selective builds. Selective builds skip unused operations in your model set and produce a compact library with just the runtime and the op kernels required for the model to run on your mobile device.\r\n\r\nPlease refer to this [document](https://www.tensorflow.org/lite/guide/reduce_binary_size) on different ways of reducing TFLite binary size.\r\n\r\nThanks.", "Hi@pjpratik\r\n\r\nThank you for your reply. What I would like to know is how to reduce tflite time when using cmake. The document you provided mentioned using bazel.\r\n\r\nThanks.", "Hi @panhu \r\n\r\nThe current instructions are provided using `bazel` which is recommended. You can try to build [C API](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/c/README.md#using-the-c-api) using bazel as well and try reducing the binary size using above instructions.\r\n\r\nAlso, you can build custom c library using bazel by changing the build file.\r\n\r\nPlease check this thread [#48068](https://github.com/tensorflow/tensorflow/issues/48068) for reference.\r\n\r\nThanks.\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60792\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60792\">No</a>\n" ]
2023-06-07T03:43:07
2023-06-23T02:08:39
2023-06-23T02:08:37
NONE
null
null
null
**System information** - RIsc-v **Standalone code to reproduce the issue** Hi: If i want to compile tflite into a library and then use C to call it. How can I effectively optimize and crop it to make the compiled tflite library file smaller. Because for our model, tflite micro is not supported by many operators
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60792/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60792/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60791
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60791/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60791/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60791/events
https://github.com/tensorflow/tensorflow/pull/60791
1,744,815,044
PR_kwDOArmXAs5SWz7Y
60,791
R1.14
{ "login": "tokafondo", "id": 26439185, "node_id": "MDQ6VXNlcjI2NDM5MTg1", "avatar_url": "https://avatars.githubusercontent.com/u/26439185?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tokafondo", "html_url": "https://github.com/tokafondo", "followers_url": "https://api.github.com/users/tokafondo/followers", "following_url": "https://api.github.com/users/tokafondo/following{/other_user}", "gists_url": "https://api.github.com/users/tokafondo/gists{/gist_id}", "starred_url": "https://api.github.com/users/tokafondo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tokafondo/subscriptions", "organizations_url": "https://api.github.com/users/tokafondo/orgs", "repos_url": "https://api.github.com/users/tokafondo/repos", "events_url": "https://api.github.com/users/tokafondo/events{/privacy}", "received_events_url": "https://api.github.com/users/tokafondo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60791/checks?check_run_id=14058598571) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request." ]
2023-06-07T00:20:22
2023-06-07T20:24:53
2023-06-07T20:24:53
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60791", "html_url": "https://github.com/tensorflow/tensorflow/pull/60791", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60791.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60791.patch", "merged_at": null }
[samikama's](https://github.com/tensorflow/tensorflow/commits?author=samikama) [Make nccl bindings compilable with cuda 10.2](https://github.com/tensorflow/tensorflow/commit/67edc16326d6328e7ef096e1b06f81dae1bfb816)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60791/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60791/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60790
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60790/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60790/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60790/events
https://github.com/tensorflow/tensorflow/issues/60790
1,744,518,747
I_kwDOArmXAs5n-z5b
60,790
could not run GPU on jupyter
{ "login": "gg4u", "id": 284214, "node_id": "MDQ6VXNlcjI4NDIxNA==", "avatar_url": "https://avatars.githubusercontent.com/u/284214?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gg4u", "html_url": "https://github.com/gg4u", "followers_url": "https://api.github.com/users/gg4u/followers", "following_url": "https://api.github.com/users/gg4u/following{/other_user}", "gists_url": "https://api.github.com/users/gg4u/gists{/gist_id}", "starred_url": "https://api.github.com/users/gg4u/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gg4u/subscriptions", "organizations_url": "https://api.github.com/users/gg4u/orgs", "repos_url": "https://api.github.com/users/gg4u/repos", "events_url": "https://api.github.com/users/gg4u/events{/privacy}", "received_events_url": "https://api.github.com/users/gg4u/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "gowthamkpr", "id": 47574994, "node_id": "MDQ6VXNlcjQ3NTc0OTk0", "avatar_url": "https://avatars.githubusercontent.com/u/47574994?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gowthamkpr", "html_url": "https://github.com/gowthamkpr", "followers_url": "https://api.github.com/users/gowthamkpr/followers", "following_url": "https://api.github.com/users/gowthamkpr/following{/other_user}", "gists_url": "https://api.github.com/users/gowthamkpr/gists{/gist_id}", "starred_url": "https://api.github.com/users/gowthamkpr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gowthamkpr/subscriptions", "organizations_url": "https://api.github.com/users/gowthamkpr/orgs", "repos_url": "https://api.github.com/users/gowthamkpr/repos", "events_url": "https://api.github.com/users/gowthamkpr/events{/privacy}", "received_events_url": "https://api.github.com/users/gowthamkpr/received_events", "type": "User", "site_admin": false }
[ { "login": "gowthamkpr", "id": 47574994, "node_id": "MDQ6VXNlcjQ3NTc0OTk0", "avatar_url": "https://avatars.githubusercontent.com/u/47574994?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gowthamkpr", "html_url": "https://github.com/gowthamkpr", "followers_url": "https://api.github.com/users/gowthamkpr/followers", "following_url": "https://api.github.com/users/gowthamkpr/following{/other_user}", "gists_url": "https://api.github.com/users/gowthamkpr/gists{/gist_id}", "starred_url": "https://api.github.com/users/gowthamkpr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gowthamkpr/subscriptions", "organizations_url": "https://api.github.com/users/gowthamkpr/orgs", "repos_url": "https://api.github.com/users/gowthamkpr/repos", "events_url": "https://api.github.com/users/gowthamkpr/events{/privacy}", "received_events_url": "https://api.github.com/users/gowthamkpr/received_events", "type": "User", "site_admin": false } ]
null
[ "ther could be few reasons but the main is to Ensure that GPU drivers are installed und make sur you have the appropriate GPU drivers on your system.", "Hi @gg4u ,\r\n\r\nCould you please confirm the OS you are using. Could you please confirm whether GPU drivers and nvidia toolkit installed and path variables set properly ? Refer to the documentation source [here](https://www.tensorflow.org/install/pip#step-by-step_instructions) and confirm this was followed.\r\n\r\nPlease share the output of `nvidia-smi` command and `python3 -c \"import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))\"` from Jupyter. \r\n\r\nThe error seems to be related to CUDA path setting. Can you try fresh installation of conda environment on Jupyter notebook and let us know the outcome.", "OS => I don't know, I am using a university cluster, it must be linux but i don't know which.\r\n\r\nNote that I was eventually able to run on jupyter as well, but only if :\r\nI reset :\r\n```\r\nCUDNN_PATH=$(dirname $(python -c \"import nvidia.cudnn;print(nvidia.cudnn.__file__)\"))\r\nexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib\r\n```\r\n\r\nand\r\n```\r\n# Install NVCC\r\nconda install -c nvidia cuda-nvcc=11.3.58\r\n# Configure the XLA cuda directory\r\nmkdir -p $CONDA_PREFIX/etc/conda/activate.d\r\nprintf 'export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX/lib/\\n' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\r\nsource $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\r\n# Copy libdevice file to the required path\r\nmkdir -p $CONDA_PREFIX/lib/nvvm/libdevice\r\ncp $CONDA_PREFIX/lib/libdevice.10.bc $CONDA_PREFIX/lib/nvvm/libdevice/\r\n```\r\n\r\nand when I launch jupyter lab, it must be launched from the same conda environment I re-set up those script.\r\nKernel selection won't work anyway (in other words, I must launch jupyter lab from the same conda environment I intend to use the kernel, otherwise environment variables makes confusion and on jupyter Cuda won't be found).\r\n\r\n\r\nnvidia-smi:\r\n\r\n```\r\n+-----------------------------------------------------------------------------+\r\n| NVIDIA-SMI 525.89.02 Driver Version: 525.89.02 CUDA Version: 12.0 |\r\n|-------------------------------+----------------------+----------------------+\r\n| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\r\n| | | MIG M. |\r\n|===============================+======================+======================|\r\n| 0 NVIDIA GeForce ... On | 00000000:03:00.0 Off | N/A |\r\n| 28% 30C P8 15W / 250W | 10451MiB / 11264MiB | 0% Default |\r\n| | | N/A |\r\n+-------------------------------+----------------------+----------------------+\r\n| 1 NVIDIA GeForce ... On | 00000000:21:00.0 Off | N/A |\r\n| 28% 27C P8 16W / 250W | 9961MiB / 11264MiB | 0% Default |\r\n| | | N/A |\r\n+-------------------------------+----------------------+----------------------+\r\n| 2 NVIDIA GeForce ... On | 00000000:41:00.0 Off | N/A |\r\n| 28% 28C P8 4W / 250W | 9961MiB / 11264MiB | 0% Default |\r\n| | | N/A |\r\n+-------------------------------+----------------------+----------------------+\r\n| 3 NVIDIA GeForce ... On | 00000000:61:00.0 Off | N/A |\r\n| 28% 28C P8 20W / 250W | 9961MiB / 11264MiB | 0% Default |\r\n| | | N/A |\r\n+-------------------------------+----------------------+----------------------+\r\n \r\n+-----------------------------------------------------------------------------+\r\n| Processes: |\r\n| GPU GI CI PID Type Process name GPU Memory |\r\n| ID ID Usage |\r\n|=============================================================================|\r\n| 0 N/A N/A 3115300 C ...3/envs/conda01/bin/python 10448MiB |\r\n| 1 N/A N/A 3115300 C ...3/envs/conda01/bin/python 9958MiB |\r\n| 2 N/A N/A 3115300 C ...3/envs/conda01/bin/python 9958MiB |\r\n| 3 N/A N/A 3115300 C ...3/envs/conda01/bin/python 9958MiB |\r\n+-----------------------------------------------------------------------------+\r\n```\r\n\r\nFrom jupyter:\r\n```\r\n\r\npython3 -c \"import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))\"\r\n\r\n2023-06-07 15:11:35.922385: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-06-07 15:11:36.765039: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:2', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:3', device_type='GPU')]\r\n\r\n\r\n\r\n```\r\n\r\n> Can you try fresh installation of conda environment on Jupyter notebook and let us know the outcome.\r\n\r\nI did it all yesterday, I spent a whole day, and did so many times.\r\n\r\nI won't touch again the installation.\r\n\r\nBut to reproduce, I did the following:\r\n\r\n- create a conda env (as per instruction) and CUDA drivers\r\n- installed ikernel (to select the kernel in jupyter)\r\n- on terminal, TF read the GPU => OK!\r\n- on jupyter lab, I could select a different kernel, BUT inspecting on `!conda -info` and `!which python` it was keep referring to the base from where jupyter was launched, and that I pervously set the environment variables automatically (see '# script' below from https://www.tensorflow.org/install/pip). \r\n\r\n\r\nIt was messy to debug, because there were conflicts on `libdevice` in jupter, but not in terminal; probably because the environment variable instructing on the cuda libraries could not be found. Maybe some issues with `ikernel` - I don't have clue only guessing.\r\n\r\nI eventually got it to work without automating the variables :\r\n\r\n```\r\n# script\r\n\r\nmkdir -p $CONDA_PREFIX/etc/conda/activate.d\r\necho 'CUDNN_PATH=$(dirname $(python -c \"import nvidia.cudnn;print(nvidia.cudnn.__file__)\"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\r\necho 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\r\n\r\n```\r\nbut setting them manually, and then only launch the jupter lab from the conda environemnt corresponding to the kernel I will work with.\r\n\r\n\r\n", "The attached commands from Documentation should fix system paths to be automatically configured when you activate the conda environment.\r\n\r\nI hope once you have created the conda environment and followed all the steps mentioned in documentation including the commands for Automatic enabling of system paths every time conda environment activated should fix the issue. This should be one time exercise only and then it should work every time when activated the respective conda environment.\r\n\r\n", "Unfortunately not, I see a mismatch between the conda or python (`which python`) listed in the jupyter notebook, and the selected kernel.\r\n\r\nAwkwardly, I was able to get TF see the GPUs on Jupyter, only if I created a virtual environment in python (`python -m venv ./env`), and then tried to install cuda drivers from conda , but all other libraries via pip.\r\n\r\nHowever, there are always challenges, because, for example, some libraries, like ones using `cudf`, will fail (I ve just discovered that with aweful regret). \r\n\r\nIT would be highly beneficial, in my opinion, if you could add a guide to install jupyter lab with multiple kernels, so to minismize error for users approaching TF on rermote cloud for first time. Assume people using remote servers. At my university, the help desk even asked me if it was necessary to use jupyter or conda virtual environment (which I actually would be .. knida necessary) to minimise error, and just keep one base - the default. But I am afraid that if I messy up something, I m kinda done.\r\n", "What challenges are you facing with ```cuDF```? For resolving dependency issues with TF installed in a conda environment you can try creating a new environment with an earlier version of Python (```conda create -n EnvNameHere python=3.8```) or using tools like Libmamba (see https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community/). Also, try running ```lsb_release -a``` or ```uname -a``` from root outside of any virtual environment. Knowing more about your OS is crucial to determining whether this is a CUDA path issue.", "@gg4u ,\r\n\r\nCould you please provide the OS details also.Thanks!", "Hi @ggfu,\r\n\r\nYou might need to use `conda install nb_conda_kernels` and may be also `conda install ipykernel` additionally for Jupyter.\r\nCould you please follow the instructions mentioned here at [SO1](https://stackoverflow.com/questions/76101948/tensorflow-gpu-recognized-in-the-terminal-but-not-in-the-jupyter-notebook) and [SO2](https://stackoverflow.com/questions/57332001/import-tensorflow-working-in-terminal-but-not-in-jupyter-notebook) and let us know it works.\r\n\r\n", "Hi @gg4u this is an issue with using Jupyter Notebook itself. You can take a look at this [issue](https://stackoverflow.com/questions/76101948/tensorflow-gpu-recognized-in-the-terminal-but-not-in-the-jupyter-notebook) on why jupyter doesn't call GPU and follow the work around. As for the documentation, tensorflow doesn't officially support Jupyter notebooks and I don't think this will be documented anywhere officially. Thanks!!", "Hi, thanks for the support. \r\n\r\nI can't summarize exactly what causes are responsible of the issues, I think the problem is conflicting environment variables.\r\n\r\nI had this constrains:\r\n- using a university cluster, the university discouraging in using conda env, just installed on the dedicated env\r\n- tensorflow encorages in using conda\r\n- external libraries complained if on conda (installs with pip conflicted).\r\n\r\nI temporarilly have resolved in creating a pip envionrment, and launching jupyter lab from there.\r\nJupyter sees the GPUs, while if it was launched from conda, then TF was not seeing the GPU.\r\nPytorch saw the GPUs on both.\r\n\r\nI followed :\r\nhttps://stackoverflow.com/questions/76101948/tensorflow-gpu-recognized-in-the-terminal-but-not-in-the-jupyter-notebook\r\n\r\nbut for some reasons, `which python` on jupyter opened in a chosen enviroment, was anyway pointing to the environment from where jupyter lab server was launched.", "Hi @gg4u, Unfortunately there is not much that can be done about this from our end. Please follow the process as mentioned above and this issue should be resolved." ]
2023-06-06T20:06:53
2023-12-15T22:07:31
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I could not get Tensorflow to run on GPUs. TF sees the GPUs on terminal, but not on jupyter lab. **Edited** Found a solution to see it on jupyterlab, but must manually repeat . Still, erratic misconfiguration seems to happen. ### Standalone code to reproduce the issue ```shell I could not get Tensorflow to run on GPUs. TF sees the GPUs on terminal, but not on jupyter lab. ** edited ** Eventually, after hours, I found a temporary solution in setting the paths each time, before I launch `jupyter lab` : CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)")) export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib ``` NB : If I was to set ``` mkdir -p $CONDA_PREFIX/etc/conda/activate.d echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh ``` as in `https://www.tensorflow.org/install/pip` Somehow it messy with jupyter, bcause the selected kernel from jupyter would not correspond to the kernel set from the script. Now I can see the GPUs on jupyter, but still - it crashes! And before, on CPU, it was not. When I run this script, using this library : https://pypi.org/project/umap-learn/ installed as in the description: ``` embedder = ParametricUMAP( ## all the params ... ) # now launch on GPU with tf.device('/GPU:0'): embedding = embedder.fit_transform(np.array([t.ravel() for t in train_data])) ``` the code fails with the log output below. If I close the jupyter lab connection, go back on the conda environment, set again: ``` CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)")) export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib ``` I and ``` # Install NVCC conda install -c nvidia cuda-nvcc=11.3.58 # Configure the XLA cuda directory mkdir -p $CONDA_PREFIX/etc/conda/activate.d printf 'export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX/lib/\n' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh # Copy libdevice file to the required path mkdir -p $CONDA_PREFIX/lib/nvvm/libdevice cp $CONDA_PREFIX/lib/libdevice.10.bc $CONDA_PREFIX/lib/nvvm/libdevice/ ``` And relaunch jupterlab, this time I get the GPU seen also in jupyter lab. Running ``` with tf.device('/GPU:0'): spec_embedding = spec_embedder.fit_transform(np.array([t.ravel() for t in train_data])) ``` It yields ``` 2023-06-06 21:55:04.944257: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'gradients/split_grad/concat/split/split_dim' with dtype int32 [[{{node gradients/split_grad/concat/split/split_dim}}]] ``` And cannot understand why it raise warning or error with `CPU` device, if I run on `GPU`. Not even sure it falled back to CPU, actually. --- Please advice how to sync jupter lab and conda. I did follow up with `ikernel` but it seems, after a lot of checking, that environment variables are not correctly read. Not sure if `kernel.json` fails to be updated properly, with thepath of the cuda libraries. Please consider add a guide on: https://www.tensorflow.org/install/pip for running TF on jupyter. My situation is that I need to run from a remote cluster, and I think it is a frequent situation. hope this feedback is useful. ``` ### Relevant log output ```shell 2023-06-06 21:40:08.385763: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'gradients/split_grad/concat/split/split_dim' with dtype int32 [[{{node gradients/split_grad/concat/split/split_dim}}]] 2023-06-06 21:40:10.938429: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:424] Loaded cuDNN version 8600 2023-06-06 21:40:11.641291: I tensorflow/compiler/xla/service/service.cc:169] XLA service 0x7f89f489b8d0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: 2023-06-06 21:40:11.641337: I tensorflow/compiler/xla/service/service.cc:177] StreamExecutor device (0): NVIDIA GeForce RTX 2080 Ti, Compute Capability 7.5 2023-06-06 21:40:11.641346: I tensorflow/compiler/xla/service/service.cc:177] StreamExecutor device (1): NVIDIA GeForce RTX 2080 Ti, Compute Capability 7.5 2023-06-06 21:40:11.641353: I tensorflow/compiler/xla/service/service.cc:177] StreamExecutor device (2): NVIDIA GeForce RTX 2080 Ti, Compute Capability 7.5 2023-06-06 21:40:11.641359: I tensorflow/compiler/xla/service/service.cc:177] StreamExecutor device (3): NVIDIA GeForce RTX 2080 Ti, Compute Capability 7.5 2023-06-06 21:40:11.646324: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable. 2023-06-06 21:40:11.673008: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:530] Can't find libdevice directory ${CUDA_DIR}/nvvm/libdevice. This may result in compilation or runtime failures, if the program we try to run uses routines from libdevice. Searched for CUDA in the following directories: ./cuda_sdk_lib /usr/local/cuda-11.8 /usr/local/cuda . You can choose the search directory by setting xla_gpu_cuda_data_dir in HloModule's DebugOptions. For most apps, setting the environment variable XLA_FLAGS=--xla_gpu_cuda_data_dir=/path/to/cuda will work. 2023-06-06 21:40:11.673259: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.673658: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.673685: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:GPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INTERNAL: libdevice not found at ./libdevice.10.bc [[{{node StatefulPartitionedCall_16}}]] 2023-06-06 21:40:11.700045: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.700414: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.729242: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.729590: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.755959: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.756308: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.783041: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.783397: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.809786: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.810134: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.836777: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.837129: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.864411: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.864767: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.892388: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.892738: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.919296: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.919647: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.946506: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.946866: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:11.974287: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:11.974699: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:12.245782: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:12.246188: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:12.272303: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:12.272657: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:12.322559: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:12.322899: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:12.350255: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:12.350736: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:12.379576: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:12.379966: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-06-06 21:40:12.406780: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-06-06 21:40:12.407233: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc --------------------------------------------------------------------------- InternalError Traceback (most recent call last) Cell In[33], line 31 7 spec_embedder = ParametricUMAP( 8 metric = 'euclidean', 9 min_dist = 0.1, (...) 27 n_training_epochs=1 28 ) 30 with tf.device('/GPU:0'): ---> 31 spec_embedding = spec_embedder.fit_transform(np.array([t.ravel() for t in train_data])) File ~/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/parametric_umap.py:217, in ParametricUMAP.fit_transform(self, X, y, precomputed_distances) 215 return super().fit_transform(precomputed_distances, y) 216 else: --> 217 return super().fit_transform(X, y) File ~/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/umap_.py:2772, in UMAP.fit_transform(self, X, y) 2742 def fit_transform(self, X, y=None): 2743 """Fit X into an embedded space and return that transformed 2744 output. 2745 (...) 2770 Local radii of data points in the embedding (log-transformed). 2771 """ -> 2772 self.fit(X, y) 2773 if self.transform_mode == "embedding": 2774 if self.output_dens: File ~/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/parametric_umap.py:202, in ParametricUMAP.fit(self, X, y, precomputed_distances) 200 return super().fit(precomputed_distances, y) 201 else: --> 202 return super().fit(X, y) File ~/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/umap_.py:2684, in UMAP.fit(self, X, y) 2681 print(ts(), "Construct embedding") 2683 if self.transform_mode == "embedding": -> 2684 self.embedding_, aux_data = self._fit_embed_data( 2685 self._raw_data[index], 2686 self.n_epochs, 2687 init, 2688 random_state, # JH why raw data? 2689 ) 2690 # Assign any points that are fully disconnected from our manifold(s) to have embedding 2691 # coordinates of np.nan. These will be filtered by our plotting functions automatically. 2692 # They also prevent users from being deceived a distance query to one of these points. 2693 # Might be worth moving this into simplicial_set_embedding or _fit_embed_data 2694 disconnected_vertices = np.array(self.graph_.sum(axis=1)).flatten() == 0 File ~/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/parametric_umap.py:462, in ParametricUMAP._fit_embed_data(self, X, n_epochs, init, random_state) 459 validation_data = None 461 # create embedding --> 462 history = self.parametric_model.fit( 463 edge_dataset, 464 epochs=self.loss_report_frequency * self.n_training_epochs, 465 steps_per_epoch=steps_per_epoch, 466 max_queue_size=100, 467 validation_data=validation_data, 468 **self.keras_fit_kwargs 469 ) 470 # save loss history dictionary 471 self._history = history.history File ~/.local/lib/python3.10/site-packages/keras/utils/traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~/miniconda3/envs/conda01/lib/python3.10/site-packages/tensorflow/python/eager/execute.py:52, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 50 try: 51 ctx.ensure_initialized() ---> 52 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, 53 inputs, attrs, num_outputs) 54 except core._NotOkStatusException as e: 55 if name is not None: InternalError: Graph execution error: Detected at node 'StatefulPartitionedCall_16' defined at (most recent call last): File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel_launcher.py", line 17, in <module> app.launch_new_instance() File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/traitlets/config/application.py", line 992, in launch_instance app.start() File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel/kernelapp.py", line 711, in start self.io_loop.start() File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/tornado/platform/asyncio.py", line 215, in start self.asyncio_loop.run_forever() File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/asyncio/base_events.py", line 603, in run_forever self._run_once() File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/asyncio/base_events.py", line 1909, in _run_once handle._run() File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue await self.process_one() File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 499, in process_one await dispatch(*args) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell await result File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel/kernelbase.py", line 729, in execute_request reply_content = await reply_content File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel/ipkernel.py", line 411, in do_execute res = shell.run_cell( File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/ipykernel/zmqshell.py", line 531, in run_cell return super().run_cell(*args, **kwargs) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3006, in run_cell result = self._run_cell( File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3061, in _run_cell result = runner(coro) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/IPython/core/async_helpers.py", line 129, in _pseudo_sync_runner coro.send(None) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3266, in run_cell_async has_raised = await self.run_ast_nodes(code_ast.body, cell_name, File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3445, in run_ast_nodes if await self.run_code(code, result, async_=asy): File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3505, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "/tmp/ipykernel_3110734/3903349550.py", line 31, in <module> spec_embedding = spec_embedder.fit_transform(np.array([t.ravel() for t in train_data])) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/parametric_umap.py", line 217, in fit_transform return super().fit_transform(X, y) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/umap_.py", line 2772, in fit_transform self.fit(X, y) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/parametric_umap.py", line 202, in fit return super().fit(X, y) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/umap_.py", line 2684, in fit self.embedding_, aux_data = self._fit_embed_data( File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/parametric_umap.py", line 462, in _fit_embed_data history = self.parametric_model.fit( File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/engine/training.py", line 1685, in fit tmp_logs = self.train_function(iterator) File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/engine/training.py", line 1284, in train_function return step_function(self, iterator) File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/engine/training.py", line 1268, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/engine/training.py", line 1249, in run_step outputs = model.train_step(data) File "/home/h21/luas6629/miniconda3/envs/conda01/lib/python3.10/site-packages/umap/parametric_umap.py", line 1150, in train_step self.optimizer.apply_gradients(zip(gradients, trainable_vars)) File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/optimizers/optimizer.py", line 1174, in apply_gradients return super().apply_gradients(grads_and_vars, name=name) File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/optimizers/optimizer.py", line 650, in apply_gradients iteration = self._internal_apply_gradients(grads_and_vars) File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/optimizers/optimizer.py", line 1200, in _internal_apply_gradients return tf.__internal__.distribute.interim.maybe_merge_call( File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/optimizers/optimizer.py", line 1250, in _distributed_apply_gradients_fn distribution.extended.update( File "/home/h21/luas6629/.local/lib/python3.10/site-packages/keras/optimizers/optimizer.py", line 1245, in apply_grad_to_update_var return self._update_step_xla(grad, var, id(self._var_key(var))) Node: 'StatefulPartitionedCall_16' libdevice not found at ./libdevice.10.bc [[{{node StatefulPartitionedCall_16}}]] [Op:__inference_train_function_4496] ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60790/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60790/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60789
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60789/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60789/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60789/events
https://github.com/tensorflow/tensorflow/issues/60789
1,743,778,654
I_kwDOArmXAs5n7_Ne
60,789
ELU int8 model quantized with Dequantize/Quantize stubs
{ "login": "NickLucche", "id": 10706289, "node_id": "MDQ6VXNlcjEwNzA2Mjg5", "avatar_url": "https://avatars.githubusercontent.com/u/10706289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NickLucche", "html_url": "https://github.com/NickLucche", "followers_url": "https://api.github.com/users/NickLucche/followers", "following_url": "https://api.github.com/users/NickLucche/following{/other_user}", "gists_url": "https://api.github.com/users/NickLucche/gists{/gist_id}", "starred_url": "https://api.github.com/users/NickLucche/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NickLucche/subscriptions", "organizations_url": "https://api.github.com/users/NickLucche/orgs", "repos_url": "https://api.github.com/users/NickLucche/repos", "events_url": "https://api.github.com/users/NickLucche/events{/privacy}", "received_events_url": "https://api.github.com/users/NickLucche/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 2671351731, "node_id": "MDU6TGFiZWwyNjcxMzUxNzMx", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ModelOptimizationToolkit", "name": "ModelOptimizationToolkit", "color": "BFD629", "default": false, "description": "TF Model Optimization Toolkit" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "miaout17", "id": 22063, "node_id": "MDQ6VXNlcjIyMDYz", "avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4", "gravatar_id": "", "url": "https://api.github.com/users/miaout17", "html_url": "https://github.com/miaout17", "followers_url": "https://api.github.com/users/miaout17/followers", "following_url": "https://api.github.com/users/miaout17/following{/other_user}", "gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}", "starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/miaout17/subscriptions", "organizations_url": "https://api.github.com/users/miaout17/orgs", "repos_url": "https://api.github.com/users/miaout17/repos", "events_url": "https://api.github.com/users/miaout17/events{/privacy}", "received_events_url": "https://api.github.com/users/miaout17/received_events", "type": "User", "site_admin": false }
[ { "login": "miaout17", "id": 22063, "node_id": "MDQ6VXNlcjIyMDYz", "avatar_url": "https://avatars.githubusercontent.com/u/22063?v=4", "gravatar_id": "", "url": "https://api.github.com/users/miaout17", "html_url": "https://github.com/miaout17", "followers_url": "https://api.github.com/users/miaout17/followers", "following_url": "https://api.github.com/users/miaout17/following{/other_user}", "gists_url": "https://api.github.com/users/miaout17/gists{/gist_id}", "starred_url": "https://api.github.com/users/miaout17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/miaout17/subscriptions", "organizations_url": "https://api.github.com/users/miaout17/orgs", "repos_url": "https://api.github.com/users/miaout17/repos", "events_url": "https://api.github.com/users/miaout17/events{/privacy}", "received_events_url": "https://api.github.com/users/miaout17/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @NickLucche \r\n\r\nThanks for reporting this issue.\r\n\r\n@pkgoogle I was able to reproduce this issue. Please find the gist [here](https://colab.research.google.com/gist/pjpratik/0a3f11e436e1e7d73bccf3fc8c57afe9/60789.ipynb).\r\n\r\nCould you please look into this if this is intended behaviour?\r\n\r\nThanks.", "Hi @NickLucche, thanks for reporting the issue. The documentation https://www.tensorflow.org/lite/performance/post_training_quantization#integer_only suggests it should throw an error than a forced conversion. We will work on this as a bug.", "thank you!", "Hi @miaout17, can you please take a look? Thanks." ]
2023-06-06T12:34:05
2023-10-04T21:58:50
null
NONE
null
null
null
**System information** - Linux Ubuntu 20.04 - TensorFlow installed from: docker `tensorflow/tensorflow:latest-gpu` - TensorFlow version (or github SHA if from source): 2.12.0 **Standalone code to reproduce the issue** Input model (Netron): ![image](https://github.com/tensorflow/tensorflow/assets/10706289/3bc57f63-09b4-4e4b-b907-2a5c795e2e29) ```python import tensorflow as tf import numpy as np model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation=None), # tf.keras.layers.ReLU(), tf.keras.layers.ELU(), tf.keras.layers.Dense(10, activation='softmax') ]) # full-integer quantization, simulate dataset with random input def representative_data_gen(): for input_value in [np.random.randn(1, 28, 28).astype(np.float32) for _ in range(10)]: yield [input_value] converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_data_gen converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.target_spec.supported_types = {tf.int8} converter.inference_input_type = tf.int8 #tf.uint8 converter.inference_output_type = tf.int8 #tf.uint8 tflite_model_quant = converter.convert() with open('basic_fullint_quant.tflite', 'wb') as f: f.write(tflite_model_quant) ``` Output Model (Netron): ![image](https://github.com/tensorflow/tensorflow/assets/10706289/e3f77101-d091-42ee-a909-84c940ea948d) **Any other info / logs** I understand that ELU isn't among the supported operators (?) although there's allegedly some code (?) from [this commit](https://github.com/tensorflow/tensorflow/commit/918f876bf812fd744151fea29b2df4aa18acfa8f). I wonder why no exception is raised during the process despite `supported_ops` being set to the most strict options, and why does it default to this mixed-precision output model (if I am not mistaken, the elu is still run in floating point). To be clear, the behavior I would expect is either an error or a full-int8 quantized model with no stubs layers wrapping ELU. Thanks for your help!
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60789/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60789/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60788
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60788/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60788/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60788/events
https://github.com/tensorflow/tensorflow/issues/60788
1,743,649,691
I_kwDOArmXAs5n7fub
60,788
'fashion_mnist' failed to load on TPU (try_gcs=True not working)!
{ "login": "MegaCreater", "id": 45305845, "node_id": "MDQ6VXNlcjQ1MzA1ODQ1", "avatar_url": "https://avatars.githubusercontent.com/u/45305845?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MegaCreater", "html_url": "https://github.com/MegaCreater", "followers_url": "https://api.github.com/users/MegaCreater/followers", "following_url": "https://api.github.com/users/MegaCreater/following{/other_user}", "gists_url": "https://api.github.com/users/MegaCreater/gists{/gist_id}", "starred_url": "https://api.github.com/users/MegaCreater/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MegaCreater/subscriptions", "organizations_url": "https://api.github.com/users/MegaCreater/orgs", "repos_url": "https://api.github.com/users/MegaCreater/repos", "events_url": "https://api.github.com/users/MegaCreater/events{/privacy}", "received_events_url": "https://api.github.com/users/MegaCreater/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097541661, "node_id": "MDU6TGFiZWwxMDk3NTQxNjYx", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:tpus", "name": "comp:tpus", "color": "0052cc", "default": false, "description": "tpu, tpuestimator" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @MegaCreater \r\n\r\nBased on the error message you provided earlier, it seems that the issue is not related to the specific dataset being used (MNIST vs Fashion MNIST), but rather with how the data is being accessed from the TPU. The error message “File system scheme ‘[local]’ not implemented” suggests that the code is trying to access a local file system, but this is not supported by the TPU.\r\n\r\nTPUs are designed to work with cloud storage services such as Google Cloud Storage (GCS), and cannot directly access data stored on the local file system of the machine running the code. \"If you are using TPU Nodes, you need to store all data files read by the TensorFlow Dataset in Google Cloud Storage (GCS) buckets. If you are using TPU VMs, you can store data wherever you like. For more information on TPU Nodes and TPU VMs, refer to the TPU System Architecture documentation.\"\r\n\r\nYou can create a TPU VM, but it is not for free. You can use it by following this tutorial: “https://colab.research.google.com/github/tensorflow/tpu/blob/master/models/experimental/mnist_jupyter/Cloud-TPU-Demo.ipynb”. If you try changing the runtime to GPU, it should work correctly.\r\nOne other approach you can try is to access data stored in a Google Cloud Storage bucket using Colab. Here is a link :\"https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/keras_mnist_tpu.ipynb\"", "@MegaCreater,\r\nIt looks like model_dir is set to a local directory in /tmp/, can you double check to make sure that it is a path to a GCS bucket?\r\nIt could be possible that it's creating a directory within data_dir which is a GCS path. Both data_dir and model_dir should be set to GCS buckets.\r\n \r\nYou would need to have your data stored inside a GCS bucket and the Cloud TPUs should have access to that. Also can you simply look up the IP address of your VM (something like **!curl ifconfig.me** in your Colab cell) and then look up which geolocation that IP belongs to.", "@medmabcf it's dataset related only .... \r\n```python3\r\n# this works fine (NO ERROR)\r\n(ds_train, ds_test), ds_info = tfds.load('mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, try_gcs = True)\r\n```\r\n```python3 \r\n# This create error ! (ERROR)\r\n(ds_train, ds_test), ds_info = tfds.load('fashion_mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True,try_gcs = True)\r\n```\r\n\"https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/keras_mnist_tpu.ipynb\" this example is not useful because my code works fine on 'minst' dataset. ", "@tilakrayal are you talking about something like this ? \r\n\r\n```python3\r\nimport tensorflow as tf\r\nimport tensorflow_datasets as tfds\r\n# Set TPU address (if using Google Cloud TPU)\r\ntpu_address = 'grpc://<tpu-ip-address>'\r\ntpu_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=tpu_address)\r\ntf.config.experimental_connect_to_cluster(tpu_resolver)\r\ntf.tpu.experimental.initialize_tpu_system(tpu_resolver)\r\ndata_dir = 'gs://your-bucket/data' # GCS bucket path for data\r\nmodel_dir = 'gs://your-bucket/model' # GCS bucket path for model\r\nbuilder = tfds.builder('your_dataset_name', data_dir=data_dir)\r\nbuilder.download_and_prepare()\r\n\r\n# Define the training and validation datasets\r\ntrain_dataset = builder.as_dataset(split='train', shuffle_files=True)\r\nval_dataset = builder.as_dataset(split='validation', shuffle_files=True)\r\n\r\n# Enable batching and shuffling\r\ntrain_dataset = train_dataset.shuffle(1024).batch(batch_size)\r\nval_dataset = val_dataset.batch(batch_size)\r\nstrategy = tf.distribute.experimental.TPUStrategy(tpu_resolver)\r\nwith strategy.scope():\r\n # Define and compile your model\r\n model = ...\r\n model.compile(...)\r\ncallbacks = [\r\n tf.keras.callbacks.ModelCheckpoint(\r\n filepath=model_dir, # Save the model to the GCS bucket\r\n save_best_only=True,\r\n save_weights_only=True\r\n ),\r\n # Other callbacks...\r\n]\r\n\r\n# Train the model\r\nmodel.fit(train_dataset, validation_data=val_dataset, callbacks=callbacks, ...)\r\n```\r\nHow can I access \"gs://your-bucket/data\" ? I mean how can I get my bucket address ? (what will be the \"gs://your-bucket/\" ?)", "@MegaCreater ,\r\nYou can access a bucket in the Cloud Dataprep UI by manually entering the Google Cloud Storage path. \r\nhttps://cloud.google.com/storage/docs/access-public-data\r\nhttps://cloud.google.com/storage/docs/cloud-console\r\n\r\nThank you!", "@tilakrayal its not working. I don't have cloud storage. And cloud bucket. I don't have any paid or pro access to google cloud. I am not using any cloud VM. I am using google colab TPU. So, how can I do all things in colab TPU environment? ", "Hi @MegaCreater \r\n\r\nThe very first answer mentions that the error is due to TPUs being able to pull data only from GCS. \r\n\r\nIndeed `mnist` dataset exists in `gs://tfds-data/datasets/mnist/` and hence everything works, but `fashion_mnist` is unfortunately not available through public TFDS GCS. You should create your own GCS bucket and store `fashion_mnist` there and then pull it using `tfds.load(data_dir=<your GCS bucket>)`. ", "@fineguy I am using **colab (Colab's TPU)**. Can I use Google drive as cloud space ? ", "@MegaCreater , Yes you can mount your Google Drive and import the data.\r\n\r\n```\r\nfrom google.colab import drive\r\ndrive.mount('/content/drive')\r\n```\r\n\r\n```\r\nfrom tensorflow import keras\r\nimport os\r\n\r\n# Path to the MNIST dataset folder in your Google Drive\r\nmnist_path = '/content/drive/MyDrive/MNIST/'\r\n```", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60788\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60788\">No</a>\n" ]
2023-06-06T11:18:55
2023-07-13T02:10:40
2023-07-13T02:10:38
NONE
null
null
null
I am trying to replicate TensorFlow `autoencoder` (Source: [Second example: Image denoising](https://www.tensorflow.org/tutorials/generative/autoencoder#second_example_image_denoising)) image cleaning example on TPU (in google colab). Code : ```python3 import tensorflow as tf import tensorflow.keras as keras import tensorflow_datasets as tfds from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D from tensorflow.keras.models import Model tfds.disable_progress_bar() # disables Tqdm progress bar # Connect to TPU resolver = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) # Define the autoencoder model def build_autoencoder(): input_img = Input(shape=(28, 28, 1)) x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Conv2D(16, (3, 3), activation='relu')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') return autoencoder # Load MNIST dataset (ds_train, ds_test), ds_info = tfds.load('fashion_mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, try_gcs = True) # This works fine !!!!!!!!!!!!!!!!!!!!!!!!! (Mean no error in code !) #(ds_train, ds_test), ds_info = tfds.load('mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, # try_gcs = True) # Define input preprocessing function def preprocess_input(image, label,labels:tf.Tensor=None,noise_mean:float=0.0,noise_stddev:float=0.05): image = tf.cast(image, tf.float32) / 255.0 image = tf.image.resize(image, (28, 28)) # Resize images to (28, 28) #image_noise = tf.add(image,tf.random.normal(image.shape,mean=noise_mean,stddev=noise_stddev)) #image_noise = tf.clip_by_value(image_noise,tf.reduce_min(image),tf.reduce_max(image)) return image, image #image_noise # Preprocess and batch the dataset AUTOTUNE = tf.data.AUTOTUNE BATCH_SIZE = 128 * strategy.num_replicas_in_sync ds_train = ds_train.map(preprocess_input, num_parallel_calls=AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.batch(BATCH_SIZE) ds_train = ds_train.prefetch(AUTOTUNE) ds_test = ds_test.map(preprocess_input, num_parallel_calls=AUTOTUNE) ds_test = ds_test.cache() ds_test = ds_test.batch(BATCH_SIZE) ds_test = ds_test.prefetch(AUTOTUNE) # Create a TPU model with strategy.scope(): autoencoder = build_autoencoder() # Train the model autoencoder.fit(ds_train,epochs=10,validation_data=ds_test) ``` Error ```bash UnimplementedError: 9 root error(s) found. (0) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional_7]] (1) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional_2]] (2) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional_1]] (3) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional]] [[strided_slice_39/_314]] (4) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional]] [[strided_slice_30/_296]] (5) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional]] [[strided_slice_21/_266]] (6) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional]] [[cond/then/_0/cond/cond_1/output/_121/_182]] (7) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGetNextFromShard}}]] [[RemoteCall]] [[IteratorGetNextAsOptional]] [[Greater/_26]] (8) UNIMPLEMENTED: {{function_node __inference_train_function_145566}} File system scheme '[local]' not implemented (file: '/bufferedio/root/tensorflow_datasets/fashion_mnist/3.0.1/fashion_mnist-train.tfrecord-00000-of-00001') [[{{node MultiDeviceIteratorGe ... [truncated] ``` This code works fine with MNIST dataset but shows following error on Fashion MNIST. I think this might be the problem with `try_gcs` argument in tensorflow_datasets.load .
