url
stringlengths
63
63
repository_url
stringclasses
1 value
labels_url
stringlengths
77
77
comments_url
stringlengths
72
72
events_url
stringlengths
70
70
html_url
stringlengths
51
53
id
int64
1.57B
2.35B
node_id
stringlengths
18
19
number
int64
59.5k
69.6k
title
stringlengths
1
554
user
dict
labels
listlengths
0
8
state
stringclasses
2 values
locked
bool
2 classes
assignee
dict
assignees
listlengths
0
8
milestone
null
comments
sequencelengths
0
30
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
4 values
active_lock_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
body
stringlengths
1
65.4k
reactions
dict
timeline_url
stringlengths
72
72
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/tensorflow/tensorflow/issues/60726
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60726/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60726/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60726/events
https://github.com/tensorflow/tensorflow/pull/60726
1,732,109,277
PR_kwDOArmXAs5RrYG1
60,726
r2.12 cherry-pick: 915884fdf5d "Check for correct `values` rank in UpperBound and LowerBound."
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-30T11:56:10
2023-05-31T14:46:54
2023-05-31T00:33:22
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60726", "html_url": "https://github.com/tensorflow/tensorflow/pull/60726", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60726.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60726.patch", "merged_at": "2023-05-31T00:33:22" }
Refer to the original commit: https://github.com/tensorflow/tensorflow/commit/915884fdf5df34aaedd00fc6ace33a2cfdefa586
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60726/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60726/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60725
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60725/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60725/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60725/events
https://github.com/tensorflow/tensorflow/pull/60725
1,732,025,297
PR_kwDOArmXAs5RrFkg
60,725
Fix mkl build dependency issue
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1178505529, "node_id": "MDU6TGFiZWwxMTc4NTA1NTI5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/prtype:bugfix", "name": "prtype:bugfix", "color": "159b2e", "default": false, "description": "PR to fix a bug" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "CC @penpornk This PR fixes breakage in building TF with --config=mkl.", "@penpornk Can we please get this merged? All CI jobs will fail until it is. The failures in the Py+CPP Test Suite do not seem related and I cannot reproduce them." ]
2023-05-30T11:04:35
2023-08-22T14:08:37
2023-06-01T16:21:02
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60725", "html_url": "https://github.com/tensorflow/tensorflow/pull/60725", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60725.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60725.patch", "merged_at": "2023-06-01T16:21:02" }
A recent commit broke the build when it moved a dependency that was partly relied upon. Fix the build by adding in the missing dependency in a more specific manner. Commit that broke the build is https://github.com/tensorflow/tensorflow/commit/ea966af46abcdff6cb8d6ef333befa5aa2850e5f Fixes #60724
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60725/reactions", "total_count": 2, "+1": 1, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60725/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60724
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60724/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60724/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60724/events
https://github.com/tensorflow/tensorflow/issues/60724
1,732,016,461
I_kwDOArmXAs5nPHlN
60,724
mkl_aarch64_threadpool build broken by recent commit
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1104829434, "node_id": "MDU6TGFiZWwxMTA0ODI5NDM0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl", "name": "comp:mkl", "color": "0052cc", "default": false, "description": "MKL related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "@TensorFlow-MKL ", "@elfringham thanks for letting us know and providing a fix.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60724\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60724\">No</a>\n" ]
2023-05-30T10:58:55
2023-06-01T16:21:07
2023-06-01T16:21:04
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version git HEAD ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device n/a ### Python version 3.8.13 ### Bazel version 6.1.0 ### GCC/Compiler version 10.2.1 ### CUDA/cuDNN version n/a ### GPU model and memory n/a ### Current Behaviour? Build is broken since https://github.com/tensorflow/tensorflow/commit/ea966af46abcdff6cb8d6ef333befa5aa2850e5f ### Standalone code to reproduce the issue ```shell bazel build --config=mkl_aarch64_threadpool --copt="-mtune=generic" --copt="-march=armv8-a" --copt="-O3" --verbose_failures --jobs=100 -- //tensorflow/tools/pip_package:build_pip_package ``` ### Relevant log output ```shell INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (607 packages loaded, 38558 targets configured). INFO: Found 1 target... ERROR: /home/builder/1/tensorflow_build/tensorflow_1dnn-git/tensorflow/core/common_runtime/eager/BUILD:644:22: Compiling tensorflow/core/common_runtime/eager/mkl_eager_op_rewrite.cc failed: (Exit 1): gcc failed: error executing command (from target //tensorflow/core/common_runtime/eager:mkl_eager_op_rewrite) (cd /home/builder/.cache/bazel/_bazel_builder/945690c41481150b9aa58576637dd867/execroot/org_tensorflow && \ exec env - \ PATH=/home/builder/.cache/bazelisk/downloads/bazelbuild/bazel-6.1.0-linux-arm64/bin:/home/builder/venv39/bin:/home/builder/.local/bin:/home/builder/bin:/usr/share/Modules/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin \ PWD=/proc/self/cwd \ PYTHON_BIN_PATH=/home/builder/venv39/bin/python3 \ PYTHON_LIB_PATH=/home/builder/venv39/lib/python3.9/site-packages \ TF2_BEHAVIOR=1 \ /usr/local/bin/gcc -U_FORTIFY_SOURCE -fstack-protector -Wall -Wunused-but-set-parameter -Wno-free-nonheap-object -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG -ffunction-sections -fdata-sections '-std=c++0x' -MD -MF bazel-out/aarch64-opt/bin/tensorflow/core/common_runtime/eager/_objs/mkl_eager_op_rewrite/mkl_eager_op_rewrite.pic.d '-frandom-seed=bazel-out/aarch64-opt/bin/tensorflow/core/common_runtime/eager/_objs/mkl_eager_op_rewrite/mkl_eager_op_rewrite.pic.o' -fPIC -DEIGEN_MPL2_ONLY '-DEIGEN_MAX_ALIGN_BYTES=64' -DHAVE_SYS_UIO_H -DTF_USE_SNAPPY '-DLLVM_ON_UNIX=1' '-DHAVE_BACKTRACE=1' '-DBACKTRACE_HEADER=<execinfo.h>' '-DLTDL_SHLIB_EXT=".so"' '-DLLVM_PLUGIN_EXT=".so"' '-DLLVM_ENABLE_THREADS=1' '-DHAVE_DEREGISTER_FRAME=1' '-DHAVE_LIBPTHREAD=1' '-DHAVE_PTHREAD_GETNAME_NP=1' '-DHAVE_PTHREAD_H=1' '-DHAVE_PTHREAD_SETNAME_NP=1' '-DHAVE_REGISTER_FRAME=1' '-DHAVE_SETENV_R=1' '-DHAVE_STRERROR_R=1' '-DHAVE_SYSEXITS_H=1' '-DHAVE_UNISTD_H=1' -D_GNU_SOURCE '-DHAVE_LINK_H=1' '-DHAVE_MALLINFO=1' '-DHAVE_SBRK=1' '-DHAVE_STRUCT_STAT_ST_MTIM_TV_NSEC=1' '-DLLVM_NATIVE_ARCH="AArch64"' '-DLLVM_NATIVE_ASMPARSER=LLVMInitializeAArch64AsmParser' '-DLLVM_NATIVE_ASMPRINTER=LLVMInitializeAArch64AsmPrinter' '-DLLVM_NATIVE_DISASSEMBLER=LLVMInitializeAArch64Disassembler' '-DLLVM_NATIVE_TARGET=LLVMInitializeAArch64Target' '-DLLVM_NATIVE_TARGETINFO=LLVMInitializeAArch64TargetInfo' '-DLLVM_NATIVE_TARGETMC=LLVMInitializeAArch64TargetMC' '-DLLVM_NATIVE_TARGETMCA=LLVMInitializeAArch64TargetMCA' '-DLLVM_HOST_TRIPLE="aarch64-unknown-linux-gnu"' '-DLLVM_DEFAULT_TARGET_TRIPLE="aarch64-unknown-linux-gnu"' '-DLLVM_VERSION_MAJOR=17' '-DLLVM_VERSION_MINOR=0' '-DLLVM_VERSION_PATCH=0' '-DLLVM_VERSION_STRING="17.0.0git"' -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS '-DBLAKE3_USE_NEON=0' -DBLAKE3_NO_AVX2 -DBLAKE3_NO_AVX512 -DBLAKE3_NO_SSE2 -DBLAKE3_NO_SSE41 '-DNO_LLVM_SUPPORT=0' -DCURL_STATICLIB '-DGRPC_ARES=0' -DTENSORFLOW_USE_CUSTOM_CONTRACTION_KERNEL '-DEIGEN_USE_AVX512_GEMM_KERNELS=0' '-DEIGEN_ALTIVEC_USE_CUSTOM_PACK=0' '-DEIGEN_NEON_GEBP_NR=4' -DTF_ENABLE_ACTIVITY_WATCHER '-DBAZEL_CURRENT_REPOSITORY=""' -iquote . -iquote bazel-out/aarch64-opt/bin -iquote external/com_google_absl -iquote bazel-out/aarch64-opt/bin/external/com_google_absl -iquote external/farmhash_archive -iquote bazel-out/aarch64-opt/bin/external/farmhash_archive -iquote external/nsync -iquote bazel-out/aarch64-opt/bin/external/nsync -iquote external/com_google_protobuf -iquote bazel-out/aarch64-opt/bin/external/com_google_protobuf -iquote external/gif -iquote bazel-out/aarch64-opt/bin/external/gif -iquote external/libjpeg_turbo -iquote bazel-out/aarch64-opt/bin/external/libjpeg_turbo -iquote external/com_googlesource_code_re2 -iquote bazel-out/aarch64-opt/bin/external/com_googlesource_code_re2 -iquote external/fft2d -iquote bazel-out/aarch64-opt/bin/external/fft2d -iquote external/highwayhash -iquote bazel-out/aarch64-opt/bin/external/highwayhash -iquote external/zlib -iquote bazel-out/aarch64-opt/bin/external/zlib -iquote external/eigen_archive -iquote bazel-out/aarch64-opt/bin/external/eigen_archive -iquote external/double_conversion -iquote bazel-out/aarch64-opt/bin/external/double_conversion -iquote external/snappy -iquote bazel-out/aarch64-opt/bin/external/snappy -iquote external/llvm-project -iquote bazel-out/aarch64-opt/bin/external/llvm-project -iquote external/curl -iquote bazel-out/aarch64-opt/bin/external/curl -iquote external/boringssl -iquote bazel-out/aarch64-opt/bin/external/boringssl -iquote external/jsoncpp_git -iquote bazel-out/aarch64-opt/bin/external/jsoncpp_git -iquote external/com_github_grpc_grpc -iquote bazel-out/aarch64-opt/bin/external/com_github_grpc_grpc -iquote external/upb -iquote bazel-out/aarch64-opt/bin/external/upb -iquote external/local_config_cuda -iquote bazel-out/aarch64-opt/bin/external/local_config_cuda -iquote external/local_config_rocm -iquote bazel-out/aarch64-opt/bin/external/local_config_rocm -iquote external/local_config_tensorrt -iquote bazel-out/aarch64-opt/bin/external/local_config_tensorrt -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinAttributeInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinAttributesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinDialectBytecodeGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinDialectIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinLocationAttributesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinOpsIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinTypeInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BuiltinTypesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/CallOpInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/CastOpInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/FunctionInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/InferTypeOpInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/OpAsmInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/RegionKindInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/SideEffectInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/SymbolInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/TensorEncodingIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithBaseIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithCanonicalizationIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithOpsIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ArithOpsInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/BytecodeOpInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/InferIntRangeInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/VectorInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ControlFlowInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ControlFlowOpsIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/FuncIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/AsmParserTokenKinds -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/QuantOpsIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/LoopLikeInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/MemorySlotInterfacesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/DialectUtilsIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ViewLikeInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/PDLOpsIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/PDLTypesIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/PDLInterpOpsIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/ConversionPassIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/TransformsPassIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/DerivedAttributeOpInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/llvm-project/mlir/_virtual_includes/RuntimeVerifiableOpInterfaceIncGen -Ibazel-out/aarch64-opt/bin/external/local_config_cuda/cuda/_virtual_includes/cuda_headers_virtual -Ibazel-out/aarch64-opt/bin/external/local_config_tensorrt/_virtual_includes/tensorrt_headers -isystem external/farmhash_archive/src -isystem bazel-out/aarch64-opt/bin/external/farmhash_archive/src -isystem external/nsync/public -isystem bazel-out/aarch64-opt/bin/external/nsync/public -isystem external/com_google_protobuf/src -isystem bazel-out/aarch64-opt/bin/external/com_google_protobuf/src -isystem external/gif -isystem bazel-out/aarch64-opt/bin/external/gif -isystem external/zlib -isystem bazel-out/aarch64-opt/bin/external/zlib -isystem third_party/eigen3/mkl_include -isystem bazel-out/aarch64-opt/bin/third_party/eigen3/mkl_include -isystem external/eigen_archive -isystem bazel-out/aarch64-opt/bin/external/eigen_archive -isystem external/llvm-project/llvm/include -isystem bazel-out/aarch64-opt/bin/external/llvm-project/llvm/include -isystem external/llvm-project/mlir/include -isystem bazel-out/aarch64-opt/bin/external/llvm-project/mlir/include -isystem external/curl/include -isystem bazel-out/aarch64-opt/bin/external/curl/include -isystem external/boringssl/src/include -isystem bazel-out/aarch64-opt/bin/external/boringssl/src/include -isystem external/jsoncpp_git/include -isystem bazel-out/aarch64-opt/bin/external/jsoncpp_git/include -isystem external/com_github_grpc_grpc/include -isystem bazel-out/aarch64-opt/bin/external/com_github_grpc_grpc/include -isystem external/com_github_grpc_grpc/src/core/ext/upb-generated -isystem bazel-out/aarch64-opt/bin/external/com_github_grpc_grpc/src/core/ext/upb-generated -isystem external/com_github_grpc_grpc/third_party/address_sorting/include -isystem bazel-out/aarch64-opt/bin/external/com_github_grpc_grpc/third_party/address_sorting/include -isystem external/local_config_cuda/cuda -isystem bazel-out/aarch64-opt/bin/external/local_config_cuda/cuda -isystem external/local_config_cuda/cuda/cuda/include -isystem bazel-out/aarch64-opt/bin/external/local_config_cuda/cuda/cuda/include -isystem external/local_config_rocm/rocm -isystem bazel-out/aarch64-opt/bin/external/local_config_rocm/rocm -isystem external/local_config_rocm/rocm/rocm/include -isystem bazel-out/aarch64-opt/bin/external/local_config_rocm/rocm/rocm/include -isystem external/local_config_rocm/rocm/rocm/include/rocrand -isystem bazel-out/aarch64-opt/bin/external/local_config_rocm/rocm/rocm/include/rocrand -isystem external/local_config_rocm/rocm/rocm/include/roctracer -isystem bazel-out/aarch64-opt/bin/external/local_config_rocm/rocm/rocm/include/roctracer -Wno-all -Wno-extra -Wno-deprecated -Wno-deprecated-declarations -Wno-ignored-attributes -Wno-array-bounds -Wunused-result '-Werror=unused-result' -Wswitch '-Werror=switch' '-Wno-error=unused-but-set-variable' -DAUTOLOAD_DYNAMIC_KERNELS '-mtune=generic' '-march=armv8-a' -O3 '-std=c++17' -DEIGEN_AVOID_STL_ARRAY -Iexternal/gemmlowp -Wno-sign-compare '-ftemplate-depth=900' -fno-exceptions '-DTENSORFLOW_USE_XLA=1' -DINTEL_MKL '-DDNNL_AARCH64_USE_ACL=1' -pthread -fexceptions -fno-canonical-system-headers -Wno-builtin-macro-redefined '-D__DATE__="redacted"' '-D__TIMESTAMP__="redacted"' '-D__TIME__="redacted"' -c tensorflow/core/common_runtime/eager/mkl_eager_op_rewrite.cc -o bazel-out/aarch64-opt/bin/tensorflow/core/common_runtime/eager/_objs/mkl_eager_op_rewrite/mkl_eager_op_rewrite.pic.o) # Configuration: c6a902c52ef1c3172fb41364dfaf0eb8e48392ba4d35c8c961b05ad0c35a1401 # Execution platform: @local_execution_config_platform//:platform In file included from tensorflow/core/common_runtime/eager/mkl_eager_op_rewrite.cc:22: ./tensorflow/core/util/mkl_util.h:27:10: fatal error: dnnl.hpp: No such file or directory 27 | #include "dnnl.hpp" | ^~~~~~~~~~ compilation terminated. Target //tensorflow/tools/pip_package:build_pip_package failed to build INFO: Elapsed time: 2193.259s, Critical Path: 810.20s INFO: 16688 processes: 2002 internal, 14686 local. FAILED: Build did NOT complete successfully ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60724/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60724/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60723
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60723/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60723/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60723/events
https://github.com/tensorflow/tensorflow/pull/60723
1,731,826,165
PR_kwDOArmXAs5RqaRk
60,723
Improving the performance of TF models for aarch64.
{ "login": "renato-arantes", "id": 129947394, "node_id": "U_kgDOB77XAg", "avatar_url": "https://avatars.githubusercontent.com/u/129947394?v=4", "gravatar_id": "", "url": "https://api.github.com/users/renato-arantes", "html_url": "https://github.com/renato-arantes", "followers_url": "https://api.github.com/users/renato-arantes/followers", "following_url": "https://api.github.com/users/renato-arantes/following{/other_user}", "gists_url": "https://api.github.com/users/renato-arantes/gists{/gist_id}", "starred_url": "https://api.github.com/users/renato-arantes/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/renato-arantes/subscriptions", "organizations_url": "https://api.github.com/users/renato-arantes/orgs", "repos_url": "https://api.github.com/users/renato-arantes/repos", "events_url": "https://api.github.com/users/renato-arantes/events{/privacy}", "received_events_url": "https://api.github.com/users/renato-arantes/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1104829434, "node_id": "MDU6TGFiZWwxMTA0ODI5NDM0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl", "name": "comp:mkl", "color": "0052cc", "default": false, "description": "MKL related issues" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @penpornk - some performance improvements to the AArch64 build with oneDNN, would you be able to take a look please?" ]
2023-05-30T08:58:35
2023-07-12T18:12:16
2023-07-12T18:12:15
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60723", "html_url": "https://github.com/tensorflow/tensorflow/pull/60723", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60723.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60723.patch", "merged_at": "2023-07-12T18:12:15" }
The aim of this PR is to enhance the efficiency of TF models. The following chart showcases the progress achieved through our modifications by presenting a contrast between ACL and Eigen across different NN architectures and shapes. <p align="center"> <img src="https://github.com/tensorflow/tensorflow/assets/129947394/4b4b3114-6d84-405d-8e2b-06b07978019d" width="500" /> </p>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60723/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60723/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60722
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60722/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60722/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60722/events
https://github.com/tensorflow/tensorflow/issues/60722
1,731,161,109
I_kwDOArmXAs5nL2wV
60,722
The work of re-implement checkpoint saving(c1e6672f3141015371968b9fb371a5b40abee837) ruined custom saving and restoring op!
{ "login": "MoFHeka", "id": 90189118, "node_id": "MDQ6VXNlcjkwMTg5MTE4", "avatar_url": "https://avatars.githubusercontent.com/u/90189118?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MoFHeka", "html_url": "https://github.com/MoFHeka", "followers_url": "https://api.github.com/users/MoFHeka/followers", "following_url": "https://api.github.com/users/MoFHeka/following{/other_user}", "gists_url": "https://api.github.com/users/MoFHeka/gists{/gist_id}", "starred_url": "https://api.github.com/users/MoFHeka/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MoFHeka/subscriptions", "organizations_url": "https://api.github.com/users/MoFHeka/orgs", "repos_url": "https://api.github.com/users/MoFHeka/repos", "events_url": "https://api.github.com/users/MoFHeka/events{/privacy}", "received_events_url": "https://api.github.com/users/MoFHeka/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@k-w-w @liangyaning33 I need a solution to upgrade the code.", "Hi, unfortunately the _SingleDeviceSaver is not part of the public API and can change at any time. \r\n\r\nIf you're trying to add custom save/restore steps we do have a `register_checkpoint_saver` mechanism for doing this (also private but more likely to be surfaced as a public API symbol): \r\nhttps://github.com/tensorflow/tensorflow/blob/f104fe5d323dddd20cfa41e12ac2efbc08baf598/tensorflow/python/saved_model/registration/registration.py#L198-L321\r\n\r\nThere is an example here:\r\nhttps://github.com/tensorflow/tensorflow/blob/f104fe5d323dddd20cfa41e12ac2efbc08baf598/tensorflow/python/saved_model/registration/registration_saving_test.py#L45-L116\r\n\r\nFor your case, since (at a brief glance) the Variable is being saved to another file, your `save_fn` and `restore_fn` would look something like:\r\n\r\n```\r\ndef save_fn(trackables, file_prefix):\r\n \"\"\"Save stack and part objects to a checkpoint shard.\"\"\"\r\n for v in trackables:\r\n # Write v to file\r\n return []\r\n\r\ndef restore_stacks_and_parts(trackables, merged_prefix):\r\n for v in trackables:\r\n # Read and assign v from file\r\n```\r\n\r\n\r\n", "> Hi, unfortunately the _SingleDeviceSaver is not part of the public API and can change at any time.\r\n> \r\n> If you're trying to add custom save/restore steps we do have a `register_checkpoint_saver` mechanism for doing this (also private but more likely to be surfaced as a public API symbol):\r\n> \r\n> https://github.com/tensorflow/tensorflow/blob/f104fe5d323dddd20cfa41e12ac2efbc08baf598/tensorflow/python/saved_model/registration/registration.py#L198-L321\r\n> \r\n> There is an example here:\r\n> \r\n> https://github.com/tensorflow/tensorflow/blob/f104fe5d323dddd20cfa41e12ac2efbc08baf598/tensorflow/python/saved_model/registration/registration_saving_test.py#L45-L116\r\n> \r\n> For your case, since (at a brief glance) the Variable is being saved to another file, your `save_fn` and `restore_fn` would look something like:\r\n> \r\n> ```\r\n> def save_fn(trackables, file_prefix):\r\n> \"\"\"Save stack and part objects to a checkpoint shard.\"\"\"\r\n> for v in trackables:\r\n> # Write v to file\r\n> return []\r\n> \r\n> def restore_stacks_and_parts(trackables, merged_prefix):\r\n> for v in trackables:\r\n> # Read and assign v from file\r\n> ```\r\n\r\nThank you very much for your reply. And I have another question, is this mechanism compatible with apis such as tf.keras.models.save_model?", "This is compatible with SavedModel but must be used with `register_serializable`. When loading, the same objects and checkpoint saver must be registered otherwise you may see errors.", "> This is compatible with SavedModel but must be used with `register_serializable`. When loading, the same objects and checkpoint saver must be registered otherwise you may see errors.\r\n\r\nNot only in python API restoring, but also the save_fn would be serialized to op graph saved in the saved_model.pb? I mean when I restore my model using C++ API (model serving), does it would run the custom restoring op graph just like old patching way." ]
2023-05-29T19:27:59
2023-06-06T17:50:50
null
NONE
null
null
null
### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12 ### Custom Code Yes ### Python version Python 3.8/3.9 ### Current Behaviour? For many TensorFlow developers, it is common to customize project-specific variables. To make a particular Variable compatible with the TensorFlow API, it is common to set some private member within its SaveableObject. Also we need to override the _SingleDeviceSaver saving and restore function for adding custom ops chain into graph. For examples: https://github.com/tensorflow/recommenders-addons/blob/master/tensorflow_recommenders_addons/dynamic_embedding/python/ops/tf_save_restore_patch.py Now commit c1e6672f3141015371968b9fb371a5b40abee837 have ruined them all. ### Standalone code to reproduce the issue https://github.com/tensorflow/recommenders-addons run CI failed in TF 2.12.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60722/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60722/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60721
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60721/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60721/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60721/events
https://github.com/tensorflow/tensorflow/issues/60721
1,731,140,034
I_kwDOArmXAs5nLxnC
60,721
All input tensors must have the same rank. [Op:MatrixSolve]
{ "login": "alejopaullier96", "id": 65294021, "node_id": "MDQ6VXNlcjY1Mjk0MDIx", "avatar_url": "https://avatars.githubusercontent.com/u/65294021?v=4", "gravatar_id": "", "url": "https://api.github.com/users/alejopaullier96", "html_url": "https://github.com/alejopaullier96", "followers_url": "https://api.github.com/users/alejopaullier96/followers", "following_url": "https://api.github.com/users/alejopaullier96/following{/other_user}", "gists_url": "https://api.github.com/users/alejopaullier96/gists{/gist_id}", "starred_url": "https://api.github.com/users/alejopaullier96/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alejopaullier96/subscriptions", "organizations_url": "https://api.github.com/users/alejopaullier96/orgs", "repos_url": "https://api.github.com/users/alejopaullier96/repos", "events_url": "https://api.github.com/users/alejopaullier96/events{/privacy}", "received_events_url": "https://api.github.com/users/alejopaullier96/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@alejopaullier96,\r\nCould you please provide the simple standalone code to reproduce the issue which helps us to analyse the issue in an effective way. \r\n\r\nThe error is clearly describing that the error is due to shape or Rank. \r\n\r\nmatrix | A Tensor. Must be one of the following types: float64, float32, half, complex64, complex128. Shape is [..., M, M].\r\nrhs | A Tensor. Must have the same type as matrix. Shape is [..., M, K].\r\n\r\nhttps://www.tensorflow.org/api_docs/python/tf/linalg/solve#args\r\n\r\n\r\nThank you!", "Hi, is this open to pick up, I would like to contribute to this. I am new to open source contribution, but I am a quick learner.\r\n", "@tilakrayal I have solved the issue by squeezing one dimension from the first input tensor:\r\n```\r\nM = tf.squeeze(M, axis=1)\r\n```\r\nThis way my first tensor `M` which had shape `(batch_size, 1, 4, 4)` after squeezing has shape `(batch_size, 4, 4)`. My second tensor `E` had shape `(batch_size, 4, 1)`, so essentially they ended up with the same number of dimensions (3). \r\n\r\nJust for clarification, the current documentation does not specify that the two input tensors/matrices must have the same number of dimensions, but rather that it specifies how the two last dimensions must be.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60721\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60721\">No</a>\n" ]
2023-05-29T19:02:11
2023-05-31T13:35:01
2023-05-30T17:47:53
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.11.0 ### Custom Code Yes ### OS Platform and Distribution Linux ### Mobile device _No response_ ### Python version 3.10.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I have two tensors `M` and `E` of shapes `(batch_size, 1, 4, 4)` and `(batch_size, 4, 1)` respectively. The official documentation of [tf.linalg.solve](https://www.tensorflow.org/api_docs/python/tf/linalg/solve) states the two tensors should have shapes `(..., M,M)` and `(...,M,K)`. After executing my code I get the following error: ``` InvalidArgumentError: {{function_node __wrapped__MatrixSolve_device_/job:localhost/replica:0/task:0/device:CPU:0}} All input tensors must have the same rank. [Op:MatrixSolve] ``` ### Standalone code to reproduce the issue ```shell S = tf.linalg.solve(M, E) ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60721/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60721/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60720
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60720/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60720/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60720/events
https://github.com/tensorflow/tensorflow/issues/60720
1,729,751,696
I_kwDOArmXAs5nGeqQ
60,720
TFLITE issue with android device redmi note 11 pro
{ "login": "haider-khan333", "id": 57574180, "node_id": "MDQ6VXNlcjU3NTc0MTgw", "avatar_url": "https://avatars.githubusercontent.com/u/57574180?v=4", "gravatar_id": "", "url": "https://api.github.com/users/haider-khan333", "html_url": "https://github.com/haider-khan333", "followers_url": "https://api.github.com/users/haider-khan333/followers", "following_url": "https://api.github.com/users/haider-khan333/following{/other_user}", "gists_url": "https://api.github.com/users/haider-khan333/gists{/gist_id}", "starred_url": "https://api.github.com/users/haider-khan333/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/haider-khan333/subscriptions", "organizations_url": "https://api.github.com/users/haider-khan333/orgs", "repos_url": "https://api.github.com/users/haider-khan333/repos", "events_url": "https://api.github.com/users/haider-khan333/events{/privacy}", "received_events_url": "https://api.github.com/users/haider-khan333/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671339633, "node_id": "MDU6TGFiZWwyNjcxMzM5NjMz", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate", "name": "TFLiteGpuDelegate", "color": "F71F04", "default": false, "description": "TFLite Gpu delegate issue" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @haider-khan333 \r\n\r\nOn android 12, please add the following to the Android manifest in order to detect GPU delegate.\r\n\r\n```\r\n<uses-library android:name=\"libOpenCL.so\"\r\n android:required=\"false\"/>\r\n\r\n<uses-library android:name=\"libOpenCL-pixel.so\"\r\n android:required=\"false\"/>\r\n```\r\n\r\nThanks.", "> Hi @haider-khan333\r\n> \r\n> On android 12, please add the following to the Android manifest in order to detect GPU delegate.\r\n> \r\n> ```\r\n> <uses-library android:name=\"libOpenCL.so\"\r\n> android:required=\"false\"/>\r\n> \r\n> <uses-library android:name=\"libOpenCL-pixel.so\"\r\n> android:required=\"false\"/>\r\n> `\r\n\r\n\r\nThanks a lot. It solved my issue.\r\nI'll be closing the issue.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60720\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60720\">No</a>\n" ]
2023-05-28T23:40:07
2023-05-29T19:43:05
2023-05-29T19:40:01
NONE
null
null
null
I am currently working on a project where i need to use tflite model for detecting fingers from a camera. I have tried to use gpu delegate or nnapi, but i unfortunately none of these works. While using gpu delegate, i am getting an error as belows **Internal error: Failed to apply delegate: Can not open OpenCL library on this device - dlopen failed: library "libOpenCL.so" not found Falling back to OpenGL TfLiteGpuDelegate Init: No shader implementation for transpose TfLiteGpuDelegate Prepare: delegate is not initialized Node number 390 (TfLiteGpuDelegateV2) failed to prepare. Restored original execution plan after delegate application failure.** Does anyone else has faced the same problem?
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60720/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60720/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60719
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60719/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60719/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60719/events
https://github.com/tensorflow/tensorflow/issues/60719
1,729,362,881
I_kwDOArmXAs5nE_vB
60,719
Empty logs during model.fit()
{ "login": "woahthere2", "id": 132278962, "node_id": "U_kgDOB-Jqsg", "avatar_url": "https://avatars.githubusercontent.com/u/132278962?v=4", "gravatar_id": "", "url": "https://api.github.com/users/woahthere2", "html_url": "https://github.com/woahthere2", "followers_url": "https://api.github.com/users/woahthere2/followers", "following_url": "https://api.github.com/users/woahthere2/following{/other_user}", "gists_url": "https://api.github.com/users/woahthere2/gists{/gist_id}", "starred_url": "https://api.github.com/users/woahthere2/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/woahthere2/subscriptions", "organizations_url": "https://api.github.com/users/woahthere2/orgs", "repos_url": "https://api.github.com/users/woahthere2/repos", "events_url": "https://api.github.com/users/woahthere2/events{/privacy}", "received_events_url": "https://api.github.com/users/woahthere2/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "TensorFlow version: 2.11.0 \r\nPython version: 3.10.10 \r\nGPU/CPU: GPU T4 x 2 on Kaggle\r\n\r\nAdditional steps taken:\r\nExecuted tf.config.run_functions_eagerly(True) , but the issue persists.\r\nConfirmed all image sizes are (128, 128, 3) and model.input_shape is (None, 128, 128, 3) . \r\nValidated that the datasets are not empty by running the following code:\r\n\r\n```\r\nfor images, masks in val_dataset.take(1): \r\n sample_image, sample_mask = images[31], masks[31] \r\n display([sample_image, sample_mask])```\r\n\r\nThe displayed images and masks are as expected.", "@woahthere2,\r\nI request you to take a look at this [issue](https://github.com/keras-team/keras/issues/16202) where a similar feature has been proposed and it is still open. Also I request to follow the similar feature which has been proposed to have the updates on the similar issue. Thank you!\r\n\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60719\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60719\">No</a>\n" ]
2023-05-28T10:03:54
2023-06-14T02:00:57
2023-06-14T02:00:55
NONE
null
null
null
[Issue_Empty_logs_during_model.fit().pdf](https://github.com/tensorflow/tensorflow/files/11584239/Issue_Empty_logs_during_model.fit.pdf)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60719/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60719/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60718
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60718/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60718/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60718/events
https://github.com/tensorflow/tensorflow/issues/60718
1,728,990,910
I_kwDOArmXAs5nDk6-
60,718
[TFLite C++] Signature calculating CategoricalCrossentropy loss produces wrong result
{ "login": "peratrepic", "id": 134813523, "node_id": "U_kgDOCAkXUw", "avatar_url": "https://avatars.githubusercontent.com/u/134813523?v=4", "gravatar_id": "", "url": "https://api.github.com/users/peratrepic", "html_url": "https://github.com/peratrepic", "followers_url": "https://api.github.com/users/peratrepic/followers", "following_url": "https://api.github.com/users/peratrepic/following{/other_user}", "gists_url": "https://api.github.com/users/peratrepic/gists{/gist_id}", "starred_url": "https://api.github.com/users/peratrepic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/peratrepic/subscriptions", "organizations_url": "https://api.github.com/users/peratrepic/orgs", "repos_url": "https://api.github.com/users/peratrepic/repos", "events_url": "https://api.github.com/users/peratrepic/events{/privacy}", "received_events_url": "https://api.github.com/users/peratrepic/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @peratrepic,\r\n\r\nCan you either provide your data + python training code to reproduce the tflite model file or just the tflite model itself. Also it is preferable if you do not redact your input data & labels for now, I can try to reproduce w/o it but it would be helpful to understand the full context.\r\n\r\nThanks!", "Hi @pkgoogle, sure!\r\n\r\nHere is the python code I am using to create the model and convert it to tflite format:\r\n<details><summary>Click to expand!</summary>\r\n\r\n```\r\nimport numpy as np\r\nimport os\r\nimport tensorflow as tf\r\n\r\nIMG_SIZE = 28\r\n\r\nclass Model(tf.Module):\r\n def __init__(self):\r\n self.model = tf.keras.Sequential([\r\n tf.keras.layers.Flatten(input_shape=(IMG_SIZE, IMG_SIZE), name='flatten'),\r\n tf.keras.layers.Dense(\r\n units=10,\r\n kernel_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.05),\r\n bias_initializer=tf.keras.initializers.Ones(),\r\n name='dense'\r\n ),\r\n ])\r\n\r\n opt = tf.keras.optimizers.SGD(learning_rate=0.1)\r\n loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True)\r\n self.model.compile(optimizer=opt, loss=loss_fn, metrics=['accuracy'])\r\n\r\n # The `train` function takes a batch of input images and labels.\r\n @tf.function(input_signature=[\r\n tf.TensorSpec([32, IMG_SIZE, IMG_SIZE], tf.float32),\r\n tf.TensorSpec([32, 10], tf.float32),\r\n ])\r\n def train(self, x, y):\r\n with tf.GradientTape() as tape:\r\n prediction = self.model(x)\r\n loss = self.model.loss(y, prediction)\r\n gradients = tape.gradient(loss, self.model.trainable_variables)\r\n self.model.optimizer.apply_gradients(\r\n zip(gradients, self.model.trainable_variables))\r\n result = {\"loss\": loss}\r\n return result\r\n\r\n @tf.function(input_signature=[\r\n tf.TensorSpec([1, IMG_SIZE, IMG_SIZE], tf.float32),\r\n ])\r\n def infer(self, x):\r\n logits = self.model(x)\r\n probabilities = tf.nn.softmax(logits, axis=-1)\r\n return {\r\n \"output\": probabilities,\r\n \"logits\": logits\r\n }\r\n\r\nm = Model()\r\n\r\ndef save_model():\r\n model_path = R\"<insert your path>\"\r\n\r\n tf.saved_model.save(\r\n m,\r\n model_path,\r\n signatures={\r\n 'train':\r\n m.train.get_concrete_function(),\r\n 'infer':\r\n m.infer.get_concrete_function(),\r\n })\r\n\r\n # Convert the model\r\n converter = tf.lite.TFLiteConverter.from_saved_model(model_path)\r\n converter.target_spec.supported_ops = [\r\n tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\r\n tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\r\n ]\r\n converter.experimental_enable_resource_variables = True\r\n tflite_model = converter.convert()\r\n\r\n with open(os.path.join(model_path, \"trained_model.tflite\"), 'wb') as model_writer:\r\n model_writer.write(tflite_model)\r\n\r\nsave_model()\r\n```\r\n\r\n</details>\r\n\r\nAs you can see model is not being trained in python, I am just creating it and saving it to tflite format, with the goal to train it on another device using tflite C++ API. Here is the unredacted code for doing so:\r\n<details><summary>Click to expand!</summary>\r\n\r\n```\r\n#include <fstream>\r\n#include <iostream>\r\n#include <sstream>\r\n#include <string>\r\n#include <vector>\r\n\r\n#include \"tensorflow/lite/interpreter.h\"\r\n#include \"tensorflow/lite/kernels/register.h\"\r\n#include \"tensorflow/lite/logger.h\"\r\n#include \"tensorflow/lite/model.h\"\r\n#include \"tensorflow/lite/signature_runner.h\"\r\n\r\nconst int BATCH_SIZE = 32;\r\nconst int NUM_LABELS = 10;\r\nconst int IMG_SIZE = 28 * 28;\r\n\r\nfloat run_test(tflite::Interpreter* interpreter)\r\n{\r\n tflite::SignatureRunner* inference_runner = interpreter->GetSignatureRunner(\"infer\");\r\n\r\n TfLiteTensor* input_tensor = inference_runner->input_tensor(inference_runner->input_names()[0]);\r\n float* input = input_tensor->data.f;\r\n\r\n int total = 0;\r\n int correct = 0;\r\n\r\n std::ifstream test_data(\"test_set.txt\");\r\n std::string line;\r\n while (std::getline(test_data, line))\r\n {\r\n std::istringstream ss(line);\r\n int label;\r\n ss >> label;\r\n for (std::size_t i = 0; i < IMG_SIZE; ++i)\r\n {\r\n ss >> input[i];\r\n }\r\n\r\n if (inference_runner->Invoke() != kTfLiteOk)\r\n {\r\n std::cout << \"Error invoking inference interpreter signature\" << std::endl;\r\n return 0.f;\r\n }\r\n\r\n const TfLiteTensor* output_tensor = inference_runner->output_tensor(inference_runner->output_names()[0]);\r\n float* output = output_tensor->data.f;\r\n\r\n int predicted = 0;\r\n for (int i = 1; i < NUM_LABELS; ++i)\r\n {\r\n if (output[i] > output[predicted])\r\n {\r\n predicted = i;\r\n }\r\n }\r\n\r\n ++total;\r\n if (label == predicted)\r\n {\r\n ++correct;\r\n }\r\n }\r\n\r\n float accuracy = correct * 100.f / total;\r\n\r\n return accuracy;\r\n}\r\n\r\nvoid run_training(tflite::Interpreter* interpreter)\r\n{\r\n std::cout << \"Test acc before training: \" << run_test(interpreter) << std::endl << std::endl;\r\n\r\n tflite::SignatureRunner* train_runner = interpreter->GetSignatureRunner(\"train\");\r\n\r\n TfLiteTensor* input_data_tensor = train_runner->input_tensor(train_runner->input_names()[0]);\r\n float* input_data = input_data_tensor->data.f;\r\n TfLiteTensor* input_labels_tensor = train_runner->input_tensor(train_runner->input_names()[1]);\r\n float* input_labels = input_labels_tensor->data.f;\r\n\r\n int data_idx = 0;\r\n int num_batches = 0;\r\n std::vector<float> test_accs;\r\n\r\n std::ifstream train_data(\"train_set.txt\");\r\n std::string line;\r\n while (std::getline(train_data, line))\r\n {\r\n std::istringstream ss(line);\r\n int label;\r\n ss >> label;\r\n for (int lbl_idx = 0; lbl_idx < NUM_LABELS; ++lbl_idx)\r\n {\r\n input_labels[data_idx * NUM_LABELS + lbl_idx] = (label == lbl_idx ? 1.f : 0.f);\r\n }\r\n for (int i = 0; i < IMG_SIZE; ++i)\r\n {\r\n ss >> input_data[data_idx * IMG_SIZE + i];\r\n }\r\n ++data_idx;\r\n\r\n if (data_idx == BATCH_SIZE)\r\n {\r\n data_idx = 0;\r\n\r\n if (train_runner->Invoke() != kTfLiteOk)\r\n {\r\n std::cout << \"Error invoking train interpreter signature\" << std::endl;\r\n return;\r\n }\r\n\r\n ++num_batches;\r\n const TfLiteTensor* output_tensor = train_runner->output_tensor(train_runner->output_names()[0]);\r\n float* output = output_tensor->data.f;\r\n std::cout << \"Training of batch \" << num_batches << \" finished with loss: \" << output[0] << std::endl;\r\n\r\n if (num_batches == 100)\r\n {\r\n break;\r\n }\r\n }\r\n }\r\n\r\n std::cout << std::endl << \"Test acc after training: \" << run_test(interpreter) << std::endl;\r\n}\r\n\r\nvoid train_model()\r\n{\r\n tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING);\r\n\r\n std::unique_ptr<tflite::FlatBufferModel> model =\r\n tflite::FlatBufferModel::BuildFromFile(\"<insert your tflite model path>\");\r\n if (model == nullptr)\r\n {\r\n std::cout << \"Failed to load model\" << std::endl;\r\n return;\r\n }\r\n\r\n tflite::ops::builtin::BuiltinOpResolver resolver;\r\n tflite::InterpreterBuilder builder(*model, resolver);\r\n std::unique_ptr<tflite::Interpreter> interpreter;\r\n builder(&interpreter);\r\n if (interpreter == nullptr)\r\n {\r\n std::cout << \"Failed to create interpreter\" << std::endl;\r\n return;\r\n }\r\n\r\n if (interpreter->AllocateTensors() != kTfLiteOk)\r\n {\r\n std::cout << \"Failed to alocate interpreter tensors\" << std::endl;\r\n return;\r\n }\r\n\r\n run_training(interpreter.get());\r\n}\r\n\r\nint main()\r\n{\r\n train_model();\r\n\r\n return 0;\r\n}\r\n```\r\n\r\n</details>\r\n\r\nModel is being trained on MNIST dataset, I've just reformated it from binary files to txt files: one line per data sample, numbers separated by spaces, first number in line represents label and rest of the numbers represent features. I am attaching first 320 samples of train set in `train_set.txt`, and first 960 samples of test set in `test_set.txt`, since I can only upload limited file size here.\r\n[test_set.txt](https://github.com/tensorflow/tensorflow/files/11630576/test_set.txt)\r\n[train_set.txt](https://github.com/tensorflow/tensorflow/files/11630577/train_set.txt)\r\n", "Hi @peratrepic,\r\n\r\nI tried running your code but I actually run into a seg fault:\r\n```\r\n~/60718_clean/build$ ./main\r\nTest acc before training: 11.3542\r\n\r\nTraining of batch 1 finished with loss: 263.954\r\nSegmentation fault\r\n```\r\n\r\nHere's my setup\r\n[60718.tar.gz](https://github.com/tensorflow/tensorflow/files/11727464/60718.tar.gz)\r\n\r\nunzip it to the same directory that has your tensorflow source then:\r\n```\r\ntar -xzf 60718.tar.gz\r\ncd 60718_clean\r\npython test.py\r\ncd build\r\ncmake ..\r\nmake\r\n./main\r\n```\r\nIs your environment similar? or are you just linking a built .so file? Any additional information about your setup will be helpful.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hey @pkgoogle , sorry for delayed response I am on vacation atm. I cannot run your setup until I return, but from your results it seems that you are already getting abnormal loss after training of first batch (`Training of batch 1 finished with loss: 263.954`), even before you hit the segfault. Shouldn't that be enough for you to debug?\r\n\r\nFor the reference, training of first batch in Python (by calling the \"train\" signature) gives loss around ~2.5.\r\n\r\nRegarding segfault, I was also getting segfault with tflite binaries built from branch r2.10 while accessing the input tensors, but didn't get them with binaries from later branches (r2.12 and r2.13). I think that is also something which should be investigated on your end, because my code is just using snippets of code taken from tflite examples and documentation, it isn't doing anything unusual.\r\n\r\nAnd regarding my setup, I am building and running this on Windows. I am building TFLite from stable tf branches using bazel and linking the built lib/dll in the project which trains the model using tflite C++ API.", "Hi @peratrepic, Thanks for the information it definitely helps, Can you tell me your exact bazel commands and how you're linking the built lib/dll in the project? Are you using these steps? https://www.tensorflow.org/install/source_windows or something else. Are you utilizing WSL at all? Many people have different set ups so its hard to tell exactly what you are doing. In my view, that datapoint is not enough to debug at the moment, we are also dealing with many other issues so let's figure out how to reproduce this correctly first.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @pkgoogle, I've now setup a Linux VM (_Ubuntu 22.04.2 AMD64_) in order to confirm that the issue is not platform dependent. I've confirmed that the issue is still happening and I've also encountered the same segmentation fault as you.\r\n\r\nThe reason that segmentation fault is happening is the same as one I was having with TF 2.10 (but not with TF 2.12 and 2.13) on Windows: reference to the input tensor changes after signature is invoked. I am not sure if that is expected behaviour since it is happening only with certain versions of TF with certain platforms, but anyways, here is a working version of the code without segmentation faults:\r\n<details><summary>Click to expand!</summary>\r\n\r\n```cpp\r\n#include <fstream>\r\n#include <iostream>\r\n#include <sstream>\r\n#include <string>\r\n#include <vector>\r\n\r\n#include \"tensorflow/lite/interpreter.h\"\r\n#include \"tensorflow/lite/kernels/register.h\"\r\n#include \"tensorflow/lite/logger.h\"\r\n#include \"tensorflow/lite/model.h\"\r\n#include \"tensorflow/lite/signature_runner.h\"\r\n\r\nconst int BATCH_SIZE = 32;\r\nconst int NUM_LABELS = 10;\r\nconst int IMG_SIZE = 28 * 28;\r\n\r\nfloat run_test(tflite::Interpreter* interpreter)\r\n{\r\n tflite::SignatureRunner* inference_runner = interpreter->GetSignatureRunner(\"infer\");\r\n\r\n TfLiteTensor* input_tensor = inference_runner->input_tensor(inference_runner->input_names()[0]);\r\n float* input = input_tensor->data.f;\r\n\r\n int total = 0;\r\n int correct = 0;\r\n\r\n std::ifstream test_data(\"test_set.txt\");\r\n std::string line;\r\n while (std::getline(test_data, line))\r\n {\r\n std::istringstream ss(line);\r\n int label;\r\n ss >> label;\r\n for (std::size_t i = 0; i < IMG_SIZE; ++i)\r\n {\r\n ss >> input[i];\r\n }\r\n\r\n if (inference_runner->Invoke() != kTfLiteOk)\r\n {\r\n std::cout << \"Error invoking inference interpreter signature\" << std::endl;\r\n return 0.f;\r\n }\r\n\r\n const TfLiteTensor* output_tensor = inference_runner->output_tensor(inference_runner->output_names()[0]);\r\n float* output = output_tensor->data.f;\r\n\r\n int predicted = 0;\r\n for (int i = 1; i < NUM_LABELS; ++i)\r\n {\r\n if (output[i] > output[predicted])\r\n {\r\n predicted = i;\r\n }\r\n }\r\n\r\n ++total;\r\n if (label == predicted)\r\n {\r\n ++correct;\r\n }\r\n }\r\n\r\n float accuracy = correct * 100.f / total;\r\n\r\n return accuracy;\r\n}\r\n\r\nvoid run_training(tflite::Interpreter* interpreter)\r\n{\r\n std::cout << \"Test acc before training: \" << run_test(interpreter) << std::endl << std::endl;\r\n\r\n tflite::SignatureRunner* train_runner = interpreter->GetSignatureRunner(\"train\");\r\n\r\n TfLiteTensor* input_data_tensor = train_runner->input_tensor(train_runner->input_names()[0]);\r\n TfLiteTensor* input_labels_tensor = train_runner->input_tensor(train_runner->input_names()[1]);\r\n\r\n int data_idx = 0;\r\n int num_batches = 0;\r\n std::vector<float> test_accs;\r\n\r\n std::ifstream train_data(\"train_set.txt\");\r\n std::string line;\r\n while (std::getline(train_data, line))\r\n {\r\n std::istringstream ss(line);\r\n int label;\r\n ss >> label;\r\n float* input_labels = input_labels_tensor->data.f;\r\n float* input_data = input_data_tensor->data.f;\r\n for (int lbl_idx = 0; lbl_idx < NUM_LABELS; ++lbl_idx)\r\n {\r\n input_labels[data_idx * NUM_LABELS + lbl_idx] = (label == lbl_idx ? 1.f : 0.f);\r\n }\r\n for (int i = 0; i < IMG_SIZE; ++i)\r\n {\r\n ss >> input_data[data_idx * IMG_SIZE + i];\r\n }\r\n ++data_idx;\r\n\r\n if (data_idx == BATCH_SIZE)\r\n {\r\n data_idx = 0;\r\n\r\n if (train_runner->Invoke() != kTfLiteOk)\r\n {\r\n std::cout << \"Error invoking train interpreter signature\" << std::endl;\r\n return;\r\n }\r\n\r\n ++num_batches;\r\n const TfLiteTensor* output_tensor = train_runner->output_tensor(train_runner->output_names()[0]);\r\n float* output = output_tensor->data.f;\r\n std::cout << \"Training of batch \" << num_batches << \" finished with loss: \" << output[0] << std::endl;\r\n\r\n if (num_batches == 10)\r\n {\r\n break;\r\n }\r\n }\r\n }\r\n\r\n std::cout << std::endl << \"Test acc after training: \" << run_test(interpreter) << std::endl;\r\n}\r\n\r\nvoid train_model()\r\n{\r\n tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING);\r\n\r\n std::unique_ptr<tflite::FlatBufferModel> model =\r\n tflite::FlatBufferModel::BuildFromFile(\"<INSERT YOUR MODEL PATH HERE>\");\r\n if (model == nullptr)\r\n {\r\n std::cout << \"Failed to load model\" << std::endl;\r\n return;\r\n }\r\n\r\n tflite::ops::builtin::BuiltinOpResolver resolver;\r\n tflite::InterpreterBuilder builder(*model, resolver);\r\n std::unique_ptr<tflite::Interpreter> interpreter;\r\n builder(&interpreter);\r\n if (interpreter == nullptr)\r\n {\r\n std::cout << \"Failed to create interpreter\" << std::endl;\r\n return;\r\n }\r\n\r\n if (interpreter->AllocateTensors() != kTfLiteOk)\r\n {\r\n std::cout << \"Failed to alocate interpreter tensors\" << std::endl;\r\n return;\r\n }\r\n\r\n run_training(interpreter.get());\r\n}\r\n\r\nint main()\r\n{\r\n train_model();\r\n\r\n return 0;\r\n}\r\n```\r\n\r\n</details>\r\n\r\nHere are the results that I am getting:\r\n```\r\nTest acc before training: 13.4375\r\n\r\nTraining of batch 1 finished with loss: 125.153\r\nTraining of batch 2 finished with loss: 19491.5\r\nTraining of batch 3 finished with loss: 37853.6\r\nTraining of batch 4 finished with loss: 42998.3\r\nTraining of batch 5 finished with loss: 30509.9\r\nTraining of batch 6 finished with loss: 29040.6\r\nTraining of batch 7 finished with loss: 41205.7\r\nTraining of batch 8 finished with loss: 23286.3\r\nTraining of batch 9 finished with loss: 14237.5\r\nTraining of batch 10 finished with loss: 11451.6\r\n\r\nTest acc after training: 55.625\r\n```\r\n\r\nHere is the model that I am using, so you don't have to create it again: [trained_model.tflite.zip](https://github.com/tensorflow/tensorflow/files/11901036/trained_model.tflite.zip)\r\n\r\nAs for the setup, I am building `libtensorflowlite.so` from TF [r2.13 branch](https://github.com/tensorflow/tensorflow/tree/r2.13) using this bazel command: `bazel build -c dbg //tensorflow/lite:libtensorflowlite.so`. Bazel configuration is configured for CPU (no CUDA). Then I am linking the built .so to the cpp project (one cpp file, code given above). Here is the CMakeLists.txt I am using:\r\n<details><summary>Click to expand!</summary>\r\n\r\n```cmake\r\ncmake_minimum_required(VERSION 3.17)\r\nproject(TFLiteCpp)\r\n\r\nset(CMAKE_CXX_STANDARD 14)\r\n\r\n# include has 2 subdirectories: tensorflow and flatbuffers\r\nINCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR}/include/)\r\n\r\n# lib has 1 file: libtensorflowlite.so\r\nADD_LIBRARY(tensorflowlite SHARED IMPORTED)\r\nset_property(TARGET tensorflowlite PROPERTY IMPORTED_LOCATION ${CMAKE_CURRENT_SOURCE_DIR}/libs/libtensorflowlite.so)\r\n\r\nadd_executable(TFLiteCpp main.cpp)\r\ntarget_link_libraries(TFLiteCpp tensorflowlite)\r\n```\r\n\r\n</details>", "Hi @peratrepic, I was able to reproduce your results, so currently I do not view this as a \"wrong\" result, loss calculations are not necessarily monotonically decreasing with training if your dataset is variable enough. We also see that batch 7 through 10 we have decreasing loss. This makes sense to me as usually a NN needs some amount of warm-up and as the data changes the loss can increase as the training in the previous batches makes it better at predicting those data, not necessarily the next batch. Usually there is some pattern in the labels and feature set which makes it able to predict the next batch better but it's not guaranteed to be true. Though in the long run and with enough data that is the pattern you will see. The batch sizes here are also relatively small (32 images which are only 28 x 28 pixels large), so it'll take some time to learn. Let me know if you are satisfied with this answer, and if so please feel free to close the issue if you have no more open items.", "Hi @pkgoogle,\r\n\r\nAs I've stated before:\r\n- When you run the **SAME** model, the **SAME** signature (\"train\"), on the **SAME** dataset, with python tf api, the loss starts from around 2.5, jumps up and down a little bit, and then goes steadily down. When you run the same with tflite c++ api, the loss explodes into thousands, which is insanely high for any ML model training. It is just a coincidence in the limited output from above that loss is decreasing in batches 8-10, I've run it for hundreds of batches and it goes erratically up and down by thousands. The numbers themselves are not even important here, the main point here is that the **results with c++ api differ from the results with python api under the same training conditions**.\r\n- The test accuracy is rising batch after batch, up to 80%, which proves that model is being actually trained, it is **NOT** diverging, it is just the reported loss that is faulty. To me that indicates that you are writing some garbage value into the output tensor, otherwise if loss that you were using internally to calculate the gradients was wrong - the model wouldn't be training at all.\r\n\r\nCould you please investigate?", "Hi @peratrepic, do you have the code that shows that \r\n>with python tf api, the loss starts from around 2.5, jumps up and down a little bit, and then goes steadily down\r\n\r\nThe above code only shows construction and conversion in python.\r\n\r\nSo the models are not necessarily exactly the same, conversion actually performs some optimizations and changes (such as op fuses). Additionally are you testing them side by side? (I'm guessing yes but I have to make sure) or are you testing/training the python model, converting, then testing/training the C++ model? It's hard to say w/o more context whether the ML model having a loss of thousands is necessarily incorrect. The type of model, the type of loss, the size of the data, the range of the data, number of classes (and probably more) all have an impact.\r\n\r\n> I've run it for hundreds of batches and it goes erratically up and down by thousands.\r\n\r\nThis is probably better evidence as after hundreds of batches it should stabilize more... but with a batch size of 32 of 28x28 pixels it could potentially still be due to natural variability. If you can show me the data I can take a look.\r\n\r\n```\r\nTraining of batch 1 finished with loss: 172.813\r\nTraining of batch 2 finished with loss: 30406.2\r\nTraining of batch 3 finished with loss: 35372.7\r\nTraining of batch 4 finished with loss: 30955.9\r\nTraining of batch 5 finished with loss: 30645.5\r\nTraining of batch 6 finished with loss: 39069.4\r\nTraining of batch 7 finished with loss: 25181.5\r\nTraining of batch 8 finished with loss: 28106.7\r\nTraining of batch 9 finished with loss: 12969.1\r\nTraining of batch 10 finished with loss: 3079.69\r\nTraining of batch 11 finished with loss: 3693.12\r\nTraining of batch 12 finished with loss: 3314.77\r\nTraining of batch 13 finished with loss: 4591.12\r\nTraining of batch 14 finished with loss: 5880.76\r\nTraining of batch 15 finished with loss: 5654.75\r\nTraining of batch 16 finished with loss: 10133.1\r\nTraining of batch 17 finished with loss: 9301.94\r\nTraining of batch 18 finished with loss: 11654.5\r\nTraining of batch 19 finished with loss: 11827.8\r\nTraining of batch 20 finished with loss: 22028.1\r\nTraining of batch 21 finished with loss: 8553.58\r\n```\r\n\r\nThe natural trend here is still downwards... 21 batches (of size 32 28x28 pixels) is still fairly early so the amount of variability is somewhat expected. Because the accuracy IS increasing stably, tells me that the variability of the loss is still likely due to natural variability rather than a bug.\r\n\r\nLower loss is correlated with accuracy, but not deterministically as you generally do a softmax and pick the most probable class. Then compare the classes... this is not the same calculation as the log difference in predicted and actual probabilities. So that's why they can diverge a bit. Is the accuracy you are quoting overall accuracy or specific batch accuracy? If the loss is not going down long term especially if you increase the batch size (so that the natural variability evens out) then that might be an issue, but I need to see that data first.", "> It's hard to say w/o more context whether the ML model having a loss of thousands is necessarily incorrect\r\n\r\nDo you even know how cross entropy loss is calculated, the math behind? Are you aware how big mistakes model should make to get a loss into thousands, how much the model should diverge instead of giving 87% accuracy on the whole test set? Have you seen a loss larger than two digits in successfull training of any ML model known to mankind?\r\n![ce loss values](https://github.com/tensorflow/tensorflow/assets/134813523/81551d91-6caf-4271-839f-fdd7ca906106)\r\n\r\nThat aside, you don't find it suspicious that loss is so much smaller just in the first batch?\r\n\r\n> The type of model, the type of loss, the size of the data, the range of the data, number of classes (and probably more) all have an impact.\r\n\r\nHave you heard of MNIST dataset? Are you just ignoring the fact that this is classic MNIST dataset and not some random dataset, that the model is a simple one layer neural network used in all of tensorflow examples with pretty much known expected loss/accuracy results? I've purposely used the simplest model here for the ease of demonstration, but you constantly pretend like we are talking about training GPT... You say \"It's hard to say w/o more context\" when I've given you literally all the context possible, but you still talk in hypotheticals.\r\n\r\n> Is the accuracy you are quoting overall accuracy or specific batch accuracy?\r\n\r\nAccuracy on a whole separate dataset used for testing (MNIST test set). Can you explain how the model can achieve 87% accuracy on a test set but have four digits loss on a training set?\r\n\r\n> Additionally are you testing them side by side? (I'm guessing yes but I have to make sure) or are you testing/training the python model, converting, then testing/training the C++ model?\r\n\r\nI am creating empty model, converting it to tflite, and then I am training it separately side by side in both python and c++, on the same dataset, calling same signature functions. Of course, I am training python model with python and tflite model with c++ tflite api, because how would I otherwise do it - you can't train tflite model in python, and I know you will now say \"got ya, those are different models!\", but more on that below.\r\n\r\n> So the models are not necessarily exactly the same, conversion actually performs some optimizations and changes (such as op fuses).\r\n\r\nYes I am aware of that, I've worked on a couple of ML tools implementations, and I know it should not give exactly the same results, but they should be close to same not differing 1000x times for Christ's sake. I still cannot believe what I am reading, how can someone so confidently ignore the obvious... You gotta be just waiting for me to give up so you can close this issue. The scale of difference in loss values between python and c++ tflite doesn't bother you at all? How do you even test the c++ tflite implementation, what are you comparing it with if not python tensorflow results?", "When I opened this issue I've hoped to get at least one of these things:\r\n- Getting this bug in tflite c++ api fixed.\r\n- Advice on how to better use tflite c++ api, or how to properly use it if I did something incorrectly, because the documentation on these things is almost nonexistent.\r\n- Information about what features and ops are currently available in tflite for backward propagation, this is not documented anywhere.\r\n\r\nInstead, I am getting dragged in circles and being given some trivial ML 101 statements which are not applicable at all in this case. I believe that I've spent more than enough time to convince you that you have a bug, I don't want to spend anymore after this message. At this point it would have been more efficient to me to debug tflite code and fix it myself. Now I think I should better explore some alternative sdks like PyTorch mobile if this is the absolute state of support from TF engineers.", "Hi @peratrepic, apologies for the frustration, we have to check the easy cases and usual failure modes first to make sure it's not a problem elsewhere, that's the reason for all the questions and making sure things are reproducible. We aren't trying to drag you in circles, just trying to get a better understanding of the issue.\r\n\r\nWhile Categorical Cross entropy is technically unbounded, it is highly unlikely to be that high with just 10 output neurons, we'll look deeper into this issue.\r\n\r\nHi @JunyoungLim, can you please take a look? Thanks.", "@peratrepic - try this approach- \r\n const TfLiteTensor* output = train_runner->output_tensor(\"loss\");\r\n float* loss = output->data.f;\r\ncout <<\"Loss : \"<<loss[0]<<endl;\r\n", "@peratrepic can you share code for inference using c++? and do you know any method to merge model.ckpt and model.tflite? " ]
2023-05-27T22:40:40
2023-10-20T05:13:53
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.13 ### Custom Code Yes ### OS Platform and Distribution Windows 10 ### Mobile device _No response_ ### Python version _No response_ ### Bazel version 5.3.0 ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I've created a simple model in Python (TF version 2.10) and converted it for tflite. The model has two signatures, one for inference and other for training. When I run those signatures in Python, everything works correctly, I get good inference result and good training loss. When I load the converted tflite model with the C++ TFLite API (built from source, from branch r2.13) and run those signatures: inference works as intended, training works as intended (the accuracy on the test set is steadily rising), but the reported loss is totally random. At first I thought that loss might be accumulated since it is rising to five digits, but that is not the case since it rises and falls in a random fashion. It seems like there is some bug in the ops used for CategoricalCrossentropy C++ TFLite implementation. I've tried building tensorflow from r2.12 and r2.13 and I get the same behavior. I've tried r2.10 also but then I couldn't even run the signatures with C++ TFLite API, I was getting bunch of segmentation faults. I couldn't find anywhere the documentation on what ops for backward prop are available in C++ TFLite API, maybe some of those which are used in CategoricalCrossentropy loss calculation are not yet available, or there is a bug in their implementation. ### Standalone code to reproduce the issue Here is a Python code I am using to create model with signatures: ``` IMG_SIZE = 28 class Model(tf.Module): def __init__(self): self.model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(IMG_SIZE, IMG_SIZE), name='flatten'), tf.keras.layers.Dense( units=10, kernel_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.05), bias_initializer=tf.keras.initializers.Ones(), name='dense' ), ]) opt = tf.keras.optimizers.SGD(learning_rate=0.1) loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True) self.model.compile(optimizer=opt, loss=loss_fn, metrics=['accuracy']) # The `train` function takes a batch of input images and labels. @tf.function(input_signature=[ tf.TensorSpec([32, IMG_SIZE, IMG_SIZE], tf.float32), tf.TensorSpec([32, 10], tf.float32), ]) def train(self, x, y): with tf.GradientTape() as tape: prediction = self.model(x) loss = self.model.loss(y, prediction) gradients = tape.gradient(loss, self.model.trainable_variables) self.model.optimizer.apply_gradients( zip(gradients, self.model.trainable_variables)) result = {"loss": loss} return result @tf.function(input_signature=[ tf.TensorSpec([1, IMG_SIZE, IMG_SIZE], tf.float32), ]) def infer(self, x): logits = self.model(x) probabilities = tf.nn.softmax(logits, axis=-1) return { "output": probabilities, "logits": logits } ``` And here is the C++ code I am using to run the tflite model: ``` std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(tflite_model_path); if (model == nullptr) { std::cout << "Failed to load model" << std::endl; return; } tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder builder(*model, resolver); std::unique_ptr<tflite::Interpreter> interpreter; builder(&interpreter); if (interpreter == nullptr) { std::cout << "Failed to create interpreter" << std::endl; return; } if (interpreter->AllocateTensors() != kTfLiteOk) { std::cout << "Failed to alocate interpreter tensors" << std::endl; return; } tflite::SignatureRunner* train_runner = interpreter->GetSignatureRunner("train"); TfLiteTensor* input_data_tensor = train_runner->input_tensor(train_runner->input_names()[0]); float* input_data = input_data_tensor->data.f; TfLiteTensor* input_labels_tensor = train_runner->input_tensor(train_runner->input_names()[1]); float* input_labels = input_labels_tensor->data.f; // Here I fill in the input data and labels, code redacted for brevity. if (train_runner->Invoke() != kTfLiteOk) { std::cout << "Error invoking train interpreter signature" << std::endl; return; } const TfLiteTensor* output_tensor = train_runner->output_tensor(train_runner->output_names()[0]); float* output = output_tensor->data.f; std::cout << "Training finished with loss: " << output[0] << std::endl; ``` Please let me know if you need more details, or full source code. ### Relevant log output Here are the losses from batch to batch, as you can see they are too high and pretty much random. I repeat: the model is training correctly which I can see because the accuracy on the test set is steadily rising, so these loss values do not make sense. ``` Training of batch 1 finished with loss: 172.813 Training of batch 2 finished with loss: 30406.2 Training of batch 3 finished with loss: 35372.7 Training of batch 4 finished with loss: 30955.9 Training of batch 5 finished with loss: 30645.5 Training of batch 6 finished with loss: 39069.4 Training of batch 7 finished with loss: 25181.5 Training of batch 8 finished with loss: 28106.7 Training of batch 9 finished with loss: 12969.1 Training of batch 10 finished with loss: 3079.69 Training of batch 11 finished with loss: 3693.12 Training of batch 12 finished with loss: 3314.77 Training of batch 13 finished with loss: 4591.12 Training of batch 14 finished with loss: 5880.76 Training of batch 15 finished with loss: 5654.75 Training of batch 16 finished with loss: 10133.1 Training of batch 17 finished with loss: 9301.94 Training of batch 18 finished with loss: 11654.5 Training of batch 19 finished with loss: 11827.8 Training of batch 20 finished with loss: 22028.1 Training of batch 21 finished with loss: 8553.58 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60718/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60718/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60717
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60717/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60717/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60717/events
https://github.com/tensorflow/tensorflow/issues/60717
1,728,850,887
I_kwDOArmXAs5nDCvH
60,717
make: *** No rule to make target 'test_hello_world_test'. Stop.
