url
stringlengths 63
63
| repository_url
stringclasses 1
value | labels_url
stringlengths 77
77
| comments_url
stringlengths 72
72
| events_url
stringlengths 70
70
| html_url
stringlengths 51
53
| id
int64 1.57B
2.35B
| node_id
stringlengths 18
19
| number
int64 59.5k
69.6k
| title
stringlengths 1
554
| user
dict | labels
listlengths 0
8
| state
stringclasses 2
values | locked
bool 2
classes | assignee
dict | assignees
listlengths 0
8
| milestone
null | comments
sequencelengths 0
30
| created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 4
values | active_lock_reason
stringclasses 3
values | draft
bool 2
classes | pull_request
dict | body
stringlengths 1
65.4k
⌀ | reactions
dict | timeline_url
stringlengths 72
72
| performed_via_github_app
null | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/tensorflow/tensorflow/issues/60213 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60213/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60213/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60213/events | https://github.com/tensorflow/tensorflow/issues/60213 | 1,652,625,205 | I_kwDOArmXAs5igQ81 | 60,213 | Cannot pip install tensorflow examples | {
"login": "kedarps",
"id": 12261096,
"node_id": "MDQ6VXNlcjEyMjYxMDk2",
"avatar_url": "https://avatars.githubusercontent.com/u/12261096?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kedarps",
"html_url": "https://github.com/kedarps",
"followers_url": "https://api.github.com/users/kedarps/followers",
"following_url": "https://api.github.com/users/kedarps/following{/other_user}",
"gists_url": "https://api.github.com/users/kedarps/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kedarps/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kedarps/subscriptions",
"organizations_url": "https://api.github.com/users/kedarps/orgs",
"repos_url": "https://api.github.com/users/kedarps/repos",
"events_url": "https://api.github.com/users/kedarps/events{/privacy}",
"received_events_url": "https://api.github.com/users/kedarps/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"TensorFlow example package is not available on PyPI.\r\nWe can clone the TensorFlow example repository from GitHub and run the examples.\r\n\r\nUse this following command in cell\r\n` !git clone https://github.com/tensorflow/examples.git`\r\nIt will download the repo\r\n\r\nThen navigate to following example you want",
"I am able to git clone the repo, but in some notebooks the `tensorflow_examples` package is referenced. How to use that? This line fails:\r\n\r\n`from tensorflow_examples.models.pix2pix import pix2pix`\r\n\r\nThis is from segmentation tutorial given [here](https://www.tensorflow.org/tutorials/images/segmentation)",
"> I am able to git clone the repo, but in some notebooks the `tensorflow_examples` package is referenced. How to use that? This line fails:\r\n> \r\n> `from tensorflow_examples.models.pix2pix import pix2pix`\r\n> \r\n> This is from segmentation tutorial given [here](https://www.tensorflow.org/tutorials/images/segmentation)\r\n\r\n@kedarps \r\nThanks for reporting this issue. \r\nAs per this [comment](https://github.com/tensorflow/tensorflow/issues/60213#issuecomment-1495942281).\r\nPlease clone the TensorFlow example repository from GitHub. Use `from examples.tensorflow_examples.models.pix2pix import pix2pix` instead of `from tensorflow_examples.models.pix2pix import pix2pix`, Now you can use 'pix2pix' package. please find the gist [here](https://colab.research.google.com/gist/tiruk007/180bc730fb886639f987ba4c993c50ec/segmentation.ipynb#scrollTo=YQX7R4bhZy5h) for reference.\r\n\r\nThank you !\r\n\r\n",
"Thank-you. It's working now.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60213\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60213\">No</a>\n",
"it was solved also for me thanks"
] | 2023-04-03T19:14:45 | 2023-04-27T12:12:21 | 2023-04-05T13:58:43 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
I am trying tensorflow segmentation example from [here](https://www.tensorflow.org/tutorials/images/segmentation) on Google Colab and I get an error in the first cell with pip install.