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60788/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60788/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60787
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60787/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60787/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60787/events
https://github.com/tensorflow/tensorflow/issues/60787
1,743,587,648
I_kwDOArmXAs5n7QlA
60,787
Minimal TfLite program generates Valgrind "still reachable" messages
{ "login": "misterBart", "id": 54583863, "node_id": "MDQ6VXNlcjU0NTgzODYz", "avatar_url": "https://avatars.githubusercontent.com/u/54583863?v=4", "gravatar_id": "", "url": "https://api.github.com/users/misterBart", "html_url": "https://github.com/misterBart", "followers_url": "https://api.github.com/users/misterBart/followers", "following_url": "https://api.github.com/users/misterBart/following{/other_user}", "gists_url": "https://api.github.com/users/misterBart/gists{/gist_id}", "starred_url": "https://api.github.com/users/misterBart/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/misterBart/subscriptions", "organizations_url": "https://api.github.com/users/misterBart/orgs", "repos_url": "https://api.github.com/users/misterBart/repos", "events_url": "https://api.github.com/users/misterBart/events{/privacy}", "received_events_url": "https://api.github.com/users/misterBart/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
closed
false
{ "login": "alankelly", "id": 5112267, "node_id": "MDQ6VXNlcjUxMTIyNjc=", "avatar_url": "https://avatars.githubusercontent.com/u/5112267?v=4", "gravatar_id": "", "url": "https://api.github.com/users/alankelly", "html_url": "https://github.com/alankelly", "followers_url": "https://api.github.com/users/alankelly/followers", "following_url": "https://api.github.com/users/alankelly/following{/other_user}", "gists_url": "https://api.github.com/users/alankelly/gists{/gist_id}", "starred_url": "https://api.github.com/users/alankelly/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alankelly/subscriptions", "organizations_url": "https://api.github.com/users/alankelly/orgs", "repos_url": "https://api.github.com/users/alankelly/repos", "events_url": "https://api.github.com/users/alankelly/events{/privacy}", "received_events_url": "https://api.github.com/users/alankelly/received_events", "type": "User", "site_admin": false }
[ { "login": "alankelly", "id": 5112267, "node_id": "MDQ6VXNlcjUxMTIyNjc=", "avatar_url": "https://avatars.githubusercontent.com/u/5112267?v=4", "gravatar_id": "", "url": "https://api.github.com/users/alankelly", "html_url": "https://github.com/alankelly", "followers_url": "https://api.github.com/users/alankelly/followers", "following_url": "https://api.github.com/users/alankelly/following{/other_user}", "gists_url": "https://api.github.com/users/alankelly/gists{/gist_id}", "starred_url": "https://api.github.com/users/alankelly/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alankelly/subscriptions", "organizations_url": "https://api.github.com/users/alankelly/orgs", "repos_url": "https://api.github.com/users/alankelly/repos", "events_url": "https://api.github.com/users/alankelly/events{/privacy}", "received_events_url": "https://api.github.com/users/alankelly/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @misterBart \r\n\r\nThe TFLite includes the TFLite logger options which can be used to set the logging severity levels.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/logger.h\r\n\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/2f1a31a27ea0a21e421e77a957cfd573973f2a65/tensorflow/lite/logger.h#L31-L32\r\n\r\nDoes this help in your use case?\r\n\r\nthanks.", "No, this does not help at all.\r\nI posted about a memory bug in TfLite.\r\nThe TfLite logger options pertain to output logging, which is completely unrelated to memory bugs. Changing the logger option will not make a memory bug disappear.", "Hi @alankelly, can you take a look? Thanks.", "More than a month passed. Any news?\r\nMeanwhile I tested the example program in my opening post with TfLite **2.13**, and it gives the same Valgrind messages. So it seems that also in TfLite 2.13, the function `xnn_deinitialize` is never called.", "I can't re-produce this from the latest commit in tensorflow.\r\n\r\n`bazel build -c dbg leak`\r\n\r\n```\r\n==2088258== Memcheck, a memory error detector\r\n==2088258== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.\r\n==2088258== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info\r\n==2088258== Command: ../../bazel-bin/tensorflow/lite/leak\r\n==2088258== \r\nINFO: Initialized TensorFlow Lite runtime.\r\nINFO: Applying 1 TensorFlow Lite delegate(s) lazily.\r\nINFO: Created TensorFlow Lite XNNPACK delegate for CPU.\r\nVERBOSE: Replacing 88 out of 119 node(s) with delegate (TfLiteXNNPackDelegate) node, yielding 42 partitions for the whole graph.\r\nINFO: Successfully applied the default TensorFlow Lite delegate indexed at 0.\r\n *NOTE*: because a delegate has been applied, the precision of computations should be unchanged, but the exact output tensor values may have changed. If such output values are checked in your code, like in your tests etc., please consider increasing error tolerance for the check.\r\n==2088258== \r\n==2088258== HEAP SUMMARY:\r\n==2088258== in use at exit: 2,224 bytes in 10 blocks\r\n==2088258== total heap usage: 4,853 allocs, 4,843 frees, 5,656,799 bytes allocated\r\n==2088258== \r\n==2088258== LEAK SUMMARY:\r\n==2088258== definitely lost: 0 bytes in 0 blocks\r\n==2088258== indirectly lost: 0 bytes in 0 blocks\r\n==2088258== possibly lost: 0 bytes in 0 blocks\r\n==2088258== still reachable: 2,224 bytes in 10 blocks\r\n==2088258== suppressed: 0 bytes in 0 blocks\r\n==2088258== Rerun with --leak-check=full to see details of leaked memory\r\n==2088258== \r\n==2088258== For lists of detected and suppressed errors, rerun with: -s\r\n==2088258== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)\r\n\r\n```\r\n\r\nIt is not an issue with `xnn_deinitialize` - this function simply returns xnn_status_success: https://github.com/google/XNNPACK/blob/645035286fe31d47eeb07900450f4f6540b75c2c/src/init.c#L83\r\n\r\nPerhaps the issue only appears with your model. Have you tried with multiple models?", "Hi @misterBart, let us know if you have tried multiple models to help us look into the problem further.", "@alankelly \r\nBut you are reproducing my issue, your log also mentions\r\n`still reachable: 2,224 bytes in 10 blocks`\r\n\r\nFrom https://github.com/google/XNNPACK/blob/master/include/xnnpack.h\r\n\"To avoid memory and resource leaks, users must call xnn_deinitialize once for each successful xnn_initialize call.\"\r\nIf `xnn_deinitialize` does nothing, then the above statement is probably outdated.\r\n```\r\n$ git clone https://github.com/tensorflow/tensorflow tensorflow_src\r\n$ grep -r 'xnn_deinitialize' tensorflow_src/\r\ntensorflow_src/tensorflow/lite/delegates/xnnpack/xnnpack_delegate.cc: xnn_deinitialize();\r\n$\r\n```\r\nThe function is never called.\r\n\r\nI also tested my issue with the master branch and the .tflite model from https://www.tensorflow.org/lite/examples/segmentation/overview Then `valgrind --leak-check=full ./app` still displays `still reachable: 704 bytes in 11 blocks`\r\n\r\nBut if I disable the XNNPACK delegate, by replacing\r\n`const tflite::ops::builtin::BuiltinOpResolver op_resolver`\r\nwith \r\n`const tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates op_resolver;`\r\nRecompile the program, and then run `valgrind --leak-check=full ./app`, then I obtain:\r\n```\r\n$ valgrind --leak-check=full ./app\r\n==924== Memcheck, a memory error detector\r\n==924== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.\r\n==924== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info\r\n==924== Command: ./app\r\n==924==\r\n==924== error calling PR_SET_PTRACER, vgdb might block\r\n==924==\r\n==924== HEAP SUMMARY:\r\n==924== in use at exit: 0 bytes in 0 blocks\r\n==924== total heap usage: 1,875 allocs, 1,875 frees, 6,714,008 bytes allocated\r\n==924==\r\n==924== All heap blocks were freed -- no leaks are possible\r\n==924==\r\n==924== For lists of detected and suppressed errors, rerun with: -s\r\n==924== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)\r\n```\r\nThen it is correct: `All heap blocks were freed -- no leaks are possible`. All `still reachable` messages have disappeared.\r\n\r\nConcludingly, TfLite + XNNPACK delegate allocates memory at the start but does not deallocate this memory.\r\n\r\nMinimal-working example:\r\n```\r\n#include <tensorflow/lite/model.h>\r\n#include <tensorflow/lite/kernels/register.h>\r\n#include <tensorflow/lite/interpreter.h>\r\n\r\nusing namespace tflite;\r\nusing namespace std;\r\n\r\nint main() {\r\n\tunique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(\"lite-model_deeplabv3_1_metadata_2.tflite\"); //This line generates one \"still reachable\" message\r\n\t//const tflite::ops::builtin::BuiltinOpResolver op_resolver; //Use XNNPACK delegate\r\n\tconst tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates op_resolver;\r\n\ttflite::InterpreterBuilder interpreter_builder(*model, op_resolver);\r\n\tinterpreter_builder.SetNumThreads(1);\r\n\r\n\tunique_ptr<tflite::Interpreter> interpreter;\r\n\tinterpreter_builder(&interpreter);\r\n\tinterpreter->AllocateTensors(); //This line generates many \"still reachable\" messages if XNNPACK is used\r\n\r\n\tdelete model->error_reporter(); //This will get rid off the first \"still reachable\" message\r\n\treturn EXIT_SUCCESS;\r\n}\r\n```\r\n", "@alankelly Have you looked at the matter again after my above reply?", "Several weeks have passed. It would be nice if we could resolve this issue.", "Yes you're right I did reproduce the issue. Sorry for the late reply, I was on holidays.\r\n\r\nToday xnn_deinitialize does nothing but someday it may be required to free memory so documenting that it should be called may prevent problems for users of XNNPACK down the road.\r\n\r\nThis stack overflow answer gives a good explanation of different types of memory leak, especially what still reachable means: https://stackoverflow.com/a/3857638\r\n\r\nLet's look at the still reachable blocks in your report:\r\n\r\ntflite::DefaultErrorReporter: This is a static object which is allocated once per instance. The memory is cleaned up when the program is terminated. This looks like it is working as intended.\r\nhttps://github.com/tensorflow/tensorflow/blob/48043f5993743a9bba3a7b4adc9155cb66bbe6b2/tensorflow/lite/stderr_reporter.cc#L30\r\n\r\nThe others come from cpuinfo: https://github.com/pytorch/cpuinfo/blob/959002f82d7962a473d8bf301845f2af720e0aa4/src/x86/linux/init.c#L181\r\n\r\nLooking at the code we see that these functions are only ever called once and the allocated memory lives for the program lifetime: https://github.com/pytorch/cpuinfo/blob/959002f82d7962a473d8bf301845f2af720e0aa4/src/init.c#L24\r\n\r\nThis again is working as intended. Valgrind correctly identifies that the memory is not freed but still accessible. \r\n\r\n\r\n\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60787\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60787\">No</a>\n", "Ok, we all do need a holiday :) Thanks for the code review. Still (perhaps from purist perspective), many developers try to keep a clean Valgrind report, which precludes them from checking that these \"still reachable bytes\" come from TfLite/cpuinfo and are not something they introduced themselves.\r\n\r\nI checked TfLite for `cpuinfo_deinitialize()`:\r\n```\r\npersonau@desktop1:~/Temp/tensorflow_src/tensorflow/lite$ grep -r 'cpuinfo_deinitialize' .\r\n./kernels/fully_connected.cc: // paths we can take. Note the we do not call `cpuinfo_deinitialize` in\r\n./kernels/cpu_backend_context.cc: cpuinfo_deinitialize();\r\n```\r\nIn ./kernels/fully_connected.cc I read:\r\n```\r\n// We ensure that cpuinfo is initialized to correctly detect the optimized\r\n// paths we can take. Note the we do not call `cpuinfo_deinitialize` in\r\n// `Free`: that operation is currently a no-op AND we want to avoid\r\n// deinitializing cpuinfo for other parts of the program that could need it\r\n// after we free the op if it ever does perform something.\r\n```\r\nThe rationale is not entirely clear to me, but it at least explains you intentionally do not deallocate cpuinfo memory.\r\nIn ./kernels/cpu_backend_context.cc I read;\r\n```\r\nCpuBackendContext::CpuInfo::~CpuInfo() {\r\n if (init_status_ == InitStatus::kInitialized) {\r\n cpuinfo_deinitialize();\r\n }\r\n}\r\n```\r\nSo it seems possible to call `cpuinfo_deinitialize()`.\r\nMy final question, before letting this issue rest, is: How can I call this `CpuBackendContext::CpuInfo::~CpuInfo()` in my minimal TfLite program?\r\n" ]
2023-06-06T10:38:45
2023-08-23T08:37:19
2023-08-21T15:40:57
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.10 ### Custom Code No ### OS Platform and Distribution Linux64 Ubuntu 22.10 ### Mobile device _No response_ ### Python version 3.10.7 (irrelevant for the problem) ### Bazel version _No response_ ### GCC/Compiler version gcc 12.2.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Minimal TfLite (2.10) program generates Valgrind "still reachable" message. See accompanied code and Valgrind log. The network cannot be shared (company intellectual property), but this should not matter to reproduce the problem. You can get rid off the "still reachable" message from `BuildFromFile` by using: `delete model->error_reporter();` Still, shouldn't TfLite take care of this? The use of smart pointers suggests that the user does not need to manage TfLite's memory. My question: How to get rid off the "still reachable" messages from `AllocateTensors`? What I tried (but which does _not_ get rid off the "still reachable" messages): Manually delete the model and interpreter at the end: `interpreter.reset(nullptr);` `model.reset(nullptr);` Clear two vectors of `BuiltinOpResolver`: `op_resolver.GetDelegateCreators().clear();` `op_resolver.GetOpaqueDelegateCreators().clear();` What I also tried is replace `BuiltinOpResolver` with `BuiltinOpResolverWithoutDefaultDelegates`. Then you _do_ get rid off "still reachable" messages from `AllocateTensors`. With `BuiltinOpResolverWithoutDefaultDelegates` the XNNPACK backend is not employed, so seemingly the "still reachable" messages have to do with XNNPACK. XNNPACK documentation says: "To avoid memory and resource leaks, users must call xnn_deinitialize once for each successful xnn_initialize call." `xnn_deinitialize` is called in function `TfLiteXNNPackWeightsCacheDelete` (tensorflow/lite/delegates/xnnpack/xnnpack_delegate.cc). But `TfLiteXNNPackWeightsCacheDelete` is never called. I believe this causes the memory problem, TfLite never seems to call `xnn_deinitialize`. My company always keeps a clean Valgrind report for their software, so even if these Valgrind messages are not harmful, I still would like to get rid off them. ### Standalone code to reproduce the issue ```shell #include <tensorflow/lite/model.h> #include <tensorflow/lite/kernels/register.h> #include <tensorflow/lite/interpreter.h> using namespace tflite; using namespace std; int main() { unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile("classifier.tflite"); //This line generates one "still reachable" message const tflite::ops::builtin::BuiltinOpResolver op_resolver; tflite::InterpreterBuilder interpreter_builder(*model, op_resolver); interpreter_builder.SetNumThreads(1); unique_ptr<tflite::Interpreter> interpreter; interpreter_builder(&interpreter); interpreter->AllocateTensors(); //This line generates many "still reachable" messages //delete model->error_reporter(); //This will get rid off the first "still reachable" message return EXIT_SUCCESS; } ``` ### Relevant log output ```shell $ valgrind --leak-check=full --show-reachable=yes ./app ==988== Memcheck, a memory error detector ==988== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al. ==988== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info ==988== Command: ./app ==988== ==988== error calling PR_SET_PTRACER, vgdb might block INFO: Created TensorFlow Lite XNNPACK delegate for CPU. ==988== ==988== HEAP SUMMARY: ==988== in use at exit: 704 bytes in 11 blocks ==988== total heap usage: 2,144 allocs, 2,133 frees, 4,481,261 bytes allocated ==988== ==988== 8 bytes in 1 blocks are still reachable in loss record 1 of 11 ==988== at 0x4845013: operator new(unsigned long) (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x1F6CF9: tflite::DefaultErrorReporter() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FC7C: main (Main.cpp:9) ==988== ==988== 32 bytes in 1 blocks are still reachable in loss record 2 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55A454: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 32 bytes in 1 blocks are still reachable in loss record 3 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55A46F: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 32 bytes in 1 blocks are still reachable in loss record 4 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55B06F: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 32 bytes in 1 blocks are still reachable in loss record 5 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55B017: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 32 bytes in 1 blocks are still reachable in loss record 6 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55AFCF: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 32 bytes in 1 blocks are still reachable in loss record 7 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55AF96: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 56 bytes in 1 blocks are still reachable in loss record 8 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55A491: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 56 bytes in 1 blocks are still reachable in loss record 9 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55A4B3: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPaeckDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 72 bytes in 1 blocks are still reachable in loss record 10 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55A4D5: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== 320 bytes in 1 blocks are still reachable in loss record 11 of 11 ==988== at 0x4849A83: calloc (in /usr/libexec/valgrind/vgpreload_memcheck-amd64-linux.so) ==988== by 0x55A11E: cpuinfo_x86_linux_init (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x4C28576: __pthread_once_slow (pthread_once.c:116) ==988== by 0x5568CA: cpuinfo_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x49EB7F: xnn_initialize (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x20F1B7: TfLiteXNNPackDelegateCreate (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1F74C0: tflite::MaybeCreateXNNPACKDelegate(int) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x122C33: std::_Function_handler<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)> (int), tflite::ops::builtin::BuiltinOpResolver::BuiltinOpResolver()::{lambda(int)#1}>::_M_invoke(std::_Any_data const&, int&&) (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7945: tflite::Interpreter::ApplyLazyDelegateProviders() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x1E7B2C: tflite::Interpreter::AllocateTensors() (in /home/personau/SvnDnnProjects/research/DnnBackendTfLite/MyDevX64/app) ==988== by 0x11FD23: main (Main.cpp:16) ==988== ==988== LEAK SUMMARY: ==988== definitely lost: 0 bytes in 0 blocks ==988== indirectly lost: 0 bytes in 0 blocks ==988== possibly lost: 0 bytes in 0 blocks ==988== still reachable: 704 bytes in 11 blocks ==988== suppressed: 0 bytes in 0 blocks ==988== ==988== For lists of detected and suppressed errors, rerun with: -s ==988== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60787/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60787/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60786
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60786/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60786/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60786/events
https://github.com/tensorflow/tensorflow/pull/60786
1,743,448,914
PR_kwDOArmXAs5SSJqP
60,786
[PluggableDevice] Always link kernels_experimental c api
{ "login": "Zantares", "id": 38638514, "node_id": "MDQ6VXNlcjM4NjM4NTE0", "avatar_url": "https://avatars.githubusercontent.com/u/38638514?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Zantares", "html_url": "https://github.com/Zantares", "followers_url": "https://api.github.com/users/Zantares/followers", "following_url": "https://api.github.com/users/Zantares/following{/other_user}", "gists_url": "https://api.github.com/users/Zantares/gists{/gist_id}", "starred_url": "https://api.github.com/users/Zantares/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Zantares/subscriptions", "organizations_url": "https://api.github.com/users/Zantares/orgs", "repos_url": "https://api.github.com/users/Zantares/repos", "events_url": "https://api.github.com/users/Zantares/events{/privacy}", "received_events_url": "https://api.github.com/users/Zantares/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @gbaned can you help to check the PR process? It's approved but the states is still \"Assigned Reviewer\".", "Hi @Zantares Sorry for the delay, can you please take a look on below internal errors? Thank you!\r\n\r\nTraceback (most recent call last):\r\n File \"/tensorflow/lite/python/analyzer_test.py\", line 224, in testTxtWithEinsum\r\n self.assertIn('Op#0 RESHAPE(T#1, T#4[512, 512]) -> [T#5]', txt)\r\nAssertionError: 'Op#0 RESHAPE(T#1, T#4[512, 512]) -> [T#5]' not found in \"=== TFLite ModelAnalyzer ===\\n\\nYour TFLite model has '1' subgraph(s). In the subgraph description below,\\nT# represents the Tensor numbers. For example, in Subgraph#0, the RESHAPE op takes\\ntensor #1 and tensor #3 as input and produces tensor #4 as output.\\n\\nSubgraph#0 main(T#0, T#1) -> [T#6]\\n Op#0 RESHAPE(T#1, T#3[512, 512]) -> [T#4]\\n Op#1 BATCH_MATMUL(T#0, T#4) -> [T#5]\\n Op#2 RESHAPE(T#5, T#2[1, 100, 8, 64]) -> [T#6]\\n\\nTensors of Subgraph#0\\n T#0(lhs) shape:[1, 100, 512], type:FLOAT32\\n T#1(rhs) shape:[512, 8, 64], type:FLOAT32\\n T#2(einsum/Einsum) shape:[4], type:INT32 RO 16 bytes, buffer: 3, data:[1, 100, 8, 64]\\n T#3(einsum/Einsum1) shape:[2], type:INT32 RO 8 bytes, buffer: 4, data:[512, 512]\\n T#4(einsum/Einsum2) shape:[512, 512], type:FLOAT32\\n T#5(einsum/Einsum3) shape:[1, 100, 512], type:FLOAT32\\n T#6(Identity) shape:[1, 100, 8, 64], type:FLOAT32\\n\\n---------------------------------------------------------------\\n Model size: 1204 bytes\\n Non-data buffer size: 1080 bytes (89.70 %)\\n Total data buffer size: 124 bytes (10.30 %)\\n (Zero value buffers): 0 bytes (00.00 %)\\n\\n* Buffers of TFLite model are mostly used for constant tensors.\\n And zero value buffers are buffers filled with zeros.\\n Non-data buffers area are used to store operators, subgraphs and etc.\\n You can find more details from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs\\n\\n\"", "> Hi @Zantares Sorry for the delay, can you please take a look on below internal errors? Thank you!\r\n> \r\n> Traceback (most recent call last): File \"/tensorflow/lite/python/analyzer_test.py\", line 224, in testTxtWithEinsum self.assertIn('Op#0 RESHAPE(T#1, T#4[512, 512]) -> [T#5]', txt) AssertionError: 'Op#0 RESHAPE(T#1, T#4[512, 512]) -> [T#5]' not found in \"=== TFLite ModelAnalyzer ===\\n\\nYour TFLite model has '1' subgraph(s). In the subgraph description below,\\nT# represents the Tensor numbers. For example, in Subgraph#0, the RESHAPE op takes\\ntensor #1 and tensor #3 as input and produces tensor #4 as output.\\n\\nSubgraph#0 main(T#0, T#1) -> [T#6]\\n Op#0 RESHAPE(T#1, T#3[512, 512]) -> [T#4]\\n Op#1 BATCH_MATMUL(T#0, T#4) -> [T#5]\\n Op#2 RESHAPE(T#5, T#2[1, 100, 8, 64]) -> [T#6]\\n\\nTensors of Subgraph#0\\n T#0(lhs) shape:[1, 100, 512], type:FLOAT32\\n T#1(rhs) shape:[512, 8, 64], type:FLOAT32\\n T#2(einsum/Einsum) shape:[4], type:INT32 RO 16 bytes, buffer: 3, data:[1, 100, 8, 64]\\n T#3(einsum/Einsum1) shape:[2], type:INT32 RO 8 bytes, buffer: 4, data:[512, 512]\\n T#4(einsum/Einsum2) shape:[512, 512], type:FLOAT32\\n T#5(einsum/Einsum3) shape:[1, 100, 512], type:FLOAT32\\n T#6(Identity) shape:[1, 100, 8, 64], type:FLOAT32\\n\\n---------------------------------------------------------------\\n Model size: 1204 bytes\\n Non-data buffer size: 1080 bytes (89.70 %)\\n Total data buffer size: 124 bytes (10.30 %)\\n (Zero value buffers): 0 bytes (00.00 %)\\n\\n* Buffers of TFLite model are mostly used for constant tensors.\\n And zero value buffers are buffers filled with zeros.\\n Non-data buffers area are used to store operators, subgraphs and etc.\\n You can find more details from [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs\\n\\n](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs%5Cn%5Cn)\"\r\n\r\nSeems this internal error is not related to this PR, I have merged the newest master to see if it can be fixed, thanks!", "Hi @penpornk may you reapprove this PR? ", "Hi @penpornk Can you please review this PR ? Thank you!" ]
2023-06-06T09:22:08
2023-11-27T09:25:05
2023-08-03T09:30:16
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60786", "html_url": "https://github.com/tensorflow/tensorflow/pull/60786", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60786.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60786.patch", "merged_at": "2023-08-03T09:30:16" }
[PluggableDevice](https://github.com/tensorflow/community/blob/master/rfcs/20200624-pluggable-device-for-tensorflow.md) architecture relies on C APIs to communicate with the TensorFlow binary. To support pluggable device for third party like tensorflow serving, we need add always_link=1 for kernels_experimental. Signed-off-by: Lu Teng [[email protected]](mailto:[email protected])
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60786/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60786/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60785
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60785/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60785/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60785/events
https://github.com/tensorflow/tensorflow/issues/60785
1,743,253,806
I_kwDOArmXAs5n5_Eu
60,785
Inference model error when xla enabled with error message "OP_REQUIRES failed at xla_ops.cc:462 : NOT_FOUND: could not find registered platform with id: 0x7f7537df9c24"
{ "login": "Weili17", "id": 31896190, "node_id": "MDQ6VXNlcjMxODk2MTkw", "avatar_url": "https://avatars.githubusercontent.com/u/31896190?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Weili17", "html_url": "https://github.com/Weili17", "followers_url": "https://api.github.com/users/Weili17/followers", "following_url": "https://api.github.com/users/Weili17/following{/other_user}", "gists_url": "https://api.github.com/users/Weili17/gists{/gist_id}", "starred_url": "https://api.github.com/users/Weili17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Weili17/subscriptions", "organizations_url": "https://api.github.com/users/Weili17/orgs", "repos_url": "https://api.github.com/users/Weili17/repos", "events_url": "https://api.github.com/users/Weili17/events{/privacy}", "received_events_url": "https://api.github.com/users/Weili17/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097543484, "node_id": "MDU6TGFiZWwxMDk3NTQzNDg0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime", "name": "comp:runtime", "color": "0052cc", "default": false, "description": "c++ runtime, performance issues (cpu)" }, { "id": 1133285679, "node_id": "MDU6TGFiZWwxMTMzMjg1Njc5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla", "name": "comp:xla", "color": "0052cc", "default": false, "description": "XLA" }, { "id": 4032183365, "node_id": "LA_kwDOArmXAs7wVjxF", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9", "name": "TF 2.9", "color": "1CF842", "default": false, "description": "Issues found in the TF 2.9 release (or RCs)" } ]
open
false
{ "login": "kenfranko", "id": 56562020, "node_id": "MDQ6VXNlcjU2NTYyMDIw", "avatar_url": "https://avatars.githubusercontent.com/u/56562020?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kenfranko", "html_url": "https://github.com/kenfranko", "followers_url": "https://api.github.com/users/kenfranko/followers", "following_url": "https://api.github.com/users/kenfranko/following{/other_user}", "gists_url": "https://api.github.com/users/kenfranko/gists{/gist_id}", "starred_url": "https://api.github.com/users/kenfranko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kenfranko/subscriptions", "organizations_url": "https://api.github.com/users/kenfranko/orgs", "repos_url": "https://api.github.com/users/kenfranko/repos", "events_url": "https://api.github.com/users/kenfranko/events{/privacy}", "received_events_url": "https://api.github.com/users/kenfranko/received_events", "type": "User", "site_admin": false }
[ { "login": "kenfranko", "id": 56562020, "node_id": "MDQ6VXNlcjU2NTYyMDIw", "avatar_url": "https://avatars.githubusercontent.com/u/56562020?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kenfranko", "html_url": "https://github.com/kenfranko", "followers_url": "https://api.github.com/users/kenfranko/followers", "following_url": "https://api.github.com/users/kenfranko/following{/other_user}", "gists_url": "https://api.github.com/users/kenfranko/gists{/gist_id}", "starred_url": "https://api.github.com/users/kenfranko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kenfranko/subscriptions", "organizations_url": "https://api.github.com/users/kenfranko/orgs", "repos_url": "https://api.github.com/users/kenfranko/repos", "events_url": "https://api.github.com/users/kenfranko/events{/privacy}", "received_events_url": "https://api.github.com/users/kenfranko/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@Weili17,\r\n\r\nCould you please try to follow the below instructions and let us know if it helps in this case.\r\n\r\n1. Create a `nvvm/libdevice` folder in the Conda environment lib folder.\r\n\r\n2. Copy the `libdevice.10.bc` file to the directory `nvvm/libdevice`\r\n This file may be found in your system like the below path:\r\n\r\n```\r\nminiconda3/pkgs/cudatoolkit-11.2.2-hbe64b41_10/info/recipe/NVIDIA_EULA:libdevice.10.bc\r\nminiconda3/pkgs/cudatoolkit-11.2.2-hbe64b41_10/info/files:lib/libdevice.10.bc\r\nminiconda3/pkgs/cudatoolkit-11.2.2-hbe64b41_10/info/licenses/NVIDIA_EULA:libdevice.10.bc\r\n```\r\ntry the command: **export XLA_FLAGS=–xla_gpu_cuda_data_dir=/home/miniconda3/envs/lib**\r\n\r\nThe path `/home/miniconda3/envs/lib` may be different in your case, it should trace for absolute path of lib folder available in miniconda3 like **miniconda3/envs/lib** or **miniconda/lib**\r\n\r\nThank you!", "> @Weili17,\r\n> \r\n> Could you please try to follow the below instructions and let us know if it helps in this case.\r\n> \r\n> 1. Create a `nvvm/libdevice` folder in the Conda environment lib folder.\r\n> 2. Copy the `libdevice.10.bc` file to the directory `nvvm/libdevice`\r\n> This file may be found in your system like the below path:\r\n> \r\n> ```\r\n> miniconda3/pkgs/cudatoolkit-11.2.2-hbe64b41_10/info/recipe/NVIDIA_EULA:libdevice.10.bc\r\n> miniconda3/pkgs/cudatoolkit-11.2.2-hbe64b41_10/info/files:lib/libdevice.10.bc\r\n> miniconda3/pkgs/cudatoolkit-11.2.2-hbe64b41_10/info/licenses/NVIDIA_EULA:libdevice.10.bc\r\n> ```\r\n> \r\n> try the command: **export XLA_FLAGS=–xla_gpu_cuda_data_dir=/home/miniconda3/envs/lib**\r\n> \r\n> The path `/home/miniconda3/envs/lib` may be different in your case, it should trace for absolute path of lib folder available in miniconda3 like **miniconda3/envs/lib** or **miniconda/lib**\r\n> \r\n> Thank you!\r\n\r\nIn my case, the code is running with C++ in a docker environment while cuda is installed in /usr/local/cuda. I have tested put the libdevice.10.bc to /usr/local/lib, it does not work. so what should I do? ", "Any update on this issue? I'm running into the same error while doing something very similar." ]
2023-06-06T07:25:18
2023-10-04T19:15:39
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf2.9.2 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 16.04 ### Mobile device _No response_ ### Python version Python 3.10.6 ### Bazel version 5.3.2 ### GCC/Compiler version gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 ### CUDA/cuDNN version 11.6 ### GPU model and memory _No response_ ### Current Behaviour? A bug happened! ### Standalone code to reproduce the issue ```shell inference model error in c++ running with xla enabled. when xla disabled, all works fine. run with option: export XLA_FLAGS="--xla_dump_to=/tmp/generated --xla_hlo_profile" export TF_XLA_FLAGS="--tf_xla_auto_jit=2 --tf_xla_cpu_global_jit" ``` ### Relevant log output ```shell 2023-06-06 13:54:27.650731: W tensorflow/core/framework/op_kernel.cc:1745] OP_REQUIRES failed at xla_ops.cc:462 : NOT_FOUND: could not find registered platform with id: 0x7f7537df9c2 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60785/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60785/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60784
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60784/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60784/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60784/events
https://github.com/tensorflow/tensorflow/issues/60784
1,743,133,264
I_kwDOArmXAs5n5hpQ
60,784
tflite-support installation issue in Kaggle
{ "login": "dsbyprateekg", "id": 30830541, "node_id": "MDQ6VXNlcjMwODMwNTQx", "avatar_url": "https://avatars.githubusercontent.com/u/30830541?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dsbyprateekg", "html_url": "https://github.com/dsbyprateekg", "followers_url": "https://api.github.com/users/dsbyprateekg/followers", "following_url": "https://api.github.com/users/dsbyprateekg/following{/other_user}", "gists_url": "https://api.github.com/users/dsbyprateekg/gists{/gist_id}", "starred_url": "https://api.github.com/users/dsbyprateekg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dsbyprateekg/subscriptions", "organizations_url": "https://api.github.com/users/dsbyprateekg/orgs", "repos_url": "https://api.github.com/users/dsbyprateekg/repos", "events_url": "https://api.github.com/users/dsbyprateekg/events{/privacy}", "received_events_url": "https://api.github.com/users/dsbyprateekg/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @dsbyprateekg ,\r\n\r\nIt seems the issue is related to Kaggle environment. I found there is no issue with Google colab and may refer to the [gist](https://colab.research.google.com/gist/SuryanarayanaY/153ff07cb2eb8c066c3987e526a5a72d/60784.ipynb).\r\n\r\nBy looking at the logs you might need to install setup tools separately in Kaggle.\r\n\r\nPlease try `pip install setuptools` first and then try to install `tflite-support` and let us know if still having issue after this.\r\n\r\nThanks!", "@SuryanarayanaY I tried that but got same error.", "@dsbyprateekg ,\r\n\r\nCould you please cross check the environment details using `pip list` and compare it with the Colab environment attached in gist above and let us know any differences. Also please confirm the setuptools version installed there.\r\n\r\nI am not sure,but maybe can you try uninstalling `setuptools_scm` and then install `setuptools` and let us know if it works.\r\n\r\nThanks!", "Hi @dsbyprateekg \r\n\r\nTo resolve this problem, you can try the following steps:\r\n\r\n1. Ensure that you have all the necessary dependencies and prerequisites installed on your system. Refer to the official documentation of tflite-support for any specific requirements.\r\n\r\n2. Update your pip package manager to the latest version by running the command:\r\n\r\n>> pip install --upgrade pip\r\n\r\n3. Check if you have the required development libraries and tools installed on your system. Some Python packages require certain system-level dependencies to build correctly. For example, on Ubuntu, you might need to install the build-essential package:\r\n\r\n>> sudo apt-get install build-essential\r\n\r\n4. Try installing the package again using the --no-binary flag to force a source build instead of using pre-compiled wheels:\r\n\r\n>> pip install --no-binary :all: tflite-support\r\n\r\n5. If the above steps don't resolve the issue, you can try cloning the tflite-support repository from GitHub and installing it directly from source:\r\n\r\n>> git clone https://github.com/tensorflow/tflite-support.git\r\n>> cd tflite-support\r\n>> pip install .", "@yasirulhadi I will follow mentioned steps and update you soon.", "@yasirulhadi after following your suggested steps, installation was done successfully. See below logs-\r\n![image](https://github.com/tensorflow/tensorflow/assets/30830541/92815309-9647-4019-8224-bcde712bdf01)\r\n\r\nbut now I am getting following error-\r\n`ModuleNotFoundError: No module named 'tflite_support.metadata_writers'`\r\n\r\nin this import `from tflite_support.metadata_writers import object_detector`", "Hi @dsbyprateekg \r\n\r\nThe error message ModuleNotFoundError: No module named 'tflite_support.metadata_writers' suggests that the tflite_support.metadata_writers module is not found. This could indicate a problem with the installation or the package itself.\r\n\r\n1. Double-check that the tflite-support package was installed correctly. You can verify this by running the following command and checking if tflite-support is listed:\r\n>> pip list\r\n\r\n2. Make sure you are using the correct import statement in your code. The tflite_support.metadata_writers module was introduced in a later version of the tflite-support package. If you are using an older version, it's possible that this module is not available. You can check the version of tflite-support installed by running:\r\n\r\n>> pip show tflite-support\r\n\r\nIf you have an older version installed, you can upgrade to the latest version using:\r\n\r\n>> pip install --upgrade tflite-support\r\n\r\n3. Finally, ensure that you have imported the necessary submodules correctly. For example, if you're trying to import the object_detector module, make sure you have the following import statements:\r\n\r\n>> from tflite_support.metadata_writers import object_detector\r\n>> from tflite_support.metadata import metadata_schema_py_generated as _metadata_fb\r\n\r\n4. If the issue persists, you might need to check the documentation or the source code of tflite-support.\r\n", "@yasirulhadi If you read older comments then you will come to know that !pip install tflite-support command is not working that's why I posted this issue.\r\n\r\nIf I use upgrade command with it then again I am facing following error which I posted as first post- `ERROR: Could not build wheels for tflite-support, which is required to install pyproject.toml-based projects`\r\n\r\nAlso as per your suggested command to install tflit-support- `!pip install --no-binary :all: tflite-support`, I am able to see installed version as `tflite-support-0.1.0a1`-\r\n![image](https://github.com/tensorflow/tensorflow/assets/30830541/16c61eb3-2d45-438c-a71c-26bbef7bca30)\r\n\r\nI suggest you to please try yourself in kaggle environment and share me a working gist.", "@dsbyprateekg Let me try and work on it again. \r\n", "@dsbyprateekg \r\n\r\nWhat's the current python version in your kaggle environment?\r\n\r\nIf it is 3.10.10 then change it to 3.7. In some environments Tensorflow library doesn't run off with python version higher than 3.7.\r\n\r\nOnce it is changed to 3.7, try to run the above commands I share and let me know.\r\nHopefully it would work! ", "@yasirulhadi we cannot change Python version in kaggle environment.", "@dsbyprateekg \r\nhttps://www.kaggle.com/code/taylorsamarel/change-python-version-on-kaggle-taylor-amarel?scriptVersionId=115764070", "@yasirulhadi instead of changing Python version to older one, can this not be fixed by TF team to support Python 3.10 version?", "@dsbyprateekg \r\nIt is not the issue with tensorflow but with Kaggle environment's python version. Some libraries don't support the upgrade and works well with the downgraded version.", "@dsbyprateekg ,\r\n\r\nCan you report the issue to kaggle team. Its problem with Kaggle environment and we can't support issues with third party tools. Maybe you can refer the pip list as mentioned for checking the Colab environment packages with versions and try to install missing packages in kaggle environment.\r\n\r\n You can use Google Colab for free in case you want to train/test your model.\r\n\r\nThanks!", "@SuryanarayanaY Actually first I tried my TFLite model train/test/convert in Colab only but due to Python 3.10, there I faced issue while installing TFLite model maker library. So I have switched to Kaggle. Now in Kaggle I am able to train model but now issue is with TFLite-support library.", "@dsbyprateekg Were you able to change the python version?", "@yasirulhadi No, I have not.\r\nSo I did it on my personal laptop.", "Hi @dsbyprateekg \r\n\r\nThe tflite-support has has known issue of not running on python 3.10 because of which the model maker installation is hindered in the colab as well.\r\n\r\nYou can try installing `pip install tflite-support==0.4.2` and see if it works.\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60784\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60784\">No</a>\n" ]
2023-06-06T05:51:55
2023-07-01T02:12:24
2023-07-01T02:12:22