{ "login": "JavaldeUB", "id": 109508439, "node_id": "U_kgDOBob3Vw", "avatar_url": "https://avatars.githubusercontent.com/u/109508439?v=4", "gravatar_id": "", "url": "https://api.github.com/users/JavaldeUB", "html_url": "https://github.com/JavaldeUB", "followers_url": "https://api.github.com/users/JavaldeUB/followers", "following_url": "https://api.github.com/users/JavaldeUB/following{/other_user}", "gists_url": "https://api.github.com/users/JavaldeUB/gists{/gist_id}", "starred_url": "https://api.github.com/users/JavaldeUB/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JavaldeUB/subscriptions", "organizations_url": "https://api.github.com/users/JavaldeUB/orgs", "repos_url": "https://api.github.com/users/JavaldeUB/repos", "events_url": "https://api.github.com/users/JavaldeUB/events{/privacy}", "received_events_url": "https://api.github.com/users/JavaldeUB/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1589976566, "node_id": "MDU6TGFiZWwxNTg5OTc2NTY2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:micro", "name": "comp:micro", "color": "3e2eea", "default": false, "description": "Related to TensorFlow Lite Microcontrollers" }, { "id": 3797168204, "node_id": "LA_kwDOArmXAs7iVDBM", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8", "name": "TF 2.8", "color": "5DC9D0", "default": false, "description": "" }, { "id": 4257391797, "node_id": "LA_kwDOArmXAs79wqS1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/wsl2", "name": "wsl2", "color": "A352E6", "default": false, "description": "Windows Subsystem for Linux" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "I'm runnig the make -f tensorflow/lite/micro/tools/make/Makefile test_hello_world_test from the tflite-micro folder in a Ubuntu installed in a WSL machine. I've got some errros about numpy and Pillow but everything solved. Now what I get is something like this:\r\n\r\ntensorflow/lite/micro/tools/make/downloads/flatbuffers already exists, skipping the download.\r\ntensorflow/lite/micro/tools/make/downloads/kissfft already exists, skipping the download.\r\ntensorflow/lite/micro/tools/make/downloads/pigweed already exists, skipping the download.\r\nmake: *** No rule to make target 'test_hello_world_test'. Stop.\r\n\r\nI think it has something to do with the files (make does not find them) so I tried to clone the repository again but nothing...\r\nA bit of help would be appreciated.\r\nAll the best,\r\nJavi", "Hi @JavaldeUB \r\n\r\nI have tried on Ubuntu 20.04 with master branch and I was successfully able to run the `hello world test`.\r\n\r\nPlease find the gist [here](https://colab.research.google.com/gist/pjpratik/10c164cd544c2013596b2eaf4428948d/60171.ipynb). \r\n\r\nCould you please try with latest version?\r\n\r\nThanks.", "Hi @pjpratik,\r\nThanks for your time here.\r\nI have the same advances. I have installed Ubuntu 20.04 in the WSL machine and it passed the the test. I do not know if it is because I installed many things to have gnome in the WSL Ubuntu 20.04 distro or because it goes well with the 20.04...\r\n\r\nI have another issue which is related with Warden's TinyML book. I'm following the examples ther but the code in the text doesn't look like the one in the ./examples/hello_world folder. I'm trying to make the test fail and I realized that the input is already set to 1.f. I'm puzzled\r\n\r\nI know these are silly question but I've just landed here and I'm trying to grasp the thing....\r\nThanks for your time.\r\nJ. ", "Hi @JavaldeUB \r\n\r\nThe `hello_world_test.cc` is a fairly small amount of code that creates an interpreter, gets a handle to a model that's been compiled into the program, and then invokes the interpreter with the model and sample inputs.\r\n\r\nAlso, the example has been updated based on the changes made recently. It is suggested to use the latest version and follow the same for other examples.\r\n\r\nPlease check this [hello world](https://www.tensorflow.org/lite/microcontrollers/get_started_low_level#the_hello_world_example) example for the reference.\r\n\r\nThanks.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60717\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60717\">No</a>\n" ]
2023-05-27T17:27:13
2023-06-14T02:01:00
2023-06-14T02:00:57
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.8 ### Custom Code No ### OS Platform and Distribution Ubuntu wsl ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? tensorflow/lite/micro/tools/make/downloads/flatbuffers already exists, skipping the download. tensorflow/lite/micro/tools/make/downloads/kissfft already exists, skipping the download. tensorflow/lite/micro/tools/make/downloads/pigweed already exists, skipping the download. make: *** No rule to make target 'test_hello_world_test'. Stop. ### Standalone code to reproduce the issue ```shell sudo make -f tensorflow/lite/micro/tools/make/Makefile test_hello_world_test ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60717/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60717/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60716
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60716/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60716/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60716/events
https://github.com/tensorflow/tensorflow/issues/60716
1,728,840,042
I_kwDOArmXAs5nDAFq
60,716
failed to build branch r2.13
{ "login": "legale", "id": 32621719, "node_id": "MDQ6VXNlcjMyNjIxNzE5", "avatar_url": "https://avatars.githubusercontent.com/u/32621719?v=4", "gravatar_id": "", "url": "https://api.github.com/users/legale", "html_url": "https://github.com/legale", "followers_url": "https://api.github.com/users/legale/followers", "following_url": "https://api.github.com/users/legale/following{/other_user}", "gists_url": "https://api.github.com/users/legale/gists{/gist_id}", "starred_url": "https://api.github.com/users/legale/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/legale/subscriptions", "organizations_url": "https://api.github.com/users/legale/orgs", "repos_url": "https://api.github.com/users/legale/repos", "events_url": "https://api.github.com/users/legale/events{/privacy}", "received_events_url": "https://api.github.com/users/legale/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "next try with --verbose_failures\r\n\r\n```\r\nruslan@radar-prod1:/sdk4/tensorflow$ bazel build --verbose_failures --config=opt --copt=-march=native --copt=-O3 //tensorflow/tools/pip_package:build_pip_package\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1 --terminal_columns=166\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.tf_configure.bazelrc:\r\n 'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc:\r\n 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug\r\nINFO: Found applicable config definition build:short_logs in file /sdk4/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /sdk4/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:opt in file /sdk4/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare\r\nINFO: Found applicable config definition build:linux in file /sdk4/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes\r\nINFO: Found applicable config definition build:dynamic_kernels in file /sdk4/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 0 targets configured).\r\nINFO: Found 1 target...\r\nERROR: /sdk4/tensorflow/tensorflow/cc/BUILD:673:22: Linking tensorflow/cc/ops/user_ops_gen_cc [for tool] failed: (Exit 1): gcc failed: error executing CppLink command (from target //tensorflow/cc:ops/user_ops_gen_cc) \r\n (cd /build/home/ruslan/.cache/bazel/_bazel_ruslan/52d9b56c392034697d983605fa18f4ee/execroot/org_tensorflow && \\\r\n exec env - \\\r\n PATH=/home/ruslan/.local/bin:/home/ruslan/.local/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/usr/local/go/bin \\\r\n PWD=/proc/self/cwd \\\r\n ZERO_AR_DATE=1 \\\r\n /usr/bin/gcc @bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/cc/ops/user_ops_gen_cc-2.params)\r\n# Configuration: aabe98942a966d02f11cd3e86d39722629ddb362b12f82a6a40652a82b246a2b\r\n# Execution platform: @local_execution_config_platform//:platform\r\nbazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/_solib_k8/_U_S_Stensorflow_Scc_Cops_Suser_Uops_Ugen_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tsl::table::NewLRUCache(unsigned long)'\r\nbazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/_solib_k8/_U_S_Stensorflow_Scc_Cops_Suser_Uops_Ugen_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tensorflow::GpuIdManager::TfToPlatformDeviceId(tsl::gtl::IntType<tsl::TfDeviceId_tag_, int>, tsl::gtl::IntType<tsl::PlatformDeviceId_tag_, int>*)'\r\ncollect2: error: ld returned 1 exit status\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nERROR: /sdk4/tensorflow/tensorflow/tools/pip_package/BUILD:293:10 Middleman _middlemen/tensorflow_Stools_Spip_Upackage_Sbuild_Upip_Upackage-runfiles failed: (Exit 1): gcc failed: error executing CppLink command (from target //tensorflow/cc:ops/user_ops_gen_cc) \r\n (cd /build/home/ruslan/.cache/bazel/_bazel_ruslan/52d9b56c392034697d983605fa18f4ee/execroot/org_tensorflow && \\\r\n exec env - \\\r\n PATH=/home/ruslan/.local/bin:/home/ruslan/.local/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/usr/local/go/bin \\\r\n PWD=/proc/self/cwd \\\r\n ZERO_AR_DATE=1 \\\r\n /usr/bin/gcc @bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/cc/ops/user_ops_gen_cc-2.params)\r\n# Configuration: aabe98942a966d02f11cd3e86d39722629ddb362b12f82a6a40652a82b246a2b\r\n# Execution platform: @local_execution_config_platform//:platform\r\nINFO: Elapsed time: 1.777s, Critical Path: 0.20s\r\nINFO: 34 processes: 34 internal.\r\nERROR: Build did NOT complete successfully\r\nruslan@radar-prod1:/sdk4/tensorflow$ \r\n```\r\n", "Can you also try after a `bazel clean --expunge`?\r\n\r\nIf that still doesn't work, can you post the output of `git show`? It's likely a recent cherrypick broke the build.", "Hi @legale ,\r\n\r\nI have tested the build on Ubuntu-22 VM with default optimization and build is success for me. I have attached the logs for reference along with environment details.I am not sure whether the issue is specific to debian or environment related or whether you have chosen specific optimization during `./configure` step. Please confirm whether you have chosen any particular configuration other than default.\r\n\r\n[60716_logs.txt](https://github.com/tensorflow/tensorflow/files/11592028/60716_logs.txt)\r\n\r\nPlease also try to clean build after executing `bazel clean --expunge` command and let us know the outcome. \r\n\r\nThanks!\r\n\r\n", "> Hi @legale ,\n> \n> I have tested the build on Ubuntu-22 VM with default optimization and build is success for me. I have attached the logs for reference along with environment details.I am not sure whether the issue is specific to debian or environment related or whether you have chosen specific optimization during `./configure` step. Please confirm whether you have chosen any particular configuration other than default.\n> \n> [60716_logs.txt](https://github.com/tensorflow/tensorflow/files/11592028/60716_logs.txt)\n> \n> Please also try to clean build after executing `bazel clean --expunge` command and let us know the outcome. \n> \n> Thanks!\n> \n> \n\nI will try again.\n\nAbout configure:\nNo, there is no special settings. ", "> > Hi @legale ,\r\n> > I have tested the build on Ubuntu-22 VM with default optimization and build is success for me. I have attached the logs for reference along with environment details.I am not sure whether the issue is specific to debian or environment related or whether you have chosen specific optimization during `./configure` step. Please confirm whether you have chosen any particular configuration other than default.\r\n> > [60716_logs.txt](https://github.com/tensorflow/tensorflow/files/11592028/60716_logs.txt)\r\n> > Please also try to clean build after executing `bazel clean --expunge` command and let us know the outcome.\r\n> > Thanks!\r\n> \r\n> I will try again.\r\n> \r\n> About configure: No, there is no special settings.\r\n\r\n\r\nSame problem.\r\n\r\n```\r\n --config=mkl # Build with MKL support.\r\n --config=mkl_aarch64 # Build with oneDNN and Compute Library for the Arm Architecture (ACL).\r\n --config=monolithic # Config for mostly static monolithic build.\r\n --config=numa # Build with NUMA support.\r\n --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects.\r\n --config=v1 # Build with TensorFlow 1 API instead of TF 2 API.\r\nPreconfigured Bazel build configs to DISABLE default on features:\r\n --config=nogcp # Disable GCP support.\r\n --config=nonccl # Disable NVIDIA NCCL support.\r\n```\r\n\r\n\r\n```\r\nbazel build //tensorflow/tools/pip_package:build_pip_package\r\nStarting local Bazel server and connecting to it...\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1 --terminal_columns=222\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.tf_configure.bazelrc:\r\n 'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3\r\nINFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc:\r\n 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug\r\nINFO: Found applicable config definition build:short_logs in file /sdk4/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /sdk4/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:linux in file /sdk4/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes\r\nINFO: Found applicable config definition build:dynamic_kernels in file /sdk4/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (610 packages loaded, 36141 targets configured).\r\nINFO: Found 1 target...\r\nERROR: /sdk4/tensorflow/tensorflow/cc/BUILD:655:22: Linking tensorflow/cc/ops/array_ops_gen_cc [for tool] failed: (Exit 1): gcc failed: error executing CppLink command (from target //tensorflow/cc:ops/array_ops_gen_cc) /usr/bin/gcc @bazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/tensorflow/cc/ops/array_ops_gen_cc-2.params\r\nbazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/_solib_k8/_U_S_Stensorflow_Scc_Cops_Sarray_Uops_Ugen_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tsl::table::NewLRUCache(unsigned long)'\r\nbazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/_solib_k8/_U_S_Stensorflow_Scc_Cops_Sarray_Uops_Ugen_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tensorflow::GpuIdManager::TfToPlatformDeviceId(tsl::gtl::IntType<tsl::TfDeviceId_tag_, int>, tsl::gtl::IntType<tsl::PlatformDeviceId_tag_, int>*)'\r\nbazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/tensorflow/core/ops/_objs/array_ops_op_lib/array_ops.o:array_ops.cc:function tensorflow::register_op101::{lambda(tensorflow::shape_inference::InferenceContext*)#1}::operator()(tensorflow::shape_inference::InferenceContext) const [clone .constprop.0]: error: undefined reference to 'tensorflow::GetWindowedOutputSizeVerbose(long, long, long, tensorflow::Padding, long*, long*, long*)'\r\nbazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/tensorflow/core/ops/_objs/array_ops_op_lib/array_ops.o:array_ops.cc:function tensorflow::register_op101::{lambda(tensorflow::shape_inference::InferenceContext*)#1}::operator()(tensorflow::shape_inference::InferenceContext) const [clone .constprop.0]: error: undefined reference to 'tensorflow::GetWindowedOutputSizeVerbose(long, long, long, tensorflow::Padding, long*, long*, long*)'\r\nbazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/tensorflow/core/ops/_objs/array_ops_op_lib/array_ops.o:array_ops.cc:function tensorflow::register_op101::{lambda(tensorflow::shape_inference::InferenceContext*)#1}::operator()(tensorflow::shape_inference::InferenceContext) const [clone .constprop.0]: error: undefined reference to 'tensorflow::GetWindowedOutputSizeVerbose(long, long, long, tensorflow::Padding, long*, long*, long*)'\r\nbazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/tensorflow/core/ops/_objs/array_ops_op_lib/array_ops.o:array_ops.cc:function tensorflow::register_op100::{lambda(tensorflow::shape_inference::InferenceContext*)#1}::operator()(tensorflow::shape_inference::InferenceContext) const [clone .constprop.0]: error: undefined reference to 'tensorflow::GetWindowedOutputSizeVerbose(long, long, long, tensorflow::Padding, long*, long*, long*)'\r\nbazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/tensorflow/core/ops/_objs/array_ops_op_lib/array_ops.o:array_ops.cc:function __static_initialization_and_destruction_0(int, int) [clone .constprop.0]: error: undefined reference to 'tensorflow::full_type::ReplicateInput[abi:cxx11](int, int)'\r\ncollect2: error: ld returned 1 exit status\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nUse --verbose_failures to see the command lines of failed build steps.\r\nERROR: /sdk4/tensorflow/tensorflow/tools/pip_package/BUILD:268:10 Middleman _middlemen/tensorflow_Stools_Spip_Upackage_Sbuild_Upip_Upackage-runfiles failed: (Exit 1): gcc failed: error executing CppLink command (from target //tensorflow/cc:ops/array_ops_gen_cc) /usr/bin/gcc @bazel-out/k8-opt-exec-ST-3a2a7d830ca1/bin/tensorflow/cc/ops/array_ops_gen_cc-2.params\r\nINFO: Elapsed time: 2598.484s, Critical Path: 382.03s\r\nINFO: 14560 processes: 1906 internal, 12654 local.\r\nERROR: Build did NOT complete successfully\r\n```\r\n\r\n", "@nitins17 , Could you please have a look into the issue. \r\n\r\nCC- @learning-to-play .\r\n\r\n", "```\r\n\r\nERROR: /var/tmp/portage/sci-libs/tensorflow-2.12.0/work/tensorflow-2.12.0-python3_11/tensorflow/cc/BUILD:673:22: Linking tensorflow/cc/ops/nn_ops_gen_cc [for tool] failed: (Exit 1): gcc failed: error executing CppLink command (from target //tensorflow/cc:ops/nn_ops_gen_cc) \r\n (cd /var/tmp/portage/sci-libs/tensorflow-2.12.0/work/tensorflow-2.12.0-python3_11-bazel-base/execroot/org_tensorflow && \\\r\n exec env - \\\r\n KERAS_HOME=/var/tmp/portage/sci-libs/tensorflow-2.12.0/temp/.keras \\\r\n PATH=/var/tmp/portage/sci-libs/tensorflow-2.12.0/temp/python3.11/bin:/usr/lib/portage/python3.12/ebuild-helpers/xattr:/usr/lib/portage/python3.12/ebuild-helpers:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/opt/bin:/usr/lib/llvm/16/bin \\\r\n PWD=/proc/self/cwd \\\r\n ZERO_AR_DATE=1 \\\r\n /usr/bin/gcc @bazel-out/k8-opt-exec-ST-ba6211b4fe03/bin/tensorflow/cc/ops/nn_ops_gen_cc-2.params)\r\n# Configuration: bf46598e081eb20667309cf6e8fafc6d58b9cd48291dbf068ad4d43d3402041c\r\n# Execution platform: @local_execution_config_platform//:platform\r\nld.lld: error: undefined symbol: tensorflow::GetWindowedOutputSizeVerbose(long, long, long, tensorflow::Padding, long*, long*, long*)\r\n>>> referenced by nn_ops.cc\r\n>>> bazel-out/k8-opt-exec-ST-ba6211b4fe03/bin/tensorflow/core/ops/_objs/nn_ops_op_lib/nn_ops.o:(tensorflow::register_op51::'lambda'(tensorflow::shape_inference::InferenceContext*)::operator()(tensorflow::shape_inference::InferenceContext*) const (.isra.0))\r\n>>> referenced by nn_ops.cc\r\n>>> bazel-out/k8-opt-exec-ST-ba6211b4fe03/bin/tensorflow/core/ops/_objs/nn_ops_op_lib/nn_ops.o:(tensorflow::register_op51::'lambda'(tensorflow::shape_inference::InferenceContext*)::operator()(tensorflow::shape_inference::InferenceContext*) const (.isra.0))\r\ncollect2: error: ld returned 1 exit status\r\n[5,671 / 6,878] 24 actions running\r\n Compiling tensorflow/compiler/mlir/tensorflow/ir/tf_ops_n_z.cc; 53s local\r\n Compiling tensorflow/compiler/mlir/tensorflow/ir/tf_ops.cc; 47s local\r\n @llvm-project//mlir:LinalgTransforms; 20s local\r\n Compiling tensorflow/compiler/mlir/tfr/ir/tfr_ops[5,691 / 6,878] 4 actions running\r\n Compiling tensorflow/compiler/mlir/tensorflow/ir/tf_ops_n_z.cc; 53s local\r\n Compiling tensorflow/compiler/mlir/tensorflow/ir/INFO: Elapsed time: 766.826s, Critical Path: 104.26s\r\nINFO: 5695 processes: 664 internal, 5031 local.\r\nERROR: Build did NOT complete successfully\r\n```\r\n\r\nsame issue w/ 2.12" ]
2023-05-27T17:06:12
2023-06-15T01:16:22
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version r2,13 ### Custom Code No ### OS Platform and Distribution Linux radar-prod1 5.10.0-22-amd64 #1 SMP Debian 5.10.178-3 (2023-04-22) x86_64 GNU/Linux ### Mobile device _No response_ ### Python version 3.9 ### Bazel version Build label: 7.0.0-pre.20230517.4- (@non-git) ### GCC/Compiler version gcc version 10.2.1 20210110 (Debian 10.2.1-6) ### CUDA/cuDNN version - ### GPU model and memory - ### Current Behaviour? Failed to build pip package whl ### Standalone code to reproduce the issue ```shell Just bare debian 11 with latest requirements versions (27.05.2023). ``` ### Relevant log output ```shell ruslan@radar-prod1:/sdk4/tensorflow$ bazel build --config=opt --copt=-march=native --copt=-O3 //tensorflow/tools/pip_package:build_pip_package INFO: Options provided by the client: Inherited 'common' options: --isatty=1 --terminal_columns=159 INFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc: 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for 'build' from /sdk4/tensorflow/.tf_configure.bazelrc: 'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3 INFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc: 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug INFO: Found applicable config definition build:short_logs in file /sdk4/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /sdk4/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:opt in file /sdk4/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare INFO: Found applicable config definition build:linux in file /sdk4/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes INFO: Found applicable config definition build:dynamic_kernels in file /sdk4/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS WARNING: Build options --copt and --host_copt have changed, discarding analysis cache (this can be expensive). INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 35966 targets configured). INFO: Found 1 target... ERROR: /sdk4/tensorflow/tensorflow/cc/BUILD:766:22: Linking tensorflow/cc/ops/functional_ops_gen_cc [for tool] failed: (Exit 1): gcc failed: error executing CppLink command (from target //tensorflow/cc:ops/functional_ops_gen_cc) /usr/bin/gcc @bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/cc/ops/functional_ops_gen_cc-2.params bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/_solib_k8/_U_S_Stensorflow_Scc_Cops_Sfunctional_Uops_Ugen_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tsl::table::NewLRUCache(unsigned long)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/_solib_k8/_U_S_Stensorflow_Scc_Cops_Sfunctional_Uops_Ugen_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tensorflow::GpuIdManager::TfToPlatformDeviceId(tsl::gtl::IntType<tsl::TfDeviceId_tag_, int>, tsl::gtl::IntType<tsl::PlatformDeviceId_tag_, int>*)' collect2: error: ld returned 1 exit status Target //tensorflow/tools/pip_package:build_pip_package failed to build Use --verbose_failures to see the command lines of failed build steps. INFO: Elapsed time: 2405.712s, Critical Path: 314.03s INFO: 11230 processes: 318 internal, 10912 local. ERROR: Build did NOT complete successfully ruslan@radar-prod1:/sdk4/tensorflow$ bazel clean INFO: Options provided by the client: Inherited 'common' options: --isatty=1 --terminal_columns=159 INFO: Reading rc options for 'clean' from /sdk4/tensorflow/.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Reading rc options for 'clean' from /sdk4/tensorflow/.bazelrc: Inherited 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for 'clean' from /sdk4/tensorflow/.tf_configure.bazelrc: Inherited 'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3 INFO: Reading rc options for 'clean' from /sdk4/tensorflow/.bazelrc: Inherited 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug INFO: Found applicable config definition build:short_logs in file /sdk4/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /sdk4/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:linux in file /sdk4/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes INFO: Found applicable config definition build:dynamic_kernels in file /sdk4/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS INFO: Starting clean (this may take a while). Consider using --async if the clean takes more than several minutes. ruslan@radar-prod1:/sdk4/tensorflow$ bazel build --config=opt --copt=-march=native --copt=-O3 //tensorflow/tools/pip_package:build_pip_package INFO: Options provided by the client: Inherited 'common' options: --isatty=1 --terminal_columns=159 INFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc: Inherited 'common' options: --experimental_repo_remote_exec INFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc: 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for 'build' from /sdk4/tensorflow/.tf_configure.bazelrc: 'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3 INFO: Reading rc options for 'build' from /sdk4/tensorflow/.bazelrc: 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug INFO: Found applicable config definition build:short_logs in file /sdk4/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /sdk4/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:opt in file /sdk4/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare INFO: Found applicable config definition build:linux in file /sdk4/tensorflow/.bazelrc: --define=build_with_onednn_v2=true --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes INFO: Found applicable config definition build:dynamic_kernels in file /sdk4/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (614 packages loaded, 35966 targets configured). INFO: Found 1 target... ERROR: /sdk4/tensorflow/tensorflow/lite/experimental/microfrontend/BUILD:97:21: Linking tensorflow/lite/experimental/microfrontend/gen_audio_microfrontend_op_py_wrappers_cc [for tool] failed: (Exit 1): gcc failed: error executing CppLink command (from target //tensorflow/lite/experimental/microfrontend:gen_audio_microfrontend_op_py_wrappers_cc) /usr/bin/gcc @bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/lite/experimental/microfrontend/gen_audio_microfrontend_op_py_wrappers_cc-2.params bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/_solib_k8/_U_S_Stensorflow_Slite_Sexperimental_Smicrofrontend_Cgen_Uaudio_Umicrofrontend_Uop_Upy_Uwrappers_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tsl::table::NewLRUCache(unsigned long)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/_solib_k8/_U_S_Stensorflow_Slite_Sexperimental_Smicrofrontend_Cgen_Uaudio_Umicrofrontend_Uop_Upy_Uwrappers_Ucc___Utensorflow/libtensorflow_framework.so.2: error: undefined reference to 'tensorflow::GpuIdManager::TfToPlatformDeviceId(tsl::gtl::IntType<tsl::TfDeviceId_tag_, int>, tsl::gtl::IntType<tsl::PlatformDeviceId_tag_, int>*)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/python/framework/_objs/python_op_gen_main/python_op_gen_main.o:python_op_gen_main.cc:function main: error: undefined reference to 'tsl::Flag::Flag(char const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, bool*)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/python/framework/_objs/python_op_gen_main/python_op_gen_main.o:python_op_gen_main.cc:function main: error: undefined reference to 'tsl::Flag::Flag(char const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, bool*)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/python/framework/_objs/python_op_gen_main/python_op_gen_main.o:python_op_gen_main.cc:function main: error: undefined reference to 'tsl::Flag::Flag(char const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, bool*)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/python/framework/_objs/python_op_gen_main/python_op_gen_main.o:python_op_gen_main.cc:function main: error: undefined reference to 'tsl::Flag::Flag(char const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, bool*)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/python/framework/_objs/python_op_gen_main/python_op_gen_main.o:python_op_gen_main.cc:function main: error: undefined reference to 'tsl::Flags::Usage(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<tsl::Flag, std::allocator<tsl::Flag> > const&)' bazel-out/k8-opt-exec-ST-977fe3d4dab2/bin/tensorflow/python/framework/_objs/python_op_gen_main/python_op_gen_main.o:python_op_gen_main.cc:function main: error: undefined reference to 'tsl::Flags::Parse(int*, char**, std::vector<tsl::Flag, std::allocator<tsl::Flag> > const&)' collect2: error: ld returned 1 exit status Target //tensorflow/tools/pip_package:build_pip_package failed to build Use --verbose_failures to see the command lines of failed build steps. INFO: Elapsed time: 2518.592s, Critical Path: 378.85s INFO: 14151 processes: 1834 internal, 12317 local. ERROR: Build did NOT complete successfully ruslan@radar-prod1:/sdk4/tensorflow$ ``` ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60716/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60716/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60715
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60715/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60715/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60715/events
https://github.com/tensorflow/tensorflow/issues/60715
1,728,028,529
I_kwDOArmXAs5m_59x
60,715
Incorrect gradient in divide_no_nan and reciprocal_no_nan when divide by 0
{ "login": "drewshark", "id": 128925028, "node_id": "U_kgDOB689ZA", "avatar_url": "https://avatars.githubusercontent.com/u/128925028?v=4", "gravatar_id": "", "url": "https://api.github.com/users/drewshark", "html_url": "https://github.com/drewshark", "followers_url": "https://api.github.com/users/drewshark/followers", "following_url": "https://api.github.com/users/drewshark/following{/other_user}", "gists_url": "https://api.github.com/users/drewshark/gists{/gist_id}", "starred_url": "https://api.github.com/users/drewshark/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/drewshark/subscriptions", "organizations_url": "https://api.github.com/users/drewshark/orgs", "repos_url": "https://api.github.com/users/drewshark/repos", "events_url": "https://api.github.com/users/drewshark/events{/privacy}", "received_events_url": "https://api.github.com/users/drewshark/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" } ]
open
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@drewshark,\r\nCould you please confirm whether the above mentioned issue was raised when `tf.math.divide_no_nan and tf.math.reciprocal_no_nan` were trying to use **tf.test.compute_gradient**? or by default it is providing the incorrect gradient? Thank you!", "@tilakrayal,\r\nI think the issue raises when these two APIs were trying to use **tf.test.compute_gradient** to calculate the numerical gradient." ]
2023-05-26T17:59:07
2023-11-17T16:08:55
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf-nightly ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When we perform divide by zero in `tf.math.divide_no_nan` and `tf.math.reciprocal_no_nan`, the theoretical and numerical gradient given by `tf.test.compute_gradient` do not match. However, if the input is valid (without dividing by zero), the gradients are fine. More examples in [gist here](https://colab.research.google.com/drive/1U102ToL3El9wHduuDyjQXtpsZkaByDg5?usp=sharing) ### Standalone code to reproduce the issue ```shell import tensorflow as tf x = tf.constant([10.0, 20.0]) y = tf.constant([2.0, 0.0]) th, nu= tf.test.compute_gradient(tf.math.divide_no_nan, [x, y]) print(th) print(nu) print(tf.experimental.numpy.allclose(th, nu, atol=1e-3)) import tensorflow as tf x = tf.constant([2.0, 0.0]) th, nu= tf.test.compute_gradient(tf.math.reciprocal_no_nan, [x]) print(th) print(nu) print(tf.experimental.numpy.allclose(th, nu, atol=1e-3)) ``` ### Relevant log output ```shell (array([[0.5, 0. ], [0. , 0. ]], dtype=float32), array([[-2.5, 0. ], [-0. , 0. ]], dtype=float32)) (array([[0.5, 0. ], [0. , 0. ]], dtype=float32), array([[-2.5002441e+00, 0.0000000e+00], [ 0.0000000e+00, 2.0971520e+07]], dtype=float32)) tf.Tensor(False, shape=(), dtype=bool) (array([[-0.25, 0. ], [-0. , 0. ]], dtype=float32),) (array([[-2.500000e-01, 0.000000e+00], [ 0.000000e+00, 1.048576e+06]], dtype=float32),) tf.Tensor(False, shape=(), dtype=bool) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60715/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60715/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60714
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60714/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60714/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60714/events
https://github.com/tensorflow/tensorflow/issues/60714
1,727,997,039
I_kwDOArmXAs5m_yRv
60,714
`tf.split` or `tf.transpose` cause errors for quantize-aware training with `quantize_apply`
{ "login": "Janus-Shiau", "id": 22385182, "node_id": "MDQ6VXNlcjIyMzg1MTgy", "avatar_url": "https://avatars.githubusercontent.com/u/22385182?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Janus-Shiau", "html_url": "https://github.com/Janus-Shiau", "followers_url": "https://api.github.com/users/Janus-Shiau/followers", "following_url": "https://api.github.com/users/Janus-Shiau/following{/other_user}", "gists_url": "https://api.github.com/users/Janus-Shiau/gists{/gist_id}", "starred_url": "https://api.github.com/users/Janus-Shiau/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Janus-Shiau/subscriptions", "organizations_url": "https://api.github.com/users/Janus-Shiau/orgs", "repos_url": "https://api.github.com/users/Janus-Shiau/repos", "events_url": "https://api.github.com/users/Janus-Shiau/events{/privacy}", "received_events_url": "https://api.github.com/users/Janus-Shiau/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Janus-Shiau ,\r\n\r\nThanks for reaching us. I have replicated the reported behaviour with TF2.12 and tf-nightly(2.14.0-dev20230528) and attached gists here [TF2.12v](https://colab.research.google.com/gist/SuryanarayanaY/b81d2bc331f6691d9213c931237531aa/60714_2-12.ipynb#scrollTo=y47-_CEf4o3k) and [tf-nightly](https://colab.research.google.com/gist/SuryanarayanaY/be0c3bb90a66cde51eefbc8940c45107/60714_nightly.ipynb).\r\n\r\nWe need to dig more on this to confirm the root cause. Thanks!\r\n\r\n\r\n", "Hi @SuryanarayanaY,\r\n\r\nThank you for your prompt reply and assistance. Look forward to any update and appreciate your efforts in addressing my request.\r\n", "I am new to opensource contributions, can you @SuryanarayanaY @Janus-Shiau explain me the issue so that I can work on it.", "Hi @Bogalakalyani ,\r\n\r\nYou can refer [contributing.md ](https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md)file for more details if you willing to contribute. Thanks!", "I am facing the same issue. Any progress on it?" ]
2023-05-26T17:33:07
2023-08-15T18:13:20
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.7 & 2.12 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 18.04 ### Mobile device _No response_ ### Python version 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? We are trying to implement some network like [ShuffleNetV2](https://arxiv.org/abs/1807.11164) but encounter some error when `quantize_apply` the model. ![image](https://user-images.githubusercontent.com/22385182/233325404-e2e502fe-1151-4f4c-9377-570a01681848.png) I believe ShuffleNet or related ideas are popular in edge devices, please kindly help us to resolve this proble. Any advice is welcome. _I apologize for this should have been posted as an issue on Tensorflow Model Optimization. However, since it seems that this problem is not unique to me, I'm posting it here in the hope of receiving appropriate suggestions or assistance._ ### System information TensorFlow version (installed from source or binary): 2.7.0 TensorFlow Model Optimization version (installed from source or binary): 0.7.0 Python version: 3.8.13 **We also try on latest release of both module, but also not working.** ### Describe the current behavior When running the provided code, either the `tf.transpose` or `tf.split` will cause error to Tensorflow Model Optimization. The error message due to `tf.split` before convolution layers: ``` ValueError: Exception encountered when calling layer "bn3" (type BatchNormalization). Shape must be rank 4 but is rank 5 for '{{node bn3/FusedBatchNormV3}} = FusedBatchNormV3[T=DT_FLOAT, U=DT_FLOAT, data_format="NHWC", epsilon=0.001, exponential_avg_factor=1, is_training=false](Placeholder, bn3/ReadVariableOp, bn3/ReadVariableOp_1, bn3/FusedBatchNormV3/ReadVariableOp, bn3/FusedBatchNormV3/ReadVariableOp_1)' with input shapes: [1,?,128,128,32], [32], [32], [32], [32]. ``` The error message due to `tf.transpose`: ``` ValueError: Exception encountered when calling layer "tf.compat.v1.transpose" (type TFOpLambda). Dimension must be 6 but is 5 for '{{node tf.compat.v1.transpose/transpose}} = Transpose[T=DT_FLOAT, Tperm=DT_INT32](tf.compat.v1.transpose/transpose/a, tf.compat.v1.transpose/transpose/perm)' with input shapes: [1,?,128,128,2,32], [5]. ``` ### Standalone code to reproduce the issue Just run the following code you will get the error message due to `tf.split`. ```python from __future__ import annotations from typing import Callable, Optional import tensorflow as tf import tensorflow_model_optimization as tfmot from tensorflow.keras import layers SKIP_LAYER = [ "resize", "Resize", "reshape", "Reshape", "concat", "Concat", "ExpandDims", "Repeats", "Shape", "strided_slice", "Tile", ] def quantize_model( model: tf.keras.Model, annotate: Optional[Callable] = None, quantize_scope: Optional[dict[str, tf.keras.layers.Layer]] = None, ) -> tf.keras.Model: quantize_scope = {} if quantize_scope is None else quantize_scope def annotate(layer): if any([name in layer.name for name in SKIP_LAYER]): return layer else: return tfmot.quantization.keras.quantize_annotate_layer(layer) anno_model = tf.keras.models.clone_model(model, clone_function=annotate) with tfmot.quantization.keras.quantize_scope(quantize_scope): model = tfmot.quantization.keras.quantize_apply(anno_model) return model def channel_shuffle(tensor: tf.Tensor, groups: int = 2) -> tf.Tensor: """Channel shuffle operation.""" _, height, width, num_channels = tensor.shape.as_list() assert num_channels % groups == 0 tensor = tf.reshape(tensor, [-1, height, width, groups, num_channels // groups]) tensor = tf.transpose(tensor, [0, 1, 2, 4, 3]) tensor = tf.identity(tensor, name="channel_shuffle") tensor = tf.reshape(tensor, [-1, height, width, num_channels]) return tensor def simple_nn(img_input: tf.Tensor) -> tf.Tensor: latent = layers.Conv2D(32, 1, padding="same", use_bias=False, name="conv1")(img_input) latent = layers.BatchNormalization(name="bn1")(latent) latent = layers.ReLU(name="relu1")(latent) latent = layers.DepthwiseConv2D(3, 1, padding="same", name="conv2")(img_input) latent = layers.BatchNormalization(name="bn2")(latent) latent = layers.Conv2D(32, 1, padding="same", use_bias=False, name="conv3")(img_input) latent = layers.BatchNormalization(name="bn3")(latent) latent = layers.ReLU(name="relu3")(latent) return latent def split_like_nn(img_input: tf.Tensor) -> tf.Tensor: latent = layers.Conv2D(64, 1, padding="same", use_bias=False, name="conv0")(img_input) latent = layers.BatchNormalization(name="bn0")(latent) latent = layers.ReLU(name="relu0")(latent) latent_0, latent_1 = tf.split(latent, 2, axis=-1) latent_0 = simple_nn(latent_0) latent = tf.concat([latent_0, latent_1], axis=-1) latent = channel_shuffle(latent) return latent if __name__ == "__main__": img_input = tf.keras.Input((128, 128, 1), dtype=tf.float32, name="img") outputs = split_like_nn(img_input) model = tf.keras.Model(inputs=img_input, outputs=outputs, name="PoseNetV2") model.summary() model_qat = quantize_model(model) model_qat.summary() ``` You can just comment the following three lines of code will get the error message from `tf.transpose`. ```python latent_0, latent_1 = tf.split(latent, 2, axis=-1) latent_0 = simple_nn(latent_0) latent = tf.concat([latent_0, latent_1], axis=-1) ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60714/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60714/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60713
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60713/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60713/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60713/events
https://github.com/tensorflow/tensorflow/issues/60713
1,726,593,158
I_kwDOArmXAs5m6biG
60,713
TensorFlow can't communicate with GPU. "None of the algorithms provided by cuDNN frontend heuristics worked; trying fallback algorithms." "No algorithm worked!"
{ "login": "o-clipe", "id": 118026934, "node_id": "U_kgDOBwjytg", "avatar_url": "https://avatars.githubusercontent.com/u/118026934?v=4", "gravatar_id": "", "url": "https://api.github.com/users/o-clipe", "html_url": "https://github.com/o-clipe", "followers_url": "https://api.github.com/users/o-clipe/followers", "following_url": "https://api.github.com/users/o-clipe/following{/other_user}", "gists_url": "https://api.github.com/users/o-clipe/gists{/gist_id}", "starred_url": "https://api.github.com/users/o-clipe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/o-clipe/subscriptions", "organizations_url": "https://api.github.com/users/o-clipe/orgs", "repos_url": "https://api.github.com/users/o-clipe/repos", "events_url": "https://api.github.com/users/o-clipe/events{/privacy}", "received_events_url": "https://api.github.com/users/o-clipe/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "On the nightly version the error output is a bit different, maybe this is helpful:\r\n\r\n```\r\n(tf-nightly) [lnapon@rhel ancient_ai]$ python3 lrnkeras/mnist_conv.py \r\n2023-05-25 19:41:31.002823: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:7704] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\r\n2023-05-25 19:41:31.002868: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\r\n2023-05-25 19:41:31.002884: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1520] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\r\n2023-05-25 19:41:31.847714: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-05-25 19:41:32.672538: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:32.688679: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:32.688911: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:32.689738: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:32.689894: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:32.690034: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:33.135930: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:33.136133: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:33.136290: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\r\n2023-05-25 19:41:33.136425: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1318 MB memory: -> device: 0, name: Quadro K620, pci bus id: 0000:01:00.0, compute capability: 5.0\r\nEpoch 1/5\r\n2023-05-25 19:41:34.396173: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:434] Loaded cuDNN version 8600\r\n2023-05-25 19:41:34.653261: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:190] failed to create cublas handle: the resource allocation failed\r\n2023-05-25 19:41:34.653298: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:193] Failure to initialize cublas may be due to OOM (cublas needs some free memory when you initialize it, and your deep-learning framework may have preallocated more than its fair share), or may be because this binary was not built with support for the GPU in your machine.\r\n2023-05-25 19:41:34.653625: W tensorflow/core/kernels/conv_ops_gpu.cc:144] None of the algorithms provided by cuDNN frontend heuristics worked; trying fallback algorithms. Conv: batch: 1\r\nin_depths: 1\r\nout_depths: 4\r\nin: 28\r\nin: 28\r\ndata_format: 1\r\nfilter: 3\r\nfilter: 3\r\nfilter: 1\r\ndilation: 1\r\ndilation: 1\r\nstride: 1\r\nstride: 1\r\npadding: 0\r\npadding: 0\r\ndtype: DT_FLOAT\r\ngroup_count: 1\r\ndevice_identifier: \"sm_5.0 with 2099118080B RAM, 3 cores, 1124000KHz clock, 900000KHz mem clock, 2097152B L2$\"\r\nfusion {\r\n activation_mode: kRelu\r\n conv_scale: 1\r\n}\r\nversion: 3\r\n\r\n2023-05-25 19:41:34.660525: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:190] failed to create cublas handle: the resource allocation failed\r\n2023-05-25 19:41:34.660542: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:193] Failure to initialize cublas may be due to OOM (cublas needs some free memory when you initialize it, and your deep-learning framework may have preallocated more than its fair share), or may be because this binary was not built with support for the GPU in your machine.\r\n2023-05-25 19:41:34.660782: W tensorflow/core/framework/op_kernel.cc:1828] OP_REQUIRES failed at conv_ops_fused_impl.h:625 : NOT_FOUND: No algorithm worked! Error messages:\r\n Profiling failure on CUDNN engine eng11{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED\r\nin tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(5333): 'status'\r\n Profiling failure on CUDNN engine eng0{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED\r\nin tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(5333): 'status'\r\nTraceback (most recent call last):\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 70, in error_handler\r\n raise e.with_traceback(filtered_tb) from None\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/tensorflow/python/eager/execute.py\", line 53, in quick_execute\r\n tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\r\ntensorflow.python.framework.errors_impl.NotFoundError: Graph execution error:\r\n\r\nDetected at node sequential/conv2d/Relu defined at (most recent call last):\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 669, in _run_internal_graph\r\n outputs = node.layer(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 669, in _run_internal_graph\r\n outputs = node.layer(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 669, in _run_internal_graph\r\n outputs = node.layer(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 669, in _run_internal_graph\r\n outputs = node.layer(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 669, in _run_internal_graph\r\n outputs = node.layer(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/layers/convolutional/base_conv.py\", line 321, in call\r\n return self.activation(outputs)\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 669, in _run_internal_graph\r\n outputs = node.layer(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/layers/convolutional/base_conv.py\", line 321, in call\r\n return self.activation(outputs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/activations.py\", line 321, in relu\r\n return backend.relu(\r\n\r\n File \"/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py\", line 25, in <module>\r\n model.fit(train_images, trains_labels, epochs=5, batch_size=1)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1768, in fit\r\n tmp_logs = self.train_function(iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1364, in train_function\r\n return step_function(self, iterator)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1348, in step_function\r\n outputs = model.distribute_strategy.run(run_step, args=(data,))\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1329, in run_step\r\n outputs = model.train_step(data)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 1106, in train_step\r\n y_pred = self(x, training=True)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/training.py\", line 588, in __call__\r\n return super().__call__(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/sequential.py\", line 404, in call\r\n return super().call(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 512, in call\r\n return self._run_internal_graph(inputs, training=training, mask=mask)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/functional.py\", line 669, in _run_internal_graph\r\n outputs = node.layer(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 65, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/engine/base_layer.py\", line 1150, in __call__\r\n outputs = call_fn(inputs, *args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 96, in error_handler\r\n return fn(*args, **kwargs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/layers/convolutional/base_conv.py\", line 321, in call\r\n return self.activation(outputs)\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/activations.py\", line 321, in relu\r\n return backend.relu(\r\n\r\n File \"/home/lnapon/miniconda3/envs/tf-nightly/lib/python3.10/site-packages/keras/src/backend.py\", line 5397, in relu\r\n x = tf.nn.relu(x)\r\n\r\nNo algorithm worked! Error messages:\r\n Profiling failure on CUDNN engine eng11{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED\r\nin tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(5333): 'status'\r\n Profiling failure on CUDNN engine eng0{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED\r\nin tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(5333): 'status'\r\n\t [[{{node sequential/conv2d/Relu}}]] [Op:__inference_train_function_1058]\r\n\r\n```", "@O-CLIPE,\r\nI tried to execute the mentioned code by importing the keras from tensorflow and it was executed without any issues on tensorflow v2.12. Kindly find the [gist](https://colab.research.google.com/gist/tilakrayal/faa9b889f64a401df67da39f8bb716b4/untitled1178.ipynb), [GPU-gist](https://colab.research.google.com/gist/tilakrayal/6fa70e52a2f49c52d3397f1b3da2fcba/untitled1179.ipynb) and below changes.\r\n```\r\n\r\nimport tensorflow as tf\r\nfrom tensorflow import keras\r\nfrom tensorflow.keras.datasets import mnist\r\nfrom tensorflow.keras.utils import to_categorical\r\nfrom tensorflow.keras import layers, models\r\n```\r\nThank you!", "@tilakrayal based on the error message, what could this error be about? I did get it is not a global tf issue, it's probably hardware specific. Also, with CPU only the code runs perfectly.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60713\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60713\">No</a>\n", "It is hardware specific. Tensorflow drowns my GPU with memory usage and fails itself. To solve this I just limited the GPU memory usage, to lower than what I can expend (I overflows the limit a bit — in my case a bit means 24% of GPU memory).\r\n\r\n2048MiB of memory if just too little for most applications of machine learning.\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60713\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60713\">No</a>\n", "How to limit GPU memory usage: https://stackoverflow.com/a/60069601/20940588\r\n" ]
2023-05-25T23:04:59
2023-06-01T00:06:58
2023-06-01T00:01:34
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.12 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 22.04.2 LTS and Red Hat Enterprise Linux 9.2 ### Mobile device _No response_ ### Python version 3.10 ### Bazel version bazel 5.3.0 ### GCC/Compiler version 11.3.1 ### CUDA/cuDNN version 11.8 ### GPU model and memory Nvidia Quadro K620 - 2048MiB of memory ### Current Behaviour? *This bug happens both in Linux Ubuntu 22.04.2 LTS and RHEL 9. I tested it on a live-usb Ubuntu installation, pip installing it with GPU support after getting tired of trying to solve it on rhel. It is somewhat related to the convolutional (Conv2d) layer, because fitting a model on a pip install with the use of only dense layers works fine. With a source install this error happens independently of model time. Using CLI or multi-user.target, leaving all the GPU resources to tf does not solve the issue. Reducing the Conv2d filters does not solve the problem, nor the bach_size The code should just have no errors. I can't exactly tell or understand the error output, so that's about all I can tell. ### Standalone code to reproduce the issue ```shell from keras.datasets import mnist from keras.utils import to_categorical from keras import layers, models (train_images, train_labels), (test_images, test_labels) = mnist.load_data() model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=['accuracy']) train_images = train_images.astype('float32') / 255 test_images = test_images.astype('float32') / 255 trains_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) model.fit(train_images, trains_labels, epochs=5, batch_size=64) test_loss, test_acc = model.evaluate(test_images, test_labels) print(f'{test_acc=}') ``` ### Relevant log output ```shell (tf) [lnapon@rhel ancient_ai]$ python3 lrnkeras/mnist_conv.py 2023-05-25 19:21:32.077966: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-25 19:21:33.793139: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:33.809742: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:33.809975: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:33.811051: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:33.811233: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:33.811384: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:34.315816: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:34.316045: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:34.316220: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-25 19:21:34.316380: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1294 MB memory: -> device: 0, name: Quadro K620, pci bus id: 0000:01:00.0, compute capability: 5.0 Epoch 1/5 2023-05-25 19:21:35.567154: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:424] Loaded cuDNN version 8600 2023-05-25 19:21:35.886005: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:219] failed to create cublas handle: the resource allocation failed 2023-05-25 19:21:35.886043: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:222] Failure to initialize cublas may be due to OOM (cublas needs some free memory when you initialize it, and your deep-learning framework may have preallocated more than its fair share), or may be because this binary was not built with support for the GPU in your machine. 2023-05-25 19:21:35.886349: W tensorflow/core/kernels/conv_ops_gpu.cc:143] None of the algorithms provided by cuDNN frontend heuristics worked; trying fallback algorithms. Conv: batch: 1 in_depths: 1 out_depths: 32 in: 28 in: 28 data_format: 1 filter: 3 filter: 3 filter: 1 dilation: 1 dilation: 1 stride: 1 stride: 1 padding: 0 padding: 0 dtype: DT_FLOAT group_count: 1 device_identifier: "sm_5.0 with 2099118080B RAM, 3 cores, 1124000KHz clock, 900000KHz mem clock, 2097152B L2$" fusion { activation_mode: kRelu conv_scale: 1 } version: 3 2023-05-25 19:21:35.893161: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:219] failed to create cublas handle: the resource allocation failed 2023-05-25 19:21:35.893178: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:222] Failure to initialize cublas may be due to OOM (cublas needs some free memory when you initialize it, and your deep-learning framework may have preallocated more than its fair share), or may be because this binary was not built with support for the GPU in your machine. 2023-05-25 19:21:35.893443: W tensorflow/core/framework/op_kernel.cc:1830] OP_REQUIRES failed at conv_ops_fused_impl.h:625 : NOT_FOUND: No algorithm worked! Error messages: Profiling failure on CUDNN engine eng11{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED in tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(4639): 'status' Profiling failure on CUDNN engine eng0{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED in tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(4639): 'status' 2023-05-25 19:21:35.893485: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:GPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): NOT_FOUND: No algorithm worked! Error messages: Profiling failure on CUDNN engine eng11{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED in tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(4639): 'status' Profiling failure on CUDNN engine eng0{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED in tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(4639): 'status' [[{{node sequential/conv2d/Relu}}]] Traceback (most recent call last): File "/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py", line 28, in <module> model.fit(train_images, trains_labels, epochs=5, batch_size=1) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/tensorflow/python/eager/execute.py", line 52, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.NotFoundError: Graph execution error: Detected at node 'sequential/conv2d/Relu' defined at (most recent call last): File "/home/lnapon/repos/ancient_ai/lrnkeras/mnist_conv.py", line 28, in <module> model.fit(train_images, trains_labels, epochs=5, batch_size=1) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/training.py", line 1685, in fit tmp_logs = self.train_function(iterator) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/training.py", line 1284, in train_function return step_function(self, iterator) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/training.py", line 1268, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/training.py", line 1249, in run_step outputs = model.train_step(data) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/training.py", line 1050, in train_step y_pred = self(x, training=True) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/training.py", line 558, in __call__ return super().__call__(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/base_layer.py", line 1145, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 96, in error_handler return fn(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/sequential.py", line 412, in call return super().call(inputs, training=training, mask=mask) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/functional.py", line 512, in call return self._run_internal_graph(inputs, training=training, mask=mask) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/functional.py", line 669, in _run_internal_graph outputs = node.layer(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/engine/base_layer.py", line 1145, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 96, in error_handler return fn(*args, **kwargs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/layers/convolutional/base_conv.py", line 321, in call return self.activation(outputs) File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/activations.py", line 317, in relu return backend.relu( File "/home/lnapon/miniconda3/envs/tf/lib/python3.10/site-packages/keras/backend.py", line 5396, in relu x = tf.nn.relu(x) Node: 'sequential/conv2d/Relu' No algorithm worked! Error messages: Profiling failure on CUDNN engine eng11{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED in tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(4639): 'status' Profiling failure on CUDNN engine eng0{}: UNKNOWN: CUDNN_STATUS_ALLOC_FAILED in tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(4639): 'status' [[{{node sequential/conv2d/Relu}}]] [Op:__inference_train_function_1058] ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60713/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60713/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60712
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60712/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60712/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60712/events
https://github.com/tensorflow/tensorflow/pull/60712
1,726,426,884
PR_kwDOArmXAs5RYIy1
60,712
Update version numbers for TensorFlow 2.13.0-rc1
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-25T20:10:25
2023-05-25T21:14:11
2023-05-25T21:14:08
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60712", "html_url": "https://github.com/tensorflow/tensorflow/pull/60712", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60712.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60712.patch", "merged_at": "2023-05-25T21:14:08" }
Before merging this PR, please double check that it has correctly updated `core/public/version.h`, `tools/pip_package/setup.py`, and `tensorflow/tensorflow.bzl`. Also review the execution notes below: ``` Major: 2 -> 2 Minor: 13 -> 13 Patch: 0 -> 0 No lingering old version strings "2.13.0-rc0" found in source directory "tensorflow/". Good. WARNING: Below are potentially instances of lingering old version string "2.13.0rc0" in source directory "tensorflow/" that are not updated by this script. Please check them manually! tensorflow/tools/pip_package/setup.py:119:2.13.0rc0 ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60712/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60712/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60711
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60711/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60711/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60711/events
https://github.com/tensorflow/tensorflow/issues/60711
1,726,410,195
I_kwDOArmXAs5m5u3T
60,711
Custom Keras Optimizer over TPU strategy error
{ "login": "abhaskumarsinha", "id": 31654395, "node_id": "MDQ6VXNlcjMxNjU0Mzk1", "avatar_url": "https://avatars.githubusercontent.com/u/31654395?v=4", "gravatar_id": "", "url": "https://api.github.com/users/abhaskumarsinha", "html_url": "https://github.com/abhaskumarsinha", "followers_url": "https://api.github.com/users/abhaskumarsinha/followers", "following_url": "https://api.github.com/users/abhaskumarsinha/following{/other_user}", "gists_url": "https://api.github.com/users/abhaskumarsinha/gists{/gist_id}", "starred_url": "https://api.github.com/users/abhaskumarsinha/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhaskumarsinha/subscriptions", "organizations_url": "https://api.github.com/users/abhaskumarsinha/orgs", "repos_url": "https://api.github.com/users/abhaskumarsinha/repos", "events_url": "https://api.github.com/users/abhaskumarsinha/events{/privacy}", "received_events_url": "https://api.github.com/users/abhaskumarsinha/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Ah, just a little bit of an embarrassing mistake from my side. The optimizer needs to be called inside strategy.scope() block for it to work.\r\n```\r\n\r\nwith strategy.scope():\r\n model = return_model()\r\n opt = GradientDescent(learning_rate = 0.001)\r\n model.compile(optimizer=opt, loss='mse')\r\n\r\n model(x_train[:2])\r\n model.summary()\r\n model.fit(x_train, y_train, epochs = 20, batch_size = 1024)\r\n opt.temp\r\n```\r\n\r\nNow, I'm just left with my second question only.\r\n\r\n> Apart from that I wish the addition of a new feature - batch size of the data being currently used by the optimizer to compute gradients, as we know is pretty straightforward in a single CPU/GPU, but becomes difficult while executing the same code in distributed systems. If possible, kindly amend my existing standalone code below to add that small tiny feature into my Optimizer.\r\n\r\nI'll close the issue after this.", "Hi @abhaskumarsinha ,\r\n\r\nThe Optimizers by default takes batch_size from model.fit only or from the tf.data.Dataset if set batch explicitly. I am not quite follow through your requirement of batch_size passing to Optimizer here. Normally for multi workers or nodes we can increase the batch_size by the no of GPUs we have.\r\n\r\nSuppose we want `batch_size` of `64` on each of the GPU and total no of GPUs enabled under distribution strategy can be got by `strategy.num_replicas_in_sync`. Please refer the below code.\r\n\r\n```\r\nBATCH_SIZE_PER_REPLICA = 64\r\nBATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync\r\n```\r\nThen BATCH_SIZE shall be passed to model.fit.\r\n\r\nPlease refer to some official tutorials on how to configure distribution training on multiple workers here [link1](https://www.tensorflow.org/tutorials/distribute/keras) and [link2](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_ctl).\r\n\r\nIf you still have any queries please come back and let us know.\r\n\r\nThanks!\r\n", "Reference: https://github.com/tensorflow/tensorflow/issues/60592#issuecomment-1563789462\r\n\r\nHello @SuryanarayanaY \r\n\r\nThank you so much for your response and for bearing me with regarding the issue.\r\nThe thing is that we are working on some sort of special optimizer that works on variable _batch_sizes_ to make it work on some very specific non-convex functions on very large distributed systems.\r\n\r\nSo, I'm left with two requirements for now.\r\n1. Have variable batch size for the optimizer (the optimizer decides the batch size of _$t_n$_ given the optimizer parameters at _$t_n-1$_.\r\n2. We manually specify the upper bound of the batch size, i.e. all the _batch_size at all t_i_ for i in 0, 1, 2, ... should be less than _upper_bound_ i.e. _batch_size at t_i < upper_bound._ In that case, we mask the last entries of our gradients with 0 and calculate the gradient of only the required first _batch_size_ at _t_i_ entries and train the network\r\n\r\nFrom my guess, 2 should be faster and should outperform 1 because the graph wouldn't need to be reconstructed using CUDA API for training the model, unlike case 1.\r\n\r\nSince we need this optimizer to run on distributed training settings on a very large system, I wanted to make sure if any of these features are implementable on Keras or not. (Masking the gradient of certain batch indices with 0).\r\n\r\nThank you in Advance.\r\n", "HI @abhaskumarsinha ,\r\n\r\nThanks for your explanation on your requirement. If you want to customize the training step you need to build custom model class subclassing the `keras.Model` and need to override `train_step`. If you can able to accommodate your requirements in the `train_step` method then may be it can possible to implement your requirement. \r\n\r\nPlease have a look into sample [tutorial](https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit) for customizing the train_step of keras model training.\r\n\r\nPlease have a look and let us know if it is helpful. Thanks!", "Hello @SuryanarayanaY \r\n\r\nSorry for the late response. Yes, I've also checked to extend `tf.keras.Model` class and custom training step function. My only concern was whether this whole thing would be applicable to distribution strategies.\r\n\r\nThe second thing is to mask certain batches to 0 while keeping the gradients from other batches. If this gives control over batch-level editing and supports distribution, then this would definitely be helpful for me. Thank you so much.", "\r\n\r\n\r\n@abhaskumarsinha \r\n\r\n> Sorry for the late response. Yes, I've also checked to extend `tf.keras.Model` class and custom training step function. My only concern was whether this whole thing would be applicable to distribution strategies.\r\n\r\nOfcourse custom models also can be used with distribution strategies.Please refer a sample [tutorial](https://www.tensorflow.org/tutorials/distribute/custom_training).\r\n\r\n\r\n\r\n> The second thing is to mask certain batches to 0 while keeping the gradients from other batches. If this gives control over batch-level editing and supports distribution, then this would definitely be helpful for me. Thank you so much.\r\n\r\nI am not quiet follow through you here. AFAIK if you want some batches to be masked Zero then there is no standard way in Tensorflow.This may not possible during training but you can try with [tf.data.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) generators and implement your own logic for dataset generation.\r\n\r\nThanks!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60711\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60711\">No</a>\n" ]
2023-05-25T19:57:21
2023-06-22T02:01:46
2023-06-22T02:01:43
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version v2.12.0-rc1-12-g0db597d0d75 2.12.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? Hello, I'd wish to draw your attention to a bug that affects custom Optimizers extended from the class `tf.keras.optimizers.experimental.Optimizer` while running on TPU clusters on native Google Colab. ``` _________________________________________________________________ Epoch 1/2 --------------------------------------------------------------------------- UnavailableError Traceback (most recent call last) [<ipython-input-7-7647619ded22>](https://localhost:8080/#) in <cell line: 1>() 5 model(x_train[:2]) 6 model.summary() ----> 7 model.fit(x_train, y_train, epochs = 2, batch_size = 1024) 8 opt.temp 1 frames [/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/ops.py](https://localhost:8080/#) in _numpy(self) 1126 return self._numpy_internal() 1127 except core._NotOkStatusException as e: # pylint: disable=protected-access -> 1128 raise core._status_to_exception(e) from None # pylint: disable=protected-access 1129 1130 @property UnavailableError: failed to connect to all addresses; last error: UNKNOWN: ipv4:127.0.0.1:40812: Failed to connect to remote host: Connection refused Additional GRPC error information from remote target /job:localhost/replica:0/task:0/device:CPU:0: :UNKNOWN:failed to connect to all addresses; last error: UNKNOWN: ipv4:127.0.0.1:40812: Failed to connect to remote host: Connection refused {created_time:"2023-05-25T19:42:27.514045935+00:00", grpc_status:14} ``` While the code refuses to execute in order to compute gradients while using a custom optimizer - opt, it happens to run very well while using 'adam' on default settings. The standalone code to reproduce the problem is provided and doesn't requires any extra tool or dependency and can be easily pasted into Colab to run and inspect the execution for bug investigations. _______________________________________________________________________________________________________________________ Apart from that I wish addition of a new feature - *batch size* of the data being currently used by the optimizer to compute gradients, as we know is pretty straightforward in a single CPU/GPU, but becomes difficult while executing the same code in distributed systems. If possible, kindly amend my existing standalone code below to add that small tiny feature into my Optimizer. Thank You. Best Regards ### Standalone code to reproduce the issue ```shell import numpy as np import tensorflow as tf class GradientDescent(tf.keras.optimizers.experimental.Optimizer): def __init__(self, learning_rate = 0.01, name='GDST'): super().__init__(name=name) #self.learning_rate = learning_rate self._learning_rate = self._build_learning_rate(learning_rate) self.temp = None def build(self, var_list): super().build(var_list) def update_step(self, gradient, variable): lr = tf.cast(self._learning_rate, gradient.dtype) output = tf.clip_by_value(self._learning_rate*gradient, clip_value_max = gradient.dtype.max, clip_value_min = gradient.dtype.min) variable.assign_sub(output) self.temp = output def get_config(self): return super().get_config() opt = GradientDescent(learning_rate = 0.0001) input_shape = 10000 output_shape = 100 def return_model(input_shape = 10000, output_shape = 500): model = tf.keras.Sequential([ tf.keras.layers.Dense(input_shape, activation='relu'), tf.keras.layers.Dense(10000, activation='relu'), #tf.keras.layers.Dense(10000, activation='tanh'), #tf.keras.layers.Dense(10000, activation='linear'), #tf.keras.layers.Dense(10000, activation='tanh'), tf.keras.layers.Dense(output_shape, activation='linear') ]) return model # Compile the model #model.compile(optimizer=opt, loss='mse') # Create a random dataset x_train = tf.random.uniform(shape=[10000, 10000]) y_train = tf.random.uniform(shape=[10000, 500]) resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) # This is the TPU initialization code that has to be at the beginning. tf.tpu.experimental.initialize_tpu_system(resolver) print("All devices: ", tf.config.list_logical_devices('TPU')) strategy = tf.distribute.TPUStrategy(resolver) with strategy.scope(): model = return_model() model.compile(optimizer=opt, loss='mse') model(x_train[:2]) model.summary() model.fit(x_train, y_train, epochs = 2, batch_size = 1024) opt.temp ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60711/reactions", "total_count": 1, "+1": 0, "-1": 1, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60711/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60710
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60710/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60710/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60710/events
https://github.com/tensorflow/tensorflow/issues/60710
1,726,327,306
I_kwDOArmXAs5m5aoK
60,710
Dataset.ragged_batch does not produce correct specs with tf.py_function and tf.numpy_function
{ "login": "eawer", "id": 1741779, "node_id": "MDQ6VXNlcjE3NDE3Nzk=", "avatar_url": "https://avatars.githubusercontent.com/u/1741779?v=4", "gravatar_id": "", "url": "https://api.github.com/users/eawer", "html_url": "https://github.com/eawer", "followers_url": "https://api.github.com/users/eawer/followers", "following_url": "https://api.github.com/users/eawer/following{/other_user}", "gists_url": "https://api.github.com/users/eawer/gists{/gist_id}", "starred_url": "https://api.github.com/users/eawer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eawer/subscriptions", "organizations_url": "https://api.github.com/users/eawer/orgs", "repos_url": "https://api.github.com/users/eawer/repos", "events_url": "https://api.github.com/users/eawer/events{/privacy}", "received_events_url": "https://api.github.com/users/eawer/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1114343535, "node_id": "MDU6TGFiZWwxMTE0MzQzNTM1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data", "name": "comp:data", "color": "0052cc", "default": false, "description": "tf.data related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }, { "login": "wilsingosti", "id": 93937952, "node_id": "U_kgDOBZlhIA", "avatar_url": "https://avatars.githubusercontent.com/u/93937952?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wilsingosti", "html_url": "https://github.com/wilsingosti", "followers_url": "https://api.github.com/users/wilsingosti/followers", "following_url": "https://api.github.com/users/wilsingosti/following{/other_user}", "gists_url": "https://api.github.com/users/wilsingosti/gists{/gist_id}", "starred_url": "https://api.github.com/users/wilsingosti/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wilsingosti/subscriptions", "organizations_url": "https://api.github.com/users/wilsingosti/orgs", "repos_url": "https://api.github.com/users/wilsingosti/repos", "events_url": "https://api.github.com/users/wilsingosti/events{/privacy}", "received_events_url": "https://api.github.com/users/wilsingosti/received_events", "type": "User", "site_admin": false } ]
null
[ "`py_function` not only effects `ragged_batch` but also later KerasCV layers in `.map` to operate. According to [this discussion](https://github.com/tensorflow/tensorflow/issues/35108), the return value of `py_function` lost the information of its shape and rank. So the solution can be: 1. to manually set those information by `tensor.set_shape([None, None])`. 2. to return the shape (inside py_function) and assign it to outside tensor. Below are a small demo (the first one solution) showing that it works. However it's definetely a bug. the return value SHOULD know the shape and rank. Or at least this \"feature\" should be written in documentation.\r\n``` python\r\nimport tensorflow as tf\r\n\r\ndef processing(data):\r\n def _processing(data):\r\n arr = [range(data), range(data)]\r\n arr = tf.cast(arr, tf.float32)\r\n print(f\"Inside py_function arr shape: {arr.shape}\")\r\n return arr\r\n \r\n arr = tf.py_function(_processing, [data], tf.float32)\r\n print(f\"Outside py_function arr shape: {arr.shape}\")\r\n arr.set_shape([None, None]) # set rank here\r\n return arr\r\n\r\nlist = [1,2,3,1]\r\n\r\nds = tf.data.Dataset.from_tensor_slices(list)\r\nds = ds.map(processing)\r\nds = ds.ragged_batch(4)\r\n\r\nfor data in ds:\r\n print(\"==========\")\r\n print(data)\r\n```" ]
2023-05-25T18:52:03
2023-08-04T15:34:12
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12 ### Custom Code Yes ### OS Platform and Distribution docker container nvcr.io/nvidia/tensorflow:23.04-tf2-py3 on Ubuntu 22.04.2 LTS host ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I'm trying to train an object detection model where images may have a different number of bounding boxes. Also I want to add some augmentations, and since tf does not support augmentations of bounding boxes I choose albumentations to do the job. I can't use albumentations' augmentations directly, so I need to use either `tf.py_function` or `tf.numpy_function`. I used `Dataset.ragged_batch` instead of `Dataset.batch` (because the dimension of bbox tensor may vary), but it did not provide me the correct `element_spec` and I was unable to make it work. These are three scenarios that should help to understand the issue: ### Scenario 1: I don't use any augmentations, `ragged_batch` returns the correct element spec, but I really need those augmentations ``` (TensorSpec(shape=(None, 512, 512, 3), dtype=tf.float32, name=None), {'classes': RaggedTensorSpec(TensorShape([None, None]), tf.float32, 1, tf.int64), 'boxes': RaggedTensorSpec(TensorShape([None, None, 4]), tf.float64, 1, tf.int64)}) ``` ### Scenario 2: I use `tf.numpy_function` fo perform the augmentations. The spec is incorrect, I can't batch the items ``` (TensorSpec(shape=<unknown>, dtype=tf.float32, name=None), {'classes': TensorSpec(shape=<unknown>, dtype=tf.float32, name=None), 'boxes': TensorSpec(shape=<unknown>, dtype=tf.float32, name=None)}) ``` ### Scenario 3 I use `tf.py_function`, provide something, that looks like correct spec to `Tout` param: ``` Tout=[ tf.TensorSpec(shape=[None, 512, 512, 3], dtype=tf.float32), tf.RaggedTensorSpec(shape=[None, 4], dtype=tf.float32), tf.RaggedTensorSpec(shape=[None, None], dtype=tf.float32), ], ``` but spec for image still does not look good ``` (TensorSpec(shape=<unknown>, dtype=tf.float32, name=None), {'classes': RaggedTensorSpec(TensorShape([None, None, None]), tf.float32, 2, tf.int64), 'boxes': RaggedTensorSpec(TensorShape([None, None, 4]), tf.float32, 2, tf.int64)}) ``` and I had to add an extra dimension for labels spec in order to convert it to `RaggedTensor` (which is probably not good as well). Model refuses to be trained because of incorrect image dimensions The (non)working code is here - [colab link](https://colab.research.google.com/drive/148i78QRnF98guvx1Y0gZXtBVrv-day42?usp=sharing) ### Standalone code to reproduce the issue ```shell import keras_cv import numpy as np import tensorflow as tf import albumentations as A def generate_random_data(): while True: image = np.random.randint(0, 256, size=(512, 512, 3), dtype=np.uint8) num_bboxes = np.random.randint(1, 200) bboxes = [] labels = [] for _ in range(num_bboxes): x_min, y_min, x_max, y_max = np.sort(np.random.uniform(0, 512, size=4) / 512) bbox = [x_min, y_min, x_max, y_max] label = np.random.choice([0, 1]) bboxes.append(bbox) labels.append(label) data = { 'image': tf.convert_to_tensor(image), 'bboxes': { 'bbox': tf.convert_to_tensor(bboxes), 'label': tf.convert_to_tensor(labels, dtype=tf.int64), } } yield data # Create the random dataset dataset = tf.data.Dataset.from_generator(generate_random_data, output_signature={ 'image': tf.TensorSpec(shape=(512, 512, 3), dtype=tf.uint8), 'bboxes': { 'bbox': tf.TensorSpec(shape=(None, 4), dtype=tf.float64), 'label': tf.TensorSpec(shape=(None,), dtype=tf.int64), }, }) # Scenario 1 def preprocess_data_1(inputs): bounding_boxes = { "classes": tf.cast(inputs["bboxes"]["label"], dtype=tf.float32), "boxes": inputs["bboxes"]["bbox"], } return tf.image.convert_image_dtype(inputs['image'], tf.float32), bounding_boxes ds_1 = dataset.map(preprocess_data_1).ragged_batch(2) # Scenario 2 def transform_2(image, bboxes, labels): transforms = A.Compose( [ A.Rotate(limit=40), ], bbox_params=A.BboxParams( format='albumentations', label_fields=['label'], ) ) transformed = transforms( image=image, label=labels, bboxes=bboxes, ) return transformed def aug_fn_2(image, bboxes, labels): aug_data = transform_2(image, bboxes, labels) return ( tf.image.convert_image_dtype(aug_data["image"], tf.float32), tf.convert_to_tensor(aug_data["bboxes"], dtype=tf.float32), tf.cast(aug_data["label"], tf.float32) ) def preprocess_data_2(inputs): bboxes = inputs['bboxes']['bbox'] labels = inputs['bboxes']['label'] aug_image, aug_bboxes, aug_labels = tf.numpy_function( func=aug_fn_2, inp=[inputs["image"], bboxes, labels], Tout=[tf.float32, tf.float32, tf.float32], ) bounding_boxes = { "classes": aug_labels, "boxes": aug_bboxes } return aug_image, bounding_boxes ds_2 = dataset.map(preprocess_data_2).ragged_batch(2) for item in ds_2: break # Scenario 3 def transform_3(image, bboxes, labels): transforms = A.Compose( [ A.Rotate(limit=40), ], bbox_params=A.BboxParams( format='albumentations', label_fields=['label'], ) ) transformed = transforms( image=image.numpy(), label=labels.numpy(), bboxes=bboxes.numpy(), ) return transformed def aug_fn_3(image, bboxes, labels): aug_data = transform_3(image, bboxes, labels) return ( tf.image.convert_image_dtype(aug_data["image"], tf.float32), tf.RaggedTensor.from_tensor(tf.convert_to_tensor(aug_data["bboxes"], dtype=tf.float32)), tf.RaggedTensor.from_tensor(tf.cast([aug_data["label"]], tf.float32)), ) def preprocess_data_3(inputs): bboxes = inputs['bboxes']['bbox'] labels = inputs['bboxes']['label'] aug_image, aug_bboxes, aug_labels = tf.py_function( func=aug_fn_3, inp=[inputs["image"], bboxes, labels], Tout=[ tf.TensorSpec(shape=[None, 512, 512, 3], dtype=tf.float32), tf.RaggedTensorSpec(shape=[None, 4], dtype=tf.float32), tf.RaggedTensorSpec(shape=[None, None], dtype=tf.float32), ], ) bounding_boxes = { "classes": aug_labels, "boxes": aug_bboxes, } return aug_image, bounding_boxes ds_3 = dataset.map(preprocess_data_3).ragged_batch(2) for batch in ds_3: break model = keras_cv.models.RetinaNet.from_preset( "resnet50_imagenet", num_classes=2, bounding_box_format="rel_xyxy", ) model.compile( classification_loss="focal", box_loss="smoothl1", optimizer=tf.optimizers.Adam(), ) model.fit( ds_3.take(1), validation_data=ds_3.take(1), epochs=100, ) ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60710/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60710/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60709
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60709/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60709/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60709/events
https://github.com/tensorflow/tensorflow/pull/60709
1,726,308,907
PR_kwDOArmXAs5RXu-n
60,709
r2.13 cherry-pick:upgrade to curl 8.0.1 #60554
{ "login": "venkat2469", "id": 104534215, "node_id": "U_kgDOBjsQxw", "avatar_url": "https://avatars.githubusercontent.com/u/104534215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/venkat2469", "html_url": "https://github.com/venkat2469", "followers_url": "https://api.github.com/users/venkat2469/followers", "following_url": "https://api.github.com/users/venkat2469/following{/other_user}", "gists_url": "https://api.github.com/users/venkat2469/gists{/gist_id}", "starred_url": "https://api.github.com/users/venkat2469/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/venkat2469/subscriptions", "organizations_url": "https://api.github.com/users/venkat2469/orgs", "repos_url": "https://api.github.com/users/venkat2469/repos", "events_url": "https://api.github.com/users/venkat2469/events{/privacy}", "received_events_url": "https://api.github.com/users/venkat2469/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-25T18:40:11
2023-05-26T00:14:10
2023-05-26T00:04:13
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60709", "html_url": "https://github.com/tensorflow/tensorflow/pull/60709", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60709.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60709.patch", "merged_at": "2023-05-26T00:04:13" }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60709/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60709/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60708
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60708/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60708/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60708/events
https://github.com/tensorflow/tensorflow/pull/60708
1,726,087,216
PR_kwDOArmXAs5RW_O5
60,708
[Linaro:ARM_CI] Allow all jobs in matrix to complete
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }
[ { "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }, { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-25T15:53:38
2023-08-22T14:08:37
2023-05-25T19:09:04
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60708", "html_url": "https://github.com/tensorflow/tensorflow/pull/60708", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60708.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60708.patch", "merged_at": "2023-05-25T19:09:03" }
Set the fail-fast property to be false so that if any job in the matrix fails then all other jobs are allowed to complete instead of being cancelled.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60708/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60708/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60707
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60707/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60707/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60707/events
https://github.com/tensorflow/tensorflow/issues/60707
1,725,760,996
I_kwDOArmXAs5m3QXk
60,707
Hexagon Libraries version `v1.20.0.9` not available
{ "login": "caiotoledo-lunasystems", "id": 92656601, "node_id": "U_kgDOBYXT2Q", "avatar_url": "https://avatars.githubusercontent.com/u/92656601?v=4", "gravatar_id": "", "url": "https://api.github.com/users/caiotoledo-lunasystems", "html_url": "https://github.com/caiotoledo-lunasystems", "followers_url": "https://api.github.com/users/caiotoledo-lunasystems/followers", "following_url": "https://api.github.com/users/caiotoledo-lunasystems/following{/other_user}", "gists_url": "https://api.github.com/users/caiotoledo-lunasystems/gists{/gist_id}", "starred_url": "https://api.github.com/users/caiotoledo-lunasystems/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/caiotoledo-lunasystems/subscriptions", "organizations_url": "https://api.github.com/users/caiotoledo-lunasystems/orgs", "repos_url": "https://api.github.com/users/caiotoledo-lunasystems/repos", "events_url": "https://api.github.com/users/caiotoledo-lunasystems/events{/privacy}", "received_events_url": "https://api.github.com/users/caiotoledo-lunasystems/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2888762627, "node_id": "MDU6TGFiZWwyODg4NzYyNjI3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteHexagonDelegate", "name": "TFLiteHexagonDelegate", "color": "72ECFE", "default": false, "description": "" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
open
false
{ "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }
[ { "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @caiotoledo-lunasystems \r\n\r\nThe Hexagon delegates v1.20.0.9 is available in https://github.com/tensorflow/tensorflow/blob/d37fda11945d290f86b85a39f28bbddbbd0f6bee/third_party/hexagon/workspace.bzl#L12\r\n\r\nDownload it [here](https://storage.googleapis.com/mirror.tensorflow.org/storage.cloud.google.com/download.tensorflow.org/tflite/hexagon_nn_headers_v1.20.0.9.tgz).\r\n\r\nThanks.", "@pjpratik,\r\n\r\nThanks for your feedback.\r\n\r\nThe link provided [here](https://storage.googleapis.com/mirror.tensorflow.org/storage.cloud.google.com/download.tensorflow.org/tflite/hexagon_nn_headers_v1.20.0.9.tgz) doesn't have the libraries `libhexagon_nn_skel.so`, `libhexagon_nn_skel_v65.so`, `libhexagon_nn_skel_v66.so`.\r\n\r\nI was expecting a link like the one for [v1.20.0.1](https://storage.cloud.google.com/download.tensorflow.org/tflite/hexagon_nn_skel_v1.20.0.1.run).\r\nI tried to use the link https://storage.cloud.google.com/download.tensorflow.org/tflite/hexagon_nn_skel_v1.20.0.9.run for `v1.20.0.9` but it didn't work.", "It seems the documentation may not be up to date and the .run file isn't there for v1.20.0.9\r\n\r\n@sirakiin Can you take a look? Alternatively is there a script or instructions on how we may compile the .so files manually?\r\n", "@caiotoledo-lunasystems is there any progress/workaround?", "> @caiotoledo-lunasystems is there any progress/workaround?\r\n\r\n@aseok, no we have put this feature on pause on our side for now.\r\nWe couldn't find any workaround." ]
2023-05-25T12:48:49
2023-08-25T08:12:33
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version v2.11.1 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 20.04 ### Mobile device Android ### Python version _No response_ ### Bazel version 6.2.0 ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I'm trying to use Hexagon delegates for Android and I couldn't find the proper `libhexagon_nn_skel*.so` libraries at https://www.tensorflow.org/lite/android/delegates/hexagon#step_2_add_hexagon_libraries_to_your_android_app_2 Could you share a link with the shared library built? As TensorFlow Lite `v2.11.1` requires `v1.20.0.9`. I've tried to use `v1.20.0.1` but got the following error: ``` Failed to fetch Hexagon NN version. This might be because you're using incompatible versions of libhexagon_interface and libhexagon_nn_skel. You must use compatible versions. Refer to Tensorflow Lite Hexagon Delegate Guide. ``` ### Standalone code to reproduce the issue ```shell /* Hexagon Delegate */ const char *lib_path = "/data/local/tmp/dsp"; TfLiteHexagonInitWithPath(lib_path); auto options_hexagon = TfLiteHexagonDelegateOptionsDefault(); _delegateHexagon.reset(TfLiteHexagonDelegateCreate(&options_hexagon)); auto retTflite = _interpreter->ModifyGraphWithDelegate(_delegateHexagon.get()); if (retTflite != kTfLiteOk) { LOGWARN("Failed to delegate to Hexagon [%d]", retTflite); } ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60707/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60707/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60706
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60706/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60706/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60706/events
https://github.com/tensorflow/tensorflow/issues/60706
1,725,608,711
I_kwDOArmXAs5m2rMH
60,706
tensorflow2.11 with MultiWorkerMirroredStrategy cannot work