```
### Standalone code to reproduce the issue
```shell
From Jupyter notebook:
`!pip install git+https://github.com/tensorflow/examples.git`
```
### Relevant log output
```shell
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting git+https://github.com/tensorflow/examples.git
Cloning https://github.com/tensorflow/examples.git to /tmp/pip-req-build-xe1kper2
Running command git clone --filter=blob:none --quiet https://github.com/tensorflow/examples.git /tmp/pip-req-build-xe1kper2
Resolved https://github.com/tensorflow/examples.git to commit 5bc9f1ed519146242db5e71f00d9d39d52a308c8
error: subprocess-exited-with-error
× python setup.py egg_info did not run successfully.
│ exit code: 1
╰─> See above for output.
note: This error originates from a subprocess, and is likely not a problem with pip.
Preparing metadata (setup.py) ... error
error: metadata-generation-failed
× Encountered error while generating package metadata.
╰─> See above for output.
note: This is an issue with the package mentioned above, not pip.
hint: See above for details.
Output of GIT Version and TF version:
`import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)`:
v2.12.0-rc1-12-g0db597d0d75 2.12.0
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60213/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60213/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60212 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60212/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60212/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60212/events | https://github.com/tensorflow/tensorflow/issues/60212 | 1,652,610,488 | I_kwDOArmXAs5igNW4 | 60,212 | Keras model with Sparse Input failed to process symbolic Sparse Input after being saved and loaded again | {
"login": "diwen",
"id": 5042583,
"node_id": "MDQ6VXNlcjUwNDI1ODM=",
"avatar_url": "https://avatars.githubusercontent.com/u/5042583?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/diwen",
"html_url": "https://github.com/diwen",
"followers_url": "https://api.github.com/users/diwen/followers",
"following_url": "https://api.github.com/users/diwen/following{/other_user}",
"gists_url": "https://api.github.com/users/diwen/gists{/gist_id}",
"starred_url": "https://api.github.com/users/diwen/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/diwen/subscriptions",
"organizations_url": "https://api.github.com/users/diwen/orgs",
"repos_url": "https://api.github.com/users/diwen/repos",
"events_url": "https://api.github.com/users/diwen/events{/privacy}",
"received_events_url": "https://api.github.com/users/diwen/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "nkovela1",
"id": 60985914,
"node_id": "MDQ6VXNlcjYwOTg1OTE0",
"avatar_url": "https://avatars.githubusercontent.com/u/60985914?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nkovela1",
"html_url": "https://github.com/nkovela1",
"followers_url": "https://api.github.com/users/nkovela1/followers",
"following_url": "https://api.github.com/users/nkovela1/following{/other_user}",
"gists_url": "https://api.github.com/users/nkovela1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nkovela1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nkovela1/subscriptions",
"organizations_url": "https://api.github.com/users/nkovela1/orgs",
"repos_url": "https://api.github.com/users/nkovela1/repos",
"events_url": "https://api.github.com/users/nkovela1/events{/privacy}",
"received_events_url": "https://api.github.com/users/nkovela1/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "nkovela1",
"id": 60985914,
"node_id": "MDQ6VXNlcjYwOTg1OTE0",
"avatar_url": "https://avatars.githubusercontent.com/u/60985914?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nkovela1",
"html_url": "https://github.com/nkovela1",
"followers_url": "https://api.github.com/users/nkovela1/followers",
"following_url": "https://api.github.com/users/nkovela1/following{/other_user}",
"gists_url": "https://api.github.com/users/nkovela1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nkovela1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nkovela1/subscriptions",
"organizations_url": "https://api.github.com/users/nkovela1/orgs",
"repos_url": "https://api.github.com/users/nkovela1/repos",
"events_url": "https://api.github.com/users/nkovela1/events{/privacy}",
"received_events_url": "https://api.github.com/users/nkovela1/received_events",
"type": "User",
"site_admin": false
},
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@diwen \r\nThis issue seems to be a keras issue.Please post this issue on [keras-team/keras repo.](https://github.com/keras-team/keras/issues)\r\nTo know more see;\r\n[https://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999](https://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999).\r\n\r\nThank you!",
"@diwen Thanks for reaching out regarding this issue! We recommend using the newer `.keras` format in TF 2.12. Please install TF 2.12 first and then try this format, as it is may solve many SavedModel related issues:\r\n\r\nmodel_dir = \"./test.keras\"\r\nmodel.save(model_dir, save_format=\"keras_v3\")\r\n\r\nMake sure to use the `.keras` extension when saving and pass the `save_format` flag. Please let me know if this works, thanks!\r\n",
"I see. Thank you for the timely reply @nkovela1 and @tiruk007 !",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60212\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60212\">No</a>\n"
] | 2023-04-03T19:04:52 | 2023-04-05T18:20:55 | 2023-04-05T18:20:52 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
tf 2.4+
### Custom Code
Yes
### OS Platform and Distribution
CentOS
### Mobile device
_No response_
### Python version
3.7
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
As shown in the test codes, we followed the official Google wiki to construct a Keras model with Sparse Input and validate that it can run infer on SparseTensor.