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12 ### Custom Code No ### OS Platform and Distribution kaggle ### Mobile device _No response_ ### Python version 3.10.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? `!pip install tflite-support` gives following error- `note: This error originates from a subprocess, and is likely not a problem with pip.` `error: subprocess-exited-with-error` `ERROR: Could not build wheels for tflite-support, which is required to install pyproject.toml-based projects` ### Standalone code to reproduce the issue ```shell complete logs are attached already ``` ### Relevant log output ```shell Collecting tflite-support Downloading tflite-support-0.1.0a1.tar.gz (390 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 390.3/390.3 kB 7.2 MB/s eta 0:00:00 Preparing metadata (setup.py) ... - \ done Requirement already satisfied: pybind11>=2.4 in /opt/conda/lib/python3.10/site-packages (from tflite-support) (2.10.4) Requirement already satisfied: absl-py>=0.7.0 in /opt/conda/lib/python3.10/site-packages (from tflite-support) (1.4.0) Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from tflite-support) (1.23.5) Building wheels for collected packages: tflite-support Building wheel for tflite-support (setup.py) ... - \ | / - error error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [140 lines of output] running bdist_wheel running build running build_py creating build creating build/lib.linux-x86_64-3.10 creating build/lib.linux-x86_64-3.10/tflite_support copying tflite_support/metadata_schema_py_generated.py -> build/lib.linux-x86_64-3.10/tflite_support copying tflite_support/__init__.py -> build/lib.linux-x86_64-3.10/tflite_support copying tflite_support/schema_py_generated.py -> build/lib.linux-x86_64-3.10/tflite_support copying tflite_support/metadata.py -> build/lib.linux-x86_64-3.10/tflite_support copying tflite_support/codegen.py -> build/lib.linux-x86_64-3.10/tflite_support running egg_info writing tflite_support.egg-info/PKG-INFO writing dependency_links to tflite_support.egg-info/dependency_links.txt writing entry points to tflite_support.egg-info/entry_points.txt writing requirements to tflite_support.egg-info/requires.txt writing top-level names to tflite_support.egg-info/top_level.txt /opt/conda/lib/python3.10/site-packages/setuptools_scm/integration.py:28: RuntimeWarning: ERROR: setuptools==41.6.0 is used in combination with setuptools_scm>=6.x Your build configuration is incomplete and previously worked by accident! setuptools_scm requires setuptools>=45 This happens as setuptools is unable to replace itself when a activated build dependency requires a more recent setuptools version (it does not respect "setuptools>X" in setup_requires). setuptools>=31 is required for setup.cfg metadata support setuptools>=42 is required for pyproject.toml configuration support Suggested workarounds if applicable: - preinstalling build dependencies like setuptools_scm before running setup.py - installing setuptools_scm using the system package manager to ensure consistency - migrating from the deprecated setup_requires mechanism to pep517/518 and using a pyproject.toml to declare build dependencies which are reliably pre-installed before running the build tools warnings.warn( reading manifest file 'tflite_support.egg-info/SOURCES.txt' reading manifest template 'MANIFEST.in' writing manifest file 'tflite_support.egg-info/SOURCES.txt' copying tflite_support/metadata_schema.fbs -> build/lib.linux-x86_64-3.10/tflite_support creating build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/__init__.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/builder.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/compat.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/encode.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/number_types.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/packer.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/table.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers copying tflite_support/flatbuffers/util.py -> build/lib.linux-x86_64-3.10/tflite_support/flatbuffers running build_ext creating tmp gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/include/python3.10 -c /tmp/tmpf6wu46to.cc -o tmp/tmpf6wu46to.o -std=c++14 gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/include/python3.10 -c /tmp/tmpchd3i2qh.cc -o tmp/tmpchd3i2qh.o -fvisibility=hidden building '_pywrap_codegen' extension creating build/temp.linux-x86_64-3.10 creating build/temp.linux-x86_64-3.10/src creating build/temp.linux-x86_64-3.10/src/tensorflow creating build/temp.linux-x86_64-3.10/src/tensorflow/lite creating build/temp.linux-x86_64-3.10/src/tensorflow/lite/experimental creating build/temp.linux-x86_64-3.10/src/tensorflow/lite/experimental/support creating build/temp.linux-x86_64-3.10/src/tensorflow/lite/experimental/support/codegen gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/pybind11/include -I/opt/conda/lib/python3.10/site-packages/pybind11/include -Iinclude -Isrc -I/opt/conda/include/python3.10 -c src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc -o build/temp.linux-x86_64-3.10/src/tensorflow/lite/experimental/support/codegen/android_java_generator.o -DVERSION_INFO="0.1.0a1" -std=c++14 -fvisibility=hidden In file included from include/flatbuffers/base.h:217, from include/flatbuffers/flatbuffers.h:20, from src/tensorflow/lite/experimental/support/metadata/metadata_schema_generated.h:21, from src/tensorflow/lite/experimental/support/codegen/code_generator.h:25, from src/tensorflow/lite/experimental/support/codegen/android_java_generator.h:23, from src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:16: /opt/conda/include/absl/strings/string_view.h:52:26: error: ‘string_view’ in namespace ‘std’ does not name a type 52 | using string_view = std::string_view; | ^~~~~~~~~~~ /opt/conda/include/absl/strings/string_view.h:52:21: note: ‘std::string_view’ is only available from C++17 onwards 52 | using string_view = std::string_view; | ^~~ /opt/conda/include/absl/strings/string_view.h:686:8: error: ‘string_view’ does not name a type 686 | inline string_view ClippedSubstr(string_view s, size_t pos, | ^~~~~~~~~~~ /opt/conda/include/absl/strings/string_view.h:697:11: error: ‘string_view’ does not name a type 697 | constexpr string_view NullSafeStringView(const char* p) { | ^~~~~~~~~~~ In file included from include/flatbuffers/flatbuffers.h:20, from src/tensorflow/lite/experimental/support/metadata/metadata_schema_generated.h:21, from src/tensorflow/lite/experimental/support/codegen/code_generator.h:25, from src/tensorflow/lite/experimental/support/codegen/android_java_generator.h:23, from src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:16: include/flatbuffers/base.h:219:23: error: ‘string_view’ in namespace ‘absl’ does not name a type 219 | typedef absl::string_view string_view; | ^~~~~~~~~~~ In file included from src/tensorflow/lite/experimental/support/metadata/metadata_schema_generated.h:21, from src/tensorflow/lite/experimental/support/codegen/code_generator.h:25, from src/tensorflow/lite/experimental/support/codegen/android_java_generator.h:23, from src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:16: include/flatbuffers/flatbuffers.h:552:16: error: ‘string_view’ in namespace ‘flatbuffers’ does not name a type 552 | flatbuffers::string_view string_view() const { | ^~~~~~~~~~~ include/flatbuffers/flatbuffers.h:1478:44: error: ‘flatbuffers::string_view’ has not been declared 1478 | Offset<String> CreateString(flatbuffers::string_view str) { | ^~~~~~~~~~~ include/flatbuffers/flatbuffers.h: In member function ‘flatbuffers::Offset<flatbuffers::String> flatbuffers::FlatBufferBuilder::CreateString(int)’: include/flatbuffers/flatbuffers.h:1479:29: error: request for member ‘data’ in ‘str’, which is of non-class type ‘int’ 1479 | return CreateString(str.data(), str.size()); | ^~~~ include/flatbuffers/flatbuffers.h:1479:41: error: request for member ‘size’ in ‘str’, which is of non-class type ‘int’ 1479 | return CreateString(str.data(), str.size()); | ^~~~ src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc: In function ‘tflite::support::codegen::details_android_java::ModelInfo tflite::support::codegen::{anonymous}::CreateModelInfo(const tflite::ModelMetadata*, const string&, const string&, const string&, tflite::support::codegen::ErrorReporter*)’: src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:157:21: warning: comparison of integer expressions of different signedness: ‘int’ and ‘flatbuffers::uoffset_t’ {aka ‘unsigned int’} [-Wsign-compare] 157 | for (int i = 0; i < graph->input_tensor_metadata()->size(); i++) { | ~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:162:21: warning: comparison of integer expressions of different signedness: ‘int’ and ‘flatbuffers::uoffset_t’ {aka ‘unsigned int’} [-Wsign-compare] 162 | for (int i = 0; i < graph->output_tensor_metadata()->size(); i++) { | ~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc: In function ‘bool tflite::support::codegen::{anonymous}::GenerateWrapperImports(tflite::support::codegen::CodeWriter*, const tflite::support::codegen::details_android_java::ModelInfo&, tflite::support::codegen::ErrorReporter*)’: src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:278:19: warning: loop variable ‘target’ creates a copy from type ‘const std::__cxx11::basic_string<char>’ [-Wrange-loop-construct] 278 | for (const auto target : imports) { | ^~~~~~ src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:278:19: note: use reference type to prevent copying 278 | for (const auto target : imports) { | ^~~~~~ | & src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc: In function ‘bool tflite::support::codegen::{anonymous}::GenerateWrapperOutputs(tflite::support::codegen::CodeWriter*, const tflite::support::codegen::details_android_java::ModelInfo&, tflite::support::codegen::ErrorReporter*)’: src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:471:23: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<tflite::support::codegen::details_android_java::TensorInfo>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 471 | for (int i = 0; i < model.outputs.size(); i++) { | ~~^~~~~~~~~~~~~~~~~~~~~~ src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc: In function ‘bool tflite::support::codegen::{anonymous}::GenerateWrapperMetadata(tflite::support::codegen::CodeWriter*, const tflite::support::codegen::details_android_java::ModelInfo&, tflite::support::codegen::ErrorReporter*)’: src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:517:23: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<tflite::support::codegen::details_android_java::TensorInfo>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 517 | for (int i = 0; i < model.inputs.size(); i++) { | ~~^~~~~~~~~~~~~~~~~~~~~ src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:536:23: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::vector<tflite::support::codegen::details_android_java::TensorInfo>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 536 | for (int i = 0; i < model.outputs.size(); i++) { | ~~^~~~~~~~~~~~~~~~~~~~~~ src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc: In function ‘tflite::support::codegen::GenerationResult::File tflite::support::codegen::{anonymous}::GenerateDoc(const string&, const tflite::support::codegen::details_android_java::ModelInfo&, tflite::support::codegen::ErrorReporter*)’: src/tensorflow/lite/experimental/support/codegen/android_java_generator.cc:927:21: warning: comparison of integer expressions of different signedness: ‘int’ and ‘std::__cxx11::basic_string<char>::size_type’ {aka ‘long unsigned int’} [-Wsign-compare] 927 | for (int i = 0; i < lower.length(); i++) { | ~~^~~~~~~~~~~~~~~~ error: command '/usr/bin/gcc' failed with exit code 1 [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for tflite-support Running setup.py clean for tflite-support Failed to build tflite-support ERROR: Could not build wheels for tflite-support, which is required to install pyproject.toml-based projects ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60784/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60784/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60783
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60783/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60783/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60783/events
https://github.com/tensorflow/tensorflow/issues/60783
1,742,228,136
I_kwDOArmXAs5n2Eqo
60,783
CUDNN failed to allocate the scratch space for the runner
{ "login": "dark16sider", "id": 13997227, "node_id": "MDQ6VXNlcjEzOTk3MjI3", "avatar_url": "https://avatars.githubusercontent.com/u/13997227?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dark16sider", "html_url": "https://github.com/dark16sider", "followers_url": "https://api.github.com/users/dark16sider/followers", "following_url": "https://api.github.com/users/dark16sider/following{/other_user}", "gists_url": "https://api.github.com/users/dark16sider/gists{/gist_id}", "starred_url": "https://api.github.com/users/dark16sider/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dark16sider/subscriptions", "organizations_url": "https://api.github.com/users/dark16sider/orgs", "repos_url": "https://api.github.com/users/dark16sider/repos", "events_url": "https://api.github.com/users/dark16sider/events{/privacy}", "received_events_url": "https://api.github.com/users/dark16sider/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @dark16sider ,\r\n\r\nThanks for reporting issue. Could you please submit a code snippet to replicate and understand the problem. Please confirm whether you are using prebuilt wheel or built from source? If built from source let us know the build command used.\r\n\r\nCould you please confirm whether you have cuDNN installed and what version was installed. For TF2.12 version the recommended configurations are listed below.\r\n\r\nVersion | Python version | Compiler | Build tools | cuDNN | CUDA\r\n-- | -- | -- | -- | -- | --\r\ntensorflow-2.13.0 | 3.8-3.11 | Clang 16.0.0 | Bazel 5.3.0 | 8.6 | 11.8\r\ntensorflow-2.12.0 | 3.8-3.11 | GCC 9.3.1 | Bazel 5.3.0 | 8.6 | 11.8\r\n\r\nAlso please confirm whether path configuration set for CUDA and cuDNN and confirm the commands for same.\r\n\r\nThanks!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "It seemed like it was a OOM Error for me. Maybe try decreasing the batch size ?", "Hi @dark16sider ,\r\n\r\nCould you please confirm whether above comments worked for you. If you are getting this at the middle of training yeah there is possibility that it might be happening due to OOM problem also. Since you have not pasted any code snippet which may be custom code I would recommend to please check whether unwanted variables that are initialized are getting deleted when there is no more requirement of those ? Also ensure enough memory resources to remove OOM problem from your program.\r\n\r\nProviding more details like reproducible code snippet can help us to understand your problem better.\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60783\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60783\">No</a>\n" ]
2023-06-05T17:33:00
2023-08-06T01:48:44
2023-08-06T01:48:37
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Source source ### Tensorflow Version Tensorlfow 2.12 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 22.04.2 ### Python version 3.9 ### CUDA/cuDNN version Cuda 11.8,cuDNN 8.6.0 ### GPU model and memory GTX 4070, Vram 11178/12282Mib ### Current Behaviour? In the middle of training I suddenly get `Node: 'gradient_tape/model/conv3d_20/Conv3D/Conv3DBackpropFilterV2' CUDNN failed to allocate the scratch space for the runner or to find a working no-scratch runner.` I am running 3d Unet segmentation, my dataset is custom generator going through Dataset.I am using multiprocessing. Exact same code and model ran without this error in windows. It was slow so I moved to linux. It is not easy replicating the issue as it sometimes happens so many epochs after.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60783/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60783/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60782
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60782/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60782/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60782/events
https://github.com/tensorflow/tensorflow/pull/60782
1,741,952,762
PR_kwDOArmXAs5SNEML
60,782
skip comparison if input is already a boolean tensor for count_nonzero
{ "login": "ngc92", "id": 7938269, "node_id": "MDQ6VXNlcjc5MzgyNjk=", "avatar_url": "https://avatars.githubusercontent.com/u/7938269?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ngc92", "html_url": "https://github.com/ngc92", "followers_url": "https://api.github.com/users/ngc92/followers", "following_url": "https://api.github.com/users/ngc92/following{/other_user}", "gists_url": "https://api.github.com/users/ngc92/gists{/gist_id}", "starred_url": "https://api.github.com/users/ngc92/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ngc92/subscriptions", "organizations_url": "https://api.github.com/users/ngc92/orgs", "repos_url": "https://api.github.com/users/ngc92/repos", "events_url": "https://api.github.com/users/ngc92/events{/privacy}", "received_events_url": "https://api.github.com/users/ngc92/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-06-05T14:52:42
2023-06-06T17:07:40
2023-06-06T16:39:22
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60782", "html_url": "https://github.com/tensorflow/tensorflow/pull/60782", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60782.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60782.patch", "merged_at": "2023-06-06T16:39:22" }
For input tensors that are already of `bool` type, the comparison against `0` in `count_nonzero` is superfluous, and actually takes a noticeable amount of time for large inputs, see #60772 Therefore, this PR changes the code to only compare to zero for non-bool inputs. `count_nonzeros` is still a very inefficient operation, but I think this is as far as can be improved on the python side.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60782/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60782/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60781
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60781/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60781/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60781/events
https://github.com/tensorflow/tensorflow/issues/60781
1,741,824,389
I_kwDOArmXAs5n0iGF
60,781
when "docker image build -t spot_rna2 ."have a error
{ "login": "LiFengxia8", "id": 100345932, "node_id": "U_kgDOBfsoTA", "avatar_url": "https://avatars.githubusercontent.com/u/100345932?v=4", "gravatar_id": "", "url": "https://api.github.com/users/LiFengxia8", "html_url": "https://github.com/LiFengxia8", "followers_url": "https://api.github.com/users/LiFengxia8/followers", "following_url": "https://api.github.com/users/LiFengxia8/following{/other_user}", "gists_url": "https://api.github.com/users/LiFengxia8/gists{/gist_id}", "starred_url": "https://api.github.com/users/LiFengxia8/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LiFengxia8/subscriptions", "organizations_url": "https://api.github.com/users/LiFengxia8/orgs", "repos_url": "https://api.github.com/users/LiFengxia8/repos", "events_url": "https://api.github.com/users/LiFengxia8/events{/privacy}", "received_events_url": "https://api.github.com/users/LiFengxia8/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @15079044843 ,\r\n\r\nCould you please elaborate your issue along with commands you have used. Unfortunately provided logs not enough to understand the problem.\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60781\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60781\">No</a>\n" ]
2023-06-05T13:44:24
2023-06-22T02:01:39
2023-06-22T02:01:37
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.0 ### Custom Code Yes ### OS Platform and Distribution windows ### Mobile device 20.04 ### Python version 3.8 ### Bazel version no ### GCC/Compiler version no ### CUDA/cuDNN version no ### GPU model and memory no ### Current Behaviour? A bug happened! ### Standalone code to reproduce the issue ```shell => ERROR [ 4/13] RUN cpanm Graph 26.2s ------ > [ 4/13] RUN cpanm Graph: #0 14.35 --> Working on Graph #0 14.35 Fetching http://www.cpan.org/authors/id/E/ET/ETJ/Graph-0.9726.tar.gz ... OK #0 26.23 #0 26.23 gzip: stdin: unexpected end of file #0 26.23 /bin/tar: Child returned status 1 #0 26.23 /bin/tar: Error is not recoverable: exiting now #0 26.23 ! Failed to unpack Graph-0.9726.tar.gz: no directory #0 26.23 ! Failed to fetch distribution Graph-0.9726 ------ Dockerfile:6 -------------------- 4 | RUN rm /bin/sh && ln -s /bin/bash /bin/sh 5 | RUN apt-get update && apt-get install -y build-essential wget virtualenv git python-minimal cpanminus gawk 6 | >>> RUN cpanm Graph 7 | 8 | RUN wget 'https://www.dropbox.com/s/h6j53u7wjyj6uir/SPOT-RNA2.tar.xz' || wget 'https://app.nihaocloud.com/f/3e826caf8efc43adaaa0/?dl=1' && tar -xvf SPOT-RNA2.tar.xz && rm SPOT-RNA2.tar.xz -------------------- ERROR: failed to solve: process "/bin/sh -c cpanm Graph" did not complete successfully: exit code: 1 ``` ### Relevant log output ```shell => ERROR [ 4/13] RUN cpanm Graph 26.2s ------ > [ 4/13] RUN cpanm Graph: #0 14.35 --> Working on Graph #0 14.35 Fetching http://www.cpan.org/authors/id/E/ET/ETJ/Graph-0.9726.tar.gz ... OK #0 26.23 #0 26.23 gzip: stdin: unexpected end of file #0 26.23 /bin/tar: Child returned status 1 #0 26.23 /bin/tar: Error is not recoverable: exiting now #0 26.23 ! Failed to unpack Graph-0.9726.tar.gz: no directory #0 26.23 ! Failed to fetch distribution Graph-0.9726 ------ Dockerfile:6 -------------------- 4 | RUN rm /bin/sh && ln -s /bin/bash /bin/sh 5 | RUN apt-get update && apt-get install -y build-essential wget virtualenv git python-minimal cpanminus gawk 6 | >>> RUN cpanm Graph 7 | 8 | RUN wget 'https://www.dropbox.com/s/h6j53u7wjyj6uir/SPOT-RNA2.tar.xz' || wget 'https://app.nihaocloud.com/f/3e826caf8efc43adaaa0/?dl=1' && tar -xvf SPOT-RNA2.tar.xz && rm SPOT-RNA2.tar.xz -------------------- ERROR: failed to solve: process "/bin/sh -c cpanm Graph" did not complete successfully: exit code: 1 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60781/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60781/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60780
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60780/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60780/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60780/events
https://github.com/tensorflow/tensorflow/issues/60780
1,741,162,946
I_kwDOArmXAs5nyAnC
60,780
About nn.Linear convert to tflite model
{ "login": "puyiwen", "id": 56880072, "node_id": "MDQ6VXNlcjU2ODgwMDcy", "avatar_url": "https://avatars.githubusercontent.com/u/56880072?v=4", "gravatar_id": "", "url": "https://api.github.com/users/puyiwen", "html_url": "https://github.com/puyiwen", "followers_url": "https://api.github.com/users/puyiwen/followers", "following_url": "https://api.github.com/users/puyiwen/following{/other_user}", "gists_url": "https://api.github.com/users/puyiwen/gists{/gist_id}", "starred_url": "https://api.github.com/users/puyiwen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/puyiwen/subscriptions", "organizations_url": "https://api.github.com/users/puyiwen/orgs", "repos_url": "https://api.github.com/users/puyiwen/repos", "events_url": "https://api.github.com/users/puyiwen/events{/privacy}", "received_events_url": "https://api.github.com/users/puyiwen/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @puyiwen \r\n\r\nCould you please share a toy tflite model or code to reproduce the issue? \r\n\r\nThanks.\r\n\r\n", "> Hi @puyiwen\r\n> \r\n> Could you please share a toy tflite model or code to reproduce the issue?\r\n> \r\n> Thanks.\r\n\r\nOK, there is my tflite model.\r\n\r\n[qat_noquant_int8.zip](https://github.com/tensorflow/tensorflow/files/11660722/qat_noquant_int8.zip)\r\n\r\nand there is my onnx model \r\n[checkpoint_best.zip](https://github.com/tensorflow/tensorflow/files/11660732/checkpoint_best.zip)\r\n", "Hi @puyiwen \r\n\r\nThanks for sharing.\r\n\r\nI have observed that Batch MatMul operation is being converted into into Split - multi FullyConnected - Pack. \r\n\r\nTFlite converts model ops into simple [supported operations](https://www.tensorflow.org/lite/guide/ops_compatibility) that can be run in memory constrained devices like Edge devices and micro controllers. \r\n\r\nIf you are facing any issue regarding quantization or want to disable quantization for any node , you can refer [Quantization Debugger](https://www.tensorflow.org/lite/performance/quantization_debugger) and do [Selective Quantization](https://www.tensorflow.org/lite/performance/quantization_debugger#selective_quantization).\r\n\r\nThanks.", "> 你好@puyiwen\r\n> \r\n> 感谢分享。\r\n> \r\n> 我观察到 Batch MatMul 操作正在转换为 Split - multi FullyConnected - Pack。\r\n> \r\n> TFlite 将模型操作转换为简单的[支持操作](https://www.tensorflow.org/lite/guide/ops_compatibility),这些操作可以在边缘设备和微控制器等内存受限设备中运行。\r\n> \r\n> 如果您遇到有关量化的任何问题或想要禁用任何节点的量化,您可以参考[量化调试器](https://www.tensorflow.org/lite/performance/quantization_debugger)并执行[选择性量化](https://www.tensorflow.org/lite/performance/quantization_debugger#selective_quantization)。\r\n> \r\n> 谢谢。\r\n\r\nThank you for your reply. The MatMul operator is 'nn.Linear' in Pytorch. I am wondering why **nn.Linear** is **Batch MatMul** in tflite. How can I convert the Batch MatMul to norm MatMul? Can you help me?", "Hi @puyiwen \r\n\r\nThe model can be analyzed using [Model Analyzer](https://www.tensorflow.org/lite/guide/model_analyzer) API and it can be observed that multiple MatMul operations are generated. Please find the [gist](https://colab.research.google.com/gist/pjpratik/404adf7abcaefd9e759ef10593d21167/60780.ipynb) here.\r\n\r\nThe TFlite converts model ops into [supported operations](https://www.tensorflow.org/lite/guide/ops_compatibility) that are natively supported by TensorFlow Lite.\r\n\r\nIs there any challenge in using the current conversion in your use case?\r\n\r\nThanks.", "> Hi @puyiwen\r\n> \r\n> The model can be analyzed using [Model Analyzer](https://www.tensorflow.org/lite/guide/model_analyzer) API and it can be observed that multiple MatMul operations are generated. Please find the [gist](https://colab.research.google.com/gist/pjpratik/404adf7abcaefd9e759ef10593d21167/60780.ipynb) here.\r\n> \r\n> The TFlite converts model ops into [supported operations](https://www.tensorflow.org/lite/guide/ops_compatibility) that are natively supported by TensorFlow Lite.\r\n> \r\n> Is there any challenge in using the current conversion in your use case?\r\n> \r\n> Thanks.\r\n\r\nThis kind of splitting will be very slow in reasoning on my deployment platform, and I wonder if it can be merged.\r\nThere is another problem. After my model is converted to tflite and statically quantized to in8, the model file size is larger than before it was not quantized. It is now about 5.6M. The file size of the model before quantization (I sent you earlier) It is about 3.6M. I compared the model structure before and after quantization, and tflite will automatically add a DeQuantize in front of the DIV operator, and then quantize it back after passing the DIV. I don't know if this part of the problem caused the model file to become larger after quantization. I don’t want to have this kind of operation. How should I do it?\r\nIt is my quantized tflite model.\r\n[qat_quant_static_int8.zip](https://github.com/tensorflow/tensorflow/files/11674934/qat_quant_static_int8.zip)", "Hi @puyiwen \r\n\r\nThanks for the information.\r\n\r\nThe converter adds `Quantize` and `DeQuantize` stubs for the ops that do not support int8 quantization, to give floating point view.\r\n\r\nAlso, can you try conversion in latest TF-Nightly and let us know your observation?\r\n\r\nThe converter adds unfolding matmul operation by default which is disabled in nightly version.\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-06-05T07:35:22
2023-06-22T02:01:39
2023-06-22T02:01:39
NONE
null
null
null
### 1. System information Linux Ubuntu 18.04 Tensorflow 2.8.0 ### 2. Code I have a transformer model with **pytorch**, and I use **onnx_tf** to change` .onnx` to` .pb`, then change` .pb` to` .tflite`. The` .pb ` to` .tflite` code is: ``` converter = tf.lite.TFLiteConverter.from_saved_model(path) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_data_gen converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,tf.lite.OpsSet.TFLITE_BUILTINS_INT8,tf.lite.OpsSet.SELECT_TF_OPS] tflite_model_quant = converter.convert() import pathlib tflite_models_dir = pathlib.Path('/home/puyiwen/deltar/') tflite_models_dir.mkdir(exist_ok=True, parents=True) # Save the quantized model: tflite_model_quant_file = tflite_models_dir/"qat_quant_static_int8.tflite" tflite_model_quant_file.write_bytes(tflite_model_quant) converter = tf.lite.TFLiteConverter.from_saved_model(path) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] tflite_model_noquant = converter.convert() tflite_model_noquant_file = tflite_models_dir/"qat_noquant_int8.tflite" tflite_model_noquant_file.write_bytes(tflite_model_noquant) ``` Then I use **Netron** to check the tfilte model `qat_noquant_int8.tflite`, and I find the **nn.Linear** (which in **ONNX** is **MatMul**) in tflite model is disassembled into three operators: **spill-fullyconnected-pack**, I dont know why and I don't want it to be dismantled. Another question is there is a **DIV** operator in my model, I find that when tflite is quantized, it will automatically add a **Dequantize** before the **DIV** operator. This **Dequantize** is not in my code. I don't know why tflite will add **Dequantize** by itself, and I don't want it to be added. How should I modify the conversion tflite and statically quantize the code? Thank you very much!! The **MatMul** in onnx is ![onnx_image](https://github.com/tensorflow/tensorflow/assets/56880072/9d67d15f-5bab-4d0d-a80d-bbd250351b76) The **MatMu**l in tflite is: ![tflite_image](https://github.com/tensorflow/tensorflow/assets/56880072/5eed9f64-6125-454a-bea3-b643794dbe54)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60780/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60780/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60779
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60779/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60779/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60779/events
https://github.com/tensorflow/tensorflow/issues/60779
1,740,993,320
I_kwDOArmXAs5nxXMo
60,779
Error: Tensorflow lite c++ library, libtensorflowlite.so : Linking Error when compiling ( Undefined Reference )
{ "login": "Bhuvan-1", "id": 90998789, "node_id": "MDQ6VXNlcjkwOTk4Nzg5", "avatar_url": "https://avatars.githubusercontent.com/u/90998789?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Bhuvan-1", "html_url": "https://github.com/Bhuvan-1", "followers_url": "https://api.github.com/users/Bhuvan-1/followers", "following_url": "https://api.github.com/users/Bhuvan-1/following{/other_user}", "gists_url": "https://api.github.com/users/Bhuvan-1/gists{/gist_id}", "starred_url": "https://api.github.com/users/Bhuvan-1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Bhuvan-1/subscriptions", "organizations_url": "https://api.github.com/users/Bhuvan-1/orgs", "repos_url": "https://api.github.com/users/Bhuvan-1/repos", "events_url": "https://api.github.com/users/Bhuvan-1/events{/privacy}", "received_events_url": "https://api.github.com/users/Bhuvan-1/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Bhuvan-1 \r\n\r\nCurrently, there is no straightforward way to extract all header files needed, so you must include all header files in tensorflow/lite/ from the TensorFlow repository. Additionally, you will need header files from FlatBuffers and Abseil.\r\n\r\nThanks", "@pjpratik , I don't have much idea on Flatbuffers and Abseil, I followed [this](https://www.youtube.com/watch?v=He2p2JLpYC0&ab_channel=EdgeAIGuy) as a reference. Currently I am including flatbuffers & tensorflow headers\r\n\r\nCan you please guide on how to include FlatBuffers & Abseil headers correctly.\r\n\r\nAlso is the command that I used to generate the library correct? or should it be built differently?\r\n\r\nThanks", "Hi @Bhuvan-1, did you follow your reference all the way through? including the CMakeLists.txt and CMake portion? While these steps are not technically required, it seems like this was started with that tool chain in mind, I believe if you follow those steps your includes, compilation, linking, and execution will be smoother.", "Thanks @pkgoogle , I used the CMakeLists.txt from the /lite/examples/minimal and its working smoothly now.", "Hi @Bhuvan-1,\r\n\r\nIf you are satisfied w/ your resolution and have no more open items for this issue, please feel free to close the issue. Thanks!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60779\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60779\">No</a>\n" ]
2023-06-05T05:29:18
2023-06-09T05:19:32
2023-06-09T05:19:30
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12 ### Custom Code No ### OS Platform and Distribution Linux, Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.10.6 ### Bazel version 5.3.0 ### GCC/Compiler version 11.3.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I cloned the tensorflow repo, then I built the **libtensorflowlite.so** using the command : `bazel build -c opt //tensorflow/lite:libtensorflowlite.so` Then copied the library to `/usr/local/lib` and When I compile using `g++ main.cpp -I/path/to/tensorflow/cloned/dir -L/usr/local/lib -ltensorflowlite` , I get the following error. The main.cpp I used is from the tensorflow example codes. /usr/bin/ld: /tmp/ccp1d7nd.o: in function `main': test.cpp:(.text+0x3c): undefined reference to `tflite::FlatBufferModel::BuildFromFile(char const*, tflite::ErrorReporter*)' /usr/bin/ld: test.cpp:(.text+0xb2): undefined reference to `tflite::InterpreterBuilder::InterpreterBuilder(tflite::FlatBufferModel const&, tflite::OpResolver const&)' /usr/bin/ld: test.cpp:(.text+0xcb): undefined reference to `tflite::InterpreterBuilder::operator()(std::unique_ptr<tflite::Interpreter, std::default_delete<tflite::Interpreter> >*)' /usr/bin/ld: test.cpp:(.text+0xdf): undefined reference to `tflite::InterpreterBuilder::~InterpreterBuilder()' /usr/bin/ld: test.cpp:(.text+0x113): undefined reference to `tflite::Interpreter::AllocateTensors()' /usr/bin/ld: test.cpp:(.text+0x195): undefined reference to `tflite::InterpreterBuilder::~InterpreterBuilder()' /usr/bin/ld: /tmp/ccp1d7nd.o: in function `std::default_delete<tflite::FlatBufferModel>::operator()(tflite::FlatBufferModel*) const': test.cpp:(.text._ZNKSt14default_deleteIN6tflite15FlatBufferModelEEclEPS1_[_ZNKSt14default_deleteIN6tflite15FlatBufferModelEEclEPS1_]+0x22): undefined reference to `tflite::FlatBufferModel::~FlatBufferModel()' /usr/bin/ld: /tmp/ccp1d7nd.o: in function `std::default_delete<tflite::Interpreter>::operator()(tflite::Interpreter*) const': test.cpp:(.text._ZNKSt14default_deleteIN6tflite11InterpreterEEclEPS1_[_ZNKSt14default_deleteIN6tflite11InterpreterEEclEPS1_]+0x22): undefined reference to `tflite::Interpreter::~Interpreter()' collect2: error: ld returned 1 exit status ### Standalone code to reproduce the issue ```shell /* Copyright 2018 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include <cstdio> #include <tensorflow/lite/interpreter.h> #include <tensorflow/lite/kernels/register.h> #include <tensorflow/lite/model.h> #include <tensorflow/lite/optional_debug_tools.h> // This is an example that is minimal to read a model // from disk and perform inference. There is no data being loaded // that is up to you to add as a user. // // NOTE: Do not add any dependencies to this that cannot be built with // the minimal makefile. This example must remain trivial to build with // the minimal build tool. // // Usage: minimal <tflite model> #define TFLITE_MINIMAL_CHECK(x) \ if (!(x)) \ { \ fprintf(stderr, "Error at %s:%d\n", __FILE__, __LINE__); \ exit(1); \ } int main(int argc, char *argv[]) { if (argc != 2) { fprintf(stderr, "minimal <tflite model>\n"); return 1; } const char *filename = argv[1]; // Load model std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(filename); TFLITE_MINIMAL_CHECK(model != nullptr); // Build the interpreter with the InterpreterBuilder. // Note: all Interpreters should be built with the InterpreterBuilder, // which allocates memory for the Intrepter and does various set up // tasks so that the Interpreter can read the provided model. tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder builder(*model, resolver); std::unique_ptr<tflite::Interpreter> interpreter; builder(&interpreter); TFLITE_MINIMAL_CHECK(interpreter != nullptr); // Allocate tensor buffers. TFLITE_MINIMAL_CHECK(interpreter->AllocateTensors() == kTfLiteOk); printf("=== Pre-invoke Interpreter State ===\n"); tflite::PrintInterpreterState(interpreter.get()); // Fill input buffers // TODO(user): Insert code to fill input tensors. // Note: The buffer of the input tensor with index `i` of type T can // be accessed with `T* input = interpreter->typed_input_tensor<T>(i);` // Run inference TFLITE_MINIMAL_CHECK(interpreter->Invoke() == kTfLiteOk); printf("\n\n=== Post-invoke Interpreter State ===\n"); tflite::PrintInterpreterState(interpreter.get()); // Read output buffers // TODO(user): Insert getting data out code. // Note: The buffer of the output tensor with index `i` of type T can // be accessed with `T* output = interpreter->typed_output_tensor<T>(i);` return 0; } ``` ### Relevant log output ```shell /usr/bin/ld: /tmp/ccp1d7nd.o: in function `main': test.cpp:(.text+0x3c): undefined reference to `tflite::FlatBufferModel::BuildFromFile(char const*, tflite::ErrorReporter*)' /usr/bin/ld: test.cpp:(.text+0xb2): undefined reference to `tflite::InterpreterBuilder::InterpreterBuilder(tflite::FlatBufferModel const&, tflite::OpResolver const&)' /usr/bin/ld: test.cpp:(.text+0xcb): undefined reference to `tflite::InterpreterBuilder::operator()(std::unique_ptr<tflite::Interpreter, std::default_delete<tflite::Interpreter> >*)' /usr/bin/ld: test.cpp:(.text+0xdf): undefined reference to `tflite::InterpreterBuilder::~InterpreterBuilder()' /usr/bin/ld: test.cpp:(.text+0x113): undefined reference to `tflite::Interpreter::AllocateTensors()' /usr/bin/ld: test.cpp:(.text+0x195): undefined reference to `tflite::InterpreterBuilder::~InterpreterBuilder()' /usr/bin/ld: /tmp/ccp1d7nd.o: in function `std::default_delete<tflite::FlatBufferModel>::operator()(tflite::FlatBufferModel*) const': test.cpp:(.text._ZNKSt14default_deleteIN6tflite15FlatBufferModelEEclEPS1_[_ZNKSt14default_deleteIN6tflite15FlatBufferModelEEclEPS1_]+0x22): undefined reference to `tflite::FlatBufferModel::~FlatBufferModel()' /usr/bin/ld: /tmp/ccp1d7nd.o: in function `std::default_delete<tflite::Interpreter>::operator()(tflite::Interpreter*) const': test.cpp:(.text._ZNKSt14default_deleteIN6tflite11InterpreterEEclEPS1_[_ZNKSt14default_deleteIN6tflite11InterpreterEEclEPS1_]+0x22): undefined reference to `tflite::Interpreter::~Interpreter()' collect2: error: ld returned 1 exit status ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60779/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60779/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60778
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60778/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60778/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60778/events
https://github.com/tensorflow/tensorflow/issues/60778
1,740,882,413
I_kwDOArmXAs5nw8Ht
60,778
ConverterError: <unknown>:0: error
{ "login": "dsbyprateekg", "id": 30830541, "node_id": "MDQ6VXNlcjMwODMwNTQx", "avatar_url": "https://avatars.githubusercontent.com/u/30830541?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dsbyprateekg", "html_url": "https://github.com/dsbyprateekg", "followers_url": "https://api.github.com/users/dsbyprateekg/followers", "following_url": "https://api.github.com/users/dsbyprateekg/following{/other_user}", "gists_url": "https://api.github.com/users/dsbyprateekg/gists{/gist_id}", "starred_url": "https://api.github.com/users/dsbyprateekg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dsbyprateekg/subscriptions", "organizations_url": "https://api.github.com/users/dsbyprateekg/orgs", "repos_url": "https://api.github.com/users/dsbyprateekg/repos", "events_url": "https://api.github.com/users/dsbyprateekg/events{/privacy}", "received_events_url": "https://api.github.com/users/dsbyprateekg/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @dsbyprateekg \r\n\r\nFrom the error log, it looks like the TF Model has select ops which are not available in TFLite builtins. \r\n\r\nTo be able to convert the model into TFLite, please add the below flags before conversion.\r\n\r\n```\r\nconverter.target_spec.supported_ops = [\r\n tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\r\n tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\r\n]\r\n```\r\nThanks.", "@pjpratik thanks, with the above I am able to proceed.\r\nBut when I checked the input shape of the converted tflite model, it's array([1,1,1,3)] which I don't understand.\r\nCan you please share me Python inference code for TFLite? My original model is based on ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.config. ", "Hi @dsbyprateekg \r\n\r\n If your model has dynamic input shapes and you didn't specify a dimension size when building and converting your model, the converter will use 1 as the default dimension size.\r\n\r\n However, at inference time you can use Interpreter's [ResizeInputTensor](https://www.tensorflow.org/lite/api_docs/python/tf/lite/Interpreter#resize_tensor_input) API to change the input shape of the model\r\n\r\nYou can check this TF Hub example for the inference.\r\n\r\nhttps://hub.tensorflow.google.cn/google/lite-model/object_detection/mobile_object_localizer_v1/1/default/1\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-06-05T03:54:16
2023-06-21T01:58:34
2023-06-21T01:58:34
NONE
null
null
null
### 1. System information - OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Kaggle - TensorFlow installation (pip package or built from source): pip - TensorFlow library (version, if pip package or github SHA, if built from source): ### 2. Code ![image](https://github.com/tensorflow/tensorflow/assets/30830541/8def72c1-d3ce-49eb-b446-e88aeeb17e36) ### 3. (optional) Any other info / logs [converter_issue_tf.txt](https://github.com/tensorflow/tensorflow/files/11648334/converter_issue_tf.txt)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60778/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60778/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60777
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60777/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60777/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60777/events
https://github.com/tensorflow/tensorflow/issues/60777
1,740,394,490
I_kwDOArmXAs5nvE_6
60,777
Docker image issue
{ "login": "TakahashiNguyen", "id": 83152264, "node_id": "MDQ6VXNlcjgzMTUyMjY0", "avatar_url": "https://avatars.githubusercontent.com/u/83152264?v=4", "gravatar_id": "", "url": "https://api.github.com/users/TakahashiNguyen", "html_url": "https://github.com/TakahashiNguyen", "followers_url": "https://api.github.com/users/TakahashiNguyen/followers", "following_url": "https://api.github.com/users/TakahashiNguyen/following{/other_user}", "gists_url": "https://api.github.com/users/TakahashiNguyen/gists{/gist_id}", "starred_url": "https://api.github.com/users/TakahashiNguyen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TakahashiNguyen/subscriptions", "organizations_url": "https://api.github.com/users/TakahashiNguyen/orgs", "repos_url": "https://api.github.com/users/TakahashiNguyen/repos", "events_url": "https://api.github.com/users/TakahashiNguyen/events{/privacy}", "received_events_url": "https://api.github.com/users/TakahashiNguyen/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@nVietUK,\r\n`nvidia-docker v2` uses --runtime=nvidia instead of --gpus all. nvidia-docker v1 uses the nvidia-docker alias, rather than the **--runtime=nvidia or --gpus** all command line flags.\r\n\r\nDownload and run a GPU-enabled TensorFlow image:\r\n`docker run --gpus all -it --rm tensorflow/tensorflow:latest-gpu \\`\r\n\r\nUse the latest TensorFlow GPU image to start a bash shell session in the container:\r\n`docker run --gpus all -it tensorflow/tensorflow:latest-gpu bash`\r\n\r\nhttps://www.tensorflow.org/install/docker\r\nThank you!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60777\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60777\">No</a>\n" ]
2023-06-04T14:07:13
2023-06-06T13:27:14
2023-06-06T13:27:11
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf v2.13.0-rc0-26-g57633696be6 2.13.0-rc1 ### Custom Code Yes ### OS Platform and Distribution docker tf 2.13.0rc1-gpu-jupyter ### Mobile device _No response_ ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version Build cuda_11.8.r11.8/compiler.31833905_0 ### GPU model and memory RTX 2060 6GB ### Current Behaviour? Could not load library libcublasLt.so.12. Error: libcublasLt.so.12: cannot open shared object file: No such file or directory ### Standalone code to reproduce the issue ```shell https://github.com/projjal1/English-French-Translator-RNN/blob/master/English_French_Translator.ipynb ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60777/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60777/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60776
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60776/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60776/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60776/events
https://github.com/tensorflow/tensorflow/issues/60776
1,740,254,756
I_kwDOArmXAs5nui4k
60,776
Is there a similar approach in TensorFlow2 when save large model?