{ "login": "south-ocean", "id": 30514703, "node_id": "MDQ6VXNlcjMwNTE0NzAz", "avatar_url": "https://avatars.githubusercontent.com/u/30514703?v=4", "gravatar_id": "", "url": "https://api.github.com/users/south-ocean", "html_url": "https://github.com/south-ocean", "followers_url": "https://api.github.com/users/south-ocean/followers", "following_url": "https://api.github.com/users/south-ocean/following{/other_user}", "gists_url": "https://api.github.com/users/south-ocean/gists{/gist_id}", "starred_url": "https://api.github.com/users/south-ocean/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/south-ocean/subscriptions", "organizations_url": "https://api.github.com/users/south-ocean/orgs", "repos_url": "https://api.github.com/users/south-ocean/repos", "events_url": "https://api.github.com/users/south-ocean/events{/privacy}", "received_events_url": "https://api.github.com/users/south-ocean/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 996845227, "node_id": "MDU6TGFiZWw5OTY4NDUyMjc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:dist-strat", "name": "comp:dist-strat", "color": "0052cc", "default": false, "description": "Distribution Strategy related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "The program is stuck here and cannot be continued。", "And it will output log like below:\r\n2023-05-25 11:10:57.934361: E tensorflow/core/common_runtime/base_collective_executor.cc:249] BaseCollectiveExecutor::StartAbort DEADLINE_EXCEEDED: Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013057.934031384\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:57.934497: E tensorflow/core/common_runtime/eager/context_distributed_manager.cc:737] Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013057.934031384\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:57.934547: F tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:103] Non-OK-status: Stop() status: UNIMPLEMENTED: Clean shutdown is not currently implemented\r\nFatal Python error: Aborted\r\n\r\nCurrent thread 0x00007f2947732740 (most recent call first):\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/eager/context.py\", line 623 in ensure_initialized\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 508 in _initialize_multi_worker\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 341 in _initialize_strategy\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 329 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 185 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 252 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/util/deprecation.py\", line 357 in new_func\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/common/distribute_utils.py\", line 155 in get_distribution_strategy\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 125 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 362 in main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 258 in _run_main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 312 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 369 in <module>\r\n2023-05-25 11:10:57.977399: E tensorflow/core/common_runtime/base_collective_executor.cc:249] BaseCollectiveExecutor::StartAbort DEADLINE_EXCEEDED: Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013057.977083688\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:57.977561: E tensorflow/core/common_runtime/eager/context_distributed_manager.cc:737] Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013057.977083688\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:57.977640: F tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:103] Non-OK-status: Stop() status: UNIMPLEMENTED: Clean shutdown is not currently implemented\r\nFatal Python error: Aborted\r\n\r\nCurrent thread 0x00007fa0241df740 (most recent call first):\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/eager/context.py\", line 623 in ensure_initialized\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 508 in _initialize_multi_worker\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 341 in _initialize_strategy\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 329 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 185 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 252 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/util/deprecation.py\", line 357 in new_func\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/common/distribute_utils.py\", line 155 in get_distribution_strategy\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 125 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 362 in main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 258 in _run_main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 312 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 369 in <module>\r\n2023-05-25 11:10:58.273265: E tensorflow/core/common_runtime/base_collective_executor.cc:249] BaseCollectiveExecutor::StartAbort DEADLINE_EXCEEDED: Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013058.272930461\",\"description\":\"Deadels-2.9.2_fp32_4m/official/common/distribute_utils.py\", line 155 in get_distribution_strategy\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 125 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 362 in main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 258 in _run_main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 312 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 369 in <module>\r\n2023-05-25 11:10:58.273265: E tensorflow/core/common_runtime/base_collective_executor.cc:249] BaseCollectiveExecutor::StartAbort DEADLINE_EXCEEDED: Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013058.272930461\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:58.273404: E tensorflow/core/common_runtime/eager/context_distributed_manager.cc:737] Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013058.272930461\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:58.273458: F tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:103] Non-OK-status: Stop() status: UNIMPLEMENTED: Clean shutdown is not currently implemented\r\nFatal Python error: Aborted\r\n\r\nCurrent thread 0x00007fb79fed7740 (most recent call first):\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/eager/context.py\", line 623 in ensure_initialized\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 508 in _initialize_multi_worker\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 341 in _initialize_strategy\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 329 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 185 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 252 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/util/deprecation.py\", line 357 in new_func\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/common/distribute_utils.py\", line 155 in get_distribution_strategy\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 125 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 362 in main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 258 in _run_main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 312 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 369 in <module>\r\n2023-05-25 11:10:58.361393: E tensorflow/core/common_runtime/base_collective_executor.cc:249] BaseCollectiveExecutor::StartAbort DEADLINE_EXCEEDED: Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013058.361101419\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:58.361543: E tensorflow/core/common_runtime/eager/context_distributed_manager.cc:737] Deadline Exceeded\r\nAdditional GRPC error information from remote target /job:worker/replica:0/task:0:\r\n:{\"created\":\"@1685013058.361101419\",\"description\":\"Deadline Exceeded\",\"file\":\"external/com_github_grpc_grpc/src/core/ext/filters/deadline/deadline_filter.cc\",\"file_line\":69,\"grpc_status\":4}\r\n2023-05-25 11:10:58.361600: F tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:103] Non-OK-status: Stop() status: UNIMPLEMENTED: Clean shutdown is not currently implemented\r\nFatal Python error: Aborted\r\n\r\nCurrent thread 0x00007fd5013c4740 (most recent call first):\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/eager/context.py\", line 623 in ensure_initialized\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 508 in _initialize_multi_worker\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 341 in _initialize_strategy\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 329 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 185 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/distribute/collective_all_reduce_strategy.py\", line 252 in __init__\r\n File \"/public/home/qianyj/virtualenv/dtk23.04/tf2.9/venv/lib/python3.8/site-packages/tensorflow/python/util/deprecation.py\", line 357 in new_func\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/common/distribute_utils.py\", line 155 in get_distribution_strategy\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 125 in run\r\n File \"/public/home/qianyj/TF_test/dtk23.04/tf2.9/models-2.9.2_fp32_4m/official/benchmark/models/resnet_imagenet_main.py\", line 362 in main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 258 in _run_main\r\n File \"/public/home/qianyj/.local/lib/python3.8/site-packages/absl/app.py\", line 312 in run", "Hi @south-ocean ,\r\n\r\nCould you please confirm whether you are trying to use multiple systems/servers with each having single or more GPUs ? \r\nAre you using `MirroredStrategy` or `MultiWorkerMirroredStrategy` and I hope you know which to use when.\r\n\r\nPlease submit the steps followed and code you have used for enabling the strategy.\r\n\r\nThe problem seems to be related to communication between different workers. One probable reason might be mentioned below.\r\n\r\n> 'TF_CONFIG' is parsed and TensorFlow's GRPC servers are started at the time you call tf.distribute.MultiWorkerMirroredStrategy. Therefore, you must set the 'TF_CONFIG' environment variable before you instantiate a tf.distribute.Strategy. To save time in this illustrative example, this is not demonstrated in this tutorial, so that servers do not need to start. You can find a full example in the last section of this tutorial.\r\n\r\n\r\nPlease refer some of the documentation tutorials for `MultiWorkerMirroredStrategy` which might be useful. [link1](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_ctl) and [link2](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras)\r\n\r\nThanks!\r\n", "I have also met the simarly issue.\r\nWhen I use 3 workers and each with 8GPUs, it works fine. When 8 workers and each with 8 GPUs, it will also show this kind of error: \"BaseCollectiveExecutor::StartAbort DEADLINE_EXCEEDED: Collective has timed out during execution.\"\r\n\r\nIt seems to be related to the network bandwidth?\r\n", "it related to network settings, but I also solved it by accidental setting,I don't know how to debug this kind of problem about MirroredStrategy or MultiWorkerMirroredStrategy.", "Hi @south-ocean ,\r\n\r\nCould you please confirm whether the issue resolved now. Also it would be helpful for community if you can able to share which settings helped you. \r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60706\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60706\">No</a>\n" ]
2023-05-25T11:11:16
2023-06-14T02:01:05
2023-06-14T02:01:03
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf2.9,tf2.11 ### Custom Code Yes ### OS Platform and Distribution cnetos7.9 ### Mobile device _No response_ ### Python version 3.8.12 ### Bazel version 5.3.0,5.0.0 ### GCC/Compiler version 9.3 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A bug happened! The four-process four-card simulation based on the stand-alone four-card simulation is running, but I found that my program is stuck in the communication link of GRPC, and the program cannot continue to execute downward. ### Standalone code to reproduce the issue ```shell resnet50 based on the https://github.com/tensorflow/models/tree/v2.11.0 ``` ### Relevant log output ```shell Instructions for updating: use distribute.MultiWorkerMirroredStrategy instead W0525 11:06:39.106403 139892523235136 deprecation.py:350] From /public/home/qianyj/TF_test/dtk23.04/tf2.11/models-2.11.0_fp16_4m/official/common/distribute_utils.py:155: _CollectiveAllReduceStrategyExperimental.__init__ (from tensorflow.python.distribute.collective_all_reduce_strategy) is deprecated and will be removed in a future version. Instructions for updating: use distribute.MultiWorkerMirroredStrategy instead 2023-05-25 11:06:39.107776: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-25 11:06:39.107986: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-25 11:06:39.109601: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 15601 MB memory: -> device: 0, name: Vega 20, pci bus id: 0000:43:00.0 2023-05-25 11:06:39.109709: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 15601 MB memory: -> device: 0, name: Vega 20, pci bus id: 0000:04:00.0 2023-05-25 11:06:40.104680: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:worker/replica:0/task:1/device:GPU:0 with 15601 MB memory: -> device: 0, name: Vega 20, pci bus id: 0000:26:00.0 2023-05-25 11:06:40.104734: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:worker/replica:0/task:2/device:GPU:0 with 15601 MB memory: -> device: 0, name: Vega 20, pci bus id: 0000:43:00.0 2023-05-25 11:06:40.105277: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:worker/replica:0/task:0/device:GPU:0 with 15601 MB memory: -> device: 0, name: Vega 20, pci bus id: 0000:04:00.0 2023-05-25 11:06:40.105313: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:worker/replica:0/task:3/device:GPU:0 with 15601 MB memory: -> device: 0, name: Vega 20, pci bus id: 0000:63:00.0 2023-05-25 11:06:40.114474: I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:447] Started server with target: grpc://localhost:40013 2023-05-25 11:06:40.115146: I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:447] Started server with target: grpc://localhost:40014 2023-05-25 11:06:40.115326: I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:447] Started server with target: grpc://localhost:40015 2023-05-25 11:06:40.115823: I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:447] Started server with target: grpc://localhost:40016 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60706/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60706/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60705
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60705/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60705/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60705/events
https://github.com/tensorflow/tensorflow/pull/60705
1,725,414,586
PR_kwDOArmXAs5RUr-1
60,705
[Linaro:ARM_CI] Allow updating of python packages with commands
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }, { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-25T09:13:44
2023-08-22T14:08:37
2023-05-25T14:02:16
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60705", "html_url": "https://github.com/tensorflow/tensorflow/pull/60705", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60705.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60705.patch", "merged_at": "2023-05-25T14:02:15" }
Need to make writable by user the python commands cache so that the python packages can be updated by the user if needed. Also improve method of creating dirs with user ownership.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60705/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60705/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60704
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60704/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60704/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60704/events
https://github.com/tensorflow/tensorflow/issues/60704
1,725,361,337
I_kwDOArmXAs5m1uy5
60,704
Samsung S21: Noisy AI Inference Results with App Animations in PlayService/GPU Mode
{ "login": "JeremyJian", "id": 26871278, "node_id": "MDQ6VXNlcjI2ODcxMjc4", "avatar_url": "https://avatars.githubusercontent.com/u/26871278?v=4", "gravatar_id": "", "url": "https://api.github.com/users/JeremyJian", "html_url": "https://github.com/JeremyJian", "followers_url": "https://api.github.com/users/JeremyJian/followers", "following_url": "https://api.github.com/users/JeremyJian/following{/other_user}", "gists_url": "https://api.github.com/users/JeremyJian/gists{/gist_id}", "starred_url": "https://api.github.com/users/JeremyJian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JeremyJian/subscriptions", "organizations_url": "https://api.github.com/users/JeremyJian/orgs", "repos_url": "https://api.github.com/users/JeremyJian/repos", "events_url": "https://api.github.com/users/JeremyJian/events{/privacy}", "received_events_url": "https://api.github.com/users/JeremyJian/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 3835861157, "node_id": "LA_kwDOArmXAs7kopil", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGooglePlayServices", "name": "TFLiteGooglePlayServices", "color": "27FAE2", "default": false, "description": "For issues related to TensorFlow Lite in Google Play Services" } ]
open
false
{ "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }
[ { "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "I have the same problem on Samsung S21. Prediction errors will occur randomly when hardwareAccelerated is enabled.", "Update some new information.\r\n\r\nI have discovered that not only can animations in the app cause errors, but if there are operations in other apps simultaneously with the model's prediction, they can also impact the predicted results of the model.", "Hi @JeremyJian,\r\n\r\nCan you please fill out the issue template?: https://github.com/tensorflow/tensorflow/blob/master/ISSUE_TEMPLATE.md\r\n\r\nAdditionally for this use case are you using the Task Library API? The Interpreter API? Are you using a real device or an emulator in Android Studio? Is the same behavior happening in both?\r\n\r\nAny additional information will be great. Thanks!", "Hi, in my project, I use the Interpreter API provided by Google Play Services. We have found this issue only on the Samsung S21, which is a real device. We have also run the same code on other devices such as the Pixel 5, Pixel 6, and Samsung S10, and everything works fine. To further clarify the issue, we have written a simple code using a simple model (MNIST model) to observe the behavior. The video is shown below.\r\n\r\nhttps://drive.google.com/file/d/1CUb6fIeuX-Xg1KA4p0lKM5umjmjb5wJS/view\r\n\r\nIn the sample app, we perform inference with the same input(handwritten 7) 100 times for each scenario and display the accuracy on the user interface. As you can see in the video, when we run the inference and the circular progress bar simultaneously, the accuracy drops to 94%. However, we are using the exact same input (a bitmap of a 7-digit number), so the accuracy should always be 100%.\r\n\r\n\r\nThe summary of simple minst model:\r\n_________________________________________________________________\r\n Layer (type) Output Shape Param # \r\n\r\n conv2d (Conv2D) (None, 26, 26, 16) 160 \r\n \r\n max_pooling2d (MaxPooling2D) (None, 13, 13, 16) 0 \r\n \r\n \r\n conv2d_1 (Conv2D) (None, 11, 11, 16) 2320 \r\n \r\n max_pooling2d_1 (MaxPooling2D) (None, 5, 5, 16) 0 \r\n \r\n \r\n flatten (Flatten) (None, 400) 0 \r\n \r\n dense (Dense) (None, 64) 25664 \r\n \r\n dense_1 (Dense) (None, 10) 650 \r\n \r\n=================================================================\r\nTotal params: 28,794\r\nTrainable params: 28,794\r\nNon-trainable params: 0", "Hi @JeremyJian, can you try on a Samsung S21 emulator as well and let us know the results? I'm trying to determine if we can replicate it on emulator here as well (this will help us immensely as that would make it reproducible on our end) otherwise we would have to procure a real device. Additionally, it seems your drive link is going to the github issues page instead, I can copy and paste the info to get there but if you can edit it so that the community doesn't get confused, that'll be great.", "Sorry, I can't find the emulator of Samsung S21 (SM-G9910) from Android Studio or Firebase TestLab. On the other hand, our issue only occurs in scenarios where both the GPU and Google Play Services (com.google.android.gms:play-services-tflite-gpu:16.2.0) are used simultaneously. It seems that reproducing this issue on a simulator may not be suitable. As described in the initial question, using the CPU or the standalone version of TensorFlow Lite (org.tensorflow:tensorflow-lite-gpu:2.9.0) does not encounter this problem.\r\n\r\nThank you for your reminder. The video link has been corrected.", "Thanks for the info, @sirakiin, can you please take a look at this? Thanks.", "Hi, Is there any new information or update regarding this issue? \r\nThanks", "We have recently encountered similar issues with both the Samsung S22 Ultra and S23 Ultra devices. Including the previously mentioned S21 series, are equipped with Qualcomm processors. While we're uncertain whether the processor is directly linked to these problems, we are eager to receive any updates or new information regarding this issue. Please keep us informed if you have any new insights." ]
2023-05-25T08:42:02
2023-12-18T06:46:24
null
NONE
null
null
null
**System information** - Android Device information : samsung/o1qzhx/o1q:12/SP1A.210812.016/G9910ZHU2CVG2:user/release-keys - TensorFlow Lite in Play Services SDK version : 'com.google.android.gms:play-services-tflite-support:16.0.1' 'com.google.android.gms:play-services-tflite-gpu:16.1.0' - Google Play Services version 23.16.13(190408-527363516) I followed the tutorial from https://www.tensorflow.org/lite/android/play_services#java_6. Everything seemed fine on almost all devices. However, our test team recently attempted to test our app on the Samsung S21 and discovered that the AI inference results are noisy when there are animations on the app's GUI. This issue only occurs in the PlayService/GPU scenario. If I switch to standalone mode, everything works well. We also found that setting "android:hardwareAccelerated" to false in the AndroidManifest.xml can produce stable results, but it's obviously not a reasonable solution. Has anyone else experienced a similar issue? I would appreciate any advice or suggestions.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60704/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 1, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60704/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60703
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60703/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60703/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60703/events
https://github.com/tensorflow/tensorflow/issues/60703
1,725,170,763
I_kwDOArmXAs5m1ARL
60,703
Error when converting model to CoreML
{ "login": "N-Harish", "id": 48133371, "node_id": "MDQ6VXNlcjQ4MTMzMzcx", "avatar_url": "https://avatars.githubusercontent.com/u/48133371?v=4", "gravatar_id": "", "url": "https://api.github.com/users/N-Harish", "html_url": "https://github.com/N-Harish", "followers_url": "https://api.github.com/users/N-Harish/followers", "following_url": "https://api.github.com/users/N-Harish/following{/other_user}", "gists_url": "https://api.github.com/users/N-Harish/gists{/gist_id}", "starred_url": "https://api.github.com/users/N-Harish/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/N-Harish/subscriptions", "organizations_url": "https://api.github.com/users/N-Harish/orgs", "repos_url": "https://api.github.com/users/N-Harish/repos", "events_url": "https://api.github.com/users/N-Harish/events{/privacy}", "received_events_url": "https://api.github.com/users/N-Harish/received_events", "type": "User", "site_admin": false }
[ { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1105108936, "node_id": "MDU6TGFiZWwxMTA1MTA4OTM2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:model", "name": "comp:model", "color": "0052cc", "default": false, "description": "Model related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi N-Harish,\r\n\r\nIt seems problem with CoreML converter as per my understanding. Please see the error below.\r\n\r\n`InvalidArgumentError: Input 0 of node Model1/FPN/FPN1/bn/AssignNewValue was passed float from Model1/FPN/FPN1/bn/FusedBatchNormV3/ReadVariableOp/resource:0 incompatible with expected resource.`\r\n\r\nI am not sure how your model was built. But saved model will contain parameters which are floats and may be CoreML converter may be expecting some other data type? I am not much aware of CoreML APIs may be you can dig more there.\r\n\r\nAlso can you have a look into TFlite [documentation](https://www.tensorflow.org/lite/models/convert) which is suitable for converting TF model into TFlite model for faster inferences.\r\n\r\n\r\n\r\n", "Ok the model was getting converted in tflite and I could do inference with it as well but I wanted to use m1 gpus so i wanted to convert it into coreml format. Is there any way in which i can make tflite model to use m1 gpus/metal framework using python ?", "Hi @N-Harish ,\r\n\r\nFor Apple M1/M2 (Apple silicon, Arm Architecture) Tensorflow package is different which was built and maintained by Apple itself. To make it M1 compatible maybe you need to use `tensorflow-macos` not `tensorflow`.\r\n\r\nI think you might have built the model using `tensorflow` package and hence it may not be compatible for Mac M1.You can ask at CoreML repo also for confirmation.\r\n\r\nTo built model specific for Apple Metal M1/M2 you have to follow the instructions of Apple metal plugin as mentioned [here](https://developer.apple.com/metal/tensorflow-plugin/).\r\n\r\nThanks!\r\n\r\n", "@SuryanarayanaY I have installed tensorflow-macos but when converting to tflite it won't use Apple Metal M1/M2. Do I need to install something else ?\r\n", "@N-Harish ,\r\n\r\nTFlite can convert `tensorflow` models but I doubt `tensorflow-macos` models may not be convertible. Have you checked the instructions [here](https://www.tensorflow.org/lite/models/convert/convert_models#convert_a_savedmodel_recommended_) for converting tensorflow model to TFlite ? What error exactly you are getting ? Have you trained your model with `tensorflow-macos` ?", "@SuryanarayanaY tensorflow-macos model is also getting converted into tflite but it's not using coreml delegates. I'm running inference in python. Is there any way to make tflite use coreml delegates in python inference ?", "@SuryanarayanaY I also opened this issue on coremltools repo by Apple. Turns out it is the error with tensorflow. Coreml actually loads the tensorflow model and covert it into frozen graph using convert_variables_into_constants_v2 function in tensorflow. When this model is tried to convert into frozen graph using the above function, the above reported error occurs. I also tried to convert the model into frozen graph using the same function and got the same error reported here. I'm ready to share the model with you so that you can have a look at it and suggest some changes so that I can convert the model into frozen graph.", "Hi @N-Harish ,\r\n\r\nPlease share your model code if Ok to you, which might also be helpful for us to debug.\r\n\r\nThanks!", "@SuryanarayanaY here is the repo that we are using for training our model\r\n\r\n[https://github.com/peteryuX/retinaface-tf2](https://github.com/peteryuX/retinaface-tf2\r\n)\r\n\r\nthe training script is as follows [training scripts for model](https://github.com/peteryuX/retinaface-tf2/blob/master/train.py). We just retrained this model (the one with MobilenetV2 backbone) on our own data\r\n", "I am new to tensorflow can someone help me to solve the issues", "@sachinprasadhs here is the repo that we are using for training our model\n\nhttps://github.com/peteryuX/retinaface-tf2\n\nthe training script is as follows training scripts for model. We just retrained this model (the one with MobilenetV2 backbone) on our own data. I'm sharing this again for your reference ", "Okay\nThanks!\n\nOn Wed, 31 May, 2023, 7:34 am Harish Natarajan, ***@***.***>\nwrote:\n\n> @sachinprasadhs <https://github.com/sachinprasadhs> here is the repo that\n> we are using for training our model\n>\n> https://github.com/peteryuX/retinaface-tf2\n>\n> the training script is as follows training scripts for model. We just\n> retrained this model (the one with MobilenetV2 backbone) on our own data.\n> I'm sharing this again for your reference\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/tensorflow/tensorflow/issues/60703#issuecomment-1569382439>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/A3UGGNTZ4SGPWNEOC3EVC4LXI2RJNANCNFSM6AAAAAAYOLPZMA>\n> .\n> You are receiving this because you commented.Message ID:\n> ***@***.***>\n>\n", "@sachinprasadhs, here is the repo that we are using for training our model\r\n\r\nhttps://github.com/peteryuX/retinaface-tf2\r\n\r\nthe training script is as follows [training scripts](https://github.com/peteryuX/retinaface-tf2/blob/master/train.py) We just retrained this model (the one with MobilenetV2 backbone) on our own data. I'm sharing this again for your reference", "Hi @N-Harish,\r\n\r\nCan you please fill out the Issue Template: https://github.com/tensorflow/tensorflow/blob/master/ISSUE_TEMPLATE.md\r\n\r\nAdditionally for running the training scripts, it seems like there is an implicit assumption that it is running on linux with a gpu, one of the packages in their environment packages is tensorflow-gpu. What is The environment which is producing the model (\"./temp_with_weights_model.h5\")? Alternatively, if you can upload a model that reproduces this issue we can just use that as well. From the above conversation it looks like you are running the script that runs into the issue on an M1 Mac?\r\n\r\nThanks for your help.\r\n", "------------------------\r\n\r\n### System information\r\n\r\n- **Have I written custom code (as opposed to using a stock example script\r\n provided in TensorFlow)**: yes\r\n- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: Ubuntu 20.04\r\n- **TensorFlow installed from (source or binary)**: No\r\n- **TensorFlow version (use command below)**: 2.5.0\r\n- **Python version**: 3.8.16\r\n\r\n\r\n### Describe the problem\r\nWhen I try to run the below code for converting the defined model to coreml it won't convert for dynamic shape inputs. I am sharing the layer causing the issue as well as the stacktrace below for converting model to coreml. \r\n\r\n### Source code / logs\r\n#### source code\r\n```\r\nimport tensorflow as tf\r\nfrom tensorflow.keras import Model\r\nfrom tensorflow.keras.applications import MobileNetV2, ResNet50\r\nfrom tensorflow.keras.layers import Input, Conv2D, ReLU, LeakyReLU\r\nimport coremltools as ct\r\n\r\n\r\n\r\ndef _regularizer(weights_decay):\r\n \"\"\"l2 regularizer\"\"\"\r\n return tf.keras.regularizers.l2(weights_decay)\r\n\r\n\r\ndef _kernel_init(scale=1.0, seed=None):\r\n \"\"\"He normal initializer\"\"\"\r\n return tf.keras.initializers.he_normal()\r\n\r\n\r\nout_ch = 64\r\nwd = 0.0005\r\n\r\n\r\nclass ConvUnit(tf.keras.layers.Layer):\r\n \"\"\"Conv + BN + Act\"\"\"\r\n def __init__(self, f=None, k=None, s=None, wd=None, act=None, name='ConvBN', **kwargs):\r\n super(ConvUnit, self).__init__(name=name, **kwargs)\r\n self.f = f\r\n self.k = k\r\n self.s = s\r\n self.wd = wd\r\n self.act = act\r\n# self.name = name\r\n self.conv = Conv2D(filters=f, kernel_size=k, strides=s, padding='same',\r\n kernel_initializer=_kernel_init(),\r\n kernel_regularizer=_regularizer(wd),\r\n use_bias=False, name='conv')\r\n\r\n # self.bn = BatchNormalization(name='bn')\r\n self.bn = tf.keras.layers.BatchNormalization(name='bn')\r\n\r\n if act is None:\r\n self.act_fn = tf.identity\r\n elif act == 'relu':\r\n self.act_fn = ReLU()\r\n elif act == 'lrelu':\r\n self.act_fn = LeakyReLU(0.1)\r\n else:\r\n raise NotImplementedError(\r\n 'Activation function type {} is not recognized.'.format(act))\r\n\r\n\r\n def call(self, x):\r\n return self.act_fn(self.bn(self.conv(x)))\r\n # return self.bn(self.conv(x))\r\n # return self.act_fn(self.conv(x))\r\n\r\n def get_config(self):\r\n config = super().get_config()\r\n temp = {\r\n 'f': self.f,\r\n 'k': self.k,\r\n 's': self.s,\r\n 'wd': self.wd,\r\n 'act': self.act,\r\n# 'convunit_name': self.name,\r\n# 'conv': self.conv,\r\n# 'bn': self.bn,\r\n# 'act_fn': self.act_fn,\r\n }\r\n config.update(temp)\r\n return config\r\n\r\n\r\nclass FPN(tf.keras.layers.Layer):\r\n \"\"\"Feature Pyramid Network\"\"\"\r\n def __init__(self, out_ch, wd, name='FPN', **kwargs):\r\n super(FPN, self).__init__(name=name, **kwargs)\r\n self.act = 'relu'\r\n self.out_ch = out_ch\r\n# self.name = name\r\n self.wd = wd\r\n if (out_ch <= 64):\r\n self.act = 'lrelu'\r\n\r\n self.output1 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=self.act, name=name+str(1))\r\n self.output2 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=self.act, name=name+str(2))\r\n self.output3 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=self.act, name=name+str(3))\r\n self.merge1 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=self.act, name=name+str(4))\r\n self.merge2 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=self.act, name=name+str(5))\r\n\r\n def call(self, x):\r\n print(f\"x[0] :- {x[0].shape}\")\r\n print(f\"x[1] :- {x[1].shape}\")\r\n print(f\"x[2] :- {x[2].shape}\")\r\n \r\n print(f\"Running output1 conv layer\")\r\n output1 = self.output1(x[0]) # [80, 80, out_ch]\r\n print(f\"Output of output1 conv :- {output1.shape} \\n\")\r\n \r\n print(f\"Running output2 conv layer\")\r\n output2 = self.output2(x[1]) # [40, 40, out_ch]\r\n print(f\"Output of output2 conv :- {output2.shape} \\n\")\r\n \r\n print(f\"Running output3 conv layer\")\r\n output3 = self.output3(x[2]) # [20, 20, out_ch]\r\n print(f\"Output of output3 conv :- {output3.shape} \\n\")\r\n\r\n print(f\"Running resize of output3 \\n\")\r\n up_h, up_w = tf.shape(output2)[1], tf.shape(output2)[2]\r\n \r\n # up_h, up_w = output2.shape[1], output2.shape[2]\r\n print(output2.shape[1], output2.shape[2])\r\n \r\n up3 = tf.image.resize(output3, [up_h, up_w], method='nearest')\r\n print(f\"Resized output3 to :- {tf.shape(up3)} {up3.shape}\\n\")\r\n \r\n print(f\"Adding output2 to resized output3 \\n\")\r\n # print(f\"Shape of tf.concat output2 ,up3 :- {tf.add(output2, up3).shape}\")\r\n \r\n # output2 = output2 + up3\r\n output2 = tf.add(output2, up3)\r\n print(f\"Output2 shape :- {tf.shape(output2)} {output2.shape}\\n\")\r\n \r\n print(f\"passing output2 to merge2 conv \\n\")\r\n output2 = self.merge2(output2)\r\n print(f\"Output of output2 :- {output2.shape} \\n\")\r\n \r\n print(f\"Running resize of output2 w.r.t. output1 \\n\")\r\n up_h, up_w = tf.shape(output1)[1], tf.shape(output1)[2]\r\n up2 = tf.image.resize(output2, [up_h, up_w], method='nearest')\r\n print(f\"Resized output2 to :- {tf.shape(up2)} {up2.shape}\\n\")\r\n \r\n print(f\"Adding output1 to resized output2 \\n\")\r\n \r\n # output1 = output1 + up2\r\n output1 = tf.add(output1, up2)\r\n print(f\"Output1 shape :- {tf.shape(output1)} {output1.shape}\\n\")\r\n \r\n print(f\"Running merge1 conv on output1 \\n\")\r\n output1 = self.merge1(output1)\r\n print(f\"Shape of output1 :- {output1.shape} \\n\")\r\n\r\n return output1, output2, output3\r\n\r\n def get_config(self):\r\n config = super().get_config()\r\n temp = {\r\n# 'fpn_act': self.act,\r\n 'out_ch': self.out_ch,\r\n# 'fpn_name': self.name,\r\n 'wd': self.wd,\r\n# 'fpn_conv1': self.output1,\r\n# 'fpn_conv2': self.output2,\r\n# 'fpn_conv3': self.output3,\r\n# 'fpn_merge1': self.merge1,\r\n# 'fpn_merge2': self.merge2,\r\n }\r\n config.update(temp)\r\n return config\r\n\r\n\r\n\r\nx = (Input(shape= (None, None, 192)), Input(shape= (None, None, 576)), Input(shape= (None, None, 960)))\r\n\r\n# x = (Input(shape= (100, 100, 192)), Input(shape= (50, 50, 576)), Input(shape= (25, 25, 960)))\r\n\r\n\r\n# name = \"CU\"\r\n# output1 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=\"relu\", name=name+str(1))\r\n# output1(x[0])\r\n\r\nfpn = FPN(out_ch=out_ch, wd=wd)\r\n# fpn(x)\r\n\r\nfpn_mdl = Model(inputs=x, outputs=fpn(x))\r\nfpn_mdl.summary()\r\n\r\n\r\n\r\n\r\ninput_name = fpn_mdl.inputs[0].name\r\ninput_name1 = fpn_mdl.inputs[1].name\r\ninput_name2 = fpn_mdl.inputs[2].name\r\n\r\nheight = 200\r\nwidth = 200\r\n\r\n\r\ninput_shape1 = ct.Shape(shape=(ct.RangeDim(lower_bound=1, upper_bound=-1),\r\n ct.RangeDim(lower_bound=height, upper_bound=-1),\r\n ct.RangeDim(lower_bound=width, upper_bound=-1),\r\n 192))\r\n\r\ninput_shape2 = ct.Shape(shape=(ct.RangeDim(lower_bound=1, upper_bound=-1),\r\n ct.RangeDim(lower_bound=height, upper_bound=-1),\r\n ct.RangeDim(lower_bound=width, upper_bound=-1),\r\n 576))\r\n\r\ninput_shape3 = ct.Shape(shape=(ct.RangeDim(lower_bound=1, upper_bound=-1),\r\n ct.RangeDim(lower_bound=height, upper_bound=-1),\r\n ct.RangeDim(lower_bound=width, upper_bound=-1),\r\n 960))\r\n\r\n\r\n\r\nfpn_model = ct.convert(fpn_mdl, inputs=[ct.TensorType(shape=input_shape1, name=input_name), ct.TensorType(shape=input_shape2, name=input_name1), ct.TensorType(shape=input_shape3, name=input_name2)], source='tensorflow')\r\n```\r\n\r\n#### issue\r\n```\r\n2023-06-07 07:12:53.914456: I tensorflow/core/grappler/devices.cc:69] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0\r\n2023-06-07 07:12:53.914593: I tensorflow/core/grappler/clusters/single_machine.cc:357] Starting new session\r\n2023-06-07 07:12:53.917406: I tensorflow/core/grappler/optimizers/meta_optimizer.cc:1144] Optimization results for grappler item: graph_to_optimize\r\n function_optimizer: function_optimizer did nothing. time = 0.007ms.\r\n function_optimizer: function_optimizer did nothing. time = 0.001ms.\r\n\r\n2023-06-07 07:12:53.994451: I tensorflow/core/grappler/devices.cc:69] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0\r\n2023-06-07 07:12:53.994538: I tensorflow/core/grappler/clusters/single_machine.cc:357] Starting new session\r\n2023-06-07 07:12:54.005123: I tensorflow/core/grappler/optimizers/meta_optimizer.cc:1144] Optimization results for grappler item: graph_to_optimize\r\n constant_folding: Graph size after: 72 nodes (-25), 150 edges (-25), time = 3.705ms.\r\n dependency_optimizer: Graph size after: 72 nodes (0), 75 edges (-75), time = 0.72ms.\r\n debug_stripper: debug_stripper did nothing. time = 0.07ms.\r\n constant_folding: Graph size after: 72 nodes (0), 75 edges (0), time = 1.29ms.\r\n dependency_optimizer: Graph size after: 72 nodes (0), 75 edges (0), time = 0.576ms.\r\n debug_stripper: debug_stripper did nothing. time = 0.058ms.\r\n\r\nRunning TensorFlow Graph Passes: 100%|██████████| 6/6 [00:00<00:00, 38.40 passes/s]\r\nConverting TF Frontend ==> MIL Ops: 83%|████████▎ | 60/72 [00:00<00:00, 2437.44 ops/s]\r\n---------------------------------------------------------------------------\r\nAttributeError Traceback (most recent call last)\r\nCell In[35], line 36\r\n 19 input_shape3 = ct.Shape(shape=(ct.RangeDim(lower_bound=1, upper_bound=-1),\r\n 20 ct.RangeDim(lower_bound=height, upper_bound=-1),\r\n 21 ct.RangeDim(lower_bound=width, upper_bound=-1),\r\n 22 960))\r\n 27 # c_model = ct.convert(model, inputs=[ct.TensorType(shape=input_shape, name=input_name)], pass_pipeline=pipeline, source='tensorflow')\r\n 28 \r\n 29 \r\n (...)\r\n 34 \r\n 35 # c_model = ct.convert(model, inputs=[ct.TensorType(shape=input_shape, name=input_name)], pass_pipeline=pipeline, source='tensorflow')\r\n---> 36 fpn_model = ct.convert(fpn_mdl, inputs=[ct.TensorType(shape=input_shape1, name=input_name), ct.TensorType(shape=input_shape2, name=input_name1), ct.TensorType(shape=input_shape3, name=input_name2)], source='tensorflow')\r\n 39 # # out = fpn\r\n 40 \r\n 41 # features = [SSH(out_ch=out_ch, wd=wd, name=f'SSH_{i}')(f)\r\n (...)\r\n 70 \r\n 71 # model_after_extractor = Model(fpn, out)\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/_converters_entry.py:492, in convert(model, source, inputs, outputs, classifier_config, minimum_deployment_target, convert_to, compute_precision, skip_model_load, compute_units, package_dir, debug, pass_pipeline)\r\n 489 if specification_version is None:\r\n 490 specification_version = _set_default_specification_version(exact_target)\r\n--> 492 mlmodel = mil_convert(\r\n 493 model,\r\n 494 convert_from=exact_source,\r\n 495 convert_to=exact_target,\r\n 496 inputs=inputs,\r\n 497 outputs=outputs_as_tensor_or_image_types, # None or list[ct.ImageType/ct.TensorType]\r\n 498 classifier_config=classifier_config,\r\n 499 skip_model_load=skip_model_load,\r\n 500 compute_units=compute_units,\r\n 501 package_dir=package_dir,\r\n 502 debug=debug,\r\n 503 specification_version=specification_version,\r\n 504 main_pipeline=pass_pipeline,\r\n 505 )\r\n 507 if exact_target == 'milinternal':\r\n 508 return mlmodel # Returns the MIL program\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/converter.py:188, in mil_convert(model, convert_from, convert_to, compute_units, **kwargs)\r\n 149 @_profile\r\n 150 def mil_convert(\r\n 151 model,\r\n (...)\r\n 155 **kwargs\r\n 156 ):\r\n 157 \"\"\"\r\n 158 Convert model from a specified frontend `convert_from` to a specified\r\n 159 converter backend `convert_to`.\r\n (...)\r\n 186 See `coremltools.converters.convert`\r\n 187 \"\"\"\r\n--> 188 return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/converter.py:212, in _mil_convert(model, convert_from, convert_to, registry, modelClass, compute_units, **kwargs)\r\n 209 weights_dir = _tempfile.TemporaryDirectory()\r\n 210 kwargs[\"weights_dir\"] = weights_dir.name\r\n--> 212 proto, mil_program = mil_convert_to_proto(\r\n 213 model,\r\n 214 convert_from,\r\n 215 convert_to,\r\n 216 registry,\r\n 217 **kwargs\r\n 218 )\r\n 220 _reset_conversion_state()\r\n 222 if convert_to == 'milinternal':\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/converter.py:285, in mil_convert_to_proto(model, convert_from, convert_to, converter_registry, main_pipeline, **kwargs)\r\n 280 frontend_pipeline, backend_pipeline = _construct_other_pipelines(\r\n 281 main_pipeline, convert_from, convert_to\r\n 282 )\r\n 284 frontend_converter = frontend_converter_type()\r\n--> 285 prog = frontend_converter(model, **kwargs)\r\n 286 PipelineManager.apply_pipeline(prog, frontend_pipeline)\r\n 288 PipelineManager.apply_pipeline(prog, main_pipeline)\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/converter.py:98, in TensorFlow2Frontend.__call__(self, *args, **kwargs)\r\n 95 from .frontend.tensorflow2.load import TF2Loader\r\n 97 tf2_loader = TF2Loader(*args, **kwargs)\r\n---> 98 return tf2_loader.load()\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/load.py:82, in TFLoader.load(self)\r\n 75 dot_string = self._tf_ssa.get_dot_string(\r\n 76 annotation=True, name_and_op_style=True, highlight_debug_nodes=[]\r\n 77 )\r\n 78 graphviz.Source(dot_string).view(\r\n 79 filename=\"/tmp/ssa_before_tf_passes\", cleanup=True\r\n 80 )\r\n---> 82 program = self._program_from_tf_ssa()\r\n 83 logger.debug(\"program:\\n{}\".format(program))\r\n 84 return program\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow2/load.py:210, in TF2Loader._program_from_tf_ssa(self)\r\n 203 self._run_tf_ssa_passes()\r\n 204 converter = TF2Converter(\r\n 205 tfssa=self._tf_ssa,\r\n 206 inputs=self.kwargs[\"inputs\"],\r\n 207 outputs=self.kwargs[\"outputs\"],\r\n 208 opset_version=self.kwargs[\"specification_version\"],\r\n 209 )\r\n--> 210 return converter.convert()\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/converter.py:465, in TFConverter.convert(self)\r\n 463 for g_name in self.graph_stack[1:]:\r\n 464 self.context.add_graph(g_name, self.tfssa.functions[g_name].graph)\r\n--> 465 self.convert_main_graph(prog, graph)\r\n 466 return prog\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/converter.py:389, in TFConverter.convert_main_graph(self, prog, graph)\r\n 387 input_var = mb.cast(x=input_var, dtype=\"fp32\", name=name)\r\n 388 self.context.add(name, input_var)\r\n--> 389 outputs = convert_graph(self.context, graph, self.output_names)\r\n 390 ssa_func.set_outputs(outputs)\r\n 391 prog.add_function(\"main\", ssa_func)\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/convert_utils.py:191, in convert_graph(context, graph, outputs)\r\n 187 msg = \"Conversion for TF op '{0}' not implemented.\\n \\n{1}\".format(\r\n 188 node.op, node.original_node\r\n 189 )\r\n 190 raise NotImplementedError(msg)\r\n--> 191 add_op(context, node)\r\n 193 if len(node.outputs) > 0:\r\n 194 # set_global / get_global / NoOp has no direct consumer / outputs\r\n 195 x = context[node.name]\r\n\r\nFile ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/ops.py:2584, in ResizeNearestNeighbor(context, node)\r\n 2580 Hout, Wout = None, None\r\n 2581 if context[node.inputs[1]].val is None:\r\n 2582 # for the dynamic input shape case,\r\n 2583 # context[node.inputs[1]] is a mul(x=input_shape, y=scaling_factor) op.\r\n-> 2584 scaling_factor_h = context[node.inputs[1]].op.y.val[0]\r\n 2585 scaling_factor_w = context[node.inputs[1]].op.y.val[1]\r\n 2586 else:\r\n\r\nAttributeError: 'concat' object has no attribute 'y'\r\n```", "Hi, @N-Harish, thanks for giving us more information and context, this definitely helps. In your example, \"ConvUnit\" seems to be defined outside of this script -- as such I'm running into that issue instead. How are you defining ConvUnit? it doesn't seem to be part of the imports.", "Hi @pkgoogle Sorry I forgot to add Code for ConvUnit. I've added it now in the same form above", "@N-Harish, just realized you provided the answer above... TFLite doesn't support dynamic input shapes currently, this is because it is hard to support simultaneously while being very efficient in memory and latency, which runs counter to TFLite's design principles. As such we do not plan to support it in the near future. If you can change your use case to just use static input shapes it should work fine. (This might require standardizing input shapes depending on your dataset). Apologies this is probably not the resolution you are looking for. Please feel free to close the issue as not planned if you have no more open items regarding this.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60703\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60703\">No</a>\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60703\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60703\">No</a>\n" ]
2023-05-25T06:27:39
2023-06-21T10:08:23
2023-06-21T10:08:21
NONE
null
null
null
# Issue I have model that is trained in tensorflow 2.x. The model works perfectly with tensorflow, openvino and onnxruntime format but doesn;t get converted in coreml. The model inference is perfect in tensorflow but when I try to convert it into coreml format I get the following error. ``` --------------------------------------------------------------------------- InvalidArgumentError Traceback (most recent call last) File ~/SageMaker/envs/coreml_env/lib64/python3.8/site-packages/tensorflow/python/framework/importer.py:496, in _import_graph_def_internal(graph_def, input_map, return_elements, validate_colocation_constraints, name, producer_op_list) 495 try: --> 496 results = c_api.TF_GraphImportGraphDefWithResults( 497 graph._c_graph, serialized, options) # pylint: disable=protected-access 498 results = c_api_util.ScopedTFImportGraphDefResults(results) InvalidArgumentError: Input 0 of node Model1/FPN/FPN1/bn/AssignNewValue was passed float from Model1/FPN/FPN1/bn/FusedBatchNormV3/ReadVariableOp/resource:0 incompatible with expected resource. During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) Cell In[15], line 13 6 width = 256 8 input_shape = ct.Shape(shape=(ct.RangeDim(lower_bound=1, upper_bound=-1), 9 ct.RangeDim(lower_bound=height, upper_bound=1024), 10 ct.RangeDim(lower_bound=width, upper_bound=1024), 11 3)) ---> 13 c_model = ct.convert(model, inputs=[ct.TensorType(shape=input_shape, name=input_name)], source='tensorflow') ``` # Source Code Here is the source code for loading and converting the model in coreml format ```import tensorflow as tf Import coremltools as ct model_pth = "./temp_with_weights_model.h5" model = tf.keras.models.load_model(model_pth) print(ct.__version__) input_name = model.inputs[0].name height = 256 width = 256 input_shape = ct.Shape(shape=(ct.RangeDim(lower_bound=1, upper_bound=-1), ct.RangeDim(lower_bound=height, upper_bound=1024), ct.RangeDim(lower_bound=width, upper_bound=1024), 3)) c_model = ct.convert(model, inputs=[ct.TensorType(shape=input_shape, name=input_name)], source='tensorflow') ```
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60703/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60703/timeline
null
not_planned
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60702
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60702/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60702/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60702/events
https://github.com/tensorflow/tensorflow/issues/60702
1,724,984,826
I_kwDOArmXAs5m0S36
60,702
same Error as #35100 --W tensorflow/core/kernels/data/generator_dataset_op.cc:107] Error occurred when finalizing GeneratorDataset iterator: Failed precondition: Python interpreter state is not initialized. The process may be terminated. [[{{node PyFunc}}]]
{ "login": "AnwarsaeedDMU", "id": 76510005, "node_id": "MDQ6VXNlcjc2NTEwMDA1", "avatar_url": "https://avatars.githubusercontent.com/u/76510005?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AnwarsaeedDMU", "html_url": "https://github.com/AnwarsaeedDMU", "followers_url": "https://api.github.com/users/AnwarsaeedDMU/followers", "following_url": "https://api.github.com/users/AnwarsaeedDMU/following{/other_user}", "gists_url": "https://api.github.com/users/AnwarsaeedDMU/gists{/gist_id}", "starred_url": "https://api.github.com/users/AnwarsaeedDMU/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AnwarsaeedDMU/subscriptions", "organizations_url": "https://api.github.com/users/AnwarsaeedDMU/orgs", "repos_url": "https://api.github.com/users/AnwarsaeedDMU/repos", "events_url": "https://api.github.com/users/AnwarsaeedDMU/events{/privacy}", "received_events_url": "https://api.github.com/users/AnwarsaeedDMU/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1548890241, "node_id": "MDU6TGFiZWwxNTQ4ODkwMjQx", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%201.15", "name": "TF 1.15", "color": "e99695", "default": false, "description": "for issues seen on TF 1.15" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @AnwarsaeedDMU ,\r\n\r\nCurrently we are not supporting TF 1.x versions. Could you please migrate to TF2.x versions using the migration [guide](https://www.tensorflow.org/guide/migrate) and then report the issue with the changed code.\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60702\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60702\">No</a>\n" ]
2023-05-25T02:33:48
2023-06-11T02:11:52
2023-06-11T02:11:50
NONE
null
null
null
I am reproducing the [code](https://github.com/weizhepei/CasRel) , I followed there requirement but when code reached to 44/100 epoch I got this error : `2023-05-24 06:42:29.554799: W tensorflow/core/kernels/data/generator_dataset_op.cc:107] Error occurred when finalizing GeneratorDataset iterator: Failed precondition: Python interpreter state is not initialized. The process may be terminated. [[{{node PyFunc}}]]`. I tried to to update tensorflow but it stop working because of keras version. Code requirements: `Package Version -------------------------------- --------- absl-py 1.4.0 astor 0.8.1 certifi 2022.12.7 charset-normalizer 3.1.0 colorama 0.4.6 filelock 3.12.0 fsspec 2023.1.0 gast 0.5.3 google-pasta 0.2.0 grpcio 1.51.3 h5py 3.8.0 huggingface-hub 0.14.1 idna 3.4 importlib-metadata 6.0.0 joblib 1.2.0 Keras 2.2.4 Keras-Applications 1.0.8 keras-bert 0.80.0 keras-embed-sim 0.10.0 keras-layer-normalization 0.16.0 keras-multi-head 0.29.0 keras-pos-embd 0.13.0 keras-position-wise-feed-forward 0.8.0 Keras-Preprocessing 1.1.2 keras-self-attention 0.51.0 keras-transformer 0.33.0 Markdown 3.4.1 MarkupSafe 2.1.2 mock 5.0.1 numpy 1.21.6 packaging 23.1 pip 22.3.1 protobuf 3.20.1 PyYAML 6.0 regex 2023.5.5 requests 2.31.0 scikit-learn 1.0.2 scipy 1.7.3 setuptools 65.6.3 six 1.16.0 sklearn 0.0.post5 tensorboard 1.13.1 tensorflow-estimator 1.13.0 tensorflow-gpu 1.13.1 termcolor 2.2.0 threadpoolctl 3.1.0 tokenizers 0.13.3 torch 1.13.1 tqdm 4.65.0 transformers 4.29.2 typing_extensions 4.5.0 urllib3 2.0.2 Werkzeug 2.2.3 wheel 0.38.4 wincertstore 0.2 wrapt 1.15.0 zipp 3.15.0 ` and run.py code is: `#! -*- coding:utf-8 -*- from data_loader import data_generator, load_data from model import E2EModel, Evaluate from utils import extract_items, get_tokenizer, metric import os, argparse os.environ["CUDA_VISIBLE_DEVICES"] = "1" from keras import backend as K if(K.backend() == 'tensorflow'): import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) #tried these lines too but not useful '''config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True)) sess = tf.compat.v1.Session(config=config)''' parser = argparse.ArgumentParser(description='Model Controller') parser.add_argument('--train', default=True, type=bool, help='to train the HBT model, python run.py --train=True') parser.add_argument('--dataset', default='VKG', type=str, help='specify the dataset from ["NYT","WebNLG","ACE04","NYT10-HRL","NYT11-HRL","Wiki-KBP"]') args = parser.parse_args() if __name__ == '__main__': # pre-trained bert model config bert_model = 'cased_L-12_H-768_A-12' bert_config_path = 'pretrained_bert_models/' + bert_model + '/bert_config.json' bert_vocab_path = 'pretrained_bert_models/' + bert_model + '/vocab.txt' bert_checkpoint_path = 'pretrained_bert_models/' + bert_model + '/bert_model.ckpt' dataset = args.dataset train_path = 'data/' + dataset + '/train_triples.json' dev_path = 'data/' + dataset + '/dev_triples.json' #test_path = 'data/' + dataset + '/test_split_by_num/test_triples_5.json' # ['1','2','3','4','5'] #test_path = 'data/' + dataset + '/test_split_by_type/test_triples_seo.json' # ['normal', 'seo', 'epo'] test_path = 'data/' + dataset + '/test_triples.json' # overall test rel_dict_path = 'data/' + dataset + '/rel2id.json' save_weights_path = 'saved_weights/' + dataset + '/best_model.weights' LR = 1e-5 tokenizer = get_tokenizer(bert_vocab_path) train_data, dev_data, test_data, id2rel, rel2id, num_rels = load_data(train_path, dev_path, test_path, rel_dict_path) subject_model, object_model, hbt_model = E2EModel(bert_config_path, bert_checkpoint_path, LR, num_rels) if args.train: BATCH_SIZE = 6 EPOCH = 100 MAX_LEN = 100 STEPS = len(train_data) // BATCH_SIZE data_manager = data_generator(train_data, tokenizer, rel2id, num_rels, MAX_LEN, BATCH_SIZE) evaluator = Evaluate(subject_model, object_model, tokenizer, id2rel, dev_data, save_weights_path) hbt_model.fit_generator(data_manager.__iter__(), steps_per_epoch=STEPS, epochs=EPOCH, callbacks=[evaluator] ) else: hbt_model.load_weights(save_weights_path) test_result_path = 'results/' + dataset + '/test_result.json' isExactMatch = True if dataset == 'Wiki-KBP' else False if isExactMatch: print("Exact Match") else: print("Partial Match") precision, recall, f1_score = metric(subject_model, object_model, test_data, id2rel, tokenizer, isExactMatch, test_result_path) print(f'{precision}\t{recall}\t{f1_score}') ` #35100
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60702/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60702/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60701
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60701/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60701/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60701/events
https://github.com/tensorflow/tensorflow/pull/60701
1,724,887,264
PR_kwDOArmXAs5RS7--
60,701
[TOSA] bug fix convert-tfl-uint8 and TFL Cast legalization
{ "login": "Tai78641", "id": 6504206, "node_id": "MDQ6VXNlcjY1MDQyMDY=", "avatar_url": "https://avatars.githubusercontent.com/u/6504206?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Tai78641", "html_url": "https://github.com/Tai78641", "followers_url": "https://api.github.com/users/Tai78641/followers", "following_url": "https://api.github.com/users/Tai78641/following{/other_user}", "gists_url": "https://api.github.com/users/Tai78641/gists{/gist_id}", "starred_url": "https://api.github.com/users/Tai78641/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tai78641/subscriptions", "organizations_url": "https://api.github.com/users/Tai78641/orgs", "repos_url": "https://api.github.com/users/Tai78641/repos", "events_url": "https://api.github.com/users/Tai78641/events{/privacy}", "received_events_url": "https://api.github.com/users/Tai78641/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 1169365682, "node_id": "MDU6TGFiZWwxMTY5MzY1Njgy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L", "name": "size:L", "color": "adafea", "default": false, "description": "CL Change Size: Large" } ]
open
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "reworked per review comment, and rebased.", "Hi @Tai78641 Can you please resolve conflicts? Thank you!", "> Hi @Tai78641 Can you please resolve conflicts? Thank you!\r\n\r\nresolved merge conflicts", "resolved merge conflicts", "Hi @Tai78641 Can you please resolve conflicts? Thank you!", "rebased to resolve conflicts", "Hi @rsuderman, Can you please review this PR ? Thank you!", "Hi @jpienaar, Can you please review this PR ? Thank you!", "Hi @jpienaar, Can you please review this PR ? Thank you!", "Hi @jpienaar, Can you please review this PR ? Thank you!", "Hi @jpienaar, Can you please review this PR ? Thank you!", "@NatashaKnk would you review this please?", "Hi @Tai78641 Can you please resolve conflicts? Thank you!", "> Hi @Tai78641 Can you please resolve conflicts? Thank you!\r\n\r\nrebased and resolved conflicts", "Hi @NatashaKnk Can you please review this PR? Thank you!", "Hi @NatashaKnk Can you please review this PR? Thank you!" ]
2023-05-25T00:02:58
2024-06-07T16:07:28
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60701", "html_url": "https://github.com/tensorflow/tensorflow/pull/60701", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60701.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60701.patch", "merged_at": null }
1. refactor convert-tfl-uint8 transform and applies the ui8 fix to rest of the transform (instead of only to the bb arg tensors) 2. fix tfl.cast legalization to take care of when input types have non-0 zero points 3. fix tfl.argmin legalization for input/output types with non-0 zero points 4. add tests and checks for above cast/argmin for ui8 and non-zero quantized type
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60701/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60701/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60700
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60700/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60700/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60700/events
https://github.com/tensorflow/tensorflow/pull/60700
1,724,847,851
PR_kwDOArmXAs5RSzZC
60,700
[TOSA] Update tfl.mean legalization to match the new reference kernel behaviour
{ "login": "psunn", "id": 55463253, "node_id": "MDQ6VXNlcjU1NDYzMjUz", "avatar_url": "https://avatars.githubusercontent.com/u/55463253?v=4", "gravatar_id": "", "url": "https://api.github.com/users/psunn", "html_url": "https://github.com/psunn", "followers_url": "https://api.github.com/users/psunn/followers", "following_url": "https://api.github.com/users/psunn/following{/other_user}", "gists_url": "https://api.github.com/users/psunn/gists{/gist_id}", "starred_url": "https://api.github.com/users/psunn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psunn/subscriptions", "organizations_url": "https://api.github.com/users/psunn/orgs", "repos_url": "https://api.github.com/users/psunn/repos", "events_url": "https://api.github.com/users/psunn/events{/privacy}", "received_events_url": "https://api.github.com/users/psunn/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "@Tessil FYI", "Hi @jpienaar and @rsuderman, please could you help to review when you have time.\r\nThank you!", "Hi @jpienaar / @rsuderman Can you please review this PR ? Thank you!", "Force-pushed the PR feature branch after resolving merge conflicts caused by rebasing.", "> Could you add a test for these changes. Other than that the PR looks good.\r\n\r\nI have add new mlir test for quantized reduce_mean." ]
2023-05-24T23:08:47
2023-08-03T03:54:12
2023-08-03T03:54:12
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60700", "html_url": "https://github.com/tensorflow/tensorflow/pull/60700", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60700.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60700.patch", "merged_at": "2023-08-03T03:54:12" }
This PR updates the quantized REDUCE_MEAN kernel to only use integers. This matches the TFLite reference model in a bit-exact way. (The merged PR:https://github.com/tensorflow/tensorflow/pull/52014 updates the quantized REDUCE_MEAN kernel to only use integers)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60700/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60700/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60699
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60699/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60699/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60699/events
https://github.com/tensorflow/tensorflow/pull/60699
1,724,824,369
PR_kwDOArmXAs5RSuR9
60,699
r2.13 cherry-pick: 517d4ac6925 "Expose `sync()` in checkpoint manager."
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-24T22:37:19
2023-05-26T00:14:06
2023-05-26T00:02:40
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60699", "html_url": "https://github.com/tensorflow/tensorflow/pull/60699", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60699.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60699.patch", "merged_at": "2023-05-26T00:02:40" }
Refer to the original commit: https://github.com/tensorflow/tensorflow/commit/517d4ac69250c48e639e7bf6de982e29d5a4db3f
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60699/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60699/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60698
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60698/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60698/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60698/events
https://github.com/tensorflow/tensorflow/pull/60698
1,724,538,402
PR_kwDOArmXAs5RRvtB
60,698
r2.13 cherry-pick: 803fb0b7a00 "Fix incorrect use of int for dim size"
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-24T18:30:46
2023-05-26T00:14:02
2023-05-26T00:02:16
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60698", "html_url": "https://github.com/tensorflow/tensorflow/pull/60698", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60698.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60698.patch", "merged_at": "2023-05-26T00:02:16" }
Refer to the original commit: https://github.com/tensorflow/tensorflow/commit/803fb0b7a003d80580d2abbc89cb465f51fc0f0a
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60698/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60698/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60697
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60697/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60697/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60697/events
https://github.com/tensorflow/tensorflow/pull/60697
1,724,479,221
PR_kwDOArmXAs5RRi6R
60,697
r2.13 cherry-pick: 9f243084ecd "Rollback of PR #60432 Rollback of PR #60432 because of performance regressions."
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-24T17:45:39
2023-05-26T00:13:58
2023-05-26T00:03:34
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60697", "html_url": "https://github.com/tensorflow/tensorflow/pull/60697", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60697.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60697.patch", "merged_at": "2023-05-26T00:03:34" }
Refer to the original commit: https://github.com/tensorflow/tensorflow/commit/9f243084ecd727d45c9b31a722efd35412a789d9
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60697/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60697/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60696
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60696/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60696/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60696/events
https://github.com/tensorflow/tensorflow/pull/60696
1,724,434,978
PR_kwDOArmXAs5RRZT-
60,696
Use fp32 compute result as the reference for tf32 test in ROCm as MIO…
{ "login": "wenchenvincent", "id": 32376000, "node_id": "MDQ6VXNlcjMyMzc2MDAw", "avatar_url": "https://avatars.githubusercontent.com/u/32376000?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wenchenvincent", "html_url": "https://github.com/wenchenvincent", "followers_url": "https://api.github.com/users/wenchenvincent/followers", "following_url": "https://api.github.com/users/wenchenvincent/following{/other_user}", "gists_url": "https://api.github.com/users/wenchenvincent/gists{/gist_id}", "starred_url": "https://api.github.com/users/wenchenvincent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wenchenvincent/subscriptions", "organizations_url": "https://api.github.com/users/wenchenvincent/orgs", "repos_url": "https://api.github.com/users/wenchenvincent/repos", "events_url": "https://api.github.com/users/wenchenvincent/events{/privacy}", "received_events_url": "https://api.github.com/users/wenchenvincent/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @wenchenvincent Can you please resolve conflicts? Thank you!", "> Hi @wenchenvincent Can you please resolve conflicts? Thank you!\r\n\r\nConflicts resolved. Thanks!" ]
2023-05-24T17:14:17
2023-08-02T06:32:45
2023-08-02T06:32:44
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60696", "html_url": "https://github.com/tensorflow/tensorflow/pull/60696", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60696.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60696.patch", "merged_at": "2023-08-02T06:32:44" }
…pen does not support fp64.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60696/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60696/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60695
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60695/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60695/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60695/events
https://github.com/tensorflow/tensorflow/issues/60695
1,724,434,884
I_kwDOArmXAs5myMnE
60,695
Incorrect gradient after divide operation when result contains inf
{ "login": "drewshark", "id": 128925028, "node_id": "U_kgDOB689ZA", "avatar_url": "https://avatars.githubusercontent.com/u/128925028?v=4", "gravatar_id": "", "url": "https://api.github.com/users/drewshark", "html_url": "https://github.com/drewshark", "followers_url": "https://api.github.com/users/drewshark/followers", "following_url": "https://api.github.com/users/drewshark/following{/other_user}", "gists_url": "https://api.github.com/users/drewshark/gists{/gist_id}", "starred_url": "https://api.github.com/users/drewshark/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/drewshark/subscriptions", "organizations_url": "https://api.github.com/users/drewshark/orgs", "repos_url": "https://api.github.com/users/drewshark/repos", "events_url": "https://api.github.com/users/drewshark/events{/privacy}", "received_events_url": "https://api.github.com/users/drewshark/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @drewshark ,\r\n\r\nThanks for reporting this. I have replicated the reported behaviour and attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/d16754b4df71e7e3242a78a43d11a51e/60965.ipynb) for reference.\r\n\r\nIt seems when 'x2' having '0' then only problem arising. If there is no '0' in 'x2' then the result is expected output only. This behaviour is bit strange for me and needs to be analysed.\r\n\r\nThanks!" ]
2023-05-24T17:14:14
2023-05-30T10:06:04
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf-nightly ### Custom Code Yes ### OS Platform and Distribution Ubuntu 20.04.5 LTS ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? The gradient of `tf.experimental.numpy.divide` or simply `/` operator is incorrect when the division result contains `inf`. See example below, the gradient of `result[0]` with respect to `x1` should be `1/2` instead of `nan`. ### Standalone code to reproduce the issue ```shell import tensorflow as tf import numpy as np x1 = tf.constant([3], dtype=tf.float32) x2 = tf.constant([2, 3, 0, 1], dtype=tf.float32) with tf.GradientTape() as tape: tape.watch(x1) tape.watch(x2) result = tf.experimental.numpy.divide(x1, x2) # or result = x1 / x2 actual_grad = tape.jacobian(result, x1) expected_grad = tf.constant([[1/2], [1/3], [np.inf], [1/1]]) print(actual_grad) print(expected_grad) actual_grad == expected_grad See gist: https://colab.research.google.com/drive/1xbzvQ99nrEehhBabpgCSEiBMSh4qXojR?usp=sharing ``` ### Relevant log output ```shell tf.Tensor( [[nan] [nan] [inf] [nan]], shape=(4, 1), dtype=float32) tf.Tensor( [[0.5 ] [0.33333334] [ inf] [1. ]], shape=(4, 1), dtype=float32) <tf.Tensor: shape=(4, 1), dtype=bool, numpy= array([[False], [False], [ True], [False]])> ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60695/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60695/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60694
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60694/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60694/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60694/events
https://github.com/tensorflow/tensorflow/pull/60694
1,724,424,038
PR_kwDOArmXAs5RRW-Y
60,694
Add missing dependency to //tensorflow/compiler/tests:xla_test for ROCm
{ "login": "wenchenvincent", "id": 32376000, "node_id": "MDQ6VXNlcjMyMzc2MDAw", "avatar_url": "https://avatars.githubusercontent.com/u/32376000?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wenchenvincent", "html_url": "https://github.com/wenchenvincent", "followers_url": "https://api.github.com/users/wenchenvincent/followers", "following_url": "https://api.github.com/users/wenchenvincent/following{/other_user}", "gists_url": "https://api.github.com/users/wenchenvincent/gists{/gist_id}", "starred_url": "https://api.github.com/users/wenchenvincent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wenchenvincent/subscriptions", "organizations_url": "https://api.github.com/users/wenchenvincent/orgs", "repos_url": "https://api.github.com/users/wenchenvincent/repos", "events_url": "https://api.github.com/users/wenchenvincent/events{/privacy}", "received_events_url": "https://api.github.com/users/wenchenvincent/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Could you point me to where //tensorflow/compiler/tests:matrix_solve_op_test_cpu and //tensorflow/compiler/tests:matrix_solve_op_test_cpu_mlir_bridge_test need/import tensorflow.python.platform.sysconfig?\r\n\r\nFrom https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/tests/matrix_solve_op_test.py I don't see any imports of sysconfig\r\n", "> Could you point me to where //tensorflow/compiler/tests:matrix_solve_op_test_cpu and //tensorflow/compiler/tests:matrix_solve_op_test_cpu_mlir_bridge_test need/import tensorflow.python.platform.sysconfig?\r\n> \r\n> From https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/tests/matrix_solve_op_test.py I don't see any imports of sysconfig\r\n\r\nSorry for the confusion. The context was that the recent upstream refactoring made the //tensorflow/compiler/tests:matrix_solve_op_test_cpu test in our ROCm fork fail (https://github.com/ROCmSoftwarePlatform/tensorflow-upstream) due to missing dependency. So I added the fix and would like to upstream. However, I didn't realize that the previous change in this test to disable cublasLt for ROCm (made last year) was never upstreamed. Now I have just added that commit in this PR as well.", "Thanks for the context. Now that this is modifying XLA flags, I don't think that I am the right reviewer. @gbaned Could you find another reviewer for this PR?", "Hi @wenchenvincent Can you please take look on below internal errors. Thank you!\r\n\r\nERROR: Strict deps violations: //tensorflow/compiler/tests:matrix_solve_op_test_cpu\r\n In third_party/tensorflow/compiler/tests/matrix_solve_op_test.py, no direct deps found for imports:\r\n line 26: from tensorflow.python.platform import sysconfig: Module \"tensorflow.python.platform\" not provided by a direct dep\r\n\r\n\r\nUse --define=PYDEPS=<OFF|WARN> to temporarily change how strict deps are enforced.\r\n\r\n\r\n*** Please fix target dependencies. ***\r\n\r\nbuild_cleaner //third_party/tensorflow/compiler/tests:matrix_solve_op_test_cpu" ]
2023-05-24T17:05:59
2023-06-16T12:31:44
2023-06-16T12:31:43
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60694", "html_url": "https://github.com/tensorflow/tensorflow/pull/60694", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60694.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60694.patch", "merged_at": "2023-06-16T12:31:43" }
The following tests needs tensorflow.python.platform.sysconfig //tensorflow/compiler/tests:matrix_solve_op_test_cpu //tensorflow/compiler/tests:matrix_solve_op_test_cpu_mlir_bridge_test
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60694/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60694/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60693
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60693/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60693/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60693/events
https://github.com/tensorflow/tensorflow/pull/60693
1,724,381,395
PR_kwDOArmXAs5RRNyI
60,693
r2.13 cherry-pick: Remove newly added log in execute.cc which impacts performance
{ "login": "venkat2469", "id": 104534215, "node_id": "U_kgDOBjsQxw", "avatar_url": "https://avatars.githubusercontent.com/u/104534215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/venkat2469", "html_url": "https://github.com/venkat2469", "followers_url": "https://api.github.com/users/venkat2469/followers", "following_url": "https://api.github.com/users/venkat2469/following{/other_user}", "gists_url": "https://api.github.com/users/venkat2469/gists{/gist_id}", "starred_url": "https://api.github.com/users/venkat2469/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/venkat2469/subscriptions", "organizations_url": "https://api.github.com/users/venkat2469/orgs", "repos_url": "https://api.github.com/users/venkat2469/repos", "events_url": "https://api.github.com/users/venkat2469/events{/privacy}", "received_events_url": "https://api.github.com/users/venkat2469/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-24T16:36:57
2023-05-26T00:13:55
2023-05-26T00:03:06
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60693", "html_url": "https://github.com/tensorflow/tensorflow/pull/60693", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60693.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60693.patch", "merged_at": "2023-05-26T00:03:06" }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60693/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60693/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60692
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60692/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60692/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60692/events
https://github.com/tensorflow/tensorflow/pull/60692
1,724,300,711
PR_kwDOArmXAs5RQ8IS
60,692
[Tosa] Add legalization of BroadcastTo
{ "login": "Tai78641", "id": 6504206, "node_id": "MDQ6VXNlcjY1MDQyMDY=", "avatar_url": "https://avatars.githubusercontent.com/u/6504206?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Tai78641", "html_url": "https://github.com/Tai78641", "followers_url": "https://api.github.com/users/Tai78641/followers", "following_url": "https://api.github.com/users/Tai78641/following{/other_user}", "gists_url": "https://api.github.com/users/Tai78641/gists{/gist_id}", "starred_url": "https://api.github.com/users/Tai78641/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tai78641/subscriptions", "organizations_url": "https://api.github.com/users/Tai78641/orgs", "repos_url": "https://api.github.com/users/Tai78641/repos", "events_url": "https://api.github.com/users/Tai78641/events{/privacy}", "received_events_url": "https://api.github.com/users/Tai78641/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169365682, "node_id": "MDU6TGFiZWwxMTY5MzY1Njgy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L", "name": "size:L", "color": "adafea", "default": false, "description": "CL Change Size: Large" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Tai78641 Can you please take a look on below internal errors. Thank you!\r\n\r\nTensorFlow crashed, please file a bug on https://github.com/tensorflow/tensorflow/issues with the trace below.\r\n #0 0x0000562cb79c0f6e llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) ()\r\n #1 0x0000562cb79bee29 llvm::sys::RunSignalHandlers() \r\n#29 0x00007f49cbc1d69f clone (/usr/grte/v5/lib64/libc.so.6+0x13969f)\r\nFileCheck error: '<stdin>' is empty.\r\nFileCheck command line: FileCheck /tensorflow/compiler/mlir/tosa/tests/tf-to-tosa-pipeline.mlir\r\n ", "@gbaned I rebased and double checked. tf-to-tosa-pipeline.mlir passes for me.", "@jpienaar I cannot figure out why the Py+CPP Test Suite failures. ", "rebased to use dyn_cast(...) style", "@rsuderman please have a look at this again. thanks", "Hi @Tai78641 Can you please check @jpienaar's comments and keep us posted ? Thank you!", "I had to make some modifications to land. I believe it should still be good but you may need to validate that things are working as intended." ]
2023-05-24T15:49:39
2023-07-24T22:21:20
2023-07-24T21:42:11
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60692", "html_url": "https://github.com/tensorflow/tensorflow/pull/60692", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60692.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60692.patch", "merged_at": "2023-07-24T21:42:11" }
For tf/tfl boradcast-to operator with input and shape where: - shape is compile time constant, and - shape's rank is greater than or equal to input's rank, and - input element type is not complex, and - input element type is not integer whose bitwidth is greater than 32 will convert to tosa operators as follows: 1. if input element type is floating point, add input with constant -0.f of the broadcast shape 2. if input element type is i1, logical-or input with constant 'false' of the broadcast shape 3. if input element type is i32, add input with constant 0 (i32) of the broadcast shape 4. otherwise, cast input to i32, add with constant 0 (i32) of the broadcast shape, and cast back to original element type added tf/tfl lit tests Change-Id: I12302adcf1c791d452a5b5a928e63e5ffcd523bc
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60692/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60692/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60691
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60691/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60691/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60691/events
https://github.com/tensorflow/tensorflow/issues/60691
1,724,122,006
I_kwDOArmXAs5mxAOW
60,691
Support for CUDA 12.0 and 12.1
{ "login": "fwyzard", "id": 4069793, "node_id": "MDQ6VXNlcjQwNjk3OTM=", "avatar_url": "https://avatars.githubusercontent.com/u/4069793?v=4", "gravatar_id": "", "url": "https://api.github.com/users/fwyzard", "html_url": "https://github.com/fwyzard", "followers_url": "https://api.github.com/users/fwyzard/followers", "following_url": "https://api.github.com/users/fwyzard/following{/other_user}", "gists_url": "https://api.github.com/users/fwyzard/gists{/gist_id}", "starred_url": "https://api.github.com/users/fwyzard/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fwyzard/subscriptions", "organizations_url": "https://api.github.com/users/fwyzard/orgs", "repos_url": "https://api.github.com/users/fwyzard/repos", "events_url": "https://api.github.com/users/fwyzard/events{/privacy}", "received_events_url": "https://api.github.com/users/fwyzard/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@fwyzard,\r\nThe latest tensorflow stable version 2.12 is compatible with CUDA 11.8 and cuDNN 8.6. Please take a look at the official document for the tested build [configurations](https://www.tensorflow.org/install/source).\r\n\r\n Going forward for the upcoming releases, tensorflow might move to CUDA 12.0 or higher version. We will announce that information in the mentioned official doc once the next release happens. Thank you!", "> Going forward for the upcoming releases, tensorflow might move to CUDA 12.0 or higher version. We will announce that information in the mentioned official doc once the next release happens.\r\n\r\nHi @tilakrayal, thanks for the answer, even though it's not very helpful for planning ahead :-)", "@fwyzard,\r\nThe Tensorflow nightly moved to CUDA 12 a few days ago. Could you please take a look at this commit [3de4416 2](https://github.com/tensorflow/tensorflow/commit/3de44168950a5972ba4cfa7e3c6cbf4cffa67fe6).\r\n\r\nYou can try to use the latest tf-nightly for immediate use-case and it will be made available from TF 2.15.\r\n\r\nThank you!", "Thank you @tilakrayal , we will start testing it.", "@fwyzard,\r\nThank you and Could you please confirm whether the issue can be closed as the required feature is available in tf-nightly. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60691\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60691\">No</a>\n" ]
2023-05-24T14:21:21
2023-10-13T01:48:46
2023-10-13T01:48:44
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.6.4 ### Custom Code Yes ### OS Platform and Distribution Red Hat Enterprise Linux 8 ### Mobile device _No response_ ### Python version 3.9.14 ### Bazel version 3.7.2 ### GCC/Compiler version 11.2.1 ### CUDA/cuDNN version 12.0.1 / 8.8.0 ### GPU model and memory NVIDIA V100, T4, A100 ### Current Behaviour? According to the documentation, TensorFlow currently supports CUDA 11.8 . Are there plans and maybe a timeline for adding support for CUDA 12.0 or 12.1 ? Many thanks, .Andrea ### Standalone code to reproduce the issue ```shell n/a ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60691/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60691/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60690
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60690/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60690/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60690/events
https://github.com/tensorflow/tensorflow/issues/60690
1,724,046,225
I_kwDOArmXAs5mwtuR
60,690
raise core._status_to_exception(e) from None # pylint: disable=protected-access tensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__IteratorGetNext_output_types_16_device_/job:localhost/replica:0/task:0/device:CPU:0}} Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] [[MultiDeviceIteratorGetNextFromShard]] [[RemoteCall]] [Op:IteratorGetNext]
{ "login": "Pranil51", "id": 96012190, "node_id": "U_kgDOBbkHng", "avatar_url": "https://avatars.githubusercontent.com/u/96012190?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Pranil51", "html_url": "https://github.com/Pranil51", "followers_url": "https://api.github.com/users/Pranil51/followers", "following_url": "https://api.github.com/users/Pranil51/following{/other_user}", "gists_url": "https://api.github.com/users/Pranil51/gists{/gist_id}", "starred_url": "https://api.github.com/users/Pranil51/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Pranil51/subscriptions", "organizations_url": "https://api.github.com/users/Pranil51/orgs", "repos_url": "https://api.github.com/users/Pranil51/repos", "events_url": "https://api.github.com/users/Pranil51/events{/privacy}", "received_events_url": "https://api.github.com/users/Pranil51/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@Pranil51,\r\nCould you please provide the complete reproducible code or the colab gist to analyse the issue in an effective way. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60690\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60690\">No</a>\n" ]
2023-05-24T13:47:10
2023-06-09T02:07:06
2023-06-09T02:07:04
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution google colab ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I was training tf2 model faster_rcnn_resnet50_v1_640x640_coco17_tpu-8 with custom dataset exported from cvat directly as .tfrecord. The data consists of jpeg and png files. Wanted to know the error is about. ### Standalone code to reproduce the issue ```shell !python object_detection/model_main_tf2.py --model_dir=/content/Faster_RCNN/models/rcnn --pipeline_config_path=/content/Faster_RCNN/models/rcnn/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8_colab.config ``` ### Relevant log output ```shell 2023-05-24 13:15:30.719812: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-24 13:15:32.136087: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT /usr/local/lib/python3.10/dist-packages/tensorflow_addons/utils/tfa_eol_msg.py:23: UserWarning: TensorFlow Addons (TFA) has ended development and introduction of new features. TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024. Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). For more information see: https://github.com/tensorflow/addons/issues/2807 warnings.warn( WARNING:tensorflow:There are non-GPU devices in `tf.distribute.Strategy`, not using nccl allreduce. W0524 13:15:35.543571 140193984800576 cross_device_ops.py:1387] There are non-GPU devices in `tf.distribute.Strategy`, not using nccl allreduce. INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:CPU:0',) I0524 13:15:35.573029 140193984800576 mirrored_strategy.py:374] Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:CPU:0',) INFO:tensorflow:Maybe overwriting train_steps: None I0524 13:15:35.576818 140193984800576 config_util.py:552] Maybe overwriting train_steps: None INFO:tensorflow:Maybe overwriting use_bfloat16: False I0524 13:15:35.577034 140193984800576 config_util.py:552] Maybe overwriting use_bfloat16: False WARNING:tensorflow:From /usr/local/lib/python3.10/dist-packages/object_detection/model_lib_v2.py:563: StrategyBase.experimental_distribute_datasets_from_function (from tensorflow.python.distribute.distribute_lib) is deprecated and will be removed in a future version. Instructions for updating: rename to distribute_datasets_from_function W0524 13:15:35.838855 140193984800576 deprecation.py:364] From /usr/local/lib/python3.10/dist-packages/object_detection/model_lib_v2.py:563: StrategyBase.experimental_distribute_datasets_from_function (from tensorflow.python.distribute.distribute_lib) is deprecated and will be removed in a future version. Instructions for updating: rename to distribute_datasets_from_function INFO:tensorflow:Reading unweighted datasets: ['/content/Faster_RCNN/data/train1.tfrecord'] I0524 13:15:35.849479 140193984800576 dataset_builder.py:162] Reading unweighted datasets: ['/content/Faster_RCNN/data/train1.tfrecord'] INFO:tensorflow:Reading record datasets for input file: ['/content/Faster_RCNN/data/train1.tfrecord'] I0524 13:15:35.849788 140193984800576 dataset_builder.py:79] Reading record datasets for input file: ['/content/Faster_RCNN/data/train1.tfrecord'] INFO:tensorflow:Number of filenames to read: 1 I0524 13:15:35.849880 140193984800576 dataset_builder.py:80] Number of filenames to read: 1 WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards. W0524 13:15:35.849966 140193984800576 dataset_builder.py:86] num_readers has been reduced to 1 to match input file shards. WARNING:tensorflow:From /usr/local/lib/python3.10/dist-packages/object_detection/builders/dataset_builder.py:100: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.AUTOTUNE)` instead. If sloppy execution is desired, use `tf.data.Options.deterministic`. W0524 13:15:35.860586 140193984800576 deprecation.py:364] From /usr/local/lib/python3.10/dist-packages/object_detection/builders/dataset_builder.py:100: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.AUTOTUNE)` instead. If sloppy execution is desired, use `tf.data.Options.deterministic`. WARNING:tensorflow:From /usr/local/lib/python3.10/dist-packages/object_detection/builders/dataset_builder.py:235: DatasetV1.map_with_legacy_function (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.map() W0524 13:15:35.890340 140193984800576 deprecation.py:364] From /usr/local/lib/python3.10/dist-packages/object_detection/builders/dataset_builder.py:235: DatasetV1.map_with_legacy_function (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.map() 2023-05-24 13:15:37.925062: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'cond/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1' with dtype int64 and shape [1] [[{{node cond/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1}}]] 2023-05-24 13:15:37.925272: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'cond/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1' with dtype int64 and shape [1] [[{{node cond/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1}}]] 2023-05-24 13:15:37.947883: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'cond_1/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1' with dtype int64 and shape [1] [[{{node cond_1/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1}}]] 2023-05-24 13:15:37.948050: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'cond_1/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1' with dtype int64 and shape [1] [[{{node cond_1/SparseToDense/ParseSingleExample/ParseExample/ParseExampleV2_1}}]] WARNING:tensorflow:From /usr/local/lib/python3.10/dist-packages/tensorflow/python/util/dispatch.py:1176: sparse_to_dense (from tensorflow.python.ops.sparse_ops) is deprecated and will be removed in a future version. Instructions for updating: Create a `tf.sparse.SparseTensor` and use `tf.sparse.to_dense` instead. W0524 13:15:46.278530 140193984800576 deprecation.py:364] From /usr/local/lib/python3.10/dist-packages/tensorflow/python/util/dispatch.py:1176: sparse_to_dense (from tensorflow.python.ops.sparse_ops) is deprecated and will be removed in a future version. Instructions for updating: Create a `tf.sparse.SparseTensor` and use `tf.sparse.to_dense` instead. WARNING:tensorflow:From /usr/local/lib/python3.10/dist-packages/tensorflow/python/util/dispatch.py:1176: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.cast` instead. W0524 13:15:51.640419 140193984800576 deprecation.py:364] From /usr/local/lib/python3.10/dist-packages/tensorflow/python/util/dispatch.py:1176: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.cast` instead. WARNING:tensorflow:From /usr/local/lib/python3.10/dist-packages/object_detection/builders/optimizer_builder.py:124: The name tf.keras.optimizers.SGD is deprecated. Please use tf.keras.optimizers.legacy.SGD instead. W0524 13:15:55.215861 140193984800576 module_wrapper.py:149] From /usr/local/lib/python3.10/dist-packages/object_detection/builders/optimizer_builder.py:124: The name tf.keras.optimizers.SGD is deprecated. Please use tf.keras.optimizers.legacy.SGD instead. 2023-05-24 13:15:55.277454: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_28' with dtype resource [[{{node Placeholder/_28}}]] 2023-05-24 13:15:55.278269: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_26' with dtype resource [[{{node Placeholder/_26}}]] 2023-05-24 13:15:56.001176: W tensorflow/core/framework/dataset.cc:807] Input of GeneratorDatasetOp::Dataset will not be optimized because the dataset does not implement the AsGraphDefInternal() method needed to apply optimizations. 2023-05-24 13:15:56.001868: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype variant [[{{node Placeholder/_0}}]] 2023-05-24 13:15:56.090299: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.090433: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.091018: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.091127: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.091407: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] [[MultiDeviceIteratorGetNextFromShard]] 2023-05-24 13:15:56.091526: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] [[MultiDeviceIteratorGetNextFromShard]] [[RemoteCall]] 2023-05-24 13:15:56.091738: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.092306: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.092737: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.093123: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.093491: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.093866: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.094237: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] Traceback (most recent call last): File "/content/models/research/object_detection/model_main_tf2.py", line 114, in <module> 2023-05-24 13:15:56.095441: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] tf.compat.v1.app.run() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/platform/app.py", line 36, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/usr/local/lib/python3.10/dist-packages/absl/app.py", line 308, in run 2023-05-24 13:15:56.095675: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] [[MultiDeviceIteratorGetNextFromShard]] 2023-05-24 13:15:56.095752: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] [[MultiDeviceIteratorGetNextFromShard]] [[RemoteCall]] _run_main(main, args) File "/usr/local/lib/python3.10/dist-packages/absl/app.py", line 254, in _run_main sys.exit(main(argv)) File "/content/models/research/object_detection/model_main_tf2.py", line 105, in main model_lib_v2.train_loop( File "/usr/local/lib/python3.10/dist-packages/object_detection/model_lib_v2.py", line 605, in train_loop 2023-05-24 13:15:56.096326: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] load_fine_tune_checkpoint( File "/usr/local/lib/python3.10/dist-packages/object_detection/model_lib_v2.py", line 401, in load_fine_tune_checkpoint _ensure_model_is_built(model, input_dataset, unpad_groundtruth_tensors) File "/usr/local/lib/python3.10/dist-packages/object_detection/model_lib_v2.py", line 161, in _ensure_model_is_built features, labels = iter(input_dataset).next() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/distribute/input_lib.py", line 570, in next 2023-05-24 13:15:56.096794: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] return self.__next__() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/distribute/input_lib.py", line 574, in __next__ 2023-05-24 13:15:56.097219: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] return self.get_next() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/distribute/input_lib.py", line 631, in get_next return self._get_next_no_partial_batch_handling(name) File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/distribute/input_lib.py", line 663, in _get_next_no_partial_batch_handling replicas.extend(self._iterators[i].get_next_as_list(new_name)) File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/distribute/input_lib.py", line 1633, in get_next_as_list 2023-05-24 13:15:56.097823: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] return self._format_data_list_with_options(self._iterator.get_next()) File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py", line 554, in get_next 2023-05-24 13:15:56.098329: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] result.append(self._device_iterators[i].get_next()) File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/data/ops/iterator_ops.py", line 850, in get_next 2023-05-24 13:15:56.098798: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] return self._next_internal() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/data/ops/iterator_ops.py", line 780, in _next_internal 2023-05-24 13:15:56.099547: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] ret = gen_dataset_ops.iterator_get_next( File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/ops/gen_dataset_ops.py", line 3016, in iterator_get_next 2023-05-24 13:15:56.099617: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.099989: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.100782: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] _ops.raise_from_not_ok_status(e, name) File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/ops.py", line 7262, in raise_from_not_ok_status 2023-05-24 13:15:56.101000: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] raise core._status_to_exception(e) from None # pylint: disable=protected-access tensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__IteratorGetNext_output_types_16_device_/job:localhost/replica:0/task:0/device:CPU:0}} Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] [[MultiDeviceIteratorGetNextFromShard]] [[RemoteCall]] [Op:IteratorGetNext] 2023-05-24 13:15:56.103550: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.103816: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.104496: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.104658: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.105043: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.105429: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.105806: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.106484: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.106894: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.107015: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.107396: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.107756: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.108109: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.108526: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.108955: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.109404: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.109817: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.110237: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.110613: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.110994: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.111395: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.111747: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.112100: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.112497: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.112846: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.113208: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.113573: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.113922: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.114299: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.114678: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.115032: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.115403: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.115763: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.116113: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.116518: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.116873: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.117547: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.117940: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.118389: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.118793: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.119174: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.119549: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.119900: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.120278: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.120634: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.120982: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.121383: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.121736: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.122088: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.203328: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.203989: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.205749: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.206195: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.206597: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.206974: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.207053: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.207429: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.207779: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.208119: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.208490: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.208836: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.209531: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.209609: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.209959: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.210641: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.210715: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.211039: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.211716: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] 2023-05-24 13:15:56.211832: I tensorflow/core/common_runtime/executor.cc:1197] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: Input is empty. [[{{function_node case_cond_cond_jpeg_false_219}}{{node case/cond/cond_jpeg/decode_image/DecodeImage}}]] ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60690/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60690/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60689
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60689/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60689/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60689/events
https://github.com/tensorflow/tensorflow/issues/60689
1,723,896,244
I_kwDOArmXAs5mwJG0
60,689
undefined reference to `cudaGraphDebugDotPrint' when compiling TensorFlow 2.12
{ "login": "ujjwalnur", "id": 130743548, "node_id": "U_kgDOB8r8_A", "avatar_url": "https://avatars.githubusercontent.com/u/130743548?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ujjwalnur", "html_url": "https://github.com/ujjwalnur", "followers_url": "https://api.github.com/users/ujjwalnur/followers", "following_url": "https://api.github.com/users/ujjwalnur/following{/other_user}", "gists_url": "https://api.github.com/users/ujjwalnur/gists{/gist_id}", "starred_url": "https://api.github.com/users/ujjwalnur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ujjwalnur/subscriptions", "organizations_url": "https://api.github.com/users/ujjwalnur/orgs", "repos_url": "https://api.github.com/users/ujjwalnur/repos", "events_url": "https://api.github.com/users/ujjwalnur/events{/privacy}", "received_events_url": "https://api.github.com/users/ujjwalnur/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ujjwalnur ,\r\n\r\nRequest you to confirm the below things.\r\n\r\n1. Command used for the build\r\n2. Can you confirm whether you have followed the instructions [here](https://www.tensorflow.org/install/pip#step-by-step_instructions) mentioned in documentation for enabling GPU setup.\r\n3. Also for Tf 2.12 version recommended CUDA is 11.8, cuDNN is 8.6. You can find the recommended and tested configurations [here](https://www.tensorflow.org/install/source#gpu).\r\n\r\nAlso please test by adding the option `--per_file_copt=//tensorflow/.*\\.cc@-g,-O0` and let us know if it works.\r\n\r\nProviding exact build command and steps followed may help us if above also won't work.\r\n\r\nThanks!", "> Hi @ujjwalnur ,\r\n> \r\n> Request you to confirm the below things.\r\n> \r\n> 1. Command used for the build\r\n> \r\n> 2. Can you confirm whether you have followed the instructions [here](https://www.tensorflow.org/install/pip#step-by-step_instructions) mentioned in documentation for enabling GPU setup.\r\n> \r\n> 3. Also for Tf 2.12 version recommended CUDA is 11.8, cuDNN is 8.6. You can find the recommended and tested configurations [here](https://www.tensorflow.org/install/source#gpu).\r\n> \r\n> \r\n> Also please test by adding the option `--per_file_copt=//tensorflow/.*\\.cc@-g,-O0` and let us know if it works.\r\n> \r\n> Providing exact build command and steps followed may help us if above also won't work.\r\n> \r\n> Thanks!\r\n\r\nCommand used for build : `bazel build --config=opt --config=cuda -k //tensorflow/tools/pip_package:build_pip_package`\r\n\r\nI confirm that all the instructions were followed for enabling GPU setup.\r\n\r\nAfter enabling the option` --per_file_copt=//tensorflow/.*\\.cc@-g,-O0` the code still does not link and gives the following error -\r\n```\r\nERROR: /tmp/tensorflow/tensorflow/BUILD:1219:21: Linking tensorflow/libtensorflow_cc.so.2.12.0 failed: (E\r\nxit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command external/local_config_cuda/cr\r\nosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc @bazel-out/k8-opt/bin/tensorflow/libtensorflow_cc.s\r\no.2.12.0-2.params\r\n/usr/bin/ld: bazel-out/k8-opt/bin/tensorflow/compiler/xla/stream_executor/cuda/libcuda_graph.pic.a(cuda_g\r\nraph.pic.o): in function `stream_executor::gpu::CaptureCudaGraph(stream_executor::Stream*, absl::lts_2022\r\n0623::AnyInvocable<tsl::Status ()>, cudaStreamCaptureMode)':\r\n/proc/self/cwd/tensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc:136: undefined reference to `cu\r\ndaGraphDebugDotPrint'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(propagate_device_id_to_function_args.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(restore_shape_inference.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(set_default_sharding.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(sparse_expansion.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(spmd_expansion.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(tpu_add_resource_device_attribute.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(tpu_integration.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/libdtensor_mlir_passes.pic.lo(undo_merge_const_across_mesh.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/cc/liblayout_to_xla_sharding.pic.a(layout_to_xla_sharding.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/utils/libdtensor_mlir_passes_internal.pic.a(collective_lowering.pic.o):(.debug_aranges+0x6): relocation truncated to fit: R_X86_64_32 against `.debug_info'\r\nbazel-out/k8-opt/bin/tensorflow/dtensor/mlir/utils/libdtensor_mlir_passes_internal.pic.a(dtensor_mlir_passes_internal.pic.o):(.debug_aranges+0x6): additional relocation overflows omitted from the output\r\ncollect2: error: ld returned 1 exit status\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nUse --verbose_failures to see the command lines of failed build steps.\r\nINFO: Elapsed time: 1338.070s, Critical Path: 819.66s\r\nINFO: 15964 processes: 247 internal, 15717 local.\r\nFAILED: Build did NOT complete successfully\r\n```\r\n\r\n\r\n", "I think that the following commit is responsible for the failed build : \r\n\r\n[de4440c2f8d0a84774afdef180d3ae4acab5398a](https://github.com/tensorflow/tensorflow/commit/de4440c2f8d0a84774afdef180d3ae4acab5398a) (For v2.12 branch)\r\n\r\nThe later commit [aae3467d8c5c8ae0a18dbfedecce7b50f2ac5ce7](https://github.com/tensorflow/tensorflow/commit/aae3467d8c5c8ae0a18dbfedecce7b50f2ac5ce7) adds a check for `CUDA version>=12000` but has not been put as part of v2.12 branch\r\n\r\nCan you confirm that these changes need to be merged into v2.12 branch for a proper build ? \r\n\r\nI can confirm that I was able to build v2.11 successfully on CUDA 11.5", "@ujjwalnur ,\r\n\r\nThanks for the information.We have observed build failures with `--config=cuda` and team already working on it.\r\n\r\nI request you to provide the steps on how you have configured the CUDA and cuDNN paths.\r\n", "@SuryanarayanaY \r\nCUDA and cudnn paths were given as base paths to the custom installed paths.\r\n\r\nThese paths were setup using `configure.py` \r\n\r\nThese paths are properly setup. As I have already said, for v2.11 I used the same paths without error as inall the versions since v2. 3", "@SuryanarayanaY Any updates yet on this ? Even some technical explanations would be helpful because then I can take a look into this problem. Since I am a newbie to TF source code, a little help could go a long way.", "@ujjwalnur @SuryanarayanaY \r\nI have the same problem.\r\ntensorflow_version:2.12.0\r\ncuda_version:11.6\r\n[tensorflow-2.12.0/tensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc](https://github.com/tensorflow/tensorflow/blob/v2.12.0/tensorflow/compiler/xla/stream_executor/cuda/cuda_graph.cc)\r\n", "Hi @ujjwalnur ,\r\n\r\nApologies for the delayed response. Could you please confirm the path setting instructions followed by you to enable CUDA and cuDNN paths. Could you please check the Nvidia instructions [here](https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#ubuntu) for same and try the build and let us know the outcome. \r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60689\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60689\">No</a>\n" ]
2023-05-24T12:39:59
2023-08-06T01:48:50
2023-08-06T01:48:38
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12 ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device _No response_ ### Python version 3.9 ### Bazel version 5.3.0 ### GCC/Compiler version 9.4.0 ### CUDA/cuDNN version 11.5/8.3 ### GPU model and memory NVidia RTX A5000 ### Current Behaviour? The error comes during linking. Please see the log output. ### Standalone code to reproduce the issue ```shell I just use the standard bazel build command on TensorFlow website to compile. ``` ### Relevant log output ```shell ERROR: /tmp/tensorflow/tensorflow/BUILD:1219:21: Linking tensorflow/libtensorflow_cc.so.2.12.0 failed: (E xit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command (cd /home/ujjwal/.cache/bazel/_bazel_ujjwal/e5cce820cc082410b4fcc604db349066/execroot/org_tensorflow && \ exec env - \ CUDA_TOOLKIT_PATH=/home/ujjwal/softwares/cuda-11.5 \ GCC_HOST_COMPILER_PATH=/usr/bin/x86_64-linux-gnu-gcc-9 \ LD_LIBRARY_PATH=:/home/ujjwal/softwares/cuda-11.5/lib64:/home/ujjwal/softwares/nccl_2.11.4-1+cuda11.5 _x86_64/lib:/home/ujjwal/softwares/TensorRT-8.2.1.8/lib:/home/ujjwal/softwares/zlib/lib:/home/ujjwal/soft wares/gettext/lib:/home/ujjwal/softwares/curl/lib:/home/ujjwal/softwares/openssl/lib64:/home/ujjwal/softwares/cudnn-8.3.1.22/lib:/home/ujjwal/softwares/cuda-11.5/extras/CUPTI/lib64 \ PATH=/home/ujjwal/.cargo/bin:/home/ujjwal/anaconda3/envs/tf2.12/bin:/home/ujjwal/anaconda3/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/ujjwal/softwares/cuda-11.5/bin:/home/ujjwal/softwares/bazel-5.3.0/bin:/home/ujjwal/softwares/TensorRT-8.2.1.8/bin:/home/ujjwal/softwares/gettext/bin:/home/ujjwal/softwares/git/bin:/home/ujjwal/softwares/curl/bin:/home/ujjwal/softwares/openssl/bin:/home/ujjwal/softwares/neovim \ PWD=/proc/self/cwd \ PYTHON_BIN_PATH=/home/ujjwal/anaconda3/envs/tf2.12/bin/python \ PYTHON_LIB_PATH=/home/ujjwal/anaconda3/envs/tf2.12/lib/python3.9/site-packages \ TF2_BEHAVIOR=1 \ TF_CUDA_COMPUTE_CAPABILITIES=8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6 \ TF_CUDA_PATHS=/home/ujjwal/softwares/nccl_2.11.4-1+cuda11.5_x86_64,/home/ujjwal/softwares/cudnn-8.3.1.22,/home/ujjwal/softwares/cuda-11.5,/home/ujjwal/softwares/TensorRT-8.2.1.8 \ TF_CUDA_VERSION=11.5 \ TF_CUDNN_VERSION=8.3 \ TF_NCCL_VERSION=2.11.4 \ TF_TENSORRT_VERSION=8.2 \ external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc @bazel-out/k8-opt/bin/tensorflow/libtensorflow_cc.so.2.12.0-2.params) # Configuration: c6f4dad0752984ef77f185453bec6416ee82f657120171617f8b93e228363e95 # Execution platform: @local_execution_config_platform//:platform /usr/bin/ld: bazel-out/k8-opt/bin/tensorflow/compiler/xla/stream_executor/cuda/libcuda_graph.pic.a(cuda_graph.pic.o): in function `stream_executor::gpu::CaptureCudaGraph(stream_executor::Stream*, absl::lts_20220623::AnyInvocable<tsl::Status ()>, cudaStreamCaptureMode)': cuda_graph.cc:(.text._ZN15stream_executor3gpu16CaptureCudaGraphEPNS_6StreamEN4absl12lts_2022062312AnyInvocableIFN3tsl6StatusEvEEE21cudaStreamCaptureMode+0x520): undefined reference to `cudaGraphDebugDotPrint' collect2: error: ld returned 1 exit status Target //tensorflow/tools/pip_package:build_pip_package failed to build INFO: Elapsed time: 1323.055s, Critical Path: 476.12s INFO: 24057 processes: 158 internal, 23899 local. FAILED: Build did NOT complete successfully ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60689/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60689/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60688
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60688/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60688/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60688/events
https://github.com/tensorflow/tensorflow/pull/60688
1,723,589,560
PR_kwDOArmXAs5ROgQ1
60,688
Limit typing_extensions to less than 4.6.0 until it works
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1178505529, "node_id": "MDU6TGFiZWwxMTc4NTA1NTI5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/prtype:bugfix", "name": "prtype:bugfix", "color": "159b2e", "default": false, "description": "PR to fix a bug" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "The ARM_CI tests are all failing due to this issue at the moment so it would be good if it could be addressed soon.\r\nThe failing checks, PyLint and Code Check, are pre-existing in the file so are not related to this PR." ]
2023-05-24T09:43:14
2023-08-22T14:08:37
2023-05-26T20:05:42
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60688", "html_url": "https://github.com/tensorflow/tensorflow/pull/60688", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60688.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60688.patch", "merged_at": "2023-05-26T20:05:42" }
There is a unit test failure when run as a pip test with typing_extensions >= 4.6.0 so limit the installed version to below that until the issue is resolved. See #60687
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60688/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60688/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60687
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60687/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60687/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60687/events
https://github.com/tensorflow/tensorflow/issues/60687
1,723,554,005
I_kwDOArmXAs5mu1jV
60,687
typing_extensions >= 4.6.0 causes pip unit test failure
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" } ]
open
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@elfringham,\r\nThe related PR #60688 was merged and as requested the '**typing_extensions >= 3.6.6**', are changed to\r\n '**typing_extensions>=3.6.6,<4.6.0**' with the mentioned merged PR. \r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/pip_package/setup.py#L100.\r\n\r\nCould you please confirm whether changes are reflected as mentioned. Thank you!", "The rough cause of error is [here](https://github.com/tensorflow/tensorflow/blob/f8066222ad6b2edbf1ee359fda66f2b43473dbe7/tensorflow/python/trackable/data_structures.py#L812). The current getattribute for dictwrapper can return TypeError. When an attribute is not found it's instead expected to return AttributeError. Finding place that produces TypeError and replacing it with AttributeError should fix typing extensions incompatibility. typing 4.6 uses inspect.getattr_static which expects that failed attribute access using getattribute only triggers attribute error.\r\n\r\nThis particular error will also be an error if you try to run tensorflow on python 3.12. The typing extensions change was motivated from [here](https://github.com/python/cpython/pull/103034).\r\n\r\nedit: Minimal version of this error is,\r\n\r\n```python\r\nfrom tensorflow.python.trackable.data_structures import _DictWrapper\r\n\r\nt = _DictWrapper()\r\nobject.__getattribute__(t, \"__dict__\")\r\n```\r\nThe last line raises TypeError. On other hand `t.__dict__` properly raises AttributeError. DictWrapper's custom getattribute is rough area that needs bug fix.\r\n\r\nThe error message comes from [here](https://github.com/python/cpython/blob/f90d3f68db720bd6d0deda8cc0030339ccd43858/Objects/typeobject.c#L2871). I've cross posted in cpython side as unsure whether this tensorflow bug or cpython bug.", "FYI folks @AlexWaygood over on typing-extensions thinks this is an issue with wrapt, from https://github.com/python/typing_extensions/issues/216#issuecomment-1574225352 here's @AlexWaygood's message:\r\n\r\nLooks to me like it's probably an issue with wrapt rather than typing_extensions or TensorFlow, actually. We discussed this a bit in https://github.com/python/cpython/issues/105134.\r\n\r\nWrapt raises TypeError if you do object.__getattribute__(<some_wrapt_ObjectProxy_instance, '__dict__'). I know of no way to construct a class using pure Python that has this behaviour (wrapt achieves this behaviour by using a C extension), and it breaks some fundamental assumptions that the stdlib function inspect.getattr_static makes. That, in turn, breaks typing_extensions.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "A consequence of this is that Tensorflow is not compatible with Pydantic V2 due to the restraints on typing_extensions\r\nIs there any roadmap to loosen this?", "The root issue comes more from wrapt then tensorflow and is this [one](https://github.com/GrahamDumpleton/wrapt/issues/231). I think downgrading wrapt version should be enough to work around this until that issue is closed. Specifically I think only wrapt 1.15 (or maybe 1.14+) causes an issue while tensorflow requirement is >1.11. Add an upper bound and we should be fine.\r\n\r\nThis is not ideal long term fix and that is still resolve wrapt issue (or remove wrapt dependency).\r\n\r\nSecond solution is set `WRAPT_DISABLE_EXTENSIONS=true`. wrapt has both c extension and pure python implementation. The former causes the error, while latter works fine.", "Is anything being done to loosen the upper bound on typing-extensions here? This continues to cause issues on macOS.\r\n\r\nI have a Pipfile which includes `pydantic`, `pydantic-settings`, and `tensorflow` as packages. Locking packages with a pre-release flag using pipenv works fine with pre-release tag `2.13.0-rc1`. However I cannot include tensorflow in this project without using the pre-release. Here is the output from pipenv when manually installing the latest pydantic-settings, which indicates that `tensorflow-macos` is the problem which seems to be related to the upperbound of typing-extensions versions here. Everything installs just fine on a Windows OS with the most recent versions of packages and without a pre-release flag. \r\n\r\n```\r\n% pipenv run pip show pydantic-settings \r\n\r\nName: pydantic-settings\r\nVersion: 1.99\r\nSummary: Settings management using Pydantic\r\nHome-page: \r\nAuthor: \r\nAuthor-email: Samuel Colvin <[email protected]>, Eric Jolibois <[email protected]>, Hasan Ramezani <[email protected]>\r\nLicense: The MIT License (MIT)\r\n\r\nCopyright (c) 2022 Samuel Colvin and other contributors\r\n\r\nPermission is hereby granted, free of charge, to any person obtaining a copy\r\nof this software and associated documentation files (the \"Software\"), to deal\r\nin the Software without restriction, including without limitation the rights\r\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\r\ncopies of the Software, and to permit persons to whom the Software is\r\nfurnished to do so, subject to the following conditions:\r\n\r\nThe above copyright notice and this permission notice shall be included in all\r\ncopies or substantial portions of the Software.\r\n\r\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\r\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\r\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\r\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\r\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\r\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\r\nSOFTWARE.\r\nLocation: /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages\r\nRequires: pydantic, python-dotenv\r\nRequired-by: \r\n```\r\n\r\n```\r\n% pipenv run pip install -v pydantic-settings==2.0.2\r\n\r\nUsing pip 23.2.1 from /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/pip (python 3.11)\r\nCollecting pydantic-settings==2.0.2\r\n Obtaining dependency information for pydantic-settings==2.0.2 from https://files.pythonhosted.org/packages/9c/3e/3311eeab406db6116e7f2d4ed9b05c2811282143efa55feb12cc513a8b84/pydantic_settings-2.0.2-py3-none-any.whl.metadata\r\n Downloading pydantic_settings-2.0.2-py3-none-any.whl.metadata (2.9 kB)\r\nCollecting pydantic>=2.0.1 (from pydantic-settings==2.0.2)\r\n Obtaining dependency information for pydantic>=2.0.1 from https://files.pythonhosted.org/packages/87/80/52770e747e4bee5012e60b2684db36c8fdf010f8dadb4ded0efec808b07d/pydantic-2.1.1-py3-none-any.whl.metadata\r\n Downloading pydantic-2.1.1-py3-none-any.whl.metadata (136 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 136.5/136.5 kB 3.1 MB/s eta 0:00:00\r\nRequirement already satisfied: python-dotenv>=0.21.0 in /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages (from pydantic-settings==2.0.2) (1.0.0)\r\nRequirement already satisfied: annotated-types>=0.4.0 in /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages (from pydantic>=2.0.1->pydantic-settings==2.0.2) (0.5.0)\r\nCollecting pydantic-core==2.4.0 (from pydantic>=2.0.1->pydantic-settings==2.0.2)\r\n Obtaining dependency information for pydantic-core==2.4.0 from https://files.pythonhosted.org/packages/32/68/324013cf826ad1f09bce46b01259c2d88607d137e297d213fe7ef225a91f/pydantic_core-2.4.0-cp311-cp311-macosx_11_0_arm64.whl.metadata\r\n Downloading pydantic_core-2.4.0-cp311-cp311-macosx_11_0_arm64.whl.metadata (6.5 kB)\r\nCollecting typing-extensions>=4.6.1 (from pydantic>=2.0.1->pydantic-settings==2.0.2)\r\n Obtaining dependency information for typing-extensions>=4.6.1 from https://files.pythonhosted.org/packages/ec/6b/63cc3df74987c36fe26157ee12e09e8f9db4de771e0f3404263117e75b95/typing_extensions-4.7.1-py3-none-any.whl.metadata\r\n Downloading typing_extensions-4.7.1-py3-none-any.whl.metadata (3.1 kB)\r\nDownloading pydantic_settings-2.0.2-py3-none-any.whl (11 kB)\r\nDownloading pydantic-2.1.1-py3-none-any.whl (370 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 370.9/370.9 kB 11.4 MB/s eta 0:00:00\r\nDownloading pydantic_core-2.4.0-cp311-cp311-macosx_11_0_arm64.whl (1.6 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 31.1 MB/s eta 0:00:00\r\nDownloading typing_extensions-4.7.1-py3-none-any.whl (33 kB)\r\nInstalling collected packages: typing-extensions, pydantic-core, pydantic, pydantic-settings\r\n Attempting uninstall: typing-extensions\r\n Found existing installation: typing_extensions 4.5.0\r\n Uninstalling typing_extensions-4.5.0:\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/__pycache__/typing_extensions.cpython-311.pyc\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/typing_extensions-4.5.0.dist-info/\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/typing_extensions.py\r\n Successfully uninstalled typing_extensions-4.5.0\r\n Attempting uninstall: pydantic-core\r\n Found existing installation: pydantic_core 0.25.0\r\n Uninstalling pydantic_core-0.25.0:\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/pydantic_core-0.25.0.dist-info/\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/pydantic_core/\r\n Successfully uninstalled pydantic_core-0.25.0\r\n Attempting uninstall: pydantic\r\n Found existing installation: pydantic 2.0a3\r\n Uninstalling pydantic-2.0a3:\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/pydantic-2.0a3.dist-info/\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/pydantic/\r\n Successfully uninstalled pydantic-2.0a3\r\n Attempting uninstall: pydantic-settings\r\n Found existing installation: pydantic-settings 1.99\r\n Uninstalling pydantic-settings-1.99:\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/pydantic_settings-1.99.dist-info/\r\n Removing file or directory /Users/user/.local/share/virtualenvs/app-B-pslT81/lib/python3.11/site-packages/pydantic_settings/\r\n Successfully uninstalled pydantic-settings-1.99\r\nERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\ntensorflow-macos 2.13.0 requires typing-extensions<4.6.0,>=3.6.6, but you have typing-extensions 4.7.1 which is incompatible.\r\nSuccessfully installed pydantic-2.1.1 pydantic-core-2.4.0 pydantic-settings-2.0.2 typing-extensions-4.7.1\r\n```", "@tommyzieba You can see from https://github.com/tensorflow/tensorflow/pull/61387 that there is no longer an upper limit on typing-extensions in git HEAD and that this will be picked up by the next release of TensorFlow which will be 2.14.0.", "Is this issue still active? It looks like it is about to cause an issue for [keras-core](https://github.com/keras-team/keras-core) with the 2.14 release, probably other things affected as well.\r\n\r\nhttps://colab.research.google.com/gist/mattdangerw/019d1ebcec746d6f7424248911cf16ae/tf-2-14-bug.ipynb\r\n\r\nMore directly, with keras out of the picture, I think the minimal repro below will cause failures in the tensorflow 2.14 docker images (which have a more recent `typing_extensions`).\r\n\r\n```\r\nfrom tensorflow.python.trackable.data_structures import _DictWrapper\r\n\r\nt = _DictWrapper()\r\nobject.__getattribute__(t, \"__dict__\")\r\n```" ]
2023-05-24T09:25:30
2024-01-25T10:22:34
null
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version git HEAD ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device n/a ### Python version 3.10 ### Bazel version 5.3.0 ### GCC/Compiler version 10.2.1 ### CUDA/cuDNN version n/a ### GPU model and memory n/a ### Current Behaviour? //bazel_pip/tensorflow/python/trackable:data_structures_test will fail with typing_extensions >= 4.6.0 installed when run as a pip test against an installed TensorFlow wheel. ### Standalone code to reproduce the issue ```shell bazel test --build_tests_only --cache_test_results=no --config=mkl_aarch64_threadpool --copt=-flax-vector-conversions --jobs=75 --test_env=TF_ENABLE_ONEDNN_OPTS=1 --test_env=TF2_BEHAVIOR=1 --define=no_tensorflow_py_deps=true --test_lang_filters=py --test_size_filters=small,medium --test_output=errors --verbose_failures=true //bazel_pip/tensorflow/python/trackable:data_structures_test ``` ### Relevant log output ```shell ====================================================================== ERROR: testFunctionCaching (__main__.MappingTests) MappingTests.testFunctionCaching ---------------------------------------------------------------------- Traceback (most recent call last): File "/root/.cache/bazel/_bazel_root/eab0d61a99b6696edb3d2aff87b585e8/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/bazel_pip/tensorflow/python/trackable/data_structures_test.runfiles/org_tensorflow/bazel_pip/tensorflow/python/trackable/data_structures_test.py", line 507, in testFunctionCaching second_trace = f.get_concrete_function( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py", line 1198, in get_concrete_function concrete = self._get_concrete_function_garbage_collected(*args, **kwargs) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py", line 1189, in _get_concrete_function_garbage_collected concrete = self._variable_creation_fn.get_concrete_function( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compiler.py", line 197, in get_concrete_function concrete_function, _ = self._maybe_define_concrete_function(args, kwargs) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compiler.py", line 172, in _maybe_define_concrete_function return self._maybe_define_function(args, kwargs) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compiler.py", line 294, in _maybe_define_function function_type_utils.make_canonicalized_monomorphic_type( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/function_type_utils.py", line 378, in make_canonicalized_monomorphic_type function_type_lib.canonicalize_to_monomorphic( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/core/function/polymorphism/function_type.py", line 481, in canonicalize_to_monomorphic _make_validated_mono_param(name, arg, poly_parameter.kind, File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/core/function/polymorphism/function_type.py", line 421, in _make_validated_mono_param mono_type = trace_type.from_value(value, type_context) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/core/function/trace_type/trace_type_builder.py", line 142, in from_value elif isinstance(value, trace.SupportsTracingProtocol): File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/typing_extensions.py", line 605, in __instancecheck__ val = inspect.getattr_static(instance, attr) File "/usr/lib/python3.8/inspect.py", line 1596, in getattr_static instance_result = _check_instance(obj, attr) File "/usr/lib/python3.8/inspect.py", line 1543, in _check_instance instance_dict = object.__getattribute__(obj, "__dict__") TypeError: this __dict__ descriptor does not support '_DictWrapper' objects ====================================================================== ERROR: testFunctionCaching (__main__.TupleTests) TupleTests.testFunctionCaching ---------------------------------------------------------------------- Traceback (most recent call last): File "/root/.cache/bazel/_bazel_root/eab0d61a99b6696edb3d2aff87b585e8/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/bazel_pip/tensorflow/python/trackable/data_structures_test.runfiles/org_tensorflow/bazel_pip/tensorflow/python/trackable/data_structures_test.py", line 716, in testFunctionCaching second_trace = f.get_concrete_function( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py", line 1198, in get_concrete_function concrete = self._get_concrete_function_garbage_collected(*args, **kwargs) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py", line 1189, in _get_concrete_function_garbage_collected concrete = self._variable_creation_fn.get_concrete_function( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compiler.py", line 197, in get_concrete_function concrete_function, _ = self._maybe_define_concrete_function(args, kwargs) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compiler.py", line 172, in _maybe_define_concrete_function return self._maybe_define_function(args, kwargs) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compiler.py", line 294, in _maybe_define_function function_type_utils.make_canonicalized_monomorphic_type( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/python/eager/polymorphic_function/function_type_utils.py", line 378, in make_canonicalized_monomorphic_type function_type_lib.canonicalize_to_monomorphic( File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/core/function/polymorphism/function_type.py", line 481, in canonicalize_to_monomorphic _make_validated_mono_param(name, arg, poly_parameter.kind, File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/core/function/polymorphism/function_type.py", line 421, in _make_validated_mono_param mono_type = trace_type.from_value(value, type_context) File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/tensorflow/core/function/trace_type/trace_type_builder.py", line 142, in from_value elif isinstance(value, trace.SupportsTracingProtocol): File "/workspace/pip_test/venv_clean/lib/python3.8/site-packages/typing_extensions.py", line 605, in __instancecheck__ val = inspect.getattr_static(instance, attr) File "/usr/lib/python3.8/inspect.py", line 1596, in getattr_static instance_result = _check_instance(obj, attr) File "/usr/lib/python3.8/inspect.py", line 1543, in _check_instance instance_dict = object.__getattribute__(obj, "__dict__") TypeError: this __dict__ descriptor does not support '_TupleWrapper' objects ---------------------------------------------------------------------- Ran 74 tests in 1.021s FAILED (errors=2, skipped=4) ================================================================================ ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60687/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60687/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60686
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60686/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60686/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60686/events
https://github.com/tensorflow/tensorflow/issues/60686
1,723,328,816
I_kwDOArmXAs5mt-kw
60,686
Why does toco convert tf.squeeze to reshape operator?
{ "login": "0-chan-kor", "id": 129029246, "node_id": "U_kgDOB7DUfg", "avatar_url": "https://avatars.githubusercontent.com/u/129029246?v=4", "gravatar_id": "", "url": "https://api.github.com/users/0-chan-kor", "html_url": "https://github.com/0-chan-kor", "followers_url": "https://api.github.com/users/0-chan-kor/followers", "following_url": "https://api.github.com/users/0-chan-kor/following{/other_user}", "gists_url": "https://api.github.com/users/0-chan-kor/gists{/gist_id}", "starred_url": "https://api.github.com/users/0-chan-kor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/0-chan-kor/subscriptions", "organizations_url": "https://api.github.com/users/0-chan-kor/orgs", "repos_url": "https://api.github.com/users/0-chan-kor/repos", "events_url": "https://api.github.com/users/0-chan-kor/events{/privacy}", "received_events_url": "https://api.github.com/users/0-chan-kor/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1661751498, "node_id": "MDU6TGFiZWwxNjYxNzUxNDk4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter", "name": "TFLiteConverter", "color": "bfdadc", "default": false, "description": "For issues related to TFLite converter" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @0-chan-kor, I believe the answer is in the comments actually:\r\n\r\nin https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/toco/graph_transformations/convert_squeeze_to_reshape.cc\r\n```\r\n// Replaces a tf.squeeze operator with a reshape.\r\n// Squeeze removes dimensions == 1 (if in the list of squeeze_dims). This\r\n// means that the data layout will never change with this op, just the shape.\r\n// By converting these to reshapes once we have run shape propagation we allow <--\r\n// standard reshape optimization transforms to do their magic. <--\r\n::tensorflow::Status ConvertSqueezeToReshape::Run(Model* model,\r\n std::size_t op_index,\r\n bool* modified) {\r\n```\r\n\r\nTo paraphrase, \"we are converting them to reshapes so that we can use standard reshape optimization transforms\"\r\n\r\nPlease close if this satiates your curiosity", "The behavior you mentioned, where tf.squeeze() is converted to a reshape operator when using the TOCO (TensorFlow Lite Optimizing Converter) tool, is related to the optimization process performed by TOCO.\r\n\r\nTOCO aims to optimize TensorFlow models for deployment on mobile and embedded devices using TensorFlow Lite. During the conversion process, TOCO applies a set of optimizations to reduce the model size, improve inference speed, and ensure compatibility with the target platform.\r\n\r\nWhen TOCO encounters a tf.squeeze() operation during the conversion, it analyzes the operation and its inputs to determine if the operation can be equivalently represented using a reshape operation. In many cases, the removal of singleton dimensions can be achieved through a reshape operation without changing the behavior of the model.\r\n\r\nBy converting tf.squeeze() to a reshape operator, TOCO can potentially simplify the resulting model graph and eliminate the need for explicit squeeze operations, leading to improved performance or reduced memory requirements in the optimized TensorFlow Lite model.\r\n\r\nIt's important to note that the conversion behavior may vary depending on the specific versions of TensorFlow and TOCO being used. The optimization strategies employed by TOCO can evolve over time as new versions are released.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60686\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60686\">No</a>\n" ]
2023-05-24T07:11:34
2023-06-25T02:14:36
2023-06-25T02:14:34
NONE
null
null
null
### 1. System information - latests tensorflow - mac os (m1) ### 2. Code This may simply be my curiosity and a question for your support. Looking at the kernel-side codes of tflite, it was found that there is a kernel implementation code for the squeeze operator(https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/squeeze.cc ). However, when converting tensorflow to tflite using toco, squeeze is converted to reshape by the function below. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/toco/graph_transformations/convert_squeeze_to_reshape.cc I have a question about this. 1. Are you doing this conversion for some reason, like performance? 2. If not, will this conversion logic be removed from toco so that it can be done later with the squeeze tflite kernel? Thank you. BR, youngchan
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60686/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60686/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60685
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60685/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60685/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60685/events
https://github.com/tensorflow/tensorflow/issues/60685
1,722,912,572
I_kwDOArmXAs5msY88
60,685
Tensorflow model training never started on dual 4090 GPUs
{ "login": "FaisalQarah", "id": 16104499, "node_id": "MDQ6VXNlcjE2MTA0NDk5", "avatar_url": "https://avatars.githubusercontent.com/u/16104499?v=4", "gravatar_id": "", "url": "https://api.github.com/users/FaisalQarah", "html_url": "https://github.com/FaisalQarah", "followers_url": "https://api.github.com/users/FaisalQarah/followers", "following_url": "https://api.github.com/users/FaisalQarah/following{/other_user}", "gists_url": "https://api.github.com/users/FaisalQarah/gists{/gist_id}", "starred_url": "https://api.github.com/users/FaisalQarah/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FaisalQarah/subscriptions", "organizations_url": "https://api.github.com/users/FaisalQarah/orgs", "repos_url": "https://api.github.com/users/FaisalQarah/repos", "events_url": "https://api.github.com/users/FaisalQarah/events{/privacy}", "received_events_url": "https://api.github.com/users/FaisalQarah/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@FaisalQarah,\r\nAs mentioned above I tried to execute the code on tensorflow v2.12 GPU, https://keras.io/guides/distributed_training/ and it was executed without any issue/error. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/7017286ec14e573b4d02a99e7be69bbc/distributed_training.ipynb).\r\n\r\nAlso I request to try to run the basic model and test whether it is executing as expected or not and moreover it doesn't look like the tensorflow issue. Thank you!", "keras code worked (it didn't stuck before training like last time??) and it shows the number of devices is 2. but when i execute the code, nvidia-smi shows that only the the first gpu is being utilized. Also, after the code is finished execution, it doesn't free the gpus vram from data.\r\nWith bert code, when i change the number of gpus flag to 2 it shows that both gpus are 100% utilized but it gets stuck before starting the training at the messages:\r\nINFO:tensorflow:batch_all_reduce: 134 all-reduces with algorithm = nccl, num_packs = 1\r\nI0525 02:47:56.682721 140068259058752 cross_device_ops.py:897] batch_all_reduce: 134 all-reduces with algorithm = nccl, num_packs = 1\r\nINFO:tensorflow:batch_all_reduce: 134 all-reduces with algorithm = nccl, num_packs = 1\r\nI0525 02:47:58.796215 140068259058752 cross_device_ops.py:897] batch_all_reduce: 134 all-reduces with algorithm = nccl, num_packs = 1\r\nalso, there are this weird green tiles shown on my screen even though im using the cpu for displaying ", "@FaisalQarah,\r\n\r\nGenerally a model needs to be big enough in order to profit from GPU acceleration.\r\n\r\nIf you would like a particular operation to run on a device of your choice, you can use `tf.device `to create a device context. For more details please refer to [Use a GPU](https://www.tensorflow.org/guide/gpu)\r\n\r\nAlso to find out which devices your operations and tensors are assigned to, put [tf.debugging.set_log_device_placement](https://www.tensorflow.org/api_docs/python/tf/debugging/set_log_device_placement) as the first statement of your program.\r\n\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60685\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60685\">No</a>\n", "How did you solve it?", "i didn't. I still use each GPU individually. I tried different APIs and\r\napproaches but none of them worked. but on vast.ai i saw people rent their\r\nGPUs and you can see some of them have setup with dual 4090s but not sure\r\nif it work. probably if you use the same docker image that the vast ai\r\nprovide maybe you can use both GPUs with ease. Whenever i need a setup with\r\nmore than 24GB vram, i go and rent an A100-80GB for a couple of weeks and\r\ncontinue my work on my local setup\r\n\r\nOn Mon, Apr 8, 2024 at 11:49 AM JavaZero ***@***.***> wrote:\r\n\r\n> How did you solve it?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/tensorflow/tensorflow/issues/60685#issuecomment-2042203412>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AD23YMYSV44DYSB4S4CUE7LY4JKZRAVCNFSM6AAAAAAYMRKH5OVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDANBSGIYDGNBRGI>\r\n> .\r\n> You are receiving this because you were mentioned.Message ID:\r\n> ***@***.***>\r\n>\r\n" ]
2023-05-23T23:08:14
2024-04-11T23:53:02
2023-06-09T02:07:06
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12 ### Custom Code No ### OS Platform and Distribution Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.10.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 8.9.1.23 ### GPU model and memory dual rtx 4090 ### Current Behaviour? I just plugged my 2nd gpu (a second rtx 4090) into my machine, and when i tried to run the pretraining file for bert (from https://github.com/tensorflow/models/tree/master/official/legacy/bert) and used the flag --num_gpus=2 the training never gets started. with nvidia-smi i see that both gpus are 100% utilized (see below) nvidia-smi Wed May 24 01:41:46 2023 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA Graphics... On | 00000000:01:00.0 Off | Off | | 30% 41C P2 100W / 480W | 23110MiB / 24564MiB | 100% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 1 NVIDIA Graphics... On | 00000000:03:00.0 Off | Off | | 30% 32C P2 114W / 480W | 23110MiB / 24564MiB | 100% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 1681 G /usr/lib/xorg/Xorg 4MiB | | 0 N/A N/A 4311 C ...conda3/envs/p1/bin/python 23102MiB | | 1 N/A N/A 1681 G /usr/lib/xorg/Xorg 4MiB | | 1 N/A N/A 4311 C ...conda3/envs/p1/bin/python 23102MiB | I thought it's something related to a bug in bert code, so i run the test code in https://keras.io/guides/distributed_training/ and still the same issue ### Standalone code to reproduce the issue ```shell %%time # --helpfull \ #pretraining using the modified code (custom encoder) !python run_pretraining.py \ --input_files=tfdataset.tfrecord \ --model_export_path=model_t/ \ --model_dir=test/ \ --train_batch_size=256 \ --num_steps_per_epoch=100 \ --warmup_steps=10000 \ --max_seq_length=32 \ --max_predictions_per_seq=20 \ --num_train_epochs=5 \ --learning_rate=5e-5 \ --num_gpus=2 \ --dtype="fp16" \ --distribution_strategy='mirrored' \ --bert_config_file=config.json also the example from keras distributed training def get_compiled_model(): # Make a simple 2-layer densely-connected neural network. inputs = keras.Input(shape=(784,)) x = keras.layers.Dense(256, activation="relu")(inputs) x = keras.layers.Dense(256, activation="relu")(x) outputs = keras.layers.Dense(10)(x) model = keras.Model(inputs, outputs) model.compile( optimizer=keras.optimizers.Adam(), loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy()], ) return model def get_dataset(): batch_size = 32 num_val_samples = 10000 # Return the MNIST dataset in the form of a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset). (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # Preprocess the data (these are Numpy arrays) x_train = x_train.reshape(-1, 784).astype("float32") / 255 x_test = x_test.reshape(-1, 784).astype("float32") / 255 y_train = y_train.astype("float32") y_test = y_test.astype("float32") # Reserve num_val_samples samples for validation x_val = x_train[-num_val_samples:] y_val = y_train[-num_val_samples:] x_train = x_train[:-num_val_samples] y_train = y_train[:-num_val_samples] return ( tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size), tf.data.Dataset.from_tensor_slices((x_val, y_val)).batch(batch_size), tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size), ) # Create a MirroredStrategy. strategy = tf.distribute.MirroredStrategy() print("Number of devices: {}".format(strategy.num_replicas_in_sync)) # Open a strategy scope. with strategy.scope(): # Everything that creates variables should be under the strategy scope. # In general this is only model construction & `compile()`. model = get_compiled_model() # Train the model on all available devices. train_dataset, val_dataset, test_dataset = get_dataset() model.fit(train_dataset, epochs=2, validation_data=val_dataset) # Test the model on all available devices. model.evaluate(test_dataset) ``` ### Relevant log output ```shell 2023-05-23 01:07:54.058867: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2023-05-23 01:07:54.159458: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-23 01:07:54.687914: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT /home/ffq/miniconda3/envs/p1/lib/python3.9/site-packages/tensorflow_addons/utils/tfa_eol_msg.py:23: UserWarning: TensorFlow Addons (TFA) has ended development and introduction of new features. TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024. Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). For more information see: https://github.com/tensorflow/addons/issues/2807 warnings.warn( 2023-05-23 01:07:55.597896: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.598019: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.651256: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.651429: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.651525: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.651603: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.766196: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.766320: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.766405: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.766481: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.766554: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:55.766626: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.316533: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.316656: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.316746: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.316823: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.316899: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.316971: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22113 MB memory: -> device: 0, name: NVIDIA Graphics Device, pci bus id: 0000:01:00.0, compute capability: 8.9 2023-05-23 01:07:56.326190: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.326286: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 22113 MB memory: -> device: 1, name: NVIDIA Graphics Device, pci bus id: 0000:03:00.0, compute capability: 8.9 INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1') I0523 01:07:56.570175 140068132328512 mirrored_strategy.py:374] Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1') ***** Number of cores used : 2 I0523 01:07:56.570987 140068132328512 run_pretraining.py:161] Training using customized training loop TF 2.0 with distributedstrategy. 2023-05-23 01:07:56.571174: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-23 01:07:56.571318: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 INFO:tensorflow:Mixed precision compatibility check (mixed_float16): OK Your GPUs will likely run quickly with dtype policy mixed_float16 as they all have compute capability of at least 7.0 I0523 01:07:56.571392 140068132328512 device_compatibility_check.py:138] Mixed precision compatibility check (mixed_float16): OK Your GPUs will likely run quickly with dtype policy mixed_float16 as they all have compute capability of at least 7.0 WARNING:tensorflow:From /home/ffq/juptyer files/poem classification/run_pretraining.py:131: run_customized_training_loop (from official.legacy.bert.model_training_utils) is deprecated and will be removed in a future version. Instructions for updating: This function is deprecated and we do not expect adding new functionalities. Please do not have your code depending on this library. W0523 01:07:56.571460 140068132328512 deprecation.py:364] From /home/ffq/juptyer files/poem classification/run_pretraining.py:131: run_customized_training_loop (from official.legacy.bert.model_training_utils) is deprecated and will be removed in a future version. Instructions for updating: This function is deprecated and we do not expect adding new functionalities. Please do not have your code depending on this library. I0523 01:07:56.571495 140068132328512 model_training_utils.py:237] steps_per_loop not specified. Using steps_per_loop=1 2023-05-23 01:07:56.671667: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [1] [[{{node Placeholder/_0}}]] 2023-05-23 01:07:56.671861: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [1] [[{{node Placeholder/_0}}]] WARNING:tensorflow:From /home/ffq/miniconda3/envs/p1/lib/python3.9/site-packages/official/nlp/modeling/models/bert_pretrainer.py:112: Classification.__init__ (from official.nlp.modeling.networks.classification) is deprecated and will be removed in a future version. Instructions for updating: Classification as a network is deprecated. Please use the layers.ClassificationHead instead. W0523 01:07:58.041654 140068132328512 deprecation.py:364] From /home/ffq/miniconda3/envs/p1/lib/python3.9/site-packages/official/nlp/modeling/models/bert_pretrainer.py:112: Classification.__init__ (from official.nlp.modeling.networks.classification) is deprecated and will be removed in a future version. Instructions for updating: Classification as a network is deprecated. Please use the layers.ClassificationHead instead. INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.541763 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.543608 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.544566 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.553987 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.555135 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.565851 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.567800 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.576735 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.577869 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.582341 140068132328512 optimization.py:90] using Adamw optimizer I0523 01:07:58.582492 140068132328512 legacy_adamw.py:56] AdamWeightDecay gradient_clip_norm=1.000000 INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). I0523 01:07:58.623027 140068132328512 cross_device_ops.py:616] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:batch_all_reduce: 206 all-reduces with algorithm = nccl, num_packs = 1 I0523 01:08:00.538303 140068132328512 cross_device_ops.py:897] batch_all_reduce: 206 all-reduces with algorithm = nccl, num_packs = 1 INFO:tensorflow:batch_all_reduce: 206 all-reduces with algorithm = nccl, num_packs = 1 I0523 01:08:04.206143 140068132328512 cross_device_ops.py:897] batch_all_reduce: 206 all-reduces with algorithm = nccl, num_packs = 1 ^C CPU times: user 518 ms, sys: 45.8 ms, total: 564 ms Wall time: 1min 25s below is the output from https://keras.io/guides/distributed_training/ example 2023-05-24 01:35:20.038482: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2023-05-24 01:35:20.058837: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-24 01:35:20.481311: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT 2023-05-24 01:35:20.879778: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:20.879894: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:20.890701: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:20.890833: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:20.890915: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:20.890989: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.014091: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.014198: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.014277: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.014345: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.014412: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.014479: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.426457: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.426574: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.426666: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.426744: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.426817: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.426889: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22113 MB memory: -> device: 0, name: NVIDIA Graphics Device, pci bus id: 0000:01:00.0, compute capability: 8.9 2023-05-24 01:35:21.427385: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:996] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2023-05-24 01:35:21.427462: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 22113 MB memory: -> device: 1, name: NVIDIA Graphics Device, pci bus id: 0000:03:00.0, compute capability: 8.9 INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1') Number of devices: 2 Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11490434/11490434 [==============================] - 69s 6us/step Epoch 1/2 2023-05-24 01:36:32.830263: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype float and shape [50000,784] [[{{node Placeholder/_0}}]] 2023-05-24 01:36:32.830377: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_1' with dtype float and shape [50000] [[{{node Placeholder/_1}}]] 2023-05-24 01:36:32.830894: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:786] AUTO sharding policy will apply DATA sharding policy as it failed to apply FILE sharding policy because of the following reason: Found an unshardable source dataset: name: "TensorSliceDataset/_2" op: "TensorSliceDataset" input: "Placeholder/_0" input: "Placeholder/_1" attr { key: "Toutput_types" value { list { type: DT_FLOAT type: DT_FLOAT } } } attr { key: "_cardinality" value { i: 50000 } } attr { key: "is_files" value { b: false } } attr { key: "metadata" value { s: "\n\024TensorSliceDataset:0" } } attr { key: "output_shapes" value { list { shape { dim { size: 784 } } shape { } } } } attr { key: "replicate_on_split" value { b: false } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_FLOAT } } args { type_id: TFT_TENSOR args { type_id: TFT_FLOAT } } } } } 2023-05-24 01:36:32.881532: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_1' with dtype float and shape [50000] [[{{node Placeholder/_1}}]] 2023-05-24 01:36:32.881664: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_1' with dtype float and shape [50000] [[{{node Placeholder/_1}}]] 2023-05-24 01:36:32.948588: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_1' with dtype float and shape [50000] [[{{node Placeholder/_1}}]] 2023-05-24 01:36:32.948723: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_1' with dtype float and shape [50000] [[{{node Placeholder/_1}}]] INFO:tensorflow:batch_all_reduce: 6 all-reduces with algorithm = nccl, num_packs = 1 INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:batch_all_reduce: 6 all-reduces with algorithm = nccl, num_packs = 1 INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). 2023-05-24 01:36:33.795328: I tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:637] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once. ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60685/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60685/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60684
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60684/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60684/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60684/events
https://github.com/tensorflow/tensorflow/issues/60684
1,722,895,932
I_kwDOArmXAs5msU48
60,684
Tensorflow Object Detection Project
{ "login": "akulthota", "id": 107857492, "node_id": "U_kgDOBm3GVA", "avatar_url": "https://avatars.githubusercontent.com/u/107857492?v=4", "gravatar_id": "", "url": "https://api.github.com/users/akulthota", "html_url": "https://github.com/akulthota", "followers_url": "https://api.github.com/users/akulthota/followers", "following_url": "https://api.github.com/users/akulthota/following{/other_user}", "gists_url": "https://api.github.com/users/akulthota/gists{/gist_id}", "starred_url": "https://api.github.com/users/akulthota/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/akulthota/subscriptions", "organizations_url": "https://api.github.com/users/akulthota/orgs", "repos_url": "https://api.github.com/users/akulthota/repos", "events_url": "https://api.github.com/users/akulthota/events{/privacy}", "received_events_url": "https://api.github.com/users/akulthota/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1105108936, "node_id": "MDU6TGFiZWwxMTA1MTA4OTM2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:model", "name": "comp:model", "color": "0052cc", "default": false, "description": "Model related issues" }, { "id": 4056779777, "node_id": "LA_kwDOArmXAs7xzYwB", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%201.5.0", "name": "TF 1.5.0", "color": "3E74AA", "default": false, "description": "" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "please help", "i beg\r\n", "Hi @akulthota ,\r\n\r\nIt seems the issue is related to tensorflow models. For models we have separate repo. Can you also post the issue [here](https://github.com/tensorflow/models/issues) where our team can have a look into it.\r\n\r\nCould you please confirm the tensorflow version you have used.Also please check whether protobuf is installed and which version it is.You can find the required packages [here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/pip_package/setup.py) needed for TF. \r\n\r\nPlease note that 1.x versions are not supported now. Request you to migrate to 2.x versions and preferably latest versions.\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60684\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60684\">No</a>\n" ]
2023-05-23T22:52:30
2023-06-10T02:01:31
2023-06-10T02:01:28
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf1.x ### Custom Code No ### OS Platform and Distribution Macos Ventura ### Mobile device Macbook air 2020 i3 ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? So i am making an object detection projetc for school and i need help whenever i run this code this is the error that pops up. Please help it is due in a few days I have installed all neccesary modules, i think ### Standalone code to reproduce the issue ```shell #!/usr/bin/env python # coding: utf-8 """ Detect Objects Using Your Webcam ================================ """ # %% # This demo will take you through the steps of running an "out-of-the-box" detection model to # detect objects in the video stream extracted from your camera. # %% # Create the data directory # ~~~~~~~~~~~~~~~~~~~~~~~~~ # The snippet shown below will create the ``data`` directory where all our data will be stored. The # code will create a directory structure as shown bellow: # # .. code-block:: bash # # data # └── models # # where the ``models`` folder will will contain the downloaded models. import os #os.chdir( '/Users/akulthota/Desktop/Object Detection' ) DATA_DIR = os.path.join(os.getcwd(), 'data') MODELS_DIR = os.path.join(DATA_DIR, 'models') for dir in [DATA_DIR, MODELS_DIR]: if not os.path.exists(dir): os.mkdir(dir) # %% # Download the model # ~~~~~~~~~~~~~~~~~~ # The code snippet shown below is used to download the object detection model checkpoint file, # as well as the labels file (.pbtxt) which contains a list of strings used to add the correct # label to each detection (e.g. person). # # The particular detection algorithm we will use is the `SSD ResNet101 V1 FPN 640x640`. More # models can be found in the `TensorFlow 2 Detection Model Zoo <https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md>`_. # To use a different model you will need the URL name of the specific model. This can be done as # follows: # # 1. Right click on the `Model name` of the model you would like to use; # 2. Click on `Copy link address` to copy the download link of the model; # 3. Paste the link in a text editor of your choice. You should observe a link similar to ``download.tensorflow.org/models/object_detection/tf2/YYYYYYYY/XXXXXXXXX.tar.gz``; # 4. Copy the ``XXXXXXXXX`` part of the link and use it to replace the value of the ``MODEL_NAME`` variable in the code shown below; # 5. Copy the ``YYYYYYYY`` part of the link and use it to replace the value of the ``MODEL_DATE`` variable in the code shown below. # # For example, the download link for the model used below is: ``download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_640x640_coco17_tpu-8.tar.gz`` import tarfile import urllib.request # Download and extract model MODEL_DATE = '20200711' MODEL_NAME = 'ssd_resnet101_v1_fpn_640x640_coco17_tpu-8' MODEL_TAR_FILENAME = MODEL_NAME + '.tar.gz' MODELS_DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/tf2/' MODEL_DOWNLOAD_LINK = MODELS_DOWNLOAD_BASE + MODEL_DATE + '/' + MODEL_TAR_FILENAME PATH_TO_MODEL_TAR = os.path.join(MODELS_DIR, MODEL_TAR_FILENAME) PATH_TO_CKPT = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, 'checkpoint/')) PATH_TO_CFG = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, 'pipeline.config')) if not os.path.exists(PATH_TO_CKPT): print('Downloading model. This may take a while... ', end='') urllib.request.urlretrieve(MODEL_DOWNLOAD_LINK, PATH_TO_MODEL_TAR) tar_file = tarfile.open(PATH_TO_MODEL_TAR) tar_file.extractall(MODELS_DIR) tar_file.close() os.remove(PATH_TO_MODEL_TAR) print('Done') # Download labels file LABEL_FILENAME = 'mscoco_label_map.pbtxt' LABELS_DOWNLOAD_BASE = \ 'https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/data/' PATH_TO_LABELS = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, LABEL_FILENAME)) if not os.path.exists(PATH_TO_LABELS): print('Downloading label file... ', end='') import ssl ssl._create_default_https_context = ssl._create_unverified_context urllib.request.urlretrieve(LABELS_DOWNLOAD_BASE + LABEL_FILENAME, PATH_TO_LABELS) print('Done') # %% # Load the model # ~~~~~~~~~~~~~~ # Next we load the downloaded model os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util from object_detection.utils import visualization_utils as viz_utils from object_detection.builders import model_builder tf.get_logger().setLevel('ERROR') # Suppress TensorFlow logging (2) # Enable GPU dynamic memory allocation gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) # Load pipeline config and build a detection model configs = config_util.get_configs_from_pipeline_file(PATH_TO_CFG) model_config = configs['model'] detection_model = model_builder.build(model_config=model_config, is_training=False) # Restore checkpoint ckpt = tf.compat.v2.train.Checkpoint(model=detection_model) ckpt.restore(os.path.join(PATH_TO_CKPT, 'ckpt-0')).expect_partial() @tf.function def detect_fn(image): """Detect objects in image.""" image, shapes = detection_model.preprocess(image) prediction_dict = detection_model.predict(image, shapes) detections = detection_model.postprocess(prediction_dict, shapes) return detections, prediction_dict, tf.reshape(shapes, [-1]) # %% # Load label map data (for plotting) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Label maps correspond index numbers to category names, so that when our convolution network # predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility # functions, but anything that returns a dictionary mapping integers to appropriate string labels # would be fine. category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) # %% # Define the video stream # ~~~~~~~~~~~~~~~~~~~~~~~ # We will use `OpenCV <https://pypi.org/project/opencv-python/>`_ to capture the video stream # generated by our webcam. For more information you can refer to the `OpenCV-Python Tutorials <https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html#capture-video-from-camera>`_ import cv2 cap = cv2.VideoCapture(0) # %% # Putting everything together # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ # The code shown below loads an image, runs it through the detection model and visualizes the # detection results, including the keypoints. # # Note that this will take a long time (several minutes) the first time you run this code due to # tf.function's trace-compilation --- on subsequent runs (e.g. on new images), things will be # faster. # # Here are some simple things to try out if you are curious: # # * Modify some of the input images and see if detection still works. Some simple things to try out here (just uncomment the relevant portions of code) include flipping the image horizontally, or converting to grayscale (note that we still expect the input image to have 3 channels). # * Print out `detections['detection_boxes']` and try to match the box locations to the boxes in the image. Notice that coordinates are given in normalized form (i.e., in the interval [0, 1]). # * Set ``min_score_thresh`` to other values (between 0 and 1) to allow more detections in or to filter out more detections. import numpy as np while True: # Read frame from camera ret, image_np = cap.read() # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) # Things to try: # Flip horizontally # image_np = np.fliplr(image_np).copy() # Convert image to grayscale # image_np = np.tile( # np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8) input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32) detections, predictions_dict, shapes = detect_fn(input_tensor) label_id_offset = 1 image_np_with_detections = image_np.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections, detections['detection_boxes'][0].numpy(), (detections['detection_classes'][0].numpy() + label_id_offset).astype(int), detections['detection_scores'][0].numpy(), category_index, use_normalized_coordinates=True, max_boxes_to_draw=200, min_score_thresh=.30, agnostic_mode=False) # Display output cv2.imshow('object detection', cv2.resize(image_np_with_detections, (800, 600))) if cv2.waitKey(25) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` ### Relevant log output ```shell Traceback (most recent call last): File "/Users/akulthota/Desktop/Object/object_detection_camera.py", line 92, in <module> from object_detection.utils import label_map_util File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/object_detection/utils/label_map_util.py", line 21, in <module> from object_detection.protos import string_int_label_map_pb2 File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/object_detection/protos/string_int_label_map_pb2.py", line 36, in <module> _descriptor.FieldDescriptor( File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/google/protobuf/descriptor.py", line 561, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60684/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60684/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60683
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60683/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60683/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60683/events
https://github.com/tensorflow/tensorflow/issues/60683
1,722,824,957
I_kwDOArmXAs5msDj9
60,683
Migrating T2T fork to TF2.7.4
{ "login": "branko-fathom", "id": 57406628, "node_id": "MDQ6VXNlcjU3NDA2NjI4", "avatar_url": "https://avatars.githubusercontent.com/u/57406628?v=4", "gravatar_id": "", "url": "https://api.github.com/users/branko-fathom", "html_url": "https://github.com/branko-fathom", "followers_url": "https://api.github.com/users/branko-fathom/followers", "following_url": "https://api.github.com/users/branko-fathom/following{/other_user}", "gists_url": "https://api.github.com/users/branko-fathom/gists{/gist_id}", "starred_url": "https://api.github.com/users/branko-fathom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/branko-fathom/subscriptions", "organizations_url": "https://api.github.com/users/branko-fathom/orgs", "repos_url": "https://api.github.com/users/branko-fathom/repos", "events_url": "https://api.github.com/users/branko-fathom/events{/privacy}", "received_events_url": "https://api.github.com/users/branko-fathom/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097545817, "node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis", "name": "comp:apis", "color": "0052cc", "default": false, "description": "Highlevel API related issues" }, { "id": 3531398540, "node_id": "LA_kwDOArmXAs7SfN2M", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.7", "name": "TF 2.7", "color": "77237D", "default": false, "description": "Issues related to TF 2.7.0" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@branko-fathom,\r\nTensorFlow 2 is fundamentally different from TF1.x in several ways. You can still run unmodified TF1.x code ([except for contrib](https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md)) against TF2 binary installations like so.\r\n\r\nAlso please take a look at this official tf1.x to tf2.x migration document for reference.\r\nhttps://www.tensorflow.org/guide/migrate\r\nhttps://www.tensorflow.org/guide/migrate/migrate_tf2\r\n\r\nThank you!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60683\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60683\">No</a>\n" ]
2023-05-23T21:39:58
2023-06-10T02:01:33
2023-06-10T02:01:30
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.7.4 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? My org is looking to migrate our Tensor2Tensor fork from TF1 to TF2.7.4 by the end of June in order to not lose TPU access in GCP. The current plan for our fork is to utilize the `tensorflow.compat.v1` APIs (along with updating `contrib` imports to use `tensorflow_addons` and `tf_slim`) and `tf.disable_v2_behavior()`. Is this all that's required to get t2t working with TF2? ### Standalone code to reproduce the issue ```shell N/A ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60683/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60683/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60682
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60682/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60682/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60682/events
https://github.com/tensorflow/tensorflow/issues/60682
1,722,768,428
I_kwDOArmXAs5mr1ws
60,682
FailedPreconditionError: . is not a directory
{ "login": "Floppa2003", "id": 120779629, "node_id": "U_kgDOBzLzbQ", "avatar_url": "https://avatars.githubusercontent.com/u/120779629?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Floppa2003", "html_url": "https://github.com/Floppa2003", "followers_url": "https://api.github.com/users/Floppa2003/followers", "following_url": "https://api.github.com/users/Floppa2003/following{/other_user}", "gists_url": "https://api.github.com/users/Floppa2003/gists{/gist_id}", "starred_url": "https://api.github.com/users/Floppa2003/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Floppa2003/subscriptions", "organizations_url": "https://api.github.com/users/Floppa2003/orgs", "repos_url": "https://api.github.com/users/Floppa2003/repos", "events_url": "https://api.github.com/users/Floppa2003/events{/privacy}", "received_events_url": "https://api.github.com/users/Floppa2003/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@Floppa2003,\r\nI was facing a different issue while executing the mentioned code on tensorflow v2.12. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/994769068436f60d1fa7f990e16190db/untitled1174.ipynb) and provide the dependencies. \r\n\r\nGenerally the error typically indicates that the system is not in state to execute the operation and requires preconditions to be met before successfully executing current operation.\r\nhttps://www.tensorflow.org/api_docs/python/tf/errors/FailedPreconditionError\r\n\r\n\r\nThank you!", "> @Floppa2003, I was facing a different issue while executing the mentioned code on tensorflow v2.12. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/994769068436f60d1fa7f990e16190db/untitled1174.ipynb) and provide the dependencies. Thank you!\r\n\r\nSorry, I solved the problem already. Turns out that tensorflow doesn't support non-english letters in directory paths.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60682\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60682\">No</a>\n" ]
2023-05-23T20:49:49
2023-05-25T15:13:19
2023-05-24T20:42:11
NONE
null
null
null
Good evening. I am trying to use Hyperband Tuner from keras_tuner, bet when I try to use it I get a FailedPreconditionError while creating the tuner. - **Have I written custom code (as opposed to using a stock example script provided in TensorFlow)**: no - **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: Windows 10* 64-bit - **TensorFlow installed from (source or binary)**: pip install tensorflow in command line - **TensorFlow version (use command below)**: 2.12.0 - **Python version**: 3.11.3 - **Exact command to reproduce**: `import tensorflow as tf import keras_tuner print(tf.version.GIT_VERSION, tf.version.VERSION) def hyperband_objective_autoencoder(): return 1 hyperband_tuner = keras_tuner.Hyperband( hypermodel = hyperband_objective_autoencoder )` Output: `v2.12.0-rc1-12-g0db597d0d75 2.12.0 --------------------------------------------------------------------------- FailedPreconditionError Traceback (most recent call last) Cell In[1], line 8 5 def hyperband_objective_autoencoder(): 6 return 1 ----> 8 hyperband_tuner = keras_tuner.Hyperband( 9 hypermodel = hyperband_objective_autoencoder 10 ) File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\keras_tuner\tuners\hyperband.py:418, in Hyperband.__init__(self, hypermodel, objective, max_epochs, factor, hyperband_iterations, seed, hyperparameters, tune_new_entries, allow_new_entries, max_retries_per_trial, max_consecutive_failed_trials, **kwargs) 391 def __init__( 392 self, 393 hypermodel=None, (...) 404 **kwargs 405 ): 406 oracle = HyperbandOracle( 407 objective, 408 max_epochs=max_epochs, (...) 416 max_consecutive_failed_trials=max_consecutive_failed_trials, 417 ) --> 418 super().__init__(oracle=oracle, hypermodel=hypermodel, **kwargs) File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\keras_tuner\engine\tuner.py:113, in Tuner.__init__(self, oracle, hypermodel, max_model_size, optimizer, loss, metrics, distribution_strategy, directory, project_name, logger, tuner_id, overwrite, executions_per_trial, **kwargs) 105 if hypermodel is None and self.__class__.run_trial is Tuner.run_trial: 106 raise ValueError( 107 "Received `hypermodel=None`. We only allow not specifying " 108 "`hypermodel` if the user defines the search space in " 109 "`Tuner.run_trial()` by subclassing a `Tuner` class without " 110 "using a `HyperModel` instance." 111 ) --> 113 super().__init__( 114 oracle=oracle, 115 hypermodel=hypermodel, 116 directory=directory, 117 project_name=project_name, 118 logger=logger, 119 overwrite=overwrite, 120 **kwargs, 121 ) 123 self.max_model_size = max_model_size 124 self.optimizer = optimizer File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\keras_tuner\engine\base_tuner.py:126, in BaseTuner.__init__(self, oracle, hypermodel, directory, project_name, overwrite, **kwargs) 123 self.tuner_id = os.environ.get("KERASTUNER_TUNER_ID", "tuner0") 125 # Reloading state. --> 126 if not overwrite and tf.io.gfile.exists(self._get_tuner_fname()): 127 tf.get_logger().info( 128 f"Reloading Tuner from {self._get_tuner_fname()}" 129 ) 130 self.reload() File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\keras_tuner\engine\base_tuner.py:473, in BaseTuner._get_tuner_fname(self) 472 def _get_tuner_fname(self): --> 473 return os.path.join(str(self.project_dir), f"{str(self.tuner_id)}.json") File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\keras_tuner\engine\base_tuner.py:464, in BaseTuner.project_dir(self) 461 @property 462 def project_dir(self): 463 dirname = os.path.join(str(self.directory), self.project_name) --> 464 utils.create_directory(dirname) 465 return dirname File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\keras_tuner\utils.py:46, in create_directory(path, remove_existing) 43 def create_directory(path, remove_existing=False): 44 # Create the directory if it doesn't exist. 45 if not tf.io.gfile.exists(path): ---> 46 tf.io.gfile.makedirs(path) 48 # If it does exist, and remove_existing is specified, 49 # the directory will be removed and recreated. 50 elif remove_existing: File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\tensorflow\python\lib\io\file_io.py:513, in recursive_create_dir_v2(path) 501 @tf_export("io.gfile.makedirs") 502 def recursive_create_dir_v2(path): 503 """Creates a directory and all parent/intermediate directories. 504 505 It succeeds if path already exists and is writable. (...) 511 errors.OpError: If the operation fails. 512 """ --> 513 _pywrap_file_io.RecursivelyCreateDir(compat.path_to_bytes(path)) FailedPreconditionError: . is not a directory `
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60682/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60682/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60681
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60681/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60681/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60681/events
https://github.com/tensorflow/tensorflow/pull/60681
1,722,746,896
PR_kwDOArmXAs5RLqPW
60,681
Disabled tensorflow/compiler/xla/tests/fuzz:rand000072.hlo as there i…
{ "login": "wenchenvincent", "id": 32376000, "node_id": "MDQ6VXNlcjMyMzc2MDAw", "avatar_url": "https://avatars.githubusercontent.com/u/32376000?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wenchenvincent", "html_url": "https://github.com/wenchenvincent", "followers_url": "https://api.github.com/users/wenchenvincent/followers", "following_url": "https://api.github.com/users/wenchenvincent/following{/other_user}", "gists_url": "https://api.github.com/users/wenchenvincent/gists{/gist_id}", "starred_url": "https://api.github.com/users/wenchenvincent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wenchenvincent/subscriptions", "organizations_url": "https://api.github.com/users/wenchenvincent/orgs", "repos_url": "https://api.github.com/users/wenchenvincent/repos", "events_url": "https://api.github.com/users/wenchenvincent/events{/privacy}", "received_events_url": "https://api.github.com/users/wenchenvincent/received_events", "type": "User", "site_admin": false }
[ { "id": 1133285679, "node_id": "MDU6TGFiZWwxMTMzMjg1Njc5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla", "name": "comp:xla", "color": "0052cc", "default": false, "description": "XLA" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-23T20:32:49
2023-05-24T18:14:25
2023-05-24T18:14:25
CONTRIBUTOR
null
true
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60681", "html_url": "https://github.com/tensorflow/tensorflow/pull/60681", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60681.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60681.patch", "merged_at": null }
…s no int8 support for ROCm yet.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60681/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60681/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60680
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60680/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60680/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60680/events
https://github.com/tensorflow/tensorflow/pull/60680
1,722,634,758
PR_kwDOArmXAs5RLSCO
60,680
Update setup.py
{ "login": "PATHAKAAKASH19", "id": 118058637, "node_id": "U_kgDOBwlujQ", "avatar_url": "https://avatars.githubusercontent.com/u/118058637?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PATHAKAAKASH19", "html_url": "https://github.com/PATHAKAAKASH19", "followers_url": "https://api.github.com/users/PATHAKAAKASH19/followers", "following_url": "https://api.github.com/users/PATHAKAAKASH19/following{/other_user}", "gists_url": "https://api.github.com/users/PATHAKAAKASH19/gists{/gist_id}", "starred_url": "https://api.github.com/users/PATHAKAAKASH19/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PATHAKAAKASH19/subscriptions", "organizations_url": "https://api.github.com/users/PATHAKAAKASH19/orgs", "repos_url": "https://api.github.com/users/PATHAKAAKASH19/repos", "events_url": "https://api.github.com/users/PATHAKAAKASH19/events{/privacy}", "received_events_url": "https://api.github.com/users/PATHAKAAKASH19/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" }, { "id": 1593512946, "node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid", "name": "invalid", "color": "db6f57", "default": true, "description": "Hacktoberfest spam PR" } ]
closed
true
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60680/checks?check_run_id=13702908276) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "can anyone tell me how many days it will take to merge my pull request.\r\nif i did anything wrong please let me know. I am new to open source. kindly help", "First, this PR has been open for only 19 hours, so https://github.com/tensorflow/tensorflow/pull/60680#issuecomment-1560429577 is early. It mentions \"days\" but it was sent when PR was only 9 hours old.\r\n\r\nSecond, is there an issue this PR tries to fix? I think the badge is displaying correctly.\r\n\r\nThird, please consult [CODE_OF_CONDUCT.md](https://github.com/tensorflow/tensorflow/blob/master/CODE_OF_CONDUCT.md) and [CONTRIBUTING.md](https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md)\r\n\r\nFinally, because this PR is not bringing anything useful, we will just close it.\r\n\r\n" ]
2023-05-23T19:08:14
2023-05-24T14:33:16
2023-05-24T14:33:02
NONE
spam
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60680", "html_url": "https://github.com/tensorflow/tensorflow/pull/60680", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60680.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60680.patch", "merged_at": null }
fixed badge style on setup.py
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60680/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60680/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60679
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60679/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60679/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60679/events
https://github.com/tensorflow/tensorflow/issues/60679
1,722,442,189
I_kwDOArmXAs5mqmHN
60,679
api_compatibility_test fails on Python 3.11
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1104829434, "node_id": "MDU6TGFiZWwxMTA0ODI5NDM0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl", "name": "comp:mkl", "color": "0052cc", "default": false, "description": "MKL related issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" } ]
open
false
{ "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }
[ { "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }, { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @elfringham ,\r\n\r\nI have tested the build on Ubuntu Aarch64 VM and the build failed.Logs are attached below.\r\n\r\n[60679_logs(Aarch build).txt](https://github.com/tensorflow/tensorflow/files/11578566/60679_logs.Aarch.build.txt)\r\n", "@nitins17 , @TensorFlow-MKL \r\n CC- @learning-to-play ", "@SuryanarayanaY Your build environment was not valid which is why it failed. You cannot use a generic Ubuntu AARCH64 VM." ]
2023-05-23T16:40:28
2023-06-29T18:20:02
null
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version git HEAD ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device n/a ### Python version 3.9.16 ### Bazel version 5.3.0 ### GCC/Compiler version 10.2.1 ### CUDA/cuDNN version n/a ### GPU model and memory n/a ### Current Behaviour? //tensorflow/tools/api/tests:api_compatibility_test fails on Python 3.11 See https://github.com/tensorflow/tensorflow/actions/runs/5053005537/jobs/9066419128#step:6:5566 ### Standalone code to reproduce the issue ```shell bazel test --config=mkl_aarch64_threadpool --copt=-flax-vector-conversions --test_env=TF_ENABLE_ONEDNN_OPTS=1 --test_env=TF2_BEHAVIOR=1 --define=tf_api_version=2 --test_lang_filters=py --test_size_filters=small,medium --test_output=errors --verbose_failures=true --test_keep_going --notest_verbose_timeout_warnings --repo_env=PYTHON_BIN_PATH=/home/ubuntu/actions-runner/_work/tensorflow/tensorflow/bazel-ci_build-cache/.venv/tf/bin/python --build_tag_filters=-no_oss,-oss_excluded,-oss_serial,-v1only,-benchmark-test,-no_aarch64,-gpu,-tpu,-no_oss_py38,-no_oss_py39,-no_oss_py310 --test_tag_filters=-no_oss,-oss_excluded,-oss_serial,-v1only,-benchmark-test,-no_aarch64,-gpu,-tpu,-no_oss_py38,-no_oss_py39,-no_oss_py310 --local_test_jobs=64 --build_tests_only -- //tensorflow/... -//tensorflow/compiler/tf2tensorrt/... -//tensorflow/compiler/xrt/... -//tensorflow/core/tpu/... -//tensorflow/go/... -//tensorflow/java/... -//tensorflow/python/integration_testing/... -//tensorflow/tools/toolchains/... -//tensorflow/lite/... -//tensorflow/python/kernel_tests/nn_ops:atrous_conv2d_test -//tensorflow/python/kernel_tests/nn_ops:conv_ops_test -//tensorflow/compiler/mlir/tfr/examples/mnist:mnist_ops_test -//tensorflow/core/grappler/optimizers:auto_mixed_precision_test_cpu -//tensorflow/core/grappler/optimizers:remapper_test_cpu ``` ### Relevant log output ```shell Running tests under Python 3.11.3: /home/ubuntu/actions-runner/_work/tensorflow/tensorflow/bazel-ci_build-cache/.venv/tf/bin/python [ RUN ] ApiCompatibilityTest.testAPIBackwardsCompatibility ERROR:tensorflow:TensorFlow API backwards compatibility test This test ensures all changes to the public API of TensorFlow are intended. If this test fails, it means a change has been made to the public API. Backwards incompatible changes are not allowed. You can run the test as follows to update test goldens and package them with your change. $ bazel run tensorflow/tools/api/tests:api_compatibility_test \ # -- --update_goldens True You will need an API approval to make changes to the public TensorFlow API. This includes additions to the API. E0523 05:00:41.556244 281473269493776 api_compatibility_test.py:370] TensorFlow API backwards compatibility test This test ensures all changes to the public API of TensorFlow are intended. If this test fails, it means a change has been made to the public API. Backwards incompatible changes are not allowed. You can run the test as follows to update test goldens and package them with your change. $ bazel run tensorflow/tools/api/tests:api_compatibility_test \ # -- --update_goldens True You will need an API approval to make changes to the public TensorFlow API. This includes additions to the API. ERROR:tensorflow:1 differences found between API and golden. E0523 05:00:41.556445 281473269493776 api_compatibility_test.py:371] 1 differences found between API and golden. ERROR:tensorflow: Change detected in python object: tensorflow.train. E0523 05:00:41.556506 281473269493776 api_compatibility_test.py:392] Change detected in python object: tensorflow.train. ERROR:tensorflow: path: "tensorflow.train" tf_module { member { name: "BytesList" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "Checkpoint" mtype: "<type \'type\'>" } member { name: "CheckpointManager" mtype: "<type \'type\'>" } member { name: "CheckpointOptions" mtype: "<type \'type\'>" } member { name: "CheckpointView" mtype: "<type \'type\'>" } member { name: "ClusterDef" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "ClusterSpec" mtype: "<type \'type\'>" } member { name: "Coordinator" mtype: "<type \'type\'>" } member { name: "Example" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "ExponentialMovingAverage" mtype: "<type \'type\'>" } member { name: "Feature" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "FeatureList" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "FeatureLists" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "Features" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "FloatList" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "Int64List" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "JobDef" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "SequenceExample" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "ServerDef" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "TrackableView" mtype: "<type \'type\'>" } member { name: "experimental" mtype: "<type \'module\'>" } member_method { name: "checkpoints_iterator" argspec: "args=[\'checkpoint_dir\', \'min_interval_secs\', \'timeout\', \'timeout_fn\'], varargs=None, keywords=None, defaults=[\'0\', \'None\', \'None\'], " } member_method { name: "get_checkpoint_state" argspec: "args=[\'checkpoint_dir\', \'latest_filename\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "latest_checkpoint" argspec: "args=[\'checkpoint_dir\', \'latest_filename\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "list_variables" argspec: "args=[\'ckpt_dir_or_file\'], varargs=None, keywords=None, defaults=None" } member_method { name: "load_checkpoint" argspec: "args=[\'ckpt_dir_or_file\'], varargs=None, keywords=None, defaults=None" } member_method { name: "load_variable" argspec: "args=[\'ckpt_dir_or_file\', \'name\'], varargs=None, keywords=None, defaults=None" } } E0523 05:00:41.556555 281473269493776 api_compatibility_test.py:393] path: "tensorflow.train" tf_module { member { name: "BytesList" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "Checkpoint" mtype: "<type \'type\'>" } member { name: "CheckpointManager" mtype: "<type \'type\'>" } member { name: "CheckpointOptions" mtype: "<type \'type\'>" } member { name: "CheckpointView" mtype: "<type \'type\'>" } member { name: "ClusterDef" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "ClusterSpec" mtype: "<type \'type\'>" } member { name: "Coordinator" mtype: "<type \'type\'>" } member { name: "Example" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "ExponentialMovingAverage" mtype: "<type \'type\'>" } member { name: "Feature" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "FeatureList" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "FeatureLists" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "Features" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "FloatList" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "Int64List" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "JobDef" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "SequenceExample" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "ServerDef" - mtype: "<class \'google.protobuf.internal.python_message.GeneratedProtocolMessageType\'>" ? --------- ^^^ + mtype: "<class \'google.protobuf.pyext.cpp_message.GeneratedProtocolMessageType\'>" ? ++ ^^^^ } member { name: "TrackableView" mtype: "<type \'type\'>" } member { name: "experimental" mtype: "<type \'module\'>" } member_method { name: "checkpoints_iterator" argspec: "args=[\'checkpoint_dir\', \'min_interval_secs\', \'timeout\', \'timeout_fn\'], varargs=None, keywords=None, defaults=[\'0\', \'None\', \'None\'], " } member_method { name: "get_checkpoint_state" argspec: "args=[\'checkpoint_dir\', \'latest_filename\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "latest_checkpoint" argspec: "args=[\'checkpoint_dir\', \'latest_filename\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "list_variables" argspec: "args=[\'ckpt_dir_or_file\'], varargs=None, keywords=None, defaults=None" } member_method { name: "load_checkpoint" argspec: "args=[\'ckpt_dir_or_file\'], varargs=None, keywords=None, defaults=None" } member_method { name: "load_variable" argspec: "args=[\'ckpt_dir_or_file\', \'name\'], varargs=None, keywords=None, defaults=None" } } [ FAILED ] ApiCompatibilityTest.testAPIBackwardsCompatibility INFO:tensorflow:time(__main__.ApiCompatibilityTest.testAPIBackwardsCompatibility): 2.5s ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60679/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60679/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60678
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60678/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60678/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60678/events
https://github.com/tensorflow/tensorflow/pull/60678
1,722,435,780
PR_kwDOArmXAs5RKm_k
60,678
Update dataset.py to be compatible with TF 2.x
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @LukeBoyer Can you please review this PR ? Thank you!\r\n", "looks good to me" ]
2023-05-23T16:35:45
2023-09-28T22:27:24
2023-09-28T22:27:22
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60678", "html_url": "https://github.com/tensorflow/tensorflow/pull/60678", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60678.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60678.patch", "merged_at": "2023-09-28T22:27:22" }
The functions in the `dataset.py` are outdated and deprecated in Tensorflow 2.x. This commit updates the code to be compatible with the latest TF versions by replacing the deprecated functions with their TensorFlow 2.x equivalents. Thanks.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60678/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60678/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60677
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60677/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60677/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60677/events
https://github.com/tensorflow/tensorflow/pull/60677
1,722,399,735
PR_kwDOArmXAs5RKf7z
60,677
[INTEL oneDNN] Remove newly added log in execute.cc which impacts performance
{ "login": "gzmkl", "id": 29215195, "node_id": "MDQ6VXNlcjI5MjE1MTk1", "avatar_url": "https://avatars.githubusercontent.com/u/29215195?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gzmkl", "html_url": "https://github.com/gzmkl", "followers_url": "https://api.github.com/users/gzmkl/followers", "following_url": "https://api.github.com/users/gzmkl/following{/other_user}", "gists_url": "https://api.github.com/users/gzmkl/gists{/gist_id}", "starred_url": "https://api.github.com/users/gzmkl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gzmkl/subscriptions", "organizations_url": "https://api.github.com/users/gzmkl/orgs", "repos_url": "https://api.github.com/users/gzmkl/repos", "events_url": "https://api.github.com/users/gzmkl/events{/privacy}", "received_events_url": "https://api.github.com/users/gzmkl/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "penpornk", "id": 38085909, "node_id": "MDQ6VXNlcjM4MDg1OTA5", "avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4", "gravatar_id": "", "url": "https://api.github.com/users/penpornk", "html_url": "https://github.com/penpornk", "followers_url": "https://api.github.com/users/penpornk/followers", "following_url": "https://api.github.com/users/penpornk/following{/other_user}", "gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}", "starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/penpornk/subscriptions", "organizations_url": "https://api.github.com/users/penpornk/orgs", "repos_url": "https://api.github.com/users/penpornk/repos", "events_url": "https://api.github.com/users/penpornk/events{/privacy}", "received_events_url": "https://api.github.com/users/penpornk/received_events", "type": "User", "site_admin": false }, { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-23T16:14:44
2023-05-23T22:23:25
2023-05-23T22:23:25
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60677", "html_url": "https://github.com/tensorflow/tensorflow/pull/60677", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60677.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60677.patch", "merged_at": "2023-05-23T22:23:25" }
This PR reverts changes (partly) of this recent commit https://github.com/tensorflow/tensorflow/commit/80a4e5f9e4e103f722df3632db88fdb31537bb26 Related ticket is here https://github.com/tensorflow/tensorflow/issues/59779
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60677/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60677/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60676
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60676/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60676/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60676/events
https://github.com/tensorflow/tensorflow/issues/60676
1,722,337,500
I_kwDOArmXAs5mqMjc
60,676
Infinity loop in batch_jacobian for ode
{ "login": "dv-ai", "id": 62331377, "node_id": "MDQ6VXNlcjYyMzMxMzc3", "avatar_url": "https://avatars.githubusercontent.com/u/62331377?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dv-ai", "html_url": "https://github.com/dv-ai", "followers_url": "https://api.github.com/users/dv-ai/followers", "following_url": "https://api.github.com/users/dv-ai/following{/other_user}", "gists_url": "https://api.github.com/users/dv-ai/gists{/gist_id}", "starred_url": "https://api.github.com/users/dv-ai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dv-ai/subscriptions", "organizations_url": "https://api.github.com/users/dv-ai/orgs", "repos_url": "https://api.github.com/users/dv-ai/repos", "events_url": "https://api.github.com/users/dv-ai/events{/privacy}", "received_events_url": "https://api.github.com/users/dv-ai/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 2691123225, "node_id": "MDU6TGFiZWwyNjkxMTIzMjI1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:tf.function", "name": "comp:tf.function", "color": "0052cc", "default": false, "description": "tf.function related issues" }, { "id": 3531398540, "node_id": "LA_kwDOArmXAs7SfN2M", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.7", "name": "TF 2.7", "color": "77237D", "default": false, "description": "Issues related to TF 2.7.0" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@dv-ai,\r\nI tried to execute the code on tensorflow v2.12 & tf-nightly, and it was executed without an infinite loop as mentioned. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/ddea7e0534f153e96e81eebbeb18cc58/untitled1173.ipynb) and also please have a look at an issue with the similar error which is under the developer priority list. Thank you!\r\nhttps://github.com/tensorflow/tensorflow/issues/57343", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60676\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60676\">No</a>\n" ]
2023-05-23T15:42:26
2023-06-09T02:07:13
2023-06-09T02:07:09
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.7.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When executing the computation of batch_jacobian on an ode with experimental_use_pfor=True, the code is stuck in an infinity loop. When experimental_use_pfor=False, the computation working like expected. ### Standalone code to reproduce the issue ```shell import tensorflow as tf import tensorflow_probability as tfp @tf.function def ode_fun(t,x, c): return x * c def compute_grads(solver,experimental_use_pfor): solution_times = tf.constant([1.0]) c = tf.Variable(tf.constant([[1.0],[2.0]])) with tf.GradientTape(watch_accessed_variables=False, persistent=not experimental_use_pfor) as tape: tape.watch(c) result = solver.solve(ode_fun, 0.0, tf.constant([[1.0],[2.0]]), solution_times=solution_times, constants={'c':c}).states[0] grads = tape.batch_jacobian(result,c,experimental_use_pfor=experimental_use_pfor,parallel_iterations=2) return grads def execute(): print(tf.__version__) experimental_use_pfor = True solver = tfp.math.ode.DormandPrince() print(compute_grads(solver,experimental_use_pfor)) execute() ``` ### Relevant log output ```shell The computation never ends. ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60676/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60676/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60675
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60675/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60675/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60675/events
https://github.com/tensorflow/tensorflow/issues/60675
1,722,335,897
I_kwDOArmXAs5mqMKZ
60,675
Infinite loop in batch_jacobian for ode
{ "login": "dv-ai", "id": 62331377, "node_id": "MDQ6VXNlcjYyMzMxMzc3", "avatar_url": "https://avatars.githubusercontent.com/u/62331377?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dv-ai", "html_url": "https://github.com/dv-ai", "followers_url": "https://api.github.com/users/dv-ai/followers", "following_url": "https://api.github.com/users/dv-ai/following{/other_user}", "gists_url": "https://api.github.com/users/dv-ai/gists{/gist_id}", "starred_url": "https://api.github.com/users/dv-ai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dv-ai/subscriptions", "organizations_url": "https://api.github.com/users/dv-ai/orgs", "repos_url": "https://api.github.com/users/dv-ai/repos", "events_url": "https://api.github.com/users/dv-ai/events{/privacy}", "received_events_url": "https://api.github.com/users/dv-ai/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 2691123225, "node_id": "MDU6TGFiZWwyNjkxMTIzMjI1", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:tf.function", "name": "comp:tf.function", "color": "0052cc", "default": false, "description": "tf.function related issues" }, { "id": 3531398540, "node_id": "LA_kwDOArmXAs7SfN2M", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.7", "name": "TF 2.7", "color": "77237D", "default": false, "description": "Issues related to TF 2.7.0" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@dv-ai,\r\nI tried to execute the code on tensorflow v2.12 & tf-nightly, and it was executed without an infinite loop as mentioned. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/ddea7e0534f153e96e81eebbeb18cc58/untitled1173.ipynb) and also please have a look at an issue with the similar error which is under the developer priority list. Thank you!\r\nhttps://github.com/tensorflow/tensorflow/issues/57343", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60675\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60675\">No</a>\n" ]
2023-05-23T15:41:47
2023-06-09T02:07:15
2023-06-09T02:07:11
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.7.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When executing the computation of batch_jacobian on an ode with experimental_use_pfor=True, the code is stuck in an infinity loop. When experimental_use_pfor=False, the computation working like expected. ### Standalone code to reproduce the issue ```shell import tensorflow as tf import tensorflow_probability as tfp @tf.function def ode_fun(t,x, c): return x * c def compute_grads(solver,experimental_use_pfor): solution_times = tf.constant([1.0]) c = tf.Variable(tf.constant([[1.0],[2.0]])) with tf.GradientTape(watch_accessed_variables=False, persistent=not experimental_use_pfor) as tape: tape.watch(c) result = solver.solve(ode_fun, 0.0, tf.constant([[1.0],[2.0]]), solution_times=solution_times, constants={'c':c}).states[0] grads = tape.batch_jacobian(result,c,experimental_use_pfor=experimental_use_pfor,parallel_iterations=2) return grads def execute(): print(tf.__version__) experimental_use_pfor = True solver = tfp.math.ode.DormandPrince() print(compute_grads(solver,experimental_use_pfor)) execute() ``` ### Relevant log output ```shell The computation never ends. ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60675/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60675/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60674
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60674/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60674/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60674/events
https://github.com/tensorflow/tensorflow/issues/60674
1,722,332,299
I_kwDOArmXAs5mqLSL
60,674
How to fix invalid argument error while training a deep learning model for text classification
{ "login": "MrAchraf10", "id": 76006274, "node_id": "MDQ6VXNlcjc2MDA2Mjc0", "avatar_url": "https://avatars.githubusercontent.com/u/76006274?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MrAchraf10", "html_url": "https://github.com/MrAchraf10", "followers_url": "https://api.github.com/users/MrAchraf10/followers", "following_url": "https://api.github.com/users/MrAchraf10/following{/other_user}", "gists_url": "https://api.github.com/users/MrAchraf10/gists{/gist_id}", "starred_url": "https://api.github.com/users/MrAchraf10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MrAchraf10/subscriptions", "organizations_url": "https://api.github.com/users/MrAchraf10/orgs", "repos_url": "https://api.github.com/users/MrAchraf10/repos", "events_url": "https://api.github.com/users/MrAchraf10/events{/privacy}", "received_events_url": "https://api.github.com/users/MrAchraf10/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 4511033337, "node_id": "LA_kwDOArmXAs8AAAABDODn-Q", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10", "name": "TF 2.10", "color": "C15088", "default": false, "description": "" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @MrAchraf10 ,\r\n\r\nRequest you to fill the all details mentioned in template. Also I see there is no code snippet to debug the issue. \r\n\r\nI see the error arises during model.fit, which indicates may be the inputs or labels you are feeding to the model might not be compatible which model was expecting.There are also other probable reasons. But without the code snippet we can't confirm the root cause. Request you to provide same for looking into this issue.\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60674\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60674\">No</a>\n" ]
2023-05-23T15:39:31
2023-06-09T02:07:18
2023-06-09T02:07:13
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.10.1 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A bug happened! ### Standalone code to reproduce the issue ```shell Epoch 1/30 --------------------------------------------------------------------------- InvalidArgumentError Traceback (most recent call last) Cell In[102], line 2 1 # Entraîner le modèle sur l'ensemble d'entraînement ----> 2 model.fit(X_train, Y_train_categorical, batch_size=128, epochs=30, validation_split=0.1) 4 # Évaluer les performances du modèle sur l'ensemble de test 5 score = model.evaluate(X_test, Y_test_categorical, batch_size=12) File ~\anaconda3\lib\site-packages\keras\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~\anaconda3\lib\site-packages\tensorflow\python\eager\execute.py:54, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 52 try: 53 ctx.ensure_initialized() ---> 54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, 55 inputs, attrs, num_outputs) 56 except core._NotOkStatusException as e: 57 if name is not None: InvalidArgumentError: Graph execution error: Detected at node 'model_16/embedding_16/embedding_lookup' defined at (most recent call last): File "C:\Users\achra\anaconda3\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\achra\anaconda3\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel_launcher.py", line 17, in <module> app.launch_new_instance() File "C:\Users\achra\anaconda3\lib\site-packages\traitlets\config\application.py", line 992, in launch_instance app.start() File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 711, in start self.io_loop.start() File "C:\Users\achra\anaconda3\lib\site-packages\tornado\platform\asyncio.py", line 199, in start self.asyncio_loop.run_forever() File "C:\Users\achra\anaconda3\lib\asyncio\base_events.py", line 603, in run_forever self._run_once() File "C:\Users\achra\anaconda3\lib\asyncio\base_events.py", line 1906, in _run_once handle._run() File "C:\Users\achra\anaconda3\lib\asyncio\events.py", line 80, in _run self._context.run(self._callback, *self._args) File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 510, in dispatch_queue await self.process_one() File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 499, in process_one await dispatch(*args) File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 406, in dispatch_shell await result File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 729, in execute_request reply_content = await reply_content File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 411, in do_execute res = shell.run_cell( File "C:\Users\achra\anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 531, in run_cell return super().run_cell(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2961, in run_cell result = self._run_cell( File "C:\Users\achra\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3016, in _run_cell result = runner(coro) File "C:\Users\achra\anaconda3\lib\site-packages\IPython\core\async_helpers.py", line 129, in _pseudo_sync_runner coro.send(None) File "C:\Users\achra\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3221, in run_cell_async has_raised = await self.run_ast_nodes(code_ast.body, cell_name, File "C:\Users\achra\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3400, in run_ast_nodes if await self.run_code(code, result, async_=asy): File "C:\Users\achra\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3460, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "C:\Users\achra\AppData\Local\Temp\ipykernel_18948\1992395688.py", line 2, in <module> model.fit(X_train, Y_train_categorical, batch_size=128, epochs=30, validation_split=0.1) File "C:\Users\achra\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\training.py", line 1564, in fit tmp_logs = self.train_function(iterator) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\training.py", line 1160, in train_function return step_function(self, iterator) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\training.py", line 1146, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\training.py", line 1135, in run_step outputs = model.train_step(data) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\training.py", line 993, in train_step y_pred = self(x, training=True) File "C:\Users\achra\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\training.py", line 557, in __call__ return super().__call__(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\base_layer.py", line 1097, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 96, in error_handler return fn(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\functional.py", line 510, in call return self._run_internal_graph(inputs, training=training, mask=mask) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\functional.py", line 667, in _run_internal_graph outputs = node.layer(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\engine\base_layer.py", line 1097, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 96, in error_handler return fn(*args, **kwargs) File "C:\Users\achra\anaconda3\lib\site-packages\keras\layers\core\embedding.py", line 208, in call out = tf.nn.embedding_lookup(self.embeddings, inputs) Node: 'model_16/embedding_16/embedding_lookup' indices[48,995,25] = -1 is not in [0, 2230) [[{{node model_16/embedding_16/embedding_lookup}}]] [Op:__inference_train_function_112178] ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60674/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60674/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60673
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60673/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60673/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60673/events
https://github.com/tensorflow/tensorflow/issues/60673
1,722,107,894
I_kwDOArmXAs5mpUf2
60,673
AdamW optimizer crashes on Model.fit() for tensorflow-macos v2.14.0-dev20230518
{ "login": "sbmenary", "id": 49401506, "node_id": "MDQ6VXNlcjQ5NDAxNTA2", "avatar_url": "https://avatars.githubusercontent.com/u/49401506?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sbmenary", "html_url": "https://github.com/sbmenary", "followers_url": "https://api.github.com/users/sbmenary/followers", "following_url": "https://api.github.com/users/sbmenary/following{/other_user}", "gists_url": "https://api.github.com/users/sbmenary/gists{/gist_id}", "starred_url": "https://api.github.com/users/sbmenary/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sbmenary/subscriptions", "organizations_url": "https://api.github.com/users/sbmenary/orgs", "repos_url": "https://api.github.com/users/sbmenary/repos", "events_url": "https://api.github.com/users/sbmenary/events{/privacy}", "received_events_url": "https://api.github.com/users/sbmenary/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@sbmenary,\r\nI tried to execute the code on tensorflow 2.12 and tf-nightly on colab, ubuntu and macos. Observed that the code got executed without any errors on both colab and ubuntu environments. Kindly find the [gist](https://colab.research.google.com/gist/tilakrayal/e6467c53f8e5fee5dec8c2f6bb8a5bd8/untitled1175.ipynb) and below screenshot for the reference\r\n<img width=\"1440\" alt=\"Screenshot 2023-05-24 at 3 29 01 PM\" src=\"https://github.com/tensorflow/tensorflow/assets/81610181/e9fa2a30-42c2-49b8-a4a0-9b50879fed9f\">\r\n\r\nBut whereas on tensorflow-macos, it is failing with the mentioned error.\r\n<img width=\"1397\" alt=\"image (11)\" src=\"https://github.com/tensorflow/tensorflow/assets/81610181/94699f00-ae27-4081-b33f-e5fc0b82b82c\">\r\n\r\nAs it is failing only on tensorflow-macos, we request to raise the concern on the macos-apple [forum](https://developer.apple.com/forums/) for the quick resolution. Thank you!\r\n\r\n", "Hi @tilakrayal, thanks for reproducing the error and your response. Sure - I'm happy to raise this on the macos forum instead. Does this mean that tensorflow-macos is not maintained here but externally, and so I should raise future issues on the apple forum if they are problems with tensorflow-macos and not tensorflow?\r\n\r\nThanks, Ste", "@sbmenary,\r\nYeah, as suggested it would be better, if you raise the issue on apple macos platform. If it is the tensorflow related issue, you can raise the issue here in this repo. As the issue is only on the tensorflow-macos, it is suggested to raise the issue in that forum. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Okay - thanks for the information - doing this now and happy to close the issue, and will raise future tf-macos problems there as well - thanks for your help!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60673\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60673\">No</a>\n" ]
2023-05-23T13:38:07
2023-06-06T17:12:21
2023-06-06T17:12:18
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.14.0-dev20230518 ### Custom Code Yes ### OS Platform and Distribution MacOS 12.5.1 running on ARM architecture [M1 Pro chip] ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When calling Model.compile() with the AdamW optimizer, a warning is thrown saying that v2.11+ optimizers have a known slowdown on M1/M2 devices, and so the backend attempts to fallback to a legacy version. However, no legacy version of the AdamW optimizer exists. In a previous tf-macos version 2.12, this lead to an error during Model.compile() [see issue https://github.com/tensorflow/tensorflow/issues/60652]. In the current nightly, this error is not thrown - however, after calling model.compile(), the attribute model.optimizer is set to string 'adamw' instead of an optimizer object. Later, when we call model.fit(), this leads to an AttributeError, because model.optimizer.minimize() does not exist when model.optimizer is a string. Expected behaviour: correctly compile the model with either a v2.11+ optimiser without slowdown, or a legacy-compatible implementation of the AdamW optimizer. I could attempt to contribute this - but there may be a steep learning curve! Then the model will train correctly with a valid AdamW optimizer when calling model.fit(). Note: a warning message suggests using the optimizer located at `tf.keras.optimizers.legacy.AdamW`, but this does not exist ### Standalone code to reproduce the issue ```shell ##===========## ## Imports ## ##===========## import sys import tensorflow as tf import numpy as np from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense from tensorflow.keras.optimizers import AdamW ##===================## ## Report versions ## ##===================## # # Expected outputs: # Python version is: 3.10.11 | packaged by conda-forge | (main, May 10 2023, 19:01:19) [Clang 14.0.6 ] # TF version is: 2.14.0-dev20230518 # Numpy version is: 1.23.2 # print(f"Python version is: {sys.version}") print(f"TF version is: {tf.__version__}") print(f"Numpy version is: {np.__version__}") ##==============================## ## Create a very simple model ## ##==============================## # # Expected outputs: # Model: "model_1" # _________________________________________________________________ # Layer (type) Output Shape Param # # ================================================================= # Layer_in (InputLayer) [(None, 2)] 0 # # Layer_hidden (Dense) (None, 10) 30 # # Layer_out (Dense) (None, 2) 22 # # ================================================================= # Total params: 52 (208.00 Byte) # Trainable params: 52 (208.00 Byte) # Non-trainable params: 0 (0.00 Byte) # _________________________________________________________________ # x_in = Input(2 , dtype=tf.float32, name="Layer_in" ) x = x_in x = Dense(10, dtype=tf.float32, name="Layer_hidden", activation="relu" )(x) x = Dense(2 , dtype=tf.float32, name="Layer_out" , activation="linear")(x) model = Model(x_in, x) model.summary() ##===================================================## ## Compile model with MSE loss and AdamW optimizer ## ##===================================================## # # Expected outputs: # WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.AdamW` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.AdamW`. # WARNING:absl:There is a known slowdown when using v2.11+ Keras optimizers on M1/M2 Macs. Falling back to the legacy Keras optimizer, i.e., `tf.keras.optimizers.legacy.AdamW`. # model.compile( loss = "mse", optimizer = AdamW(learning_rate=1e-3, weight_decay=1e-2) ) ##===========================## ## Generate some fake data ## ##===========================## # # Expected outputs: # X shape is (100, 2), Y shape is (100, 2) # dataset_size = 100 X = np.random.normal(size=(dataset_size, 2)) X = tf.constant(X, dtype=tf.float32) Y = np.random.normal(size=(dataset_size, 2)) Y = tf.constant(Y, dtype=tf.float32) print(f"X shape is {X.shape}, Y shape is {Y.shape}") ##===================================## ## Fit model to data for one epoch ## ##===================================## # # Expected outputs: # --------------------------------------------------------------------------- # AttributeError Traceback (most recent call last) # Cell In[9], line 51 # 1 ##===================================## # 2 ## Fit model to data for one epoch ## # 3 ##===================================## # (...) # 48 # • mask=None # 49 # # ---> 51 model.fit(X, Y, epochs=1) # File ~/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) # 67 filtered_tb = _process_traceback_frames(e.__traceback__) # 68 # To get the full stack trace, call: # 69 # `tf.debugging.disable_traceback_filtering()` # ---> 70 raise e.with_traceback(filtered_tb) from None # 71 finally: # 72 del filtered_tb # File /var/folders/6_/gprzxt797d5098h8dtk22nch0000gn/T/__autograph_generated_filezzqv9k36.py:15, in outer_factory.<locals>.inner_factory.<locals>.tf__train_function(iterator) # 13 try: # 14 do_return = True # ---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) # 16 except: # 17 do_return = False # AttributeError: in user code: # File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1338, in train_function * # return step_function(self, iterator) # File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1322, in step_function ** # outputs = model.distribute_strategy.run(run_step, args=(data,)) # File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1303, in run_step ** # outputs = model.train_step(data) # File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1084, in train_step # self.optimizer.minimize(loss, self.trainable_variables, tape=tape) # AttributeError: 'str' object has no attribute 'minimize' model.fit(X, Y, epochs=1) ``` ### Relevant log output ```shell --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[9], line 51 1 ##===================================## 2 ## Fit model to data for one epoch ## 3 ##===================================## (...) 48 # • mask=None 49 # ---> 51 model.fit(X, Y, epochs=1) File ~/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File /var/folders/6_/gprzxt797d5098h8dtk22nch0000gn/T/__autograph_generated_filezzqv9k36.py:15, in outer_factory.<locals>.inner_factory.<locals>.tf__train_function(iterator) 13 try: 14 do_return = True ---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) 16 except: 17 do_return = False AttributeError: in user code: File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1338, in train_function * return step_function(self, iterator) File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1322, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1303, in run_step ** outputs = model.train_step(data) File "/Users/Ste/miniforge3/envs/tf_macos_nightly_230523/lib/python3.10/site-packages/keras/src/engine/training.py", line 1084, in train_step self.optimizer.minimize(loss, self.trainable_variables, tape=tape) AttributeError: 'str' object has no attribute 'minimize' ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60673/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60673/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60672
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60672/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60672/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60672/events
https://github.com/tensorflow/tensorflow/pull/60672
1,722,013,775
PR_kwDOArmXAs5RJLmR
60,672
Fix close stale issues when user is commented.
{ "login": "shmishra99", "id": 124146945, "node_id": "U_kgDOB2ZVAQ", "avatar_url": "https://avatars.githubusercontent.com/u/124146945?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shmishra99", "html_url": "https://github.com/shmishra99", "followers_url": "https://api.github.com/users/shmishra99/followers", "following_url": "https://api.github.com/users/shmishra99/following{/other_user}", "gists_url": "https://api.github.com/users/shmishra99/gists{/gist_id}", "starred_url": "https://api.github.com/users/shmishra99/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shmishra99/subscriptions", "organizations_url": "https://api.github.com/users/shmishra99/orgs", "repos_url": "https://api.github.com/users/shmishra99/repos", "events_url": "https://api.github.com/users/shmishra99/events{/privacy}", "received_events_url": "https://api.github.com/users/shmishra99/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169365494, "node_id": "MDU6TGFiZWwxMTY5MzY1NDk0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M", "name": "size:M", "color": "adafea", "default": false, "description": "CL Change Size: Medium" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60672/checks?check_run_id=13691562286) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "Can we use the GitHub action instead of a custom script?", "> Can we use the GitHub action instead of a custom script?\r\nHi @mihaimaruseac, \r\nWe use the stale action workflow to manage stale issues. However, this workflow does not close issues that have received comments from users other than the author after the issue has been marked as stale. This issue [discusses](https://github.com/actions/stale/issues/470) the same problem we are experiencing. So to resolve this problem we are using custom script. Thank You !", "I think you only need to remove `remove-stale-when-updated: false`.\r\n\r\nIf the issue receives comments it should not be marked as stale, there are people that still care about it!", "Thank you for your suggestion @mihaimaruseac. I have made the necessary changes to the workflow accordingly.", "PS: Note that your git config is wrong, your email gets quoted in the commit (https://github.com/tensorflow/tensorflow/pull/60672/commits/6140088e0eb5fd9d759f237493a1bffb490d9026) and that required forcing the CLA to pass.", "Hi @mihaimaruseac, \r\nI have modified my GitHub configuration. I also made a change so that if a user comments, it will also remove the stale dependent labels. This will eliminate the need for Probot to remove the labels.\r\nThank You!" ]
2023-05-23T12:46:50
2023-07-07T15:13:29
2023-07-07T15:13:29
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60672", "html_url": "https://github.com/tensorflow/tensorflow/pull/60672", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60672.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60672.patch", "merged_at": "2023-07-07T15:13:29" }
In this PR: Add file: [stale-close-when-update.js](https://github.com/tensorflow/tensorflow/compare/master...shmishra99:tensorflow:master?expand=1#diff-39bf5eba4c1d80722ca595b737a62c1196331b5abaf9be01520eacda510fd8bf) close all issues and pull requests that have been marked as stale for more than 7 days for issues and 14 days for pull requests. Update file: [.github/workflows/stale-issues.yml](https://github.com/tensorflow/tensorflow/compare/master...shmishra99:tensorflow:master?expand=1#diff-0bd376ac0f6d23a1457b2e910fd30cdd4cda10374ce15faa09c6ad26c3b82abe) to invoke the script from stale workflow.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60672/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60672/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60671
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60671/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60671/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60671/events
https://github.com/tensorflow/tensorflow/issues/60671
1,721,862,642
I_kwDOArmXAs5moYny
60,671
//tensorflow/dtensor/python/tests:input_util_test is flaky
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "MichaelHudgins", "id": 30155094, "node_id": "MDQ6VXNlcjMwMTU1MDk0", "avatar_url": "https://avatars.githubusercontent.com/u/30155094?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MichaelHudgins", "html_url": "https://github.com/MichaelHudgins", "followers_url": "https://api.github.com/users/MichaelHudgins/followers", "following_url": "https://api.github.com/users/MichaelHudgins/following{/other_user}", "gists_url": "https://api.github.com/users/MichaelHudgins/gists{/gist_id}", "starred_url": "https://api.github.com/users/MichaelHudgins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MichaelHudgins/subscriptions", "organizations_url": "https://api.github.com/users/MichaelHudgins/orgs", "repos_url": "https://api.github.com/users/MichaelHudgins/repos", "events_url": "https://api.github.com/users/MichaelHudgins/events{/privacy}", "received_events_url": "https://api.github.com/users/MichaelHudgins/received_events", "type": "User", "site_admin": false }
[ { "login": "MichaelHudgins", "id": 30155094, "node_id": "MDQ6VXNlcjMwMTU1MDk0", "avatar_url": "https://avatars.githubusercontent.com/u/30155094?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MichaelHudgins", "html_url": "https://github.com/MichaelHudgins", "followers_url": "https://api.github.com/users/MichaelHudgins/followers", "following_url": "https://api.github.com/users/MichaelHudgins/following{/other_user}", "gists_url": "https://api.github.com/users/MichaelHudgins/gists{/gist_id}", "starred_url": "https://api.github.com/users/MichaelHudgins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MichaelHudgins/subscriptions", "organizations_url": "https://api.github.com/users/MichaelHudgins/orgs", "repos_url": "https://api.github.com/users/MichaelHudgins/repos", "events_url": "https://api.github.com/users/MichaelHudgins/events{/privacy}", "received_events_url": "https://api.github.com/users/MichaelHudgins/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Can you see what version of portpicker is installed? ", "@MichaelHudgins It should be 1.4.0 for this one as that is what should be installed in the docker container I think. But the log does not show it. https://source.cloud.google.com/results/invocations/3be5d51d-0531-4b39-8813-703e6e84c608/log", "You are right, the place i am thinking of it ended up getting removed from the docker files when the pip tests were changed. Lets try and update and see if it helps. Will give that a try shortly ", "Updated portpicker in https://github.com/tensorflow/tensorflow/commit/948361e05e8bbe0efe9e5f79867d17331f085eaf . The updates have some improvements to the port picking logic so lets see if that helps out. ", "The ARM jobs are now failing due to a permissions issue that was shown up by the update to portpicker. This PR should resolve that https://github.com/tensorflow/tensorflow/pull/60705 so it would be good if that could get merged.", "The above mentioned PR https://github.com/tensorflow/tensorflow/pull/60705 is merged now, could you please let us know if that solves your issue. Thanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60671\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60671\">No</a>\n" ]
2023-05-23T11:28:37
2023-06-09T02:07:22
2023-06-09T02:07:15
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version git HEAD ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device n/a ### Python version 3.9.16 ### Bazel version 5.3.0 ### GCC/Compiler version 9.4.0 ### CUDA/cuDNN version n/a ### GPU model and memory n/a ### Current Behaviour? Sometimes test fails. ### Standalone code to reproduce the issue ```shell docker exec tf bazel --bazelrc=/usertools/cpu.bazelrc test --config=rbe --config=pycpp --config=build_event_export ``` ### Relevant log output ```shell [ RUN ] DTensorDatasetTest.testIterPrefetchEnabled I0523 01:36:42.332243 140069302650688 mesh_util.py:35] This is client 0 of 1 clients I0523 01:36:42.332387 140069302650688 mesh_util.py:36] Number of global CPU devices: 16 I0523 01:36:42.332595 140069302650688 mesh_util.py:39] Global device IDs: [[[ 0 1] [ 2 3]] [[ 4 5] [ 6 7]] [[ 8 9] [10 11]] [[12 13] [14 15]]] I0523 01:36:42.333161 140069302650688 mesh_util.py:40] Local device IDs: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] I0523 01:36:42.333399 140069302650688 mesh_util.py:41] Local devices: ['/job:localhost/replica:0/task:0/device:CPU:0', '/job:localhost/replica:0/task:0/device:CPU:1', '/job:localhost/replica:0/task:0/device:CPU:2', '/job:localhost/replica:0/task:0/device:CPU:3', '/job:localhost/replica:0/task:0/device:CPU:4', '/job:localhost/replica:0/task:0/device:CPU:5', '/job:localhost/replica:0/task:0/device:CPU:6', '/job:localhost/replica:0/task:0/device:CPU:7', '/job:localhost/replica:0/task:0/device:CPU:8', '/job:localhost/replica:0/task:0/device:CPU:9', '/job:localhost/replica:0/task:0/device:CPU:10', '/job:localhost/replica:0/task:0/device:CPU:11', '/job:localhost/replica:0/task:0/device:CPU:12', '/job:localhost/replica:0/task:0/device:CPU:13', '/job:localhost/replica:0/task:0/device:CPU:14', '/job:localhost/replica:0/task:0/device:CPU:15'] 2023-05-23 01:36:42.502792: I tensorflow/core/grappler/optimizers/data/replicate_on_split.cc:32] Running replicate on split optimization 2023-05-23 01:36:42.539630: I tensorflow/core/grappler/optimizers/data/replicate_on_split.cc:32] Running replicate on split optimization 2023-05-23 01:36:42.571014: I tensorflow/core/grappler/optimizers/data/replicate_on_split.cc:32] Running replicate on split optimization 2023-05-23 01:36:42.601962: I tensorflow/core/grappler/optimizers/data/replicate_on_split.cc:32] Running replicate on split optimization 2023-05-23 01:36:42.628375: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.629052: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.662961: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.663830: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.697634: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.698468: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.731407: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.732128: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.765658: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.766547: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.799498: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:42.800179: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.833451: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:42.834362: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.867624: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.868470: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:42.901365: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:42.902052: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:42.934892: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:42.935557: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.969417: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:42.970324: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:43.005591: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:43.006315: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:43.039225: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:43.039923: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:43.074097: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:43.074987: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:43.107878: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:43.108533: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_6' with dtype resource [[{{node Placeholder/_6}}]] 2023-05-23 01:36:43.144069: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int64 and shape [32] [[{{node Placeholder/_4}}]] 2023-05-23 01:36:43.145070: I tensorflow/core/common_runtime/executor.cc:1210] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_16' with dtype int32 and shape [3,1] [[{{node Placeholder/_16}}]] 2023-05-23 01:36:43.438866: I tensorflow/core/common_runtime/executor.cc:1210] [/job:localhost/replica:0/task:0/device:CPU:1] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): CANCELLED: Operation was cancelled [[{{node tf.StatefulPartitionedCall/eager_operation}}]] 2023-05-23 01:36:43.439513: I tensorflow/core/common_runtime/executor.cc:1210] [/job:localhost/replica:0/task:0/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): CANCELLED: Operation was cancelled [[{{node tf.StatefulPartitionedCall/eager_operation}}]] 2023-05-23 01:36:43.440149: I tensorflow/core/common_runtime/executor.cc:1210] [/job:localhost/replica:0/task:0/device:CPU:5] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): CANCELLED: Operation was cancelled [[{{node tf.StatefulPartitionedCall/eager_operation}}]] 2023-05-23 01:36:43.440610: I tensorflow/core/common_runtime/executor.cc:1210] [/job:localhost/replica:0/task:0/device:CPU:4] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): CANCELLED: Operation was cancelled [[{{node tf.StatefulPartitionedCall/eager_operation}}]] 2023-05-23 01:36:43.441222: E tensorflow/dtensor/cc/dtensor_device.cc:2247] Error executing CopyToMesh {{function_node IteratorGetNext__func_14891566070902430035_8539663482787142021_8624502544051534713_3}} End of sequence [[{{node tf.StatefulPartitionedCall/eager_operation}}]] Encountered when executing an operation using EagerExecutor. This error cancels all future operations and poisons their output tensors. INFO:tensorflow:time(__main__.DTensorDatasetTest.testIterPrefetchEnabled): 1.16s I0523 01:36:43.496025 140069302650688 test_util.py:2464] time(__main__.DTensorDatasetTest.testIterPrefetchEnabled): 1.16s [ FAILED ] DTensorDatasetTest.testIterPrefetchEnabled ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60671/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60671/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60670
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60670/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60670/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60670/events
https://github.com/tensorflow/tensorflow/issues/60670
1,721,655,055
I_kwDOArmXAs5mnl8P
60,670
//tensorflow/python/ops/ragged:ragged_cross_op_test is flaky
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1104829434, "node_id": "MDU6TGFiZWwxMTA0ODI5NDM0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl", "name": "comp:mkl", "color": "0052cc", "default": false, "description": "MKL related issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "I tried the build and it's failed. Please refer the attached logs below.\r\n\r\n[60670_logs.txt](https://github.com/tensorflow/tensorflow/files/11589108/60670_logs.txt)\r\n\r\n@TensorFlow-MKL \r\n\r\nCC- @nitins17 , @learning-to-play \r\n", "x86 reproduction log\r\nhttps://source.cloud.google.com/results/invocations/1b8efc29-4d7b-44e2-a66e-56071b03a3a0/log\r\nAARCH64 reproduction log\r\nhttps://github.com/tensorflow/tensorflow/actions/runs/5395781377/jobs/9798627617#step:5:7398", "@rishikasinha-tf flaky test" ]
2023-05-23T09:42:28
2023-06-28T10:09:00
null
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version git HEAD ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device n/a ### Python version 3.8.13 ### Bazel version 5.3.0 ### GCC/Compiler version 10.2.1 ### CUDA/cuDNN version n/a ### GPU model and memory n/a ### Current Behaviour? Test sometimes fails with segfault ### Standalone code to reproduce the issue ```shell bazel test --build_tests_only --config=mkl_aarch64_threadpool --copt=-flax-vector-conversions --test_env=TF_ENABLE_ONEDNN_OPTS=1 --test_env=TF2_BEHAVIOR=1 --define=no_tensorflow_py_deps=true --test_lang_filters=py --test_size_filters=small,medium --test_output=errors --verbose_failures=true --test_keep_going --notest_verbose_timeout_warnings --local_test_jobs=64 --test_tag_filters=-nopip,-no_pip,-oss_serial,-no_oss,-oss_excluded,-v1only,-benchmark-test,-no_aarch64,-no_oss_py38,-no_oss_py39,-no_oss_py310 -k -- //bazel_pip/tensorflow/... -//bazel_pip/tensorflow/compiler/tf2tensorrt/... -//bazel_pip/tensorflow/compiler/xrt/... -//bazel_pip/tensorflow/core/tpu/... -//bazel_pip/tensorflow/go/... -//bazel_pip/tensorflow/java/... -//bazel_pip/tensorflow/python/integration_testing/... -//bazel_pip/tensorflow/tools/toolchains/... -//bazel_pip/tensorflow/lite/... -//bazel_pip/tensorflow/python/kernel_tests/nn_ops:atrous_conv2d_test -//bazel_pip/tensorflow/python/kernel_tests/nn_ops:conv_ops_test ``` ### Relevant log output ```shell [ RUN ] RaggedCrossOpTest.testRaggedCrossInvalidValue INFO:tensorflow:Running testRaggedCrossInvalidValue in GRAPH mode. I0522 15:40:37.724678 281472914997264 test_util.py:1494] Running testRaggedCrossInvalidValue in GRAPH mode. Fatal Python error: Segmentation fault Thread 0x0000ffff851cc010 (most recent call first): File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1477 in _call_tf_sessionrun File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1384 in _run_fn File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1401 in _do_call File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1394 in _do_run File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 1214 in _run File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/client/session.py", line 971 in run File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/framework/test_util.py", line 2061 in run File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/framework/test_util.py", line 2693 in evaluate File "/tmpfs/bazel_output/_bazel_ubuntu/eab0d61a99b6696edb3d2aff87b585e8/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/bazel_pip/tensorflow/python/ops/ragged/ragged_cross_op_test.runfiles/org_tensorflow/bazel_pip/tensorflow/python/ops/ragged/ragged_cross_op_test.py", line 478 in testRaggedCrossInvalidValue File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/framework/test_util.py", line 1498 in decorated File "/usr/lib/python3.10/unittest/case.py", line 549 in _callTestMethod File "/usr/lib/python3.10/unittest/case.py", line 591 in run File "/usr/lib/python3.10/unittest/case.py", line 650 in __call__ File "/usr/lib/python3.10/unittest/suite.py", line 122 in run File "/usr/lib/python3.10/unittest/suite.py", line 84 in __call__ File "/usr/lib/python3.10/unittest/suite.py", line 122 in run File "/usr/lib/python3.10/unittest/suite.py", line 84 in __call__ File "/usr/lib/python3.10/unittest/runner.py", line 184 in run File "/usr/lib/python3.10/unittest/main.py", line 271 in runTests File "/usr/lib/python3.10/unittest/main.py", line 101 in __init__ File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/absl/testing/absltest.py", line 2527 in _run_and_get_tests_result File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/absl/testing/absltest.py", line 2561 in run_tests File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/absl/testing/absltest.py", line 2155 in _run_in_app File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/absl/testing/absltest.py", line 2060 in main File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/platform/googletest.py", line 51 in g_main File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/absl/app.py", line 254 in _run_main File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/absl/app.py", line 308 in run File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/platform/googletest.py", line 60 in main_wrapper File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/platform/benchmark.py", line 489 in benchmarks_main File "/workspace/pip_test/venv_clean/lib/python3.10/site-packages/tensorflow/python/platform/googletest.py", line 62 in main File "/tmpfs/bazel_output/_bazel_ubuntu/eab0d61a99b6696edb3d2aff87b585e8/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/bazel_pip/tensorflow/python/ops/ragged/ragged_cross_op_test.runfiles/org_tensorflow/bazel_pip/tensorflow/python/ops/ragged/ragged_cross_op_test.py", line 497 in <module> Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, google._upb._message, tensorflow.python.framework.fast_tensor_util, charset_normalizer.md, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.h5r, h5py.utils, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5t, h5py._conv, h5py.h5z, h5py._proxy, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5o, h5py.h5l, h5py._selector, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._isolve._iterative, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg._cythonized_array_utils, scipy.linalg._flinalg, scipy.linalg._solve_toeplitz, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_lapack, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.ndimage._nd_image, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, _ni_label, scipy.ndimage._ni_label (total: 72) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60670/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60670/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60669
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60669/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60669/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60669/events
https://github.com/tensorflow/tensorflow/issues/60669
1,721,616,036
I_kwDOArmXAs5mncak
60,669
InvalidArgumentError: Graph execution error: ndices[15,287] = 6368 is not in [0, 1993)
{ "login": "gaminglifex", "id": 72642816, "node_id": "MDQ6VXNlcjcyNjQyODE2", "avatar_url": "https://avatars.githubusercontent.com/u/72642816?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gaminglifex", "html_url": "https://github.com/gaminglifex", "followers_url": "https://api.github.com/users/gaminglifex/followers", "following_url": "https://api.github.com/users/gaminglifex/following{/other_user}", "gists_url": "https://api.github.com/users/gaminglifex/gists{/gist_id}", "starred_url": "https://api.github.com/users/gaminglifex/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gaminglifex/subscriptions", "organizations_url": "https://api.github.com/users/gaminglifex/orgs", "repos_url": "https://api.github.com/users/gaminglifex/repos", "events_url": "https://api.github.com/users/gaminglifex/events{/privacy}", "received_events_url": "https://api.github.com/users/gaminglifex/received_events", "type": "User", "site_admin": false }
[ { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" } ]
closed
false
{ "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false }
[ { "login": "synandi", "id": 98147397, "node_id": "U_kgDOBdmcRQ", "avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/synandi", "html_url": "https://github.com/synandi", "followers_url": "https://api.github.com/users/synandi/followers", "following_url": "https://api.github.com/users/synandi/following{/other_user}", "gists_url": "https://api.github.com/users/synandi/gists{/gist_id}", "starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/synandi/subscriptions", "organizations_url": "https://api.github.com/users/synandi/orgs", "repos_url": "https://api.github.com/users/synandi/repos", "events_url": "https://api.github.com/users/synandi/events{/privacy}", "received_events_url": "https://api.github.com/users/synandi/received_events", "type": "User", "site_admin": false } ]
null
[ "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60669\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60669\">No</a>\n" ]
2023-05-23T09:22:15
2023-05-24T06:53:37
2023-05-24T06:53:33
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Others ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version tf 2.10.0 ### Custom Code Yes ### OS Platform and Distribution Windows ### Mobile device _No response_ ### Python version 3.10.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I have been searching for a solution to this error, and I have tried changing the input dimension, but it is still not working. I would appreciate it if you could help me troubleshoot this issue. Getting this error: ![image](https://github.com/tensorflow/tensorflow/assets/72642816/d0d3d78f-df1e-4b39-8a8a-e697791d4195) ### Standalone code to reproduce the issue ```python # Embedding dimensions: depends on the word embedding vector dimension (300) EMBEDDING_DIM = 300 # How many unique words to use (i.e number of rows in embedding vector) MAX_VOICAB_SIZE = 20000 # Maximum number of words for each row of comment MAX_SEQUENCE_LENGTH = 300 # Training Parameters BATCH_SIZE = 256 EPOCHS = 2 sequence = df_test['cleaned'].apply(lambda x: [token.lex_id if not token.is_oov else 0 for token in nlp(x)]).to_list() # By default, setting max length of paddings will truncate any sequences that are longer than the max length x_train = pad_sequences(sequence, maxlen=MAX_SEQUENCE_LENGTH) y_train = label_values ``` ```python tf.keras.backend.clear_session() # Yoon Kim model (https://arxiv.org/abs/1408.5882) def createTextCNN(vocab_size, embeddings_weights, max_sequence_length, embedding_dim, num_labels): # Input layer input_text = Input(shape=(max_sequence_length,)) # TODO Find out the shape # Embedding layer embedded_sequences = Embedding( input_dim=vocab_size , output_dim=embedding_dim , weights=[embeddings_weights] , input_length=max_sequence_length , trainable=False )(input_text) pool_output = [] kernel_sizes = [3, 4, 5] for size in kernel_sizes: conv = Conv1D(filters=128, kernel_size=size)(embedded_sequences) pool = MaxPooling1D(pool_size=int(conv.shape[1]))(conv) pool_output.append(pool) pool_output = concatenate([pool for pool in pool_output]) dropout_out = Dropout(0.5)(pool_output) flat_layer = Flatten()(dropout_out) x = Dense(units=128, activation='relu')(flat_layer) dropout_out = Dropout(0.2)(x) output_layer = Dense(units=num_labels, activation='sigmoid')(dropout_out) model = Model(input_text, output_layer) return model model = createTextCNN(len(counter) , embedding_weights , MAX_SEQUENCE_LENGTH , EMBEDDING_DIM , len(LABELS)) model.summary() ``` ```python model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.01, patience=4, verbose=1) callbacks_list = [early_stopping] train = model.fit(x_train, y_train, epochs=EPOCHS, shuffle=True, batch_size=BATCH_SIZE, callbacks=callbacks_list) ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60669/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60669/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60668
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60668/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60668/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60668/events
https://github.com/tensorflow/tensorflow/pull/60668
1,721,455,581
PR_kwDOArmXAs5RHR6R
60,668
Fix undeclared inclusions in CUDA build with GCC on symlinked path
{ "login": "Flamefire", "id": 309017, "node_id": "MDQ6VXNlcjMwOTAxNw==", "avatar_url": "https://avatars.githubusercontent.com/u/309017?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Flamefire", "html_url": "https://github.com/Flamefire", "followers_url": "https://api.github.com/users/Flamefire/followers", "following_url": "https://api.github.com/users/Flamefire/following{/other_user}", "gists_url": "https://api.github.com/users/Flamefire/gists{/gist_id}", "starred_url": "https://api.github.com/users/Flamefire/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Flamefire/subscriptions", "organizations_url": "https://api.github.com/users/Flamefire/orgs", "repos_url": "https://api.github.com/users/Flamefire/repos", "events_url": "https://api.github.com/users/Flamefire/events{/privacy}", "received_events_url": "https://api.github.com/users/Flamefire/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @cheshire Can you please review this PR ? Thank you!", "I don't think I'm the right person, maybe @MichaelHudgins or @ddunl ?", "I think @MichaelHudgins or someone from his team is probably best for this one", "@angerson are you able to take a look at this - or know who best to take a look at it might be? ", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @Flamefire Can you please check build failures. Thank you!", "@gbaned Seems I somehow dropped an `if`. Fixed that and the comment (replacement happens the other way round: Resolved path is replaced by unresolved) \r\nAs an additional safeguard I changed the `inc.replace(cc_topdir_resolved, cc_topdir)` to `cc_topdir + inc[len(cc_topdir_resolved):]` (conditional on `inc.startswith(cc_topdir_resolved)` instead of `cc_topdir_resolved in inc`)\r\n\r\nI think this is now as good as it gets and still equivalent to [the patch we actually use](https://github.com/easybuilders/easybuild-easyconfigs/blob/dd300adb91efe3d2dff6c91509e1f0b02deabcb1/easybuild/easyconfigs/t/TensorFlow/TensorFlow-2.1.0_fix-cuda-build.patch) \r\n\r\nI did a quick check and it seems to still work for us.", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!", "Hi @angerson Can you please review this PR ? Thank you!" ]
2023-05-23T07:57:21
2024-01-03T09:04:33
2024-01-03T08:57:48
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60668", "html_url": "https://github.com/tensorflow/tensorflow/pull/60668", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60668.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60668.patch", "merged_at": "2024-01-03T08:57:48" }
When the host compiler (e.g. GCC) is installed in a path being/containing a symlink the CUDA build might fail with `"undeclared inclusion(s)"` to the symlink paths. This has been partially solved by #56360 which resolves all symlinks in `gcc_host_compiler_path` However the compiler referenced there might be a wrapper script (e.g. ccache) which internally eventually forwards the call to the real compiler sitting in a path containing a symlink. `gcc -v -E - < /dev/null` seems to only return resolved paths while the later invocations include the paths with symlinks leading to the build failure. The solution employed here is to add the unresolved paths (i.e. the ones with symlinks) in addition to the resolved paths. Fixes #33975
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60668/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60668/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60667
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60667/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60667/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60667/events
https://github.com/tensorflow/tensorflow/issues/60667
1,721,224,389
I_kwDOArmXAs5ml8zF
60,667
`@com_google_protobuf//:well_known_types_py_pb2_genproto` is not in systemlibs
{ "login": "njzjz", "id": 9496702, "node_id": "MDQ6VXNlcjk0OTY3MDI=", "avatar_url": "https://avatars.githubusercontent.com/u/9496702?v=4", "gravatar_id": "", "url": "https://api.github.com/users/njzjz", "html_url": "https://github.com/njzjz", "followers_url": "https://api.github.com/users/njzjz/followers", "following_url": "https://api.github.com/users/njzjz/following{/other_user}", "gists_url": "https://api.github.com/users/njzjz/gists{/gist_id}", "starred_url": "https://api.github.com/users/njzjz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/njzjz/subscriptions", "organizations_url": "https://api.github.com/users/njzjz/orgs", "repos_url": "https://api.github.com/users/njzjz/repos", "events_url": "https://api.github.com/users/njzjz/events{/privacy}", "received_events_url": "https://api.github.com/users/njzjz/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 1222092379, "node_id": "MDU6TGFiZWwxMjIyMDkyMzc5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:bazel", "name": "subtype:bazel", "color": "b619ea", "default": false, "description": "Bazel related Build_Installation issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @njzjz ,\r\n\r\nThanks for your time in reporting the issue. I have replicated the reported behaviour with current master branch.Attached logs below for reference.\r\n\r\n```\r\n(tf) suryanarayanay@surya-ubuntu-22-04:~$ export TF_SYSTEM_LIBS=com_google_protobuf\r\n(tf) suryanarayanay@surya-ubuntu-22-04:~$ cd tensorflow\r\n(tf) suryanarayanay@surya-ubuntu-22-04:~/tensorflow$ git checkout master\r\nUpdating files: 100% (10666/10666), done.\r\nSwitched to branch 'master'\r\nYour branch is up to date with 'origin/master'.\r\n(tf) suryanarayanay@surya-ubuntu-22-04:~/tensorflow$ bazel build //tensorflow/tools/pip_package:build_pip_package\r\n/bin/bash: /home/suryanarayanay/miniconda3/lib/libtinfo.so.6: no version information available (required by /bin/bash)\r\nStarting local Bazel server and connecting to it...\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1 --terminal_columns=124\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.tf_configure.bazelrc:\r\n 'build' options: --action_env PYTHON_BIN_PATH=/home/suryanarayanay/miniconda3/envs/bazel2/bin/python3 --action_env PYTHON_LIB_PATH=/home/suryanarayanay/miniconda3/envs/bazel2/lib/python3.9/site-packages --python_path=/home/suryanarayanay/miniconda3/envs/bazel2/bin/python3\r\nINFO: Reading rc options for 'build' from /home/suryanarayanay/tensorflow/.bazelrc:\r\n 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /home/suryanarayanay/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /home/suryanarayanay/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:linux in file /home/suryanarayanay/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --distinct_host_configuration=false --experimental_guard_against_concurrent_changes\r\nINFO: Found applicable config definition build:dynamic_kernels in file /home/suryanarayanay/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS\r\nERROR: /home/suryanarayanay/tensorflow/tensorflow/core/function/trace_type/BUILD:140:17: no such target '@com_google_protobuf//:well_known_types_py_pb2_genproto': target 'well_known_types_py_pb2_genproto' not declared in package '' defined by /home/suryanarayanay/.cache/bazel/_bazel_suryanarayanay/e93ef42332b258ebf8397106d59e39e3/external/com_google_protobuf/BUILD.bazel and referenced by '//tensorflow/core/function/trace_type:default_types_proto_py_genproto'\r\nINFO: Repository typing_extensions_archive instantiated at:\r\n /home/suryanarayanay/tensorflow/WORKSPACE:15:14: in <toplevel>\r\n /home/suryanarayanay/tensorflow/tensorflow/workspace2.bzl:966:21: in workspace\r\n /home/suryanarayanay/tensorflow/tensorflow/workspace2.bzl:391:20: in _tf_repositories\r\n /home/suryanarayanay/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive\r\nRepository rule _tf_http_archive defined at:\r\n /home/suryanarayanay/tensorflow/third_party/repo.bzl:89:35: in <toplevel>\r\nINFO: Repository wrapt instantiated at:\r\n /home/suryanarayanay/tensorflow/WORKSPACE:15:14: in <toplevel>\r\n /home/suryanarayanay/tensorflow/tensorflow/workspace2.bzl:966:21: in workspace\r\n /home/suryanarayanay/tensorflow/tensorflow/workspace2.bzl:875:20: in _tf_repositories\r\n /home/suryanarayanay/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive\r\nRepository rule _tf_http_archive defined at:\r\n /home/suryanarayanay/tensorflow/third_party/repo.bzl:89:35: in <toplevel>\r\nINFO: Repository dill_archive instantiated at:\r\n /home/suryanarayanay/tensorflow/WORKSPACE:15:14: in <toplevel>\r\n /home/suryanarayanay/tensorflow/tensorflow/workspace2.bzl:966:21: in workspace\r\n /home/suryanarayanay/tensorflow/tensorflow/workspace2.bzl:431:20: in _tf_repositories\r\n /home/suryanarayanay/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive\r\nRepository rule _tf_http_archive defined at:\r\n /home/suryanarayanay/tensorflow/third_party/repo.bzl:89:35: in <toplevel>\r\nERROR: Analysis of target '//tensorflow/tools/pip_package:build_pip_package' failed; build aborted: \r\nINFO: Elapsed time: 24.342s\r\nINFO: 0 processes.\r\nFAILED: Build did NOT complete successfully (131 packages loaded, 168 targets configured)\r\n currently loading: tensorflow/python/compiler/tensorrt/test ... (4 packages)\r\n Fetching @rules_python; fetching\r\n Fetching ...python; Extracting /home/suryanarayanay/.cache/bazel/_bazel_suryanarayanay/e93ef42332b258ebf8397106d59e39e\\\r\n3/external/rules_python/temp12165787461814660505/rules_python-0.0.1.tar.gz\r\n Fetching https://storage.googleapis.com/mirror.tensorflow.org/github.com/GrahamDumpleton/wrapt/archive/1.14.1.tar.gz\r\n Fetching https://storage.googleapis.com/.../github.com/uqfoundation/dill/releases/download/dill-0.3.6/dill-0.3.6.zip\r\n(tf) suryanarayanay@surya-ubuntu-22-04:~/tensorflow$ \r\n```\r\n\r\nIf you are willing to contribute to fix this please feel free to raise a PR.\r\n\r\nThanks!", "> If you are willing to contribute to fix this please feel free to raise a PR.\r\n\r\nSorry, I am not an expert in protobuf and am not sure how to fix this. That's the reason I submit the issue.\r\n\r\nBelow is what I tried to do\r\n\r\n```diff\r\ndiff --git a/third_party/systemlibs/protobuf.BUILD b/third_party/systemlibs/protobuf.BUILD\r\nindex 4d05ab28d12..0bae75daa1d 100644\r\n--- a/third_party/systemlibs/protobuf.BUILD\r\n+++ b/third_party/systemlibs/protobuf.BUILD\r\n@@ -111,3 +111,11 @@ py_library(\r\n visibility = [\"//visibility:public\"],\r\n deps = [dep + \"_proto\" for dep in proto[1][1]],\r\n ) for proto in WELL_KNOWN_PROTO_MAP.items()]\r\n+\r\n+py_proto_library(\r\n+ name = \"well_known_types_py_pb2\",\r\n+ include = \".\",\r\n+ srcs = [proto[1][0] for proto in WELL_KNOWN_PROTO_MAP.items()],\r\n+ visibility = [\"//visibility:public\"],\r\n+)\r\n+\r\n```\r\n\r\nBut I got this error:\r\n```\r\n# Execution platform: @local_execution_config_platform//:platform\r\nIn file included from ./tensorflow/tsl/platform/status.h:37,\r\n from ./tensorflow/tsl/c/tsl_status_internal.h:19,\r\n from ./tensorflow/c/tf_status_internal.h:19,\r\n from tensorflow/c/tf_status.cc:18:\r\nbazel-out/k8-opt/bin/tensorflow/tsl/protobuf/error_codes.pb.h:10:10: fatal error: google/protobuf/port_def.inc: No such file or directory\r\n 10 | #include <google/protobuf/port_def.inc>\r\n | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\ncompilation terminated.\r\n```", "@vam-google\r\n\r\nCC- @learning-to-play ", "Hi @njzjz \r\nBuilding with systemlibs is not officially supported. We neither support it nore have any jobs which test them. I would also strongly discourage anyone relying on those to perform a build. Also we are planning even bigger changes soon (like hermetic python) which will break systemlibs build path even further. \r\n\r\nSupporting those was purely on community (i believe @perfinion should know the most about it).\r\n\r\nThe following is just my personal opinion, not an official statement from TF team.\r\nI don't think we can/should maintain systemlibs build path, as it is against hermetic philosophy of our build and prevents us from doing major changes in a build to simplify it (tensorflow build definitely needs a simplification). Also, we simply do not have any CI jobs to verify them, so they can break any time on any change. There is also no clear business need to have them.\r\n\r\n I would strongly consider moving systemlibs to a separate fork and maintain it there, if it is possible to maintain, or drop otherwise. One of the reasons why it was not causing many problems before was that were were not making many updates in our deps before (protobuf dependency was 3 years old). ", "I will close this ticket as it is related to not officially supported feature. Feel free to reopen, if you believe it should be supported (in that case, please also clarify a reason).", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60667\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60667\">No</a>\n", "> I don't think we can/should maintain systemlibs build path, as it is against hermetic philosophy of our build and prevents us from doing major changes in a build to simplify it (tensorflow build definitely needs a simplification)\r\n\r\nI agree that the build needs simplification, but removing the possibility to build against systemlibs is very hostile to any redistribution effort. Tensorflow is already a beast, and just requiring that it revendors the world is neither a feasible nor reasonable strategy (from the packaging POV).", "> \r\n\r\nIn a world where tensorflow was a stand-alone application that would be fine. But as a library that gets used in other applications, not supporting external dependencies is problematic at best. Especially when it comes to building custom operators against the the TF C++ library that have to use external dependencies, an inherent conflict exist with libtensorflow using its \"vendored\" deps via bazel while the operator has to pull in code linked to other versions of said dependencies. It's already difficult enough as it is use external deps but I think making that work much better is far more conducive to TensorFlow \"playing well with others\" in an ecosystem where it doesn't control the entire stack than simply abandoning it entirely.\r\n\r\nIf it's a matter of build jobs and CI resources, I'd be happy to have a discussion out-of-band on providing that for the project." ]
2023-05-23T05:36:09
2023-08-28T14:29:38
2023-05-30T17:08:54
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12.0 ### Custom Code No ### OS Platform and Distribution Linux ### Mobile device _No response_ ### Python version 3.10 ### Bazel version 5.3.0 ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? https://github.com/tensorflow/tensorflow/commit/84f40925e929d05e72ab9234e53c729224e3af38 adds a new dependency `@com_google_protobuf//:well_known_types_py_pb2_genproto` as follows: https://github.com/tensorflow/tensorflow/blob/df574a8a1f9447ee0399e019c1a9cf67c11bfe99/tensorflow/tsl/platform/default/build_config.bzl#L409 However, this target is not added to `tensorflow/third_party/systemlibs/protobuf.BUILD`. So when building TensorFlow with `export TF_SYSTEM_LIBS=com_google_protobuf`, the following error occurs: ``` ERROR: tensorflow/compiler/xla/BUILD:83:17: no such target '@com_google_protobuf//:well_known_types_py_pb2_genproto': target 'well_known_types_py_pb2_genproto' not declared in package '' defined by external/com_google_protobuf/BUILD.bazel and referenced by '//tensorflow/compiler/xla:xla_data_proto_py_genproto' ``` ### Standalone code to reproduce the issue ```shell export TF_SYSTEM_LIBS=com_google_protobuf ./configure bazel build //tensorflow/tools/pip_package:build_pip_package ``` ### Relevant log output ```shell ERROR: tensorflow/compiler/xla/BUILD:83:17: no such target '@com_google_protobuf//:well_known_types_py_pb2_genproto': target 'well_known_types_py_pb2_genproto' not declared in package '' defined by external/com_google_protobuf/BUILD.bazel and referenced by '//tensorflow/compiler/xla:xla_data_proto_py_genproto ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60667/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60667/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60666
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60666/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60666/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60666/events
https://github.com/tensorflow/tensorflow/issues/60666
1,721,051,682
I_kwDOArmXAs5mlSoi
60,666
tensorflow.python.framework.errors_impl.NotFoundError: ; No such file or directory
{ "login": "Pranil51", "id": 96012190, "node_id": "U_kgDOBbkHng", "avatar_url": "https://avatars.githubusercontent.com/u/96012190?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Pranil51", "html_url": "https://github.com/Pranil51", "followers_url": "https://api.github.com/users/Pranil51/followers", "following_url": "https://api.github.com/users/Pranil51/following{/other_user}", "gists_url": "https://api.github.com/users/Pranil51/gists{/gist_id}", "starred_url": "https://api.github.com/users/Pranil51/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Pranil51/subscriptions", "organizations_url": "https://api.github.com/users/Pranil51/orgs", "repos_url": "https://api.github.com/users/Pranil51/repos", "events_url": "https://api.github.com/users/Pranil51/events{/privacy}", "received_events_url": "https://api.github.com/users/Pranil51/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 1093464312, "node_id": "MDU6TGFiZWwxMDkzNDY0MzEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others", "name": "type:others", "color": "159b2e", "default": false, "description": "issues not falling in bug, perfromance, support, build and install or feature" }, { "id": 1188421838, "node_id": "MDU6TGFiZWwxMTg4NDIxODM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows", "name": "subtype:windows", "color": "b619ea", "default": false, "description": "Windows Build/Installation Issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Pranil51 ,\r\n\r\nTensorflow wont support GPU on Windows for versions TF>=2.11. You have to use WSL2 to enable GPU support. \r\nPlease refer the [source](https://www.tensorflow.org/install/pip#windows-native) for more details.\r\n\r\nHowever as you confirmed you are facing same problem with CPU also,I would like to get more context to have a look into the problem. Attached colab link has many dependencies from getting the data from your drive and custom models which are not sufficient to debug the issue.This might need access to source code related to TF and how it has been implemented. I Request you to submit minimal code snippet to reproduce the issue.\r\n\r\nThis seems there is an issue with the distribution strategy you have implemented.May be providing more context with code snippet can enable us to dig the issue and resolve it.\r\n\r\nThanks!", "> Hi @Pranil51 ,\r\n> \r\n> Tensorflow wont support GPU on Windows for versions TF>=2.11. You have to use WSL2 to enable GPU support. Please refer the [source](https://www.tensorflow.org/install/pip#windows-native) for more details.\r\n> \r\n> However as you confirmed you are facing same problem with CPU also,I would like to get more context to have a look into the problem. Attached colab link has many dependencies from getting the data from your drive and custom models which are not sufficient to debug the issue.This might need access to source code related to TF and how it has been implemented. I Request you to submit minimal code snippet to reproduce the issue.\r\n> \r\n> This seems there is an issue with the distribution strategy you have implemented.May be providing more context with code snippet can enable us to dig the issue and resolve it.\r\n> \r\n> Thanks!\r\n\r\nHello @SuryanarayanaY,\r\nThanks for the response.\r\nI import tensorflow as usual in colab only by using- !pip install tensorflow. Also I havent got issue on windows, but on colab only. ", "Hi @Pranil51 ,\r\n\r\nCould you please confirm the model you are using and how you have configured. I am unable to replicate the issue in colab as per attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/23d0fd939d36b7ad2650592a92b1a5f4/60666.ipynb).\r\n\r\nThanks!\r\n", "I solved error by coppying project relevant directories to content folder from gdrive. ", "Hi @Pranil51 ,\r\n\r\nIf the issue resolved could you please spare some time to close the issue. Thanks!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60666\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60666\">No</a>\n" ]
2023-05-23T02:51:54
2023-06-22T06:07:56
2023-06-22T06:07:53
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Others ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution Windows 11 ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 11.8 ### GPU model and memory T4 ### Current Behaviour? **I had been training faster_rcnn_resnet50_v1_640x640_coco17_tpu-8 model on my custom dataset in colab, all paths are correctly set in config file. Issue is on both GPU and CPU. fine_tune_checkpoint: "/content/drive/MyDrive/Obj_Detection/Faster_RCNN/data/pretrained_model/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8/checkpoint/ckpt-0" fine_tune_checkpoint_type: "detection" data_augmentation_options { random_horizontal_flip { } } max_number_of_boxes: 100 unpad_groundtruth_tensors: false use_bfloat16: true # works only on TPUs } train_input_reader: { label_map_path: "/content/drive/MyDrive/Obj_Detection/Faster_RCNN/data/label_map.pbtxt" tf_record_input_reader { input_path: "/content/drive/MyDrive/Obj_Detection/Faster_RCNN/data/train/*.tfrecord" } } eval_config: { metrics_set: "coco_detection_metrics" use_moving_averages: false batch_size: 1; } eval_input_reader: { label_map_path: "/content/drive/MyDrive/Obj_Detection/Faster_RCNN/data/label_map.pbtxt" shuffle: false num_epochs: 1 tf_record_input_reader { input_path: "/content/drive/MyDrive/Obj_Detection/Faster_RCNN/data/val/val.tfrecord" } }** Its probably config file but I have set all parameters correctly and copy pasted absolute paths. ### Standalone code to reproduce the issue ```shell https://colab.research.google.com/drive/16dQA4FzrNhMlV30qo5ofFH3Oj4WbtNP0?usp=sharing PIPELINE_CONFIG_PATH='/content/drive/MyDrive/Obj_Detection/Faster_RCNN/Models/training_process/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8.config' MODEL_DIR='/content/drive/MyDrive/Obj_Detection/Faster_RCNN/Models' # in the next cell %%shell cd /content python /content/drive/MyDrive/Obj_Detection/models/research/object_detection/model_main_tf2.py \ --pipeline_config_path=${PIPELINE_CONFIG_PATH} \ --model_dir=${MODEL_DIR} \ --alsologtostderr ``` ### Relevant log output ```shell TensorFlow Addons (TFA) has ended development and introduction of new features. TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024. Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). For more information see: https://github.com/tensorflow/addons/issues/2807 warnings.warn( WARNING:tensorflow:There are non-GPU devices in `tf.distribute.Strategy`, not using nccl allreduce. W0523 02:39:16.601438 139836257871680 cross_device_ops.py:1387] There are non-GPU devices in `tf.distribute.Strategy`, not using nccl allreduce. INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:CPU:0',) I0523 02:39:16.650524 139836257871680 mirrored_strategy.py:374] Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:CPU:0',) Traceback (most recent call last): File "/content/drive/MyDrive/Obj_Detection/models/research/object_detection/model_main_tf2.py", line 114, in <module> tf.compat.v1.app.run() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/platform/app.py", line 36, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/usr/local/lib/python3.10/dist-packages/absl/app.py", line 308, in run _run_main(main, args) File "/usr/local/lib/python3.10/dist-packages/absl/app.py", line 254, in _run_main sys.exit(main(argv)) File "/content/drive/MyDrive/Obj_Detection/models/research/object_detection/model_main_tf2.py", line 105, in main model_lib_v2.train_loop( File "/usr/local/lib/python3.10/dist-packages/object_detection/model_lib_v2.py", line 505, in train_loop configs = get_configs_from_pipeline_file( File "/usr/local/lib/python3.10/dist-packages/object_detection/utils/config_util.py", line 138, in get_configs_from_pipeline_file proto_str = f.read() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/lib/io/file_io.py", line 116, in read self._preread_check() File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/lib/io/file_io.py", line 77, in _preread_check self._read_buf = _pywrap_file_io.BufferedInputStream( tensorflow.python.framework.errors_impl.NotFoundError: ; No such file or directory --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) <ipython-input-7-8bc0cf4d8665> in <cell line: 1>() ----> 1 get_ipython().run_cell_magic('shell', '', 'cd /content\npython /content/drive/MyDrive/Obj_Detection/models/research/object_detection/model_main_tf2.py \\\n --pipeline_config_path=${PIPELINE_CONFIG_PATH} \\\n --model_dir=${MODEL_DIR} \\\n --alsologtostderr\n') 3 frames /usr/local/lib/python3.10/dist-packages/google/colab/_system_commands.py in check_returncode(self) 135 def check_returncode(self): 136 if self.returncode: --> 137 raise subprocess.CalledProcessError( 138 returncode=self.returncode, cmd=self.args, output=self.output 139 ) CalledProcessError: Command 'cd /content python /content/drive/MyDrive/Obj_Detection/models/research/object_detection/model_main_tf2.py \ --pipeline_config_path=${PIPELINE_CONFIG_PATH} \ --model_dir=${MODEL_DIR} \ --alsologtostderr ' returned non-zero exit status 1. ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60666/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60666/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60665
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60665/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60665/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60665/events
https://github.com/tensorflow/tensorflow/pull/60665
1,720,677,176
PR_kwDOArmXAs5REjZ_
60,665
r2.13 cherry-pick: remove the 1.15 wrapt limit as TF head works with it now.