{ "login": "SmileTM", "id": 19524544, "node_id": "MDQ6VXNlcjE5NTI0NTQ0", "avatar_url": "https://avatars.githubusercontent.com/u/19524544?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SmileTM", "html_url": "https://github.com/SmileTM", "followers_url": "https://api.github.com/users/SmileTM/followers", "following_url": "https://api.github.com/users/SmileTM/following{/other_user}", "gists_url": "https://api.github.com/users/SmileTM/gists{/gist_id}", "starred_url": "https://api.github.com/users/SmileTM/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SmileTM/subscriptions", "organizations_url": "https://api.github.com/users/SmileTM/orgs", "repos_url": "https://api.github.com/users/SmileTM/repos", "events_url": "https://api.github.com/users/SmileTM/events{/privacy}", "received_events_url": "https://api.github.com/users/SmileTM/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "You can always save a model before, during, and after training using the same `model.save()` API. Once loading, you can always continue training if you so desire. There is no need for a separate API (`save_pretrained`).\r\n\r\nRegarding sharding (`max_shard_size`), there is no such parameter, TF does automatic sharding.\r\n\r\nSee https://www.tensorflow.org/api_docs/python/tf/saved_model/save, https://www.tensorflow.org/api_docs/python/tf/saved_model/SaveOptions and https://www.tensorflow.org/api_docs/python/tf/keras/Model#save", "Hi @SmileTM ,\r\n\r\n\r\nApart from resources mentioned in above, you can also refer to attached tutorial links for end to end examples of creating,training, saving and loading the models.\r\nPlease refer [serialization_and_saving](https://www.tensorflow.org/guide/keras/serialization_and_saving) and [save_and_load](https://www.tensorflow.org/tutorials/keras/save_and_load) also for a demo.\r\n\r\nTensorflow has options to [save](https://www.tensorflow.org/api_docs/python/tf/keras/Model#save) complete model architecture including optimizer state or only [weights](https://www.tensorflow.org/api_docs/python/tf/keras/Model#save_weights) of the layers also.\r\n\r\nIf you still looking for a particular use case please let us know.\r\n\r\nThanks!", "Thanks for the quick response.\r\n\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60776\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60776\">No</a>\n" ]
2023-06-04T09:13:16
2023-06-10T07:20:26
2023-06-10T07:20:23
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.11 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? ```python from transformers import TFAutoModel model = TFAutoModel.from_pretrained("bert-base-cased") model.save_pretrained("saved", max_shard_size="200MB") ``` Is there a similar approach in TensorFlow2 when save large model? ### Standalone code to reproduce the issue ```shell from transformers import TFAutoModel model = TFAutoModel.from_pretrained("bert-base-cased") model.save_pretrained("saved", max_shard_size="200MB") ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60776/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60776/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60775
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60775/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60775/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60775/events
https://github.com/tensorflow/tensorflow/issues/60775
1,740,241,874
I_kwDOArmXAs5nufvS
60,775
Problem after installing new version using pip
{ "login": "DaddyWesker", "id": 10774222, "node_id": "MDQ6VXNlcjEwNzc0MjIy", "avatar_url": "https://avatars.githubusercontent.com/u/10774222?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DaddyWesker", "html_url": "https://github.com/DaddyWesker", "followers_url": "https://api.github.com/users/DaddyWesker/followers", "following_url": "https://api.github.com/users/DaddyWesker/following{/other_user}", "gists_url": "https://api.github.com/users/DaddyWesker/gists{/gist_id}", "starred_url": "https://api.github.com/users/DaddyWesker/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DaddyWesker/subscriptions", "organizations_url": "https://api.github.com/users/DaddyWesker/orgs", "repos_url": "https://api.github.com/users/DaddyWesker/repos", "events_url": "https://api.github.com/users/DaddyWesker/events{/privacy}", "received_events_url": "https://api.github.com/users/DaddyWesker/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Can you run post the output of `python -m pip list` and `python -c 'import tensorflow'` run from the same environment?", "Pip list:\r\n![Screenshot from 2023-06-05 08-33-19](https://github.com/tensorflow/tensorflow/assets/10774222/715c2dac-3678-4ee1-a669-a922b0e58126)\r\n\r\nimport tensorflow:\r\n![Screenshot from 2023-06-05 08-33-31](https://github.com/tensorflow/tensorflow/assets/10774222/08c567dd-054e-4b5a-8f73-7acaf887bc5f)\r\n", "```\r\n_libgcc_mutex 0.1 main \r\n_openmp_mutex 5.1 1_gnu \r\nabsl-py 1.4.0 pypi_0 pypi\r\nastunparse 1.6.3 pypi_0 pypi\r\nca-certificates 2023.5.7 hbcca054_0 conda-forge\r\ncachetools 5.3.1 pypi_0 pypi\r\ncertifi 2023.5.7 pypi_0 pypi\r\ncharset-normalizer 3.1.0 pypi_0 pypi\r\ncudatoolkit 11.8.0 h6a678d5_0 \r\nflatbuffers 23.5.26 pypi_0 pypi\r\ngast 0.4.0 pypi_0 pypi\r\ngoogle-auth 2.19.1 pypi_0 pypi\r\ngoogle-auth-oauthlib 1.0.0 pypi_0 pypi\r\ngoogle-pasta 0.2.0 pypi_0 pypi\r\ngrpcio 1.54.2 pypi_0 pypi\r\nh5py 3.8.0 pypi_0 pypi\r\nidna 3.4 pypi_0 pypi\r\nimportlib-metadata 6.6.0 pypi_0 pypi\r\nkeras-nightly 2.14.0.dev2023060107 pypi_0 pypi\r\nld_impl_linux-64 2.38 h1181459_1 \r\nlibclang 16.0.0 pypi_0 pypi\r\nlibffi 3.4.4 h6a678d5_0 \r\nlibgcc-ng 11.2.0 h1234567_1 \r\nlibgomp 11.2.0 h1234567_1 \r\nlibstdcxx-ng 11.2.0 h1234567_1 \r\nmarkdown 3.4.3 pypi_0 pypi\r\nmarkupsafe 2.1.3 pypi_0 pypi\r\nncurses 6.4 h6a678d5_0 \r\nnumpy 1.24.3 pypi_0 pypi\r\noauthlib 3.2.2 pypi_0 pypi\r\nopenssl 1.1.1t h7f8727e_0 \r\nopt-einsum 3.3.0 pypi_0 pypi\r\npackaging 23.1 pypi_0 pypi\r\npip 23.0.1 py39h06a4308_0 \r\nprotobuf 4.23.2 pypi_0 pypi\r\npyasn1 0.5.0 pypi_0 pypi\r\npyasn1-modules 0.3.0 pypi_0 pypi\r\npython 3.9.16 h7a1cb2a_2 \r\nreadline 8.2 h5eee18b_0 \r\nrequests 2.31.0 pypi_0 pypi\r\nrequests-oauthlib 1.3.1 pypi_0 pypi\r\nrsa 4.9 pypi_0 pypi\r\nsetuptools 67.8.0 py39h06a4308_0 \r\nsix 1.16.0 pypi_0 pypi\r\nsqlite 3.41.2 h5eee18b_0 \r\ntb-nightly 2.14.0a20230603 pypi_0 pypi\r\ntensorboard-data-server 0.7.0 pypi_0 pypi\r\ntensorflow-io-gcs-filesystem 0.32.0 pypi_0 pypi\r\ntermcolor 2.3.0 pypi_0 pypi\r\ntf-estimator-nightly 2.14.0.dev2023060108 pypi_0 pypi\r\ntf-nightly 2.14.0.dev20230603 pypi_0 pypi\r\ntk 8.6.12 h1ccaba5_0 \r\ntyping-extensions 4.5.0 pypi_0 pypi\r\ntzdata 2023c h04d1e81_0 \r\nurllib3 1.26.16 pypi_0 pypi\r\nwerkzeug 2.3.4 pypi_0 pypi\r\nwheel 0.38.4 py39h06a4308_0 \r\nwrapt 1.15.0 pypi_0 pypi\r\nxz 5.4.2 h5eee18b_0 \r\nzipp 3.15.0 pypi_0 pypi\r\nzlib 1.2.13 h5eee18b_0 \r\n\r\n```\r\nConda list just in case", "So, this is using latest `tf-nightly`. I think there is an actual issue in these builds, but they are offered on a best effort basis, there is a rotation that looks at the build and tries to solve issues such as this before a release.\r\n\r\nCan you run the same on an environment where you use 2.13.0?", "@mihaimaruseac \r\nAs i said, I've met this problem using 2.11 and 2.12. Anyway, here is the output of those two commands. I've ran them on tensorflow 2.12 though, not 2.13.0. Pip tells me that there are only 2.13.0rc0, 2.13.0rc1are available. Do you want me to use them?\r\n\r\n![Screenshot from 2023-06-05 18-42-04](https://github.com/tensorflow/tensorflow/assets/10774222/e71e6f92-8e1c-4ddb-8e56-51c9413753b6)\r\n\r\n![Screenshot from 2023-06-05 18-42-22](https://github.com/tensorflow/tensorflow/assets/10774222/7d6814f1-4e71-4220-9b8e-01e95c0f5ef6)\r\n\r\n", "Yes, please try `rc1`. Your initial screenshots were showing nightly, that's why I asked for a released version.", "> Your initial screenshots were showing nightly\r\n\r\nThat is because firstly I've tested 2.12 and 2.11, then I've seen that issue template requires testing on tf-nightly and installed it instead of regular tf.\r\nAnyway, here is the outputs with 2.13.0rc1\r\n\r\n![Screenshot from 2023-06-05 19-02-57](https://github.com/tensorflow/tensorflow/assets/10774222/cfbddebd-7392-4853-a0d9-a5cdb4c03238)\r\n\r\n![Screenshot from 2023-06-05 19-03-03](https://github.com/tensorflow/tensorflow/assets/10774222/f24bc655-dffa-4cc8-a0ca-c7a64e0e9431)\r\n", "The missing symbols is `tensorflow::OpKernel::TraceString[abi:cxx11](tensorflow::OpKernelcontext const&, bool) const`\r\n\r\nThis makes me think you are combining wheels with the old C++ ABI and with the new one. Can you try recreating an empty environment and installing there?", "@mihaimaruseac \r\n\r\nThat is already recreated environment. I've deleted it and created again. It just has the same name.", "Does the issue reproduce if you use `venv` instead of *conda?", "Done. Same problem. tf is the venv's name.\r\n\r\n![Screenshot from 2023-06-07 08-33-02](https://github.com/tensorflow/tensorflow/assets/10774222/5c961772-1783-4441-8048-f210e35fb6ef)\r\n\r\n![Screenshot from 2023-06-07 08-33-08](https://github.com/tensorflow/tensorflow/assets/10774222/f8ca7021-1efa-4604-b4c5-d684b717aa5a)\r\n\r\n", "There must be something wrong in your environment, as I cannot reproduce:\r\n\r\n```console\r\nmihaimaruseac@ankh:/tmp$ rm -rf venv && python3 -m venv venv && source venv/bin/activate && pip install -q tensorflow==2.13.0rc1 && python -c \"import tensorflow as tf\"\r\n2023-06-07 10:44:45.071830: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-06-07 10:44:46.494478: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n(venv) mihaimaruseac@ankh:/tmp$ \r\n```\r\n\r\n\r\n```console\r\n(venv) mihaimaruseac@ankh:/tmp$ pip list\r\nPackage Version\r\n---------------------------- ---------\r\nabsl-py 1.4.0\r\nastunparse 1.6.3\r\ncachetools 5.3.1\r\ncertifi 2023.5.7\r\ncharset-normalizer 3.1.0\r\nflatbuffers 23.5.26\r\ngast 0.4.0\r\ngoogle-auth 2.19.1\r\ngoogle-auth-oauthlib 1.0.0\r\ngoogle-pasta 0.2.0\r\ngrpcio 1.54.2\r\nh5py 3.8.0\r\nidna 3.4\r\nkeras 2.13.1rc0\r\nlibclang 16.0.0\r\nMarkdown 3.4.3\r\nMarkupSafe 2.1.3\r\nnumpy 1.24.3\r\noauthlib 3.2.2\r\nopt-einsum 3.3.0\r\npackaging 23.1\r\npip 23.0.1\r\nprotobuf 4.23.2\r\npyasn1 0.5.0\r\npyasn1-modules 0.3.0\r\nrequests 2.31.0\r\nrequests-oauthlib 1.3.1\r\nrsa 4.9\r\nsetuptools 66.1.1\r\nsix 1.16.0\r\ntensorboard 2.13.0\r\ntensorboard-data-server 0.7.0\r\ntensorflow 2.13.0rc1\r\ntensorflow-estimator 2.13.0rc0\r\ntensorflow-io-gcs-filesystem 0.32.0\r\ntermcolor 2.3.0\r\ntyping_extensions 4.6.3\r\nurllib3 1.26.16\r\nWerkzeug 2.3.4\r\nwheel 0.40.0\r\nwrapt 1.15.0\r\n```\r\n\r\nYou do have some packages which don't exist on the fresh environment (`zipp` for example). You have 2 `nvidia-*` wheels which also don't exist but could be causing issues. And you have an old version of `setuptools` (try `python -m pip install --upgrade pip setuptools` and try again?)\r\n\r\nMy experiments are with python3.11.2:\r\n\r\n```console\r\n(venv) mihaimaruseac@ankh:/tmp$ python\r\nPython 3.11.2 (main, Feb 12 2023, 00:48:52) [GCC 12.2.0] on linux\r\nType \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>>> \r\n```", "I've used python 3.9 on conda env, on venv i'm using python 3.8. I've tried what you asked (upgrade setup tools), here are results.\r\n\r\n![Screenshot from 2023-06-08 08-07-56](https://github.com/tensorflow/tensorflow/assets/10774222/e3346932-9041-4c90-80ed-9372161375fd)\r\n\r\n![Screenshot from 2023-06-08 08-08-02](https://github.com/tensorflow/tensorflow/assets/10774222/3ec4d0e4-4cab-44e6-a555-f781f0947352)\r\n\r\n", "And preventing move, I've installed python 3.11 and created venv using it. Same.\r\n\r\n![Screenshot from 2023-06-08 08-30-12](https://github.com/tensorflow/tensorflow/assets/10774222/81c3808e-7dda-4a4b-83a0-c9ed1f2e3f1a)\r\n\r\n![Screenshot from 2023-06-08 08-39-08](https://github.com/tensorflow/tensorflow/assets/10774222/72e99ed7-f012-4e69-b96e-dcbe532a1475)\r\n\r\n", "~~Note that you skipped over the error in activating the virtual environment.~~ Edit: I reread the screenshot. In general, I'd recommend posting code/errors as formatted text, not images. Makes it easier to quote, cross-reference, search\r\n\r\nComing back to the issue, your last environment seems at a quick glance to be the same as mine. Will probably need to dig deeper into the binary, as it seems to be an issue specifically with your environment", "In the last virtualenvironment, if you do `cd tf/lib/python3.11/site-packages/tensorflow`, what is the output of `nm libtensorflow_cc.so.2 | grep _ZNK10tensorflow8OpKernel`?\r\n\r\nMine is\r\n\r\n```console\r\n...$ nm libtensorflow_cc.so.2 | grep _ZNK10tensorflow8OpKernel\r\n U _ZNK10tensorflow8OpKernel10InputRangeESt17basic_string_viewIcSt11char_traitsIcEEPiS5_\r\n U _ZNK10tensorflow8OpKernel11TraceStringB5cxx11ERKNS_15OpKernelContextEb\r\n000000000476d340 W _ZNK10tensorflow8OpKernel12const_tensorEv\r\n U _ZNK10tensorflow8OpKernel16ShapeTraceStringB5cxx11ERKNS_15OpKernelContextE\r\n```", "Same\r\n\r\n```\r\n U _ZNK10tensorflow8OpKernel10InputRangeESt17basic_string_viewIcSt11char_traitsIcEEPiS5_\r\n U _ZNK10tensorflow8OpKernel11TraceStringB5cxx11ERKNS_15OpKernelContextEb\r\n000000000476d340 W _ZNK10tensorflow8OpKernel12const_tensorEv\r\n U _ZNK10tensorflow8OpKernel16ShapeTraceStringB5cxx11ERKNS_15OpKernelContextE\r\n```\r\n![Screenshot from 2023-06-09 07-46-20](https://github.com/tensorflow/tensorflow/assets/10774222/f669880b-35cb-4269-b781-c4920f5f9add)\r\n", "I think I have an idea on what happens, but just to test, can you try `LD_DEBUG=libs python -c \"import tensorflow as tf\" 2>file` and then attach the file? It is a large file, estimated to be several hundreds lines, but should give an idea on what libraries are attempted to be loaded.", "Done\r\n[file.txt](https://github.com/tensorflow/tensorflow/files/11708280/file.txt)\r\n", "Hi, I am experiencing the same issue: I am running inside pyenv virtualenv with venv name tensorflow.\r\n```\r\npython\r\nPython 3.11.4 (main, Jul 22 2023, 12:30:49) [GCC 11.3.0] on linux\r\nType \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>>> import tensorflow as tf\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/__init__.py\", line 38, in <module>\r\n from tensorflow.python.tools import module_util as _module_util\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/__init__.py\", line 36, in <module>\r\n from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/pywrap_tensorflow.py\", line 26, in <module>\r\n self_check.preload_check()\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/platform/self_check.py\", line 63, in preload_check\r\n from tensorflow.python.platform import _pywrap_cpu_feature_guard\r\nImportError: /home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/platform/../../libtensorflow_cc.so.2: undefined symbol: _ZNK10tensorflow8OpKernel11TraceStringB5cxx11ERKNS_15OpKernelContextEb\r\n```\r\n\r\nHere is my environment:\r\n\r\n```\r\npython -m pip list\r\nPackage Version\r\n---------------------------- ---------\r\nabsl-py 1.4.0\r\nastunparse 1.6.3\r\ncachetools 5.3.1\r\ncertifi 2023.7.22\r\ncharset-normalizer 3.2.0\r\nflatbuffers 23.5.26\r\ngast 0.4.0\r\ngoogle-auth 2.22.0\r\ngoogle-auth-oauthlib 1.0.0\r\ngoogle-pasta 0.2.0\r\ngrpcio 1.56.2\r\nh5py 3.9.0\r\nidna 3.4\r\nkeras 2.13.1\r\nlibclang 16.0.6\r\nMarkdown 3.4.3\r\nMarkupSafe 2.1.3\r\nnumpy 1.24.3\r\noauthlib 3.2.2\r\nopt-einsum 3.3.0\r\npackaging 23.1\r\npip 23.2.1\r\nprotobuf 4.23.4\r\npyasn1 0.5.0\r\npyasn1-modules 0.3.0\r\nrequests 2.31.0\r\nrequests-oauthlib 1.3.1\r\nrsa 4.9\r\nsetuptools 65.5.0\r\nsix 1.16.0\r\ntensorboard 2.13.0\r\ntensorboard-data-server 0.7.1\r\ntensorflow 2.13.0\r\ntensorflow-estimator 2.13.0\r\ntensorflow-io-gcs-filesystem 0.32.0\r\ntermcolor 2.3.0\r\ntyping_extensions 4.5.0\r\nurllib3 1.26.16\r\nWerkzeug 2.3.6\r\nwheel 0.41.0\r\nwrapt 1.15.0\r\n```\r\nMachine:\r\n```\r\nsudo uname -a\r\nLinux johannes-guest-room 5.19.0-46-generic #47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2 x86_64 x86_64 x86_64 GNU/Linux\r\n```\r\nOutput of LD_DEBUG=libs python -c \"import tensorflow as tf\" 2>file.txt\r\n[file.txt](https://github.com/tensorflow/tensorflow/files/12136444/file.txt)\r\n\r\nHip", "Hi, I am experiencing the same issue: I am running inside pyenv virtualenv with venv name tensorflow.\r\n```\r\npython\r\nPython 3.11.4 (main, Jul 22 2023, 12:30:49) [GCC 11.3.0] on linux\r\nType \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>>> import tensorflow as tf\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/__init__.py\", line 38, in <module>\r\n from tensorflow.python.tools import module_util as _module_util\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/__init__.py\", line 36, in <module>\r\n from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/pywrap_tensorflow.py\", line 26, in <module>\r\n self_check.preload_check()\r\n File \"/home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/platform/self_check.py\", line 63, in preload_check\r\n from tensorflow.python.platform import _pywrap_cpu_feature_guard\r\nImportError: /home/johannes/.pyenv/versions/tensorflow/lib/python3.11/site-packages/tensorflow/python/platform/../../libtensorflow_cc.so.2: undefined symbol: _ZNK10tensorflow8OpKernel11TraceStringB5cxx11ERKNS_15OpKernelContextEb\r\n```\r\n\r\nHere is my environment:\r\n\r\n```\r\npython -m pip list\r\nPackage Version\r\n---------------------------- ---------\r\nabsl-py 1.4.0\r\nastunparse 1.6.3\r\ncachetools 5.3.1\r\ncertifi 2023.7.22\r\ncharset-normalizer 3.2.0\r\nflatbuffers 23.5.26\r\ngast 0.4.0\r\ngoogle-auth 2.22.0\r\ngoogle-auth-oauthlib 1.0.0\r\ngoogle-pasta 0.2.0\r\ngrpcio 1.56.2\r\nh5py 3.9.0\r\nidna 3.4\r\nkeras 2.13.1\r\nlibclang 16.0.6\r\nMarkdown 3.4.3\r\nMarkupSafe 2.1.3\r\nnumpy 1.24.3\r\noauthlib 3.2.2\r\nopt-einsum 3.3.0\r\npackaging 23.1\r\npip 23.2.1\r\nprotobuf 4.23.4\r\npyasn1 0.5.0\r\npyasn1-modules 0.3.0\r\nrequests 2.31.0\r\nrequests-oauthlib 1.3.1\r\nrsa 4.9\r\nsetuptools 65.5.0\r\nsix 1.16.0\r\ntensorboard 2.13.0\r\ntensorboard-data-server 0.7.1\r\ntensorflow 2.13.0\r\ntensorflow-estimator 2.13.0\r\ntensorflow-io-gcs-filesystem 0.32.0\r\ntermcolor 2.3.0\r\ntyping_extensions 4.5.0\r\nurllib3 1.26.16\r\nWerkzeug 2.3.6\r\nwheel 0.41.0\r\nwrapt 1.15.0\r\n```\r\nMachine:\r\n```\r\nsudo uname -a\r\nLinux johannes-guest-room 5.19.0-46-generic #47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2 x86_64 x86_64 x86_64 GNU/Linux\r\n```\r\nOutput of LD_DEBUG=libs python -c \"import tensorflow as tf\" 2>file.txt\r\n[file.txt](https://github.com/tensorflow/tensorflow/files/12136444/file.txt)\r\n\r\nHip\r\n\r\nAdditionally I tested a few other things but with no success:\r\n\r\nI noticed I had the ubuntu cuda toolkit installed which was 11 but the driver said 12. So I installed the latest 12.2 toolkit, but to no avail. I also Upgraded to a recent mainline kernel version 6.3.13, this also did not help.\r\nI am running out of ideas.", "Ha, found it. Another installation had `tensorflow_framework.so` put in the library path. To find this take the path after `Import Error:` and put `ldd` in front of it. It will show you the offending library. Remove it in any way you deem appropriate.\r\nIn my case it was wasmedge which was the culprit. @DaddyWesker This is likely a problem with your installation, too. Hih.", "@jmfrank63 Thanks, I will try.", "@jmfrank63 \r\nOkay, so which one of those libs i need to delete exactly? \r\n![image](https://github.com/tensorflow/tensorflow/assets/10774222/426f8dc5-cfe1-415c-ab88-6876396b3876)\r\n", "Hi DaddyWesker,\r\n\r\n For me it was libtensorflow_framework. Check if\r\n/lib/x86_64-linux-gnu/libtensorflow_framework.so.2 exists. Instead of\r\ndeleting, renaming is better, as you can undo it.\r\n\r\nhih Johannes\r\n\r\nDipl.-Ing. (FH) Johannes-Maria Frank\r\nMaster CS UCL Birkbeck\r\n30 Craster Square\r\nNewcastle upon Tyne\r\nNE3 3PL\r\nUnited Kingdom\r\nphone: +447400987848\r\ne-mail: ***@***.***\r\n\r\n\r\n\r\nOn Mon, Jul 24, 2023 at 11:19 AM DaddyWesker ***@***.***>\r\nwrote:\r\n\r\n> @jmfrank63 <https://github.com/jmfrank63>\r\n> Okay, so which one of those libs i need to delete exactly?\r\n> [image: image]\r\n> <https://user-images.githubusercontent.com/10774222/255560808-426f8dc5-cfe1-415c-ab88-6876396b3876.png>\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/tensorflow/tensorflow/issues/60775#issuecomment-1647629818>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AAXSQHQOWIELOKD5GDSET6TXRZD3HANCNFSM6AAAAAAYZZZW7E>\r\n> .\r\n> You are receiving this because you were mentioned.Message ID:\r\n> ***@***.***>\r\n>\r\n", "Well, for some reason renaming \r\n/lib/libtensorflow_framework.so.2\r\ndoes made a trick. At least tf is importing now and examples like \r\n```\r\npython3 -c \"import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))\"\r\npython3 -c \"import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))\"\r\n```\r\nworks well. I need to check it on some sort of NN. If everything is fine, then I'll close the issue. But still, why this so file is generating then when installing TF at the first place?..", "Thanks for debugging the issue! It seems this is a new side effect that arises when you mix global TF installations with installs in a virtual environment. We recommend all TF installs should be done in a venv to prevent these contagions.\r\n\r\nTF has a large C++ component that needs to be shipped with the wheel in order for users to use it. We could have localized the shared lib (`.so` file) to within the wheel (like smaller `.so`s are), but `libtensorflow_framework` is needed also if you want to do TF from other languages. So, for example, if you want to use TF from, say, Rust, you'd install the wheel, then tell your build process to link against this `.so` (and a few others).\r\n\r\nThere is no standard channel for distributing C++ artifacts, so it was decided to distribute them via the wheel and a GCS bucket. Recently, to reduce the number of builds, the GCS bucket was discontinued, so now users can get the shared objects only via the wheel.\r\n\r\nOverall, this issue points to a new debugging item for similar issues: we should ask users to confirm whether they have global TF installations or everything is in a venv. ", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60775\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60775\">No</a>\n" ]
2023-06-04T08:44:57
2023-07-25T03:34:58
2023-07-25T03:34:56
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.11 and 2.12 ### Custom Code No ### OS Platform and Distribution Linux mint 20.1 ### Mobile device - ### Python version 3.9 ### Bazel version - ### GCC/Compiler version - ### CUDA/cuDNN version 11.8.0 from anaconda / nvidia-cudnn-cu11==8.6.0.163 (from pip) ### GPU model and memory rtx 3070 mobile 8 gb vram, 32 gb ram ### Current Behaviour? After installing using this tutorial https://www.tensorflow.org/install/pip#linux i can't import tensorflow. Here is an error. ![image](https://github.com/tensorflow/tensorflow/assets/10774222/65d07dca-b143-4cd9-8649-c965cac744fb) I've tried with 2.11, 2.12 TF installed using pip. If I'm trying to install tf-nightly, then I've got another error ![image](https://github.com/tensorflow/tensorflow/assets/10774222/45941dc6-da20-4b19-a75c-c77d221035e7) ### Standalone code to reproduce the issue ```shell import tensorflow as tf ``` ### Relevant log output ```shell >>> import tensorflow Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/daddywesker/anaconda3/envs/stdfex/lib/python3.9/site-packages/tensorflow/__init__.py", line 37, in <module> from tensorflow.python.tools import module_util as _module_util File "/home/daddywesker/anaconda3/envs/stdfex/lib/python3.9/site-packages/tensorflow/python/__init__.py", line 36, in <module> from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow File "/home/daddywesker/anaconda3/envs/stdfex/lib/python3.9/site-packages/tensorflow/python/pywrap_tensorflow.py", line 26, in <module> self_check.preload_check() File "/home/daddywesker/anaconda3/envs/stdfex/lib/python3.9/site-packages/tensorflow/python/platform/self_check.py", line 63, in preload_check from tensorflow.python.platform import _pywrap_cpu_feature_guard ImportError: /home/daddywesker/anaconda3/envs/stdfex/lib/python3.9/site-packages/tensorflow/python/platform/../../libtensorflow_cc.so.2: undefined symbol: _ZNK10tensorflow8OpKernel11TraceStringB5cxx11ERKNS_15OpKernelContextEb ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60775/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60775/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60774
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60774/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60774/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60774/events
https://github.com/tensorflow/tensorflow/pull/60774
1,740,179,147
PR_kwDOArmXAs5SHDql
60,774
1 fie added
{ "login": "akansha112", "id": 95122024, "node_id": "U_kgDOBatyaA", "avatar_url": "https://avatars.githubusercontent.com/u/95122024?v=4", "gravatar_id": "", "url": "https://api.github.com/users/akansha112", "html_url": "https://github.com/akansha112", "followers_url": "https://api.github.com/users/akansha112/followers", "following_url": "https://api.github.com/users/akansha112/following{/other_user}", "gists_url": "https://api.github.com/users/akansha112/gists{/gist_id}", "starred_url": "https://api.github.com/users/akansha112/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/akansha112/subscriptions", "organizations_url": "https://api.github.com/users/akansha112/orgs", "repos_url": "https://api.github.com/users/akansha112/repos", "events_url": "https://api.github.com/users/akansha112/events{/privacy}", "received_events_url": "https://api.github.com/users/akansha112/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60774/checks?check_run_id=13985733590) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request." ]
2023-06-04T06:35:07
2023-06-04T06:37:28
2023-06-04T06:37:28
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60774", "html_url": "https://github.com/tensorflow/tensorflow/pull/60774", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60774.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60774.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60774/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60774/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60773
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60773/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60773/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60773/events
https://github.com/tensorflow/tensorflow/issues/60773
1,739,874,875
I_kwDOArmXAs5ntGI7
60,773
inconsistent .proto file package names break gRPC message/field parsing in Wireshark
{ "login": "jrmcclurg", "id": 1750670, "node_id": "MDQ6VXNlcjE3NTA2NzA=", "avatar_url": "https://avatars.githubusercontent.com/u/1750670?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jrmcclurg", "html_url": "https://github.com/jrmcclurg", "followers_url": "https://api.github.com/users/jrmcclurg/followers", "following_url": "https://api.github.com/users/jrmcclurg/following{/other_user}", "gists_url": "https://api.github.com/users/jrmcclurg/gists{/gist_id}", "starred_url": "https://api.github.com/users/jrmcclurg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jrmcclurg/subscriptions", "organizations_url": "https://api.github.com/users/jrmcclurg/orgs", "repos_url": "https://api.github.com/users/jrmcclurg/repos", "events_url": "https://api.github.com/users/jrmcclurg/events{/privacy}", "received_events_url": "https://api.github.com/users/jrmcclurg/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-06-03T20:22:40
2023-06-06T18:25:20
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 18.04 ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? As noted in #12445, there is inconsistency among the package names in the TensorFlow `.proto` files. Searching for `.proto` file package declarations within the codebase reveals a wide variety of package names, including `tensorflow.dummy`. https://github.com/search?q=repo%3Atensorflow%2Ftensorflow+%22package+tensorflow%22&type=code&p=2 This has a problematic effect when trying to parse the Protobuf fields in TensorFlow gRPC messages within the [Wireshark](https://www.wireshark.org/) network capturing tool. In Wireshark, the built-in parsing functionality requires the package/service names within the `.proto` files to match the package/service names in the captured gRPC messages, so currently, [CoordinationService](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tsl/protobuf/coordination_service.proto) (`package tensorflow`) messages parse properly, while message types and field names in [WorkerService](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/worker_service.proto) (`package tensorflow.grpc`) messages cannot be parsed, and appear as _unknown_. Current workaround: using a script to replace all instances of `"tensorflow.grpc"` with `"tensorflow"` in the `.proto` files. ### Standalone code to reproduce the issue ```shell https://github.com/tensorflow/tensorflow/blob/d0863698de84277282df6f2865795aaa1e22ace5/tensorflow/tsl/protobuf/coordination_service.proto#L3 https://github.com/tensorflow/tensorflow/blob/d0863698de84277282df6f2865795aaa1e22ace5/tensorflow/core/protobuf/worker_service.proto#L18 ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60773/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60773/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60772
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60772/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60772/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60772/events
https://github.com/tensorflow/tensorflow/issues/60772
1,739,754,374
I_kwDOArmXAs5nsouG
60,772
Inefficient count_nonzero
{ "login": "ngc92", "id": 7938269, "node_id": "MDQ6VXNlcjc5MzgyNjk=", "avatar_url": "https://avatars.githubusercontent.com/u/7938269?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ngc92", "html_url": "https://github.com/ngc92", "followers_url": "https://api.github.com/users/ngc92/followers", "following_url": "https://api.github.com/users/ngc92/following{/other_user}", "gists_url": "https://api.github.com/users/ngc92/gists{/gist_id}", "starred_url": "https://api.github.com/users/ngc92/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ngc92/subscriptions", "organizations_url": "https://api.github.com/users/ngc92/orgs", "repos_url": "https://api.github.com/users/ngc92/repos", "events_url": "https://api.github.com/users/ngc92/events{/privacy}", "received_events_url": "https://api.github.com/users/ngc92/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ngc92 ,\r\n\r\nI have replicated the reported behaviour on CPU runtime as per attached [cpu-gist](https://colab.research.google.com/gist/SuryanarayanaY/39d9263b1b84cd59ddad059140e29ae6/60772_cpu.ipynb).\r\n\r\nBut with GPU runtime the case is totally different. With `uint32` as dtype actually it is taking much more time than `int64` since some Ops with `unit32` as dtype are not supported on GPU . It seems this API implementation supports `int64` for best performance. I tried with `int32` also where performance is not good at all compared to `int64` even though all Ops ran on GPU only. I have attached all the results in the attached [gpu-gist](https://colab.research.google.com/gist/SuryanarayanaY/2d9a40aeb2c35f2ae8363b8d58c8a16e/60772_gpu.ipynb).\r\n\r\nPlease go through the results and shave your views. Thanks!\r\n", "@SuryanarayanaY \r\nThanks for the replication. \r\n\r\nFirst, your results seem to confirm that skipping the redundant comparison with zero leads to a measureable improvement in performance in both cases, so that should be a relatively straightforward improvement.\r\n\r\nThe missing GPU kernels make the other improvements more tricky, though.\r\n\r\nI've now run the current `count_nonzeros` implementation also on GPU under the tf profiler, with the following results:\r\n```\r\nKernel Name Op Name Total Avg Min Max\r\nCast_GPU_DT_BOOL_DT_INT64_kernel count_nonzero/Cast 12,488 4,162 4,018 4,303\r\ncub::DeviceSegmentedReduceKernel count_nonzero/Sum 9,973 3,324 3,249 3,470\r\nNotEqual_GPU_DT_BOOL_DT_BOOL_kernel count_nonzero/NotEqual 7,768 2,589 2,429 2,907\r\n```\r\nAs you can see, the conversion to int64 actually takes *more* time than the reduction itself." ]
2023-06-03T18:23:30
2023-07-19T21:14:27
null
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Performance ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The current implementation of `tf.math.count_nonzero` is extremely inefficient, when trying to count how often a boolean condition is true in a large tensor. This is because the operation first converts the boolean tensor into `tf.int64`, before feeding it to `tf.reduce_sum`. As that is an operation that is entirely bandwidth-bound, instead of transferring `n` bytes for an input of `n` elements, now it has to transfer `n + 8n` for the cast operation, and an additional `8n` for the reduction, making this 17 times (!!) more inefficient than it needs to be. The benchmark below show the following: 1) Plain `count_nonzero` 2) The same implementation as count_nonzero, except that a superfluous comparison with zero is omitted (which is needed for other data types to convert to bool, but appears to not be optimized away even if the tensor is already of bool type). This gives a small speed-up 3) Use `uint32` as accumulation type, instead of `int64`. This shows the tremendous effect of bandwidth. Here are a few suggestions for improvements, in increasing order of difficulty: 1) If the input is already of bool type, there is no need to do `gen_math_ops.not_equal(input, zero)` 2) if the input is of bool type and has less than 2**32 elements, use `uint32` as the accumulator, instead of `int64` 3) implement a dedicated `count_nonzero` op that directly performs the reduction on boolean tensors 4) implement a generic `reduce_sum` that can have a different accumulator than the input type. This could also be helpful, e.g., for summing up lots of float/half values, where one would like to keep the error in check by using double/float accumulation. If there is interest, I can provide a patch for 1 and 2. I'm not sure about 3, as I guess this new op would need to be implemented for CPU, GPU and TPU for this to make sense. ### Standalone code to reproduce the issue ```shell Here is a very simple benchmark that illustrates the issue: import tensorflow as tf import time print("TF VERSION", tf.version.VERSION) data = tf.random.uniform(shape=(32, 1000000)) predicate = tf.greater(data, 0.5) start = time.time() for _ in range(100): a = tf.math.count_nonzero(predicate, axis=1) print(time.time() - start) start = time.time() for _ in range(100): a = tf.math.reduce_sum(tf.cast(predicate, tf.int64), axis=1) print(time.time() - start) start = time.time() for _ in range(100): a = tf.math.reduce_sum(tf.cast(predicate, tf.uint32), axis=1) print(time.time() - start) ``` ### Relevant log output ```shell TF VERSION 2.12.0 4.673052549362183 4.253457069396973 2.3325610160827637 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60772/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60772/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60771
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60771/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60771/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60771/events
https://github.com/tensorflow/tensorflow/pull/60771
1,739,172,105
PR_kwDOArmXAs5SDg5c
60,771
make building //tensorflow/lite/c:tensorflowlite_c works again
{ "login": "freedomtan", "id": 3395998, "node_id": "MDQ6VXNlcjMzOTU5OTg=", "avatar_url": "https://avatars.githubusercontent.com/u/3395998?v=4", "gravatar_id": "", "url": "https://api.github.com/users/freedomtan", "html_url": "https://github.com/freedomtan", "followers_url": "https://api.github.com/users/freedomtan/followers", "following_url": "https://api.github.com/users/freedomtan/following{/other_user}", "gists_url": "https://api.github.com/users/freedomtan/gists{/gist_id}", "starred_url": "https://api.github.com/users/freedomtan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/freedomtan/subscriptions", "organizations_url": "https://api.github.com/users/freedomtan/orgs", "repos_url": "https://api.github.com/users/freedomtan/repos", "events_url": "https://api.github.com/users/freedomtan/events{/privacy}", "received_events_url": "https://api.github.com/users/freedomtan/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "I am able to compile locally w/ these changes" ]
2023-06-03T05:05:27
2023-06-14T19:47:39
2023-06-14T19:47:39
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60771", "html_url": "https://github.com/tensorflow/tensorflow/pull/60771", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60771.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60771.patch", "merged_at": "2023-06-14T19:47:39" }
fix #60745. As described in the #60475, `bazel build //tensorflow/lite/c:tensorflowlite_c` doesn't work as on macOS. This PR implemented what suggested by @pkgoogle in issue #60475
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60771/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60771/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60770
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60770/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60770/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60770/events
https://github.com/tensorflow/tensorflow/pull/60770
1,739,148,143
PR_kwDOArmXAs5SDba7
60,770
[tflite] enable passing fused activation function in TransposeConv in NNAPI delegate
{ "login": "freedomtan", "id": 3395998, "node_id": "MDQ6VXNlcjMzOTU5OTg=", "avatar_url": "https://avatars.githubusercontent.com/u/3395998?v=4", "gravatar_id": "", "url": "https://api.github.com/users/freedomtan", "html_url": "https://github.com/freedomtan", "followers_url": "https://api.github.com/users/freedomtan/followers", "following_url": "https://api.github.com/users/freedomtan/following{/other_user}", "gists_url": "https://api.github.com/users/freedomtan/gists{/gist_id}", "starred_url": "https://api.github.com/users/freedomtan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/freedomtan/subscriptions", "organizations_url": "https://api.github.com/users/freedomtan/orgs", "repos_url": "https://api.github.com/users/freedomtan/repos", "events_url": "https://api.github.com/users/freedomtan/events{/privacy}", "received_events_url": "https://api.github.com/users/freedomtan/received_events", "type": "User", "site_admin": false }
[ { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @terryheo Can you please review this PR ? Thank you!" ]
2023-06-03T04:31:04
2023-09-01T05:50:55
2023-09-01T05:50:54
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60770", "html_url": "https://github.com/tensorflow/tensorflow/pull/60770", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60770.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60770.patch", "merged_at": "2023-09-01T05:50:54" }
NNAPI supports fused activation. Enabling it so that there won't be messages like: ``` INFO: NNAPI delegate created. WARNING: Operator TRANSPOSE_CONV (v4) refused by NNAPI delegate: OP Version higher than 3 WARNING: Operator TRANSPOSE_CONV (v4) refused by NNAPI delegate: OP Version higher than 3 ..... ``` Note that `TRANSPOSE_CONV (v4)` means there is fused activation function, https://github.com/tensorflow/tensorflow/blob/r2.13/tensorflow/lite/tools/versioning/op_version.cc#L337-L341
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60770/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60770/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60769
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60769/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60769/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60769/events
https://github.com/tensorflow/tensorflow/pull/60769
1,738,890,181
PR_kwDOArmXAs5SCiSg
60,769
[tosa] Fix wrong output shape for AddOp QI16 LogicalLeftShift
{ "login": "Jerry-Ge", "id": 24451859, "node_id": "MDQ6VXNlcjI0NDUxODU5", "avatar_url": "https://avatars.githubusercontent.com/u/24451859?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Jerry-Ge", "html_url": "https://github.com/Jerry-Ge", "followers_url": "https://api.github.com/users/Jerry-Ge/followers", "following_url": "https://api.github.com/users/Jerry-Ge/following{/other_user}", "gists_url": "https://api.github.com/users/Jerry-Ge/gists{/gist_id}", "starred_url": "https://api.github.com/users/Jerry-Ge/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jerry-Ge/subscriptions", "organizations_url": "https://api.github.com/users/Jerry-Ge/orgs", "repos_url": "https://api.github.com/users/Jerry-Ge/repos", "events_url": "https://api.github.com/users/Jerry-Ge/events{/privacy}", "received_events_url": "https://api.github.com/users/Jerry-Ge/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-06-02T22:26:56
2023-06-07T00:30:33
2023-06-07T00:30:32
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60769", "html_url": "https://github.com/tensorflow/tensorflow/pull/60769", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60769.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60769.patch", "merged_at": "2023-06-07T00:30:32" }
Found a legalization issue for ADD operator QI16 tensors Example: Previously: (output_shape is wrong) %2 = "tosa.logical_left_shift"(%1, %0) : (tensor<14x1xi32>, tensor<1x1xi32>) -> tensor<14x19xi32> Now: %2 = "tosa.logical_left_shift"(%1, %0) : (tensor<14x1xi32>, tensor<1x1xi32>) -> tensor<14x1xi32>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60769/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60769/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60768
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60768/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60768/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60768/events
https://github.com/tensorflow/tensorflow/issues/60768
1,738,576,205
I_kwDOArmXAs5noJFN
60,768
Cannot tune sequential model given get different results for each run
{ "login": "fickas", "id": 1501481, "node_id": "MDQ6VXNlcjE1MDE0ODE=", "avatar_url": "https://avatars.githubusercontent.com/u/1501481?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fickas", "html_url": "https://github.com/fickas", "followers_url": "https://api.github.com/users/fickas/followers", "following_url": "https://api.github.com/users/fickas/following{/other_user}", "gists_url": "https://api.github.com/users/fickas/gists{/gist_id}", "starred_url": "https://api.github.com/users/fickas/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fickas/subscriptions", "organizations_url": "https://api.github.com/users/fickas/orgs", "repos_url": "https://api.github.com/users/fickas/repos", "events_url": "https://api.github.com/users/fickas/events{/privacy}", "received_events_url": "https://api.github.com/users/fickas/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "It is common for the results of a machine learning model to vary slightly between runs, even when setting random seeds to a constant. While setting random seeds can help control for some sources of randomness and make your results more consistent between runs, it is still possible for the results to vary slightly. This is normal and to be expected. also the weights of a machine learning model will not be exactly the same after each run. The weights are initialized randomly at the beginning of training and are updated during training based on the data and the optimization algorithm used. As a result, the final weights of the model can vary slightly between runs.\r\nI can see that the results you got were not changing significantly. \r\nHopefully this was helpful", "@fickas,\r\nThe only sources of randomness in Keras are from Numpy's random module (weight inits) and from Theano (and those are all seeded with Numpy's random), e.g. dropout. Seeding the Numpy RNG should work.\r\n\r\nAlso by default Keras's model.compile() sets the shuffle argument as True. You should the set numpy seed before importing keras. e.g.:\r\n\r\n```\r\nimport numpy as np\r\nnp.random.seed(1337) # for reproducibility\r\nfrom keras.models import Sequential\r\n```\r\n\r\nI can see that most of the provided Keras examples follow this pattern. Thank you!\r\n\r\n", "Still a bit concerned about tuning. When I ran simple tuning algorithm on a Sequential model, I came out with different architectures as best on every rerun, i.e., different number of layers and different nodes in each layer. It is kind of hard to average architectures across reruns.\r\n\r\nMy conjecture is this will also affect sklearn tuning algorithms, e.g., RandomSearch and HalvingSearch. They will not produce consistent \"best parameters\" on rerun. I plan to test this out in next couple days. I feel I am missing something because I would expect a hue and cry from the community if tuning libraries stopped working as expected and I have not seen any complaints.\r\n\r\nAlso, it still seems something changed in a version update. As I said, I would get consistent results with early versions of 2, but an update to latest 2 version changed things.\r\n\r\nI did just try installing v2.8, and I now get consistent results with RandomSearchCV. When I use 2.12, I do not. So it appears something changed between 2.8 and 2.12.", "@fickas,\r\nThank you for opening this issue. Development of keras moved to another [repository](https://github.com/keras-team/keras/issues). \r\n\r\n\r\nCould you please post this issue on keras-team/keras [repo](https://github.com/keras-team/keras/issues).\r\nTo know more please refer:\r\nhttps://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999\r\nThank you!\r\n", "Calling [tf.keras.utils.set_random_seed](https://www.tensorflow.org/api_docs/python/tf/keras/utils/set_random_seed) sets the Python seed, the NumPy seed, and the TensorFlow seed. Setting these seeds is necessary to ensure any random numbers your program generates are also deterministic.\r\n\r\nI tried to execute the code with the alternative approach by using tf.keras.utils.set_random_seed, and I was getting the same result while executing the mentioned code. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/d906cd28355958b4ea371cee7ba2866a/different_results.ipynb).\r\n\r\nCould you please have a look at this official document for reference.\r\nhttps://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism\r\n\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60768\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60768\">No</a>\n" ]