{ "login": "venkat2469", "id": 104534215, "node_id": "U_kgDOBjsQxw", "avatar_url": "https://avatars.githubusercontent.com/u/104534215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/venkat2469", "html_url": "https://github.com/venkat2469", "followers_url": "https://api.github.com/users/venkat2469/followers", "following_url": "https://api.github.com/users/venkat2469/following{/other_user}", "gists_url": "https://api.github.com/users/venkat2469/gists{/gist_id}", "starred_url": "https://api.github.com/users/venkat2469/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/venkat2469/subscriptions", "organizations_url": "https://api.github.com/users/venkat2469/orgs", "repos_url": "https://api.github.com/users/venkat2469/repos", "events_url": "https://api.github.com/users/venkat2469/events{/privacy}", "received_events_url": "https://api.github.com/users/venkat2469/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-22T22:14:42
2023-05-22T22:41:34
2023-05-22T22:21:12
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60665", "html_url": "https://github.com/tensorflow/tensorflow/pull/60665", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60665.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60665.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60665/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60665/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60664
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60664/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60664/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60664/events
https://github.com/tensorflow/tensorflow/pull/60664
1,720,658,949
PR_kwDOArmXAs5REfK0
60,664
r2.13 cherry-pick: Add TypeError catch (wrapt==1.15.0rc throws TypeError instead of Attr…
{ "login": "venkat2469", "id": 104534215, "node_id": "U_kgDOBjsQxw", "avatar_url": "https://avatars.githubusercontent.com/u/104534215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/venkat2469", "html_url": "https://github.com/venkat2469", "followers_url": "https://api.github.com/users/venkat2469/followers", "following_url": "https://api.github.com/users/venkat2469/following{/other_user}", "gists_url": "https://api.github.com/users/venkat2469/gists{/gist_id}", "starred_url": "https://api.github.com/users/venkat2469/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/venkat2469/subscriptions", "organizations_url": "https://api.github.com/users/venkat2469/orgs", "repos_url": "https://api.github.com/users/venkat2469/repos", "events_url": "https://api.github.com/users/venkat2469/events{/privacy}", "received_events_url": "https://api.github.com/users/venkat2469/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-22T22:05:35
2023-05-22T22:41:37
2023-05-22T22:21:28
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60664", "html_url": "https://github.com/tensorflow/tensorflow/pull/60664", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60664.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60664.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60664/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60664/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60663
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60663/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60663/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60663/events
https://github.com/tensorflow/tensorflow/issues/60663
1,720,535,786
I_kwDOArmXAs5mjUrq
60,663
Request to support ERF function for TFL
{ "login": "Jerry-Ge", "id": 24451859, "node_id": "MDQ6VXNlcjI0NDUxODU5", "avatar_url": "https://avatars.githubusercontent.com/u/24451859?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Jerry-Ge", "html_url": "https://github.com/Jerry-Ge", "followers_url": "https://api.github.com/users/Jerry-Ge/followers", "following_url": "https://api.github.com/users/Jerry-Ge/following{/other_user}", "gists_url": "https://api.github.com/users/Jerry-Ge/gists{/gist_id}", "starred_url": "https://api.github.com/users/Jerry-Ge/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jerry-Ge/subscriptions", "organizations_url": "https://api.github.com/users/Jerry-Ge/orgs", "repos_url": "https://api.github.com/users/Jerry-Ge/repos", "events_url": "https://api.github.com/users/Jerry-Ge/events{/privacy}", "received_events_url": "https://api.github.com/users/Jerry-Ge/received_events", "type": "User", "site_admin": false }
[ { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" } ]
closed
false
{ "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false }
[ { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Jerry-Ge,\r\n\r\nI believe you can use it now as a Select TF Operator, please review: https://www.tensorflow.org/lite/guide/ops_select. However you need to add \"tf.lite.OpsSet.SELECT_TF_OPS\" to your converter.target_spec.supported_ops list, as in the example in the link:\r\n```\r\nimport tensorflow as tf\r\n\r\nconverter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\r\nconverter.target_spec.supported_ops = [\r\n tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\r\n tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops. <-- Add this line\r\n]\r\ntflite_model = converter.convert()\r\nopen(\"converted_model.tflite\", \"wb\").write(tflite_model)\r\n```\r\n\r\nLet us know if this resolves your issue.", "cool, thansk @pkgoogle , let us try. \r\n\r\ncc @wonjeon", "Still not working with the interpreter errors I got: (The converter is working)\r\n\r\n`RuntimeError: Regular TensorFlow ops are not supported by this interpreter. Make sure you invoke the Flex delegate before inference.Node number 0 (Flex) failed to prepare.`\r\n\r\nIs there anything I need to update with the interpreter, too?\r\n\r\nFYI. I'm using `tf.lite.TFLiteConverter.from_concrete_functions` \r\n\r\nTks! \r\n", "Hi @Jerry-Ge, what platform/OS are you creating the interpreter on?", "> \r\n\r\n Ubuntu 18.04.6 LTS (GNU/Linux 5.4.0-96-generic x86_64)", "Are you doing it in Python, C++, something else? Are you using the benchmark tool? (Do you have the source code/context around your interpreter available?)", "> Are you doing it in Python, C++, something else? Are you using the benchmark tool? (Do you have the source code/context around your interpreter available?)\r\n\r\nI'm using Python. No benchmark tool is used. \r\n\r\nThe interpreter being used is similar to this: \r\n```\r\ninterpreter = tf.lite.Interpreter(model_path=some_path)\r\ninterpreter.allocate_tensors() // This line is causing the above errors. \r\n```", "Per this section: https://www.tensorflow.org/lite/guide/ops_select#python\r\n\r\nIt should be installed when installing the TF package, how did you install Tensorflow or Tensorflow Lite? (If you installed TF Lite only, you need to install TF as well), it is probably worth trying it out in a fresh environment/venv/conda env/docker and see if that helps.", "I think my Tensorflow installation should be good. \r\n\r\nBesides TFL, the TF dialect for the erf function is also not supported: \r\n```\r\n## Error: Results INVALID_MLIR test_erf_1_f32: Error 1 running command:\r\n/tensorflow/bazel-bin/tensorflow/compiler/mlir/tf-mlir-translate --graphdef-to-mlir --tf-enable-shape-inference-on-import --tf-output-arrays=result erf/test_erf_1_f32/model.pb -o erf/test_erf_1_f32/test_tf.preopt.mlir --tf-input-arrays placeholder_0 --tf-input-shapes 1,\r\n```", "Let's table the discussion on the TF dialect (might need to be a separate issue). Erf is in the allowlist: https://www.tensorflow.org/lite/guide/op_select_allowlist. From my perspective it looks like an install issue, can you upload the .lite model? A toy example which reproduces the issue is fine, any code used to make/convert the model will also help w/ context. Thanks!", "> Let's table the discussion on the TF dialect (might need to be a separate issue). Erf is in the allowlist: https://www.tensorflow.org/lite/guide/op_select_allowlist. From my perspective it looks like an install issue, can you upload the .lite model? A toy example which reproduces the issue is fine, any code used to make/convert the model will also help w/ context. Thanks!\r\n\r\nYes, for sure. Thanks for the help, you can find a dummy model here: https://github.com/Jerry-Ge/tfl_models/blob/main/erf_model.tflite", "Thanks for the support! I found the interpreter issue: \r\n\r\nI'm adding the additional `experimental_op_resolver_type=OpResolverType.BUILTIN_REF,` when instantiate that. Removing that solves the interpreter issues. \r\n\r\nHowever, as I mentioned above, the overall support for ERF is still missing with more details in this ticket: https://github.com/tensorflow/tensorflow/issues/60809 ", "Thanks @Jerry-Ge, please feel free to close this issue as we can track the other issue in the other case instead.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60663\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60663\">No</a>\n" ]
2023-05-22T21:02:06
2023-06-08T01:19:00
2023-06-08T01:18:57
CONTRIBUTOR
null
null
null
`tf.math.erf` is supported here: https://www.tensorflow.org/api_docs/python/tf/math/erf TFLite is missing the erf implementation: https://www.tensorflow.org/mlir/tfl_ops#tfllstm_mlirtfllstmop
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60663/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60663/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60662
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60662/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60662/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60662/events
https://github.com/tensorflow/tensorflow/issues/60662
1,720,523,647
I_kwDOArmXAs5mjRt_
60,662
can we customize memory allocation functions(like malloc/free) for inference with C api?
{ "login": "dandlake", "id": 71539343, "node_id": "MDQ6VXNlcjcxNTM5MzQz", "avatar_url": "https://avatars.githubusercontent.com/u/71539343?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dandlake", "html_url": "https://github.com/dandlake", "followers_url": "https://api.github.com/users/dandlake/followers", "following_url": "https://api.github.com/users/dandlake/following{/other_user}", "gists_url": "https://api.github.com/users/dandlake/gists{/gist_id}", "starred_url": "https://api.github.com/users/dandlake/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dandlake/subscriptions", "organizations_url": "https://api.github.com/users/dandlake/orgs", "repos_url": "https://api.github.com/users/dandlake/repos", "events_url": "https://api.github.com/users/dandlake/events{/privacy}", "received_events_url": "https://api.github.com/users/dandlake/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 1097543484, "node_id": "MDU6TGFiZWwxMDk3NTQzNDg0", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime", "name": "comp:runtime", "color": "0052cc", "default": false, "description": "c++ runtime, performance issues (cpu)" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@dandlake,\r\nCould you please elaborate about your Feature. Also, please specify the Use Cases for this feature. Thank you!", "In our use case, we have multiple processes to handle various workloads. They all need to do ML inference. We are tight on memory, so we need to load the model once in shared memory, instead of every process loading a copy of the model themselves. This way, all the processes can use the model to do inference. Can this be supported?" ]
2023-05-22T20:56:29
2023-05-25T18:15:33
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Feature Request ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.8 ### Custom Code No ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? When using C api to do inference, I want to customize the memory allocation functions like malloc/free to control how tensorflow allocates memory. I want to make tensorflow use a separate area of memory in some shared memory region to load the model. Is there a way to do this? ### Standalone code to reproduce the issue ```shell N/A ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60662/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60662/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60661
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60661/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60661/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60661/events
https://github.com/tensorflow/tensorflow/pull/60661
1,720,483,480
PR_kwDOArmXAs5RD2_x
60,661
r2.13 cherry-pick: 66cd160618d "Remove the 1.15 wrapt limit as TF head works with it now."
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "This PR shall be merged after #60641 (It depends on #60641 to function)" ]
2023-05-22T20:37:01
2023-05-26T00:13:51
2023-05-26T00:05:31
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60661", "html_url": "https://github.com/tensorflow/tensorflow/pull/60661", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60661.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60661.patch", "merged_at": "2023-05-26T00:05:31" }
Refer to the original commit: https://github.com/tensorflow/tensorflow/commit/66cd160618d09d8e1d724e190c261337654ff963
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60661/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60661/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60660
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60660/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60660/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60660/events
https://github.com/tensorflow/tensorflow/issues/60660
1,720,036,216
I_kwDOArmXAs5mhat4
60,660
Casting in multiprocessing hang forever
{ "login": "MaximeChurin", "id": 11043047, "node_id": "MDQ6VXNlcjExMDQzMDQ3", "avatar_url": "https://avatars.githubusercontent.com/u/11043047?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MaximeChurin", "html_url": "https://github.com/MaximeChurin", "followers_url": "https://api.github.com/users/MaximeChurin/followers", "following_url": "https://api.github.com/users/MaximeChurin/following{/other_user}", "gists_url": "https://api.github.com/users/MaximeChurin/gists{/gist_id}", "starred_url": "https://api.github.com/users/MaximeChurin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MaximeChurin/subscriptions", "organizations_url": "https://api.github.com/users/MaximeChurin/orgs", "repos_url": "https://api.github.com/users/MaximeChurin/repos", "events_url": "https://api.github.com/users/MaximeChurin/events{/privacy}", "received_events_url": "https://api.github.com/users/MaximeChurin/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "I don't think this is something we support.\r\n\r\nI have a feeling you'll run into this whenever TF tries to use multithreading at all. I doubt it has anything to do with `cast` or `convert_to_tensor` specifically. It's likely _any_ tensorflow operation above a certain size.\r\n\r\nWhat are you trying to accomplish?", "TensorFlow has state. Once the TF context is initialized, threadpools are created, and these threads go into a sleep pattern, waiting on a condition variable for new work. When you spawn a new process, you're copying the state, but this corrupts the underlying mutexes, and the threads never wake - so it hangs.\r\n\r\nThe `multiprocessing` package in general will only work correctly with stateless functions.\r\n\r\nInternally, both `convert_to_tensor` and `cast` (and many other ops) are already multithreaded and SIMD vectorized, so you won't gain anything by trying to use a process pool here - simply call the bare `tf.convert_to_tensor`. If you do want multiple processes, they'll need to have distinct TF contexts, and you won't be able to share data between them.\r\n\r\n", "Thanks for the reply. I apologize if it is missing some context, I wanted to put the minimal reproducible example.\r\n\r\nA bit of context, I have many JSON files containing some annotations, I create one process for each of them that writes a tfrecord file (write as soon as SerializeToStringt is created). I choose that over the main process read them all and send one annotation to each process that sends back a SerializeToString that the main process then writes every time it has reached a certain number because the memory grows too much. But I am open to suggestions if you have some?\r\n\r\nSee the snippet below for a general idea (note: if you remove `tf.data.TFRecordDataset` after the pool the code does not hang anymore; you can replace it with any tf operation like `tf.ones((2, 2))` and the problem is there again)\r\n\r\n```python\r\nimport multiprocessing\r\n\r\nimport tensorflow as tf\r\n\r\n\r\ndef _bytes_feature(value):\r\n if isinstance(value, type(tf.constant(0))):\r\n value = value.numpy()\r\n return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))\r\n\r\n\r\ndef preprocess_image(image, height, width):\r\n return tf.cast(tf.image.resize(image, size=(height, width)), tf.uint8)\r\n\r\n\r\ndef write_tf_records(name):\r\n with tf.io.TFRecordWriter(f\"/tmp/{name}.tfrecords\") as writer:\r\n # load a json in COCO format then read each filename and open the image\r\n for image in [[[[0 for _ in range(3)] for _ in range(700)] for _ in range(700)]]:\r\n writer.write(\r\n tf.train.Example(\r\n features=tf.train.Features(\r\n feature={\r\n \"image\": _bytes_feature(\r\n tf.io.serialize_tensor(preprocess_image(image, 800, 800))\r\n )\r\n }\r\n )\r\n ).SerializeToString()\r\n )\r\n\r\n\r\ndef test_cast_success():\r\n with multiprocessing.Pool(processes=1) as p:\r\n p.map(func=write_tf_records, iterable=[\"file1\"])\r\n dataset = tf.data.TFRecordDataset([\"/tmp/file1.tfrecords\"])\r\n\r\n\r\ndef test_cast_hang_forever():\r\n with multiprocessing.Pool(processes=1) as p:\r\n p.map(func=write_tf_records, iterable=[\"file2\"])\r\n dataset = tf.data.TFRecordDataset([\"/tmp/file1.tfrecords\"])\r\n\r\n\r\ntest_cast_success()\r\ntest_cast_hang_forever()\r\n```\r\n", "Right, so as described in my previous reply you won't be able to use any TensorFlow commands within the multiprocess pool. It's just not compatible with how TensorFlow works, or any package that creates and handles its own threads with persistent threadpools. The `test_cast_success` works because there is no TF context the first time you spawn a new process (it's created on the first `tf` call). Then in the main process, the context is created when you call `tf.data.TFRecordDataset`. The `test_cast_hang_forever` call then breaks on creation of the new process, because the context exists and is copied to the new process, but this breaks all the internal state.\r\n\r\nYour best bet is to stick to `tf.data` input pipelines. Maybe something like [this](https://github.com/tensorflow/models/blob/master/research/object_detection/dataset_tools/create_coco_tf_record.py) can help you? Or you just do this processing once, single-threaded.", "thanks @cantonios, I will take a look at your link", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60660\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60660\">No</a>\n" ]
2023-05-22T16:33:36
2023-05-25T20:21:57
2023-05-25T20:21:55
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf>=2.8 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 20.04, 22.04 ### Mobile device _No response_ ### Python version 3.8 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version None ### GPU model and memory _No response_ ### Current Behaviour? When casting an array above a certain size in multiprocessing without GPU, the second call just hangs forever (either using `convert_to_tensor` or `cast`). ### Standalone code to reproduce the issue ```shell import multiprocessing import tensorflow as tf def func(x): return tf.convert_to_tensor([[[0 for _ in range(700)] for _ in range(700)] for _ in range(3)], tf.uint8) def test_cast_success(): with multiprocessing.Pool(processes=1) as p: p.map(func=func, iterable=[1]) def test_cast_hang_forever(): with multiprocessing.Pool(processes=1) as p: p.map(func=func, iterable=[1]) test_cast_success() test_cast_hang_forever() ``` ### Relevant log output ```shell KeyboardInterrupt Traceback (most recent call last) Cell In[3], line 21 17 p.map(func=func, iterable=[1]) 20 test_cast_success() ---> 21 test_cast_hang_forever() Cell In[3], line 17, in test_cast_hang_forever() 15 def test_cast_hang_forever(): 16 with multiprocessing.Pool(processes=1) as p: ---> 17 p.map(func=func, iterable=[1]) File ~/.pyenv/versions/3.8.16/lib/python3.8/multiprocessing/pool.py:364, in Pool.map(self, func, iterable, chunksize) 359 def map(self, func, iterable, chunksize=None): 360 ''' 361 Apply `func` to each element in `iterable`, collecting the results 362 in a list that is returned. 363 ''' --> 364 return self._map_async(func, iterable, mapstar, chunksize).get() File ~/.pyenv/versions/3.8.16/lib/python3.8/multiprocessing/pool.py:765, in ApplyResult.get(self, timeout) 764 def get(self, timeout=None): --> 765 self.wait(timeout) 766 if not self.ready(): 767 raise TimeoutError File ~/.pyenv/versions/3.8.16/lib/python3.8/multiprocessing/pool.py:762, in ApplyResult.wait(self, timeout) 761 def wait(self, timeout=None): --> 762 self._event.wait(timeout) File ~/.pyenv/versions/3.8.16/lib/python3.8/threading.py:558, in Event.wait(self, timeout) 556 signaled = self._flag 557 if not signaled: --> 558 signaled = self._cond.wait(timeout) 559 return signaled File ~/.pyenv/versions/3.8.16/lib/python3.8/threading.py:302, in Condition.wait(self, timeout) 300 try: # restore state no matter what (e.g., KeyboardInterrupt) 301 if timeout is None: --> 302 waiter.acquire() 303 gotit = True 304 else: KeyboardInterrupt: ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60660/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60660/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60659
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60659/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60659/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60659/events
https://github.com/tensorflow/tensorflow/issues/60659
1,720,003,912
I_kwDOArmXAs5mhS1I
60,659
Memory leak in model fit with dataset from generator
{ "login": "arianmaghsoudnia", "id": 55542530, "node_id": "MDQ6VXNlcjU1NTQyNTMw", "avatar_url": "https://avatars.githubusercontent.com/u/55542530?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arianmaghsoudnia", "html_url": "https://github.com/arianmaghsoudnia", "followers_url": "https://api.github.com/users/arianmaghsoudnia/followers", "following_url": "https://api.github.com/users/arianmaghsoudnia/following{/other_user}", "gists_url": "https://api.github.com/users/arianmaghsoudnia/gists{/gist_id}", "starred_url": "https://api.github.com/users/arianmaghsoudnia/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arianmaghsoudnia/subscriptions", "organizations_url": "https://api.github.com/users/arianmaghsoudnia/orgs", "repos_url": "https://api.github.com/users/arianmaghsoudnia/repos", "events_url": "https://api.github.com/users/arianmaghsoudnia/events{/privacy}", "received_events_url": "https://api.github.com/users/arianmaghsoudnia/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@arianmaghsoudnia,\r\nThank you for reporting the issue.\r\n\r\nCould you please take a look at this relevant issue threads https://github.com/tensorflow/tensorflow/issues/58606, https://github.com/tensorflow/tensorflow/issues/57690, https://github.com/tensorflow/tensorflow/issues/56624.\r\n\r\nAlso I would suggest you to have look at this article [tf.data.Dataset generators with parallelization](https://medium.com/@acordier/tf-data-dataset-generators-with-parallelization-the-easy-way-b5c5f7d2a18) which may help you to solve your memory related issue. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60659\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60659\">No</a>\n" ]
2023-05-22T16:10:35
2023-06-09T02:07:24
2023-06-09T02:07:17
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Performance ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.10, 3.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version None ### GPU model and memory None ### Current Behaviour? When creating a dataset from the generator, using Tensorflow V2.12.0 with Python 3.11, some memory is not released after training on each batch, leading to a linear increase in memory usage during the model fit step. ### Standalone code to reproduce the issue ```shell This is the code I used to generate random data on the fly to be used by the generator, and a simple model to fit this data on. batch_size =32 train_datapoints_count = 1000000 val_datapoints_count = 200000 def generate_random_dataset(input_size): for _ in range(input_size): x = np.random.rand(batch_size, 1, 10).astype(np.float32) y = np.random.rand(batch_size, 1, 1).astype(np.float32) yield x, y dataset_train = tf.data.Dataset.from_generator( generator=generate_random_dataset, args=[train_datapoints_count], name="random_ds_train", output_signature=( tf.TensorSpec(shape=(None, 1, 10), dtype=np.float32), tf.TensorSpec(shape=(None, 1, 1), dtype=np.float32), ), ) dataset_val = tf.data.Dataset.from_generator( generator=generate_random_dataset, args = [val_datapoints_count], name="random_ds_val", output_signature=( tf.TensorSpec(shape=(None, 1, 10), dtype=np.float32), tf.TensorSpec(shape=(None, 1, 1), dtype=np.float32), ), ) model = tf.keras.Sequential( [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=batch_size, activation="relu"), tf.keras.layers.Dense(units=batch_size, activation="relu"), tf.keras.layers.Dense(units=1), ] ) model.compile( loss=tf.losses.MeanSquaredError(), optimizer=tf.optimizers.Adam(), metrics=[tf.metrics.MeanAbsoluteError(), tf.metrics.MeanSquaredError()], ) model.fit( dataset_train, epochs=2, validation_data=dataset_val, ) ``` I then ran the code in a container and logged the memory usage. ``` FROM python:3.10 #also 3.11 WORKDIR /app RUN pip install tensorflow==2.12.0 COPY train.py . ENTRYPOINT ["python", "train.py"] ``` ``` ### Relevant log output ```shell With Python 3.11, I see an increment in memory usage over time, while it remains the same for Python 3.10. I am allocating the exact same resources to both of the containers. The columns are respectively: Seconds into the fitting step, memory usage tf_2.12_python_3.10, memory usage tf_2.12_python_3.11. 5 254.9 288.9 10 254.9 291 15 254.9 293.1 20 254.9 294.8 25 254.9 296.4 30 254.9 298.5 35 254.9 300.3 40 254.9 301.8 45 254.9 304 50 254.9 306.2 55 254.9 308.3 60 254.9 310.6 65 254.9 312.5 70 254.9 314.8 75 254.9 316.5 80 254.9 317.9 85 254.6 319.5 90 254.2 320.4 95 253.8 321.5 100 253 323.1 ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60659/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60659/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60658
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60658/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60658/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60658/events
https://github.com/tensorflow/tensorflow/pull/60658
1,719,965,663
PR_kwDOArmXAs5RCEG3
60,658
fix bazelrc path
{ "login": "cjflan", "id": 89868659, "node_id": "MDQ6VXNlcjg5ODY4NjU5", "avatar_url": "https://avatars.githubusercontent.com/u/89868659?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cjflan", "html_url": "https://github.com/cjflan", "followers_url": "https://api.github.com/users/cjflan/followers", "following_url": "https://api.github.com/users/cjflan/following{/other_user}", "gists_url": "https://api.github.com/users/cjflan/gists{/gist_id}", "starred_url": "https://api.github.com/users/cjflan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cjflan/subscriptions", "organizations_url": "https://api.github.com/users/cjflan/orgs", "repos_url": "https://api.github.com/users/cjflan/repos", "events_url": "https://api.github.com/users/cjflan/events{/privacy}", "received_events_url": "https://api.github.com/users/cjflan/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "@nitins17 This is currently blocking nightly builds and will block release builds from being built from this repo" ]
2023-05-22T15:50:02
2023-05-22T18:31:04
2023-05-22T18:31:03
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60658", "html_url": "https://github.com/tensorflow/tensorflow/pull/60658", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60658.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60658.patch", "merged_at": "2023-05-22T18:31:03" }
Repo is cloned in the `tensorflow` dir inside the Jenkins ${WORKSPACE}. The file path needs an added `/tensorflow` before the relative file path to `.macos.bazelrc` Also based on more testing, quotes needed to be added to the release branch variable
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60658/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60658/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60657
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60657/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60657/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60657/events
https://github.com/tensorflow/tensorflow/pull/60657
1,719,523,584
PR_kwDOArmXAs5RAjf3
60,657
Develop upstream sync 230522
{ "login": "draganmladjenovic", "id": 37329008, "node_id": "MDQ6VXNlcjM3MzI5MDA4", "avatar_url": "https://avatars.githubusercontent.com/u/37329008?v=4", "gravatar_id": "", "url": "https://api.github.com/users/draganmladjenovic", "html_url": "https://github.com/draganmladjenovic", "followers_url": "https://api.github.com/users/draganmladjenovic/followers", "following_url": "https://api.github.com/users/draganmladjenovic/following{/other_user}", "gists_url": "https://api.github.com/users/draganmladjenovic/gists{/gist_id}", "starred_url": "https://api.github.com/users/draganmladjenovic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/draganmladjenovic/subscriptions", "organizations_url": "https://api.github.com/users/draganmladjenovic/orgs", "repos_url": "https://api.github.com/users/draganmladjenovic/repos", "events_url": "https://api.github.com/users/draganmladjenovic/events{/privacy}", "received_events_url": "https://api.github.com/users/draganmladjenovic/received_events", "type": "User", "site_admin": false }
[ { "id": 1173072136, "node_id": "MDU6TGFiZWwxMTczMDcyMTM2", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL", "name": "size:XL", "color": "adafea", "default": false, "description": "CL Change Size:Extra Large" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-22T11:48:34
2023-05-22T11:50:56
2023-05-22T11:49:32
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60657", "html_url": "https://github.com/tensorflow/tensorflow/pull/60657", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60657.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60657.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60657/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60657/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60656
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60656/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60656/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60656/events
https://github.com/tensorflow/tensorflow/issues/60656
1,719,370,697
I_kwDOArmXAs5me4PJ
60,656
tf.math.sign has different results with or without XLA
{ "login": "PengHaoYu", "id": 30256808, "node_id": "MDQ6VXNlcjMwMjU2ODA4", "avatar_url": "https://avatars.githubusercontent.com/u/30256808?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PengHaoYu", "html_url": "https://github.com/PengHaoYu", "followers_url": "https://api.github.com/users/PengHaoYu/followers", "following_url": "https://api.github.com/users/PengHaoYu/following{/other_user}", "gists_url": "https://api.github.com/users/PengHaoYu/gists{/gist_id}", "starred_url": "https://api.github.com/users/PengHaoYu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PengHaoYu/subscriptions", "organizations_url": "https://api.github.com/users/PengHaoYu/orgs", "repos_url": "https://api.github.com/users/PengHaoYu/repos", "events_url": "https://api.github.com/users/PengHaoYu/events{/privacy}", "received_events_url": "https://api.github.com/users/PengHaoYu/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1133285679, "node_id": "MDU6TGFiZWwxMTMzMjg1Njc5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla", "name": "comp:xla", "color": "0052cc", "default": false, "description": "XLA" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@PengHaoYu,\r\nThe issue might be due to casting behaviour on CPU vs GPU with undefined/overflow values.\r\n\r\nCould you please refer to the developer comment for a similar issue https://github.com/tensorflow/tensorflow/issues/58749#issuecomment-1467086661. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60656\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60656\">No</a>\n" ]
2023-05-22T10:15:27
2023-06-07T02:07:45
2023-06-07T02:07:42
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.14.0-dev20230520 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 18.04 ### Mobile device / ### Python version 3.7.5 ### Bazel version / ### GCC/Compiler version / ### CUDA/cuDNN version 11.2 ### GPU model and memory GeForce RTX 2080Ti ### Current Behaviour? `tf.math.sign` has different results with or without XLA. The reproduction colab link is here: [colab](https://colab.research.google.com/drive/1JQXDs9fo6Ft2HzFPnZ-ChorhUA0Zn_cz#scrollTo=FYTuTfdC5IX_). ### Standalone code to reproduce the issue ```shell import tensorflow as tf print(tf.version.VERSION) @tf.function(jit_compile=False) def run_without_xla(a): return tf.math.sign(a) @tf.function(jit_compile=True) def run_with_xla(a): return tf.math.sign(a) x = tf.constant([-3.e+307 + 0.j, -6.e+307 + 0.j]) print(run_without_xla(x)) print(run_with_xla(x)) ``` ### Relevant log output ```shell 2.14.0-dev20230520 tf.Tensor([-0.+0.j -0.+0.j], shape=(2,), dtype=complex128) tf.Tensor([-1.+0.j -1.+0.j], shape=(2,), dtype=complex128) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60656/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60656/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60654
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60654/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60654/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60654/events
https://github.com/tensorflow/tensorflow/issues/60654
1,719,237,430
I_kwDOArmXAs5meXs2
60,654
tf.math.abs has different results when running under CPU or GPU
{ "login": "PengHaoYu", "id": 30256808, "node_id": "MDQ6VXNlcjMwMjU2ODA4", "avatar_url": "https://avatars.githubusercontent.com/u/30256808?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PengHaoYu", "html_url": "https://github.com/PengHaoYu", "followers_url": "https://api.github.com/users/PengHaoYu/followers", "following_url": "https://api.github.com/users/PengHaoYu/following{/other_user}", "gists_url": "https://api.github.com/users/PengHaoYu/gists{/gist_id}", "starred_url": "https://api.github.com/users/PengHaoYu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PengHaoYu/subscriptions", "organizations_url": "https://api.github.com/users/PengHaoYu/orgs", "repos_url": "https://api.github.com/users/PengHaoYu/repos", "events_url": "https://api.github.com/users/PengHaoYu/events{/privacy}", "received_events_url": "https://api.github.com/users/PengHaoYu/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
open
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @PengHaoYu ,\r\n\r\nI have replicated the issue with TF2.12 and also tf-nightly versions.Please refer [gist](https://colab.research.google.com/gist/SuryanarayanaY/6b50a7a535f20faed65d8992b726a226/60654_nightly.ipynb#scrollTo=iSrj5x_Z2oUX).\r\n\r\nNeeds to dig more into the issue and let you know. Thanks!", "Looks like this is an MLIR issue. Disabling MLIR kernels results in the correct behavior. Forwarding to the MLIR team." ]
2023-05-22T09:00:53
2023-06-02T21:00:08
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version tf 2.11.0 ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 18.04 ### Mobile device / ### Python version 3.7.5 ### Bazel version / ### GCC/Compiler version / ### CUDA/cuDNN version 11.2 ### GPU model and memory GeForce RTX 2080Ti ### Current Behaviour? `tf.math.abs` has different results when running under CPU or GPU. The reproduction colab link is here: [colab](https://colab.research.google.com/drive/1pjhCrZTnmUktYZ75BKb2XqCMrdVnRqOP#scrollTo=D2E0G6uJiDMO). ### Standalone code to reproduce the issue ```shell import tensorflow as tf x = tf.constant([3.4e+307 + 0.j], dtype=tf.complex128) with tf.device("/cpu:0"): a = tf.math.abs(x) print(a) with tf.device("/gpu:0"): a = tf.math.abs(x) print(a) ``` ### Relevant log output ```shell tf.Tensor([3.4e+307], shape=(1,), dtype=float64) tf.Tensor([inf], shape=(1,), dtype=float64) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60654/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60654/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60653
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60653/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60653/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60653/events
https://github.com/tensorflow/tensorflow/issues/60653
1,719,137,512
I_kwDOArmXAs5md_To
60,653
Using NnApiDelegate in TFLite 2.11.0 returns same embeddings for all images. It works fine for 2.6.0
{ "login": "shuaga", "id": 56992243, "node_id": "MDQ6VXNlcjU2OTkyMjQz", "avatar_url": "https://avatars.githubusercontent.com/u/56992243?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shuaga", "html_url": "https://github.com/shuaga", "followers_url": "https://api.github.com/users/shuaga/followers", "following_url": "https://api.github.com/users/shuaga/following{/other_user}", "gists_url": "https://api.github.com/users/shuaga/gists{/gist_id}", "starred_url": "https://api.github.com/users/shuaga/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shuaga/subscriptions", "organizations_url": "https://api.github.com/users/shuaga/orgs", "repos_url": "https://api.github.com/users/shuaga/repos", "events_url": "https://api.github.com/users/shuaga/events{/privacy}", "received_events_url": "https://api.github.com/users/shuaga/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 2671354709, "node_id": "MDU6TGFiZWwyNjcxMzU0NzA5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteNNAPIDelegate", "name": "TFLiteNNAPIDelegate", "color": "65916E", "default": false, "description": "For issues related to TFLite NNAPI Delegate" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
open
false
{ "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }
[ { "login": "sirakiin", "id": 4479310, "node_id": "MDQ6VXNlcjQ0NzkzMTA=", "avatar_url": "https://avatars.githubusercontent.com/u/4479310?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirakiin", "html_url": "https://github.com/sirakiin", "followers_url": "https://api.github.com/users/sirakiin/followers", "following_url": "https://api.github.com/users/sirakiin/following{/other_user}", "gists_url": "https://api.github.com/users/sirakiin/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirakiin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirakiin/subscriptions", "organizations_url": "https://api.github.com/users/sirakiin/orgs", "repos_url": "https://api.github.com/users/sirakiin/repos", "events_url": "https://api.github.com/users/sirakiin/events{/privacy}", "received_events_url": "https://api.github.com/users/sirakiin/received_events", "type": "User", "site_admin": false }, { "login": "pkgoogle", "id": 132095473, "node_id": "U_kgDOB9-d8Q", "avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pkgoogle", "html_url": "https://github.com/pkgoogle", "followers_url": "https://api.github.com/users/pkgoogle/followers", "following_url": "https://api.github.com/users/pkgoogle/following{/other_user}", "gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}", "starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions", "organizations_url": "https://api.github.com/users/pkgoogle/orgs", "repos_url": "https://api.github.com/users/pkgoogle/repos", "events_url": "https://api.github.com/users/pkgoogle/events{/privacy}", "received_events_url": "https://api.github.com/users/pkgoogle/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @shuaga \r\n\r\nCan you try [benchmarking](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark) and share the results?\r\n\r\nAlso, can you try with TF 2.12 and nightly and let us know if you are observing the same behaviour?\r\n\r\nThanks.", "Hi @pjpratik \r\n\r\nI tried with TF 2.12 and the same problem behaviour was reproduced.\r\n\r\n### Benchmarking steps done\r\n`adb install -r -d -g android_aarch64_benchmark_model.apk`\r\n`adb push facenet.tflite /data/local/tmp`\r\n`adb logcat -c`\r\n`adb shell am start -S -n org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '\"--graph=/data/local/tmp/facenet.tflite --num_threads=4\"'`\r\n`adb logcat | grep \"Inference timings\"`\r\n\r\nThe result of this was -\r\n`05-24 12:57:09.622 4844 4844 I tflite : Inference timings in us: Init: 25648, First inference: 539451, Warmup (avg): 539451, Inference (avg): 530406`\r\n\r\nNext -\r\n`adb logcat -c`\r\n`adb shell am start -S -n org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '\"--graph=/data/local/tmp/facenet.tflite --num_threads=4 --use_nnapi=true\"'`\r\n`adb logcat | grep \"Inference timings\"`\r\n\r\nThe result this time was -\r\n`05-24 12:59:17.100 5300 5300 I tflite : Inference timings in us: Init: 1629033, First inference: 54704, Warmup (avg): 53009.9, Inference (avg): 52862.3`\r\n\r\n### Below are logs containing 'NNAPI' from the logcat:\r\n05-24 12:59:12.259 5300 5300 I tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with args: --graph=/data/local/tmp/facenet.tflite --num_threads=4 --use_nnapi=true\r\n\r\n05-24 12:59:12.268 5300 5300 I tflite : Use NNAPI: [1]\r\n\r\n05-24 12:59:12.280 5300 5300 I tflite : NNAPI accelerators available: [qti-default,qti-dsp,qti-gpu,nnapi-reference]\r\n\r\n05-24 12:59:12.288 5300 5300 I tflite : Created TensorFlow Lite delegate for NNAPI.\r\n\r\n05-24 12:59:12.288 5300 5300 I tflite : NNAPI delegate created.\r\n\r\n05-24 12:59:12.289 5300 5300 W tflite : NNAPI SL driver did not implement SL_ANeuralNetworksDiagnostic_registerCallbacks!\r\n\r\n05-24 12:59:12.290 5300 5300 I TypeManager: Failed to read /vendor/etc/nnapi_extensions_app_allowlist ; No app allowlisted for vendor extensions use.\r\n\r\n05-24 12:59:12.755 5300 5300 I tflite : Replacing 179 out of 181 node(s) with delegate (TfLiteNnapiDelegate) node, yielding 2 partitions for the whole graph.\r\n\r\n05-24 12:59:12.755 5300 5300 W tflite : NNAPI SL driver did not implement SL_ANeuralNetworksDiagnostic_registerCallbacks!\r\n\r\n05-24 12:59:13.889 5300 5300 I tflite : Explicitly applied NNAPI delegate, and the model graph will be partially executed by the delegate w/ 1 delegate kernels.\r\n\r\n### Next steps\r\nDo let me know if anything else is needed.", "@shuaga Thanks for the information.\r\n\r\n@pkgoogle Could you please look into this issue?\r\n", "Sure thing, I'll take a look at this.", "Hi @shuaga, can you upload the .tflite file that encountered this issue? The smaller the better but anything that reproduces it will be fine.", "This is the one that encountered the issue.\r\n\r\n[facenet_from_github.tflite.zip](https://github.com/tensorflow/tensorflow/files/11706478/facenet_from_github.tflite.zip)\r\n", "Putting the various library combinations that I've tried and what works and what doesn't --\r\n\r\nDoesn't work -- \r\n implementation 'org.tensorflow:tensorflow-lite:2.12.0'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu:2.12.0'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu-api:2.12.0'\r\n implementation 'org.tensorflow:tensorflow-lite-support:0.2.0'\r\n\r\n\r\nDoesn't work --\r\n implementation 'org.tensorflow:tensorflow-lite:2.12.0'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu:2.12.0'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu-api:2.12.0'\r\n implementation 'org.tensorflow:tensorflow-lite-support:0.4.3'\r\n\r\nWorks --\r\n implementation 'org.tensorflow:tensorflow-lite:2.6.0'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu:2.6.0'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu-api:2.12.0'\r\n implementation 'org.tensorflow:tensorflow-lite-support:0.2.0'", "Hi @sirakiin, can you please take a look at this?\r\n" ]
2023-05-22T08:07:49
2023-06-09T16:58:49
null
NONE
null
null
null
### System information - **Have I written custom code (as opposed to using a stock example script provided in TensorFlow)**: Yes - **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: MacOS 13.3.1 - **Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue happens on a mobile device**: Xiaomi Poco F1 - **TensorFlow Lite version**: 2.11.0 ### Describe the problem In my android app I'm using Facenet model to recognize faces. I have added NnApiDelegate to the interpreterOptions. My app has been working with TFLite version 2.6.0. When I upgraded the TFLite version to 2.10.0 or 2.11.0, I see that the model returns the same embeddings for any image I provide. Removing the NnApiDelegate works in 2.11.0, but it slows down the face recognition considerably, so I do not want to remove NnApiDelegate. ### Source code / logs Code for setting up the interpreter in Kotlin: val interpreterOptions = Interpreter.Options() interpreterOptions.addDelegate(NnApiDelegate()) interpreter = Interpreter(FileUtil.loadMappedFile(context, model.assetsFilename ) , interpreterOptions)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60653/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60653/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60652
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60652/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60652/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60652/events
https://github.com/tensorflow/tensorflow/issues/60652
1,718,503,359
I_kwDOArmXAs5mbke_
60,652
AdamW optimiser crashes on tf-macos v2.12.0
{ "login": "sbmenary", "id": 49401506, "node_id": "MDQ6VXNlcjQ5NDAxNTA2", "avatar_url": "https://avatars.githubusercontent.com/u/49401506?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sbmenary", "html_url": "https://github.com/sbmenary", "followers_url": "https://api.github.com/users/sbmenary/followers", "following_url": "https://api.github.com/users/sbmenary/following{/other_user}", "gists_url": "https://api.github.com/users/sbmenary/gists{/gist_id}", "starred_url": "https://api.github.com/users/sbmenary/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sbmenary/subscriptions", "organizations_url": "https://api.github.com/users/sbmenary/orgs", "repos_url": "https://api.github.com/users/sbmenary/repos", "events_url": "https://api.github.com/users/sbmenary/events{/privacy}", "received_events_url": "https://api.github.com/users/sbmenary/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@sbmenary,\r\nThank you for the issue. As mentioned I was able to reproduce the issue on tensorflow v2.12. Kindly find the screenshot below\r\n\r\n<img width=\"566\" alt=\"image (9)\" src=\"https://github.com/tensorflow/tensorflow/assets/81610181/3e0af0c1-1ddc-4290-bbc2-a56d19e43854\">\r\n\r\nBut where as when I tried to replicate the issue on tf-nighty, the issue got resolved. Kindly find the screesshot below for the nightly and try from your side as well.\r\n<img width=\"1425\" alt=\"image (10)\" src=\"https://github.com/tensorflow/tensorflow/assets/81610181/c1c57605-4ac9-4919-bb9e-51bac08cd499\">\r\n\r\nThank you!", "Hi @tilakrayal,\r\n\r\nAh - I didn't realise I could access a nightly version of tf-macos - apologies for not checking this before. I can reproduce your result using the nightly and am happy to close.\r\n\r\nThanks for your help!", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60652\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60652\">No</a>\n" ]
2023-05-21T13:25:34
2023-05-23T08:39:48
2023-05-23T08:39:45
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution MacOS 12.5.1 (running on M1 pro chip) ### Mobile device _No response_ ### Python version 3.10.11 | packaged by conda-forge | (main, May 10 2023, 19:01:19) [Clang 14.0.6 ] ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version N/A ### GPU model and memory N/A ### Current Behaviour? The problem occurs in tensorflow-macos v2.12.0 when attempting to call model.compile() with the AdamW optimiser. A warning is thrown, telling us that there is a known slowdown when using v2.11+ optimizers, and the backend attempts to fall back to a legacy version. However, AdamW does not exist in legacy versions, which eventually propagates through to an "unknown optimizer" error. Expected behaviour: tf.keras.Model object is compiled using the AdamW optimiser, either using the "tf v2.11+" optimiser class with known slowdown, or falling back to an implementation compatible with legacy keras optimisers Note: problem occurs in tf-macos regardless of whether we are using tf-metal to access the GPU. ### Standalone code to reproduce the issue ```shell ## ## Imports ## import sys import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense from tensorflow.keras.optimizers import AdamW ## ## Report versions ## print(f"Python version is: {sys.version}") ## --> Python version is: 3.10.11 | packaged by conda-forge | (main, May 10 2023, 19:01:19) [Clang 14.0.6 ] print(f"TF version is: {tf.__version__}") ## --> TF version is: 2.12.0 print(f"Keras version is: {tf.keras.__version__}") ## --> Keras version is: 2.12.0 ## ## Create a very simple model ## x_in = Input(1) x = Dense(10)(x_in) model = Model(x_in, x) ## ## Compile model with AdamW optimizer ## model.compile(optimizer=AdamW(learning_rate=1e-3, weight_decay=1e-2)) ``` ### Relevant log output ```shell WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.AdamW` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.AdamW`. WARNING:absl:There is a known slowdown when using v2.11+ Keras optimizers on M1/M2 Macs. Falling back to the legacy Keras optimizer, i.e., `tf.keras.optimizers.legacy.AdamW`. --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[4], line 2 1 ## Compile model with AdamW optimizer ----> 2 model.compile(optimizer=AdamW(learning_rate=1e-3, weight_decay=1e-2)) File ~/miniforge3/envs/tf_macos_230511/lib/python3.10/site-packages/keras/utils/traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~/miniforge3/envs/tf_macos_230511/lib/python3.10/site-packages/keras/saving/legacy/serialization.py:368, in class_and_config_for_serialized_keras_object(config, module_objects, custom_objects, printable_module_name) 364 cls = object_registration.get_registered_object( 365 class_name, custom_objects, module_objects 366 ) 367 if cls is None: --> 368 raise ValueError( 369 f"Unknown {printable_module_name}: '{class_name}'. " 370 "Please ensure you are using a `keras.utils.custom_object_scope` " 371 "and that this object is included in the scope. See " 372 "https://www.tensorflow.org/guide/keras/save_and_serialize" 373 "#registering_the_custom_object for details." 374 ) 376 cls_config = config["config"] 377 # Check if `cls_config` is a list. If it is a list, return the class and the 378 # associated class configs for recursively deserialization. This case will 379 # happen on the old version of sequential model (e.g. `keras_version` == 380 # "2.0.6"), which is serialized in a different structure, for example 381 # "{'class_name': 'Sequential', 382 # 'config': [{'class_name': 'Embedding', 'config': ...}, {}, ...]}". ValueError: Unknown optimizer: 'adamw'. Please ensure you are using a `keras.utils.custom_object_scope` and that this object is included in the scope. See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for details. ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60652/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60652/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60651
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60651/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60651/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60651/events
https://github.com/tensorflow/tensorflow/issues/60651
1,718,415,397
I_kwDOArmXAs5mbPAl
60,651
Cannot rrain the model using the TensorFlow tensors:
{ "login": "Bitten-bidbax", "id": 106806381, "node_id": "U_kgDOBl28bQ", "avatar_url": "https://avatars.githubusercontent.com/u/106806381?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Bitten-bidbax", "html_url": "https://github.com/Bitten-bidbax", "followers_url": "https://api.github.com/users/Bitten-bidbax/followers", "following_url": "https://api.github.com/users/Bitten-bidbax/following{/other_user}", "gists_url": "https://api.github.com/users/Bitten-bidbax/gists{/gist_id}", "starred_url": "https://api.github.com/users/Bitten-bidbax/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Bitten-bidbax/subscriptions", "organizations_url": "https://api.github.com/users/Bitten-bidbax/orgs", "repos_url": "https://api.github.com/users/Bitten-bidbax/repos", "events_url": "https://api.github.com/users/Bitten-bidbax/events{/privacy}", "received_events_url": "https://api.github.com/users/Bitten-bidbax/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @Bitten-bidbax ,\r\n\r\nThe error is due to the reason that here both `X_train_tensor` and `y_train_tensor` are empty Tensors only.You havent created any dataset here.\r\n\r\nThe same error can be replicated by me with the following code where I have taken empty list for both `x` and `y` and converted them into tensors and then used for training with `model.fit()`.\r\n\r\n```\r\nx=[]\r\nx=tf.convert_to_tensor(x, dtype=tf.float32)\r\ny=[]\r\ny=tf.convert_to_tensor(y, dtype=tf.float32)\r\nhistory = model.fit(x, y, epochs=50,)\r\n```\r\n\r\nPlease refer to attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/482b0afd48a884102d5fda9e33470da9/60651.ipynb).\r\n\r\nAs per the documentation of model.fit() , when input data is empty it will raise the Value error. You may refer the attached source [here](https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile:~:text=tf.function.-,ValueError,what%20the%20model%20expects%20or%20when%20the%20input%20data%20is%20empty.,-get_compile).\r\n ", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60651\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60651\">No</a>\n" ]
2023-05-21T08:23:57
2023-05-25T07:38:03
2023-05-25T07:38:00
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? A bug happened! Cannot Train the model using the TensorFlow tensors. ### Standalone code to reproduce the issue ```shell from keras.layers import LSTM, Dense from keras.models import Sequential # Define the sliding window size window_size = 7 num_timesteps = 7 num_features = 6 # Create input-output pairs using the sliding window technique X_train = [] y_train = [] for i in range(len(X_train) - window_size): X_train.append(X_train[i:i+window_size]) y_train.append(y_train[i+window_size]) X_test = [] y_test = [] for i in range(len(X_test) - window_size): X_test.append(X_test[i:i+window_size]) y_test.append(y_test[i+window_size]) # Convert the lists to numpy arrays X_train = np.array(X_train) y_train = np.array(y_train) X_test = np.array(X_test) y_test = np.array(y_test) tf.config.run_functions_eagerly(True) model = Sequential() model.add(LSTM(64, input_shape=(window_size, num_features))) model.add(Dense(3)) model.compile(loss='mean_squared_error', optimizer='adam') X_train_tensor = tf.convert_to_tensor(X_train, dtype=tf.float32) y_train_tensor = tf.convert_to_tensor(y_train, dtype=tf.float32) history = model.fit(X_train_tensor, y_train_tensor, epochs=50, batch_size=32, validation_data=(X_test, y_test)) ``` ### Relevant log output ```shell ValueError Traceback (most recent call last) Cell In[54], line 1 ----> 1 history = model.fit(X_train_tensor, y_train_tensor, epochs=50, batch_size=32, validation_data=(X_test, y_test)) File ~\anaconda3\Anaconda\lib\site-packages\keras\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~\anaconda3\Anaconda\lib\site-packages\keras\engine\training.py:1697, in Model.fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing) 1695 logs = tf_utils.sync_to_numpy_or_python_type(logs) 1696 if logs is None: -> 1697 raise ValueError( 1698 "Unexpected result of `train_function` " 1699 "(Empty logs). Please use " 1700 "`Model.compile(..., run_eagerly=True)`, or " 1701 "`tf.config.run_functions_eagerly(True)` for more " 1702 "information of where went wrong, or file a " 1703 "issue/bug to `tf.keras`." 1704 ) 1705 # Override with model metrics instead of last step logs 1706 logs = self._validate_and_get_metrics_result(logs) ValueError: Unexpected result of `train_function` (Empty logs). Please use `Model.compile(..., run_eagerly=True)`, or `tf.config.run_functions_eagerly(True)` for more information of where went wrong, or file a issue/bug to `tf.keras`. ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60651/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60651/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60650
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60650/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60650/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60650/events
https://github.com/tensorflow/tensorflow/issues/60650
1,718,415,079
I_kwDOArmXAs5mbO7n
60,650
GPU not found after 2.10
{ "login": "filmretter", "id": 108998463, "node_id": "U_kgDOBn8vPw", "avatar_url": "https://avatars.githubusercontent.com/u/108998463?v=4", "gravatar_id": "", "url": "https://api.github.com/users/filmretter", "html_url": "https://github.com/filmretter", "followers_url": "https://api.github.com/users/filmretter/followers", "following_url": "https://api.github.com/users/filmretter/following{/other_user}", "gists_url": "https://api.github.com/users/filmretter/gists{/gist_id}", "starred_url": "https://api.github.com/users/filmretter/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/filmretter/subscriptions", "organizations_url": "https://api.github.com/users/filmretter/orgs", "repos_url": "https://api.github.com/users/filmretter/repos", "events_url": "https://api.github.com/users/filmretter/events{/privacy}", "received_events_url": "https://api.github.com/users/filmretter/received_events", "type": "User", "site_admin": false }
[ { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "The problem is that tensorflow drop Window's gpu support after 2.10 due to a vulnerbility found. Therefore the only way to use tensorflow with GPU is to dual boot a linux distro or use WSL Ubuntu alongside with Windows. The former is more preferred for speed and performance, while the latter is easier to work with if you are used to Windows.", "@filmretter,\r\nTensorFlow 2.10 was the last TensorFlow release that supported GPU on native-Windows. Starting with TensorFlow 2.11, you will need to install [TensorFlow in WSL2](https://tensorflow.org/install/pip#windows-wsl2), or install tensorflow or tensorflow-cpu and, optionally, try the [TensorFlow-DirectML-Plugin](https://github.com/microsoft/tensorflow-directml-plugin#tensorflow-directml-plugin-)\r\nhttps://www.tensorflow.org/install/pip#windows-native\r\nThank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "> The problem is that tensorflow drop Window's gpu support after 2.10 due to a vulnerbility found. Therefore the only way to use tensorflow with GPU is to dual boot a linux distro or use WSL Ubuntu alongside with Windows. The former is more preferred for speed and performance, while the latter is easier to work with if you are used to Windows.\r\n\r\nIt's not due to a vulnerability. See #59918 comments", "@filmretter,\r\nClosing this issue as stale. Please reopen if this is still a valid request. Thank you!\r\n", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60650\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60650\">No</a>\n" ]
2023-05-21T08:22:41
2023-10-20T08:54:23
2023-10-20T08:54:21
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version v2.10.0-76-gfdfc646704c 2.10.1 ### Custom Code Yes ### OS Platform and Distribution Windows 10 ### Mobile device _No response_ ### Python version 3.7.3 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 8.1 ### GPU model and memory RTX 3060 ### Current Behaviour? Hi there, I am new at Tensorflow and AI programming. So forgive me if this is a dumb question. 2.10 is the last GPU special version. I read that newer versions have GPU support included without a special gpu version, but no GPU is found under these new versions Thanks :-) Martin ### Standalone code to reproduce the issue ```shell import os import sys # Get the CUDA_PATH environment variable cuda_path = os.environ.get("CUDA_PATH") # Check if CUDA_PATH is set if cuda_path: # Add the bin folder inside CUDA_PATH to the system path sys.path.append(os.path.join(cuda_path, "bin")) else: print("Achtung: Umgebungsvariable 'CUDA_PATH' nicht gefunden.") os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" import tensorflow as tf import ctypes def check_python_version(): print(f"Python-Version: {sys.version}") major, minor = sys.version_info[:2] if major == 3 and minor >= 6: print("Python-Version ist kompatibel.") else: print("Achtung: TensorFlow erfordert Python 3.6 oder höher.") def check_tf_version(): print(f"Installierte TensorFlow-Version: {tf.__version__}") if tf.__version__ >= "2.12.0": print("TensorFlow-Version ist kompatibel.") else: print("Achtung: Dieses Skript wurde für TensorFlow 2.12.0 entwickelt.") def check_gpu_support(): print("Num GPUs Available:", len(tf.config.list_physical_devices('GPU'))) if len(tf.config.list_physical_devices('GPU')) > 0: print("GPU-Unterstützung ist aktiviert.") else: print("Achtung: Keine GPU gefunden oder GPU-Unterstützung ist deaktiviert.") def check_cuda_version(): if not cuda_path: return cuda_version_file = os.path.join(cuda_path, "version.txt") if not os.path.exists(cuda_version_file): print("Achtung: CUDA-Versionstextdatei nicht gefunden.") return with open(cuda_version_file, "r") as f: cuda_version_data = f.read().strip() print(f"Installierte CUDA-Version: {cuda_version_data}") if "11.4" in cuda_version_data: print("CUDA-Version ist kompatibel.") else: print("Achtung: TensorFlow 2.12.0 erfordert CUDA 11.4.") def check_cudnn_version(): if not cuda_path: return cudnn_dll_name = "cudnn64_8.dll" cudnn_dll_path = os.path.join(cuda_path, "bin", cudnn_dll_name) if not os.path.exists(cudnn_dll_path): print("Achtung: cuDNN-DLL-Datei nicht gefunden.") return cudnn_dll = ctypes.WinDLL(cudnn_dll_path) cudnn_version = cudnn_dll.cudnnGetVersion() print(f"Installierte cuDNN-Version: {cudnn_version}") if cudnn_version >= 8200: print("cuDNN-Version ist kompatibel.") else: print("Achtung: TensorFlow 2.12.0 erfordert cuDNN 8.2 oder höher.") def main(): check_python_version() print() check_tf_version() print() check_gpu_support() print() check_cuda_version() print() check_cudnn_version() if __name__ == "__main__": main() ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60650/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60650/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60649
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60649/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60649/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60649/events
https://github.com/tensorflow/tensorflow/issues/60649
1,718,413,818
I_kwDOArmXAs5mbOn6
60,649
TypeError: Cannot convert 0.1 to EagerTensor of dtype int64
{ "login": "h4ck4l1", "id": 105937725, "node_id": "U_kgDOBlB7PQ", "avatar_url": "https://avatars.githubusercontent.com/u/105937725?v=4", "gravatar_id": "", "url": "https://api.github.com/users/h4ck4l1", "html_url": "https://github.com/h4ck4l1", "followers_url": "https://api.github.com/users/h4ck4l1/followers", "following_url": "https://api.github.com/users/h4ck4l1/following{/other_user}", "gists_url": "https://api.github.com/users/h4ck4l1/gists{/gist_id}", "starred_url": "https://api.github.com/users/h4ck4l1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/h4ck4l1/subscriptions", "organizations_url": "https://api.github.com/users/h4ck4l1/orgs", "repos_url": "https://api.github.com/users/h4ck4l1/repos", "events_url": "https://api.github.com/users/h4ck4l1/events{/privacy}", "received_events_url": "https://api.github.com/users/h4ck4l1/received_events", "type": "User", "site_admin": false }
[ { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "I actually wrote a learning rate scheduler which gave the same error\r\n\r\n```python\r\nclass PowerScheduler(keras.optimizers.schedules.LearningRateSchedule):\r\n def __init__(self,lr,decay,c):\r\n super().__init__()\r\n self.lr = lr\r\n self.decay = decay\r\n self.c = c\r\n\r\n def __call__(self,step):\r\n return self.lr/((1+(step*self.decay))**self.c)\r\n\r\noptim = keras.optimizers.SGD(learning_rate=PowerScheduler(lr=1e-2,decay=1e-4,c=1))\r\n\r\n```", "solved it...didn't knew step was actually a resource variable so i was treating it as a constant.\r\ncasting it to a float32 along with other parameters solved the problem\r\n\r\n```python\r\n\r\nclass PowerScheduler(keras.optimizers.schedules.LearningRateSchedule):\r\n def __init__(self,lr,decay,c):\r\n super(PowerScheduler,self).__init__()\r\n self.lr = tf.constant(lr,dtype=tf.float32)\r\n self.decay = tf.constant(decay,tf.float32)\r\n self.c = tf.constant(c,tf.float32)\r\n\r\n def __call__(self,step):\r\n step = tf.cast(step,tf.float32)\r\n return self.lr/((1+(step*self.decay))**self.c)\r\n\r\noptim = keras.optimizers.SGD(learning_rate=PowerScheduler(lr=1e-2,decay=1e-4,c=1))\r\n\r\n```", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60649\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60649\">No</a>\n" ]
2023-05-21T08:18:10
2023-05-31T16:41:27
2023-05-21T09:57:41
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.12.0 ### Custom Code Yes ### OS Platform and Distribution GoogleColab ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version colab ### GCC/Compiler version colab ### CUDA/cuDNN version colab ### GPU model and memory colab ### Current Behaviour? getting this error when i execute the code present in tensowflow website to implement tf.keras.optimizers.schedules.LearningRateSchedule error: TypeError: Cannot convert 0.1 to EagerTensor of dtype int64 ```python class MyLRSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, initial_learning_rate): self.initial_learning_rate = initial_learning_rate def __call__(self, step): return self.initial_learning_rate / (step + 1) optimizer = tf.keras.optimizers.SGD(learning_rate=MyLRSchedule(0.1)) ``` ### Standalone code to reproduce the issue ```shell TypeError: Cannot convert 0.1 to EagerTensor of dtype int64 ``` ### Relevant log output TypeError Traceback (most recent call last) [<ipython-input-145-86d045432fd5>](https://localhost:8080/#) in <cell line: 9>() 7 return self.initial_learning_rate / (step + 1) 8 ----> 9 optimizer = tf.keras.optimizers.SGD(learning_rate=MyLRSchedule(0.1)) 4 frames [/usr/local/lib/python3.10/dist-packages/keras/optimizers/sgd.py](https://localhost:8080/#) in __init__(self, learning_rate, momentum, nesterov, weight_decay, clipnorm, clipvalue, global_clipnorm, use_ema, ema_momentum, ema_overwrite_frequency, jit_compile, name, **kwargs) 121 **kwargs 122 ) --> 123 self._learning_rate = self._build_learning_rate(learning_rate) 124 self.momentum = momentum 125 self.nesterov = nesterov [/usr/local/lib/python3.10/dist-packages/keras/optimizers/optimizer.py](https://localhost:8080/#) in _build_learning_rate(self, learning_rate) 382 # Create a variable to hold the current learning rate. 383 current_learning_rate = tf.convert_to_tensor( --> 384 learning_rate(self.iterations) 385 ) 386 self._current_learning_rate = tf.Variable( [<ipython-input-145-86d045432fd5>](https://localhost:8080/#) in __call__(self, step) 5 6 def __call__(self, step): ----> 7 return self.initial_learning_rate / (step + 1) 8 9 optimizer = tf.keras.optimizers.SGD(learning_rate=MyLRSchedule(0.1)) [/usr/local/lib/python3.10/dist-packages/tensorflow/python/util/traceback_utils.py](https://localhost:8080/#) in error_handler(*args, **kwargs) 151 except Exception as e: 152 filtered_tb = _process_traceback_frames(e.__traceback__) --> 153 raise e.with_traceback(filtered_tb) from None 154 finally: 155 del filtered_tb [/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/constant_op.py](https://localhost:8080/#) in convert_to_eager_tensor(value, ctx, dtype) 101 dtype = dtypes.as_dtype(dtype).as_datatype_enum 102 ctx.ensure_initialized() --> 103 return ops.EagerTensor(value, ctx.device_name, dtype) 104 105 TypeError: Cannot convert 0.1 to EagerTensor of dtype int64 </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60649/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60649/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60648
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60648/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60648/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60648/events
https://github.com/tensorflow/tensorflow/issues/60648
1,718,388,982
I_kwDOArmXAs5mbIj2
60,648
Fatal Python error: Aborted
{ "login": "bersbersbers", "id": 12128514, "node_id": "MDQ6VXNlcjEyMTI4NTE0", "avatar_url": "https://avatars.githubusercontent.com/u/12128514?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bersbersbers", "html_url": "https://github.com/bersbersbers", "followers_url": "https://api.github.com/users/bersbersbers/followers", "following_url": "https://api.github.com/users/bersbersbers/following{/other_user}", "gists_url": "https://api.github.com/users/bersbersbers/gists{/gist_id}", "starred_url": "https://api.github.com/users/bersbersbers/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bersbersbers/subscriptions", "organizations_url": "https://api.github.com/users/bersbersbers/orgs", "repos_url": "https://api.github.com/users/bersbersbers/repos", "events_url": "https://api.github.com/users/bersbersbers/events{/privacy}", "received_events_url": "https://api.github.com/users/bersbersbers/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1188421838, "node_id": "MDU6TGFiZWwxMTg4NDIxODM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows", "name": "subtype:windows", "color": "b619ea", "default": false, "description": "Windows Build/Installation Issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Summarizing a few more observations:\r\n- I reinstalled Python 3.11.3 with TensorFlow 2.13.0rc0 and the issue is certainly still there.\r\n- I am sure I could consistently reproduce the issue with the code above. The issue would show instantly.\r\n- At the moment, however, it seems I cannot reproduce it at all with the code above.\r\n- The issue appears consistently when running my full test suite, however, that involves hour-long model training before.\r\n- Just the failing test alone seems to also crash sometimes, but it seems to be inconsistent and/or to take a while. See this test output where you see how many examples are working before the crash:\r\n\r\n<details>\r\n\r\n```python\r\n============================= test session starts =============================\r\nplatform win32 -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0\r\nrootdir: d:\\Code\\Project\r\nconfigfile: pyproject.toml\r\nplugins: pylama-8.4.1\r\ncollected 1 item\r\n\r\nproject\\test.py Starting run.\r\n2023-05-22 08:15:16.694153: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\nModel: \"vgg19\"\r\n________________________________________________________________________________________________________________________\r\n Layer (type) Output Shape Param # \r\n========================================================================================================================\r\n input_1 (InputLayer) [(None, 224, 224, 3)] 0\r\n\r\n block1_conv1 (Conv2D) (None, 224, 224, 64) 1792\r\n block1_conv2 (Conv2D) (None, 224, 224, 64) 36928\r\n\r\n block1_pool (MaxPooling2D) (None, 112, 112, 64) 0\r\n block2_conv1 (Conv2D) (None, 112, 112, 128) 73856\r\n\r\n block2_conv2 (Conv2D) (None, 112, 112, 128) 147584\r\n block2_pool (MaxPooling2D) (None, 56, 56, 128) 0\r\n\r\n block3_conv1 (Conv2D) (None, 56, 56, 256) 295168\r\n\r\n block3_conv2 (Conv2D) (None, 56, 56, 256) 590080\r\n\r\n block3_conv3 (Conv2D) (None, 56, 56, 256) 590080\r\n block3_conv4 (Conv2D) (None, 56, 56, 256) 590080\r\n\r\n block3_pool (MaxPooling2D) (None, 28, 28, 256) 0\r\n\r\n block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160\r\n\r\n block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808\r\n block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808\r\n\r\n block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808\r\n block4_pool (MaxPooling2D) (None, 14, 14, 512) 0\r\n\r\n block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808\r\n\r\n block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808\r\n block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808\r\n\r\n block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808\r\n \r\n block5_pool (MaxPooling2D) (None, 7, 7, 512) 0\r\n flatten (Flatten) (None, 25088) 0\r\n\r\n fc1 (Dense) (None, 4096) 102764544\r\n\r\n fc2 (Dense) (None, 4096) 16781312\r\n\r\n predictions (Dense) (None, 2) 8194\r\n \r\n========================================================================================================================\r\nTotal params: 139578434 (532.45 MB)\r\nTrainable params: 139578434 (532.45 MB)\r\nNon-trainable params: 0 (0.00 Byte)\r\n________________________________________________________________________________________________________________________\r\n\r\n 1/16 [>.............................] - ETA: 1:29\r\n 2/16 [==>...........................] - ETA: 1:17\r\n 3/16 [====>.........................] - ETA: 1:10\r\n 4/16 [======>.......................] - ETA: 1:05\r\n 5/16 [========>.....................] - ETA: 59s \r\n 6/16 [==========>...................] - ETA: 53s\r\n 7/16 [============>.................] - ETA: 48s\r\n 8/16 [==============>...............] - ETA: 42s\r\n 9/16 [===============>..............] - ETA: 37s\r\n10/16 [=================>............] - ETA: 31s\r\n11/16 [===================>..........] - ETA: 26s\r\n12/16 [=====================>........] - ETA: 20s\r\n13/16 [=======================>......] - ETA: 15s\r\n14/16 [=========================>....] - ETA: 10s\r\n15/16 [===========================>..] - ETA: 5s \r\n16/16 [==============================] - ETA: 0s\r\n16/16 [==============================] - 85s 5s/step\r\nBackend TkAgg is interactive backend. Turning interactive mode on.\r\nprediction : 0.5\r\nfull output: [[ 0.49984056 0.50015944]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982864 0.50017136]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936235 0.50063765]]\r\nprediction : 0.5\r\nfull output: [[ 0.49962896 0.50037104]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974206 0.50025797]]\r\nprediction : 0.5\r\nfull output: [[ 0.49956664 0.5004334 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970675 0.50029325]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984992 0.5001501 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006944 0.49993056]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997672 0.5000233 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998154 0.50018454]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971774 0.5002822 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998164 0.50001836]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963415 0.5003658 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968243 0.5003175 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50012743 0.4998726 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50004107 0.4999589 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986964 0.50013036]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997285 0.5000272 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.500018 0.49998203]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951252 0.5004875 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998358 0.50016415]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999052 0.5000095 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499722 0.50027806]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979892 0.5002011 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011206 0.49988788]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983162 0.5001683 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966222 0.5003378 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991563 0.50008434]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999818 0.5000182]]\r\nprediction : 0.5\r\nfull output: [[ 0.4993425 0.50065744]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001127 0.4999888 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49938107 0.500619 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000334 0.49999666]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000061 0.4999939]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991935 0.5000806 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50055224 0.49944773]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996218 0.50037825]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961537 0.5003846 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49927124 0.5007287 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998734 0.50012666]]\r\nprediction : 0.5\r\nfull output: [[ 0.49940833 0.50059164]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955958 0.5004405 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998207 0.50017935]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004432 0.4995568]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999436 0.5000564]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992666 0.5000733 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000624 0.4999376]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948964 0.50051033]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971908 0.500281 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998949 0.5001051]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001291 0.49987096]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989554 0.5001044 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499732 0.500268]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974492 0.5002551 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50002503 0.49997503]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971324 0.50028676]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997387 0.50026125]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001353 0.4999865 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958736 0.50041264]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997097 0.50029033]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999399 0.50006014]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980068 0.50019926]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998963 0.50001043]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999872 0.50001276]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995714 0.50042856]]\r\nprediction : 0.5\r\nfull output: [[ 0.50013167 0.49986833]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980298 0.500197 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948102 0.500519 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999768 0.5000024 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996854 0.50031453]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995842 0.50041586]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955377 0.5004462 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966562 0.5003344 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49940425 0.5005957 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986222 0.5001378 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999112 0.5000089 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001734 0.49998263]]\r\nprediction : 0.5\r\nfull output: [[ 0.500014 0.49998602]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978825 0.5002118 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000409 0.49995917]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998239 0.50017613]]\r\nprediction : 0.5\r\nfull output: [[ 0.50019306 0.49980697]]\r\nprediction : 0.5\r\nfull output: [[ 0.50005084 0.49994922]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997807 0.5002193]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995889 0.50041115]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992926 0.50070745]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997103 0.50002897]]\r\nprediction : 0.5\r\nfull output: [[ 0.50015986 0.4998402 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50003815 0.49996188]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999148 0.5000085 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985 0.50014997]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998167 0.5000183 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001275 0.4998725]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994236 0.5000577 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995978 0.50040215]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981928 0.5001808 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000339 0.4999661]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978477 0.50021523]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997795 0.5000221 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001377 0.4999862 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986336 0.5001367 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973714 0.5002628 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982652 0.5001735 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50018346 0.49981654]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975127 0.5002488 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999768 0.5000024 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50009906 0.49990094]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998776 0.5001225]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988872 0.5001112 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000629 0.49993706]]\r\nprediction : 0.5\r\nfull output: [[ 0.500035 0.49996498]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973777 0.50026226]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000542 0.49994585]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989367 0.50010633]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001712 0.49982885]]\r\nprediction : 0.5\r\nfull output: [[ 0.49920171 0.5007983 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49952012 0.5004799 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996324 0.50036764]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979448 0.50020546]]\r\nprediction : 0.5\r\nfull output: [[ 0.500025 0.4999751]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000097 0.49999028]]\r\nprediction : 0.5\r\nfull output: [[ 0.50016797 0.49983206]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960652 0.50039345]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997818 0.5000218 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49953413 0.5004658 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011194 0.49988806]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997048 0.5002952]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998924 0.5001075]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997809 0.50021917]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996042 0.5000396 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002333 0.49976677]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951762 0.50048244]]\r\nprediction : 0.5\r\nfull output: [[ 0.49943283 0.5005672 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000936 0.4999906 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995325 0.5004675]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004164 0.4995836]]\r\nprediction : 0.5\r\nfull output: [[ 0.50002277 0.4999772 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001013 0.49998993]]\r\nprediction : 0.5\r\nfull output: [[ 0.50004697 0.499953 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990466 0.50009537]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997294 0.5002706]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001016 0.4998983]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001563 0.49984372]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998292 0.5000171 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499931 0.500069]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000076 0.4999924]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993607 0.50006396]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960956 0.50039047]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000915 0.49990845]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010264 0.49989736]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994095 0.5005905]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001414 0.49985862]]\r\nprediction : 0.5\r\nfull output: [[ 0.50024307 0.49975687]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001027 0.4998973]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995366 0.5000464 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998138 0.5001862]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994785 0.50005215]]\r\nprediction : 0.5\r\nfull output: [[ 0.49954998 0.5004501 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986947 0.50013053]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981514 0.5001849 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978018 0.5002198 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003774 0.49962255]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969482 0.50030524]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998098 0.5001902]]\r\nprediction : 0.5\r\nfull output: [[ 0.49934632 0.5006536 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003613 0.49963865]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995956 0.5004043]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951154 0.50048846]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982548 0.5001746 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002769 0.49972314]]\r\nprediction : 0.5\r\nfull output: [[ 0.500259 0.499741]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992216 0.50007784]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999758 0.5000242]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984857 0.50015146]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966818 0.5003319 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000407 0.49995935]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988022 0.5001197 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986672 0.5001333 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991986 0.50008017]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997977 0.50020224]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996546 0.5000345 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000333 0.4999667]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998005 0.50019944]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992517 0.50007486]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974355 0.5002565 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999184 0.50008154]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000251 0.49997494]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003499 0.49965012]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995374 0.5004626]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960667 0.5003933 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978235 0.50021774]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995202 0.50047976]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994332 0.5000567 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995494 0.5004506]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999509 0.5000491]]\r\nprediction : 0.5\r\nfull output: [[ 0.49965283 0.50034714]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002102 0.4997897]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976844 0.50023156]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997093 0.5002907]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998882 0.50001115]]\r\nprediction : 0.5\r\nfull output: [[ 0.49943307 0.50056696]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988776 0.50011224]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982545 0.5001746 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985692 0.5001431 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985343 0.50014657]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958152 0.50041854]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981332 0.5001867 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998558 0.5000144 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001041 0.4998959]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925718 0.50074273]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957192 0.5004281 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995212 0.50047886]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988148 0.5001185 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999502 0.50004977]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981913 0.50018084]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992412 0.5000759 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49952292 0.5004771 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50013554 0.49986446]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001429 0.4998571]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011164 0.4998883 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981245 0.5001875 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998155 0.5000185 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959657 0.50040334]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010765 0.4998923 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000532 0.49994674]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998307 0.5001693]]\r\nprediction : 0.5\r\nfull output: [[ 0.50016963 0.4998303 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999132 0.50008684]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997127 0.5000287 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948618 0.50051385]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999576 0.5000424]]\r\nprediction : 0.5\r\nfull output: [[ 0.49956214 0.50043786]]\r\nprediction : 0.5\r\nfull output: [[ 0.50030494 0.49969503]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000121 0.4999879]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990872 0.5000913 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50028104 0.49971896]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996356 0.5003643]]\r\nprediction : 0.5\r\nfull output: [[ 0.50035006 0.49964997]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000679 0.49993205]]\r\nprediction : 0.5\r\nfull output: [[ 0.50008726 0.49991277]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999012 0.5000988]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998248 0.50017524]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985668 0.50014335]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987167 0.5001283 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993193 0.50006807]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994137 0.5005864]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976206 0.5002379 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974215 0.5002578 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971172 0.5002883 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000509 0.49994913]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003178 0.4996821]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966538 0.5003347 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994854 0.50051457]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985063 0.5001494 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001543 0.4998457]]\r\nprediction : 0.5\r\nfull output: [[ 0.50041115 0.49958888]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000054 0.49999943]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983397 0.500166 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936157 0.5006385 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972498 0.5002751 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49949026 0.50050974]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950287 0.5004971 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955893 0.50044113]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967614 0.50032395]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998042 0.50001955]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002303 0.49976966]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001098 0.49989012]]\r\nprediction : 0.5\r\nfull output: [[ 0.49945942 0.5005406 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996543 0.50003463]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001037 0.49989632]]\r\nprediction : 0.5\r\nfull output: [[ 0.50041795 0.49958202]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959713 0.5004028 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971625 0.5002838 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951524 0.50048476]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001147 0.49988532]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998699 0.5001302]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999577 0.50004226]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978027 0.50021976]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000324 0.49996758]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979976 0.5002002 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49926612 0.5007339 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982566 0.5001744 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973774 0.5002622 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960402 0.50039595]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998826 0.5000118 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50016713 0.49983284]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957797 0.50042206]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958816 0.50041187]]\r\nprediction : 0.5\r\nfull output: [[ 0.499802 0.50019795]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989033 0.5001097 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001377 0.4999862 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499758 0.50024194]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997356 0.5002644]]\r\nprediction : 0.5\r\nfull output: [[ 0.49965465 0.50034535]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000814 0.49991852]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999997 0.5 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001384 0.49986166]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983484 0.5001651 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011504 0.49988487]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005871 0.49941295]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976808 0.500232 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499961 0.50003904]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997082 0.5002918]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002492 0.49975085]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951336 0.5004867 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499636 0.50036395]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970824 0.5002918 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973154 0.50026846]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997733 0.5002267]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000896 0.49991038]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980524 0.5001948 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960777 0.50039226]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996256 0.5003744]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005864 0.49941364]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955845 0.50044155]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999264 0.50000733]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955973 0.50044036]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000492 0.49995086]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000843 0.49991566]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998867 0.50011325]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973708 0.5002629 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994952 0.50050485]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973214 0.50026786]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005524 0.49944752]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995924 0.5004077]]\r\nprediction : 0.5\r\nfull output: [[ 0.50009054 0.49990946]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004627 0.49953726]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996316 0.5003684]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925345 0.50074655]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.50045866 0.4995414 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000906 0.499991 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985582 0.5001442 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991077 0.5000892 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964082 0.5003591 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50012064 0.49987936]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997031 0.50029683]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011027 0.4998897 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998893 0.5001106]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951166 0.50048834]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999099 0.50009006]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997428 0.5002572]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001353 0.49986476]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001367 0.49986336]]\r\nprediction : 0.5\r\nfull output: [[ 0.50029826 0.49970168]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975687 0.5002431 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49944744 0.5005526 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996857 0.50031424]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997955 0.5002045]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001645 0.4999836 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996526 0.5003474]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998188 0.50018126]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957022 0.50042975]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975455 0.5002455 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966225 0.5003377 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964383 0.5003562 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999178 0.5000822]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999988 0.50000125]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996046 0.50039536]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998736 0.5001265]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984983 0.5001502 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.500088 0.49991196]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006324 0.4999367 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968442 0.50031555]]\r\nprediction : 0.5\r\nfull output: [[ 0.500095 0.49990502]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996926 0.50030744]]\r\nprediction : 0.5\r\nfull output: [[ 0.50020856 0.4997914 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951255 0.50048745]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997687 0.5000232 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002719 0.49972805]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999052 0.5000095 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967286 0.5003272 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985874 0.50014126]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982992 0.5001701 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999933 0.50000674]]\r\nprediction : 0.5\r\nfull output: [[ 0.50008553 0.49991444]]\r\nprediction : 0.5\r\nfull output: [[ 0.50025076 0.4997492 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999598 0.500004 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997887 0.5002113]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991786 0.50008214]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977043 0.5002296 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49939632 0.5006036 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972522 0.5002748 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995753 0.5000425 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989614 0.5001039 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994957 0.5000505 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993196 0.50006807]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984893 0.50015104]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999908 0.50000924]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999814 0.50001866]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989095 0.50010896]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974123 0.5002588 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981225 0.5001877 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998459 0.50015414]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999322 0.50006783]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977577 0.50022423]]\r\nprediction : 0.5\r\nfull output: [[ 0.50009173 0.49990824]]\r\nprediction : 0.5\r\nfull output: [[ 0.49941432 0.5005856 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981824 0.5001818 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970973 0.50029033]]\r\nprediction : 0.5\r\nfull output: [[ 0.49945384 0.5005461 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001866 0.49981332]]\r\nprediction : 0.5\r\nfull output: [[ 0.500142 0.49985808]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992546 0.5007455]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966887 0.50033116]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955052 0.5004495 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001825 0.49981752]]\r\nprediction : 0.5\r\nfull output: [[ 0.50037545 0.49962452]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996384 0.50036156]]\r\nprediction : 0.5\r\nfull output: [[ 0.500015 0.49998504]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001741 0.49982587]]\r\nprediction : 0.5\r\nfull output: [[ 0.49954504 0.50045496]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976778 0.5002322 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936587 0.50063413]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990562 0.5000944 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49952573 0.50047433]]\r\nprediction : 0.5\r\nfull output: [[ 0.49933648 0.5006636 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5006001 0.49939993]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997896 0.5000211 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976102 0.500239 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001002 0.49989974]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000737 0.4999263]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978042 0.5002196 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975294 0.5002471 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985632 0.50014365]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998774 0.5001226]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963573 0.50036424]]\r\nprediction : 0.5\r\nfull output: [[ 0.50070727 0.4992927 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969062 0.50030935]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981084 0.5001892 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000263 0.4999737]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998874 0.5001126]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989238 0.5001076 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936882 0.5006312 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993607 0.5000639 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50023466 0.49976537]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961758 0.5003824 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982074 0.5001793 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989632 0.50010365]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986213 0.50013787]]\r\nprediction : 0.5\r\nfull output: [[ 0.500074 0.499926]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997653 0.5002347]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973765 0.5002623 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969745 0.5003026 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996087 0.50003916]]\r\nprediction : 0.5\r\nfull output: [[ 0.50051475 0.4994852 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987537 0.5001247 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999676 0.5000324]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959907 0.5004009 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004382 0.4995617]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976993 0.50023013]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969167 0.5003083 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992567 0.50007427]]\r\nprediction : 0.5\r\nfull output: [[ 0.4993678 0.5006321]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997567 0.50024325]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997111 0.50028896]]\r\nprediction : 0.5\r\nfull output: [[ 0.50013477 0.49986532]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989134 0.5001086 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995995 0.5004004]]\r\nprediction : 0.5\r\nfull output: [[ 0.50017524 0.49982473]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006914 0.49993083]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000333 0.49996674]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997154 0.50002843]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987364 0.50012636]]\r\nprediction : 0.5\r\nfull output: [[ 0.499943 0.50005704]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002861 0.49971387]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000219 0.4999781]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987337 0.5001267 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996978 0.5000302 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977252 0.50022745]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997423 0.5002577]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000703 0.49999297]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000274 0.4999973 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971193 0.5002881 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998932 0.50010675]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959576 0.50040424]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963474 0.50036526]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994886 0.5000512 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997881 0.5002119]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986333 0.50013673]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980333 0.50019664]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990338 0.5000966 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990872 0.5000913 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995993 0.50040066]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005199 0.49948016]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964714 0.50035286]]\r\nprediction : 0.5\r\nfull output: [[ 0.50020146 0.49979857]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999514 0.5000486]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996499 0.5003501]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000017 0.49999827]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004023 0.49959773]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976695 0.50023305]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000703 0.499993 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961156 0.5003885 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974218 0.5002578 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980578 0.5001942 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49949703 0.5005029 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000293 0.49997064]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992883 0.50007117]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998805 0.50011945]]\r\nprediction : 0.5\r\nfull output: [[ 0.50055325 0.4994467 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981415 0.50018585]]\r\n 1/16 [>.............................] - ETA: 1:19\r\n 2/16 [==>...........................] - ETA: 1:16\r\n 3/16 [====>.........................] - ETA: 1:09\r\n 4/16 [======>.......................] - ETA: 1:03\r\n 5/16 [========>.....................] - ETA: 57s \r\n 6/16 [==========>...................] - ETA: 52s\r\n 7/16 [============>.................] - ETA: 48s\r\n 8/16 [==============>...............] - ETA: 42s\r\n 9/16 [===============>..............] - ETA: 37s\r\n10/16 [=================>............] - ETA: 32s\r\n11/16 [===================>..........] - ETA: 26s\r\n12/16 [=====================>........] - ETA: 21s\r\n13/16 [=======================>......] - ETA: 15s\r\n14/16 [=========================>....] - ETA: 10s\r\n15/16 [===========================>..] - ETA: 5s \r\n16/16 [==============================] - ETA: 0s\r\n16/16 [==============================] - 84s 5s/step\r\nprediction : 0.5\r\nfull output: [[ 0.49984056 0.50015944]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982864 0.50017136]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936235 0.50063765]]\r\nprediction : 0.5\r\nfull output: [[ 0.49962896 0.50037104]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974206 0.50025797]]\r\nprediction : 0.5\r\nfull output: [[ 0.49956664 0.5004334 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970675 0.50029325]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984992 0.5001501 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006944 0.49993056]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997672 0.5000233 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998154 0.50018454]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971774 0.5002822 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998164 0.50001836]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963415 0.5003658 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968243 0.5003175 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50012743 0.4998726 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50004107 0.4999589 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986964 0.50013036]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997285 0.5000272 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.500018 0.49998203]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951252 0.5004875 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998358 0.50016415]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999052 0.5000095 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499722 0.50027806]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979892 0.5002011 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011206 0.49988788]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983162 0.5001683 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966222 0.5003378 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991563 0.50008434]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999818 0.5000182]]\r\nprediction : 0.5\r\nfull output: [[ 0.4993425 0.50065744]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001127 0.4999888 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49938107 0.500619 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000334 0.49999666]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000061 0.4999939]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991935 0.5000806 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50055224 0.49944773]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996218 0.50037825]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961537 0.5003846 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49927124 0.5007287 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998734 0.50012666]]\r\nprediction : 0.5\r\nfull output: [[ 0.49940833 0.50059164]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955958 0.5004405 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998207 0.50017935]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004432 0.4995568]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999436 0.5000564]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992666 0.5000733 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000624 0.4999376]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948964 0.50051033]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971908 0.500281 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998949 0.5001051]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001291 0.49987096]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989554 0.5001044 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499732 0.500268]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974492 0.5002551 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50002503 0.49997503]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971324 0.50028676]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997387 0.50026125]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001353 0.4999865 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958736 0.50041264]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997097 0.50029033]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999399 0.50006014]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980068 0.50019926]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998963 0.50001043]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999872 0.50001276]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995714 0.50042856]]\r\nprediction : 0.5\r\nfull output: [[ 0.50013167 0.49986833]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980298 0.500197 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948102 0.500519 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999768 0.5000024 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996854 0.50031453]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995842 0.50041586]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955377 0.5004462 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966562 0.5003344 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49940425 0.5005957 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986222 0.5001378 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999112 0.5000089 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001734 0.49998263]]\r\nprediction : 0.5\r\nfull output: [[ 0.500014 0.49998602]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978825 0.5002118 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000409 0.49995917]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998239 0.50017613]]\r\nprediction : 0.5\r\nfull output: [[ 0.50019306 0.49980697]]\r\nprediction : 0.5\r\nfull output: [[ 0.50005084 0.49994922]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997807 0.5002193]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995889 0.50041115]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992926 0.50070745]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997103 0.50002897]]\r\nprediction : 0.5\r\nfull output: [[ 0.50015986 0.4998402 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50003815 0.49996188]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999148 0.5000085 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985 0.50014997]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998167 0.5000183 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001275 0.4998725]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994236 0.5000577 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995978 0.50040215]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981928 0.5001808 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000339 0.4999661]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978477 0.50021523]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997795 0.5000221 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001377 0.4999862 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986336 0.5001367 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973714 0.5002628 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982652 0.5001735 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50018346 0.49981654]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975127 0.5002488 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999768 0.5000024 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50009906 0.49990094]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998776 0.5001225]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988872 0.5001112 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000629 0.49993706]]\r\nprediction : 0.5\r\nfull output: [[ 0.500035 0.49996498]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973777 0.50026226]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000542 0.49994585]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989367 0.50010633]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001712 0.49982885]]\r\nprediction : 0.5\r\nfull output: [[ 0.49920171 0.5007983 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49952012 0.5004799 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996324 0.50036764]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979448 0.50020546]]\r\nprediction : 0.5\r\nfull output: [[ 0.500025 0.4999751]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000097 0.49999028]]\r\nprediction : 0.5\r\nfull output: [[ 0.50016797 0.49983206]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960652 0.50039345]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997818 0.5000218 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49953413 0.5004658 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011194 0.49988806]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997048 0.5002952]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998924 0.5001075]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997809 0.50021917]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996042 0.5000396 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002333 0.49976677]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951762 0.50048244]]\r\nprediction : 0.5\r\nfull output: [[ 0.49943283 0.5005672 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000936 0.4999906 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995325 0.5004675]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004164 0.4995836]]\r\nprediction : 0.5\r\nfull output: [[ 0.50002277 0.4999772 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001013 0.49998993]]\r\nprediction : 0.5\r\nfull output: [[ 0.50004697 0.499953 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990466 0.50009537]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997294 0.5002706]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001016 0.4998983]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001563 0.49984372]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998292 0.5000171 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499931 0.500069]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000076 0.4999924]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993607 0.50006396]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960956 0.50039047]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000915 0.49990845]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010264 0.49989736]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994095 0.5005905]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001414 0.49985862]]\r\nprediction : 0.5\r\nfull output: [[ 0.50024307 0.49975687]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001027 0.4998973]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995366 0.5000464 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998138 0.5001862]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994785 0.50005215]]\r\nprediction : 0.5\r\nfull output: [[ 0.49954998 0.5004501 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986947 0.50013053]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981514 0.5001849 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978018 0.5002198 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003774 0.49962255]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969482 0.50030524]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998098 0.5001902]]\r\nprediction : 0.5\r\nfull output: [[ 0.49934632 0.5006536 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003613 0.49963865]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995956 0.5004043]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951154 0.50048846]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982548 0.5001746 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002769 0.49972314]]\r\nprediction : 0.5\r\nfull output: [[ 0.500259 0.499741]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992216 0.50007784]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999758 0.5000242]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984857 0.50015146]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966818 0.5003319 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000407 0.49995935]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988022 0.5001197 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986672 0.5001333 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991986 0.50008017]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997977 0.50020224]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996546 0.5000345 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000333 