2023-06-02T17:45:29
2023-07-07T02:08:34
2023-07-07T02:08:31
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12 ### Custom Code No ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I am trying to tune a sequential model. But if I rerun my tuning code, I get a different result for "best parameters" each time. I am not using GPUs. I have seeds set to a constant. My tuning code ran fine under an earlier tf version. But when I updated to latest, it stopped producing replicable results. Did a specific version give up on replicability? Is there a workaround for tuning? ### Standalone code to reproduce the issue ```shell https://colab.research.google.com/drive/1wxa5PCf7kQhTKrDFlbehq-k8MGAQpwkK?usp=sharing ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60768/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60768/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60767
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60767/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60767/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60767/events
https://github.com/tensorflow/tensorflow/pull/60767
1,738,488,447
PR_kwDOArmXAs5SBKYA
60,767
r2.13 cherry-pick: 8817a75d402 "Limit typing_extensions to less than 4.6.0 until it works"
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-06-02T16:30:02
2023-06-06T23:38:44
2023-06-06T23:36:28
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60767", "html_url": "https://github.com/tensorflow/tensorflow/pull/60767", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60767.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60767.patch", "merged_at": "2023-06-06T23:36:28" }
Refer to the original commit: https://github.com/tensorflow/tensorflow/commit/8817a75d402a37d1c97731f5046734395d42aebb
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60767/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60767/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60766
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60766/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60766/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60766/events
https://github.com/tensorflow/tensorflow/issues/60766
1,738,087,469
I_kwDOArmXAs5nmRwt
60,766
Inconsistency-bug in `tf.raw_ops.AdjustContrastv2` between jit mode and normal mode
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "https://colab.research.google.com/drive/1hIBJgTy9YCUJFhUFzrRoL1MpsgjnQdgA?usp=sharing\r\nYou can see this notebook in Colab. Hope this will be helpful.", "Thanks for your reply!\r\nBut I'm thinking that if the results should be equal no matter it is under jit compile or not which means for the same input, it should not produce different results? ", "You are right. I understand the point now \r\nReducing the value of maxval to 1000 produces the same results for both functions. Large values can sometimes cause numerical instability in floating-point computations.", "The difference increases as the maxval becomes bigger. I think there is no bug, it’s just the way that the XLA compiler optimizes the function when it is compiled", "@Lyutoon,\r\nI tried to execute the mentioned code with the maxval==1000, and it was executed without any issue/error. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/fe55ac7c58f73db923d2d8bbe2665b06/untitled1187.ipynb).\r\n\r\nWhereas when I tried to provide the large input for the maxval it is failing with the assertion error.\r\nmaxval: A Tensor or Python value of type dtype, broadcastable with shape (for integer types, broadcasting is not supported, so it needs to be a scalar). The upper bound on the range of random values to generate (exclusive). Defaults to 1 if dtype is floating point.\r\nhttps://www.tensorflow.org/api_docs/python/tf/random/uniform\r\n\r\nUsing all available RAM is not an issue that we should spend time on, since in this case this is similar to user calling **malloc(a_very_huge_number)** and then expecting this to work.\r\n\r\nThere's a difference if a small input can generate a large memory allocation, but this doesn't seem to be case. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60766\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60766\">No</a>\n" ]
2023-06-02T12:09:25
2023-06-21T01:58:39
2023-06-21T01:58:37
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? There is an inconsistency bug between **jit compile mode** and **normal mode** in `tf.raw_ops.AdjustContrastv2` which result in inconsistent computational result. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np images=tf.random.uniform([1, 1, 1], dtype=tf.dtypes.float32, maxval=100000000) contrast_factor=tf.random.uniform([], dtype=tf.dtypes.float32, maxval=100000000) @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.AdjustContrastv2( images = images, contrast_factor=contrast_factor ) return y def fuzz_normal(): y = tf.raw_ops.AdjustContrastv2( images = images, contrast_factor=contrast_factor ) return y y1 = fuzz_jit() print('[+] JIT ok') y2 = fuzz_normal() print('[+] Normal ok') np.testing.assert_allclose(y1.numpy(), y2.numpy(), rtol=1e-4, atol=1e-4) # cause extramely different output ``` ### Relevant log output ```shell % python test.py [+] JIT ok [+] Normal ok Traceback (most recent call last): File "test.py", line 28, in <module> np.testing.assert_allclose(y1.numpy(), y2.numpy(), rtol=1e-4, atol=1e-4) File "/usr/local/lib/python3.8/dist-packages/numpy/testing/_private/utils.py", line 1530, in assert_allclose assert_array_compare(compare, actual, desired, err_msg=str(err_msg), File "/usr/local/lib/python3.8/dist-packages/numpy/testing/_private/utils.py", line 844, in assert_array_compare raise AssertionError(msg) AssertionError: Not equal to tolerance rtol=0.0001, atol=0.0001 Mismatched elements: 1 / 1 (100%) Max absolute difference: 1.6265184e+08 Max relative difference: 2.9464307 x: array([[[-1.074488e+08]]], dtype=float32) y: array([[[55203008.]]], dtype=float32) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60766/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60766/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60765
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60765/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60765/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60765/events
https://github.com/tensorflow/tensorflow/issues/60765
1,737,972,407
I_kwDOArmXAs5nl1q3
60,765
Inconsistency-bug in `tf.raw_ops.AddN` between jit mode and normal mode
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Lyutoon ,\r\n\r\nI have replicated the reported behaviour of `tf.raw_ops.AddN` and attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/0f02aed16b2b7bd6b8255dc12e4cda04/60765_nightly.ipynb) here. Inconsistency observed with dtype=half and when checked with `float32` or `float64` there is no inconsistency. It might be related to the precision error of dtypes because when we see the relative difference in results it is `~0.0052%`. We need to hear it from Developer team for confirmation on this.\r\n\r\nThanks!" ]
2023-06-02T10:59:11
2023-06-06T06:44:44
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? There is an inconsistency bug between **jit compile mode** and **normal mode** in `tf.raw_ops.AddN` which result in inconsistent computational result especially when the data type is `half`. But expectedly, the computational result have to be the same. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np inputs = 44 * [tf.random.uniform([1, 2, 4, 3], dtype=tf.dtypes.half, maxval=1000)] # the half datatype! @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.AddN( inputs = inputs ) return y def fuzz_normal(): y = tf.raw_ops.AddN( inputs = inputs ) return y y1 = fuzz_jit() print('[+] JIT ok') y2 = fuzz_normal() print('[+] Normal ok') np.testing.assert_allclose(y1.numpy(), y2.numpy(), rtol=1e-4, atol=1e-4) ``` ### Relevant log output ```shell % python test.py [+] JIT ok [+] Normal ok Traceback (most recent call last): File "test.py", line 25, in <module> np.testing.assert_allclose(y1.numpy(), y2.numpy(), rtol=1e-4, atol=1e-4) File "/usr/local/lib/python3.8/dist-packages/numpy/testing/_private/utils.py", line 1530, in assert_allclose assert_array_compare(compare, actual, desired, err_msg=str(err_msg), File "/usr/local/lib/python3.8/dist-packages/numpy/testing/_private/utils.py", line 844, in assert_array_compare raise AssertionError(msg) AssertionError: Not equal to tolerance rtol=0.0001, atol=0.0001 Mismatched elements: 20 / 24 (83.3%) Max absolute difference: 160. Max relative difference: 0.004887 x: array([[[[14864., 41344., 39872.], [ 2492., 6852., 17664.], [17344., 33216., 39968.],... y: array([[[[14912., 41376., 39808.], [ 2488., 6824., 17696.], [17408., 33280., 40096.],... ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60765/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60765/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60764
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60764/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60764/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60764/events
https://github.com/tensorflow/tensorflow/issues/60764
1,737,959,179
I_kwDOArmXAs5nlycL
60,764
Inconsistency-bug in `tf.raw_ops.Acos` between jit mode and normal mode
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@Lyutoon,\r\nI tried to execute the mentioned code with the alternative approaches and **tf.raw_ops.Acos** was working as intended. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/1b911ada40ba7e2723712f36b745242c/untitled1188.ipynb).\r\n\r\nAlso the Assertion error would raise **If actual and desired are not equal up to specified precision.** for `numpy.testing.assert_allclose`\r\n\r\nhttps://numpy.org/doc/stable/reference/generated/numpy.testing.assert_allclose.html\r\nThank you!", "Hi @tilakrayal \r\nThanks for your reply! I've checked your colab code. But the main reason I open this issue is that the outputs between JIT mode and normal mode corresponding to the same input are inconsistent. However, from my perspective, no matter when, the operator must produce the same output when it is given the same input.\r\nWhat do you think?\r\nThanks!" ]
2023-06-02T10:50:29
2023-06-26T19:21:17
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? There is an inconsistency bug between **jit compile mode** and **normal mode** in `tf.raw_ops.Acos` which result in inconsistent computational result (mainly occur while dtype is complex, it seems that there are something wrong in the support of complex number). But expectedly, the computational result have to be the same. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np x = tf.cast(tf.random.uniform([2, 1, 3, 4], dtype=tf.dtypes.float32, maxval=60000), dtype=tf.complex128) @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.Acos( x = x ) return y def fuzz_normal(): y = tf.raw_ops.Acos( x = x ) return y y1 = fuzz_jit() print('[+] JIT ok') y2 = fuzz_normal() print('[+] Normal ok') np.testing.assert_allclose(y1.numpy(), y2.numpy(), rtol=1e-4, atol=1e-4) ``` ### Relevant log output ```shell % python test.py [+] JIT ok [+] Normal ok Traceback (most recent call last): File "test.py", line 25, in <module> np.testing.assert_allclose(y1.numpy(), y2.numpy(), rtol=1e-4, atol=1e-4) File "/usr/local/lib/python3.8/dist-packages/numpy/testing/_private/utils.py", line 1530, in assert_allclose assert_array_compare(compare, actual, desired, err_msg=str(err_msg), File "/usr/local/lib/python3.8/dist-packages/numpy/testing/_private/utils.py", line 844, in assert_array_compare raise AssertionError(msg) AssertionError: Not equal to tolerance rtol=0.0001, atol=0.0001 Mismatched elements: 24 / 24 (100%) Max absolute difference: 23.34874158 Max relative difference: 2.00000002 x: array([[[[4.020810e-07+11.649195j, 3.918355e-07+11.63629j , 6.167066e-09 +9.56048j , 2.750275e-10 +8.005427j], [3.286194e-07+11.548319j, 8.673153e-08+10.882277j,... y: array([[[[0.-11.649196j, 0.-11.63629j , 0. -9.56048j , 0. -8.005427j], [0.-11.548319j, 0.-10.882278j, 0.-10.521193j, 0.-10.125081j], [0.-10.732039j, 0. -7.92731j , 0.-11.674371j, 0.-11.332818j]]],... ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60764/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60764/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60763
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60763/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60763/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60763/events
https://github.com/tensorflow/tensorflow/issues/60763
1,737,880,660
I_kwDOArmXAs5nlfRU
60,763
acces to Tensor("IteratorGetNext:1", shape=(None, 1), dtype=float32)
{ "login": "marouaneamz", "id": 53240092, "node_id": "MDQ6VXNlcjUzMjQwMDky", "avatar_url": "https://avatars.githubusercontent.com/u/53240092?v=4", "gravatar_id": "", "url": "https://api.github.com/users/marouaneamz", "html_url": "https://github.com/marouaneamz", "followers_url": "https://api.github.com/users/marouaneamz/followers", "following_url": "https://api.github.com/users/marouaneamz/following{/other_user}", "gists_url": "https://api.github.com/users/marouaneamz/gists{/gist_id}", "starred_url": "https://api.github.com/users/marouaneamz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/marouaneamz/subscriptions", "organizations_url": "https://api.github.com/users/marouaneamz/orgs", "repos_url": "https://api.github.com/users/marouaneamz/repos", "events_url": "https://api.github.com/users/marouaneamz/events{/privacy}", "received_events_url": "https://api.github.com/users/marouaneamz/received_events", "type": "User", "site_admin": false }
[ { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60763\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60763\">No</a>\n" ]
2023-06-02T10:03:03
2023-06-02T12:28:41
2023-06-02T12:28:39
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Others ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.8 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? i need a help ### Standalone code to reproduce the issue ```shell how can i access to the values of Tensor("IteratorGetNext:1", shape=(None, 1), dtype=float32). ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60763/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60763/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60762
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60762/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60762/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60762/events
https://github.com/tensorflow/tensorflow/issues/60762
1,737,649,699
I_kwDOArmXAs5nkm4j
60,762
[TFLite] Cannot apply XNNPack delegate to simple model with Dense layer
{ "login": "christian-steinmeyer", "id": 7511021, "node_id": "MDQ6VXNlcjc1MTEwMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/7511021?v=4", "gravatar_id": "", "url": "https://api.github.com/users/christian-steinmeyer", "html_url": "https://github.com/christian-steinmeyer", "followers_url": "https://api.github.com/users/christian-steinmeyer/followers", "following_url": "https://api.github.com/users/christian-steinmeyer/following{/other_user}", "gists_url": "https://api.github.com/users/christian-steinmeyer/gists{/gist_id}", "starred_url": "https://api.github.com/users/christian-steinmeyer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/christian-steinmeyer/subscriptions", "organizations_url": "https://api.github.com/users/christian-steinmeyer/orgs", "repos_url": "https://api.github.com/users/christian-steinmeyer/repos", "events_url": "https://api.github.com/users/christian-steinmeyer/events{/privacy}", "received_events_url": "https://api.github.com/users/christian-steinmeyer/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 2726299159, "node_id": "MDU6TGFiZWwyNzI2Mjk5MTU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite-xnnpack", "name": "comp:lite-xnnpack", "color": "97F7B2", "default": false, "description": "TensorFlow Lite XNNPack related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "if you change `img = tf.keras.layers.Input((40, 320, 1), name='img')` to `img = tf.keras.layers.Input((40, 320, 1), name='img', batch_size=1)`, mostly the issue will be gone. Without fixed batch (`batch_size=1`), there are some other nodes to handle dynamic batch size, some of them may not be delegatable. To see the nodes I mentioned, check the tflite you have with [netron](https://github.com/lutzroeder/netron) or other visualization tools may help.", "Hi @christian-steinmeyer \r\n\r\nAs @freedomtan suggests, you can specify `batch_size=1` to avoid dynamic tensors.\r\n\r\nTo add more, the `Reshape` operation after conversion is being flagged as dynamic tensor which can be observed in the [gist](https://colab.research.google.com/gist/pjpratik/fe7ed189b1d02e12fe274cb844f384a1/60762.ipynb) and it is known limitation of XNNPack for not supporting the dynamic tensors.\r\n\r\nThanks.", "Thanks for getting back to me. That did the trick!\r\n\r\nIn case anyone else comes across this. In order to change the input layer of an existing model, I've ended up using this code:\r\n```py\r\nold_input_layer = model.get_layer(index=0)\r\nnew_input_layer = tf.keras.layers.Input(\r\n batch_size=1,\r\n shape=old_input_layer.input.shape[1:],\r\n dtype=old_input_layer.dtype,\r\n name=old_input_layer.name,\r\n )\r\nnew_model = tf.keras.models.clone_model(old_model, new_input_layer)\r\n\r\n# copy over the weights\r\nnew_model.set_weights(old_model.get_weights())", "> Thanks for getting back to me. That did the trick!\r\n> \r\n> In case anyone else comes across this. In order to change the input layer of an existing model, I've ended up using this code:\r\n> \r\n> ```python\r\n> old_input_layer = model.get_layer(index=0)\r\n> new_input_layer = tf.keras.layers.Input(\r\n> batch_size=1,\r\n> shape=old_input_layer.input.shape[1:],\r\n> dtype=old_input_layer.dtype,\r\n> name=old_input_layer.name,\r\n> )\r\n> new_model = tf.keras.models.clone_model(old_model, new_input_layer)\r\n> ```\r\n\r\nThank you for this trick! However, using netron, I observed that the values of the kernel parameters are all changed after the convertion. And the output is totally different than the original model.\r\n\r\nHave you encountered such problem?", "You might have to also copy over the weights (depends a bit on what exactly you are doing).\r\n\r\n```python\r\nnew_model.set_weights(old_model.get_weights())", "> You might have to also copy over the weights (depends a bit on what exactly you are doing).\r\n> \r\n> ```python\r\n> new_model.set_weights(old_model.get_weights())\r\n> ```\r\n\r\nExactly! Thank you again! \r\nIt is strange that the man page of tf.keras.models.clone_model does not mention that ", "You're welcome! It only says:\r\n> \"Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers.\"\r\n\r\nwhich leaves some room for misinterpretation, I think. Glad it's working for you now!" ]
2023-06-02T07:56:08
2023-10-09T10:21:24
2023-06-05T14:20:17
CONTRIBUTOR
null
null
null
### 1. System information - OS Platform and Distribution: macOS ventura 13.2.1 In python, I'm using 2.11, for the c++ side, I used the latest main and followed the instructions to [build tensorflow lite with cmake](https://www.tensorflow.org/lite/guide/build_cmake#create_a_cmake_project_which_uses_tensorflow_lite) from this commit (f8066222ad6). ### 2. Code I have a tiny dummy model: ```py import tensorflow as tf img = tf.keras.layers.Input((40, 320, 1), name='img') x = tf.keras.layers.Conv2D(32, (3, 3), padding='same')(img) x = tf.keras.layers.Dense(24, activation='softmax', name="output")(x) model = tf.keras.Model(inputs=[img], outputs=x) ``` which I'm converting to tflite like so: ```py converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [ tf.lite.Optimize.EXPERIMENTAL_SPARSITY, # sparsity optimization for xnnpack acceleration ] tflite_model = converter.convert() ``` before saving. And then on the c++ side I'm trying to apply the xnnpack delegate: ```cpp auto m_model = TfLiteModelCreateFromFile("<PATH_TO_FILE>.tflite"); auto m_options = TfLiteInterpreterOptionsCreate(); TfLiteXNNPackDelegateOptions opt = TfLiteXNNPackDelegateOptionsDefault(); auto m_xnnpack_delegate = TfLiteXNNPackDelegateCreate(&opt); TfLiteInterpreterOptionsAddDelegate(m_options, m_xnnpack_delegate); auto m_interpreter = TfLiteInterpreterCreate(m_model, m_options); // This returns nullptr and prints error messages in the console ``` However this fails with `WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#15 is a dynamic-sized tensor).`, where `tensor#15` is `model/output/Tensordot/Reshape`. For some reason, that I don't quite understand, this part of the dense layer seems to be flagged as a dynamic tensor. Any idea, what might be the cause here? A bit of context: I'm actually looking into pruning using the [PruneForLatencyOnXNNPack](https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/PruneForLatencyOnXNNPack) approach. I've skipped the training with pruning on this dummy model for now, but I have a more complex model, that I also pruned before conversion and it, too, fails on the dense layer. As far as I can tell, the Dense layer [should be supported](https://github.com/google/XNNPACK), so I'm really confused.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60762/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60762/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60761
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60761/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60761/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60761/events
https://github.com/tensorflow/tensorflow/issues/60761
1,737,648,879
I_kwDOArmXAs5nkmrv
60,761
The first parameter of cuPointerGetAttribute is wrong
{ "login": "Chenjingliang1", "id": 42771665, "node_id": "MDQ6VXNlcjQyNzcxNjY1", "avatar_url": "https://avatars.githubusercontent.com/u/42771665?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Chenjingliang1", "html_url": "https://github.com/Chenjingliang1", "followers_url": "https://api.github.com/users/Chenjingliang1/followers", "following_url": "https://api.github.com/users/Chenjingliang1/following{/other_user}", "gists_url": "https://api.github.com/users/Chenjingliang1/gists{/gist_id}", "starred_url": "https://api.github.com/users/Chenjingliang1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Chenjingliang1/subscriptions", "organizations_url": "https://api.github.com/users/Chenjingliang1/orgs", "repos_url": "https://api.github.com/users/Chenjingliang1/repos", "events_url": "https://api.github.com/users/Chenjingliang1/events{/privacy}", "received_events_url": "https://api.github.com/users/Chenjingliang1/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi,\r\n\r\nThis is working as expected.\r\n\r\n`GpuContext` wraps `CUcontext`, below code explains the logic of it.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/cbd36f9e897a5bee6af0301bab644026e95e4b5e/tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.h#L42-L46", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60761\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60761\">No</a>\n" ]
2023-06-02T07:55:30
2023-06-22T02:01:43
2023-06-22T02:01:41
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version mater ### Custom Code No ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc#L1344 ``` GpuContext* context = nullptr; CUresult result = cuPointerGetAttribute(&context, CU_POINTER_ATTRIBUTE_CONTEXT, pointer); ``` The type of context is GpuContext,not CUcontext.This will return context not correctly. From the cuda doc, we can see that when the attribute is CU_POINTER_ATTRIBUTE_CONTEXT, the first parameter must be CUcontext *. ![image](https://github.com/tensorflow/tensorflow/assets/42771665/7259dc69-b1c2-4f38-ad92-e63e466ba5fa) ### Standalone code to reproduce the issue ```shell I don't know how to modify it. In most cases, it will not go to the code of this branch, so the bug has not been exposed. ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60761/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60761/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60760
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60760/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60760/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60760/events
https://github.com/tensorflow/tensorflow/issues/60760
1,737,435,728
I_kwDOArmXAs5njypQ
60,760
Configure script automatically selects CUDA/cuDNN path instead of waiting for user input
{ "login": "ramizouari", "id": 31216050, "node_id": "MDQ6VXNlcjMxMjE2MDUw", "avatar_url": "https://avatars.githubusercontent.com/u/31216050?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ramizouari", "html_url": "https://github.com/ramizouari", "followers_url": "https://api.github.com/users/ramizouari/followers", "following_url": "https://api.github.com/users/ramizouari/following{/other_user}", "gists_url": "https://api.github.com/users/ramizouari/gists{/gist_id}", "starred_url": "https://api.github.com/users/ramizouari/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ramizouari/subscriptions", "organizations_url": "https://api.github.com/users/ramizouari/orgs", "repos_url": "https://api.github.com/users/ramizouari/repos", "events_url": "https://api.github.com/users/ramizouari/events{/privacy}", "received_events_url": "https://api.github.com/users/ramizouari/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ramizouari ,\r\n\r\nTensorflow preconfigures paths of the CUDA and cuDNN toolkits which are installed as per Official instructions in documentation using Conda.If the script able to detect the path automatically then it won't ask the user to mention the paths.If the path not able to detectable by script then it will prompt the users to mention the path.Please refer the below example for same.\r\n\r\n```\r\n(tf) suryanarayanay@surya-ubuntu22-cuda-test:~/tensorflow$ ./configure\r\nbash: /home/suryanarayanay/miniconda3/envs/tf/lib/libtinfo.so.6: no version information available (required by bash)\r\nYou have bazel 5.3.0 installed.\r\nPlease specify the location of python. [Default is /home/suryanarayanay/miniconda3/envs/tf/bin/python3]: \r\n\r\n\r\nFound possible Python library paths:\r\n /home/suryanarayanay/miniconda3/envs/tf/lib/python3.9/site-packages\r\nPlease input the desired Python library path to use. Default is [/home/suryanarayanay/miniconda3/envs/tf/lib/python3.9/site-packages]\r\n\r\nDo you wish to build TensorFlow with ROCm support? [y/N]: n\r\nNo ROCm support will be enabled for TensorFlow.\r\n\r\nDo you wish to build TensorFlow with CUDA support? [y/N]: y\r\nCUDA support will be enabled for TensorFlow.\r\n\r\nDo you wish to build TensorFlow with TensorRT support? [y/N]: n\r\nNo TensorRT support will be enabled for TensorFlow.\r\n\r\nCould not find any cuda.h matching version '' in any subdirectory:\r\n ''\r\n 'include'\r\n 'include/cuda'\r\n 'include/*-linux-gnu'\r\n 'extras/CUPTI/include'\r\n 'include/cuda/CUPTI'\r\n 'local/cuda/extras/CUPTI/include'\r\nof:\r\n '/lib'\r\n '/lib/x86_64-linux-gnu'\r\n '/usr'\r\n '/usr/lib/x86_64-linux-gnu/libfakeroot'\r\n\r\nAsking for detailed CUDA configuration...\r\n\r\nPlease specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 11]: 11.8\r\n\r\n\r\nPlease specify the cuDNN version you want to use. [Leave empty to default to cuDNN 2]: 8.6\r\n\r\n\r\nPlease specify the locally installed NCCL version you want to use. [Leave empty to use http://github.com/nvidia/nccl]: \r\n\r\n\r\nPlease specify the comma-separated list of base paths to look for CUDA libraries and headers. [Leave empty to use the default]:\r\n```\r\n\r\nSo if the script is able to identify the path then tensorflow only facilitating the users right. However if you want to keep the cuda and cudnn libraries at a particular directory or want to use particular version of cuda/cudnn you can done this by removing cuda/cuDNN from standard download path and then the script will ask to enter the cuda path as seen in above example.\r\n\r\nI would like to know how you installed the cuda/cuDNN and how the path has been set. Also please confirm whether the auto detection is causing any particular problem for your case. Please elaborate.\r\n\r\nThanks!\r\n\r\n", "Hi @SuryanarayanaY ,\r\nFirst of all, thank you for your help.\r\n\r\nI installed both cuDNN and CUDA via Nvidia's RPM package. And so it is updated via the package manager.\r\nThe installation is on the standard path `/usr/local/cuda`.\r\n\r\nNow to be more precise, for any update with version xx.y of CUDA. the package manager will:\r\n\r\n1. install the update on `/usr/local/cuda-xx.y` folder\r\n2. set `/usr/local/cuda-x` and `/usr/local/cuda` as a symbolic to `/usr/local/cuda-xx.y`\r\n\r\nWith this, I effectively have many CUDA versions installed on the path `/usr/local/cuda-xx.y`, with the latest version acting as the default one.\r\n\r\nThe path is set on login. In fact, my `~/.bashrc` file contain these two lines:\r\n```bash\r\nexport PATH=\"/usr/local/cuda/bin:$PATH\"\r\nexport LD_LIBRARY_PATH=\"/usr/local/cuda/lib64:$LD_LIBRARY_PATH\"\r\n```\r\n\r\n> However if you want to keep the cuda and cudnn libraries at a particular directory or want to use particular version of cuda/cudnn you can done this by removing cuda/cuDNN from standard download path and then the script will ask to enter the cuda path as seen in above example.\r\n\r\nI am going to slightly disagree on this.\r\nThis should be the logical behaviour when there is exactly one installation (modulo some symbolic links). \r\nBut in my case, I have many different installations, and it will be better if the script asks for what version I expect.\r\n\r\nAlso, the [documentation itself](https://www.tensorflow.org/install/source#gpu_support) hints that the script should do such behaviour upon detecting many CUDA versions, which is not what is happening.\r\n\r\n", "Hi @ramizouari ,\r\n\r\nThe script for ./configure can be found [here](https://github.com/tensorflow/tensorflow/blob/master/configure.py).\r\n\r\nIf you are interested then go through the source code and analyse the behaviour and may let us know if you have any pointers for this behaviour.\r\n\r\nThanks!", "@nitins17 - Please share your pointers on this issue.\r\n\r\nCC - @learning-to-play " ]
2023-06-02T04:15:37
2023-06-13T04:35:20
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version TF 2.10 ### Custom Code No ### OS Platform and Distribution Fedora 37 ### Mobile device _No response_ ### Python version 3.10 ### Bazel version 5.3.0 ### GCC/Compiler version 12.3.1 ### CUDA/cuDNN version 11.8,12.1/8.0 ### GPU model and memory GTX 1660 Ti, 6 GB ### Current Behaviour? I am having multiple CUDA versions, and I am trying to build Tensorflow from source with CUDA support. Now the problem lays when I try to configure the build system using `./configure`. It will asks for relevant information for the build system. This includes: 1. Python path 2. Python packages path 3. Whether to support mROC 4. Whether to support CUDA 5. Whether to support TensorRT Now, when I select CUDA support. the script seems to automatically selects my CUDA/cuDNN versions, and does not give me the possibility to select it manually, which is contradictory to what the documentation suggests at [https://www.tensorflow.org/install/source#gpu_support](url): _"If your system has multiple versions of CUDA or cuDNN installed, explicitly set the version instead of relying on the default"_ Now, I was able to trace the issue exactly to the `configure.py` file. In fact, I strongly suspects that there is a logical error on the section that parses the user input (Line 1244 on branch r2.11): ```python environ_save = dict(environ_cp) for _ in range(_DEFAULT_PROMPT_ASK_ATTEMPTS): if validate_cuda_config(environ_cp): cuda_env_names = [ 'TF_CUDA_VERSION', 'TF_CUBLAS_VERSION', 'TF_CUDNN_VERSION', 'TF_TENSORRT_VERSION', 'TF_NCCL_VERSION', 'TF_CUDA_PATHS', # Items below are for backwards compatibility when not using # TF_CUDA_PATHS. 'CUDA_TOOLKIT_PATH', 'CUDNN_INSTALL_PATH', 'NCCL_INSTALL_PATH', 'NCCL_HDR_PATH', 'TENSORRT_INSTALL_PATH' ] # Note: set_action_env_var above already writes to bazelrc. for name in cuda_env_names: if name in environ_cp: write_action_env_to_bazelrc(name, environ_cp[name]) break # Restore settings changed below if CUDA config could not be validated. environ_cp = dict(environ_save) set_tf_cuda_version(environ_cp) set_tf_cudnn_version(environ_cp) if is_windows(): set_tf_tensorrt_version(environ_cp) if is_linux(): set_tf_tensorrt_version(environ_cp) set_tf_nccl_version(environ_cp) set_tf_cuda_paths(environ_cp) ``` Now, from my understanding, the script will validate the given environment, and then if that fails will ask for user input. With that, on the first iteration of the loop, the validation will not contain the required environment variables. I was able to solve the issue by swapping the order as follow: ```python environ_save = dict(environ_cp) for _ in range(_DEFAULT_PROMPT_ASK_ATTEMPTS): # Restore settings changed below if CUDA config could not be validated. environ_cp = dict(environ_save) set_tf_cuda_version(environ_cp) set_tf_cudnn_version(environ_cp) if is_windows(): set_tf_tensorrt_version(environ_cp) if is_linux(): set_tf_tensorrt_version(environ_cp) set_tf_nccl_version(environ_cp) set_tf_cuda_paths(environ_cp) if validate_cuda_config(environ_cp): cuda_env_names = [ 'TF_CUDA_VERSION', 'TF_CUBLAS_VERSION', 'TF_CUDNN_VERSION', 'TF_TENSORRT_VERSION', 'TF_NCCL_VERSION', 'TF_CUDA_PATHS', # Items below are for backwards compatibility when not using # TF_CUDA_PATHS. 'CUDA_TOOLKIT_PATH', 'CUDNN_INSTALL_PATH', 'NCCL_INSTALL_PATH', 'NCCL_HDR_PATH', 'TENSORRT_INSTALL_PATH' ] # Note: set_action_env_var above already writes to bazelrc. for name in cuda_env_names: if name in environ_cp: write_action_env_to_bazelrc(name, environ_cp[name]) break ``` ### Standalone code to reproduce the issue ```shell Assumption: Multiple CUDA versions on /usr/local Command: ./configure Input Example: 1. [Default Setting] 2. [Default Setting] 3. N 4. y 5. N ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60760/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60760/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60759
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60759/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60759/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60759/events
https://github.com/tensorflow/tensorflow/issues/60759
1,737,415,926
I_kwDOArmXAs5njtz2
60,759
Check fail can be triggered in `tf.raw_ops.Empty` under jit compile mode.
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Lyutoon ,\r\n\r\nPlease report check fails and other vulnerabilities [here](https://bughunters.google.com/). For more details, please check https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow the instrcutions.\r\n\r\nI have replicated the reported behaviour with tf-nightly(2.14.0-dev20230601) in colab and attached screenshot below.Check fail observed with `jit_compile=True` and `without jit compile` an exception is raised.\r\n\r\n\r\n<img width=\"1496\" alt=\"Screenshot 2023-06-02 at 11 41 37 AM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/58eae1c8-d933-45ec-b17b-edefa34f9309\">\r\n\r\n\r\n" ]
2023-06-02T03:48:27
2023-06-06T07:01:04
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Check fail can be triggered in `tf.raw_ops.Empty` under jit compile mode. While in normal mode, it won't be triggered but through an InvalidArgumentError. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np shape=tf.random.uniform([4], dtype=tf.dtypes.int32, minval=0, maxval=1000000) dtype=tf.dtypes.int32 init=True @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.Empty(shape=shape, dtype=dtype, init=init) return y def fuzz_normal(): y = tf.raw_ops.Empty(shape=shape, dtype=dtype, init=init) return y y1 = fuzz_jit() # trigger check fail print('[+] JIT ok') y2 = fuzz_normal() print('[+] Normal ok') ``` ### Relevant log output ```shell % python test.py 2023-06-02 11:44:08.858309: F tensorflow/compiler/xla/shape_util.cc:288] Check failed: FillNewShape(element_type, dimensions, &shape) zsh: abort (core dumped) python test.py ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60759/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60759/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60758
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60758/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60758/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60758/events
https://github.com/tensorflow/tensorflow/issues/60758
1,737,410,647
I_kwDOArmXAs5njshX
60,758
Check fail can be triggered in `tf.raw_ops.EmptyTensorList` due to overflow under jit compile mode.
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Lyutoon ,\r\n\r\nPlease report check fails and other vulnerabilities [here](https://bughunters.google.com/). For more details, please check https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow the instrcutions.\r\n\r\nI have tried to replicate the reported behaviour with tf-nightly(2.14.0-dev20230601) in colab but I have observed that it is raising the exception.I executed the code multiple times and observed only exception but not overflow as reported by you.\r\n\r\nPlease refer the attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/ba68e77e6c5b41b659acb50071cd24eb/60758.ipynb) and confirm.\r\n\r\nThanks!\r\n\r\n", "Hi @SuryanarayanaY, please try this new one:\r\n```python\r\nimport os \r\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\r\nimport tensorflow as tf\r\nimport numpy as np\r\n\r\nelement_shape=tf.random.uniform([3], dtype=tf.dtypes.int64, minval=0, maxval=1000000000)\r\nmax_num_elements=tf.random.uniform([], dtype=tf.dtypes.int32, minval=-100000, maxval=1000000)\r\nelement_dtype=tf.dtypes.int32\r\n\r\[email protected](jit_compile=True)\r\ndef fuzz_jit():\r\n y = tf.raw_ops.EmptyTensorList(element_shape=element_shape, max_num_elements=max_num_elements, element_dtype=element_dtype)\r\n return y\r\n\r\ndef fuzz_normal():\r\n y = tf.raw_ops.EmptyTensorList(element_shape=element_shape, max_num_elements=max_num_elements, element_dtype=element_dtype)\r\n return y\r\n\r\ny1 = fuzz_jit() # trigger the check fail under jit compile mode.\r\nprint('[+] JIT ok')\r\ny2 = fuzz_normal() # if you run y2 first, it will through error rather than check fail.\r\nprint('[+] Normal ok')\r\n```\r\nI've tested on colab, here is the screenshot.\r\n![image](https://github.com/tensorflow/tensorflow/assets/57178900/5ccc428b-1dd8-45f8-90b9-0d6a540ed9b7)\r\n\r\nThanks!", "@Lyutoon ,\r\n\r\nThanks for the correction. I can see now the code crashes with Fatal error and raises `InvalidArgument` due to Overflow.\r\n\r\n<img width=\"1486\" alt=\"Screenshot 2023-06-02 at 4 15 47 PM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/92b3b6c1-c072-4691-83b8-591a200a9dfc\">\r\n\r\n\r\n" ]
2023-06-02T03:41:51
2023-06-06T07:07:18
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Check fail can be triggered in `tf.raw_ops.EmptyTensorList` under jit compile mode. While in normal mode, it won't be triggered but through an InvalidArgumentError. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np element_shape=tf.random.uniform([3], dtype=tf.dtypes.int64, minval=-100000000, maxval=1000000000) max_num_elements=tf.random.uniform([], dtype=tf.dtypes.int32, minval=-100000, maxval=1000000) element_dtype=tf.dtypes.int32 @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.EmptyTensorList(element_shape=element_shape, max_num_elements=max_num_elements, element_dtype=element_dtype) return y def fuzz_normal(): y = tf.raw_ops.EmptyTensorList(element_shape=element_shape, max_num_elements=max_num_elements, element_dtype=element_dtype) return y y1 = fuzz_jit() # trigger the check fail under jit compile mode. print('[+] JIT ok') y2 = fuzz_normal() # if you run y2 first, it will through error rather than check fail. print('[+] Normal ok') ``` ### Relevant log output ```shell % python test.py 2023-06-02 11:41:06.810728: F tensorflow/core/framework/tensor_shape.cc:201] Non-OK-status: InitDims(dim_sizes) status: INVALID_ARGUMENT: Encountered overflow when multiplying 246417692688323817 with 562326056, result: -1 zsh: abort (core dumped) python test.py ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60758/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60758/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60757
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60757/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60757/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60757/events
https://github.com/tensorflow/tensorflow/issues/60757
1,737,398,724
I_kwDOArmXAs5njpnE
60,757
Check fail can be triggered in `tf.raw_ops.Fill` under jit compile mode.
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Lyutoon ,\r\n\r\nPlease report check fails and other vulnerabilities [here](https://bughunters.google.com/). For more details, please check https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow the instrcutions.\r\n\r\nI have replicated the reported behaviour with tf-nightly(2.14.0-dev20230601) in colab and attached screenshot below.Check fail observed with jit_compile=True and without jit compile an exception is raised.\r\n\r\n<img width=\"1501\" alt=\"Screenshot 2023-06-02 at 3 36 31 PM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/313a89d2-157d-424d-b068-3aa76cb81523\">\r\n" ]
2023-06-02T03:22:05
2023-06-06T07:04:47
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Check fail can be triggered in `tf.raw_ops.Fill` under jit compile mode. While in normal mode, it won't be triggered but through an InvalidArgumentError. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np dims=tf.random.uniform([4], dtype=tf.dtypes.int32, minval=-10, maxval=1000000) value=tf.random.uniform([], dtype=tf.dtypes.int32, minval=-100000, maxval=1000000) @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.Fill(dims=dims, value=value) return y def fuzz_normal(): y = tf.raw_ops.Fill(dims=dims, value=value) return y y1 = fuzz_jit() # trigger the check fail under jit compile mode. print('[+] JIT ok') y2 = fuzz_normal() # if you run y2 first, it will through error rather than check fail. print('[+] Normal ok') ``` ### Relevant log output ```shell % python test.py 2023-06-02 11:21:51.062617: F tensorflow/compiler/xla/shape_util.cc:288] Check failed: FillNewShape(element_type, dimensions, &shape) zsh: abort (core dumped) python test.py ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60757/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60757/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60756
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60756/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60756/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60756/events
https://github.com/tensorflow/tensorflow/issues/60756
1,737,391,902
I_kwDOArmXAs5njn8e
60,756
Check fail can be triggered in `tf.raw_ops.GatherV2` under jit compile mode.
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Lyutoon ,\r\n\r\nPlease report check fails and other vulnerabilities [here](https://bughunters.google.com/). For more details, please check https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow the instrcutions.\r\n\r\nI have replicated the reported behaviour with tf-nightly(2.14.0-dev20230601) in colab and attached screenshot below.Check fail observed with jit_compile=True and without jit compile an exception is raised.\r\n\r\n<img width=\"1498\" alt=\"Screenshot 2023-06-02 at 11 20 45 AM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/61a5f1fc-f7b6-46bf-8bf9-6451329346da\">\r\n\r\nThanks!\r\n", "Hi, thanks for your reply!\r\n\r\nBut here I noticed that in `SECURITY.md`, it said \"**we will no longer consider assertion failures (e.g., CHECK-fails) as vulnerabilities**\". \r\nSo I'm wondering that if I still need to report these problem via google VRP? Or what is the proper way to report these kind of problems?\r\n\r\nThanks!", "Hi @Lyutoon ,\r\n\r\nCheck-fails may not be considered as vulnerabilities currently for rewarding the reporters but credit will be given for those who reported through proper channel. But still Engineering team will take a call on the issue based on severity and we are instructed to motivate the users to report check fails also in the attached forum above.\r\n\r\nRequest you to please report the issues there also. Thanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you." ]
2023-06-02T03:14:31
2023-07-21T06:12:38
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Check fail can be triggered in `tf.raw_ops.GatherV2` under jit compile mode. While in normal mode, it won't be triggered but through an `InvalidArgumentError`. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np params=tf.random.uniform([4], dtype=tf.dtypes.float32, maxval=100000000) indices=tf.random.uniform([4, 0], dtype=tf.dtypes.int32, minval=-10000, maxval=60000) axis=tf.random.uniform([], dtype=tf.dtypes.int64, minval=-100000000, maxval=1000000000) batch_dims=11282 @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.GatherV2(params=params, indices=indices, axis=axis, batch_dims=batch_dims) return y def fuzz_normal(): y = tf.raw_ops.GatherV2(params=params, indices=indices, axis=axis, batch_dims=batch_dims) return y y1 = fuzz_jit() # trigger the check fail under jit compile mode. print('[+] JIT ok') y2 = fuzz_normal() # if you run y2 first, it will through error rather than check fail. print('[+] Normal ok') ``` ### Relevant log output ```shell % python test.py 2023-06-02 11:10:06.042625: F tensorflow/core/framework/shape_inference.cc:705] Check failed: rank >= 0 (0 vs. -11280)rank must not be negative zsh: abort (core dumped) python test.py ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60756/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60756/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60755
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60755/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60755/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60755/events
https://github.com/tensorflow/tensorflow/issues/60755
1,737,385,449
I_kwDOArmXAs5njmXp
60,755
Check failed in `tf.raw_ops.ConjugateTranspose`
{ "login": "Lyutoon", "id": 57178900, "node_id": "MDQ6VXNlcjU3MTc4OTAw", "avatar_url": "https://avatars.githubusercontent.com/u/57178900?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lyutoon", "html_url": "https://github.com/Lyutoon", "followers_url": "https://api.github.com/users/Lyutoon/followers", "following_url": "https://api.github.com/users/Lyutoon/following{/other_user}", "gists_url": "https://api.github.com/users/Lyutoon/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lyutoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lyutoon/subscriptions", "organizations_url": "https://api.github.com/users/Lyutoon/orgs", "repos_url": "https://api.github.com/users/Lyutoon/repos", "events_url": "https://api.github.com/users/Lyutoon/events{/privacy}", "received_events_url": "https://api.github.com/users/Lyutoon/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Lyutoon ,\r\n\r\nI have tried to replicate the reported behaviour with tf-nightly(2.14.0-dev20230601) in colab but I have observed that there is no check fail in both cases with or without jit_compile.I executed the code multiple times also and observed no error or check fail.\r\n\r\nPlease refer the attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/791c7c8270a7e9f92ef0bd0ccec401ef/60755.ipynb) and confirm any deviation.\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60755\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60755\">No</a>\n" ]
2023-06-02T03:03:58
2023-06-18T02:09:34
2023-06-18T02:09:31
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device Ubuntu 20.04 ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A check fail can be triggered in `tf.raw_ops.ConjugateTranspose`. While under jit compile, it won't occur. There is an inconsistency problem between jit and normal mode. ### Standalone code to reproduce the issue ```shell import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np x=tf.random.uniform([], dtype=tf.dtypes.float32, maxval=100000000) perm=tf.random.uniform([0], dtype=tf.dtypes.int64, minval=-100000000, maxval=1000000000) @tf.function(jit_compile=True) def fuzz_jit(): y = tf.raw_ops.ConjugateTranspose(x=x, perm=perm) return y def fuzz_normal(): y = tf.raw_ops.ConjugateTranspose(x=x, perm=perm) return y y1 = fuzz_jit() print('[+] JIT ok') # Under jit compile, it passed the testcase normally. y2 = fuzz_normal() # Check fail. print('[+] Normal ok') # Won't be printed. ``` ### Relevant log output ```shell % python test.py [+] JIT ok 2023-06-02 11:01:06.844753: F ./tensorflow/core/util/mkl_util.h:1273] Check failed: dims_tf_order.size() > 0 (0 vs. 0) zsh: abort (core dumped) python test.py ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60755/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60755/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60754
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60754/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60754/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60754/events
https://github.com/tensorflow/tensorflow/issues/60754
1,737,243,165
I_kwDOArmXAs5njDod
60,754
error: undefined reference to 'tensorflow::TensorShapeBase<tensorflow::TensorShape>::TensorShapeBase(absl::Span<long const>)'
{ "login": "p3achyjr", "id": 8763808, "node_id": "MDQ6VXNlcjg3NjM4MDg=", "avatar_url": "https://avatars.githubusercontent.com/u/8763808?v=4", "gravatar_id": "", "url": "https://api.github.com/users/p3achyjr", "html_url": "https://github.com/p3achyjr", "followers_url": "https://api.github.com/users/p3achyjr/followers", "following_url": "https://api.github.com/users/p3achyjr/following{/other_user}", "gists_url": "https://api.github.com/users/p3achyjr/gists{/gist_id}", "starred_url": "https://api.github.com/users/p3achyjr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/p3achyjr/subscriptions", "organizations_url": "https://api.github.com/users/p3achyjr/orgs", "repos_url": "https://api.github.com/users/p3achyjr/repos", "events_url": "https://api.github.com/users/p3achyjr/events{/privacy}", "received_events_url": "https://api.github.com/users/p3achyjr/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @p3achyjr ,\r\n\r\nCould you please confirm the build command you have used along with the options selected during the `./configure` step.\r\n\r\nAlso please check the tested configurations for build from source.\r\n\r\n\r\n\r\n\r\nVersion | Python version | Compiler | Build tools | cuDNN | CUDA\r\n-- | -- | -- | -- | -- | --\r\ntensorflow-2.12.0 | 3.8-3.11 | GCC 9.3.1 | Bazel 5.3.0 | 8.6 | 11.8\r\ntensorflow-2.11.0 | 3.7-3.10 | GCC 9.3.1 | Bazel 5.3.0 | 8.1 | 11.2\r\n\r\nCould you please upgrade CUDA to 11.2,cuDNN to 8.1 and GCC to 9.3.1 and then try the build.\r\n\r\nAlso please ensure you have C++17 environment. Thanks!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60754\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60754\">No</a>\n" ]
2023-06-01T23:39:16
2023-06-21T01:58:42
2023-06-21T01:58:40
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.11 ### Custom Code Yes ### OS Platform and Distribution Debian GNU/Linux 10 ### Mobile device _No response_ ### Python version 3.7 ### Bazel version 5.3.0 ### GCC/Compiler version gcc 9 ### CUDA/cuDNN version 11 ### GPU model and memory Tesla T4 ### Current Behaviour? When I run a build with `--config=opt`, I get the following error: ``` error: undefined reference to 'tensorflow::TensorShapeBase<tensorflow::TensorShape>::TensorShapeBase(absl::Span<long const>)' ``` However, compiling normally is fine. Checking llvm-nm, I see these symbols in optimized build: ``` U _ZN10tensorflow15TensorShapeBaseINS_11TensorShapeEEC1EN4absl4SpanIKlEE 0000000000000000 W _ZN10tensorflow6Tensor16unaligned_shapedIfLm1EEENS_6TTypesIT_XT0_ElE15UnalignedTensorEN4absl4SpanIKlEE 0000000000000000 W _ZNK10tensorflow6Tensor34FillDimsAndValidateCompatibleShapeILm1EEEvN4absl4SpanIKlEEPSt5arrayIlXT_EE ``` but these in normal: ``` 0000000000000000 W _ZN10tensorflow6Tensor16unaligned_shapedIfLm1EEENS_6TTypesIT_XT0_ElE15UnalignedTensorEN4absl4SpanIKlEE 0000000000000000 W _ZN4absl4SpanIKlEC1EPS1_m 0000000000000000 W _ZN4absl4SpanIKlEC1IS1_S1_EESt16initializer_listIlE 0000000000000000 W _ZN4absl4SpanIKlEC2EPS1_m 0000000000000000 W _ZN4absl4SpanIKlEC2IS1_S1_EESt16initializer_listIlE 0000000000000000 n _ZN4absl4SpanIKlEC5EPS1_m 0000000000000000 n _ZN4absl4SpanIKlEC5IS1_S1_EESt16initializer_listIlE 0000000000000000 W _ZNK10tensorflow6Tensor34FillDimsAndValidateCompatibleShapeILm1EEEvN4absl4SpanIKlEEPSt5arrayIlXT_EE 0000000000000000 W _ZNK4absl4SpanIKlE4dataEv 0000000000000000 W _ZNK4absl4SpanIKlE4sizeEv 0000000000000000 W _ZNK4absl4SpanIKlEixEm 0000000000000000 W _ZZNK4absl4SpanIKlEixEmENKUlvE_clEv ``` I am building tensorflow from source and copying `libtensorflow_cc.so`, `libtensorflow_framework.so`, and include files into my project. However, the linking step fails as described above. ### Standalone code to reproduce the issue ```shell Build tensorflow from source, copy .so and include files into your own project, and try to use tensorflow headers in project. ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60754/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60754/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60753
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60753/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60753/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60753/events
https://github.com/tensorflow/tensorflow/pull/60753
1,737,201,699
PR_kwDOArmXAs5R8xCl
60,753
[TOSA] Matching ranks for TOSA operators
{ "login": "Tai78641", "id": 6504206, "node_id": "MDQ6VXNlcjY1MDQyMDY=", "avatar_url": "https://avatars.githubusercontent.com/u/6504206?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Tai78641", "html_url": "https://github.com/Tai78641", "followers_url": "https://api.github.com/users/Tai78641/followers", "following_url": "https://api.github.com/users/Tai78641/following{/other_user}", "gists_url": "https://api.github.com/users/Tai78641/gists{/gist_id}", "starred_url": "https://api.github.com/users/Tai78641/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tai78641/subscriptions", "organizations_url": "https://api.github.com/users/Tai78641/orgs", "repos_url": "https://api.github.com/users/Tai78641/repos", "events_url": "https://api.github.com/users/Tai78641/events{/privacy}", "received_events_url": "https://api.github.com/users/Tai78641/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 1169365682, "node_id": "MDU6TGFiZWwxMTY5MzY1Njgy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L", "name": "size:L", "color": "adafea", "default": false, "description": "CL Change Size: Large" } ]
open
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "resolved merged conflict and rebased", "> Quick scan only, was the equalize rank function in previous PR?\r\n\r\nyes it has been merged into llvm: in mlir/include/mlir/Dialect/Tosa/Utils/ConversionUtils.h", "@jpienaar please review this when you get a chance?", "resolved merge conflicts", "resolved merge conflicts", "rebased and resolved merge conflicts", "rebased and resolved merge conflicts", "Hi @jpienaar Can you please review this PR ? Thank you!", "Hi @jpienaar / @rsuderman Can you please review this PR ? Thank you!", "Hi @Tai78641 Can you please resolve conflicts? Thank you!", "> Hi @Tai78641 Can you please resolve conflicts? Thank you!\r\n\r\ndone", "hi @gbaned @jpienaar could you guys help take another look at this? I also got another patch which is depended on this one. Thanks. ", "Hi @jpienaar Can you please review this PR ? Thank you!", "Hi @jpienaar Can you please review this PR ? Thank you!", "Hi @jpienaar Can you please review this PR ? Thank you!", "Hi @jpienaar Can you please review this PR ? Thank you!", "@NatashaKnk would you review this for me?\r\nthis is blocking TOSA dialect upstreaming because we inserted a trait in TOSA to require all operands have equal ranks.\r\nThis patch is intended to pre-empt any issues that change might cause in TF.", "Hi @Tai78641 Can you please resolve conflicts? Thank you!", "> Hi @Tai78641 Can you please resolve conflicts? Thank you!\r\n\r\nrebased and resolved conflicts", "Hi @Tai78641 Can you please resolve conflicts? Thank you!", "> Hi @Tai78641 Can you please resolve conflicts? Thank you!\r\n\r\nrebased and resolved conflicts" ]
2023-06-01T22:50:48
2024-06-06T03:49:17
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60753", "html_url": "https://github.com/tensorflow/tensorflow/pull/60753", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60753.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60753.patch", "merged_at": null }
This patch modifies tosa legalization to construct matching ranks upfront for TOSA operators with ResultsBroadcastableShape trait. Two major changes: 1. Add parameter "rank" to: - getTosaConstTensorSingleF32, - getTosaConstTensorSingleI32, - getTosaConstTensorScalarInt, functions and create const tensors with appropriate ranks upfront. 2. insert EqualizeRanks calls to reshape the lower rank input before constructing TOSA operators that require matching ranks.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60753/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60753/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60752
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60752/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60752/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60752/events
https://github.com/tensorflow/tensorflow/pull/60752
1,737,186,612
PR_kwDOArmXAs5R8tv6
60,752
Add directory instructions for windows build
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @terryheo Can you please review this PR ? Thank you!", "Hi @terryheo Can you please review this PR ? Thank you!", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "> I think this is just an issue with the build, it builds debug only by default\n\nWould it not make sense to include this behavior in the documentation too?", "@mihaimaruseac can you tell me how to build release binaries on windows?" ]
2023-06-01T22:31:13
2023-09-09T10:32:59
2023-07-18T16:42:51
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60752", "html_url": "https://github.com/tensorflow/tensorflow/pull/60752", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60752.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60752.patch", "merged_at": "2023-07-18T16:42:51" }
Added directory details for the shared library file. Fixes: https://github.com/tensorflow/tensorflow/issues/55970
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60752/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60752/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60751
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60751/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60751/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60751/events
https://github.com/tensorflow/tensorflow/issues/60751
1,736,788,777
I_kwDOArmXAs5nhUsp
60,751
Tensorflow-cpu-aws prevents building ARM/multi-arch containers from a x86 machine
{ "login": "celeste-zeng", "id": 61256376, "node_id": "MDQ6VXNlcjYxMjU2Mzc2", "avatar_url": "https://avatars.githubusercontent.com/u/61256376?v=4", "gravatar_id": "", "url": "https://api.github.com/users/celeste-zeng", "html_url": "https://github.com/celeste-zeng", "followers_url": "https://api.github.com/users/celeste-zeng/followers", "following_url": "https://api.github.com/users/celeste-zeng/following{/other_user}", "gists_url": "https://api.github.com/users/celeste-zeng/gists{/gist_id}", "starred_url": "https://api.github.com/users/celeste-zeng/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/celeste-zeng/subscriptions", "organizations_url": "https://api.github.com/users/celeste-zeng/orgs", "repos_url": "https://api.github.com/users/celeste-zeng/repos", "events_url": "https://api.github.com/users/celeste-zeng/events{/privacy}", "received_events_url": "https://api.github.com/users/celeste-zeng/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "@elfringham ", "Hi @celeste-zeng ,\r\n\r\nThe package `tensorflow-cpu-aws` is meant for `Arm/AArch64` processors and it can't be downloadable into `X86_64` architectures through pip. Pip will try to resolve the wheels suitable for that particular host platform and if it is not found then it raises the error like `no matching distribution found`. I am not sure whether there is a way and i doubt whether there is a universal wheel common for both architecture.\r\n\r\nThe pre built pip wheels for X86_64 built and maintained by tensorflow itself which you can install through `pip install tensorflow-cpu` and this can be installed on x86_64 machines only.\r\n\r\nPlease refer the documentation [source](https://www.tensorflow.org/install/pip#linux:~:text=Nightly-,Note%3A%20Starting%20with%20TensorFlow%202.10%2C%20Linux%20CPU%2Dbuilds%20for%20Aarch64,package.%20See%20this%20blog%20post%20for%20more%20information%20about%20this%20collaboration.,-conda%20install%20%2D) for more details.\r\n\r\nMay be @elfringham can add some more valuable points here.\r\n\r\nThanks!", "This does not look like a problem that is specific to TensorFlow. I think your problem is all about creating a docker container for a foreign architecture from your x86 machine. In order to do that you need to add qemu to the mix so that there is an environment that allows the docker container to execute.\r\nSee https://www.docker.com/blog/multi-platform-docker-builds/", "@celeste-zeng ,\r\n\r\nReferring to above [comment](https://github.com/tensorflow/tensorflow/issues/60751#issuecomment-1573591885) have you made any progress ? I too of the opinion that this is not a Tensorflow relevant issue if you are looking for what mentioned in above comment. WDYT ?\r\n", "Hi @SuryanarayanaY ,\r\n\r\nThanks for following up!\r\n\r\nAnd yes I don't think it is a Tensorflow relevant issue.The fix is that when building an ARM container with tensorflow from an x86 machine, tensorflow-cpu-aws needs to be explicitly added to the requirements as well.\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60751\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60751\">No</a>\n" ]
2023-06-01T17:38:42
2023-06-26T23:25:50
2023-06-26T23:25:47
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12 ### Custom Code Yes ### OS Platform and Distribution Linux Debian 6.1.20-2rodete1 ### Mobile device _No response_ ### Python version Python 3.8.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? On a x86 machine, I tried to build Beam Python multi-arch containers whose base image requirement include [tensorflow2.12](https://github.com/apache/beam/blob/4f07cda050cd144a95a686c4138307e9920f313d/sdks/python/container/py310/base_image_requirements.txt#LL143C24-L143C24). The x86 components were built successfully but encountered the following error while building the ARM components: `#39 [linux/arm64 beam 11/16] RUN pip check || (echo "Container does not include required Beam dependencies or has conflicting dependencies. If Beam dependencies have changed, you need to regenerate base_image_requirements.txt files. See: https://s.apache.org/beam-python-requirements-generate" && exit 1) #39 20.81 tensorflow 2.12.0 requires tensorflow-cpu-aws, which is not installed.` I also tried to install tensorflow-cpu-aws manually by running pip install tensorflow-cpu-aws on the x86 machine and got the following error: `ERROR: Could not find a version that satisfies the requirement tensorflow-cpu-aws (from versions: none) ERROR: No matching distribution found for tensorflow-cpu-aws` An ARM container image required tensorflow can't be built from a x86 machine because it will try to install tensorflow-cpu-aws, which can't be installed from a x86 machine. I wonder if it is there anything we can do to resolve this? Otherwise for all ARM containers which are built from a x86 machine, their base image requirements can't contain tensorflow. Thanks! ### Standalone code to reproduce the issue ```shell On terminal: 1. Clone the Beam repository: git clone https://github.com/apache/beam.git 2. Build the multi-arch image by running: ./gradlew -Pcontainer-architecture-list=arm64,amd64 :sdks:python:container:py310:docker ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60751/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60751/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60750
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60750/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60750/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60750/events
https://github.com/tensorflow/tensorflow/issues/60750
1,736,543,570
I_kwDOArmXAs5ngY1S
60,750
pip installation LD_LIBRARY_PATH order
{ "login": "jackyko1991", "id": 12065287, "node_id": "MDQ6VXNlcjEyMDY1Mjg3", "avatar_url": "https://avatars.githubusercontent.com/u/12065287?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jackyko1991", "html_url": "https://github.com/jackyko1991", "followers_url": "https://api.github.com/users/jackyko1991/followers", "following_url": "https://api.github.com/users/jackyko1991/following{/other_user}", "gists_url": "https://api.github.com/users/jackyko1991/gists{/gist_id}", "starred_url": "https://api.github.com/users/jackyko1991/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jackyko1991/subscriptions", "organizations_url": "https://api.github.com/users/jackyko1991/orgs", "repos_url": "https://api.github.com/users/jackyko1991/repos", "events_url": "https://api.github.com/users/jackyko1991/events{/privacy}", "received_events_url": "https://api.github.com/users/jackyko1991/received_events", "type": "User", "site_admin": false }
[ { "id": 284443156, "node_id": "MDU6TGFiZWwyODQ0NDMxNTY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-bug", "name": "type:docs-bug", "color": "159b2e", "default": false, "description": "Document issues" }, { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 3911105852, "node_id": "LA_kwDOArmXAs7pHr08", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20PR%20merge", "name": "awaiting PR merge", "color": "4080bf", "default": false, "description": "awaiting PR merge" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Can you send a PR, please?", "@jackyko1991,\r\nThe related PR #https://github.com/tensorflow/docs/pull/2230 has been closed and also the issue happened on 2.12 which is pretty old. Could you please try with the latest stable version 2.12 where most of the bugs were resolved in the latest version.\r\nhttps://www.tensorflow.org/install/pip \r\n\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60750\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60750\">No</a>\n" ]
2023-06-01T15:11:58
2024-02-10T01:46:02
2024-02-10T01:46:00
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Documentation Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf 2.12 ### Custom Code No ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? In the official [pip install documentation](https://www.tensorflow.org/install/pip) $LD_LIBRARY_PATH is updated via conda activation. Following instructions on clean machine for library linking works perfectly However if the machine has a native CUDA library setting, TF will load the system library ahead of virtual environment one. Suggest to load conda path ahead of system one: ```bash echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh echo 'export LD_LIBRARY_PATH=$CONDA_PREFIX/lib/:$CUDNN_PATH/lib:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh ``` ### Standalone code to reproduce the issue ```shell echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh ``` ### Relevant log output ```shell 2023-06-01 15:58:54.130390: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:417] Loaded runtime CuDNN library: 8.1.1 but source was compiled with: 8.6.0. CuDNN library needs to have matching major version and equal or higher minor version. If using a binary install, upgrade your CuDNN library. If building from sources, make sure the library loaded at runtime is compatible with the version specified during compile configuration. 2023-06-01 15:58:54.131265: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at conv_ops.cc:1068 : UNIMPLEMENTED: DNN library is not found. ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60750/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60750/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60749
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60749/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60749/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60749/events
https://github.com/tensorflow/tensorflow/pull/60749
1,736,200,540
PR_kwDOArmXAs5R5UDd
60,749
TensorflowLite unit test error fix
{ "login": "mgokulkrish", "id": 130030473, "node_id": "U_kgDOB8AbiQ", "avatar_url": "https://avatars.githubusercontent.com/u/130030473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mgokulkrish", "html_url": "https://github.com/mgokulkrish", "followers_url": "https://api.github.com/users/mgokulkrish/followers", "following_url": "https://api.github.com/users/mgokulkrish/following{/other_user}", "gists_url": "https://api.github.com/users/mgokulkrish/gists{/gist_id}", "starred_url": "https://api.github.com/users/mgokulkrish/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mgokulkrish/subscriptions", "organizations_url": "https://api.github.com/users/mgokulkrish/orgs", "repos_url": "https://api.github.com/users/mgokulkrish/repos", "events_url": "https://api.github.com/users/mgokulkrish/events{/privacy}", "received_events_url": "https://api.github.com/users/mgokulkrish/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60749/checks?check_run_id=13924564295) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "Hi @mgokulkrish Can you please sign CLA. Thank you!", "Hi @gbaned , i had signed a cla yesterday under the name mgokulkrish and email [email protected]. Maybe i missed something, I am new to open source.", "Hi @gbaned, I think the cla workflow has verified my id.", "> Hi @gbaned, I think the cla workflow has verified my id.\r\n\r\nHi @mgokulkrish Yes, It is fine now. Thank you!", "Hi @terryheo, could you please review this PR. Doing open-source contribution for the first time, would love to learn from the mistakes and improve.", "Hi @gbaned, This PR is yet to be reviewed or approved, could you add more reviewers.", "Hi @terryheo / @sirakiin Can you please review this PR ? Thank you!", "Hi @mgokulkrish Can you please check @terryheo's [comments](https://github.com/tensorflow/tensorflow/pull/60749#discussion_r1275270526) and keep us posted ? Thank you!", "> Hi @mgokulkrish Can you please check @terryheo's [comments](https://github.com/tensorflow/tensorflow/pull/60749#discussion_r1275270526) and keep us posted ? Thank you!\r\n\r\nHi @gbaned, I have already replied to @terryheo 's post. After clarification will make the required changes.", "Hi @terryheo Any update on this PR? Please. Thank you!", "Hi @terryheo Any update on this PR? Please. Thank you!", "Let me fix the code style." ]
2023-06-01T12:16:49
2023-09-05T22:47:47
2023-09-05T22:47:46
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60749", "html_url": "https://github.com/tensorflow/tensorflow/pull/60749", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60749.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60749.patch", "merged_at": "2023-09-05T22:47:46" }
Resolving errors which occur during `bazel test //tensorflow/lite/delegates/gpu/common/...` This fixes the errors in unit_tests in: fully_connected. lstm. mean_stddev_normalization. interpreter_utils.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60749/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60749/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60748
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60748/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60748/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60748/events
https://github.com/tensorflow/tensorflow/pull/60748
1,736,187,103
PR_kwDOArmXAs5R5REp
60,748
TensorflowLite unit test error fix.
{ "login": "mgokulkrish", "id": 130030473, "node_id": "U_kgDOB8AbiQ", "avatar_url": "https://avatars.githubusercontent.com/u/130030473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mgokulkrish", "html_url": "https://github.com/mgokulkrish", "followers_url": "https://api.github.com/users/mgokulkrish/followers", "following_url": "https://api.github.com/users/mgokulkrish/following{/other_user}", "gists_url": "https://api.github.com/users/mgokulkrish/gists{/gist_id}", "starred_url": "https://api.github.com/users/mgokulkrish/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mgokulkrish/subscriptions", "organizations_url": "https://api.github.com/users/mgokulkrish/orgs", "repos_url": "https://api.github.com/users/mgokulkrish/repos", "events_url": "https://api.github.com/users/mgokulkrish/events{/privacy}", "received_events_url": "https://api.github.com/users/mgokulkrish/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60748/checks?check_run_id=13924367113) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request." ]
2023-06-01T12:10:01
2023-06-01T12:15:24
2023-06-01T12:15:24
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60748", "html_url": "https://github.com/tensorflow/tensorflow/pull/60748", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60748.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60748.patch", "merged_at": null }
Resolving errors which occur during `bazel test //tensorflow/lite/delegates/gpu/common/...` This fixes the errors in unit_tests in: 1. fully_connected. 2. lstm. 3. mean_stddev_normalization. 4. interpreter_utils.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60748/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60748/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60747
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60747/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60747/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60747/events
https://github.com/tensorflow/tensorflow/issues/60747
1,735,778,803
I_kwDOArmXAs5ndeHz
60,747
tensorflow.map hangs randomly when using for num_parallel_calls a value > 1
{ "login": "GrannyTickler", "id": 64699581, "node_id": "MDQ6VXNlcjY0Njk5NTgx", "avatar_url": "https://avatars.githubusercontent.com/u/64699581?v=4", "gravatar_id": "", "url": "https://api.github.com/users/GrannyTickler", "html_url": "https://github.com/GrannyTickler", "followers_url": "https://api.github.com/users/GrannyTickler/followers", "following_url": "https://api.github.com/users/GrannyTickler/following{/other_user}", "gists_url": "https://api.github.com/users/GrannyTickler/gists{/gist_id}", "starred_url": "https://api.github.com/users/GrannyTickler/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/GrannyTickler/subscriptions", "organizations_url": "https://api.github.com/users/GrannyTickler/orgs", "repos_url": "https://api.github.com/users/GrannyTickler/repos", "events_url": "https://api.github.com/users/GrannyTickler/events{/privacy}", "received_events_url": "https://api.github.com/users/GrannyTickler/received_events", "type": "User", "site_admin": false }
[ { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "Verify that Docker is properly configured, including memory and resource allocation settings, to ensure optimal performance.Also you can try updating the python version and dataset_train = tf.data.Dataset.from_tensor_slices((filenames)) line has double round bracket instead of single.Hope this helps", "@GrannyTickler,\r\nI tried to execute the mentioned code and it was failing due to a different error. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/24d1fb3e0cc1eac262c9e5d060930a2b/untitled.ipynb) and provide the complete dependencies. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "I tested the code without the docker container and it seems to work -> the issue can be closed apologies.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60747\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60747\">No</a>\n" ]
2023-06-01T08:35:08
2023-06-13T07:20:41
2023-06-13T07:20:39
NONE
null
null
null
### System information - **Have I written custom code (as opposed to using a stock example script provided in TensorFlow)**: yes - **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: wsl2 on windows - **TensorFlow installed from (source or binary)**: binary - **TensorFlow version (use command below)**: 2.12.0 - **Python version**: 3.8.10 - **CUDA/cuDNN version**: 12.0 - **GPU model and memory**: RTX A5000 24GB ### Describe the problem I am using tensorflow in a docker container on wsl2 for training neural networks but unfortunately everything freezes during the image import if done with the tf.map function with the parameter "num_parallel_calls" set to a value >1. Below is a minimal example of the code which causes the console to freeze at a random step and the CPU-usage to drop to a minimal level while the RAM is still occupied. After everything is frozen, the docker container is unresponsive and has to be restarted by stopping the process. This might even take half a day -> a few hundred thousand iterations but it allways happens at some point. ### Source code / logs `import tensorflow as tf def parse_function(filename): return tf.io.read_file(filename) filenames = [] for i in range (100000): filenames.append("/D/test.png") dataset_train = tf.data.Dataset.from_tensor_slices((filenames)) dataset_train = dataset_train.map(parse_function, num_parallel_calls = 2) dataset_train = dataset_train.batch(50) for epoch in range(1000): for step, (x_batch_train) in enumerate(dataset_train): print("epoch:", epoch, "start train step:",step)` This issue is similar to others like #32454 but i still can't find a fix. Bypassing the map-function by loading everything at once works -> definitly during mapping if parallel calls are allowed
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60747/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60747/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60746
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60746/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60746/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60746/events
https://github.com/tensorflow/tensorflow/issues/60746
1,735,668,991
I_kwDOArmXAs5ndDT_
60,746
Problem importint load_img from tensorflow.keras.utils
{ "login": "franknganmo", "id": 130893798, "node_id": "U_kgDOB81H5g", "avatar_url": "https://avatars.githubusercontent.com/u/130893798?v=4", "gravatar_id": "", "url": "https://api.github.com/users/franknganmo", "html_url": "https://github.com/franknganmo", "followers_url": "https://api.github.com/users/franknganmo/followers", "following_url": "https://api.github.com/users/franknganmo/following{/other_user}", "gists_url": "https://api.github.com/users/franknganmo/gists{/gist_id}", "starred_url": "https://api.github.com/users/franknganmo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/franknganmo/subscriptions", "organizations_url": "https://api.github.com/users/franknganmo/orgs", "repos_url": "https://api.github.com/users/franknganmo/repos", "events_url": "https://api.github.com/users/franknganmo/events{/privacy}", "received_events_url": "https://api.github.com/users/franknganmo/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @franknganmo ,\r\n\r\nCould you please confirm the code snippet you are using ?\r\n\r\nPlease note that if you are using [tf.keras.preprocessing.image.load_img](https://www.tensorflow.org/api_docs/python/tf/keras/utils/load_img) API then it is deprecated and may not work.\r\n\r\nPlease use [tf.keras.utils.load_img](https://www.tensorflow.org/api_docs/python/tf/keras/utils/load_img) for the image loading purposes. For more details please refer to attached documentation sources.\r\n\r\nI have also tested the imports in colab and found that `keras.preprocessing.image.load_img` not working as reported but `keras.utils.load_img ` is working.Please refer to attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/75c5981c8802070f1e4b5c37f14f68c1/60746.ipynb).\r\n\r\nHope this will resolve your issue.\r\n\r\nThanks!", "def predictImage(img_path='my_image.jpg', arrayImg=None, printData=True):\r\n crops = []\r\n if arrayImg == None:\r\n img = image.load_img(img_path)\r\n crops = np.array(getCropImgs(img, needRotations=False), np.float16)\r\n crops = np.divide(crops, 255.)\r\n Image.fromarray(np.array(crops[0]), \"RGB\").show()", "I use from tensorflow.keras.utils import load_img", "Hi @franknganmo ,\r\n\r\nI think you are using the API wrong. You have to call the API like `tf.keras.utils.load_img()` .\r\n\r\nFrom your code you calling it as image.load_img(img_path) which makes me think that you are calling the API on image which is not correct.Since if you have imported `load_img` already using `tensorflow.keras.utils import load_img` then you can directly use it in code.\r\n\r\nMay be replacing` img=image.load_img(img_path)` with `img=load_img(img_path)` might works for you.\r\n\r\nI have attached a sample colab gist on how to use this API . Please refer this and change code accordingly and let us know if it helps.\r\n\r\nThanks!", "good", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60746\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60746\">No</a>\n" ]
2023-06-01T07:31:10
2023-06-07T03:42:06
2023-06-07T03:42:04
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution Windows ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Using load_img to import an image into my program's function ### Standalone code to reproduce the issue ```shell ImportError: cannot import name 'load_img' from 'keras.preprocessing.image' ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60746/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60746/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60745
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60745/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60745/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60745/events
https://github.com/tensorflow/tensorflow/issues/60745
1,735,508,954
I_kwDOArmXAs5nccPa
60,745
bazel build -c opt --config=macos //tensorflow/lite/c:tensorflowlite_c --verbose_failure ld: unknown option: --no-undefined
{ "login": "Yongle-Fu", "id": 13882931, "node_id": "MDQ6VXNlcjEzODgyOTMx", "avatar_url": "https://avatars.githubusercontent.com/u/13882931?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Yongle-Fu", "html_url": "https://github.com/Yongle-Fu", "followers_url": "https://api.github.com/users/Yongle-Fu/followers", "following_url": "https://api.github.com/users/Yongle-Fu/following{/other_user}", "gists_url": "https://api.github.com/users/Yongle-Fu/gists{/gist_id}", "starred_url": "https://api.github.com/users/Yongle-Fu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Yongle-Fu/subscriptions", "organizations_url": "https://api.github.com/users/Yongle-Fu/orgs", "repos_url": "https://api.github.com/users/Yongle-Fu/repos", "events_url": "https://api.github.com/users/Yongle-Fu/events{/privacy}", "received_events_url": "https://api.github.com/users/Yongle-Fu/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 3911105852, "node_id": "LA_kwDOArmXAs7pHr08", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20PR%20merge", "name": "awaiting PR merge", "color": "4080bf", "default": false, "description": "awaiting PR merge" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "terryheo", "id": 2908505, "node_id": "MDQ6VXNlcjI5MDg1MDU=", "avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4", "gravatar_id": "", "url": "https://api.github.com/users/terryheo", "html_url": "https://github.com/terryheo", "followers_url": "https://api.github.com/users/terryheo/followers", "following_url": "https://api.github.com/users/terryheo/following{/other_user}", "gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}", "starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/terryheo/subscriptions", "organizations_url": "https://api.github.com/users/terryheo/orgs", "repos_url": "https://api.github.com/users/terryheo/repos", "events_url": "https://api.github.com/users/terryheo/events{/privacy}", "received_events_url": "https://api.github.com/users/terryheo/received_events", "type": "User", "site_admin": false }
[ { "login": "terryheo", "id": 2908505, "node_id": "MDQ6VXNlcjI5MDg1MDU=", "avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4", "gravatar_id": "", "url": "https://api.github.com/users/terryheo", "html_url": "https://github.com/terryheo", "followers_url": "https://api.github.com/users/terryheo/followers", "following_url": "https://api.github.com/users/terryheo/following{/other_user}", "gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}", "starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/terryheo/subscriptions", "organizations_url": "https://api.github.com/users/terryheo/orgs", "repos_url": "https://api.github.com/users/terryheo/repos", "events_url": "https://api.github.com/users/terryheo/events{/privacy}", "received_events_url": "https://api.github.com/users/terryheo/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Yongle-Fu Thanks for reporting this issue.\r\n\r\nI was able to reproduce this issue. Please find the screenshot below.\r\n\r\n<img width=\"567\" alt=\"image\" src=\"https://github.com/tensorflow/tensorflow/assets/118897289/0348572b-e363-4303-ac37-d01ea8e9fa3f\">\r\n\r\n@pkgoogle Can you please look into this?\r\n\r\nThanks.", "I was able to reproduce:\r\n\r\n```\r\nERROR: /Users/pisethk/git/tensorflow/tensorflow/lite/c/BUILD:27:24: Linking tensorflow/lite/c/libtensorflowlite_c.dylib failed: (Exit 1): cc_wrapper.sh failed: error executing command (from target //tensorflow/lite/c:libtensorflowlite_c.dylib) \r\n (cd /private/var/tmp/_bazel_pisethk/0b4260bf24636eb9896878b03d13e41b/execroot/org_tensorflow && \\\r\n exec env - \\\r\n APPLE_SDK_PLATFORM=MacOSX \\\r\n APPLE_SDK_VERSION_OVERRIDE=13.3 \\\r\n PATH=/Users/pisethk/Library/Caches/bazelisk/downloads/bazelbuild/bazel-6.1.0-darwin-arm64/bin:/opt/homebrew/opt/make/libexec/gnubin:/Users/pisethk/miniforge3/bin:/Users/pisethk/miniforge3/condabin:/usr/local/git/git-google/bin:/usr/local/git/current/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:/Library/Apple/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/appleinternal/bin:/opt/homebrew/bin \\\r\n PYTHON_BIN_PATH=/Users/pisethk/miniforge3/bin/python3 \\\r\n PYTHON_LIB_PATH=/Users/pisethk/miniforge3/lib/python3.10/site-packages \\\r\n TF2_BEHAVIOR=1 \\\r\n XCODE_VERSION_OVERRIDE=14.3.1.14E300b \\\r\n ZERO_AR_DATE=1 \\\r\n external/local_config_cc/cc_wrapper.sh @bazel-out/darwin_arm64-opt/bin/tensorflow/lite/c/libtensorflowlite_c.dylib-2.params)\r\n# Configuration: 909810f2fd11f4b96aeaacdf0d5bc1e200c23f5a11823d712c54452c08c5a573\r\n# Execution platform: @local_execution_config_platform//:platform\r\nld: unknown option: --no-undefined\r\nclang: error: linker command failed with exit code 1 (use -v to see invocation)\r\nError in child process '/usr/bin/xcrun'. 1\r\nTarget //tensorflow/lite/c:tensorflowlite_c failed to build\r\nINFO: Elapsed time: 143.211s, Critical Path: 16.06s\r\nINFO: 1228 processes: 370 internal, 858 local.\r\nFAILED: Build did NOT complete successfully\r\n```\r\n\r\nIn https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/c/BUILD#L29:\r\n```\r\n...\r\ntflite_cc_shared_object(\r\n name = \"tensorflowlite_c\",\r\n linkopts = tflite_linkopts_no_undefined() + select({\r\n \"//tensorflow:ios\": [\r\n \"-Wl,-exported_symbols_list,$(location //tensorflow/lite/c:exported_symbols.lds)\",\r\n ],\r\n \"//tensorflow:macos\": [\r\n \"-Wl,-exported_symbols_list,$(location //tensorflow/lite/c:exported_symbols.lds)\",\r\n ],\r\n \"//tensorflow:windows\": [],\r\n \"//conditions:default\": [\r\n \"-Wl,--version-script,$(location //tensorflow/lite/c:version_script.lds)\",\r\n ],\r\n }),\r\n...\r\n```\r\nthe linker options are defined per platform.\r\n\r\nThis case should be handled here:\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/build_def.bzl#L144\r\n```\r\n\r\ndef tflite_linkopts_no_undefined():\r\n \"\"\"Defines linker flags to enable errors for undefined symbols.\r\n\r\n This enables link-time errors for undefined symbols even when linking\r\n shared libraries, where the default behaviour on many systems is to only\r\n report errors for undefined symbols at runtime.\r\n \"\"\"\r\n return if_oss(\r\n select({\r\n \"//tensorflow:ios\": [\r\n # iOS linker uses \"--undefined error\" instead of \"--no-undefined\".\r\n \"-Wl,-undefined,error\",\r\n ],\r\n \"//conditions:default\": [\"-Wl,--no-undefined\"],\r\n }),\r\n select({\r\n # Can't enable errors for undefined symbols for asan/msan/tsan mode,\r\n # since undefined symbols in shared libraries (references to symbols\r\n # that will be defined in the main executable) are normal and\r\n # expected in those cases.\r\n \"//tools/cpp:asan_build\": [],\r\n \"//tools/cpp:msan_build\": [],\r\n \"//tools/cpp:tsan_build\": [],\r\n \"//tensorflow:ios\": [\r\n # iOS linker uses \"--undefined error\" instead of \"--no-undefined\".\r\n \"-Wl,-undefined,error\",\r\n ],\r\n \"//conditions:default\": [\"-Wl,--no-undefined\"],\r\n }),\r\n )\r\n```\r\n\r\nI believe somehow the new bazel update is causing\r\n```\r\n\"//conditions:default\": [\"-Wl,--no-undefined\"],\r\n```\r\nto be hit with macOS.\r\n\r\n@terryheo can you please take a look at this?", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60745\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60745\">No</a>\n" ]
2023-06-01T05:41:02
2023-06-14T19:47:43
2023-06-14T19:47:40
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version 3.11.3 ### Bazel version 6.1 ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? (base) ➜ tensorflow git:(master) ✗ bazel build -c opt --config=macos //tensorflow/lite/c:tensorflowlite_c --verbose_failures INFO: Options provided by the client: Inherited 'common' options: --isatty=1 --terminal_columns=198 INFO: Reading rc options for 'build' from /Users/yongle/project/C/tensorflow/.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Reading rc options for 'build' from /Users/yongle/project/C/tensorflow/.bazelrc: 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for 'build' from /Users/yongle/project/C/tensorflow/.tf_configure.bazelrc: 'build' options: --action_env PYTHON_BIN_PATH=/Users/yongle/.pyenv/versions/3.11.3/bin/python3 --action_env PYTHON_LIB_PATH=/Users/yongle/.pyenv/versions/3.11.3/lib/python3.11/site-packages --python_path=/Users/yongle/.pyenv/versions/3.11.3/bin/python3 --action_env ANDROID_NDK_HOME=/Users/yongle/Library/Android/sdk/ndk/21.4.7075529 --action_env ANDROID_NDK_API_LEVEL=21 --action_env ANDROID_BUILD_TOOLS_VERSION=33.0.1 --action_env ANDROID_SDK_API_LEVEL=33 --action_env ANDROID_SDK_HOME=/Users/yongle/Library/Android/sdk INFO: Reading rc options for 'build' from /Users/yongle/project/C/tensorflow/.bazelrc: 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug INFO: Found applicable config definition build:short_logs in file /Users/yongle/project/C/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /Users/yongle/project/C/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:macos in file /Users/yongle/project/C/tensorflow/.bazelrc: --apple_platform_type=macos --copt=-DGRPC_BAZEL_BUILD --features=archive_param_file --copt=-w --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 INFO: Found applicable config definition build:macos in file /Users/yongle/project/C/tensorflow/.bazelrc: --apple_platform_type=macos --copt=-DGRPC_BAZEL_BUILD --features=archive_param_file --copt=-w --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 INFO: Build options --action_env and --python_path have changed, discarding analysis cache. INFO: Analyzed target //tensorflow/lite/c:tensorflowlite_c (107 packages loaded, 2952 targets configured). INFO: Found 1 target... ERROR: /Users/yongle/project/C/tensorflow/tensorflow/lite/c/BUILD:28:24: Linking tensorflow/lite/c/libtensorflowlite_c.dylib failed: (Exit 1): cc_wrapper.sh failed: error executing command (from target //tensorflow/lite/c:libtensorflowlite_c.dylib) (cd /private/var/tmp/_bazel_yongle/fb676000c07d36afe13b22c7b593df69/execroot/org_tensorflow && \ exec env - \ ANDROID_BUILD_TOOLS_VERSION=33.0.1 \ ANDROID_NDK_API_LEVEL=21 \ ANDROID_NDK_HOME=/Users/yongle/Library/Android/sdk/ndk/21.4.7075529 \ ANDROID_SDK_API_LEVEL=33 \ ANDROID_SDK_HOME=/Users/yongle/Library/Android/sdk \ APPLE_SDK_PLATFORM=MacOSX \ APPLE_SDK_VERSION_OVERRIDE=13.3 \ PATH=/Users/yongle/Library/Caches/bazelisk/downloads/bazelbuild/bazel-6.1.0-darwin-x86_64/bin:/Users/yongle/miniconda3/bin:/Users/yongle/miniconda3/condabin:/Users/yongle/Library/pnpm:/usr/local/opt/node@19/bin:/Users/yongle/.pyenv/shims:/Users/yongle/.local/bin:/usr/local/bin:/System/Cryptexes/App/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/go/bin:/usr/local/share/dotnet:~/.dotnet/tools:/Library/Apple/usr/bin://Library/Developer/Panda3D/bin:/Library/Frameworks/Mono.framework/Versions/Current/Commands:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/appleinternal/bin:/Users/yongle/.cargo/bin:/usr/local/bin:91139ANDROID_NDK_ROOT/toolchains/aarch64-linux-android-4.9/prebuilt/darwin-x86_64/bin:/Users/yongle/Library/Android/sdk/emulator:/Users/yongle/Library/Android/sdk/tools:/Users/yongle/Library/Android/sdk/platform-tools:/Users/yongle/Library/Android/sdk/build-tools/33.0.1:/usr/local/bin:/Users/yongle/.pub-cache/bin:/opt/fvm/default/bin:/opt/fvm/default/bin/cache/dart-sdk/bin:/Users/yongle/Documents/apache-maven-3.8.1/bin \ PYTHON_BIN_PATH=/Users/yongle/.pyenv/versions/3.11.3/bin/python3 \ PYTHON_LIB_PATH=/Users/yongle/.pyenv/versions/3.11.3/lib/python3.11/site-packages \ TF2_BEHAVIOR=1 \ XCODE_VERSION_OVERRIDE=14.3.0.14E222b \ ZERO_AR_DATE=1 \ external/local_config_cc/cc_wrapper.sh @bazel-out/darwin-opt/bin/tensorflow/lite/c/libtensorflowlite_c.dylib-2.params) # Configuration: 0147ddac8ddd69cb32a57bdf7993d2379760736293c350037f6e0ed5fdf8b453 # Execution platform: @local_execution_config_platform//:platform ld: unknown option: --no-undefined clang: error: linker command failed with exit code 1 (use -v to see invocation) Error in child process '/usr/bin/xcrun'. 1 Target //tensorflow/lite/c:tensorflowlite_c failed to build INFO: Elapsed time: 124.453s, Critical Path: 47.17s INFO: 407 processes: 2 internal, 405 local. FAILED: Build did NOT complete successfully ### Standalone code to reproduce the issue ```shell bazel build -c opt --config=macos //tensorflow/lite/c:tensorflowlite_c --verbose_failures ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60745/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60745/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60744
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60744/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60744/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60744/events
https://github.com/tensorflow/tensorflow/pull/60744
1,735,389,137
PR_kwDOArmXAs5R2isu
60,744
Improve how tf_xla_cluster_exclude_ops flag is processed.