0.4999667]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998005 0.50019944]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992517 0.50007486]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974355 0.5002565 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999184 0.50008154]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000251 0.49997494]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003499 0.49965012]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995374 0.5004626]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960667 0.5003933 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978235 0.50021774]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995202 0.50047976]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994332 0.5000567 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995494 0.5004506]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999509 0.5000491]]\r\nprediction : 0.5\r\nfull output: [[ 0.49965283 0.50034714]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002102 0.4997897]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976844 0.50023156]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997093 0.5002907]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998882 0.50001115]]\r\nprediction : 0.5\r\nfull output: [[ 0.49943307 0.50056696]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988776 0.50011224]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982545 0.5001746 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985692 0.5001431 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985343 0.50014657]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958152 0.50041854]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981332 0.5001867 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998558 0.5000144 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001041 0.4998959]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925718 0.50074273]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957192 0.5004281 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995212 0.50047886]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988148 0.5001185 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999502 0.50004977]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981913 0.50018084]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992412 0.5000759 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49952292 0.5004771 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50013554 0.49986446]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001429 0.4998571]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011164 0.4998883 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981245 0.5001875 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998155 0.5000185 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959657 0.50040334]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010765 0.4998923 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000532 0.49994674]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998307 0.5001693]]\r\nprediction : 0.5\r\nfull output: [[ 0.50016963 0.4998303 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999132 0.50008684]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997127 0.5000287 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948618 0.50051385]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999576 0.5000424]]\r\nprediction : 0.5\r\nfull output: [[ 0.49956214 0.50043786]]\r\nprediction : 0.5\r\nfull output: [[ 0.50030494 0.49969503]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000121 0.4999879]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990872 0.5000913 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50028104 0.49971896]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996356 0.5003643]]\r\nprediction : 0.5\r\nfull output: [[ 0.50035006 0.49964997]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000679 0.49993205]]\r\nprediction : 0.5\r\nfull output: [[ 0.50008726 0.49991277]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999012 0.5000988]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998248 0.50017524]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985668 0.50014335]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987167 0.5001283 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993193 0.50006807]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994137 0.5005864]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976206 0.5002379 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974215 0.5002578 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971172 0.5002883 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000509 0.49994913]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003178 0.4996821]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966538 0.5003347 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994854 0.50051457]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985063 0.5001494 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001543 0.4998457]]\r\nprediction : 0.5\r\nfull output: [[ 0.50041115 0.49958888]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000054 0.49999943]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983397 0.500166 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936157 0.5006385 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972498 0.5002751 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49949026 0.50050974]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950287 0.5004971 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955893 0.50044113]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967614 0.50032395]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998042 0.50001955]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002303 0.49976966]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001098 0.49989012]]\r\nprediction : 0.5\r\nfull output: [[ 0.49945942 0.5005406 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996543 0.50003463]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001037 0.49989632]]\r\nprediction : 0.5\r\nfull output: [[ 0.50041795 0.49958202]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959713 0.5004028 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971625 0.5002838 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951524 0.50048476]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001147 0.49988532]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998699 0.5001302]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999577 0.50004226]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978027 0.50021976]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000324 0.49996758]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979976 0.5002002 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49926612 0.5007339 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982566 0.5001744 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973774 0.5002622 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960402 0.50039595]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998826 0.5000118 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50016713 0.49983284]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957797 0.50042206]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958816 0.50041187]]\r\nprediction : 0.5\r\nfull output: [[ 0.499802 0.50019795]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989033 0.5001097 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001377 0.4999862 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499758 0.50024194]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997356 0.5002644]]\r\nprediction : 0.5\r\nfull output: [[ 0.49965465 0.50034535]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000814 0.49991852]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999997 0.5 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001384 0.49986166]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983484 0.5001651 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011504 0.49988487]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005871 0.49941295]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976808 0.500232 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499961 0.50003904]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997082 0.5002918]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002492 0.49975085]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951336 0.5004867 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499636 0.50036395]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970824 0.5002918 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973154 0.50026846]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997733 0.5002267]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000896 0.49991038]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980524 0.5001948 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960777 0.50039226]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996256 0.5003744]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005864 0.49941364]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955845 0.50044155]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999264 0.50000733]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955973 0.50044036]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000492 0.49995086]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000843 0.49991566]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998867 0.50011325]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973708 0.5002629 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994952 0.50050485]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973214 0.50026786]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005524 0.49944752]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995924 0.5004077]]\r\nprediction : 0.5\r\nfull output: [[ 0.50009054 0.49990946]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004627 0.49953726]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996316 0.5003684]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925345 0.50074655]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.50045866 0.4995414 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000906 0.499991 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985582 0.5001442 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991077 0.5000892 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964082 0.5003591 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50012064 0.49987936]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997031 0.50029683]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011027 0.4998897 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998893 0.5001106]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951166 0.50048834]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999099 0.50009006]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997428 0.5002572]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001353 0.49986476]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001367 0.49986336]]\r\nprediction : 0.5\r\nfull output: [[ 0.50029826 0.49970168]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975687 0.5002431 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49944744 0.5005526 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996857 0.50031424]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997955 0.5002045]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001645 0.4999836 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996526 0.5003474]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998188 0.50018126]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957022 0.50042975]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975455 0.5002455 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966225 0.5003377 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964383 0.5003562 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999178 0.5000822]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999988 0.50000125]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996046 0.50039536]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998736 0.5001265]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984983 0.5001502 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.500088 0.49991196]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006324 0.4999367 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968442 0.50031555]]\r\nprediction : 0.5\r\nfull output: [[ 0.500095 0.49990502]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996926 0.50030744]]\r\nprediction : 0.5\r\nfull output: [[ 0.50020856 0.4997914 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951255 0.50048745]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997687 0.5000232 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002719 0.49972805]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999052 0.5000095 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967286 0.5003272 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985874 0.50014126]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982992 0.5001701 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999933 0.50000674]]\r\nprediction : 0.5\r\nfull output: [[ 0.50008553 0.49991444]]\r\nprediction : 0.5\r\nfull output: [[ 0.50025076 0.4997492 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999598 0.500004 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997887 0.5002113]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991786 0.50008214]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977043 0.5002296 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49939632 0.5006036 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972522 0.5002748 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995753 0.5000425 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989614 0.5001039 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994957 0.5000505 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993196 0.50006807]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984893 0.50015104]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999908 0.50000924]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999814 0.50001866]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989095 0.50010896]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974123 0.5002588 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981225 0.5001877 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998459 0.50015414]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999322 0.50006783]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977577 0.50022423]]\r\nprediction : 0.5\r\nfull output: [[ 0.50009173 0.49990824]]\r\nprediction : 0.5\r\nfull output: [[ 0.49941432 0.5005856 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981824 0.5001818 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970973 0.50029033]]\r\nprediction : 0.5\r\nfull output: [[ 0.49945384 0.5005461 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001866 0.49981332]]\r\nprediction : 0.5\r\nfull output: [[ 0.500142 0.49985808]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992546 0.5007455]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966887 0.50033116]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955052 0.5004495 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001825 0.49981752]]\r\nprediction : 0.5\r\nfull output: [[ 0.50037545 0.49962452]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996384 0.50036156]]\r\nprediction : 0.5\r\nfull output: [[ 0.500015 0.49998504]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001741 0.49982587]]\r\nprediction : 0.5\r\nfull output: [[ 0.49954504 0.50045496]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976778 0.5002322 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936587 0.50063413]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990562 0.5000944 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49952573 0.50047433]]\r\nprediction : 0.5\r\nfull output: [[ 0.49933648 0.5006636 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5006001 0.49939993]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997896 0.5000211 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976102 0.500239 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001002 0.49989974]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000737 0.4999263]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978042 0.5002196 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49975294 0.5002471 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985632 0.50014365]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998774 0.5001226]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963573 0.50036424]]\r\nprediction : 0.5\r\nfull output: [[ 0.50070727 0.4992927 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969062 0.50030935]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981084 0.5001892 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000263 0.4999737]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998874 0.5001126]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989238 0.5001076 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936882 0.5006312 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993607 0.5000639 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50023466 0.49976537]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961758 0.5003824 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982074 0.5001793 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989632 0.50010365]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986213 0.50013787]]\r\nprediction : 0.5\r\nfull output: [[ 0.500074 0.499926]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997653 0.5002347]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973765 0.5002623 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969745 0.5003026 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996087 0.50003916]]\r\nprediction : 0.5\r\nfull output: [[ 0.50051475 0.4994852 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987537 0.5001247 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999676 0.5000324]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959907 0.5004009 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004382 0.4995617]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976993 0.50023013]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969167 0.5003083 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992567 0.50007427]]\r\nprediction : 0.5\r\nfull output: [[ 0.4993678 0.5006321]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997567 0.50024325]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997111 0.50028896]]\r\nprediction : 0.5\r\nfull output: [[ 0.50013477 0.49986532]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989134 0.5001086 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995995 0.5004004]]\r\nprediction : 0.5\r\nfull output: [[ 0.50017524 0.49982473]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006914 0.49993083]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000333 0.49996674]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997154 0.50002843]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987364 0.50012636]]\r\nprediction : 0.5\r\nfull output: [[ 0.499943 0.50005704]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002861 0.49971387]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000219 0.4999781]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987337 0.5001267 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996978 0.5000302 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977252 0.50022745]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997423 0.5002577]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000703 0.49999297]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000274 0.4999973 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971193 0.5002881 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998932 0.50010675]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959576 0.50040424]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963474 0.50036526]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994886 0.5000512 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997881 0.5002119]]\r\nprediction : 0.5\r\nfull output: [[ 0.49986333 0.50013673]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980333 0.50019664]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990338 0.5000966 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990872 0.5000913 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995993 0.50040066]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005199 0.49948016]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964714 0.50035286]]\r\nprediction : 0.5\r\nfull output: [[ 0.50020146 0.49979857]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999514 0.5000486]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996499 0.5003501]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000017 0.49999827]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004023 0.49959773]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976695 0.50023305]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000703 0.499993 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961156 0.5003885 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974218 0.5002578 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980578 0.5001942 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49949703 0.5005029 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000293 0.49997064]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992883 0.50007117]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998805 0.50011945]]\r\nprediction : 0.5\r\nfull output: [[ 0.50055325 0.4994467 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981415 0.50018585]]\r\n\r\n 1/16 [>.............................] - ETA: 1:23\r\n 2/16 [==>...........................] - ETA: 1:12\r\n 3/16 [====>.........................] - ETA: 1:07\r\n 4/16 [======>.......................] - ETA: 1:01\r\n 5/16 [========>.....................] - ETA: 56s \r\n 6/16 [==========>...................] - ETA: 50s\r\n 7/16 [============>.................] - ETA: 45s\r\n 8/16 [==============>...............] - ETA: 40s\r\n 9/16 [===============>..............] - ETA: 35s\r\n10/16 [=================>............] - ETA: 30s\r\n11/16 [===================>..........] - ETA: 25s\r\n12/16 [=====================>........] - ETA: 20s\r\n13/16 [=======================>......] - ETA: 15s\r\n14/16 [=========================>....] - ETA: 10s\r\n15/16 [===========================>..] - ETA: 5s \r\n16/16 [==============================] - ETA: 0s\r\n16/16 [==============================] - 82s 5s/step\r\nprediction : 0.5\r\nfull output: [[ 0.49990445 0.50009555]]\r\nprediction : 0.5\r\nfull output: [[ 0.49942657 0.50057346]]\r\nprediction : 0.5\r\nfull output: [[ 0.4989872 0.50101274]]\r\nprediction : 0.5\r\nfull output: [[ 0.49905312 0.5009469 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49911165 0.5008883 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49947116 0.5005288 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981266 0.5001873 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999894 0.5000106]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002007 0.49979928]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000244 0.49999756]]\r\nprediction : 0.5\r\nfull output: [[ 0.49938676 0.5006133 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49937165 0.5006283 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996457 0.5000354 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992446 0.5007554]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957818 0.50042176]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995371 0.5004629]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001645 0.49998355]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999064 0.5000936]]\r\nprediction : 0.5\r\nfull output: [[ 0.49888793 0.50111204]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996573 0.5003427]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972418 0.5002759 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997632 0.5002368]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925762 0.5007424 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996373 0.5000363 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991864 0.5000813 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001012 0.49989876]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967772 0.5003222 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49949634 0.5005037 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993625 0.5000638 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49946728 0.5005328 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001925 0.49998078]]\r\nprediction : 0.5\r\nfull output: [[ 0.49953702 0.500463 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000564 0.49994364]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000584 0.49999413]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991911 0.5008089]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996725 0.5003275]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957982 0.50042015]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958244 0.5004176 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49873316 0.5012669 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002801 0.49971992]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991287 0.50087124]]\r\nprediction : 0.5\r\nfull output: [[ 0.49898243 0.5010176 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977908 0.5002209 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001175 0.49988246]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995774 0.5000423 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999322 0.5000678]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989524 0.5001047 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49908006 0.50091994]]\r\nprediction : 0.5\r\nfull output: [[ 0.49931902 0.500681 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49922046 0.50077957]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000565 0.49994352]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994331 0.5005669]]\r\nprediction : 0.5\r\nfull output: [[ 0.4988132 0.5011868]]\r\nprediction : 0.5\r\nfull output: [[ 0.4990174 0.50098264]]\r\nprediction : 0.5\r\nfull output: [[ 0.50002533 0.4999747 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49898958 0.50101036]]\r\nprediction : 0.5\r\nfull output: [[ 0.4988877 0.5011122]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005689 0.49943113]]\r\nprediction : 0.5\r\nfull output: [[ 0.49945685 0.5005432 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966338 0.5003366 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49945801 0.50054204]]\r\nprediction : 0.5\r\nfull output: [[ 0.49942967 0.5005703 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988586 0.5001141 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50017136 0.49982864]]\r\nprediction : 0.5\r\nfull output: [[ 0.49914497 0.500855 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50017005 0.49982995]]\r\nprediction : 0.5\r\nfull output: [[ 0.49934208 0.500658 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979627 0.50020367]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999774 0.5000023 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969766 0.5003024 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958265 0.50041735]]\r\nprediction : 0.5\r\nfull output: [[ 0.49920046 0.50079954]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978998 0.5002099 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49931583 0.50068414]]\r\nprediction : 0.5\r\nfull output: [[ 0.4990943 0.50090563]]\r\nprediction : 0.5\r\nfull output: [[ 0.4989921 0.501008 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999251 0.5000749]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997124 0.5002876]]\r\nprediction : 0.5\r\nfull output: [[ 0.49952316 0.50047684]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999873 0.50001276]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994236 0.5005764]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968588 0.50031406]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970397 0.50029606]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998753 0.50012475]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996758 0.50032425]]\r\nprediction : 0.5\r\nfull output: [[ 0.49903727 0.50096273]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998268 0.50001734]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992831 0.50071687]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000824 0.4999176]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957913 0.5004208 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998435 0.5001565]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973807 0.50026196]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001037 0.49989623]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993977 0.50006026]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970436 0.50029564]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977925 0.5002208 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977222 0.5002278 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992636 0.5000736 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49913839 0.50086164]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001365 0.49998638]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998054 0.5001946]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978304 0.500217 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997947 0.5002052]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002938 0.4997062]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968436 0.5003156 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999774 0.5000023 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49906504 0.5009349 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987903 0.5001209 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948993 0.5005101 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002148 0.4997852]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999128 0.50008714]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983358 0.5001664 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996729 0.5003271]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995586 0.5000441 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995825 0.5000418 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49911448 0.50088555]]\r\nprediction : 0.5\r\nfull output: [[ 0.49937227 0.5006277 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980155 0.5001984 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998596 0.50001407]]\r\nprediction : 0.5\r\nfull output: [[ 0.50018257 0.49981743]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998668 0.50001335]]\r\nprediction : 0.5\r\nfull output: [[ 0.500214 0.4997861]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966186 0.50033814]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010264 0.49989736]]\r\nprediction : 0.5\r\nfull output: [[ 0.49954197 0.50045806]]\r\nprediction : 0.5\r\nfull output: [[ 0.49930054 0.50069946]]\r\nprediction : 0.5\r\nfull output: [[ 0.499723 0.50027704]]\r\nprediction : 0.5\r\nfull output: [[ 0.49923322 0.50076675]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977553 0.50022453]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999508 0.5000492]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991354 0.5000865 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959353 0.50040656]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001839 0.49981612]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996912 0.50003093]]\r\nprediction : 0.5\r\nfull output: [[ 0.49910864 0.5008914 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49953327 0.50046676]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992698 0.50007296]]\r\nprediction : 0.5\r\nfull output: [[ 0.49932206 0.50067794]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951807 0.50048196]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990445 0.5000955 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992435 0.50075644]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001293 0.49998707]]\r\nprediction : 0.5\r\nfull output: [[ 0.500321 0.499679]]\r\nprediction : 0.5\r\nfull output: [[ 0.49923667 0.5007634 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994627 0.5000537 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499985 0.50001496]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990985 0.5000902 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49965787 0.50034213]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999125 0.50008744]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004794 0.49952057]]\r\nprediction : 0.5\r\nfull output: [[ 0.49919373 0.50080633]]\r\nprediction : 0.5\r\nfull output: [[ 0.49903515 0.5009648 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994946 0.50005054]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980557 0.50019443]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000544 0.4999456]]\r\nprediction : 0.5\r\nfull output: [[ 0.49907205 0.500928 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010145 0.49989858]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991813 0.50081867]]\r\nprediction : 0.5\r\nfull output: [[ 0.49906725 0.50093275]]\r\nprediction : 0.5\r\nfull output: [[ 0.49939403 0.500606 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4988768 0.50112313]]\r\nprediction : 0.5\r\nfull output: [[ 0.499783 0.5002171]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998542 0.50014585]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997617 0.5002383]]\r\nprediction : 0.5\r\nfull output: [[ 0.49893874 0.50106126]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003443 0.49965566]]\r\nprediction : 0.5\r\nfull output: [[ 0.49875078 0.5012492 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49923944 0.50076056]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994048 0.5005952]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984446 0.5001555 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001451 0.4998549]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998434 0.5001566]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000397 0.49996033]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000969 0.49990308]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994105 0.50005895]]\r\nprediction : 0.5\r\nfull output: [[ 0.49900952 0.50099045]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998734 0.50012666]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001534 0.49984658]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995682 0.5004318]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999321 0.5000679]]\r\nprediction : 0.5\r\nfull output: [[ 0.49914852 0.5008515 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999612 0.5000388]]\r\nprediction : 0.5\r\nfull output: [[ 0.499456 0.50054395]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996513 0.50003487]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982113 0.5001789 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50005585 0.4999442 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001725 0.49982747]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49947673 0.50052327]]\r\nprediction : 0.5\r\nfull output: [[ 0.49912086 0.5008791 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958178 0.50041825]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999092 0.5000908]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999125 0.5000875]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996072 0.50003934]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979398 0.50020593]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000686 0.49993137]]\r\nprediction : 0.5\r\nfull output: [[ 0.49903235 0.5009677 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50004387 0.49995613]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977276 0.5002273 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49880305 0.501197 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999832 0.5000168]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988014 0.5001198 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49988842 0.5001115 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999205 0.50007945]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979323 0.5002067 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985498 0.500145 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49890408 0.50109595]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002504 0.49974966]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998602 0.500014 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5005971 0.49940288]]\r\nprediction : 0.5\r\nfull output: [[ 0.49956876 0.50043124]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960208 0.50039786]]\r\nprediction : 0.5\r\nfull output: [[ 0.49935633 0.5006437 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963918 0.50036085]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995577 0.5000442 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974415 0.5002558 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981907 0.50018096]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992859 0.50071406]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000341 0.4999659]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002265 0.49977356]]\r\nprediction : 0.5\r\nfull output: [[ 0.50009876 0.49990118]]\r\nprediction : 0.5\r\nfull output: [[ 0.49979955 0.50020045]]\r\nprediction : 0.5\r\nfull output: [[ 0.49948233 0.50051767]]\r\nprediction : 0.5\r\nfull output: [[ 0.4993685 0.5006315]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010926 0.49989074]]\r\nprediction : 0.5\r\nfull output: [[ 0.49912065 0.5008793 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999359 0.5000641]]\r\nprediction : 0.5\r\nfull output: [[ 0.50002307 0.499977 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985 0.50014997]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997243 0.50002754]]\r\nprediction : 0.5\r\nfull output: [[ 0.49887064 0.5011293 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996692 0.50003314]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963018 0.5003699 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50018823 0.49981177]]\r\nprediction : 0.5\r\nfull output: [[ 0.49960348 0.5003965 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006264 0.4999374 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989393 0.500106 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49970695 0.500293 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968457 0.50031537]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963152 0.50036854]]\r\nprediction : 0.5\r\nfull output: [[ 0.50004387 0.4999561 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.500122 0.49987796]]\r\nprediction : 0.5\r\nfull output: [[ 0.49932313 0.5006769 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000008 0.4999992]]\r\nprediction : 0.5\r\nfull output: [[ 0.49892917 0.5010708 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996136 0.50038636]]\r\nprediction : 0.5\r\nfull output: [[ 0.49978852 0.5002114 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972066 0.5002794 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983278 0.50016725]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999299 0.5000701]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003612 0.4996388]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981743 0.5001826 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968603 0.500314 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995572 0.5004428]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996473 0.5003527]]\r\nprediction : 0.5\r\nfull output: [[ 0.5003856 0.4996144]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999964 0.5000004 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499717 0.500283]]\r\nprediction : 0.5\r\nfull output: [[ 0.4989332 0.5010668]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998534 0.50014657]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991241 0.5008759]]\r\nprediction : 0.5\r\nfull output: [[ 0.49913394 0.50086606]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997988 0.50020117]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964148 0.50035846]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998033 0.5000197 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998856 0.50001144]]\r\nprediction : 0.5\r\nfull output: [[ 0.50015974 0.4998403 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950686 0.5004931 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999774 0.5000023 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49989864 0.5001014 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50013703 0.49986303]]\r\nprediction : 0.5\r\nfull output: [[ 0.49965 0.50035]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997656 0.5002344]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992762 0.5007239]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969688 0.5003031 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961042 0.50038964]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999306 0.5000694]]\r\nprediction : 0.5\r\nfull output: [[ 0.49953932 0.5004607 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49912217 0.5008778 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49962115 0.50037885]]\r\nprediction : 0.5\r\nfull output: [[ 0.499506 0.500494]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992362 0.50007635]]\r\nprediction : 0.5\r\nfull output: [[ 0.49912202 0.50087804]]\r\nprediction : 0.5\r\nfull output: [[ 0.49934876 0.5006512 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972293 0.50027716]]\r\nprediction : 0.5\r\nfull output: [[ 0.50011814 0.4998818 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967036 0.5003296 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994634 0.50053656]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950886 0.5004912 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49917018 0.5008299 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999678 0.5000033 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967197 0.50032806]]\r\nprediction : 0.5\r\nfull output: [[ 0.49917465 0.50082535]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997363 0.5002637]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999733 0.5000267]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001717 0.4999828 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001255 0.49987456]]\r\nprediction : 0.5\r\nfull output: [[ 0.500452 0.499548]]\r\nprediction : 0.5\r\nfull output: [[ 0.49893478 0.50106525]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001858 0.49981415]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976483 0.5002352 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999137 0.5000863]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955124 0.50044876]]\r\nprediction : 0.5\r\nfull output: [[ 0.5004366 0.49956337]]\r\nprediction : 0.5\r\nfull output: [[ 0.49938473 0.5006153 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925542 0.50074464]]\r\nprediction : 0.5\r\nfull output: [[ 0.49926633 0.5007337 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998911 0.5001089]]\r\nprediction : 0.5\r\nfull output: [[ 0.499752 0.500248]]\r\nprediction : 0.5\r\nfull output: [[ 0.500107 0.499893]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999001 0.50009984]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995471 0.5004529]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967083 0.50032914]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002679 0.49973202]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992784 0.5007215]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000582 0.4999418]]\r\nprediction : 0.5\r\nfull output: [[ 0.49951553 0.5004845 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001764 0.49998233]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993327 0.5000667 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4993098 0.50069016]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973843 0.50026155]]\r\nprediction : 0.5\r\nfull output: [[ 0.49939212 0.50060785]]\r\nprediction : 0.5\r\nfull output: [[ 0.49981415 0.50018585]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000716 0.49992844]]\r\nprediction : 0.5\r\nfull output: [[ 0.49966612 0.50033385]]\r\nprediction : 0.5\r\nfull output: [[ 0.50041986 0.49958012]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995637 0.50043625]]\r\nprediction : 0.5\r\nfull output: [[ 0.49937385 0.50062615]]\r\nprediction : 0.5\r\nfull output: [[ 0.49959013 0.5004099 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993226 0.5000678 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996737 0.5003264]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991122 0.5000888 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993655 0.5000634 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993223 0.5000678 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980095 0.5001991 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50034326 0.49965674]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972612 0.50027394]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001298 0.49987024]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983254 0.5001675 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925122 0.5007488 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49945447 0.5005455 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980292 0.50019705]]\r\nprediction : 0.5\r\nfull output: [[ 0.49985367 0.5001464 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49939412 0.5006059 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997266 0.5002734]]\r\nprediction : 0.5\r\nfull output: [[ 0.50074536 0.4992547 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997505 0.50024956]]\r\nprediction : 0.5\r\nfull output: [[ 0.49900612 0.5009939 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49983788 0.50016207]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973297 0.500267 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992925 0.5000707 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997408 0.50025916]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964246 0.50035757]]\r\nprediction : 0.5\r\nfull output: [[ 0.49901634 0.50098366]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972498 0.500275 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996606 0.50033945]]\r\nprediction : 0.5\r\nfull output: [[ 0.49958697 0.50041306]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000434 0.4999566]]\r\nprediction : 0.5\r\nfull output: [[ 0.49999604 0.500004 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4988848 0.50111526]]\r\nprediction : 0.5\r\nfull output: [[ 0.49925616 0.50074387]]\r\nprediction : 0.5\r\nfull output: [[ 0.50002325 0.49997675]]\r\nprediction : 0.5\r\nfull output: [[ 0.49984348 0.5001565 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000585 0.49994156]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992692 0.50073075]]\r\nprediction : 0.5\r\nfull output: [[ 0.49998048 0.5000195 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5000366 0.49996346]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996322 0.5000368 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001123 0.49988765]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997818 0.5000219 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950126 0.5004987 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999905 0.50000954]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995424 0.5004576]]\r\nprediction : 0.5\r\nfull output: [[ 0.499044 0.50095606]]\r\nprediction : 0.5\r\nfull output: [[ 0.49955425 0.5004457 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499979 0.50002104]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001046 0.49989536]]\r\nprediction : 0.5\r\nfull output: [[ 0.5001109 0.499889 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49913532 0.5008647 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980155 0.5001985 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49942416 0.50057584]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998285 0.5001715]]\r\nprediction : 0.5\r\nfull output: [[ 0.4993934 0.5006066]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950573 0.5004943 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49992537 0.50007457]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990413 0.50009584]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991045 0.5008955]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994355 0.50005645]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999534 0.5000467]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971828 0.5002817 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50085074 0.49914926]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972644 0.50027364]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974942 0.5002506 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4998993 0.5001007]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993837 0.5000616 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50006616 0.49993384]]\r\nprediction : 0.5\r\nfull output: [[ 0.49931622 0.5006838 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49931264 0.50068736]]\r\nprediction : 0.5\r\nfull output: [[ 0.50018615 0.4998138 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49936685 0.50063306]]\r\nprediction : 0.5\r\nfull output: [[ 0.49891275 0.5010873 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996926 0.50030744]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999569 0.5000431]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994159 0.50058407]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992123 0.50078773]]\r\nprediction : 0.5\r\nfull output: [[ 0.49934933 0.5006507 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49914634 0.5008536 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49996278 0.5000372 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974632 0.5002536 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49957132 0.5004287 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967396 0.50032604]]\r\nprediction : 0.5\r\nfull output: [[ 0.49949425 0.5005058 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991235 0.50087655]]\r\nprediction : 0.5\r\nfull output: [[ 0.49961066 0.50038934]]\r\nprediction : 0.5\r\nfull output: [[ 0.49994528 0.5000547 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996601 0.50033987]]\r\nprediction : 0.5\r\nfull output: [[ 0.49938342 0.5006166 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999799 0.5000201]]\r\nprediction : 0.5\r\nfull output: [[ 0.49947712 0.5005229 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971685 0.5002832 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993888 0.5000611 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.499587 0.50041306]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969396 0.50030607]]\r\nprediction : 0.5\r\nfull output: [[ 0.49900982 0.50099015]]\r\nprediction : 0.5\r\nfull output: [[ 0.499982 0.500018]]\r\nprediction : 0.5\r\nfull output: [[ 0.49993476 0.5000652 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49968928 0.5003107 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50037646 0.4996235 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992713 0.5007287]]\r\nprediction : 0.5\r\nfull output: [[ 0.49971297 0.50028706]]\r\nprediction : 0.5\r\nfull output: [[ 0.49927178 0.5007282 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999117 0.50008833]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950287 0.50049716]]\r\nprediction : 0.5\r\nfull output: [[ 0.49941313 0.50058687]]\r\nprediction : 0.5\r\nfull output: [[ 0.49894908 0.50105095]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002057 0.49979424]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950886 0.50049114]]\r\nprediction : 0.5\r\nfull output: [[ 0.49940175 0.5005982 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49969012 0.5003099 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49963635 0.5003636 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4992838 0.5007162]]\r\nprediction : 0.5\r\nfull output: [[ 0.49927112 0.50072885]]\r\nprediction : 0.5\r\nfull output: [[ 0.49991986 0.50008017]]\r\nprediction : 0.5\r\nfull output: [[ 0.49967092 0.5003291 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50004834 0.49995163]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977762 0.5002224 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991967 0.50080335]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996587 0.50034124]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996422 0.5003578]]\r\nprediction : 0.5\r\nfull output: [[ 0.49976856 0.50023144]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996934 0.50030655]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982202 0.500178 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987206 0.500128 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4990528 0.5009472]]\r\nprediction : 0.5\r\nfull output: [[ 0.4991661 0.50083387]]\r\nprediction : 0.5\r\nfull output: [[ 0.49894008 0.50106 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995627 0.5004372]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999533 0.5000467]]\r\nprediction : 0.5\r\nfull output: [[ 0.49887732 0.50112265]]\r\nprediction : 0.5\r\nfull output: [[ 0.49942905 0.50057095]]\r\nprediction : 0.5\r\nfull output: [[ 0.49997014 0.50002986]]\r\nprediction : 0.5\r\nfull output: [[ 0.5 0.5]]\r\nprediction : 0.5\r\nfull output: [[ 0.49913245 0.50086755]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995813 0.50004184]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974403 0.500256 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49990705 0.5000929 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49905023 0.50094974]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000644 0.49999356]]\r\nprediction : 0.5\r\nfull output: [[ 0.5002786 0.49972147]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995965 0.50004035]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964064 0.5003593 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49972913 0.50027084]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995404 0.500046 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.50000185 0.49999812]]\r\nprediction : 0.5\r\nfull output: [[ 0.4994714 0.50052863]]\r\nprediction : 0.5\r\nfull output: [[ 0.49982193 0.50017804]]\r\nprediction : 0.5\r\nfull output: [[ 0.49995884 0.5000411 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49973297 0.50026697]]\r\nprediction : 0.5\r\nfull output: [[ 0.50010943 0.49989057]]\r\nprediction : 0.5\r\nfull output: [[ 0.49977723 0.50022274]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997929 0.50020707]]\r\nprediction : 0.5\r\nfull output: [[ 0.49873286 0.50126714]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999667 0.5000333]]\r\nprediction : 0.5\r\nfull output: [[ 0.50003517 0.49996483]]\r\nprediction : 0.5\r\nfull output: [[ 0.49941143 0.50058866]]\r\nprediction : 0.5\r\nfull output: [[ 0.49954548 0.50045455]]\r\nprediction : 0.5\r\nfull output: [[ 0.499644 0.500356]]\r\nprediction : 0.5\r\nfull output: [[ 0.49987376 0.50012624]]\r\nprediction : 0.5\r\nfull output: [[ 0.50001425 0.4999858 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49950662 0.5004934 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4997357 0.5002643]]\r\nprediction : 0.5\r\nfull output: [[ 0.50057054 0.49942943]]\r\nprediction : 0.5\r\nfull output: [[ 0.49980518 0.50019485]]\r\nprediction : 0.5\r\nfull output: [[ 0.49964038 0.5003596 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49926525 0.5007348 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.4996615 0.5003385]]\r\nprediction : 0.5\r\nfull output: [[ 0.4999235 0.50007653]]\r\nprediction : 0.5\r\nfull output: [[ 0.499141 0.50085896]]\r\nprediction : 0.5\r\nfull output: [[ 0.4995759 0.50042415]]\r\nprediction : 0.5\r\nfull output: [[ 0.499402 0.50059795]]\r\nprediction : 0.5\r\nfull output: [[ 0.499877 0.500123]]\r\nprediction : 0.5\r\nfull output: [[ 0.50062305 0.499377 ]]\r\nprediction : 0.5\r\nfull output: [[ 0.49974892 0.50025105]]\r\n\r\n 1/16 [>.............................] - ETA: 1:14\r\n 2/16 [==>...........................] - ETA: 1:09\r\n 3/16 [====>.........................] - ETA: 1:04\r\n 4/16 [======>.......................] - ETA: 59s \r\n 5/16 [========>.....................] - ETA: 54s\r\n 6/16 [==========>...................] - ETA: 49s\r\n 7/16 [============>.................] - ETA: 44s\r\n 8/16 [==============>...............] - ETA: 39s\r\n 9/16 [===============>..............] - ETA: 34s\r\nFatal Python error: Aborted\r\n\r\nThread 0x00002ce0 (most recent call first):\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 320 in wait\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 622 in wait\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_timeout.py\", line 43 in _on_run\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_daemon_thread.py\", line 49 in run\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 1038 in _bootstrap_inner\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 995 in _bootstrap\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydev_bundle\\pydev_monkey.py\", line 1118 in __call__\r\n\r\nThread 0x00001940 (most recent call first):\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 324 in wait\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 622 in wait\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\pydevd.py\", line 261 in _on_run\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_daemon_thread.py\", line 49 in run\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 1038 in _bootstrap_inner\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 995 in _bootstrap\r\n\r\nThread 0x000022b4 (most recent call first):\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 324 in wait\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 622 in wait\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\pydevd.py\", line 215 in _on_run\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_daemon_thread.py\", line 49 in run\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 1038 in _bootstrap_inner\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 995 in _bootstrap\r\n\r\nThread 0x000030e0 (most recent call first):\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_comm.py\", line 204 in _read_line\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_comm.py\", line 222 in _on_run\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_daemon_thread.py\", line 49 in run\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 1038 in _bootstrap_inner\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 995 in _bootstrap\r\n\r\nThread 0x000017c8 (most recent call first):\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 324 in wait\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\queue.py\", line 180 in get\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_comm.py\", line 368 in _on_run\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_daemon_thread.py\", line 49 in run\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 1038 in _bootstrap_inner\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\threading.py\", line 995 in _bootstrap\r\n\r\nThread 0x00001458 (most recent call first):\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\execute.py\", line 53 in quick_execute\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\context.py\", line 1457 in call_function\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py\", line 196 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\monomorphic_function.py\", line 1349 in _call_flat\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compiler.py\", line 148 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py\", line 864 in _call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py\", line 825 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\util\\traceback_utils.py\", line 150 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\training.py\", line 2554 in predict\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tf_keras_vis\\scorecam.py\", line 159 in __call__\r\n File \"d:\\Code\\project\\....py\", line 75 in ...\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 194 in pytest_pyfunc_call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 1799 in runtest\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 169 in pytest_runtest_call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 262 in <lambda>\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 341 in from_call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 261 in call_runtest_hook\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 222 in call_and_report\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 133 in runtestprotocol\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 114 in pytest_runtest_protocol\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 348 in pytest_runtestloop\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 323 in _main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 269 in wrap_session\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 316 in pytest_cmdline_main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\config\\__init__.py\", line 166 in main\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\testlauncher.py\", line 36 in run\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\testlauncher.py\", line 44 in <module>\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_runpy.py\", line 124 in _run_code\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_runpy.py\", line 135 in _run_module_code\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\_vendored\\pydevd\\_pydevd_bundle\\pydevd_runpy.py\", line 321 in run_path\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\adapter/../..\\debugpy\\launcher/../..\\debugpy/..\\debugpy\\server\\cli.py\", line 284 in run_file\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\adapter/../..\\debugpy\\launcher/../..\\debugpy/..\\debugpy\\server\\cli.py\", line 430 in main\r\n File \"c:\\Users\\bers\\.vscode\\extensions\\ms-python.python-2023.8.0\\pythonFiles\\lib\\python\\debugpy\\adapter/../..\\debugpy\\launcher/../..\\debugpy\\__main__.py\", line 39 in <module>\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\runpy.py\", line 88 in _run_code\r\n File \"C:\\Program Files\\WindowsApps\\PythonSoftwareFoundation.Python.3.11_3.11.1008.0_x64__qbz5n2kfra8p0\\Lib\\runpy.py\", line 198 in _run_module_as_main\r\n\r\nExtension modules: mypy, mypy.api, lazy_object_proxy.cext, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, matplotlib._c_internal_utils, PIL._imaging, matplotlib._path, kiwisolver._cext, matplotlib._image, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.hashing, pyarrow.lib, pyarrow._hdfsio, pandas._libs.tslib, pandas._libs.ops, pyarrow._compute, pandas._libs.arrays, pandas._libs.sparse, pandas._libs.reduction, pandas._libs.indexing, pandas._libs.index, pandas._libs.internals, pandas._libs.join, pandas._libs.writers, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.testing, pandas._libs.parsers, pandas._libs.json, google._upb._message, charset_normalizer.md, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.h5r, h5py.utils, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5t, h5py._conv, h5py.h5z, h5py._proxy, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5o, h5py.h5l, h5py._selector, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._isolve._iterative, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg._cythonized_array_utils, scipy.linalg._flinalg, scipy.linalg._solve_toeplitz, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_lapack, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.ndimage._nd_image, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, _ni_label, scipy.ndimage._ni_label, PIL._imagingft, scipy.interpolate._fitpack, scipy.interpolate.dfitpack, scipy.optimize._minpack2, scipy.optimize._group_columns, scipy._lib.messagestream, scipy.optimize._trlib._trlib, numpy.linalg.lapack_lite, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize.__nnls, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.spatial._ckdtree, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._direct, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, lxml._elementpath, lxml.etree, sklearn.__check_build._check_build, sklearn.utils.murmurhash, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.special.cython_special, scipy.stats._stats, scipy.stats.beta_ufunc, scipy.stats._boost.beta_ufunc, scipy.stats.binom_ufunc, scipy.stats._boost.binom_ufunc, scipy.stats.nbinom_ufunc, scipy.stats._boost.nbinom_ufunc, scipy.stats.hypergeom_ufunc, scipy.stats._boost.hypergeom_ufunc, scipy.stats.ncf_ufunc, scipy.stats._boost.ncf_ufunc, scipy.stats.ncx2_ufunc, scipy.stats._boost.ncx2_ufunc, scipy.stats.nct_ufunc, scipy.stats._boost.nct_ufunc, scipy.stats.skewnorm_ufunc, scipy.stats._boost.skewnorm_ufunc, scipy.stats.invgauss_ufunc, scipy.stats._boost.invgauss_ufunc, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._statlib, scipy.stats._mvn, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._rcont.rcont, sklearn.utils._isfinite, sklearn.utils._openmp_helpers, sklearn.decomposition._cdnmf_fast, sklearn.utils._logistic_sigmoid, sklearn.utils.sparsefuncs_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.utils._typedefs, sklearn.utils._readonly_array_wrapper, sklearn.metrics._dist_metrics, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_fast, sklearn.utils._random, sklearn.utils._seq_dataset, sklearn.utils.arrayfuncs, sklearn.linear_model._cd_fast, sklearn._loss._loss, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.linear_model._sag_fast, sklearn.svm._libsvm, sklearn.svm._liblinear, sklearn.svm._libsvm_sparse, sklearn.decomposition._online_lda_fast, sklearn.neighbors._partition_nodes, sklearn.neighbors._ball_tree, sklearn.neighbors._kd_tree, sklearn._isotonic, sklearn.manifold._utils, sklearn.tree._utils, sklearn.tree._tree, sklearn.tree._splitter, sklearn.tree._criterion, sklearn.neighbors._quad_tree, sklearn.manifold._barnes_hut_tsne, matplotlib.backends._tkagg (total: 241)\r\n\r\n```\r\n\r\n</details>\r\n", "More info! I have changed my code a little bit and now I can reproduce the issue independently of my large code base. The key was to start with more data at once. I hope that is still the same issue as the stack trace has changed few some runs, but it also leads to an access violation:\r\n\r\n```python\r\nimport tensorflow as tf\r\nfrom tensorflow.keras.applications import VGG19\r\nfrom tf_keras_vis.scorecam import Scorecam\r\nfrom tf_keras_vis.utils.scores import CategoricalScore\r\n\r\n\r\ndef test_crash():\r\n model = VGG19(classes=2, weights=None)\r\n cam = Scorecam(model)\r\n score = CategoricalScore([0])\r\n seed_input = tf.zeros((99, *model.input.shape[1:]))\r\n print(\"Start\") # Using pytest -s test_crash.py\r\n cam(score, seed_input)\r\n print(\"Done\") # Using python test_crash.py, Done is never printed!\r\n\r\n\r\nif __name__ == \"__main__\":\r\n test_crash()\r\n```\r\n\r\nThe issue can now be reproduced in two ways:\r\n\r\n1. `python test_crash.py`\r\n```\r\n2023-05-22 08:33:34.145403: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\nStart\r\n2023-05-22 08:33:35.919052: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-05-22 08:33:36.541070: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-05-22 08:33:37.053280: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-05-22 08:33:37.519297: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n```\r\nNote that \"Done\" is never printed, but we do not get an error message, either.\r\n\r\n2. `pytest -s test_crash.py`\r\nStack trace with 99 images:\r\n```\r\n======================================================================================== test session starts =========================================================================================\r\nplatform win32 -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0\r\nrootdir: D:\\Code\\Project\r\nconfigfile: pyproject.toml\r\nplugins: pylama-8.4.1\r\ncollected 1 item\r\n\r\ntest_crash.py 2023-05-22 08:34:42.437665: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\nStart\r\n2023-05-22 08:34:43.987431: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-05-22 08:34:44.415711: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-05-22 08:34:44.851788: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-05-22 08:34:45.290969: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\nWindows fatal exception: access violation\r\n\r\nCurrent thread 0x00001494 (most recent call first):\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\gen_nn_ops.py\", line 1199 in conv2d\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\nn_ops.py\", line 2788 in _conv2d_expanded_batch\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\nn_ops.py\", line 1314 in convolution_internal\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\nn_ops.py\", line 1182 in convolution_v2\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\util\\dispatch.py\", line 1176 in op_dispatch_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\util\\traceback_utils.py\", line 150 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py\", line 262 in convolution_op\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py\", line 290 in call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 96 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\base_layer.py\", line 1150 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\functional.py\", line 669 in _run_internal_graph\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\functional.py\", line 512 in call \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 96 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\base_layer.py\", line 1150 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\training.py\", line 569 in __call__ \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tf_keras_vis\\scorecam.py\", line 93 in __call__ \r\n File \"d:\\Code\\Project\\test_crash.py\", line 13 in test_crash\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 194 in pytest_pyfunc_call \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 1799 in runtest\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 169 in pytest_runtest_call \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 262 in <lambda>\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 341 in from_call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 261 in call_runtest_hook \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 222 in call_and_report \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 133 in runtestprotocol \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 114 in pytest_runtest_protocol\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 348 in pytest_runtestloop \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 323 in _main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 269 in wrap_session\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 316 in pytest_cmdline_main \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\config\\__init__.py\", line 166 in main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\config\\__init__.py\", line 189 in console_main \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pytest\\__main__.py\", line 5 in <module>\r\n File \"<frozen runpy>\", line 88 in _run_code\r\n File \"<frozen runpy>\", line 198 in _run_module_as_main\r\n``` \r\n\r\nStack trace with 5 images:\r\n```\r\n========================================================================================= test session starts =========================================================================================\r\nplatform win32 -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0\r\nrootdir: D:\\Code\\Project\r\nconfigfile: pyproject.toml\r\nplugins: pylama-8.4.1\r\ncollected 1 item\r\n\r\ntest_crash.py 2023-05-22 08:36:09.552555: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\nStart\r\nFatal Python error: Aborted\r\n\r\nThread 0x0000174c (most recent call first):\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\execute.py\", line 53 in quick_execute\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\context.py\", line 1457 in call_function\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\atomic_function.py\", line 196 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\monomorphic_function.py\", line 1349 in _call_flat\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py\", line 897 in _call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py\", line 825 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\util\\traceback_utils.py\", line 150 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\training.py\", line 2554 in predict \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tf_keras_vis\\scorecam.py\", line 159 in __call__ \r\n File \"D:\\Code\\Project\\test_crash.py\", line 13 in test_crash\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 194 in pytest_pyfunc_call \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 1799 in runtest\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 169 in pytest_runtest_call \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 262 in <lambda>\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 341 in from_call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 261 in call_runtest_hook \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 222 in call_and_report \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 133 in runtestprotocol \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 114 in pytest_runtest_protocol\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 348 in pytest_runtestloop \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 323 in _main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 269 in wrap_session\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 316 in pytest_cmdline_main \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\config\\__init__.py\", line 166 in main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\config\\__init__.py\", line 189 in console_main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pytest\\__main__.py\", line 5 in <module>\r\n File \"<frozen runpy>\", line 88 in _run_code\r\n File \"<frozen runpy>\", line 198 in _run_module_as_main\r\n\r\nExtension modules: mypy, mypy.api, lazy_object_proxy.cext, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, google._upb._message, charset_normalizer.md, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.h5r, h5py.utils, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5t, h5py._conv, h5py.h5z, h5py._proxy, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5o, h5py.h5l, h5py._selector, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._isolve._iterative, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg._cythonized_array_utils, scipy.linalg._flinalg, scipy.linalg._solve_toeplitz, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_lapack, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, PIL._imaging, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.hashing, pyarrow.lib, pyarrow._hdfsio, pandas._libs.tslib, pandas._libs.ops, pyarrow._compute, pandas._libs.arrays, pandas._libs.sparse, pandas._libs.reduction, pandas._libs.indexing, pandas._libs.index, pandas._libs.internals, pandas._libs.join, pandas._libs.writers, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.testing, pandas._libs.parsers, pandas._libs.json, scipy.ndimage._nd_image, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, _ni_label, scipy.ndimage._ni_label (total: 119)\r\n```\r\n\r\nNot sure why pytest reports all those loaded modules. I have them installed, but I don't see where I load them anywhere. I am running the code from an folder with only the test code and no subfolders. Here's my `pip list` for completeness:\r\n\r\n```\r\nabsl-py 1.4.0\r\nastroid 2.15.5\r\nastunparse 1.6.3\r\nasync-generator 1.10\r\nattrs 23.1.0\r\nbandit 1.7.5\r\nblack 23.3.0\r\ncachetools 5.3.0\r\ncertifi 2023.5.7\r\ncffconvert 2.0.0\r\ncffi 1.15.1\r\ncharset-normalizer 3.1.0\r\nclick 8.1.3\r\ncolorama 0.4.6\r\ncolour-science 0.4.2\r\ncontourpy 1.0.7\r\ncycler 0.11.0\r\nDeprecated 1.2.13\r\ndill 0.3.6\r\ndocopt 0.6.2\r\net-xmlfile 1.1.0\r\nexceptiongroup 1.1.1\r\nflake8 6.0.0\r\nflake8-black 0.3.6\r\nflake8-plugin-utils 1.3.2\r\nflake8-pytest-style 1.7.2\r\nflatbuffers 23.5.9\r\nfonttools 4.39.4\r\ngast 0.4.0\r\ngitdb 4.0.10\r\nGitPython 3.1.31\r\ngoogle-auth 2.18.1\r\ngoogle-auth-oauthlib 1.0.0\r\ngoogle-pasta 0.2.0\r\ngrpcio 1.54.2\r\nh11 0.14.0\r\nh5py 3.8.0\r\nhumanize 4.6.0\r\nidna 3.4\r\nimageio 2.28.1\r\niniconfig 2.0.0\r\nisort 5.12.0\r\njoblib 1.2.0\r\njsonschema 3.2.0\r\nkeras 2.13.1rc0\r\nkiwisolver 1.4.4\r\nlazy-object-proxy 1.9.0\r\nlibclang 16.0.0\r\nlxml 4.9.2\r\nMarkdown 3.4.3\r\nmarkdown-it-py 2.2.0\r\nmarkdown2 2.4.8\r\nMarkupSafe 2.1.2\r\nmatplotlib 3.7.1\r\nmccabe 0.7.0\r\nmdurl 0.1.2\r\nmypy 1.3.0\r\nmypy-extensions 1.0.0\r\nnumpy 1.24.3\r\noauthlib 3.2.2\r\nopencv-python 4.7.0.72\r\nopenpyxl 3.1.2\r\nopt-einsum 3.3.0\r\nordered-set 4.1.0\r\noutcome 1.2.0\r\npackaging 23.1\r\npandas 2.0.1\r\npandas-stubs 2.0.1.230501\r\npathspec 0.11.1\r\npbr 5.11.1\r\nPillow 9.5.0\r\npip 23.1.2\r\nplatformdirs 3.5.1\r\npluggy 1.0.0\r\nprotobuf 4.23.1\r\npyarrow 12.0.0\r\npyasn1 0.5.0\r\npyasn1-modules 0.3.0\r\npycodestyle 2.10.0\r\npycparser 2.21\r\npydocstyle 6.3.0\r\npyflakes 3.0.1\r\nPygments 2.15.1\r\npykwalify 1.8.0\r\npylama 8.4.1\r\npylint 2.17.4\r\npyparsing 3.0.9\r\npyrsistent 0.19.3\r\nPySocks 1.7.1\r\npytest 7.3.1\r\npython-dateutil 2.8.2\r\npython-pptx 0.6.21\r\npytz 2023.3\r\nPyYAML 6.0\r\nrequests 2.30.0\r\nrequests-oauthlib 1.3.1\r\nrich 13.3.5\r\nrsa 4.9\r\nruamel.yaml 0.17.26\r\nruamel.yaml.clib 0.2.7\r\nscikit-learn 1.2.2\r\nscipy 1.10.1\r\nselenium 4.9.1\r\nsix 1.16.0\r\nsmmap 5.0.0\r\nsniffio 1.3.0\r\nsnowballstemmer 2.2.0\r\nsortedcontainers 2.4.0\r\nstevedore 5.1.0\r\ntensorboard 2.13.0\r\ntensorboard-data-server 0.7.0\r\ntensorflow 2.13.0rc0\r\ntensorflow-estimator 2.13.0rc0\r\ntensorflow-intel 2.13.0rc0\r\ntensorflow-io-gcs-filesystem 0.31.0\r\ntermcolor 2.3.0\r\ntf-keras-vis 0.8.5\r\nthreadpoolctl 3.1.0\r\ntomlkit 0.11.8\r\ntrio 0.22.0\r\ntrio-websocket 0.10.2\r\ntypes-python-dateutil 2.8.19.13\r\ntypes-pytz 2023.3.0.0\r\ntypes-requests 2.30.0.0\r\ntypes-setuptools 67.8.0.0\r\ntypes-urllib3 1.26.25.13\r\ntyping_extensions 4.5.0\r\ntzdata 2023.3\r\nurllib3 1.26.15\r\nWerkzeug 2.3.4\r\nwheel 0.40.0\r\nwrapt 1.14.1\r\nwsproto 1.2.0\r\nXlsxWriter 3.1.0\r\n```", "Hi @bersbersbers ,\r\n\r\nThanks for reporting the issue. Unfortunately I am not sure whether the issue is related to Tensorflow or the `tf-keras-vis` library. The library `tf-keras-vis` is not maintained by us. Hence i request you to provide a code snippet independent of other tools to replicate the behaviour. Then we can definitely able to look into the issue.\r\n\r\nThanks!", "@SuryanarayanaY thanks for your reply, I will try to reproduce the issue without `tf-keras-vis`. However:\r\n- Looking at https://github.com/keisen/tf-keras-vis/blob/f2c65a51748468ab17279dca820999d767d7c434/tf_keras_vis/scorecam.py, I see only the TF public API being used. What would be different if I simply copied these 200 lines of code into my own reproducer, would that be any different?\r\n- Phrased another way, what could `tf-keras-vis`s ScoreCAM implementation possibly do that would make you conclude that the segmentation fault deep inside TensorFlow would be caused by their use of the public TF API, and not TF itself?\r\n\r\nAnyway, as I said, I will try to come up with a reproducer that does not rely on `tf-keras-vis`.", "Hi @bersbersbers , As mentioned in the above comment, It would be better to understand if the issue is happening with only Tensorflow along with the Tensorflow code usage of `ScoreCAM`( not through tf-keras-vis package).\r\nSometimes the issue might be due to the incompatible package/code dependency between both.", "@sachinprasadhs I was able to reduce the code to this, independent of `tf-keras-vis`:\r\n\r\n```python\r\nimport tensorflow as tf\r\n\r\ndef test_crash():\r\n model = tf.keras.applications.VGG19(classes=2, weights=None)\r\n seed_inputs = [tf.zeros((99, *model.input.shape[1:]))]\r\n print(\"Start\") # Using python -m pytest -s test_crash.py\r\n model(seed_inputs)\r\n print(\"Done\") # Using python test_crash.py, Done is never printed!\r\n\r\nif __name__ == \"__main__\":\r\n test_crash()\r\n```\r\n\r\nThe output of the two commands is this:\r\n`python test_crash.py`:\r\n```\r\n2023-06-02 07:29:50.276822: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\nStart\r\n2023-06-02 07:29:51.920038: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-06-02 07:29:52.422226: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-06-02 07:29:52.901513: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-06-02 07:29:53.362180: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n```\r\n(`Done` is not printed)\r\n\r\n`python -m pytest -s test_crash.py`\r\n```\r\n====================================================================================== test session starts ======================================================================================\r\nplatform win32 -- Python 3.11.3, pytest-7.3.1, pluggy-1.0.0\r\nrootdir: D:\\Code\\project\r\nconfigfile: pyproject.toml\r\nplugins: pylama-8.4.1\r\ncollected 1 item\r\n\r\ntest_crash.py 2023-06-02 07:31:15.169293: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\nStart\r\n2023-06-02 07:31:16.626837: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-06-02 07:31:17.071595: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-06-02 07:31:17.517749: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\n2023-06-02 07:31:17.942616: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 1271660544 exceeds 10% of free system memory.\r\nWindows fatal exception: access violation\r\n\r\nCurrent thread 0x00001310 (most recent call first):\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\gen_nn_ops.py\", line 1199 in conv2d\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\nn_ops.py\", line 2788 in _conv2d_expanded_batch\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\nn_ops.py\", line 1314 in convolution_internal\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\ops\\nn_ops.py\", line 1182 in convolution_v2\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\util\\dispatch.py\", line 1176 in op_dispatch_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tensorflow\\python\\util\\traceback_utils.py\", line 150 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py\", line 262 in convolution_op\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py\", line 290 in call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 96 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\base_layer.py\", line 1150 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\functional.py\", line 669 in _run_internal_graph\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\functional.py\", line 512 in call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 96 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\base_layer.py\", line 1150 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\engine\\training.py\", line 569 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\keras\\src\\utils\\traceback_utils.py\", line 65 in error_handler\r\n File \"D:\\Code\\project\\test_crash.py\", line 8 in test_crash\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 194 in pytest_pyfunc_call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\python.py\", line 1799 in runtest \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 169 in pytest_runtest_call\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 262 in <lambda> \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 341 in from_call \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 261 in call_runtest_hook\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 222 in call_and_report \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 133 in runtestprotocol \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\runner.py\", line 114 in pytest_runtest_protocol\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 348 in pytest_runtestloop\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 323 in _main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 269 in wrap_session \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\main.py\", line 316 in pytest_cmdline_main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_callers.py\", line 39 in _multicall \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_manager.py\", line 80 in _hookexec \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pluggy\\_hooks.py\", line 265 in __call__\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\config\\__init__.py\", line 166 in main \r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\_pytest\\config\\__init__.py\", line 189 in console_main\r\n File \"C:\\Users\\bers\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pytest\\__main__.py\", line 5 in <module>\r\n File \"<frozen runpy>\", line 88 in _run_code\r\n File \"<frozen runpy>\", line 198 in _run_module_as_main\r\n```\r\n(Note `Windows fatal exception: access violation`)\r\n\r\nThe same code with 99, 50, 40, 38 examples crashes the same way. 25, 35, 37 seems to work. So this might be an OOM issue. However, running with the maximum working number of 37 examples leads to this memory graph, so I don't necessarily think I am running out of memory:\r\n![image](https://github.com/tensorflow/tensorflow/assets/12128514/a2376e0c-6a10-4042-8bb0-10f43ef43c5a)\r\n\r\nIn addition, if this was an OOM problem, I would expected a related error message. Yes, I see the warnings, but `pytest` crashes with an access violation, which I am not associating with OOM, really.", "I'm able to get the output in colab, here is the Gist of it https://gist.github.com/sachinprasadhs/5d82d9e91da0e7fc6284612e9b87b95c.\r\nIt did not consume much of memory either.\r\n\r\nIt took me ~10 seconds in my M1 Mac.", "I have since been to run the same code, in the same system, successfully, but am still able to repro the original problem.\n\nWhere it works: Windows 10 native, 32 GB RAM\nWhere it fails: Windows 11 via Hyper-V (hosted on the above Windows 10), 16 GB RAM\n\nI will experiment a bit more with the RAM allocation of the VM, but that may take some two weeks.", "@mraunak , Can you please look into this, issue seems to be happening only on specific windows version.", "Hi @bersbersbers I ran the code on a machine with 8GB RAM with 4 cores and it worked fine. The snippet is shown below. I think there might be some other jobs running in the background which is sharing the RAM space. \r\n>>> import tensorflow as tf\r\n>>> model = tf.keras.applications.VGG19(classes=2, weights=None)\r\n2023-06-07 21:30:34.503333: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 411041792 exceeds 10% of free system memory.\r\n2023-06-07 21:30:35.064035: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 411041792 exceeds 10% of free system memory.\r\n2023-06-07 21:30:35.320642: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 411041792 exceeds 10% of free system memory.\r\n2023-06-07 21:30:35.972187: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 67108864 exceeds 10% of free system memory.\r\n2023-06-07 21:30:36.089787: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 67108864 exceeds 10% of free system memory.\r\n>>> seed_inputs = [tf.zeros((99, *model.input.shape[1:]))]\r\n>>> print(\"Start\") # Using python -m pytest -s test_crash.py\r\nStart\r\n>>> model(seed_inputs)\r\n<tf.Tensor: shape=(99, 2), dtype=float32, numpy=\r\narray([[0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5],\r\n [0.5, 0.5]], dtype=float32)>\r\n>>> print(\"Done\") # Using python test_crash.py, Done is never printed!\r\nDone\r\n>>>\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "\n> I will experiment a bit more with the RAM allocation of the VM, but that may take some two weeks.\n\n", "Something new to report?", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60648\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60648\">No</a>\n", "Not directly related, but search engines lead here, so just in case it helps someone: \"Fatal Python error: Aborted\" may also come from the incompatibility between your versions of CUDA and Tensorflow. If you ended up here with similar symptoms, it may be a good idea to double-check your versions according to [these tables](https://www.tensorflow.org/install/source#tested_build_configurations) :)\r\n\r\nIt's probably not the issue described above though, as I got dynamic linking errors instead of an access violation. Everything else was pretty much the same, [this MRE](https://github.com/tensorflow/tensorflow/issues/60648#issuecomment-1573181582) even managed to reproduce the crash too." ]
2023-05-21T06:33:33
2023-08-15T18:28:04
2023-08-09T01:52:26
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version 2.10.1 and 2.13.0.rc0 ### Custom Code Yes ### OS Platform and Distribution Windows 11 22H2 ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version --- ### GCC/Compiler version --- ### CUDA/cuDNN version None ### GPU model and memory None ### Current Behaviour? TensorFlow crashes. I cannot currently reproduce it, but was able to catch one of many stack traces before it stopped being reproducible. ### Standalone code to reproduce the issue ```shell # IIRC, reproduces using any of # - pip install tensorflow==2.10.1 tf_keras_vis==0.8.5 pytest==7.3.1 # - pip install tensorflow==2.13.0.rc0 tf_keras_vis==0.8.5 pytest==7.3.1 # # Then run # - pytest -k test_crash # # It did not reproduce with # - pytest -k test_crash.py # implying that other pytest plugins may be playing a role. # See the LONG list of modules at the end of the stack trace. # # It also stopped reproducing once I renamed the test, implying that test discovery # order may be playing a role. import tensorflow as tf from tensorflow.keras.applications import VGG19 from tf_keras_vis.scorecam import Scorecam from tf_keras_vis.utils.scores import CategoricalScore def test_crash(): model = VGG19(classes=2, weights=None) cam = Scorecam(model) score = CategoricalScore([0]) seed_input = tf.zeros((1, *model.input.shape[1:])) cam(score, seed_input) if __name__ == "__main__": # It does not reproduce like this (at least on Windows) test_crash() ``` ### Relevant log output ```shell Fatal Python error: Aborted Thread 0x00001770 (most recent call first): File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\tensorflow\python\eager\execute.py", line 54 in quick_execute File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\tensorflow\python\eager\function.py", line 499 in call File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\tensorflow\python\eager\function.py", line 1862 in _call_flat File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\tensorflow\python\eager\def_function.py", line 986 in _call File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\tensorflow\python\eager\def_function.py", line 915 in __call__ File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\tensorflow\python\util\traceback_utils.py", line 150 in error_handler File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\keras\engine\training.py", line 2253 in predict File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\keras\utils\traceback_utils.py", line 65 in error_handler File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\tf_keras_vis\scorecam.py", line 159 in __call__ File "D:\Code\project\project\....py", line ... in test_crash File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\python.py", line 194 in pytest_pyfunc_call File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_callers.py", line 39 in _multicall File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_manager.py", line 80 in _hookexec File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_hooks.py", line 265 in __call__ File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\python.py", line 1799 in runtest File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\runner.py", line 169 in pytest_runtest_call File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_callers.py", line 39 in _multicall File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_manager.py", line 80 in _hookexec File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_hooks.py", line 265 in __call__ File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\runner.py", line 262 in <lambda> File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\runner.py", line 341 in from_call File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\runner.py", line 261 in call_runtest_hook File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\runner.py", line 222 in call_and_report File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\runner.py", line 133 in runtestprotocol File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\runner.py", line 114 in pytest_runtest_protocol File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_callers.py", line 39 in _multicall File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_manager.py", line 80 in _hookexec File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_hooks.py", line 265 in __call__ File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\main.py", line 348 in pytest_runtestloop File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_callers.py", line 39 in _multicall File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_manager.py", line 80 in _hookexec File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_hooks.py", line 265 in __call__ File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\main.py", line 323 in _main File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\main.py", line 269 in wrap_session File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\main.py", line 316 in pytest_cmdline_main File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_callers.py", line 39 in _multicall File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_manager.py", line 80 in _hookexec File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pluggy\_hooks.py", line 265 in __call__ File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\config\__init__.py", line 166 in main File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\_pytest\config\__init__.py", line 189 in console_main File "C:\Users\bers\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\pytest\__main__.py", line 5 in <module> File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.10_3.10.3056.0_x64__qbz5n2kfra8p0\lib\runpy.py", line 86 in _run_code File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.10_3.10.3056.0_x64__qbz5n2kfra8p0\lib\runpy.py", line 196 in _run_module_as_main Extension modules: mypy, mypy.api, lazy_object_proxy.cext, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, matplotlib._c_internal_utils, PIL._imaging, matplotlib._path, kiwisolver._cext, matplotlib._image, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.hashing, pyarrow.lib, pyarrow._hdfsio, pandas._libs.tslib, pandas._libs.ops, pyarrow._compute, pandas._libs.arrays, pandas._libs.sparse, pandas._libs.reduction, pandas._libs.indexing, pandas._libs.index, pandas._libs.internals, pandas._libs.join, pandas._libs.writers, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.testing, pandas._libs.parsers, pandas._libs.json, google.protobuf.pyext._message, charset_normalizer.md, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.h5r, h5py.utils, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5t, h5py._conv, h5py.h5z, h5py._proxy, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5o, h5py.h5l, h5py._selector, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._isolve._iterative, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg._cythonized_array_utils, scipy.linalg._flinalg, scipy.linalg._solve_toeplitz, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_lapack, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.ndimage._nd_image, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, _ni_label, scipy.ndimage._ni_label, PIL._imagingft, scipy.interpolate._fitpack, scipy.interpolate.dfitpack, scipy.optimize._minpack2, scipy.optimize._group_columns, scipy._lib.messagestream, scipy.optimize._trlib._trlib, numpy.linalg.lapack_lite, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize.__nnls, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.spatial._ckdtree, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._direct, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, lxml._elementpath, lxml.etree, sklearn.__check_build._check_build, sklearn.utils.murmurhash, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.special.cython_special, scipy.stats._stats, scipy.stats.beta_ufunc, scipy.stats._boost.beta_ufunc, scipy.stats.binom_ufunc, scipy.stats._boost.binom_ufunc, scipy.stats.nbinom_ufunc, scipy.stats._boost.nbinom_ufunc, scipy.stats.hypergeom_ufunc, scipy.stats._boost.hypergeom_ufunc, scipy.stats.ncf_ufunc, scipy.stats._boost.ncf_ufunc, scipy.stats.ncx2_ufunc, scipy.stats._boost.ncx2_ufunc, scipy.stats.nct_ufunc, scipy.stats._boost.nct_ufunc, scipy.stats.skewnorm_ufunc, scipy.stats._boost.skewnorm_ufunc, scipy.stats.invgauss_ufunc, scipy.stats._boost.invgauss_ufunc, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._statlib, scipy.stats._mvn, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._rcont.rcont, sklearn.utils._isfinite, sklearn.utils._openmp_helpers, sklearn.decomposition._cdnmf_fast, sklearn.utils._logistic_sigmoid, sklearn.utils.sparsefuncs_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.utils._typedefs, sklearn.utils._readonly_array_wrapper, sklearn.metrics._dist_metrics, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_fast, sklearn.utils._random, sklearn.utils._seq_dataset, sklearn.utils.arrayfuncs, sklearn.linear_model._cd_fast, sklearn._loss._loss, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.linear_model._sag_fast, sklearn.svm._libsvm, sklearn.svm._liblinear, sklearn.svm._libsvm_sparse, sklearn.decomposition._online_lda_fast, sklearn.neighbors._partition_nodes, sklearn.neighbors._ball_tree, sklearn.neighbors._kd_tree, sklearn._isotonic, sklearn.manifold._utils, sklearn.tree._utils, sklearn.tree._tree, sklearn.tree._splitter, sklearn.tree._criterion, sklearn.neighbors._quad_tree, sklearn.manifold._barnes_hut_tsne (total: 240) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60648/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60648/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60647
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60647/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60647/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60647/events
https://github.com/tensorflow/tensorflow/issues/60647
1,718,250,029
I_kwDOArmXAs5mamot
60,647
Insufficient documentation on GPU use, especially in MPS
{ "login": "Killpit", "id": 57031187, "node_id": "MDQ6VXNlcjU3MDMxMTg3", "avatar_url": "https://avatars.githubusercontent.com/u/57031187?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Killpit", "html_url": "https://github.com/Killpit", "followers_url": "https://api.github.com/users/Killpit/followers", "following_url": "https://api.github.com/users/Killpit/following{/other_user}", "gists_url": "https://api.github.com/users/Killpit/gists{/gist_id}", "starred_url": "https://api.github.com/users/Killpit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Killpit/subscriptions", "organizations_url": "https://api.github.com/users/Killpit/orgs", "repos_url": "https://api.github.com/users/Killpit/repos", "events_url": "https://api.github.com/users/Killpit/events{/privacy}", "received_events_url": "https://api.github.com/users/Killpit/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" }, { "id": 2012480497, "node_id": "MDU6TGFiZWwyMDEyNDgwNDk3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-feature", "name": "type:docs-feature", "color": "159b2e", "default": false, "description": "Doc issues for new feature, or clarifications about functionality" } ]
open
false
{ "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }
[ { "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@Killpit,\r\nCould you please elaborate about your Feature. Also, please specify the Use Cases for this feature. Thank you!", "It's not a feature, it's actually a documentation request, when I look at using GPUs on TensorFlow, I couldn't find any resource on the documentation. Even more, I use metal GPUs on newer versions on MacBooks and whenever I look at setting device-agnostic code on MPS where I can make runtime much faster, because I couldn't find a documentation on setting up device-agnostic code, I couldn't use this feature and rely on CPUs.", "@reedwm @tilakrayal I would like to work on this!" ]
2023-05-20T18:30:05
2023-09-23T13:09:16
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Documentation Feature Request ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.13 ### Custom Code Yes ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I tried to find a documentation on allowing GPU and device-agnostic code on TensorFlow, but there was nowhere to be found and the documentation. ### Standalone code to reproduce the issue ```shell There wasn't a code, but there is insufficient documentation on GPU and device-agnostic code to set up. ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60647/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60647/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60646
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60646/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60646/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60646/events
https://github.com/tensorflow/tensorflow/issues/60646
1,718,100,817
I_kwDOArmXAs5maCNR
60,646
tensorflow/core/common_runtime/gpu/gpu_device.cc:1956] Cannot dlopen some GPU libraries
{ "login": "jbrepogmailcom", "id": 17232670, "node_id": "MDQ6VXNlcjE3MjMyNjcw", "avatar_url": "https://avatars.githubusercontent.com/u/17232670?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jbrepogmailcom", "html_url": "https://github.com/jbrepogmailcom", "followers_url": "https://api.github.com/users/jbrepogmailcom/followers", "following_url": "https://api.github.com/users/jbrepogmailcom/following{/other_user}", "gists_url": "https://api.github.com/users/jbrepogmailcom/gists{/gist_id}", "starred_url": "https://api.github.com/users/jbrepogmailcom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jbrepogmailcom/subscriptions", "organizations_url": "https://api.github.com/users/jbrepogmailcom/orgs", "repos_url": "https://api.github.com/users/jbrepogmailcom/repos", "events_url": "https://api.github.com/users/jbrepogmailcom/events{/privacy}", "received_events_url": "https://api.github.com/users/jbrepogmailcom/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@jbrepogmailcom,\r\nI tried to install the tensorflow v2.12 from the official doc link provided and was able to install the tensorflow without any issue and also able to find the gpu. \r\nhttps://www.tensorflow.org/install/pip#linux_setup\r\nKindly find the screenshot for the reference.\r\n\r\n![unnamed](https://github.com/tensorflow/tensorflow/assets/81610181/2369876d-cfa5-4af6-b18d-d1eabdc8d600)\r\n\r\n\r\n\r\nI request to create the new virtual environment and try to re-install the tensorflow as mentioned in the official doc. Thank you!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60646\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60646\">No</a>\n" ]
2023-05-20T08:35:03
2023-06-06T02:07:04
2023-06-06T02:07:02
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version 2.12 ### Custom Code No ### OS Platform and Distribution Ubuntu 22.04 ### Mobile device _No response_ ### Python version 3.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? This command: ``` import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` returns: ``` W tensorflow/core/common_runtime/gpu/gpu_device.cc:1956] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... [] ``` So no GPU is detected. I have NVIDIA drivers installed correctly cuda and cudnn installed correctly as advised on https://www.tensorflow.org/install/pip#linux_setup There is nothing about setting path, so I have not set path. ### Standalone code to reproduce the issue ```shell import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60646/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60646/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60645
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60645/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60645/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60645/events
https://github.com/tensorflow/tensorflow/issues/60645
1,718,099,433
I_kwDOArmXAs5maB3p
60,645
"Improve Performance of Convolutional Neural Networks on GPU"
{ "login": "Abhishekagrawal1404", "id": 104071590, "node_id": "U_kgDOBjQBpg", "avatar_url": "https://avatars.githubusercontent.com/u/104071590?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Abhishekagrawal1404", "html_url": "https://github.com/Abhishekagrawal1404", "followers_url": "https://api.github.com/users/Abhishekagrawal1404/followers", "following_url": "https://api.github.com/users/Abhishekagrawal1404/following{/other_user}", "gists_url": "https://api.github.com/users/Abhishekagrawal1404/gists{/gist_id}", "starred_url": "https://api.github.com/users/Abhishekagrawal1404/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Abhishekagrawal1404/subscriptions", "organizations_url": "https://api.github.com/users/Abhishekagrawal1404/orgs", "repos_url": "https://api.github.com/users/Abhishekagrawal1404/repos", "events_url": "https://api.github.com/users/Abhishekagrawal1404/events{/privacy}", "received_events_url": "https://api.github.com/users/Abhishekagrawal1404/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }
[ { "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "To address the issue \"Improve Performance of Convolutional Neural Networks on GPU\" in TensorFlow, here are some potential areas to focus on for code improvements:\r\n\r\n1. Utilize GPU-Accelerated Operations:\r\n - Replace CPU-based operations with GPU-accelerated counterparts, such as `tf.nn.conv2d` for convolution and `tf.nn.max_pool` for pooling, to leverage the GPU's parallel processing capabilities.\r\n\r\n2. Apply Optimized Convolution Implementations:\r\n - Explore optimized convolution algorithms, such as Winograd or FFT-based convolutions, that can provide faster computations for specific scenarios.\r\n \r\n3. Employ Memory Optimization Techniques:\r\n - Implement memory optimizations, such as memory reuse and memory padding techniques, to minimize data transfers between the GPU and system memory, reducing memory overhead and improving performance.\r\n \r\n4. Consider Mixed-Precision Training:\r\n - Investigate the use of mixed-precision training, where lower precision (e.g., float16) is used for certain computations, to speed up training while maintaining acceptable accuracy.\r\n \r\n5. Implement Kernel Fusion:\r\n - Investigate opportunities for kernel fusion, where multiple operations can be combined into a single GPU kernel, reducing memory accesses and improving computational efficiency.\r\n \r\n6. Profile and Optimize Data Transfers:\r\n - Analyze data transfer patterns between the CPU and GPU, and optimize data movement to minimize unnecessary transfers and latency.\r\n \r\nThese are just a few examples of areas to focus on for code improvements. It is recommended to further analyze the specific requirements and characteristics of your CNN models and identify bottlenecks using profiling tools to guide the optimization efforts. Additionally, leveraging TensorFlow's GPU-specific APIs and optimizing memory access patterns can further enhance the performance of CNN computations on GPU.\r\n\r\nLet's together collaborate in the TensorFlow community, participate in discussions, and consider the latest research and advancements in GPU optimization techniques to make meaningful contributions towards improving the performance of convolutional neural networks on GPU in TensorFlow.", "To improve the performance of Convolutional Neural Networks (CNNs) on GPUs, you can consider implementing optimizations such as utilizing GPU-specific libraries, batching data, and using parallel computing techniques. Here's an example of Python code that showcases these optimizations:\r\n\r\n```python\r\nimport tensorflow as tf\r\n\r\n# Define your CNN model\r\nmodel = tf.keras.models.Sequential([\r\n tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),\r\n tf.keras.layers.MaxPooling2D((2, 2)),\r\n tf.keras.layers.Flatten(),\r\n tf.keras.layers.Dense(10, activation='softmax')\r\n])\r\n\r\n# Compile the model\r\nmodel.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\r\n\r\n# Load your dataset\r\n(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()\r\n\r\n# Normalize and preprocess the data\r\nx_train = x_train.astype('float32') / 255.0\r\nx_test = x_test.astype('float32') / 255.0\r\n\r\n# Create a TensorFlow Dataset\r\ntrain_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64)\r\n\r\n# Enable GPU memory growth to avoid memory allocation errors\r\nphysical_devices = tf.config.list_physical_devices('GPU')\r\ntf.config.experimental.set_memory_growth(physical_devices[0], True)\r\n\r\n# Train the model\r\nmodel.fit(train_dataset, epochs=10)\r\n\r\n# Evaluate the model on test data\r\ntest_loss, test_accuracy = model.evaluate(x_test, y_test)\r\nprint(f'Test Loss: {test_loss}, Test Accuracy: {test_accuracy}')\r\n```\r\n\r\nIn this code, we define a simple CNN model using the Keras API in TensorFlow. We compile the model with appropriate settings and load the CIFAR-10 dataset. To improve GPU performance, we normalize the data, create a TensorFlow Dataset for efficient data loading, and enable GPU memory growth to avoid memory allocation errors.\r\n\r\nBy utilizing GPU-specific libraries and implementing best practices for training CNNs, you can significantly improve the performance of your models on GPUs. Additionally, you can explore techniques like model parallelism and mixed precision training for further optimization.\r\n\r\nRemember to customize the code based on your specific use case and requirements.", "Hi @Abhishekagrawal1404 \r\n\r\nThe tensorflow provides [Profiler](https://www.tensorflow.org/guide/profiler) to track the performance of TensorFlow models and understand how the model performs on the host (CPU), the device (GPU), or on a combination of both the host and device(s).\r\n\r\nAlso, we can use the profiler to do GPU performance analysis and get the maximum performance out of GPUs.\r\n\r\nCan you provide more specific context on the issue?\r\n\r\nThanks.\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Hi @pjpratik \r\n\r\nThank you for reaching out with your question about improving the performance of Convolutional Neural Networks (CNNs) on GPUs. I appreciate your interest in optimizing the utilization of GPU resources.\r\n\r\nThe code you provided is a great starting point for training a CNN model using TensorFlow and leveraging GPU capabilities. To further enhance the performance, I would recommend considering the following:\r\n\r\n1. Utilize GPU-specific libraries: TensorFlow provides various GPU-accelerated operations and libraries, such as cuDNN, which can significantly speed up computations on GPUs. You can explore using these libraries to further optimize your CNN model.\r\n\r\n2. Batch data processing: By batching your data, you can process multiple samples in parallel, taking advantage of the parallel processing capabilities of GPUs. This can lead to improved performance and faster training times.\r\n\r\n3. Parallel computing techniques: TensorFlow provides functionalities like data parallelism and model parallelism, where you can distribute the computations across multiple GPUs or machines. This allows for increased scalability and can further boost the performance of your CNN models.\r\n\r\nRemember to customize these optimizations based on your specific use case and experiment with different techniques to find the best performance gains for your CNN model on GPUs.\r\n\r\nIf you have any further questions or need more specific guidance, please feel free to provide additional context, and I'll be happy to assist you.\r\n\r\nBest regards,\r\nAbhishek", "Most of the techniques listed, like mixed precision, are already implemented in TensorFlow. Others, like fusion, are enabled through [XLA](https://www.tensorflow.org/xla). Therefore I'll close this issue. If you have a specific optimization to improve performance of convolutions which you would like TensorFlow to implement, please file a new issue.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60645\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60645\">No</a>\n" ]
2023-05-20T08:28:55
2023-06-07T00:23:45
2023-06-07T00:23:43
NONE
null
null
null
Currently, TensorFlow's performance for convolutional neural networks (CNNs) on GPU can be further optimized. The goal of this issue is to identify and implement improvements that enhance the speed and efficiency of CNN computations on GPU devices. This includes optimizing convolutional and pooling operations, leveraging GPU-specific optimizations, and exploring techniques such as kernel fusion and memory access optimizations. Expected Outcome: By addressing this issue, we aim to achieve significant performance improvements for CNN workloads on GPU, enabling faster training and inference times for deep learning models. This will enhance the overall efficiency and scalability of TensorFlow for CNN-based applications and empower researchers and practitioners to train and deploy models more effectively. Help Needed: Contributors with expertise in GPU programming, CUDA, and deep learning optimization techniques are encouraged to collaborate on this issue. The community's insights and contributions are valuable in identifying bottlenecks, proposing optimizations, and implementing efficient GPU-accelerated CNN operations in TensorFlow. Additionally, suggestions and insights from domain experts, performance profiling, and benchmarking results are welcome to drive this improvement initiative. Let's work together to make TensorFlow's GPU performance for CNNs even better! Please note that this issue is currently open and up for contributions. Feel free to join the discussion and contribute your expertise towards enhancing the performance of convolutional neural networks on GPU in TensorFlow.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60645/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60645/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60644
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60644/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60644/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60644/events
https://github.com/tensorflow/tensorflow/issues/60644
1,718,097,352
I_kwDOArmXAs5maBXI
60,644
"Improve GPU memory management for large-scale models"
{ "login": "Abhishekagrawal1404", "id": 104071590, "node_id": "U_kgDOBjQBpg", "avatar_url": "https://avatars.githubusercontent.com/u/104071590?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Abhishekagrawal1404", "html_url": "https://github.com/Abhishekagrawal1404", "followers_url": "https://api.github.com/users/Abhishekagrawal1404/followers", "following_url": "https://api.github.com/users/Abhishekagrawal1404/following{/other_user}", "gists_url": "https://api.github.com/users/Abhishekagrawal1404/gists{/gist_id}", "starred_url": "https://api.github.com/users/Abhishekagrawal1404/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Abhishekagrawal1404/subscriptions", "organizations_url": "https://api.github.com/users/Abhishekagrawal1404/orgs", "repos_url": "https://api.github.com/users/Abhishekagrawal1404/repos", "events_url": "https://api.github.com/users/Abhishekagrawal1404/events{/privacy}", "received_events_url": "https://api.github.com/users/Abhishekagrawal1404/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473173272, "node_id": "MDU6TGFiZWw0NzMxNzMyNzI=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature", "name": "type:feature", "color": "159b2e", "default": false, "description": "Feature requests" }, { "id": 1097547538, "node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu", "name": "comp:gpu", "color": "0052cc", "default": false, "description": "GPU related issues" } ]
closed
false
{ "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }
[ { "login": "reedwm", "id": 6510203, "node_id": "MDQ6VXNlcjY1MTAyMDM=", "avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4", "gravatar_id": "", "url": "https://api.github.com/users/reedwm", "html_url": "https://github.com/reedwm", "followers_url": "https://api.github.com/users/reedwm/followers", "following_url": "https://api.github.com/users/reedwm/following{/other_user}", "gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}", "starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reedwm/subscriptions", "organizations_url": "https://api.github.com/users/reedwm/orgs", "repos_url": "https://api.github.com/users/reedwm/repos", "events_url": "https://api.github.com/users/reedwm/events{/privacy}", "received_events_url": "https://api.github.com/users/reedwm/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "To address the issue of improving GPU memory management for large-scale models in TensorFlow, several approaches can be considered. Here's an outline of the code changes you could make:\r\n\r\n1. Utilize Tensorflow's memory growth feature:\r\n```python\r\nimport tensorflow as tf\r\n\r\n# Enable memory growth for GPU devices\r\ngpus = tf.config.experimental.list_physical_devices('GPU')\r\nfor gpu in gpus:\r\n tf.config.experimental.set_memory_growth(gpu, True)\r\n```\r\nEnabling memory growth allows the GPU memory allocation to be more flexible, preventing TensorFlow from allocating the entire GPU memory upfront.\r\n\r\n2. Implement memory optimization techniques:\r\n- Use mixed-precision training: Reduce memory usage by performing computations with lower precision (e.g., float16) when possible.\r\n- Employ gradient checkpointing: Trade off memory consumption with increased computation by checkpointing intermediate activations during backpropagation.\r\n- Implement model parallelism: Partition large models across multiple GPUs, reducing the memory requirement per GPU.\r\n\r\n3. Enable eager execution:\r\n```python\r\ntf.config.experimental_run_functions_eagerly(True)\r\n```\r\nEager execution can help you better understand the memory requirements of your operations and enable more granular control over memory usage.\r\n\r\n4. Use TensorFlow Distributed Strategy:\r\nIf you have access to a multi-GPU or distributed environment, consider utilizing TensorFlow's Distributed Strategy, such as `tf.distribute.MirroredStrategy` or `tf.distribute.experimental.MultiWorkerMirroredStrategy`, to distribute the model across multiple GPUs or machines. This can help manage memory by spreading the workload.\r\n\r\nThese are general approaches to improve GPU memory management for large-scale models in TensorFlow. The specific implementation details may vary depending on your model architecture, training process, and requirements. It's recommended to thoroughly test and benchmark these changes on your specific use case to ensure they effectively address the memory management issue.", "Thanks for filing feature request.\r\n\r\nTensorFlow as a product always aims to improve the quality of the product by adding new features and constantly fixing the bugs to ensure best experience for users.\r\n\r\nRegarding the reported issue on GPU memory management, including the steps you have mentioned above, you can make use of our distribution strategies when multiple GPUs are available.\r\nBelow is the document for more details.\r\n\r\nhttps://www.tensorflow.org/guide/distributed_training", "There is no concrete bug or request brought up by this GitHub issue. We do try to reduce GPU memory consumption of TensorFlow and XLA, but this issue does not list any concrete memory management bugs or suggestions. The second post is a suggestion to users of TF, and not a suggestion for how TF itself could be improved. So closing this issue." ]
2023-05-20T08:20:17
2023-05-23T19:40:54
2023-05-23T19:40:38
NONE
null
null
null
Currently, TensorFlow's GPU memory management can be challenging when training large-scale models. This issue aims to improve the memory management strategies for GPU usage to optimize memory allocation and deallocation, reducing memory fragmentation and enabling more efficient training of large models. You can find this issue by going to the TensorFlow repository's "Issues" tab and using the search bar to search for the keywords "GPU memory management large-scale models." Once you find the issue, make sure to read through the details and discussion to understand the specific challenges and proposed solutions. Feel free to contribute to this issue by commenting on it, discussing possible approaches, or even submitting a pull request with your proposed changes. Remember to familiarize yourself with the contribution guidelines and any specific instructions mentioned in the issue before getting started. Good luck, and I hope you find this issue interesting and valuable for your contributions to TensorFlow!