{ "login": "tqxia", "id": 44689929, "node_id": "MDQ6VXNlcjQ0Njg5OTI5", "avatar_url": "https://avatars.githubusercontent.com/u/44689929?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tqxia", "html_url": "https://github.com/tqxia", "followers_url": "https://api.github.com/users/tqxia/followers", "following_url": "https://api.github.com/users/tqxia/following{/other_user}", "gists_url": "https://api.github.com/users/tqxia/gists{/gist_id}", "starred_url": "https://api.github.com/users/tqxia/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tqxia/subscriptions", "organizations_url": "https://api.github.com/users/tqxia/orgs", "repos_url": "https://api.github.com/users/tqxia/repos", "events_url": "https://api.github.com/users/tqxia/events{/privacy}", "received_events_url": "https://api.github.com/users/tqxia/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-06-01T03:46:24
2023-06-12T12:02:33
2023-06-12T12:02:33
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60744", "html_url": "https://github.com/tensorflow/tensorflow/pull/60744", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60744.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60744.patch", "merged_at": "2023-06-12T12:02:33" }
Looks like we have 2 minor issues with how tf_xla_cluster_exclude_ops is processed in mark_for_compilation_pass: 1. cluster_exclude_op_list is repeatedly created and validated within a loop, which is inefficient; 2. GetOrCreateClusterExcludeList can be renamed to CreateClusterExcludeList, since there is no caching mechanism and a brand new list is created every time calling that function; This PR targets at fixing these 2 issues.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60744/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60744/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60743
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60743/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60743/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60743/events
https://github.com/tensorflow/tensorflow/issues/60743
1,734,923,971
I_kwDOArmXAs5naNbD
60,743
Tensorflow Lite Model Maker model works on Python API but not on device (IOS/Android)
{ "login": "carl-krikorian", "id": 59343296, "node_id": "MDQ6VXNlcjU5MzQzMjk2", "avatar_url": "https://avatars.githubusercontent.com/u/59343296?v=4", "gravatar_id": "", "url": "https://api.github.com/users/carl-krikorian", "html_url": "https://github.com/carl-krikorian", "followers_url": "https://api.github.com/users/carl-krikorian/followers", "following_url": "https://api.github.com/users/carl-krikorian/following{/other_user}", "gists_url": "https://api.github.com/users/carl-krikorian/gists{/gist_id}", "starred_url": "https://api.github.com/users/carl-krikorian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/carl-krikorian/subscriptions", "organizations_url": "https://api.github.com/users/carl-krikorian/orgs", "repos_url": "https://api.github.com/users/carl-krikorian/repos", "events_url": "https://api.github.com/users/carl-krikorian/events{/privacy}", "received_events_url": "https://api.github.com/users/carl-krikorian/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @carl-krikorian,\r\n\r\nThanks for reporting this issue. Can you please follow the instructions to fill out the issue template: https://github.com/tensorflow/tensorflow/blob/master/ISSUE_TEMPLATE.md, this will help us identify what is different about your environment which may be causing the issue. Also can you clarify whether this is happening for the Swift API, Android API, or both? Also any additional real custom code you are executing will help as well. A minimal example to reproduce is preferred.", "Hello @pkgoogle,\r\nTo answer your question, the issue was encountered on both Swift and Android. For the Swift API, the app would show the error displayed in the first comment, whereas for the Android API the app seemed to crash. \r\n\r\n\r\n### Have I written custom code (as opposed to using a stock example script provided in TensorFlow):\r\n\r\nFor the Android app we used the sample app found [here](https://www.tensorflow.org/lite/inference_with_metadata/task_library/bert_nl_classifier#step_2_run_inference_using_the_api). Similarly for Swift we followed these instructions [here](https://www.tensorflow.org/lite/inference_with_metadata/task_library/bert_nl_classifier#step_2_run_inference_using_the_api_2).\r\nHere is a sample of the struct used for the Swift code in the first image:\r\n```\r\n\r\n- (NSDictionary<NSString *, NSNumber *> *)classifyWithText:(NSString *)text {\r\n\r\n struct Categories *cCategories = BertNLClassifierClassify(_bertNLClassifier, text.UTF8String);\r\n\r\n NSMutableDictionary<NSString *, NSNumber *> *ret = [NSMutableDictionary dictionary];\r\n\r\n for (int i = 0; i < cCategories->size; i++) {\r\n\r\n struct Category cCategory = cCategories->categories[i];\r\n\r\n [ret setValue:[NSNumber numberWithDouble:cCategory.score]\r\n\r\n forKey:[NSString stringWithUTF8String:cCategory.text]];\r\n\r\n }\r\n\r\n NLClassifierCategoriesDelete(cCategories);\r\n\r\n return ret;\r\n\r\n}\r\n```\r\nThe Python inference that worked was run using this code block\r\n\r\n```\r\nimport os\r\nimport pandas as pd\r\nimport contractions\r\nimport re\r\nimport nltk\r\nimport unicodedata\r\nfrom tflite_model_maker.text_classifier import MobileBertClassifierSpec\r\n\r\ndef remove_special_characters(text):\r\n # define the pattern to keep\r\n pat = r'[^a-zA-z]' \r\n text = re.sub(pat, ' ', text)\r\n text = re.sub(\" +\", \" \", text)\r\n text = text.strip()\r\n return text\r\n\r\ndef preprocess(target_string):\r\n target_string = unicodedata.normalize('NFKD', target_string).encode('ascii', 'ignore').decode('utf-8', 'ignore')\r\n target_string = contractions.fix(target_string)\r\n target_string = remove_special_characters(target_string) \r\n\r\n lemmatizer = WordNetLemmatizer()\r\n # Lemmatization\r\n words = nltk.word_tokenize(target_string)\r\n words = [lemmatizer.lemmatize(word) for word in words if word not in set(stopwords.words('english'))]\r\n target_string = ' '.join(words)\r\n target_string = target_string.lower()\r\n return target_string\r\n\r\ncur_model = BertNLClassifier.create_from_file(tflite_model_path)\r\n\r\ndef make_prediction(cur_input, model):\r\n cur_input = preprocess(cur_input)\r\n res = model.classify(cur_input)\r\n classifications = res.classifications\r\n return max(classifications[0].categories, key=lambda x: x.score)\r\n\r\nmake_prediction(text, cur_model)\r\n```\r\n### OS Platform and Distribution (e.g., Linux Ubuntu 16.04):\r\nThe model was trained on the fallback version of Google Colab, It is no longer available but I believe it used either Ubuntu 20.04 or 18.04.\r\nThe inference testing was made on Ubuntu 22.04 with the Python API and for the Android and Swift APIs on Mac OS 16.5.\r\n\r\n### Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue happens on a mobile device:\r\nThe issue was while running the app on emulators.\r\n\r\n### TensorFlow installed from (source or binary):\r\nThe packages were install through pip on both Google Colab and the Ubuntu machine for training.\r\n\r\n### TensorFlow version (use command below):\r\nFor the Python inference the version of Tensorflow was:\r\nv2.8.1-10-g2ea19cbb575 2.8.2\r\n\r\n### Bazel version\r\nNot applicable\r\n\r\n### Python version / GCC/Compiler version\r\nWas trained on:\r\n 3.9.16 (main, Dec 7 2022, 01:11:51) \r\n [GCC 9.4.0]\r\nInference worked on Python API using:\r\n 3.7.11 (default, Jul 27 2021, 14:32:16) \r\n [GCC 7.5.0]\r\n\r\n### CUDA/cuDNN version:\r\nCUDA Version: 12.0\r\n\r\n### GPU model and memory:\r\nTesla T4 16 GB of Memory\r\n\r\n\r\nLet me know if I can provide any more specific or further information. Thank you for your time!", "Hi @carl-krikorian, can you upload the .tflite model you used that ran into this issue? The code you used to produce the model would also be helpful (the code sample you provided appears to create one and run inference but doesn't do the actual conversion).", "Hello @pkgoogle, \r\nThe model was attached in the first comment here: https://drive.google.com/file/d/1jeKm7EesBZqi_lgPrCSq_HwPapX54OlL/view?usp=sharing\r\nI would have zipped and sent it but the last time I did that it wiped the entire MedtaData.\r\nHere is the training script I used: \r\n[tflite_maker.zip](https://github.com/tensorflow/tensorflow/files/11674325/tflite_maker.zip)\r\n", "Hi @carl-krikorian,\r\n\r\nI am having trouble replicating the issue, let's focus on iOS/Swift for now.\r\n\r\nHow are you installing the pod? How are you calling the library? How are you including the \"model.tflite\" file in the app? Is it part of the app's bundle? Exact steps, exact podfile and a minimal reproducing code example is preferred (Are you calling it in the app's init function?) Are you using an emulator? If so what is your exact target? Are you targeting arm64 or x86_64?\r\n\r\nGenerally the more information and the clearer I can reproduce your environment the easier it will be for us to help you. Thanks for your help!", "Hello @pkgoogle \r\n- We are installing the pod using: \r\n pod 'TensorFlowLiteSwift'\r\n pod 'TensorFlowLiteTaskText', '~> 0.2.0'\r\n- This is we are calling the library:\r\n guard let modelPath = Bundle.main.path(forResource: \"model\", ofType: \"tflite\") else { return }\r\n self.tensorFlowBertNLClassifier = TFLBertNLClassifier.bertNLClassifier(modelPath: modelPath) \r\n- The model \"model.tflite\" is added in a folder: AppFolder -> Classification -> model.tflite\r\n- The model \"model.tflite\" is included in the target.\r\n- We are using a real device: iPhone XS with iOS 16.5\r\n\r\nThanks \r\n\r\n\r\n", "Hi @carl-krikorian, and @pauljasser,\r\n\r\nI was able to successfully build a minimal working example xcode app and tested it on an iPhone XS emulator with iOS **16.4**\r\n\r\nHere's my podfile (test60743 is my toy project)\r\n```ruby\r\n# Uncomment the next line to define a global platform for your project\r\n# platform :ios, '9.0'\r\n\r\ntarget 'test60743' do\r\n # Comment the next line if you don't want to use dynamic frameworks\r\n use_frameworks!\r\n\r\n # Pods for test60743\r\n pod 'TensorFlowLiteTaskText', '~> 0.2.0'\r\n\r\nend\r\n```\r\n\r\nHere's the main code of my toy app, everything else is default/unchanged:\r\n```swift\r\n//\r\n// test60743App.swift\r\n// test60743\r\n//\r\n//\r\n\r\nimport SwiftUI\r\nimport TensorFlowLiteTaskText\r\n\r\n@main\r\nstruct test60743App: App {\r\n init() {\r\n guard let modelPath = Bundle.main.path(forResource: \"model\", ofType: \"tflite\") else { return }\r\n\r\n // Initialization\r\n let bertNLClassifier = TFLBertNLClassifier.bertNLClassifier(\r\n modelPath: modelPath)\r\n\r\n // Run inference\r\n let categories = bertNLClassifier.classify(text: \"This is a test!\")\r\n print(categories)\r\n }\r\n\r\n var body: some Scene {\r\n WindowGroup {\r\n ContentView()\r\n }\r\n }\r\n}\r\n```\r\n\r\noutput:\r\n```\r\nWarning: Error creating LLDB target at path '/Users/pkgoogle/Library/Developer/Xcode/DerivedData/test60743-axhdejqtimuqkebnrdttlwvakvhx/Build/Products/Debug-iphonesimulator/test60743.app'- using an empty LLDB target which can cause slow memory reads from remote devices.\r\n2023-06-20 15:51:30.896779-0700 test60743[88128:5295809] Initialized TensorFlow Lite runtime.\r\nINFO: Initialized TensorFlow Lite runtime.\r\n2023-06-20 15:51:30.903566-0700 test60743[88128:5295809] Created TensorFlow Lite XNNPACK delegate for CPU.\r\nINFO: Created TensorFlow Lite XNNPACK delegate for CPU.\r\n[\"51\": 2.849037394891951e-10, \"22\": 1.445723984971892e-09, \"26\": 4.312332283797071e-13, \"37\": 0.9999986886978149, \"20\": 3.465258942014771e-07, \"152\": 5.632567762897667e-12, \"23\": 6.763575024484533e-14, \"36\": 4.274391396386079e-10, \"29\": 3.381838142857418e-10, \"50\": 8.567663939418324e-12, \"151\": 6.112114980805217e-11, \"101\": 2.107856389432783e-10, \"228\": 9.216152534463617e-07, \"12\": 2.11458517362928e-10, \"28\": 5.816923678847452e-11, \"2\": 3.674009707577142e-11, \"39\": 7.267813906253195e-09, \"30\": 4.441291223677979e-10, \"116\": 1.436604741417158e-11, \"9\": 1.725275478037247e-10, \"1\": 1.809406964536908e-11, \"192\": 3.250403002308389e-10, \"24\": 2.052141009206698e-12, \"3\": 8.08961964082755e-09, \"137\": 1.394123857155483e-12]\r\n```\r\n\r\nCan you check if you installed the podfiles properly? Do you all run into the same problem with a minimal example? (Feel free to use this toy example app to test).", "Hi @pkgoogle,\r\n\r\nI built the same example and had the same error..\r\nThis it the output:\r\nTestTextClassifierSwiftUI[33808:264743] Initialized TensorFlow Lite runtime.\r\ntensor->bytes == bytes\r\nFATAL\r\n\r\nI attached the sample I did (without the pods folder)\r\n[TestTextClassifierSwiftUI.zip](https://github.com/tensorflow/tensorflow/files/11817727/TestTextClassifierSwiftUI.zip)\r\n\r\nNot sure if related... which Xcode version are you using?\r\n", "Hi @pauljasser,\r\n\r\nI'm using Xcode 14.3.1, good news, I am able to run into your issue w/ your project. The only thing I can spot that is different about yours and my toy app is the extra frameworks in the \"Pods\" folder. I tried removing the frameworks but that doesn't seem to fix it. Can you start a fresh project and follow these directions for including 'TensorFlowLiteTaskText'.\r\n\r\n1. Go to your root project directory and do:\r\n```\r\npod init\r\n```\r\n\r\n2. Open your Podfile and make it like this:\r\n```ruby\r\n# Uncomment the next line to define a global platform for your project\r\n# platform :ios, '9.0'\r\n\r\ntarget 'YourProjectName' do\r\n # Comment the next line if you don't want to use dynamic frameworks\r\n use_frameworks!\r\n\r\n # Pods for YourProjectName\r\n pod 'TensorFlowLiteTaskText'\r\nend\r\n```\r\n\r\n3. install the pod:\r\n```\r\npod install\r\n```\r\n\r\nAdd the model.tflite asset to your project and try running the toy app. This is to test to make sure that this works without the extra frameworks.\r\n\r\nIf that works, try adding the frameworks one by one so we can pinpoint what's causing the problem.", "hey @pkgoogle.. I finally found the issue.\r\nThe TensorFlowLiteTaskText library v 0.2.0 installed as described here [https://www.tensorflow.org/lite/inference_with_metadata/task_library/bert_nl_classifier#step_1_import_cocoapods](url) is crashing with the model we are using.\r\nHowever it is working fine when using the latest version 0.4.3.\r\nThanks for your support.", "@pauljasser,\r\n\r\nAwesome! Does this resolve the issue with android as well? If so, please feel free to close if you have no additional items.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60743\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60743\">No</a>\n" ]
2023-05-31T19:59:56
2023-06-23T00:48:14
2023-06-23T00:48:12
NONE
null
null
null
Hello, I hope all is well. I have recently created a MobileBERT model using the Python API of the tflite_model_maker library following the steps described in this [page](https://www.tensorflow.org/lite/models/modify/model_maker/text_classification). You may find it attached in the following [link](https://drive.google.com/file/d/1jeKm7EesBZqi_lgPrCSq_HwPapX54OlL/view?usp=sharing) (let me know if I can share it in any other way). The good news is that I have been able to run inference with the Python API by following the steps described in this [article](https://www.tensorflow.org/lite/inference_with_metadata/task_library/bert_nl_classifier#step_2_using_the_model). However, my colleague has been encountering issues when trying to run the same model using the Swift and Android APIs after following this [page](https://www.tensorflow.org/lite/inference_with_metadata/task_library/bert_nl_classifier). After some time, he was effortlessly able to run inference on a different model made available through one of the sample apps found [here](https://storage.googleapis.com/download.tensorflow.org/models/tflite/task_library/text_classification/android/mobilebert.tflite). It is our belief that the issue may be from the MetaData but after inspecting both models' metadata (attached in the zip file), they seem to be exactly the same: [MetaDatas.zip](https://github.com/tensorflow/tensorflow/files/11615911/MetaDatas.zip). Our issue is that the inference process is killed without clear reason after the model is loaded. As displayed in the image below: ![MicrosoftTeams-image](https://github.com/tensorflow/tensorflow/assets/59343296/cd826cae-0544-4a2c-8f7b-8fe967466bf1) With the following error: ``` tensor->bytes == bytes FATAL ``` Please advise and thank you for your time
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60743/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60743/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60742
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60742/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60742/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60742/events
https://github.com/tensorflow/tensorflow/issues/60742
1,734,740,081
I_kwDOArmXAs5nZghx
60,742
TF compiler version causes error with pkg_resources.parse_version (invalid format)
{ "login": "RainierBarrett", "id": 13456066, "node_id": "MDQ6VXNlcjEzNDU2MDY2", "avatar_url": "https://avatars.githubusercontent.com/u/13456066?v=4", "gravatar_id": "", "url": "https://api.github.com/users/RainierBarrett", "html_url": "https://github.com/RainierBarrett", "followers_url": "https://api.github.com/users/RainierBarrett/followers", "following_url": "https://api.github.com/users/RainierBarrett/following{/other_user}", "gists_url": "https://api.github.com/users/RainierBarrett/gists{/gist_id}", "starred_url": "https://api.github.com/users/RainierBarrett/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/RainierBarrett/subscriptions", "organizations_url": "https://api.github.com/users/RainierBarrett/orgs", "repos_url": "https://api.github.com/users/RainierBarrett/repos", "events_url": "https://api.github.com/users/RainierBarrett/events{/privacy}", "received_events_url": "https://api.github.com/users/RainierBarrett/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @RainierBarrett ,\r\n\r\nCould you please confirm how you are installing the TF package ? Are you building from source ?\r\n\r\nI have replicated the behaviour with pip wheel and the output is same as reported by you and attached snapshot below.\r\n\r\n<img width=\"1512\" alt=\"Screenshot 2023-06-01 at 2 49 21 PM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/e60ddb15-5fb5-480e-90b7-a448cbee4127\">\r\n\r\nThe behaviour is different with Google colab as per attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/3a6703acf90aaafba89d7b7eb82c683c/60742.ipynb) and error out as below.\r\n\r\n`InvalidVersion: Invalid version: '9.3.1 20200408'`\r\n\r\nTensorflow uses bazel for building TF from source.I am not sure how this issue is related /affecting Tensorflow. Could you please elaborate more.\r\n\r\nThanks!", "For this example I was grabbing TF with conda in an otherwise empty conda env. \r\n\r\nSo you're saying the `tensorflow.__compiler_version__` is set by bazel and not TF then?", "@RainierBarrett ,\r\n\r\nA small update regarding compiler for TF builds.Starting from TF 2.13v, tensorflow linux builds were compiled by using Clang16. Before that it was GCC.Same updated in [documentation](https://www.tensorflow.org/install/source#install_clang_recommended_linux_only).\r\n\r\nSo the response `'Ubuntu Clang 16.0.4 (++20230506063001+3c1576cc0c54-1~exp1~20230506063103.85)'` for `tensorflow.__compiler_version__` should be fine, but not sure why the `pkg_resources. parse_version` raising invalid argument error. \r\n\r\nThe result is also same with Google colab with TF2.13rc1 as per [gist](https://colab.research.google.com/gist/SuryanarayanaY/7a77eedceb521fa7e90ece047061b8cc/60742_2-13v.ipynb).Earlier gist was tested on TF2.12 and its gave GCC version.\r\n\r\nI am not sure whether the issue is with TF or not since compiler name was identified properly but erroring at same time.If you have any thoughts on this please feel free to share.\r\n\r\nThanks!\r\n", "Looks like setuptools are bringing down the hammer on [non-PEP440-compliant version strings.](https://github.com/pypa/setuptools/issues/3772) Since this compiler's version string isn't coming from a python package anyway, I will just have to seek out a different parsing tool for the check. The issue was indeed not due to TF or the compiler itself. Cheers!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60742\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60742\">No</a>\n" ]
2023-05-31T18:07:54
2023-06-06T18:27:12
2023-06-06T18:27:09
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.14.0-dev20230531 ### Custom Code No ### OS Platform and Distribution Linux 3.10.0-1127.el7.x86_64 ### Mobile device _No response_ ### Python version 3.11.3 ### Bazel version N/A ### GCC/Compiler version N/A ### CUDA/cuDNN version CUDA 10.2.89 ### GPU model and memory N/A ### Current Behaviour? **Current behavior:** The following code (in a fresh conda env with tf-nightly installed via pip) produces a `pkg_resources.extern.packaging.version.InvalidVersion` error from `parse_version`: ```python import tensorflow from pkg_resources import parse_version parse_version(tensorflow.__compiler_version__) ``` **Desired Behavior:** A string that matches the format produced by cmake's `$(CMAKE_CXX_COMPILER_VERSION}`, i.e. is readable by `pkg_resources.parse_version`. **Context:** Presently I am using this to warn against compiler mismatches at build time of a package that builds with TF libs in cmake (checks against `${CMAKE_CXX_COMPILER_VERSION}`). The build process doesn't strike me as relevant here but I will provide the build files if requested. ### Standalone code to reproduce the issue ```shell import tensorflow from pkg_resources import parse_version parse_version(tensorflow.__compiler_version__) ``` ### Relevant log output ```shell >>> parse_version(tensorflow.__compiler_version__) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/rainierbarrett/.conda/envs/tf-test/lib/python3.11/site-packages/pkg_resources/_vendor/packaging/version.py", line 197, in __init__ raise InvalidVersion(f"Invalid version: '{version}'") pkg_resources.extern.packaging.version.InvalidVersion: Invalid version: 'Ubuntu Clang 16.0.4 (++20230506063001+3c1576cc0c54-1~exp1~20230506063103.85)' ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60742/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60742/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60741
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60741/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60741/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60741/events
https://github.com/tensorflow/tensorflow/issues/60741
1,734,661,897
I_kwDOArmXAs5nZNcJ
60,741
multiprocessing stuck after usage of tensorflow functionality
{ "login": "cevheck", "id": 61511837, "node_id": "MDQ6VXNlcjYxNTExODM3", "avatar_url": "https://avatars.githubusercontent.com/u/61511837?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cevheck", "html_url": "https://github.com/cevheck", "followers_url": "https://api.github.com/users/cevheck/followers", "following_url": "https://api.github.com/users/cevheck/following{/other_user}", "gists_url": "https://api.github.com/users/cevheck/gists{/gist_id}", "starred_url": "https://api.github.com/users/cevheck/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cevheck/subscriptions", "organizations_url": "https://api.github.com/users/cevheck/orgs", "repos_url": "https://api.github.com/users/cevheck/repos", "events_url": "https://api.github.com/users/cevheck/events{/privacy}", "received_events_url": "https://api.github.com/users/cevheck/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@cevheck,\r\nI tried to execute the mentioned code on tensorflow v2.12 and it was executed without any issue/error and the output also was expected. Kindly find the gist of it [here](https://colab.sandbox.google.com/gist/tilakrayal/24de734f496450ad1cf18bde991a899e/untitled1186.ipynb). Thank you!", "@tilakrayal,\r\nThank you for your effort! I don't seem to get the prints from inside the multiprocessing function, however the file does completely run without errors indeed. \r\n\r\nHowever I tried the same code again when starting from a conda environment from scratch, taking the same python version as yours (3.10.11) and only downloading tensorflow. \r\nprint(tf.__version__) returns 2.12.0, hence the same as yours.\r\n\r\nCould this issue be hardware related? I'm working on a CPU with 16cores. One of the difference I see is you not having these prints:\r\n\"\r\n2023-05-31 19:20:51.221681: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected\r\n2023-05-31 19:20:51.221727: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (cedric-Z590-UD-AC): /proc/driver/nvidia/version does not exist\r\n2023-05-31 19:20:51.222470: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA\r\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n\"\r\n", "Maybe some additional information I've obtained in the meantime.\r\n\r\nAfter further debugging I've seen that the issue does not arise when setting:\r\n tf.config.threading.set_intra_op_parallelism_threads(1)\r\n tf.config.threading.set_inter_op_parallelism_threads(1)\r\nHowever this ofcourse is slow and hence not desired.\r\n\r\nAdditionally in debug mode I can go to the line where the file gets stuck and run this single line then in the debug console. The output I get there is the following (see below):\r\nMy hypothesis from both points is that Tensorflow is parallelizing some computations but the multiprocessing does it aswell and both don't seem to take into account eachother resulting in a deadlock situation (I assume that for the big matrix inverse additional processors are attempted to be used however those are busy in a parallel process, however I'm not very familiar with this topic). \r\n\r\n\"\"\"\r\nEvaluating: Pwk = tf.transpose(Pwk) did not finish after 3.00 seconds.\r\nThis may mean a number of things:\r\n- This evaluation is really slow and this is expected.\r\n In this case it's possible to silence this error by raising the timeout, setting the\r\n PYDEVD_WARN_EVALUATION_TIMEOUT environment variable to a bigger value.\r\n\r\n- The evaluation may need other threads running while it's running:\r\n In this case, it's possible to set the PYDEVD_UNBLOCK_THREADS_TIMEOUT\r\n environment variable so that if after a given timeout an evaluation doesn't finish,\r\n other threads are unblocked or you can manually resume all threads.\r\n\r\n Alternatively, it's also possible to skip breaking on a particular thread by setting a\r\n `pydev_do_not_trace = True` attribute in the related threading.Thread instance\r\n (if some thread should always be running and no breakpoints are expected to be hit in it).\r\n\r\n- The evaluation is deadlocked:\r\n In this case you may set the PYDEVD_THREAD_DUMP_ON_WARN_EVALUATION_TIMEOUT\r\n environment variable to true so that a thread dump is shown along with this message and\r\n optionally, set the PYDEVD_INTERRUPT_THREAD_TIMEOUT to some value so that the debugger\r\n tries to interrupt the evaluation (if possible) when this happens.\r\n \"\"\"\r\n\r\nHopefully this extra information helps, I'm looking forward to your response.\r\n", "@cevheck,\r\nIn some of the cases there might be a chance the issue related with the Hardware and also you can safely ignore the above mentioned warnings(W) and information(I) and also it was stated that `To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags`\r\n\r\nhttps://www.tensorflow.org/api_docs/python/tf/config/threading/set_intra_op_parallelism_threads\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60741\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60741\">No</a>\n" ]
2023-05-31T17:20:38
2023-07-06T02:10:05
2023-07-06T02:10:02
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version v2.11.0-rc2-17-gd5b57ca93e5 2.11.0 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 20.04 ### Mobile device _No response_ ### Python version 3.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? In a project where I wanted to implement multiprocessing in combination with a Tensorflow function, the processes kept getting stuck. After some debugging I was able to create a minimal example as seen below or as provided as .txt doc. [minimal_example_MPlock.txt](https://github.com/tensorflow/tensorflow/files/11616923/minimal_example_MPlock.txt) In words; when I do some random transpose operation in the process there is no problem at all. However afterwards if I use any functionality from tensorflow and repeat the code that used to work, all of a sudden it gets stuck on the last matrix inverse (which is quite a big one, but shouldn't be any problem). What you can see, and is probably part of the issue, is that each time the function is called there's a bunch of tensorflow warnings. So far in all of my code I could always just ignore them, but to be sure I added them here in the logs aswell. Thanks in advance! ### Standalone code to reproduce the issue ```shell from multiprocessing import Process import numpy as np import tensorflow as tf import time def test_inverse(): Pxk = tf.eye(2) Pwk = tf.eye(259) print("here1") Pxk = tf.transpose(Pxk) print("here2") Pwk = np.transpose(Pwk) print("here3") Pwk = tf.transpose(Pwk) print("here4") processes = [] for _ in range(3): p = Process(target=test_inverse, args=[], kwargs={}) time.sleep(1) p.start() processes.append(p) for process in processes: process.join() ### works perfectly fine import time time.sleep(5) print("using ANY tensorflow function") a = tf.math.add(2,5) processes = [] for _ in range(3): p = Process(target=test_inverse, args=[], kwargs={}) p.start() processes.append(p) for process in processes: process.join() ``` ### Relevant log output ```shell 2023-05-31 19:20:48.218419: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-31 19:20:48.286362: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2023-05-31 19:20:48.620505: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2023-05-31 19:20:48.620539: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2023-05-31 19:20:48.620543: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. 2023-05-31 19:20:50.183101: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 2023-05-31 19:20:50.183138: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (cedric-Z590-UD-AC): /proc/driver/nvidia/version does not exist 2023-05-31 19:20:50.183724: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. here1 here2 here3 here4 2023-05-31 19:20:51.221681: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 2023-05-31 19:20:51.221727: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (cedric-Z590-UD-AC): /proc/driver/nvidia/version does not exist 2023-05-31 19:20:51.222470: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. here1 here2 here3 here4 2023-05-31 19:20:52.223862: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 2023-05-31 19:20:52.223908: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (cedric-Z590-UD-AC): /proc/driver/nvidia/version does not exist 2023-05-31 19:20:52.224710: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. here1 here2 here3 here4 using ANY tensorflow function 2023-05-31 19:20:57.355866: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 2023-05-31 19:20:57.355928: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (cedric-Z590-UD-AC): /proc/driver/nvidia/version does not exist 2023-05-31 19:20:57.356675: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. here1 here1 here2 here3 here2 here3 here1 here2 here3 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60741/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60741/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60740
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60740/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60740/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60740/events
https://github.com/tensorflow/tensorflow/pull/60740
1,734,598,449
PR_kwDOArmXAs5Rz2LF
60,740
[Linaro:ARM_CI] Update the container tag used to build aarch64
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }, { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-31T16:35:13
2023-08-22T14:08:37
2023-06-01T18:44:57
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60740", "html_url": "https://github.com/tensorflow/tensorflow/pull/60740", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60740.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60740.patch", "merged_at": "2023-06-01T18:44:57" }
Now that the 2.13 branch has happened, need to prevent later updates to the container from affecting that branch so use the new tag.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60740/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60740/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60739
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60739/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60739/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60739/events
https://github.com/tensorflow/tensorflow/issues/60739
1,734,413,456
I_kwDOArmXAs5nYQyQ
60,739
Support CUDA Compute 9.0 for NVIDIA H100
{ "login": "dwyatte", "id": 2512762, "node_id": "MDQ6VXNlcjI1MTI3NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/2512762?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dwyatte", "html_url": "https://github.com/dwyatte", "followers_url": "https://api.github.com/users/dwyatte/followers", "following_url": "https://api.github.com/users/dwyatte/following{/other_user}", "gists_url": "https://api.github.com/users/dwyatte/gists{/gist_id}", "starred_url": "https://api.github.com/users/dwyatte/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dwyatte/subscriptions", "organizations_url": "https://api.github.com/users/dwyatte/orgs", "repos_url": "https://api.github.com/users/dwyatte/repos", "events_url": "https://api.github.com/users/dwyatte/events{/privacy}", "received_events_url": "https://api.github.com/users/dwyatte/received_events", "type": "User", "site_admin": false }
[ { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" } ]
closed
false
{ "login": "learning-to-play", "id": 66660475, "node_id": "MDQ6VXNlcjY2NjYwNDc1", "avatar_url": "https://avatars.githubusercontent.com/u/66660475?v=4", "gravatar_id": "", "url": "https://api.github.com/users/learning-to-play", "html_url": "https://github.com/learning-to-play", "followers_url": "https://api.github.com/users/learning-to-play/followers", "following_url": "https://api.github.com/users/learning-to-play/following{/other_user}", "gists_url": "https://api.github.com/users/learning-to-play/gists{/gist_id}", "starred_url": "https://api.github.com/users/learning-to-play/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/learning-to-play/subscriptions", "organizations_url": "https://api.github.com/users/learning-to-play/orgs", "repos_url": "https://api.github.com/users/learning-to-play/repos", "events_url": "https://api.github.com/users/learning-to-play/events{/privacy}", "received_events_url": "https://api.github.com/users/learning-to-play/received_events", "type": "User", "site_admin": false }
[ { "login": "learning-to-play", "id": 66660475, "node_id": "MDQ6VXNlcjY2NjYwNDc1", "avatar_url": "https://avatars.githubusercontent.com/u/66660475?v=4", "gravatar_id": "", "url": "https://api.github.com/users/learning-to-play", "html_url": "https://github.com/learning-to-play", "followers_url": "https://api.github.com/users/learning-to-play/followers", "following_url": "https://api.github.com/users/learning-to-play/following{/other_user}", "gists_url": "https://api.github.com/users/learning-to-play/gists{/gist_id}", "starred_url": "https://api.github.com/users/learning-to-play/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/learning-to-play/subscriptions", "organizations_url": "https://api.github.com/users/learning-to-play/orgs", "repos_url": "https://api.github.com/users/learning-to-play/repos", "events_url": "https://api.github.com/users/learning-to-play/events{/privacy}", "received_events_url": "https://api.github.com/users/learning-to-play/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Seconding this request. We have compute 8.9 GPUs now (L40) and it would be nice to get cuda12 support in tensorflow from pypi rather than having to build from source.", "So I get that Tensorflow native installation does not work with H100 which I can also reproduce on our HPC, but is there a workaround for that? Does building it from source with Bazel work for anyone?", "Also interested to know if any one has been able to build from source with Compute Capability 9.0? my first try failed so far.", "@kapoorlab installing tf-nightly worked for me and able to detect gpus.", "@dwyatte , Could you please check with `tf-nightly` and let us know the outcome. Thanks!", "@purvang3 were you able to fully run an actual code without getting any compilation and runtime errors as just being able to detect GPUs does not mean tf would run on the hardware with such CUDA capability requirement.", "I tested my code with TF 2.13.1 and TF 2.15.0_rc0 on a Machine with 8xH100. I can train a model on the machine using all 8 GPUs. But the starting process takes really long. \r\nAnd I do get the warning \"TensorFlow was not built with CUDA kernel binaries compatible with compute capability 9.0. CUDA kernels will be jit-compiled from PTX, which could take 30 minutes or longer.\"\r\nIs it then using the full potential of the GPUs?", "Hi @dwyatte , does the commit here solves your issue https://github.com/tensorflow/tensorflow/commit/c71bcf6fe2cf45eddec5379c083e99b8d611337b", "Hi @sachinprasadhs, I'm having trouble accessing H100s from my cloud provider at the moment so can't confirm CUDA Compute 9.0 support -- if anyone else can do that and comment here, that would be great, otherwise I'll confirm once I can access an H100\r\n\r\nI can however confirm that TensorFlow 2.15 supports CUDA Compute 8.9 and works with L4* (may be of interest to @Lana-Deere)", "I have been able to make it work on H100 following these instructions:\r\n\r\n\r\n```console\r\nconda create -n tensorflowGPU python=3.10\r\nconda install mamba -c conda-forge\r\nmamba install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0\r\nmamba install -c nvidia cuda-nvcc=11.3.58\r\npython3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow-gpu==2.10.*\r\nmkdir -p $CONDA_PREFIX/etc/conda/activate.d\r\necho 'CUDNN_PATH=$(dirname $(python -c \"import nvidia.cudnn;print(nvidia.cudnn.__file__)\"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\r\necho 'export LD_LIBRARY_PATH=$CONDA_PREFIX/lib/:$CUDNN_PATH/lib:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\r\nsource $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\r\n# Verify install:\r\npython3 -c \"import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))\"\r\n\r\n```\r\n\r\nThe last command should show a message like (tested on H100):\r\n\r\n```\r\n2023-07-20 14:52:48.833385: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-07-20 14:52:51.703785: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2048] TensorFlow was not built with CUDA kernel binaries compatible with compute capability 9.0. CUDA kernels will be jit-compiled from PTX, which could take 30 minutes or longer.\r\n[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]\r\n\r\n```\r\n\r\n```\r\n\r\nspack load [email protected]\r\nspack load [email protected]\r\nmkdir -p $CONDA_PREFIX/lib/nvvm/libdevice/\r\ncp -p $CONDA_PREFIX/lib/libdevice.10.bc $CONDA_PREFIX/lib/nvvm/libdevice/\r\nexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/\r\nexport XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX \r\n```\r\nInitially I had to load specific cuda and cudnn library versions but I found it to be quite flexible in that regard. So the issue can be closed.", "> I have been able to make it work on H100 following these instructions:\n> \n> \n> ```console\n> conda create -n tensorflowGPU python=3.10\n> conda install mamba -c conda-forge\n> mamba install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0\n> mamba install -c nvidia cuda-nvcc=11.3.58\n> python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow-gpu==2.10.*\n> mkdir -p $CONDA_PREFIX/etc/conda/activate.d\n> echo 'CUDNN_PATH=$(dirname $(python -c \"import nvidia.cudnn;print(nvidia.cudnn.__file__)\"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\n> echo 'export LD_LIBRARY_PATH=$CONDA_PREFIX/lib/:$CUDNN_PATH/lib:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\n> source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh\n> # Verify install:\n> python3 -c \"import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))\"\n> \n> ```\n> \n> The last command should show a message like (tested on H100):\n> \n> ```\n> 2023-07-20 14:52:48.833385: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n> 2023-07-20 14:52:51.703785: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2048] TensorFlow was not built with CUDA kernel binaries compatible with compute capability 9.0. CUDA kernels will be jit-compiled from PTX, which could take 30 minutes or longer.\n> [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]\n> \n> ```\n> \n> ```\n> \n> spack load [email protected]\n> spack load [email protected]\n> mkdir -p $CONDA_PREFIX/lib/nvvm/libdevice/\n> cp -p $CONDA_PREFIX/lib/libdevice.10.bc $CONDA_PREFIX/lib/nvvm/libdevice/\n> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/\n> export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX \n> ```\n> Initially I had to load specific cuda and cudnn library versions but I found it to be quite flexible in that regard. So the issue can be closed.\n\nWhy is it still getting Jit compiled? This should not be happening if it was build with compute 9 capabilities. ", "\r\n> Why is it still getting Jit compiled? This should not be happening if it was build with compute 9 capabilities.\r\n\r\nI had it working before the build with compute 9 capabilities was made available, have not tried it with the commit that claims to solve that bit.", "Can confirm this is fixed on nightly. Here are the versions I used\r\n\r\ntf-nightly==2.17.0.dev20240308\r\ntf_keras-nightly==2.17.0.dev2024030810\r\ntensorflow-text-nightly==2.17.0.dev20240306\r\n\r\nI'm guessing the fix went in awhile back but this should be enough to close this issue", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60739\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60739\">No</a>\n", "> tf-nightly==2.17.0.dev20240308\r\n\r\nhow to fix this using python 3.8 which `tf-nightly` does not support? " ]
2023-05-31T14:52:24
2024-03-29T20:49:42
2024-03-08T19:42:43
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version v1.12.1-94762-gf8066222ad6 2.14.0-dev20230531 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? With NVIDIA H100 general availability on the horizon, it would be nice to start supporting CUDA compute capability 9.0. Are there plans for this in an upcoming release or could it be added to nightly builds? In testing my code on an H100, I currently see ``` 2023-05-31 14:45:08.138842: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2052] TensorFlow was not built with CUDA kernel binaries compatible with compute capability 9.0. CUDA kernels will be jit-compiled from PTX, which could take 30 minutes or longer. ``` and after jit-compiling, my code that works fine on NVIDIA A100 GPUs eventually fails during allocation. I'd like to rule out that it's not a problem with jit-compiling, so having CUDA compute capability 9.0 compiled into tf-nightly would be one way to rule that out. ### Standalone code to reproduce the issue ```shell N/A ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60739/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60739/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60738
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60738/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60738/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60738/events
https://github.com/tensorflow/tensorflow/issues/60738
1,734,345,980
I_kwDOArmXAs5nYAT8
60,738
AArch64 tflite_runtime manylinux2014 prebuilt wheels distributed on PYPI are not manylinux2014 compliant
{ "login": "mshawcroft", "id": 6357566, "node_id": "MDQ6VXNlcjYzNTc1NjY=", "avatar_url": "https://avatars.githubusercontent.com/u/6357566?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mshawcroft", "html_url": "https://github.com/mshawcroft", "followers_url": "https://api.github.com/users/mshawcroft/followers", "following_url": "https://api.github.com/users/mshawcroft/following{/other_user}", "gists_url": "https://api.github.com/users/mshawcroft/gists{/gist_id}", "starred_url": "https://api.github.com/users/mshawcroft/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mshawcroft/subscriptions", "organizations_url": "https://api.github.com/users/mshawcroft/orgs", "repos_url": "https://api.github.com/users/mshawcroft/repos", "events_url": "https://api.github.com/users/mshawcroft/events{/privacy}", "received_events_url": "https://api.github.com/users/mshawcroft/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "terryheo", "id": 2908505, "node_id": "MDQ6VXNlcjI5MDg1MDU=", "avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4", "gravatar_id": "", "url": "https://api.github.com/users/terryheo", "html_url": "https://github.com/terryheo", "followers_url": "https://api.github.com/users/terryheo/followers", "following_url": "https://api.github.com/users/terryheo/following{/other_user}", "gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}", "starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/terryheo/subscriptions", "organizations_url": "https://api.github.com/users/terryheo/orgs", "repos_url": "https://api.github.com/users/terryheo/repos", "events_url": "https://api.github.com/users/terryheo/events{/privacy}", "received_events_url": "https://api.github.com/users/terryheo/received_events", "type": "User", "site_admin": false }
[ { "login": "terryheo", "id": 2908505, "node_id": "MDQ6VXNlcjI5MDg1MDU=", "avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4", "gravatar_id": "", "url": "https://api.github.com/users/terryheo", "html_url": "https://github.com/terryheo", "followers_url": "https://api.github.com/users/terryheo/followers", "following_url": "https://api.github.com/users/terryheo/following{/other_user}", "gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}", "starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/terryheo/subscriptions", "organizations_url": "https://api.github.com/users/terryheo/orgs", "repos_url": "https://api.github.com/users/terryheo/repos", "events_url": "https://api.github.com/users/terryheo/events{/privacy}", "received_events_url": "https://api.github.com/users/terryheo/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @mshawcroft ,\r\n\r\nThere is problem with many_linux wheels because of capping of `glib` at 2.17 version.\r\n\r\nThe similar issue being discussed at #60608 . Please refer to the attached issue and users has to built their own wheels for this downgrading to glib 2.17 and referring to the comments/workarounds mentioned in attached ticket.\r\n\r\nThanks!\r\n\r\n", "Hi! Thanks for responding. Understood that is is possible (and straight forward) to build a correct manylinux2014_aarch64 labelled wheel, ie a wheel that depends on glibc<=2.17.\r\n\r\nBut that is not the issue here.\r\n\r\nThe issue here is that a wheel is being built and distributed on pypi that is not manylinux2014_aarch64 compliant but is being labelled and distributed as such.\r\n\r\nIncorrect labelling of these wheels breaks the users install tool ability to reason about whether a wheel is valid on their platform.\r\n\r\nPlease re-label the .whls to comply with the naming standards defined pep599 and pep600. The auditwheel tool provided by manylinux can do this. I believe the correct naming of the wheels currently distributed is manylinux_2_34_aarch64 not manylinux2014_aarch64\r\n\r\n", "Hi @terryheo, can you please take a look? Thanks.", "Getting similar results on a 'standard' raspbery pi (bullseye 64bit aarch64) build. Wrote image to disk, apt update && apt upgrade, clone into the repo, import tflite_support and the problems start.\r\n\r\nImportError: /lib/aarch64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.29' not found (required by ~/.local/lib/python3.9/site-packages/tensorflow_lite_support/metadata/cc/python/_pywrap_metadata_version.so)", "Tag is updated for `tflite-runtime-nightly`. `tflite-runtime` will be updated from the next release.", "@terryheo could you elaborate a little on what \"will be updated from the next release\" means in practice please?", "I meant https://pypi.org/project/tflite-runtime/2.14.0/", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60738\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60738\">No</a>\n", "Looks like the 2.14 wheels for aarch64 are conservatively correct, great, thank you!\r\n\r\nPerhaps worth noting that they are conservatively correct in that they depend on 2.27 but are labelled manylinux_2_34_aarch64, the label manylinux_2_27_aarch64 would be more appropriate.\r\n\r\nLooks like the x86_64 wheel is broken, I didn't originally report that, I just happened to notice just now while looking at what has changed to address this ticket on aarch64. \r\n\r\nHere is the prefix of the output from auditwheel on one of the 2.14 x86_64 wheels:\r\n\r\n`$ auditwheel show tflite_runtime-2.14.0-cp311-cp311-manylinux2014_x86_64.whl\r\n\r\ntflite_runtime-2.14.0-cp311-cp311-manylinux2014_x86_64.whl is\r\nconsistent with the following platform tag: \"manylinux_2_31_x86_64\".\r\n`\r\n\r\nIn this case the filename uses the platform tag \"manylinux2014_x86_64\", PEP600 https://peps.python.org/pep-0600 defines that:\r\n\r\n`\r\nmanylinux2014_x86_64 is now an alias for manylinux_2_17_x86_64\r\n`\r\n\r\nThe wheel being distributed depends on glibc-2.31 hence is not compatible with the tag manylinux2014_x86_64. \r\n\r\nThe solution to this is either to relabel it with the label indicated by auditwheel, or rebuild it an environment compatible with manylinux2014_x86_64 (for example the docker environment provided by the manylinux project).\r\n\r\nClearly this issue, while related to the originally reported issue, is not actually the original issue reported, Im happy to move this x86_64 issue to a separate GitHub issue if that is more appropriate.", "Hi @mshawcroft, go ahead and create a new issue with the details you stated here, that way we account for things most properly. Thanks for your help." ]
2023-05-31T14:20:37
2023-12-06T18:43:09
2023-11-29T16:56:21
NONE
null
null
null
### Describe the problem The manylinux2014 AArch64 tflite_runtime wheels distributed on PYPI are not manylinux2014 compliant. manylinux2014 is specified by https://peps.python.org/pep-0599/ which is superseded by https://peps.python.org/pep-0600/ pep599 States that: ``` 3 If the wheel contains binary executables or shared objects linked against any allowed libraries that also export versioned symbols, they may only depend on the following maximum versions: GLIBC_2.17 CXXABI_1.3.7, CXXABI_TM_1 is also allowed GLIBCXX_3.4.19 GCC_4.8.0 As an example, manylinux2014 wheels may include binary artifacts that require glibc symbols at version GLIBC_2.12, because this an earlier version than the maximum of GLIBC_2.17. ``` pep600 states that: `manylinux2014_aarch64 is now an alias for manylinux_2_17_aarch64` The auditwheel tool provided by manylinux, run on https://files.pythonhosted.org/packages/f7/52/db3a91277e4c171b65665731d622e7ed9a0ef7a601782403f90d43a080d8/tflite_runtime-2.12.0-cp38-cp38-manylinux2014_aarch64.whl reports the following: ``` tflite_runtime-2.12.0-cp38-cp38-manylinux2014_aarch64.whl is consistent with the following platform tag: "manylinux_2_34_aarch64". The wheel references external versioned symbols in these system-provided shared libraries: libgcc_s.so.1 with versions {'GCC_3.0'}, libm.so.6 with versions {'GLIBC_2.27', 'GLIBC_2.17', 'GLIBC_2.29'}, libc.so.6 with versions {'GLIBC_2.32', 'GLIBC_2.17', 'GLIBC_2.34', 'GLIBC_2.33'}, libstdc++.so.6 with versions {'CXXABI_1.3.3', 'GLIBCXX_3.4.29', 'CXXABI_1.3', 'GLIBCXX_3.4.11', 'GLIBCXX_3.4.21', 'CXXABI_1.3.5', 'GLIBCXX_3.4', 'CXXABI_1.3.2', 'GLIBCXX_3.4.20', 'GLIBCXX_3.4.14', 'CXXABI_1.3.9', 'CXXABI_1.3.11', 'GLIBCXX_3.4.9', 'CXXABI_1.3.13', 'GLIBCXX_3.4.19', 'GLIBCXX_3.4.22', 'GLIBCXX_3.4.18'} This constrains the platform tag to "manylinux_2_34_aarch64". In order to achieve a more compatible tag, you would need to recompile a new wheel from source on a system with earlier versions of these libraries, such as a recent manylinux image. ``` The distributed wheel contains references to GLIBC_2.33 and GLIBC_2.34 which conflicts with clause 3 of pep0599. This issue came to light on the tflite_runtime-2.12.0-cp38-cp38-manylinux2014_aarch64.whl pre-built wheels hosted on pypi, but it looks like at least the following wheels have similar issues: https://files.pythonhosted.org/packages/3f/1d/253fd16d01ec245f54f57d00674f836347931590af6b6e8c5ab76c8d4478/tflite_runtime-2.12.0-cp39-cp39-manylinux2014_aarch64.whl https://files.pythonhosted.org/packages/f7/52/db3a91277e4c171b65665731d622e7ed9a0ef7a601782403f90d43a080d8/tflite_runtime-2.12.0-cp38-cp38-manylinux2014_aarch64.whl https://files.pythonhosted.org/packages/bf/75/c49f676ad2de36fa174b74d52bf6b2a199a54168ee550bbf85053578eb5c/tflite_runtime-2.11.0-cp39-cp39-manylinux2014_aarch64.whl https://files.pythonhosted.org/packages/6e/c0/d131ffe53990fe10c158b856bc76fd71e294c3da5d13a58802e9a7d4642b/tflite_runtime-2.11.0-cp38-cp38-manylinux2014_aarch64.whl https://files.pythonhosted.org/packages/d3/04/ad399c2cf7b0f301b6a44704fa1e6b3f1f64e16b0cbbd01132e53dee1b95/tflite_runtime-2.11.0-cp37-cp37m-manylinux2014_aarch64.whl ### Source code / logs The above analysis can be recreated by: ``` virtualenv -p python3.8 v ./v/bin/pip install auditwheel wget https://files.pythonhosted.org/packages/f7/52/db3a91277e4c171b65665731d622e7ed9a0ef7a601782403f90d43a080d8/tflite_runtime-2.12.0-cp38-cp38-manylinux2014_aarch64.whl ./v/bin/auditwheel show tflite_runtime-2.12.0-cp38-cp38-manylinux2014_aarch64.whl ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60738/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60738/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60737
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60737/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60737/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60737/events
https://github.com/tensorflow/tensorflow/issues/60737
1,733,998,158
I_kwDOArmXAs5nWrZO
60,737
Failed to launch ptxas error when using nvidia/cuda runtime Docker image
{ "login": "goncinious", "id": 25257793, "node_id": "MDQ6VXNlcjI1MjU3Nzkz", "avatar_url": "https://avatars.githubusercontent.com/u/25257793?v=4", "gravatar_id": "", "url": "https://api.github.com/users/goncinious", "html_url": "https://github.com/goncinious", "followers_url": "https://api.github.com/users/goncinious/followers", "following_url": "https://api.github.com/users/goncinious/following{/other_user}", "gists_url": "https://api.github.com/users/goncinious/gists{/gist_id}", "starred_url": "https://api.github.com/users/goncinious/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/goncinious/subscriptions", "organizations_url": "https://api.github.com/users/goncinious/orgs", "repos_url": "https://api.github.com/users/goncinious/repos", "events_url": "https://api.github.com/users/goncinious/events{/privacy}", "received_events_url": "https://api.github.com/users/goncinious/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @goncinious ,\r\n\r\nCould you please try installing cuda-nvcc package using `conda install -c \"nvidia/label/cuda-11.8.0\" cuda-nvcc` and let us know if it helps.\r\n\r\nThanks!\r\n", "Thanks @SuryanarayanaY! I'm already using [Poetry](https://python-poetry.org/) for managing dependencies in my use case, so I'd prefer to avoid having to install `conda` just for this. Can I install `cuda-nvcc` without `conda`?\r\n", "@goncinious ,\r\n\r\nActually with Docker environment there is no need to install cuda toolkit separately as nvidia-docker takes care of it. But this is applicable to standard tensorflow image not sure to user built images as you are trying to build your own image.Please refer to the official documentation for [docker](https://www.tensorflow.org/install/docker) instructions.\r\n\r\nPlease try `sudo apt install nvidia-cuda-toolkit` explicitly and let us know if helps.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @SuryanarayanaY, thanks for your reply.\r\n\r\n> > Actually with Docker environment there is no need to install cuda toolkit separately as nvidia-docker takes care of it. But this is applicable to standard tensorflow image not sure to user built images as you are trying to build your own image.Please refer to the official documentation for [docker](https://www.tensorflow.org/install/docker) instructions.\r\n\r\nYes, I believe the same applies to the `devel` image from the official `nvidia/cuda` image. As mentioned above, it doesn't show the warning highlighted above. However, the point here is how to properly setup `ptxas` compilation while avoiding installing massive dependencies in the `runtime` image.\r\n\r\n> Please try sudo apt install nvidia-cuda-toolkit explicitly and let us know if helps.\r\n\r\nThis indeed solves the issue above, but adds (4.6 GB) to the image, which the purpose of using the slimmer `runtime` image.\r\n\r\n\r\n<details><summary>Click to expand!</summary> \r\n\r\n```\r\n\r\n The following NEW packages will be installed:\r\n adwaita-icon-theme alsa-topology-conf alsa-ucm-conf at-spi2-core ca-certificates-java cpp-8 dbus\r\n fontconfig fonts-dejavu-extra g++-8 gcc-8 gcc-8-base gtk-update-icon-cache hicolor-icon-theme\r\n humanity-icon-theme java-common javascript-common libaccinj64-10.1 libapparmor1 libasound2\r\n libasound2-data libasyncns0 libatk-bridge2.0-0 libatk-wrapper-java libatk-wrapper-java-jni\r\n libatk1.0-0 libatk1.0-data libatspi2.0-0 libavahi-client3 libavahi-common-data libavahi-common3\r\n libcairo-gobject2 libcairo2 libcublas10 libcublaslt10 libcudart10.1 libcufft10 libcufftw10\r\n libcuinj64-10.1 libcups2 libcupti-dev libcupti-doc libcupti10.1 libcurand10 libcusolver10\r\n libcusolvermg10 libcusparse10 libdatrie1 libdbus-1-3 libdrm-amdgpu1 libdrm-common libdrm-intel1\r\n libdrm-nouveau2 libdrm-radeon1 libdrm2 libedit2 libegl-dev libegl-mesa0 libegl1 libelf1 libflac8\r\n libfontenc1 libfribidi0 libgail-common libgail18 libgbm1 libgcc-8-dev libgdk-pixbuf2.0-0\r\n libgdk-pixbuf2.0-bin libgdk-pixbuf2.0-common libgif7 libgl-dev libgl1 libgl1-mesa-dev\r\n libgl1-mesa-dri libglapi-mesa libgles-dev libgles1 libgles2 libglvnd-dev libglvnd0 libglx-dev\r\n libglx-mesa0 libglx0 libgpm2 libgraphite2-3 libgtk2.0-0 libgtk2.0-bin libgtk2.0-common\r\n libharfbuzz0b libicu66 libjbig0 libjpeg-turbo8 libjpeg8 libjs-jquery libjs-underscore liblcms2-2\r\n libllvm12 libmpx2 libncurses5 libnppc10 libnppial10 libnppicc10 libnppicom10 libnppidei10\r\n libnppif10 libnppig10 libnppim10 libnppist10 libnppisu10 libnppitc10 libnpps10 libnspr4 libnss3\r\n libnvblas10 libnvgraph10 libnvidia-compute-418-server libnvidia-ml-dev libnvjpeg10 libnvrtc10.1\r\n libnvtoolsext1 libnvvm3 libogg0 libopengl-dev libopengl0 libpango-1.0-0 libpangocairo-1.0-0\r\n libpangoft2-1.0-0 libpciaccess0 libpcsclite1 libpixman-1-0 libpulse-mainloop-glib0 libpulse0\r\n librsvg2-2 librsvg2-common libsensors-config libsensors5 libsndfile1 libstdc++-8-dev libthai-data\r\n libthai0 libthrust-dev libtiff5 libtinfo5 libvdpau-dev libvdpau1 libvorbis0a libvorbisenc2\r\n libvulkan1 libwayland-client0 libwayland-server0 libwebp6 libwrap0 libx11-xcb1 libxaw7\r\n libxcb-dri2-0 libxcb-dri3-0 libxcb-glx0 libxcb-present0 libxcb-randr0 libxcb-render0\r\n libxcb-shape0 libxcb-shm0 libxcb-sync1 libxcb-xfixes0 libxcb-xkb1 libxcomposite1 libxcursor1\r\n libxdamage1 libxfixes3 libxi6 libxinerama1 libxkbcommon-x11-0 libxkbcommon0 libxkbfile1 libxml2\r\n libxmu6 libxmuu1 libxpm4 libxrandr2 libxshmfence1 libxtst6 libxv1 libxxf86dga1 libxxf86vm1\r\n mesa-vdpau-drivers mesa-vulkan-drivers node-html5shiv nsight-compute nsight-systems\r\n nvidia-cuda-dev nvidia-cuda-doc nvidia-cuda-gdb nvidia-cuda-toolkit nvidia-opencl-dev\r\n nvidia-profiler nvidia-visual-profiler ocl-icd-libopencl1 ocl-icd-opencl-dev opencl-c-headers\r\n openjdk-8-jre openjdk-8-jre-headless shared-mime-info ubuntu-mono vdpau-driver-all x11-utils\r\n xkb-data\r\n0 upgraded, 207 newly installed, 0 to remove and 2 not upgraded.\r\nNeed to get 1517 MB of archives.\r\nAfter this operation, 4628 MB of additional disk space will be used.\r\n```\r\n\r\n</details>\r\n\r\nNote that this method seems to install a deprecated version of `ptxas`, which we want to avoid too. See below:\r\n\r\n> 2023-06-19 11:12:26.647185: E tensorflow/compiler/xla/stream_executor/gpu/asm_compiler.cc:114] *** WARNING *** You are using ptxas 10.1.243, which is older than 11.1. ptxas before 11.1 is known to miscompile XLA code, leading to incorrect results or invalid-address errors.\r\n", "Hi @goncinious ,\r\n\r\n\r\n\r\n> Yes, I believe the same applies to the `devel` image from the official `nvidia/cuda` image. As mentioned above, it doesn't show the warning highlighted above. However, the point here is how to properly setup `ptxas` compilation while avoiding installing massive dependencies in the `runtime` image.\r\n\r\nAFAIK ptxas is a package that included in CUDA package itself and I am not sure this falls under TF scope.May be we need to confirm the same with Nvidia team. I believe devel images dont have this problem with ptxas path as per reference from the attached issues from Jax, [link1](https://github.com/google/jax/discussions/6843) and [link2](https://github.com/google/jax/discussions/10327).\r\n\r\n\r\n\r\n> 2023-06-19 11:12:26.647185: E tensorflow/compiler/xla/stream_executor/gpu/asm_compiler.cc:114] *** WARNING *** You are using ptxas 10.1.243, which is older than 11.1. ptxas before 11.1 is known to miscompile XLA code, leading to incorrect results or invalid-address errors.\r\n\r\nI can see this as logged as Error log may be due to the reason that it might miscompile XLA code.\r\n", "@goncinious ,\r\n\r\nAs per Official TF documentation for Docker support you might need to install Nvidia driver in host system and Nvidia container toolkit on docker, the instructions for which mentioned [here](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#docker).\r\n\r\nCould you please check whether the above resources solves your problem\r\n\r\nThanks!\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60737\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60737\">No</a>\n", "I followed this guide <https://www.tensorflow.org/install/pip#windows-wsl2> and had the same issue where jupyter notebook kernel was crashing because it couldn't find ptxas. `conda install -c \"nvidia/label/cuda-11.8.0\" cuda-nvcc` fixed the issue. Thanks." ]
2023-05-31T11:29:44
2023-07-17T04:22:00
2023-07-14T02:09:56
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14.0-dev20230531 ### Custom Code Yes ### OS Platform and Distribution 20.04 ### Mobile device _No response_ ### Python version 3.9.16 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version CUDA 11.8.0 / cuDNN 8.7 ### GPU model and memory _No response_ ### Current Behaviour? I get the following warning when I run prediction using a 3D model (full log provided below): ``` 2023-05-31 11:06:53.982167: W tensorflow/compiler/xla/stream_executor/gpu/redzone_allocator.cc:318] INTERNAL: Failed to launch ptxas Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. ``` I'm using a model that takes a 3D input and the error occurs when I have a `Conv3DTranspose` layer (which my model implements). I'm using the official [`nvidia/cuda`](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuda) image with runtime libraries, specifically the `nvcr.io/nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu20.0`. I don't get the warning when using the `devel` image, however, I want to stick with `runtime`, as it's much smaller and I don't need any of the compiling capabilities or dev tools. Does this warning have an impact on model inference and how can I fix it? Minimal Dockerfile and Python script to reproduce issue are provided below. ### Standalone code to reproduce the issue Dockerfile: ```shell FROM nvcr.io/nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu20.04 ENV PYENV_ROOT=/root/.pyenv \ PATH="/root/.local/bin:/opt/venv/bin:/root/.pyenv/shims/:root/.pyenv/bin:${PATH}" \ DEBIAN_FRONTEND=noninteractive ARG PYTHON_VERSION=3.9 RUN apt update -y && apt upgrade -y && \ apt-get install --no-install-recommends -y wget build-essential curl git && \ # install python via pyenv apt-get install -y --no-install-recommends libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev libffi-dev zlib1g-dev liblzma-dev && \ curl https://pyenv.run | bash && \ pyenv update && \ pyenv install ${PYTHON_VERSION} && \ pyenv global ${PYTHON_VERSION} && \ pyenv rehash && \ # install tensorflow python${PYTHON_MAJOR_VERSION} -m pip install tf-nightly ``` `test.py`: ```python import numpy as np import tensorflow as tf from tensorflow.keras import Input from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv3DTranspose def build_model(input_shape): inputs = Input(shape=input_shape) x = Conv3DTranspose(filters=1, kernel_size=(1, 1, 1), strides=(1, 1, 1))(inputs) return Model(inputs=inputs, outputs=x) print(tf.version.GIT_VERSION, tf.version.VERSION) input_shape = (10, 10, 10, 1) model = build_model(input_shape) # input of shape (5, 10, 10, 10, 1) test_input = np.ones(shape=(5, *input_shape), dtype=np.float32) output = model.predict(test_input, verbose=1, batch_size=1) ``` Steps to reproduce: ``` docker build -t tf-issue -f /path/to/Dockerfile . docker run --gpus all -v /path/to/test.py:/test.py tf-issue python /test.py ``` ### Relevant log output ```shell ========== == CUDA == ========== CUDA Version 11.8.0 Container image Copyright (c) 2016-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license A copy of this license is made available in this container at /NGC-DL-CONTAINER-LICENSE for your convenience. 2023-05-31 11:06:49.787277: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:7704] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2023-05-31 11:06:49.787340: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2023-05-31 11:06:49.787352: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1520] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2023-05-31 11:06:49.794051: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-31 11:06:50.626364: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT 2023-05-31 11:06:51.483784: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:51.504146: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:51.504472: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:51.505671: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:51.505938: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:51.506189: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:52.004673: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:52.004929: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:52.005143: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-31 11:06:52.005338: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20638 MB memory: -> device: 0, name: NVIDIA A10G, pci bus id: 0000:00:1e.0, compute capability: 8.6 2023-05-31 11:06:53.285968: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:434] Loaded cuDNN version 8700 2023-05-31 11:06:53.981061: I tensorflow/tsl/platform/default/subprocess.cc:304] Start cannot spawn child process: No such file or directory 2023-05-31 11:06:53.981512: I tensorflow/tsl/platform/default/subprocess.cc:304] Start cannot spawn child process: No such file or directory 2023-05-31 11:06:53.981543: W tensorflow/compiler/xla/stream_executor/gpu/asm_compiler.cc:109] Couldn't get ptxas version : FAILED_PRECONDITION: Couldn't get ptxas/nvlink version string: INTERNAL: Couldn't invoke ptxas --version 2023-05-31 11:06:53.982117: I tensorflow/tsl/platform/default/subprocess.cc:304] Start cannot spawn child process: No such file or directory 2023-05-31 11:06:53.982167: W tensorflow/compiler/xla/stream_executor/gpu/redzone_allocator.cc:318] INTERNAL: Failed to launch ptxas Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. v1.12.1-94762-gf8066222ad6 2.14.0-dev20230531 5/5 [==============================] - 2s 1ms/step ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60737/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60737/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60736
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60736/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60736/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60736/events
https://github.com/tensorflow/tensorflow/issues/60736
1,733,794,857
I_kwDOArmXAs5nV5wp
60,736
JVP incorrect in forward mode for `tf.math.sign` and `tf.experimental.numpy.sign`
{ "login": "drewshark", "id": 128925028, "node_id": "U_kgDOB689ZA", "avatar_url": "https://avatars.githubusercontent.com/u/128925028?v=4", "gravatar_id": "", "url": "https://api.github.com/users/drewshark", "html_url": "https://github.com/drewshark", "followers_url": "https://api.github.com/users/drewshark/followers", "following_url": "https://api.github.com/users/drewshark/following{/other_user}", "gists_url": "https://api.github.com/users/drewshark/gists{/gist_id}", "starred_url": "https://api.github.com/users/drewshark/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/drewshark/subscriptions", "organizations_url": "https://api.github.com/users/drewshark/orgs", "repos_url": "https://api.github.com/users/drewshark/repos", "events_url": "https://api.github.com/users/drewshark/events{/privacy}", "received_events_url": "https://api.github.com/users/drewshark/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@drewshark,\r\nCould you please refer to the documentation of `tf.autodiff.ForwardAccumulator` where it was stated that **Forward mode** works best on functions with many outputs and few inputs. Since it does not hold on to intermediate activations, it is much more memory efficient than backprop where it is applicable.\r\n\r\nReverse mode is more attractive when computing gradients of a scalar-valued function with respect to many inputs (e.g. a neural network with many parameters and a scalar loss).\r\n\r\nhttps://www.tensorflow.org/api_docs/python/tf/autodiff/ForwardAccumulator\r\nThank you!\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60736\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60736\">No</a>\n" ]
2023-05-31T09:46:44
2023-06-17T01:58:05
2023-06-17T01:58:03
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf-nightly ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When I was trying to calculate jvp of `tf.math.sign` and `tf.experimental.numpy.sign` in forward mode, it gives `None` instead of a proper value. ### Standalone code to reproduce the issue ```shell import tensorflow as tf x = tf.constant([1], dtype=tf.float32) for i in range(tf.size(x)): tangents = tf.constant([1.]) with tf.autodiff.ForwardAccumulator(x, tangents) as acc: value = tf.math.sign(x) jvp_i = acc.jvp(value) print(jvp_i) ``` ### Relevant log output ```shell None ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60736/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60736/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60735
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60735/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60735/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60735/events
https://github.com/tensorflow/tensorflow/pull/60735
1,733,253,693
PR_kwDOArmXAs5RvRIw
60,735
[oneDNN] Use original Threadpool scheduling approach if use_caller_thread is enabled
{ "login": "mahmoud-abuzaina", "id": 24963061, "node_id": "MDQ6VXNlcjI0OTYzMDYx", "avatar_url": "https://avatars.githubusercontent.com/u/24963061?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mahmoud-abuzaina", "html_url": "https://github.com/mahmoud-abuzaina", "followers_url": "https://api.github.com/users/mahmoud-abuzaina/followers", "following_url": "https://api.github.com/users/mahmoud-abuzaina/following{/other_user}", "gists_url": "https://api.github.com/users/mahmoud-abuzaina/gists{/gist_id}", "starred_url": "https://api.github.com/users/mahmoud-abuzaina/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mahmoud-abuzaina/subscriptions", "organizations_url": "https://api.github.com/users/mahmoud-abuzaina/orgs", "repos_url": "https://api.github.com/users/mahmoud-abuzaina/repos", "events_url": "https://api.github.com/users/mahmoud-abuzaina/events{/privacy}", "received_events_url": "https://api.github.com/users/mahmoud-abuzaina/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1104829434, "node_id": "MDU6TGFiZWwxMTA0ODI5NDM0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl", "name": "comp:mkl", "color": "0052cc", "default": false, "description": "MKL related issues" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" } ]
closed
false
{ "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }
[ { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @milpuz01 @nSircombe @cfRod Any update on this PR? Please. Thank you!", "> Hi @milpuz01 @nSircombe @cfRod Any update on this PR? Please. Thank you!\r\n\r\nHi @penpornk I have tested with this patch and there's no performance impact on our end. Thanks!" ]
2023-05-31T01:51:20
2023-07-20T16:27:31
2023-07-20T16:27:31
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60735", "html_url": "https://github.com/tensorflow/tensorflow/pull/60735", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60735.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60735.patch", "merged_at": "2023-07-20T16:27:30" }
This PR fixes a performance regression observed when user enables TF_ONEDNN_THREADPOOL_USE_CALLER_THREAD that allows one task to run on the main thread. This feature is off by default. Recent PR https://github.com/tensorflow/tensorflow/pull/60346 has made changes to threads scheduling which caused user_caller_thread feature (if enabled) to run slower than before (about 12% in Resnet50). This PR reverts to original scheduling in case user_caller_thread option is enabled.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60735/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60735/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60734
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60734/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60734/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60734/events
https://github.com/tensorflow/tensorflow/issues/60734
1,733,204,561
I_kwDOArmXAs5nTppR
60,734
TFLite SPARSE_TO_DENSE dimension mismatch issue when doing prediction
{ "login": "Lixiaoyun1993", "id": 24820557, "node_id": "MDQ6VXNlcjI0ODIwNTU3", "avatar_url": "https://avatars.githubusercontent.com/u/24820557?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Lixiaoyun1993", "html_url": "https://github.com/Lixiaoyun1993", "followers_url": "https://api.github.com/users/Lixiaoyun1993/followers", "following_url": "https://api.github.com/users/Lixiaoyun1993/following{/other_user}", "gists_url": "https://api.github.com/users/Lixiaoyun1993/gists{/gist_id}", "starred_url": "https://api.github.com/users/Lixiaoyun1993/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lixiaoyun1993/subscriptions", "organizations_url": "https://api.github.com/users/Lixiaoyun1993/orgs", "repos_url": "https://api.github.com/users/Lixiaoyun1993/repos", "events_url": "https://api.github.com/users/Lixiaoyun1993/events{/privacy}", "received_events_url": "https://api.github.com/users/Lixiaoyun1993/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" }, { "id": 2477739347, "node_id": "MDU6TGFiZWwyNDc3NzM5MzQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.4", "name": "TF 2.4", "color": "5319e7", "default": false, "description": "for issues related to TF 2.4" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Lixiaoyun1993 \r\n\r\nCould you please provide the tflite model to reproduce the issue? \r\n\r\nAlso, can you please test in latest 2.12 version and let us know if the issue still persists?\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-05-31T00:39:47
2023-06-16T02:00:52
2023-06-16T02:00:52
NONE
null
null
null
### 1. System information - OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Jupyter notebook on a server, CPU run - TensorFlow installation (pip package or built from source): - TensorFlow library (version, if pip package or github SHA, if built from source): 2.4.0 ### 2. Code ``` converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_path) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS ] tflite_quant_model = converter.convert() with open("dynamic_range_int8_model.tflite", 'wb') as f: f.write(tflite_quant_model) interpreter = tf.lite.Interpreter('dynamic_range_int8_model.tflite') interpreter.allocate_tensors() predictions = [] # inference using tflite model output_index = interpreter.get_output_details()[0]["index"] for i in range(len(data_list)): for required_input in interpreter.get_input_details(): input_index = required_input["index"] print(input_index, required_input["name"], required_input["shape"], data_list[i][required_input["name"]].shape) interpreter.resize_tensor_input(input_index, data_list[i][required_input["name"]].shape, strict = False) interpreter.allocate_tensors() interpreter.set_tensor(input_index, data_list[i][required_input["name"]]) interpreter.invoke() predictions.append(interpreter.get_tensor(output_index)[0][0]) ``` Remark: data_list is the list of n data samples, each being a dict. Here I just want to loop over every data point and record the predictions. The inner loop is over the 23 * 3 = 69 model input tensors. ### 3. Failure after conversion SPARSE_TP_DENSE produces some strange error. ### 5. (optional) Any other info / logs Hi, I'm trying to do inference using TFLite model in a jupyter notebook. I have successfully converted the model to 'dynamic_range_int8_model.tflite'. However, when I use the model to do prediction using the above code, I get the following error with the interpreter.allocate_tensors() function: RuntimeError Traceback (most recent call last) /tmp/ipykernel_255/4027393990.py in <module> 16 # else: 17 interpreter.resize_tensor_input(input_index, data_list[i][required_input["name"]].shape, strict = False) ---> 18 interpreter.allocate_tensors() 19 interpreter.set_tensor(input_index, data_list[i][required_input["name"]]) 20 /export/apps/python/3.7/lib/python3.7/site-packages-custom/tensorflow/lite/python/interpreter.py in allocate_tensors(self) 257 def allocate_tensors(self): 258 self._ensure_safe() --> 259 return self._interpreter.AllocateTensors() 260 261 def _safe_to_run(self): RuntimeError: tensorflow/lite/kernels/sparse_to_dense.cc:66 SizeOfDimension(indices, 1) != NumElements(output_shape) (2 != 3)Node number 0 (SPARSE_TO_DENSE) failed to prepare. I will describe the data first. The data contains 23 features in sparse form. The original data is something like: 'Feature 1' : {'index0': [0,1] , 'index1': [2,4] , 'values': [1.34, 0.97] }, 'Feature 2' : {'index0': [1,4,5] , 'index1': [1,0,2] , 'values': [5, 2, 1.5]} .... My code is to first reshape each TFLite input tensor to the correct size of the model input, according to the last reply of [this issue](https://github.com/tensorflow/tensorflow/issues/42157). The strange thing is that, while I have many input features (interpreter.get_input_details() gives a dict of size 69 = 23 * 3), the for loop goes through until the 42th tensor. However, all the input tensors are generated in the same way (by splitting features into indices, shapes, and values), and I can check that all the 42 input tensors (including the 42th one) are successfully reshaped to the correct input shape (for example. the shape of [1, 2] is reshaped to (35, 2), etc). I have transformed the data into the required format of TFlite: "serving_default_"+feature_name + "_indices:0", "serving_default_"+feature_name + "_shape:0", "serving_default_"+feature_name + "_values:0" I can see that the tensor is reshaped. Here is the result of interpreter.get_input_details()[42] before reshaping {'name': 'serving_default_XXXXX/indices:0', 'index': 42, 'shape': array([1, 3], dtype=int32), 'shape_signature': array([-1, 3], dtype=int32), 'dtype': numpy.int64, 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters': {}} After the 'resize_tensor_input' function (this line in the code went through since the error is on allocateTensor() ): {'name': 'serving_default_XXXXX/indices:0', 'index': 42, 'shape': array([1, 2], dtype=int32), 'shape_signature': array([-1, 3], dtype=int32), 'dtype': numpy.int64, 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters': {}} See the 'shape' is changed from 3 to 2.... The error says SizeOfDimension(indices, 1) != NumElements(output_shape) (2 != 3), what is the 'output_shape' how can I change it? Thanks very much for your help and suggestion. Please let me know if more information is needed.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60734/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60734/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60733
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60733/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60733/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60733/events
https://github.com/tensorflow/tensorflow/pull/60733
1,733,151,009
PR_kwDOArmXAs5Ru78O
60,733
Added wrap pad
{ "login": "madt2709", "id": 55849102, "node_id": "MDQ6VXNlcjU1ODQ5MTAy", "avatar_url": "https://avatars.githubusercontent.com/u/55849102?v=4", "gravatar_id": "", "url": "https://api.github.com/users/madt2709", "html_url": "https://github.com/madt2709", "followers_url": "https://api.github.com/users/madt2709/followers", "following_url": "https://api.github.com/users/madt2709/following{/other_user}", "gists_url": "https://api.github.com/users/madt2709/gists{/gist_id}", "starred_url": "https://api.github.com/users/madt2709/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/madt2709/subscriptions", "organizations_url": "https://api.github.com/users/madt2709/orgs", "repos_url": "https://api.github.com/users/madt2709/repos", "events_url": "https://api.github.com/users/madt2709/events{/privacy}", "received_events_url": "https://api.github.com/users/madt2709/received_events", "type": "User", "site_admin": false }
[ { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "@cantonios I have updated the function now. Tested it both in graph mode and eager mode. Let me know if there's anything else I should update! \r\n\r\n", "Hi @cantonios Can you please review this PR ? Thank you!", "Hi @madt2709 Any update on this PR? Please. Thank you!", "Hey, sorry I haven't had time to work on this. I dont think its far off but before working on it I'd like to invest time in setting up tests properly so we don't have so much back and forth again. ", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "This PR was closed because it has been inactive for 14 days since being marked as stale. Please reopen if you'd like to work on this further." ]
2023-05-30T23:21:14
2023-09-30T01:47:06
2023-09-30T01:47:00
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60733", "html_url": "https://github.com/tensorflow/tensorflow/pull/60733", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60733.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60733.patch", "merged_at": null }
Fixes https://github.com/tensorflow/tensorflow/issues/57672
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60733/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60733/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60732
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60732/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60732/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60732/events
https://github.com/tensorflow/tensorflow/issues/60732
1,733,092,672
I_kwDOArmXAs5nTOVA
60,732
[TF 2.0] Signature for unranked tensor not working as intended
{ "login": "MeghnaNatraj", "id": 8790823, "node_id": "MDQ6VXNlcjg3OTA4MjM=", "avatar_url": "https://avatars.githubusercontent.com/u/8790823?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MeghnaNatraj", "html_url": "https://github.com/MeghnaNatraj", "followers_url": "https://api.github.com/users/MeghnaNatraj/followers", "following_url": "https://api.github.com/users/MeghnaNatraj/following{/other_user}", "gists_url": "https://api.github.com/users/MeghnaNatraj/gists{/gist_id}", "starred_url": "https://api.github.com/users/MeghnaNatraj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MeghnaNatraj/subscriptions", "organizations_url": "https://api.github.com/users/MeghnaNatraj/orgs", "repos_url": "https://api.github.com/users/MeghnaNatraj/repos", "events_url": "https://api.github.com/users/MeghnaNatraj/events{/privacy}", "received_events_url": "https://api.github.com/users/MeghnaNatraj/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@MeghnaNatraj,\r\nCould you please provide the simple standalone code to reproduce the issue and help us to analyse the issue in an effective way. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you." ]
2023-05-30T22:11:27
2023-07-10T18:42:21
null
MEMBER
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.14 ### Custom Code Yes ### OS Platform and Distribution Linux ### Mobile device _No response_ ### Python version 3.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? trying to save a model where one of the functions in the model is defined as: ``` class XYZ(tf.keras.models.Model): @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.float32)]) def coefficients(self, input_tensor: tf.Tensor): .... .... ``` When I train the model, and try to build it, I get the following error: ``` File "/build/work/83bb824f51c38f677e7ad84666ae2d5f4deb/google3/runfiles/google3/vr/perception/computational_photography/ml/video_enhancement/nets/hdrnet.py", [line 320](https://cs.corp.google.com/piper///depot/google3/vr/perception/computational_photography/ml/video_enhancement/nets/hdrnet.py?l=320&ws=mnatraj/3402&snapshot=40), in call * grid, _ = self.coefficients(inputs[0]) File "/build/work/83bb824f51c38f677e7ad84666ae2d5f4deb/google3/runfiles/google3/third_party/tensorflow/python/util/traceback_utils.py", [line 141](https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/util/traceback_utils.py?l=141&ws=mnatraj/3402&snapshot=40), in error_handler ** return fn(*args, **kwargs) File "/build/work/83bb824f51c38f677e7ad84666ae2d5f4deb/google3/runfiles/google3/third_party/tensorflow/python/eager/polymorphic_function/polymorphic_function.py", [line 820](https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/eager/polymorphic_function/polymorphic_function.py?l=820&ws=mnatraj/3402&snapshot=40), in __call__ result = self._call(*args, **kwds) File "/build/work/83bb824f51c38f677e7ad84666ae2d5f4deb/google3/runfiles/google3/third_party/tensorflow/python/eager/polymorphic_function/polymorphic_function.py", [line 864](https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/eager/polymorphic_function/polymorphic_function.py?l=864&ws=mnatraj/3402&snapshot=40), in _call self._initialize(args, kwds, add_initializers_to=initializers) File "/build/work/83bb824f51c38f677e7ad84666ae2d5f4deb/google3/runfiles/google3/third_party/tensorflow/python/eager/polymorphic_function/polymorphic_function.py", [line 687](https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/eager/polymorphic_function/polymorphic_function.py?l=687&ws=mnatraj/3402&snapshot=40), in _initialize self._variable_creation_fn.get_concrete_function(args, kwds) File "/build/work/83bb824f51c38f677e7ad84666ae2d5f4deb/google3/runfiles/google3/third_party/tensorflow/python/eager/polymorphic_function/tracing_compiler.py", [line 182](https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/eager/polymorphic_function/tracing_compiler.py?l=182&ws=mnatraj/3402&snapshot=40), in get_concrete_function args, kwargs = function_type_utils.bind_function_inputs( File "/build/work/83bb824f51c38f677e7ad84666ae2d5f4deb/google3/runfiles/google3/third_party/tensorflow/python/eager/polymorphic_function/function_type_utils.py", [line 451](https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/eager/polymorphic_function/function_type_utils.py?l=451&ws=mnatraj/3402&snapshot=40), in bind_function_inputs raise TypeError( TypeError: Binding inputs to tf.function failed due to `Can not cast TensorSpec(shape=(1, 256, 256, 3), dtype=tf.float32, name=None) to TensorSpec(shape=(None,), dtype=tf.float32, name=None)`. Received args: (<tf.Tensor 'Placeholder:0' shape=(1, 256, 256, 3) dtype=float32>,) and kwargs: {} for signature: (input_tensor: TensorSpec(shape=(None,), dtype=tf.float32, name=None)). ``` Shouldn't specifying input signature as `None` imply that you can pass any input into this function? (unranked tensor) ### Standalone code to reproduce the issue ```shell (no standalone code) ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60732/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60732/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60731
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60731/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60731/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60731/events
https://github.com/tensorflow/tensorflow/pull/60731
1,732,732,236
PR_kwDOArmXAs5Rtf8z
60,731
Update batch_dims argument for GatherV2
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1178505529, "node_id": "MDU6TGFiZWwxMTc4NTA1NTI5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/prtype:bugfix", "name": "prtype:bugfix", "color": "159b2e", "default": false, "description": "PR to fix a bug" } ]
open
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @jpienaar Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "Hi @jpienaar / @rdzhabarov Can you please review this PR ? Thank you!", "This file is generated, so if these aren't reflected in the generator then the next time the tool is run these may be overwritten.\n\nI've not been on this project for >2 years, so not sure who is the best person to ask.\n\n@changm may know ", "I think these would have to update the specific [api_def_GatherV2.pbtxt](https://github.com/tensorflow/tensorflow/blob/e44f8a08051baa58bde9130a844a1b82a8179526/tensorflow/core/api_def/base_api/api_def_GatherV2.pbtxt#L4) and not the generated files. Looping @rohan100jain for API changes.", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!", "Hi @rohan100jain Any update on this PR? Please. Thank you!\r\n\r\n" ]
2023-05-30T18:05:54
2024-06-07T08:41:45
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60731", "html_url": "https://github.com/tensorflow/tensorflow/pull/60731", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60731.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60731.patch", "merged_at": null }
Update batch_dims argument for raw_ops.GatherV2 inline with the tf.gather. Fixes: https://github.com/tensorflow/tensorflow/issues/60419
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60731/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60731/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60730
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60730/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60730/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60730/events
https://github.com/tensorflow/tensorflow/pull/60730
1,732,715,721
PR_kwDOArmXAs5Rtcb9
60,730
X-entropy assert probabilties sum to approximately one
{ "login": "beyarkay", "id": 33420535, "node_id": "MDQ6VXNlcjMzNDIwNTM1", "avatar_url": "https://avatars.githubusercontent.com/u/33420535?v=4", "gravatar_id": "", "url": "https://api.github.com/users/beyarkay", "html_url": "https://github.com/beyarkay", "followers_url": "https://api.github.com/users/beyarkay/followers", "following_url": "https://api.github.com/users/beyarkay/following{/other_user}", "gists_url": "https://api.github.com/users/beyarkay/gists{/gist_id}", "starred_url": "https://api.github.com/users/beyarkay/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/beyarkay/subscriptions", "organizations_url": "https://api.github.com/users/beyarkay/orgs", "repos_url": "https://api.github.com/users/beyarkay/repos", "events_url": "https://api.github.com/users/beyarkay/events{/privacy}", "received_events_url": "https://api.github.com/users/beyarkay/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "The CI build failed with \r\n```\r\nERROR: The project you're trying to build requires Bazel 6.1.0 (specified in /workspace/.bazelversion), but it wasn't found in /usr/local/lib/bazel/bin.\r\n```\r\n\r\nwhich doesn't seem related to my change?", "@gbaned what are the next steps here?", "> @gbaned what are the next steps here?\r\n\r\nHi @beyarkay Sorry for the delay. It looks like your PR relates to the Keras component. Please submit it to the github.com/keras-team/keras repository instead. Thank you for your contribution! \r\n@fchollet, @qlzh727", "This seems like something that should have been mentioned in CONTRIBUTING.md 😞 " ]
2023-05-30T17:53:45
2023-06-05T08:48:44
2023-06-05T08:34:04
NONE
null
true
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60730", "html_url": "https://github.com/tensorflow/tensorflow/pull/60730", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60730.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60730.patch", "merged_at": null }
Currently, it's easy enough to forget that `from_logits` is false by default and it's easy to pass in logits when cross-entropy is expecting probabilities. This won't raise an error, because the values are scaled by [this line](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/backend.py#L4891). This change adds an assertion to check that the sum isn't *too* far from summing to 1
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60730/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60730/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60729
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60729/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60729/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60729/events
https://github.com/tensorflow/tensorflow/issues/60729
1,732,685,501
I_kwDOArmXAs5nRq69
60,729
When using tensorflow.keras, model calls "fit" report an error, but tensorflow.python.keras does not
{ "login": "aihao2000", "id": 51043929, "node_id": "MDQ6VXNlcjUxMDQzOTI5", "avatar_url": "https://avatars.githubusercontent.com/u/51043929?v=4", "gravatar_id": "", "url": "https://api.github.com/users/aihao2000", "html_url": "https://github.com/aihao2000", "followers_url": "https://api.github.com/users/aihao2000/followers", "following_url": "https://api.github.com/users/aihao2000/following{/other_user}", "gists_url": "https://api.github.com/users/aihao2000/gists{/gist_id}", "starred_url": "https://api.github.com/users/aihao2000/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aihao2000/subscriptions", "organizations_url": "https://api.github.com/users/aihao2000/orgs", "repos_url": "https://api.github.com/users/aihao2000/repos", "events_url": "https://api.github.com/users/aihao2000/events{/privacy}", "received_events_url": "https://api.github.com/users/aihao2000/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@AisingioroHao0,\r\nI tried to execute the mentioned above tutorial on tensorflow v2.12 and it was executed without any issue/error. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/3e3b1e80cb2b384b43fe30db59ec8e4b/classification.ipynb). I request you to restart the virtual environment and re-test the code. Thank you!", "Still can't execute \"fit\". For this reason, I even reinstalled the tf environment according to the instructions on the official website. Can you get some reasons from my error message", "I noticed \"conda info\" show \"virtual packages : __cuda=12.1=0\",Is this normal? I used 11.8 installed by conda according to the official instructions", "In addition, I used the conda environment", "I solved this problem by demoting tensorflow to 2.10. 2.12 Is there really no problem? Why doesn't the government have an elegant solution? I found the same problem in https://github.com/tensorflow/tensorflow/issues/58681", "@AisingioroHao0,\r\nCould you please confirm whether you are facing the issue on WSL2 or the Ubuntu environment while executing the mentioned tutorial? Thank you!", "This problem occurred in wsl2 and ubuntu22, but an error was reported when keras.fit was called", "@AisingioroHao0,\r\nWhen I tried to execute the mentioned tutorial on both colab and Ubuntu, it was executed without any issues. Also I tried **from tensorflow import keras** for importing the keras. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/3e3b1e80cb2b384b43fe30db59ec8e4b/classification.ipynb). And Thank you!", "@tilakrayal Did you try testing against conda? I resolved this issue by downgrading to tensorflow2.10. Please analyze the above error such as \"libdevice not found at./libdevice.10.bc\"", "@AisingioroHao0,\r\nYeah, I tried with the **conda** as well, but I was not facing any issues/error for the mentioned code. I request you to restart the virtual environment, uninstall the current tensorflow & install the latest tensorflow and re-test the code. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60729\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60729\">No</a>\n" ]
2023-05-30T17:30:52
2023-08-26T01:46:02
2023-08-26T01:46:00
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution wsl2 ubuntu 22 ### Mobile device _No response_ ### Python version 3.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 11.8/8.6.0.163 ### GPU model and memory 4080 laptop 12282MiB ### Current Behaviour? For the official example, an error will occur when you run "model.fit(train_images, train_labels, epochs=10)". I found that fit did not report errors when I built the model using tensorflow.python.keras. However, the following problems occur when using tensorflow.keras ### Standalone code to reproduce the issue ```shell https://tensorflow.google.cn/tutorials/keras/classification ``` ### Relevant log output ```shell Epoch 1/10 2023-05-31 01:16:03.275942: I tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:637] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once. 2023-05-31 01:16:03.291693: I tensorflow/compiler/xla/service/service.cc:169] XLA service 0x7f14b44bf730 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: 2023-05-31 01:16:03.291739: I tensorflow/compiler/xla/service/service.cc:177] StreamExecutor device (0): NVIDIA GeForce RTX 4080 Laptop GPU, Compute Capability 8.9 2023-05-31 01:16:03.295055: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable. 2023-05-31 01:16:03.414585: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:424] Loaded cuDNN version 8600 2023-05-31 01:16:03.423874: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:530] Can't find libdevice directory ${CUDA_DIR}/nvvm/libdevice. This may result in compilation or runtime failures, if the program we try to run uses routines from libdevice. Searched for CUDA in the following directories: ./cuda_sdk_lib /usr/local/cuda-11.8 /usr/local/cuda . You can choose the search directory by setting xla_gpu_cuda_data_dir in HloModule's DebugOptions. For most apps, setting the environment variable XLA_FLAGS=--xla_gpu_cuda_data_dir=/path/to/cuda will work. 2023-05-31 01:16:03.424029: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-05-31 01:16:03.424265: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-05-31 01:16:03.424288: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:GPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INTERNAL: libdevice not found at ./libdevice.10.bc [[{{node StatefulPartitionedCall_2}}]] 2023-05-31 01:16:03.439145: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-05-31 01:16:03.439414: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-05-31 01:16:03.455495: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-05-31 01:16:03.455741: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc 2023-05-31 01:16:03.469581: W tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc:274] libdevice is required by this HLO module but was not found at ./libdevice.10.bc 2023-05-31 01:16:03.469949: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at xla_ops.cc:362 : INTERNAL: libdevice not found at ./libdevice.10.bc --------------------------------------------------------------------------- InternalError Traceback (most recent call last) Cell In[14], line 1 ----> 1 model.fit(train_images, train_labels, epochs=10) File ~/miniconda3/envs/tf/lib/python3.9/site-packages/keras/utils/traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/eager/execute.py:52, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 50 try: 51 ctx.ensure_initialized() ---> 52 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, 53 inputs, attrs, num_outputs) 54 except core._NotOkStatusException as e: 55 if name is not None: InternalError: Graph execution error: Detected at node 'StatefulPartitionedCall_2' defined at (most recent call last): File "/home/aihao/miniconda3/envs/tf/lib/python3.9/runpy.py", line 197, in _run_module_as_main ... File "/home/aihao/miniconda3/envs/tf/lib/python3.9/site-packages/keras/optimizers/optimizer.py", line 1245, in apply_grad_to_update_var return self._update_step_xla(grad, var, id(self._var_key(var))) Node: 'StatefulPartitionedCall_2' libdevice not found at ./libdevice.10.bc [[{{node StatefulPartitionedCall_2}}]] [Op:__inference_train_function_714] Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings... ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60729/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60729/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60728
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60728/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60728/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60728/events
https://github.com/tensorflow/tensorflow/pull/60728
1,732,303,778
PR_kwDOArmXAs5RsDDY
60,728
Update SetNumThreads() link in faq.md
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-30T13:40:59
2023-06-08T20:17:57
2023-06-01T16:46:04
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60728", "html_url": "https://github.com/tensorflow/tensorflow/pull/60728", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60728.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60728.patch", "merged_at": "2023-06-01T16:46:04" }
The link to `SetNumThreads()` points to the outdated file. Updated the link to use the latest version which is in `interpreter_builder.h`. Thanks.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60728/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60728/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60727
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60727/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60727/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60727/events
https://github.com/tensorflow/tensorflow/pull/60727
1,732,226,353
PR_kwDOArmXAs5Rrx5W
60,727
validate argument axis of tf.experimental.numpy.stack
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
open
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "It _is_ raising an error. Even in your gist you provide in this description. So what's the issue?", "> It _is_ raising an error. Even in your gist you provide in this description. So what's the issue?\r\n\r\nSorry you might have gone through the `tf.stack`. I have deleted that part in gist and updated it.\r\n\r\nIts not raising the error for `tensorflow.experimental.numpy.stack`. Please check the below code in gist for and its not raising the error. \r\n\r\n```\r\nimport tensorflow.experimental.numpy as tnp\r\ntnp.experimental_enable_numpy_behavior()\r\nx = tf.random.uniform([5])\r\ntnp.stack(x, axis=-2) # Passes without any error\r\n```\r\n\r\nThanks!", "That's not throwing an error because the axis is valid: it can be in the range [0, 1], and negative values work backwards from the end, so -2 corresponds to axis=0 and -1 corresponds to axis=1 in this case. Your example fails if you pass axis=-3.", "Hi @SuryanarayanaY Can you please check @cantonios's comments ? Thank you!", "For earlier case the explanation holds right. I tested with new code.Please refer below code.\r\n\r\n```\r\nimport tensorflow.experimental.numpy as tnp\r\ntnp.experimental_enable_numpy_behavior()\r\nx = tf.random.uniform([5,3])\r\ntnp.stack(x, axis=-4) # passes without error\r\ntnp.stack(x, axis=-3) # passes without error\r\n```\r\n\r\nWhereas with Numpy it raises error.\r\n\r\n```\r\nimport numpy as np\r\nx_n = np.random.randn(5, 3)\r\nprint(np.shape(x_n))\r\nnp.stack(x_n, axis=-4) # raises error\r\nnp.stack(x_n, axis=-3) # raises error\r\n```\r\nPlease refer the new gist attached [here](https://colab.research.google.com/gist/SuryanarayanaY/294965c552daca8eb24f0189f865908f/60727.ipynb) and the proposed code change might resolve this.\r\n", "Hi @cantonios Can you please review this PR ? Thank you!", "Hi @SuryanarayanaY Can you please check @cantonios's comments and keep us posted ? Thank you!", "Requested for review", "Hi @cantonios Can you please review this PR ? Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Apologies for the delay. Changed axis validation in swapaxes() as suggested.", "@gbaned , Could you please review and do needful. Thanks", "Hi @SuryanarayanaY Can you please check @cantonios's comments ? Thanks you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!", "Hi @SuryanarayanaY Any update on this PR? Please. Thank you!\r\n\r\n" ]
2023-05-30T13:02:56
2024-06-06T07:56:15
null
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60727", "html_url": "https://github.com/tensorflow/tensorflow/pull/60727", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60727.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60727.patch", "merged_at": null }
AT present `tf.experimental.numpy.stack` not validating the values for `axis` argument. If we pass out of bound values to the `axis` still it is not rising the Error. Hence I am proposing amendments to validate the `axis` argument and raise the Error in case of out of bound axis. Please find the attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/db882df3c2245044a96cd943dead229e/git_55217_nightly-2-14.ipynb) for explaining the problem and also with proposed amendments to the code it works fine and raised intended error when invalid axis arguments provided. Fixes #55217
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60727/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60727/timeline
null
null
true