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60644/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60644/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60643
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60643/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60643/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60643/events
https://github.com/tensorflow/tensorflow/pull/60643
1,718,096,528
PR_kwDOArmXAs5Q7-jA
60,643
Add MLIR side effects to `tf.XlaCallModule`.
{ "login": "Abhishekagrawal1404", "id": 104071590, "node_id": "U_kgDOBjQBpg", "avatar_url": "https://avatars.githubusercontent.com/u/104071590?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Abhishekagrawal1404", "html_url": "https://github.com/Abhishekagrawal1404", "followers_url": "https://api.github.com/users/Abhishekagrawal1404/followers", "following_url": "https://api.github.com/users/Abhishekagrawal1404/following{/other_user}", "gists_url": "https://api.github.com/users/Abhishekagrawal1404/gists{/gist_id}", "starred_url": "https://api.github.com/users/Abhishekagrawal1404/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Abhishekagrawal1404/subscriptions", "organizations_url": "https://api.github.com/users/Abhishekagrawal1404/orgs", "repos_url": "https://api.github.com/users/Abhishekagrawal1404/repos", "events_url": "https://api.github.com/users/Abhishekagrawal1404/events{/privacy}", "received_events_url": "https://api.github.com/users/Abhishekagrawal1404/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60643/checks?check_run_id=13627062538) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request." ]
2023-05-20T08:16:39
2023-05-21T03:05:30
2023-05-21T03:05:30
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60643", "html_url": "https://github.com/tensorflow/tensorflow/pull/60643", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60643.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60643.patch", "merged_at": "2023-05-21T03:05:30" }
This change introduces updates to the `tf.XlaCallModule` op in order to support `jax2tf` native serialization. The `tf.XlaCallModule` op contains the StableHLO module, which may involve calling TF host callback functions through `stablehlo.custom_call`. To enable proper functionality, the following modifications were made: 1. The `Pure` trait in the automatically generated `tf.XlaCallModule` op's definition has been replaced with the `MemoryEffects` trait. 2. The `isStateful` flag has been set in the op declaration of `XlaCallModule` to indicate that it has stateful behavior. 3. The TensorFlow side effect analysis has been updated to recursively analyze the TF host callback functions invoked by `tf.XlaCallModule`. These changes ensure better compatibility and alignment with the `jax2tf` native serialization process, allowing for improved handling of side effects and seamless integration with TensorFlow. PiperOrigin-RevId: 533635753
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60643/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60643/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60642
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60642/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60642/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60642/events
https://github.com/tensorflow/tensorflow/issues/60642
1,717,783,141
I_kwDOArmXAs5mY0pl
60,642
ROCm: Importing PyTorch before TensorFlow causes TensorFlow to fail completely
{ "login": "hameerabbasi", "id": 2190658, "node_id": "MDQ6VXNlcjIxOTA2NTg=", "avatar_url": "https://avatars.githubusercontent.com/u/2190658?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hameerabbasi", "html_url": "https://github.com/hameerabbasi", "followers_url": "https://api.github.com/users/hameerabbasi/followers", "following_url": "https://api.github.com/users/hameerabbasi/following{/other_user}", "gists_url": "https://api.github.com/users/hameerabbasi/gists{/gist_id}", "starred_url": "https://api.github.com/users/hameerabbasi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hameerabbasi/subscriptions", "organizations_url": "https://api.github.com/users/hameerabbasi/orgs", "repos_url": "https://api.github.com/users/hameerabbasi/repos", "events_url": "https://api.github.com/users/hameerabbasi/events{/privacy}", "received_events_url": "https://api.github.com/users/hameerabbasi/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
open
false
{ "login": "angerson", "id": 32465472, "node_id": "MDQ6VXNlcjMyNDY1NDcy", "avatar_url": "https://avatars.githubusercontent.com/u/32465472?v=4", "gravatar_id": "", "url": "https://api.github.com/users/angerson", "html_url": "https://github.com/angerson", "followers_url": "https://api.github.com/users/angerson/followers", "following_url": "https://api.github.com/users/angerson/following{/other_user}", "gists_url": "https://api.github.com/users/angerson/gists{/gist_id}", "starred_url": "https://api.github.com/users/angerson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/angerson/subscriptions", "organizations_url": "https://api.github.com/users/angerson/orgs", "repos_url": "https://api.github.com/users/angerson/repos", "events_url": "https://api.github.com/users/angerson/events{/privacy}", "received_events_url": "https://api.github.com/users/angerson/received_events", "type": "User", "site_admin": false }
[ { "login": "angerson", "id": 32465472, "node_id": "MDQ6VXNlcjMyNDY1NDcy", "avatar_url": "https://avatars.githubusercontent.com/u/32465472?v=4", "gravatar_id": "", "url": "https://api.github.com/users/angerson", "html_url": "https://github.com/angerson", "followers_url": "https://api.github.com/users/angerson/followers", "following_url": "https://api.github.com/users/angerson/following{/other_user}", "gists_url": "https://api.github.com/users/angerson/gists{/gist_id}", "starred_url": "https://api.github.com/users/angerson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/angerson/subscriptions", "organizations_url": "https://api.github.com/users/angerson/orgs", "repos_url": "https://api.github.com/users/angerson/repos", "events_url": "https://api.github.com/users/angerson/events{/privacy}", "received_events_url": "https://api.github.com/users/angerson/received_events", "type": "User", "site_admin": false }, { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@hameerabbasi,\r\nThank you for the issue. This problem is not there in Colab which has both TF 2.12 and Torch 2.0. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/3c935855712bb540bb8d202103b7e536/untitled1164.ipynb).\r\n\r\nCould you please take a look at this comment from the developer and the issue is still open.\r\nhttps://github.com/tensorflow/tensorflow/issues/60109#issuecomment-1500575888\r\n\r\nThank you!\r\n", "I believe that issue is different, for a number of reasons:\r\n- I have to ensure TF is imported first, not the other way around\r\n- Nothing hangs, I actually get a HIP error which leads me to believe that the issue is ROCm/AMD related, but I do not have an NVidia GPU available to check on" ]
2023-05-19T20:26:46
2023-05-23T20:05:21
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source binary ### Tensorflow Version v2.11.1-3812-gef4eebff7d4 2.11.1 ### Custom Code No ### OS Platform and Distribution Arch Linux (EndeavourOS) ### Mobile device _No response_ ### Python version 3.10.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version ROCm 5.4.3 ### GPU model and memory Radeon VII/16 GiB ### Current Behaviour? The title suffices. A workaround is to ensure `tensorflow` is imported before `torch`. ### Standalone code to reproduce the issue ```shell python -c "import torch; import tensorflow as tf; tf.zeros(1)" ``` ### Relevant log output ```shell 2023-05-19 22:22:33.756830: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. v2.11.1-3812-gef4eebff7d4 2.11.1 (sd) [habbasi@hameer-imacpro11 kohya-trainer]$ python -c "import tensorflow as tf; import torch; tf.zeros(1)" 2023-05-19 22:25:50.708366: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-19 22:25:53.172076: I tensorflow/compiler/xla/stream_executor/rocm/rocm_gpu_executor.cc:843] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-19 22:25:53.172177: I tensorflow/compiler/xla/stream_executor/rocm/rocm_gpu_executor.cc:843] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-19 22:25:53.172216: I tensorflow/compiler/xla/stream_executor/rocm/rocm_gpu_executor.cc:843] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-19 22:25:53.172542: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-05-19 22:25:53.173978: I tensorflow/compiler/xla/stream_executor/rocm/rocm_gpu_executor.cc:843] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-19 22:25:53.174095: I tensorflow/compiler/xla/stream_executor/rocm/rocm_gpu_executor.cc:843] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-05-19 22:25:53.174137: I tensorflow/compiler/xla/stream_executor/rocm/rocm_gpu_executor.cc:843] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/habbasi/mambaforge/envs/sd/lib/python3.10/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler raise e.with_traceback(filtered_tb) from None File "/home/habbasi/mambaforge/envs/sd/lib/python3.10/site-packages/tensorflow/python/eager/context.py", line 588, in ensure_initialized context_handle = pywrap_tfe.TFE_NewContext(opts) tensorflow.python.framework.errors_impl.InternalError: hipGetDevice() failed. Status: invalid device ordinal ``` </details> xref pytorch/pytorch#101900
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60642/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60642/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60641
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60641/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60641/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60641/events
https://github.com/tensorflow/tensorflow/pull/60641
1,717,717,850
PR_kwDOArmXAs5Q6uqu
60,641
r2.13 cherry-pick: 2eae4850677 "Add TypeError catch (wrapt==1.15.0rc throws TypeError instead of AttributeError)."
{ "login": "tensorflow-jenkins", "id": 16359713, "node_id": "MDQ6VXNlcjE2MzU5NzEz", "avatar_url": "https://avatars.githubusercontent.com/u/16359713?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tensorflow-jenkins", "html_url": "https://github.com/tensorflow-jenkins", "followers_url": "https://api.github.com/users/tensorflow-jenkins/followers", "following_url": "https://api.github.com/users/tensorflow-jenkins/following{/other_user}", "gists_url": "https://api.github.com/users/tensorflow-jenkins/gists{/gist_id}", "starred_url": "https://api.github.com/users/tensorflow-jenkins/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tensorflow-jenkins/subscriptions", "organizations_url": "https://api.github.com/users/tensorflow-jenkins/orgs", "repos_url": "https://api.github.com/users/tensorflow-jenkins/repos", "events_url": "https://api.github.com/users/tensorflow-jenkins/events{/privacy}", "received_events_url": "https://api.github.com/users/tensorflow-jenkins/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Make sure to merge #60661 if this gets merged" ]
2023-05-19T19:22:36
2023-05-26T00:13:46
2023-05-26T00:05:11
COLLABORATOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60641", "html_url": "https://github.com/tensorflow/tensorflow/pull/60641", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60641.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60641.patch", "merged_at": "2023-05-26T00:05:11" }
Refer to the original commit: https://github.com/tensorflow/tensorflow/commit/2eae48506773587a7e74dd7064aa0fa9f0c37fbf
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60641/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60641/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60640
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60640/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60640/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60640/events
https://github.com/tensorflow/tensorflow/issues/60640
1,717,702,378
I_kwDOArmXAs5mYg7q
60,640
SavedModel: enable dropout & disable batch normalization
{ "login": "zndr27", "id": 31940813, "node_id": "MDQ6VXNlcjMxOTQwODEz", "avatar_url": "https://avatars.githubusercontent.com/u/31940813?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zndr27", "html_url": "https://github.com/zndr27", "followers_url": "https://api.github.com/users/zndr27/followers", "following_url": "https://api.github.com/users/zndr27/following{/other_user}", "gists_url": "https://api.github.com/users/zndr27/gists{/gist_id}", "starred_url": "https://api.github.com/users/zndr27/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zndr27/subscriptions", "organizations_url": "https://api.github.com/users/zndr27/orgs", "repos_url": "https://api.github.com/users/zndr27/repos", "events_url": "https://api.github.com/users/zndr27/events{/privacy}", "received_events_url": "https://api.github.com/users/zndr27/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Bump", "Hi @zndr27 ,\r\n\r\nI need to check which Resnet model you have used. Did you used model from `tf.keras.applications.resnet` ?\r\n\r\nI am attaching the source [code](https://github.com/keras-team/keras/blob/v2.12.0/keras/applications/resnet.py#L536-L568) of Resnet from the API `tf.keras.applications.resnet` . Please have a look and confirm whether it helps.\r\n\r\nI quickly gone through the source code of `Resnet` and as per my understanding `batch normalization` implemented for all the cases. I think you may customize the code locally for your requirement\r\n\r\nThanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60640\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60640\">No</a>\n" ]
2023-05-19T19:10:56
2023-06-09T02:07:27
2023-06-09T02:07:19
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Support ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version 2.14.0-dev ### Custom Code Yes ### OS Platform and Distribution Linux Ubuntu 20.04 ### Mobile device _No response_ ### Python version 3.11 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? I am currently training a ResNet model with both batch normalization and dropout layers. My goal is to use monte carlo dropout for uncertainty estimation at evaluation time (i.e. with training=False in my model call). I'm currently working with tf.functions and the SavedModel format (not eager execution). Eager execution is to slow for my application, and therefore is not an option for me. Thus, when I set training=False for my model calls, it disables both the batch normalization and dropout layers. However, when I set training=False I want to keep dropout enabled but disable batch normalization (for the purpose of uncertainty estimation). How can I achieve this with tf.function and the SavedModel format? I am using tf-nightly. ### Standalone code to reproduce the issue ```shell n/a ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60640/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60640/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60639
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60639/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60639/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60639/events
https://github.com/tensorflow/tensorflow/issues/60639
1,717,518,006
I_kwDOArmXAs5mXz62
60,639
How to build Tensorflow 2.x with customerized protobuf version?
{ "login": "xunzhang", "id": 554159, "node_id": "MDQ6VXNlcjU1NDE1OQ==", "avatar_url": "https://avatars.githubusercontent.com/u/554159?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xunzhang", "html_url": "https://github.com/xunzhang", "followers_url": "https://api.github.com/users/xunzhang/followers", "following_url": "https://api.github.com/users/xunzhang/following{/other_user}", "gists_url": "https://api.github.com/users/xunzhang/gists{/gist_id}", "starred_url": "https://api.github.com/users/xunzhang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xunzhang/subscriptions", "organizations_url": "https://api.github.com/users/xunzhang/orgs", "repos_url": "https://api.github.com/users/xunzhang/repos", "events_url": "https://api.github.com/users/xunzhang/events{/privacy}", "received_events_url": "https://api.github.com/users/xunzhang/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" }, { "id": 5508003926, "node_id": "LA_kwDOArmXAs8AAAABSE14Vg", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.13", "name": "TF 2.13", "color": "B13ACB", "default": false, "description": "For issues related to Tensorflow 2.13" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @xunzhang ,\r\n\r\nTensorflow allows user to choose protobuf versions within some range.Please refer to protobuf versions required for TF2.13 versions below along with exclusions that may not work.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/525da8a93eca846e32e5c41eddc0496b25a2ef5b/tensorflow/tools/pip_package/setup.py#L96\r\n\r\nYou can install any of the protobuf versions mentioned above for your build.\r\n\r\nThanks!", "@xunzhang ,\r\n\r\nUnfortunately, It may not possible for the customization of protobuf version other than those mentioned in` setup.py` as mentioned in above comment.", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60639\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60639\">No</a>\n" ]
2023-05-19T16:30:27
2023-06-21T03:33:15
2023-06-21T03:33:13
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Build/Install ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version TensorFlow 2.x ### Custom Code No ### OS Platform and Distribution Linux CentOS7 ### Mobile device _No response_ ### Python version 3.8, 3.10 ### Bazel version using Bazlisk ### GCC/Compiler version have both gcc 7.3.1, clang 7.0.1 ### CUDA/cuDNN version _No response_ ### GPU model and memory CPU Only ### Current Behaviour? I am writing MySQL UDF using TensorFlow C Library. But the MySQL8 has a conflict dependency of protobuf version with TensorFlow C Library. By default, MySQL8 needs protobuf 3.6.1 but TF uses higher version. I tried to modify the `workspace2.bzl` but the patch file is a problem to me. Since I do not have permission to change the building of MySQL8. How can I port a lower version of protobuf with TensorFlow 2.x? Thanks! ### Standalone code to reproduce the issue ```shell The actual error I got is below what(): This program requires version 3.9.0 of the Protocol Buffer runtime library, but the installed version is 3.6.1. Please update your library. If you compiled the program yourself, make sure that your headers are from the same version of Protocol Buffers as your link-time library. (Version verification failed in "bazel-out/k8-opt/bin/tensorflow/core/framework/tensor_shape.pb.cc".) ``` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60639/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60639/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60638
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60638/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60638/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60638/events
https://github.com/tensorflow/tensorflow/pull/60638
1,717,063,574
PR_kwDOArmXAs5Q4fET
60,638
Mark control_flow_ops_test as flaky
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-19T11:03:38
2023-05-19T17:07:44
2023-05-19T17:00:48
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60638", "html_url": "https://github.com/tensorflow/tensorflow/pull/60638", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60638.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60638.patch", "merged_at": "2023-05-19T17:00:48" }
/tensorflow/python/ops/parallel_for:control_flow_ops_test is failing occasionaly causing the ARM_CI job to fail, so mark it as flaky so that it will be re-tried
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60638/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60638/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60637
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60637/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60637/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60637/events
https://github.com/tensorflow/tensorflow/issues/60637
1,716,829,346
I_kwDOArmXAs5mVLyi
60,637
TFLite model maker object detection training is too slow in colab
{ "login": "dsbyprateekg", "id": 30830541, "node_id": "MDQ6VXNlcjMwODMwNTQx", "avatar_url": "https://avatars.githubusercontent.com/u/30830541?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dsbyprateekg", "html_url": "https://github.com/dsbyprateekg", "followers_url": "https://api.github.com/users/dsbyprateekg/followers", "following_url": "https://api.github.com/users/dsbyprateekg/following{/other_user}", "gists_url": "https://api.github.com/users/dsbyprateekg/gists{/gist_id}", "starred_url": "https://api.github.com/users/dsbyprateekg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dsbyprateekg/subscriptions", "organizations_url": "https://api.github.com/users/dsbyprateekg/orgs", "repos_url": "https://api.github.com/users/dsbyprateekg/repos", "events_url": "https://api.github.com/users/dsbyprateekg/events{/privacy}", "received_events_url": "https://api.github.com/users/dsbyprateekg/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 750616506, "node_id": "MDU6TGFiZWw3NTA2MTY1MDY=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite", "name": "comp:lite", "color": "0052cc", "default": false, "description": "TF Lite related issues" }, { "id": 1463677878, "node_id": "MDU6TGFiZWwxNDYzNjc3ODc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance", "name": "type:performance", "color": "159b2e", "default": false, "description": "Performance Issue" }, { "id": 5206407904, "node_id": "LA_kwDOArmXAs8AAAABNlN64A", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12", "name": "TF 2.12", "color": "c5def5", "default": false, "description": "For issues related to Tensorflow 2.12" } ]
closed
false
{ "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false }
[ { "login": "pjpratik", "id": 118897289, "node_id": "U_kgDOBxY6iQ", "avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pjpratik", "html_url": "https://github.com/pjpratik", "followers_url": "https://api.github.com/users/pjpratik/followers", "following_url": "https://api.github.com/users/pjpratik/following{/other_user}", "gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}", "starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions", "organizations_url": "https://api.github.com/users/pjpratik/orgs", "repos_url": "https://api.github.com/users/pjpratik/repos", "events_url": "https://api.github.com/users/pjpratik/events{/privacy}", "received_events_url": "https://api.github.com/users/pjpratik/received_events", "type": "User", "site_admin": false } ]
null
[ "@pjpratik Have you checked this issue in colab?", "Hi @dsbyprateekg \r\n\r\nSorry for the delayed response.\r\n\r\nI have tried the [object detection](https://www.tensorflow.org/lite/models/modify/model_maker/object_detection) tutorial on model maker on colab and found no issue while training. I have used `efficientdet_lite0` as the model with 5 epochs.\r\n\r\nPlease find the gist [here](https://colab.research.google.com/gist/pjpratik/fee8613ca6ddddbed4299479488abbb9/model-maker-object-detection-tutorial.ipynb) and let us know if it helps. \r\n\r\nHave you enabled GPU and tried with lighter versions as well?\r\n\r\nThanks.", "@pjpratik when I used your shared gist to install, I got following logs-\r\n![image](https://github.com/tensorflow/tensorflow/assets/30830541/603fb2f7-a819-463e-82f1-04fcd3834f4a)\r\n\r\nBut when I checked version of tflite model maker, it showed me following error-\r\n![image](https://github.com/tensorflow/tensorflow/assets/30830541/2c694d95-aeca-4789-82bf-d31d0ced1a18)\r\n\r\nMy colab env is as below-\r\n![image](https://github.com/tensorflow/tensorflow/assets/30830541/100ec3df-48c0-4515-a0fc-025ddef18b9f)\r\n\r\nWhen I tried to run install command explicitly , error is-\r\n![image](https://github.com/tensorflow/tensorflow/assets/30830541/a43d3917-018f-456d-9745-3f27296ef6ca)\r\n", "Hi @dsbyprateekg \r\n\r\nHave you tried enabling `fallback runtime option` ?\r\n\r\nPlease check [this](https://github.com/tensorflow/tensorflow/issues/60431#issuecomment-1533628479) work around for the installation.\r\n\r\nThanks.", "Hi @pjpratik , After enabling the fallback option I am able to install but my issue is the same.\r\nIt is taking too much time to complete one epoch.\r\nMy current dataset has 42000 images and previously I did the training with 32000 images. That time it took 2-2.5 minutes to complete one epoch. \r\n\r\nDo you think it is GDrive+Colab issue due to large size of images?", "Hi @dsbyprateekg \r\n\r\nThere may be possibility for training on large number of images as the performance is varying on reduced set of images. It is suggested to use the lighter models when there are resource constraints as large models tend to have more parameters which may lead to longer training times.\r\n\r\nThanks.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60637\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60637\">No</a>\n" ]
2023-05-19T08:09:16
2023-05-22T10:45:49
2023-05-22T10:45:47
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version TFlite model maker 0.4.2 ### Custom Code No ### OS Platform and Distribution colab ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? In colab I have enabled 'fallback runtime version' since with Python 3.10 model maker was not installed successfully. After enabling this option I am able to install it successfully. Nut when I started a object detection training with 'efficientnet_lite4', it is showing `35/2122 [..............................] - ETA: 6:08:03 - loss: 0.7095 - accuracy: 0.5509` which is keep increasing. Please help to solve this issue. ### Standalone code to reproduce the issue ```shell My training command is as below- `model = image_classifier.create(train_data, validation_data=validation_data, model_spec=model_spec.get('efficientnet_lite4'), batch_size=32, epochs=50, train_whole_model=True, use_augmentation=False, use_hub_library=False, model_dir='/content/drive/MyDrive/expi')` ``` ### Relevant log output _No response_</details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60637/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60637/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60636
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60636/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60636/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60636/events
https://github.com/tensorflow/tensorflow/pull/60636
1,716,630,829
PR_kwDOArmXAs5Q3BDU
60,636
add @absl_py//absl/flags:argparse_flags to systemlibs
{ "login": "njzjz", "id": 9496702, "node_id": "MDQ6VXNlcjk0OTY3MDI=", "avatar_url": "https://avatars.githubusercontent.com/u/9496702?v=4", "gravatar_id": "", "url": "https://api.github.com/users/njzjz", "html_url": "https://github.com/njzjz", "followers_url": "https://api.github.com/users/njzjz/followers", "following_url": "https://api.github.com/users/njzjz/following{/other_user}", "gists_url": "https://api.github.com/users/njzjz/gists{/gist_id}", "starred_url": "https://api.github.com/users/njzjz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/njzjz/subscriptions", "organizations_url": "https://api.github.com/users/njzjz/orgs", "repos_url": "https://api.github.com/users/njzjz/repos", "events_url": "https://api.github.com/users/njzjz/events{/privacy}", "received_events_url": "https://api.github.com/users/njzjz/received_events", "type": "User", "site_admin": false }
[ { "id": 390482148, "node_id": "MDU6TGFiZWwzOTA0ODIxNDg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review", "name": "awaiting review", "color": "bc3869", "default": false, "description": "Pull request awaiting review" }, { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-19T05:20:18
2023-05-30T15:53:41
2023-05-30T15:53:41
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60636", "html_url": "https://github.com/tensorflow/tensorflow/pull/60636", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60636.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60636.patch", "merged_at": "2023-05-30T15:53:41" }
This target was added in https://github.com/tensorflow/tensorflow/commit/a5559608627793acc87cb99d5b655de7ba7051af. cc @BlaziusMaximus
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60636/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60636/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60635
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60635/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60635/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60635/events
https://github.com/tensorflow/tensorflow/pull/60635
1,716,488,241
PR_kwDOArmXAs5Q2i_6
60,635
Merge pull request #60575 from cjflan:apple-arm64-ci
{ "login": "nitins17", "id": 29348997, "node_id": "MDQ6VXNlcjI5MzQ4OTk3", "avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nitins17", "html_url": "https://github.com/nitins17", "followers_url": "https://api.github.com/users/nitins17/followers", "following_url": "https://api.github.com/users/nitins17/following{/other_user}", "gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}", "starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nitins17/subscriptions", "organizations_url": "https://api.github.com/users/nitins17/orgs", "repos_url": "https://api.github.com/users/nitins17/repos", "events_url": "https://api.github.com/users/nitins17/events{/privacy}", "received_events_url": "https://api.github.com/users/nitins17/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-05-19T01:44:45
2023-05-26T00:13:42
2023-05-26T00:06:13
MEMBER
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60635", "html_url": "https://github.com/tensorflow/tensorflow/pull/60635", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60635.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60635.patch", "merged_at": "2023-05-26T00:06:13" }
PiperOrigin-RevId: 533301578 This adds the files needed for the Apple Silicon release build to the r2.13 branch.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60635/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60635/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60634
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60634/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60634/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60634/events
https://github.com/tensorflow/tensorflow/pull/60634
1,716,252,346
PR_kwDOArmXAs5Q1wLh
60,634
Create README.md in new DevInfra tools directory
{ "login": "angerson", "id": 32465472, "node_id": "MDQ6VXNlcjMyNDY1NDcy", "avatar_url": "https://avatars.githubusercontent.com/u/32465472?v=4", "gravatar_id": "", "url": "https://api.github.com/users/angerson", "html_url": "https://github.com/angerson", "followers_url": "https://api.github.com/users/angerson/followers", "following_url": "https://api.github.com/users/angerson/following{/other_user}", "gists_url": "https://api.github.com/users/angerson/gists{/gist_id}", "starred_url": "https://api.github.com/users/angerson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/angerson/subscriptions", "organizations_url": "https://api.github.com/users/angerson/orgs", "repos_url": "https://api.github.com/users/angerson/repos", "events_url": "https://api.github.com/users/angerson/events{/privacy}", "received_events_url": "https://api.github.com/users/angerson/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-05-18T20:57:46
2023-06-08T20:18:01
2023-05-19T00:46:50
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60634", "html_url": "https://github.com/tensorflow/tensorflow/pull/60634", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60634.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60634.patch", "merged_at": null }
This is the new official TF DevInfra tooling directory! We couldn't decide on the name! (This is a test for Copybara's creation of CLs with emojis in new filenames. DO NOT SUBMIT.)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60634/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60634/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60633
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60633/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60633/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60633/events
https://github.com/tensorflow/tensorflow/pull/60633
1,715,950,269
PR_kwDOArmXAs5Q0t07
60,633
Add structured graph fuzzer
{ "login": "DavidKorczynski", "id": 657617, "node_id": "MDQ6VXNlcjY1NzYxNw==", "avatar_url": "https://avatars.githubusercontent.com/u/657617?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DavidKorczynski", "html_url": "https://github.com/DavidKorczynski", "followers_url": "https://api.github.com/users/DavidKorczynski/followers", "following_url": "https://api.github.com/users/DavidKorczynski/following{/other_user}", "gists_url": "https://api.github.com/users/DavidKorczynski/gists{/gist_id}", "starred_url": "https://api.github.com/users/DavidKorczynski/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidKorczynski/subscriptions", "organizations_url": "https://api.github.com/users/DavidKorczynski/orgs", "repos_url": "https://api.github.com/users/DavidKorczynski/repos", "events_url": "https://api.github.com/users/DavidKorczynski/events{/privacy}", "received_events_url": "https://api.github.com/users/DavidKorczynski/received_events", "type": "User", "site_admin": false }
[ { "id": 987666414, "node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull", "name": "ready to pull", "color": "2cd643", "default": false, "description": "PR ready for merge process" }, { "id": 1169365682, "node_id": "MDU6TGFiZWwxMTY5MzY1Njgy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:L", "name": "size:L", "color": "adafea", "default": false, "description": "CL Change Size: Large" }, { "id": 1478826728, "node_id": "MDU6TGFiZWwxNDc4ODI2NzI4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core", "name": "comp:core", "color": "024391", "default": false, "description": "issues related to core part of tensorflow" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "CC @fcoUnda ", "I like it! :tada: " ]
2023-05-18T16:50:36
2023-05-25T12:40:29
2023-05-25T12:40:29
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60633", "html_url": "https://github.com/tensorflow/tensorflow/pull/60633", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60633.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60633.patch", "merged_at": "2023-05-25T12:40:29" }
Adds a fuzzer that creates computation graphs with a focus on making graphs that run proper. This is in comparison to the existing graph fuzzers (the ones in the same file) which struggle with coming up with graphs that are runnable. I think the existing graphs struggle with two issues: - reference names are just arbitrary strings, so it's likely the fuzzer will not have references correct - am not sure if ops are strings in the structs, but if so, the existing fuzzers may have a lot of ops that are invalid in that it will be a fuzzer-generated string (likely not match with the ops that are available) This fuzzer overcomes these by ensuring references always happen to names that are affiliated with nodes in the graph and also ops that are available as ops in tensorflow. Currently, it does have limitations in that not all graphs produced by this fuzzer will be valid graphs to run. However, many of them will and I've ensured coverage happens for a lot of the ops defined in the ops vector of the fuzzer. There are several areas it can be improved and it would be nice to do so, and I've left some comments in the code about this. It would be nice to iterate on these improvements though.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60633/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60633/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60632
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60632/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60632/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60632/events
https://github.com/tensorflow/tensorflow/pull/60632
1,715,933,128
PR_kwDOArmXAs5Q0qJp
60,632
added line in readme
{ "login": "khanata142", "id": 117380164, "node_id": "U_kgDOBv8URA", "avatar_url": "https://avatars.githubusercontent.com/u/117380164?v=4", "gravatar_id": "", "url": "https://api.github.com/users/khanata142", "html_url": "https://github.com/khanata142", "followers_url": "https://api.github.com/users/khanata142/followers", "following_url": "https://api.github.com/users/khanata142/following{/other_user}", "gists_url": "https://api.github.com/users/khanata142/gists{/gist_id}", "starred_url": "https://api.github.com/users/khanata142/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/khanata142/subscriptions", "organizations_url": "https://api.github.com/users/khanata142/orgs", "repos_url": "https://api.github.com/users/khanata142/repos", "events_url": "https://api.github.com/users/khanata142/events{/privacy}", "received_events_url": "https://api.github.com/users/khanata142/received_events", "type": "User", "site_admin": false }
[ { "id": 1169364259, "node_id": "MDU6TGFiZWwxMTY5MzY0MjU5", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS", "name": "size:XS", "color": "adafea", "default": false, "description": "CL Change Size: Extra Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60632/checks?check_run_id=13586741366) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request." ]
2023-05-18T16:36:19
2023-05-18T16:50:16
2023-05-18T16:50:16
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60632", "html_url": "https://github.com/tensorflow/tensorflow/pull/60632", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60632.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60632.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60632/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60632/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60631
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60631/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60631/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60631/events
https://github.com/tensorflow/tensorflow/pull/60631
1,715,888,796
PR_kwDOArmXAs5Q0gc6
60,631
Consistently use "pickleable" instead of "picklable"
{ "login": "NicoWeio", "id": 12870528, "node_id": "MDQ6VXNlcjEyODcwNTI4", "avatar_url": "https://avatars.githubusercontent.com/u/12870528?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NicoWeio", "html_url": "https://github.com/NicoWeio", "followers_url": "https://api.github.com/users/NicoWeio/followers", "following_url": "https://api.github.com/users/NicoWeio/following{/other_user}", "gists_url": "https://api.github.com/users/NicoWeio/gists{/gist_id}", "starred_url": "https://api.github.com/users/NicoWeio/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NicoWeio/subscriptions", "organizations_url": "https://api.github.com/users/NicoWeio/orgs", "repos_url": "https://api.github.com/users/NicoWeio/repos", "events_url": "https://api.github.com/users/NicoWeio/events{/privacy}", "received_events_url": "https://api.github.com/users/NicoWeio/received_events", "type": "User", "site_admin": false }
[ { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" }, { "id": 1169364458, "node_id": "MDU6TGFiZWwxMTY5MzY0NDU4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S", "name": "size:S", "color": "adafea", "default": false, "description": "CL Change Size: Small" } ]
closed
false
{ "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false }
[ { "login": "gbaned", "id": 48215717, "node_id": "MDQ6VXNlcjQ4MjE1NzE3", "avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gbaned", "html_url": "https://github.com/gbaned", "followers_url": "https://api.github.com/users/gbaned/followers", "following_url": "https://api.github.com/users/gbaned/following{/other_user}", "gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}", "starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gbaned/subscriptions", "organizations_url": "https://api.github.com/users/gbaned/orgs", "repos_url": "https://api.github.com/users/gbaned/repos", "events_url": "https://api.github.com/users/gbaned/events{/privacy}", "received_events_url": "https://api.github.com/users/gbaned/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60631/checks?check_run_id=13585952227) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request.", "@NicoWeio,\r\nIt looks like your PR relates to the Keras component. Please submit it to the github.com/keras-team/keras repository instead. Thank you.\r\n@fchollet, @qlzh727", "Hi @NicoWeio Sorry for the delay. It looks like your PR relates to the Keras component. Please submit it to the github.com/keras-team/keras repository instead. Thankyou.\r\n@fchollet, @qlzh727" ]
2023-05-18T16:05:35
2023-05-22T04:13:18
2023-05-22T04:13:17
NONE
null
false
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60631", "html_url": "https://github.com/tensorflow/tensorflow/pull/60631", "diff_url": "https://github.com/tensorflow/tensorflow/pull/60631.diff", "patch_url": "https://github.com/tensorflow/tensorflow/pull/60631.patch", "merged_at": null }
Just a nitpick: All functions use `pickleable`, but in some parts of the documentation it's called `picklable`. This is hereby fixed. Note that I am not a native English speaker, but the [Wiktionary](https://en.wiktionary.org/wiki/pickleable) agrees.
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60631/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60631/timeline
null
null
true
https://api.github.com/repos/tensorflow/tensorflow/issues/60630
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60630/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60630/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60630/events
https://github.com/tensorflow/tensorflow/issues/60630
1,715,857,165
I_kwDOArmXAs5mRecN
60,630
TensorFlow not running
{ "login": "moses-mbaga", "id": 55658291, "node_id": "MDQ6VXNlcjU1NjU4Mjkx", "avatar_url": "https://avatars.githubusercontent.com/u/55658291?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moses-mbaga", "html_url": "https://github.com/moses-mbaga", "followers_url": "https://api.github.com/users/moses-mbaga/followers", "following_url": "https://api.github.com/users/moses-mbaga/following{/other_user}", "gists_url": "https://api.github.com/users/moses-mbaga/gists{/gist_id}", "starred_url": "https://api.github.com/users/moses-mbaga/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moses-mbaga/subscriptions", "organizations_url": "https://api.github.com/users/moses-mbaga/orgs", "repos_url": "https://api.github.com/users/moses-mbaga/repos", "events_url": "https://api.github.com/users/moses-mbaga/events{/privacy}", "received_events_url": "https://api.github.com/users/moses-mbaga/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @moses-mbaga ,\r\n\r\nFrom the error log it seems the error is related to conda environment. If you are using conda environment while installing it will prompt to ask some thing like `Do you wish the installer to initialize Miniconda3 by running conda init? [yes|no]:` and you need to type `yes` there. Once it was done then run `source ~/.bashrc` to enable conda command and then run `conda activate <your_env_name>` to activate it.You can find conda environment creation steps [here](https://www.tensorflow.org/install/pip#step-by-step_instructions) for reference.\r\n\r\nIf followed above steps and still facing the problem then you can try `conda init <SHELL_NAME>` (eg: `conda init bash`) ,the `SHELL_NAME` can be `bash` or any others listed in the log. Please also refer to the conda websource here for more details.\r\n\r\nAfter following above steps if still having problem please let us know. Also please fill the issue at tensorflow-hub repo [here](https://github.com/tensorflow/hub/issues) if the issue is only specific to tensorflow-hub.Also request you to follow the issue template for reporting the issue which can be found here for [tensorflow](https://github.com/tensorflow/tensorflow/issues/new?assignees=&labels=&projects=&template=tensorflow_issue_template.yaml) and [tf-hub](https://github.com/tensorflow/hub/issues/new?assignees=&labels=type%3Abug%2Ctriage&projects=&template=BUG.yml&title=Bug%3A+) .\r\n\r\nThanks!\r\n\r\n\r\n", "Noted,\r\n\r\nLet me try the above then I will get back to you.\r\n\r\nThanks!", "@moses-mbaga ,\r\n\r\nCould you please confirm if the problem resolved for you. Thanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60630\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60630\">No</a>\n" ]
2023-05-18T15:44:58
2023-06-14T02:01:11
2023-06-14T02:01:05
NONE
null
null
null
Hello, I am trying to create a BERT token using the tensorflow_hub library for python but whenever I run the code, it just gets stuck doesn't show any response. Here's a screenshot to help: ![Screen Shot 2023-05-18 at 18 39 53](https://github.com/tensorflow/tensorflow/assets/55658291/9c7cdcb4-f1ee-4cd8-adf5-eae34a802fbe)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60630/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60630/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60629
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60629/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60629/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60629/events
https://github.com/tensorflow/tensorflow/issues/60629
1,715,826,119
I_kwDOArmXAs5mRW3H
60,629
control_flow_ops_test unit test is flaky
{ "login": "elfringham", "id": 10442001, "node_id": "MDQ6VXNlcjEwNDQyMDAx", "avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4", "gravatar_id": "", "url": "https://api.github.com/users/elfringham", "html_url": "https://github.com/elfringham", "followers_url": "https://api.github.com/users/elfringham/followers", "following_url": "https://api.github.com/users/elfringham/following{/other_user}", "gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}", "starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elfringham/subscriptions", "organizations_url": "https://api.github.com/users/elfringham/orgs", "repos_url": "https://api.github.com/users/elfringham/repos", "events_url": "https://api.github.com/users/elfringham/events{/privacy}", "received_events_url": "https://api.github.com/users/elfringham/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 1205615612, "node_id": "MDU6TGFiZWwxMjA1NjE1NjEy", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux", "name": "subtype: ubuntu/linux", "color": "b619ea", "default": false, "description": "Ubuntu/Linux Build/Installation Issues" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "Fixed by merge of #60638 ", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60629\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60629\">No</a>\n", "#60638 was undone along with removing flaky flag from other tests, so this issue still needs addressing." ]
2023-05-18T15:22:49
2023-05-24T17:11:19
null
CONTRIBUTOR
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source source ### Tensorflow Version git HEAD ### Custom Code No ### OS Platform and Distribution Ubuntu 20.04 ### Mobile device n/a ### Python version 3.9.16 ### Bazel version 5.3.0 ### GCC/Compiler version 10.2.1 ### CUDA/cuDNN version n/a ### GPU model and memory n/a ### Current Behaviour? //tensorflow/python/ops/parallel_for:control_flow_ops_test fails occasionally due to difference exceeding tolerance. See https://github.com/tensorflow/tensorflow/actions/runs/5012758324/jobs/8985082872#step:5:29789 ### Standalone code to reproduce the issue ```shell bazel test --build_tests_only --config=mkl_aarch64_threadpool --copt=-flax-vector-conversions --test_env=TF_ENABLE_ONEDNN_OPTS=1 --test_env=TF2_BEHAVIOR=1 --define=no_tensorflow_py_deps=true --test_lang_filters=py --test_size_filters=small,medium --test_output=errors --verbose_failures=true --test_keep_going --notest_verbose_timeout_warnings --local_test_jobs=64 --test_tag_filters=-nopip,-no_pip,-oss_serial,-no_oss,-oss_excluded,-v1only,-benchmark-test,-no_aarch64,-no_oss_py38,-no_oss_py39,-no_oss_py310 -k -- //bazel_pip/tensorflow/... -//bazel_pip/tensorflow/compiler/tf2tensorrt/... -//bazel_pip/tensorflow/compiler/xrt/... -//bazel_pip/tensorflow/core/tpu/... -//bazel_pip/tensorflow/go/... -//bazel_pip/tensorflow/java/... -//bazel_pip/tensorflow/python/integration_testing/... -//bazel_pip/tensorflow/tools/toolchains/... -//bazel_pip/tensorflow/lite/... -//bazel_pip/tensorflow/python/kernel_tests/nn_ops:atrous_conv2d_test -//bazel_pip/tensorflow/python/kernel_tests/nn_ops:conv_ops_test ``` ### Relevant log output ```shell AssertionError: Not equal to tolerance rtol=0.0001, atol=1e-05 Mismatched value: a is different from b. not close where = (array([0]), array([0]), array([0]), array([1]), array([4]), array([0])) not close lhs = [0.] not close rhs = [0.77603436] not close dif = [0.77603436] not close tol = [8.760343e-05] dtype = float32, shape = (3, 3, 2, 12, 12, 3) Mismatched elements: 1 / 7776 (0.0129%) Max absolute difference: 0.77603436 Max relative difference: 1. x: array([[[[[[0. , 0. , 0.712515], [0. , 0.889897, 0. ], [0. , 0. , 0. ],... y: array([[[[[[0. , 0. , 0.712515], [0. , 0.889897, 0. ], [0. , 0. , 0. ],... ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60629/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60629/timeline
null
reopened
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60628
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60628/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60628/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60628/events
https://github.com/tensorflow/tensorflow/issues/60628
1,715,809,245
I_kwDOArmXAs5mRSvd
60,628
Numpy and tf experimental Numpy differ in vander matrix creation case for N=0
{ "login": "Ishticode", "id": 53497039, "node_id": "MDQ6VXNlcjUzNDk3MDM5", "avatar_url": "https://avatars.githubusercontent.com/u/53497039?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Ishticode", "html_url": "https://github.com/Ishticode", "followers_url": "https://api.github.com/users/Ishticode/followers", "following_url": "https://api.github.com/users/Ishticode/following{/other_user}", "gists_url": "https://api.github.com/users/Ishticode/gists{/gist_id}", "starred_url": "https://api.github.com/users/Ishticode/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Ishticode/subscriptions", "organizations_url": "https://api.github.com/users/Ishticode/orgs", "repos_url": "https://api.github.com/users/Ishticode/repos", "events_url": "https://api.github.com/users/Ishticode/events{/privacy}", "received_events_url": "https://api.github.com/users/Ishticode/received_events", "type": "User", "site_admin": false }
[ { "id": 404586594, "node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower", "name": "stat:awaiting tensorflower", "color": "f4b400", "default": false, "description": "Status - Awaiting response from tensorflower" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 1097547147, "node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops", "name": "comp:ops", "color": "0052cc", "default": false, "description": "OPs related issues" }, { "id": 4829271983, "node_id": "LA_kwDOArmXAs8AAAABH9jXrw", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11", "name": "TF 2.11", "color": "46B4D7", "default": false, "description": "Issues related to TF 2.11" } ]
open
false
{ "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false }
[ { "login": "sachinprasadhs", "id": 73069040, "node_id": "MDQ6VXNlcjczMDY5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sachinprasadhs", "html_url": "https://github.com/sachinprasadhs", "followers_url": "https://api.github.com/users/sachinprasadhs/followers", "following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}", "gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}", "starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions", "organizations_url": "https://api.github.com/users/sachinprasadhs/orgs", "repos_url": "https://api.github.com/users/sachinprasadhs/repos", "events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}", "received_events_url": "https://api.github.com/users/sachinprasadhs/received_events", "type": "User", "site_admin": false } ]
null
[ "@Ishticode,\r\nI was able to reproduce the issue on tensorflow v2.11, v2.12 and tf-nightly. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/d8153b468f2dbc37a09b12626f25a0cf/untitled1159.ipynb)." ]
2023-05-18T15:11:22
2023-05-22T16:04:40
null
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? No ### Source source ### Tensorflow Version 2.11.0 ### Custom Code Yes ### OS Platform and Distribution Ubuntu 22.04 jammy ### Mobile device _No response_ ### Python version 3.8.10 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version 11.6 ### GPU model and memory _No response_ ### Current Behaviour? The behaviour of `tf.experimental.numpy.vander` is different than `np.vander` for `N=0` where both value and shape of the output differ. ### Standalone code to reproduce the issue ```shell import numpy as np # 1.23.5 import tensorflow as tf # 2.11.0 xn = np.array([1], dtype=np.int32) x = tf.constant([1], dtype=tf.int32) print(np.vander(xn, 0)) print() print(tf.experimental.numpy.vander(x, 0)) ``` ### Relevant log output ```shell [] tf.Tensor([[1]], shape=(1, 1), dtype=int32) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60628/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60628/timeline
null
null
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60627
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60627/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60627/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60627/events
https://github.com/tensorflow/tensorflow/issues/60627
1,715,491,773
I_kwDOArmXAs5mQFO9
60,627
unable to compile tensorflow c++ code using cmake
{ "login": "ranjith502", "id": 85454586, "node_id": "MDQ6VXNlcjg1NDU0NTg2", "avatar_url": "https://avatars.githubusercontent.com/u/85454586?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ranjith502", "html_url": "https://github.com/ranjith502", "followers_url": "https://api.github.com/users/ranjith502/followers", "following_url": "https://api.github.com/users/ranjith502/following{/other_user}", "gists_url": "https://api.github.com/users/ranjith502/gists{/gist_id}", "starred_url": "https://api.github.com/users/ranjith502/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ranjith502/subscriptions", "organizations_url": "https://api.github.com/users/ranjith502/orgs", "repos_url": "https://api.github.com/users/ranjith502/repos", "events_url": "https://api.github.com/users/ranjith502/events{/privacy}", "received_events_url": "https://api.github.com/users/ranjith502/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473173351, "node_id": "MDU6TGFiZWw0NzMxNzMzNTE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install", "name": "type:build/install", "color": "159b2e", "default": false, "description": "Build and install issues" }, { "id": 473184161, "node_id": "MDU6TGFiZWw0NzMxODQxNjE=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support", "name": "type:support", "color": "159b2e", "default": false, "description": "Support issues" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" } ]
closed
false
{ "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false }
[ { "login": "SuryanarayanaY", "id": 116063290, "node_id": "U_kgDOBur8Og", "avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SuryanarayanaY", "html_url": "https://github.com/SuryanarayanaY", "followers_url": "https://api.github.com/users/SuryanarayanaY/followers", "following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}", "gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}", "starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions", "organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs", "repos_url": "https://api.github.com/users/SuryanarayanaY/repos", "events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}", "received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi @ranjith502 ,\r\n\r\nWe observed that you have not followed the standard template to report the issue.Please find the [template](https://github.com/tensorflow/tensorflow/issues/new?assignees=&labels=&projects=&template=tensorflow_issue_template.yaml) for same.\r\n\r\nAlso Cmake used to build TF1.x versions. Now Bazel is the recommended tool and officially supported tool for building Tensorflow from source. We recommend to use Bazel as build tool since it is officially tool for build and testing and also have extensive support both from Tensorflow and Bazel teams.\r\n\r\n\r\n", "thanks @SuryanarayanaY \r\ncan give me some links how to build and run a simple program using bazel .. i already installed brazel in my system \r\nand followed this link https://tensorflow.juejin.im/api_guides/cc/guide.html\r\nstill i face the error \r\n\r\n![8](https://github.com/tensorflow/tensorflow/assets/85454586/a26b9065-248b-433f-8246-80e1fbce9e30)\r\n", "Hi @ranjith502 ,\r\n\r\nYou can check the documentation [here](https://www.tensorflow.org/install/source) as reference for building Tensorflow pip package. For C++ build options you can refer to the [bazelrc](https://github.com/tensorflow/tensorflow/blob/master/.bazelrc) file of TF repo. We don't have exhaustive documentation form building C++ API.\r\n\r\nPlease refer to some older tickets [link1](https://github.com/tensorflow/tensorflow/issues/23561#issuecomment-444221082),[link2](https://github.com/tensorflow/tensorflow/issues/59887) for reference.\r\n\r\nBut before that please submit the issue in the issue template attached above providing all the details required.\r\n\r\nThanks!\r\n\r\n\r\n", "@SuryanarayanaY thanks brother i will do that\r\n\r\n", "@ranjith502 ,\r\n\r\nCould you please confirm whether you are able to compile the C++ code.\r\n\r\nPlease let us know if still have any issues.\r\n\r\nThanks!", "Yes brother.. it is working , i solved all the errors\n\nOn Tue, 30 May 2023, 10:41 SuryanarayanaY, ***@***.***> wrote:\n\n> @ranjith502 <https://github.com/ranjith502> ,\n>\n> Could you please confirm whether you are able to compile the C++ code.\n>\n> Please let us know if still have any issues.\n>\n> Thanks!\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/tensorflow/tensorflow/issues/60627#issuecomment-1567763410>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AUL656T4HB6B6QPOXGEKN3DXIV6O3ANCNFSM6AAAAAAYGLEUTU>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n", "Hi @ranjith502 ,\r\n\r\nThanks for confirmation. Could you please spare some time to close the ticket if issue resolved. Thanks!", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60627\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60627\">No</a>\n" ]
2023-05-18T11:42:10
2023-06-22T02:01:49
2023-06-22T02:01:46
NONE
null
null
null
i followed this steps 1) i cloned the repo 2) cd tensorflow 3) mkdir examples in examples folder i created helloworld.cc file and cmakelist.txt this is cmakelist.txt file cmake_minimum_required(VERSION 3.8.0) project(examples) # Specify the path to the TensorFlow source directory set(TENSORFLOW_SOURCE_DIR "D:/github_issues/tensorflow/tensorflow") # Add the TensorFlow source directory to the CMake module path list(APPEND CMAKE_MODULE_PATH "${TENSORFLOW_SOURCE_DIR}/cmake") # Add the TensorFlow include directories include_directories(${TENSORFLOW_SOURCE_DIR}) include_directories(${TENSORFLOW_SOURCE_DIR}/tensorflow/cc) include_directories(${TENSORFLOW_SOURCE_DIR}/tensorflow/core) # Build the hello-world executable add_executable(hello-world hello-world.cc) target_link_libraries(hello-world tensorflow) after running the command cmake --build . --config Release i got this error D:\github_issues\tensorflow\examples\hello-world.cc(1,10): fatal error C1083: Cannot open include file: 'tensorflow/cc/client/cl ient_session.h': No such file or directory [[D:\github_issues\tensorflow\examples\build\hello-world.vcxproj]] ![2](https://github.com/tensorflow/tensorflow/assets/85454586/3a8c3dae-fcd6-48c0-bf89-bb64af5bccfc) ![3](https://github.com/tensorflow/tensorflow/assets/85454586/61d90c15-2468-47cf-a074-e1190693bd4a) ![4](https://github.com/tensorflow/tensorflow/assets/85454586/359b81e6-30f9-43dc-bc04-f563726bc2c4) ![5](https://github.com/tensorflow/tensorflow/assets/85454586/6796388f-0f45-40b7-a369-47c6586e31c1)
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60627/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60627/timeline
null
completed
false
https://api.github.com/repos/tensorflow/tensorflow/issues/60626
https://api.github.com/repos/tensorflow/tensorflow
https://api.github.com/repos/tensorflow/tensorflow/issues/60626/labels{/name}
https://api.github.com/repos/tensorflow/tensorflow/issues/60626/comments
https://api.github.com/repos/tensorflow/tensorflow/issues/60626/events
https://github.com/tensorflow/tensorflow/issues/60626
1,715,477,018
I_kwDOArmXAs5mQBoa
60,626
bug in MultiHeadAttention._compute_attention_mask
{ "login": "ami-grynberg", "id": 107681148, "node_id": "U_kgDOBmsVfA", "avatar_url": "https://avatars.githubusercontent.com/u/107681148?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ami-grynberg", "html_url": "https://github.com/ami-grynberg", "followers_url": "https://api.github.com/users/ami-grynberg/followers", "following_url": "https://api.github.com/users/ami-grynberg/following{/other_user}", "gists_url": "https://api.github.com/users/ami-grynberg/gists{/gist_id}", "starred_url": "https://api.github.com/users/ami-grynberg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ami-grynberg/subscriptions", "organizations_url": "https://api.github.com/users/ami-grynberg/orgs", "repos_url": "https://api.github.com/users/ami-grynberg/repos", "events_url": "https://api.github.com/users/ami-grynberg/events{/privacy}", "received_events_url": "https://api.github.com/users/ami-grynberg/received_events", "type": "User", "site_admin": false }
[ { "id": 386191887, "node_id": "MDU6TGFiZWwzODYxOTE4ODc=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response", "name": "stat:awaiting response", "color": "f4b400", "default": false, "description": "Status - Awaiting response from author" }, { "id": 473172988, "node_id": "MDU6TGFiZWw0NzMxNzI5ODg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug", "name": "type:bug", "color": "159b2e", "default": false, "description": "Bug" }, { "id": 474725938, "node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale", "name": "stale", "color": "d4c5f9", "default": false, "description": "This label marks the issue/pr stale - to be closed automatically if no activity" }, { "id": 1097546578, "node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4", "url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras", "name": "comp:keras", "color": "0052cc", "default": false, "description": "Keras related issues" } ]
closed
false
{ "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false }
[ { "login": "tilakrayal", "id": 81610181, "node_id": "MDQ6VXNlcjgxNjEwMTgx", "avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tilakrayal", "html_url": "https://github.com/tilakrayal", "followers_url": "https://api.github.com/users/tilakrayal/followers", "following_url": "https://api.github.com/users/tilakrayal/following{/other_user}", "gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}", "starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions", "organizations_url": "https://api.github.com/users/tilakrayal/orgs", "repos_url": "https://api.github.com/users/tilakrayal/repos", "events_url": "https://api.github.com/users/tilakrayal/events{/privacy}", "received_events_url": "https://api.github.com/users/tilakrayal/received_events", "type": "User", "site_admin": false } ]
null
[ "@ami-grynberg,\r\nThank you for the issue. Could you please provide the complete code to reproduce the issue. Also Could you please try to add the following lines at the beggining of the `call()` method in the **MultiHeadAttention** class:\r\n\r\n```\r\nif attention_mask is not None:\r\n attention_mask = tf.cast(tf.convert_to_tensor(attention_mask), tf.bool)\r\n```", "comment: \r\n The bug does not involve a pre-defined attention_mask at the call level\r\n\r\nHere is a short code to reproduce a good behavior and a buggy one:\r\n\r\nimport tensorflow.keras.layers as lyrs\r\nimport numpy as np\r\n\r\n# --- good rank == 2 ---#\r\n shp = [64, 16]\r\n vocab = np.prod(shp)\r\n x = np.arange(vocab).reshape(shp)\r\n\r\n emb = lyrs.Embedding(input_dim=vocab, output_dim=512, \r\n input_length=shp[-1],\r\n mask_zero=True)\r\n mha = lyrs.MultiHeadAttention(num_heads=2, key_dim = 256)\r\n\r\n x = emb(x)\r\n x = mha(x,x,x)\r\n print(x)\r\n\r\n# --- bug for rank > 2 ---#\r\n shp = [64, 12, 16]\r\n vocab = np.prod(shp)\r\n x = np.arange(vocab).reshape(shp)\r\n\r\n emb = lyrs.Embedding(input_dim=vocab, output_dim=512, \r\n input_length=shp[-1],\r\n mask_zero=True)\r\n mha = lyrs.MultiHeadAttention(num_heads=2, key_dim = 256)\r\n\r\n x = emb(x) # no problem\r\n x = mha(x,x,x) # bug in computing attention_mask\r\n print(x)", "Please correct my buggy example:\r\nshp = [64, 12, 16]\r\nvocab = np.prod(shp)\r\nx = np.arange(vocab).reshape(shp)\r\n\r\nemb = lyrs.Embedding(input_dim=vocab, output_dim=512,\r\ninput_length=shp[-1],\r\nmask_zero=True)\r\nmha = lyrs.MultiHeadAttention(num_heads=2, key_dim = 256, attention_axes=(2,))\r\n\r\nx = emb(x) # no problem\r\nx = mha(x,x,x) # bug in computing attention_mask\r\nprint(x)\r\n", "@ami-grynberg,\r\nThank you for opening this issue. Development of keras moved to another [repository](https://github.com/keras-team/keras/issues). \r\n\r\nCould you please post this issue on keras-team/keras [repo](https://github.com/keras-team/keras/issues).\r\nTo know more please refer:\r\nhttps://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999\r\nThank you!\r\n", "This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.", "This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.", "Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60626\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60626\">No</a>\n" ]
2023-05-18T11:30:08
2023-06-09T02:07:30
2023-06-09T02:07:22
NONE
null
null
null
<details><summary>Click to expand!</summary> ### Issue Type Bug ### Have you reproduced the bug with TF nightly? Yes ### Source binary ### Tensorflow Version tf.12.0 ### Custom Code No ### OS Platform and Distribution windows 11 ### Mobile device _No response_ ### Python version 3.9 ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? There is a bug in MultiHeadAttention._compute_attention_mask when q, k or v ranks are more than 3. Latest commit [67a8e6b](https://github.com/keras-team/keras/commit/67a8e6b96b1731ec732084f443345c70d87c31bf) on Jan 23 line 652: auto_mask = query_mask[:, :, tf.newaxis] # shape is [B, T, 1] fix: auto_mask = tf.expand_dims(query_mask, axis =-1) line 656: mask = value_mask[:, tf.newaxis, :] # shape is [B, 1, S] fix: mask = tf.expand_dims(key_mask, axis=-2) # shape is [.., 1, S] line 661: mask = key_mask[:, tf.newaxis, :] # shape is [B, 1, S] fix: mask = tf.expand_dims(key_mask, axis=-2) # shape is [.., 1, S] ### Standalone code to reproduce the issue ```shell Submit any 4D input as query, key and value. Error log below for input shapes [B, 12, 16, 128] ``` ### Relevant log output ```shell Message=Exception encountered when calling layer 'softmax' (type Softmax). {{function_node __wrapped__AddV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Incompatible shapes: [64,12,1,16,16] vs. [64,12,1,12,16] [Op:AddV2] Call arguments received by layer 'softmax' (type Softmax): • inputs=tf.Tensor(shape=(64, 12, 1, 16, 16), dtype=float32) • mask=tf.Tensor(shape=(64, 12, 1, 12, 16), dtype=bool) ``` </details>
{ "url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60626/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/tensorflow/tensorflow/issues/60626/timeline
null
completed
false