Then we save this model into SavedModel format and reload it. And we expect the loaded KerasLayer can be stitched into a new Keras model for finetuning.
However, we met with error when trying to run the KerasLayer with symbolic Sparse Input:
TypeError: signature_wrapper(*, args_0_1, args_0_2, args_0) missing required arguments: args_0, args_0_1, args_0_2
This error occurred in all TF versions from 2.4 to 2.11.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
import tensorflow_hub as hub
# Try Google official codes to construct a model
# https://www.tensorflow.org/guide/sparse_tensor#tfkeras
x = tf.keras.Input(shape=(1000,), sparse=True)
y = tf.keras.layers.Dense(4)(x)
model = tf.keras.Model(x, y)
sparse_data = tf.sparse.SparseTensor(
indices = [(0,0),(0,1),(0,2),
(4,3),(5,0),(5,1)],
values = [1,1,1,1,1,1],
dense_shape = (6,1000)
)
print(sparse_data)
print(model.predict(sparse_data))
model_dir = "./test"
model.save(model_dir)
model_1 = hub.KerasLayer(model_dir, trainable=False, signature="serving_default")
inputs = tf.keras.Input(shape=(1000,), sparse=True)
embs = model_1(inputs)
```
### Relevant log output
```shell
2023-04-03 11:56:06.381971: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2023-04-03 11:56:09.089355: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2023-04-03 11:56:09.090767: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2023-04-03 11:56:09.100227: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1714] Found device 0 with properties:
pciBusID: 0001:00:00.0 name: Tesla M60 computeCapability: 5.2
coreClock: 1.1775GHz coreCount: 16 deviceMemorySize: 7.94GiB deviceMemoryBandwidth: 149.31GiB/s
2023-04-03 11:56:09.100265: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2023-04-03 11:56:09.106741: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2023-04-03 11:56:09.106802: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2023-04-03 11:56:09.110060: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2023-04-03 11:56:09.110473: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2023-04-03 11:56:09.113208: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2023-04-03 11:56:09.114508: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2023-04-03 11:56:09.114656: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /export/apps/xtools/oracle-instantclient
2023-04-03 11:56:09.114678: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1751] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
2023-04-03 11:56:09.115066: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-03 11:56:09.116084: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
2023-04-03 11:56:09.116154: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1255] Device interconnect StreamExecutor with strength 1 edge matrix:
2023-04-03 11:56:09.116169: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261]
SparseTensor(indices=tf.Tensor(
[[0 0]
[0 1]
[0 2]
[4 3]
[5 0]
[5 1]], shape=(6, 2), dtype=int64), values=tf.Tensor([1 1 1 1 1 1], shape=(6,), dtype=int32), dense_shape=tf.Tensor([ 6 1000], shape=(2,), dtype=int64))
2023-04-03 11:56:09.209265: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
2023-04-03 11:56:09.209956: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2596985000 Hz
[[-0.01467296 -0.01330906 0.08810526 -0.08027062]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[-0.04658424 0.04584154 -0.06923811 -0.01754887]
[-0.09175565 -0.05856525 0.04386244 -0.03397611]]
2023-04-03 11:56:09.322841: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
Traceback (most recent call last):
File "test.py", line 30, in <module>
embs = video_nhfc_model(inputs)
File "/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 952, in __call__
input_list)
File "/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 1091, in _functional_construction_call
inputs, input_masks, args, kwargs)
File "/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 822, in _keras_tensor_symbolic_call
return self._infer_output_signature(inputs, args, kwargs, input_masks)
File "/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py", line 863, in _infer_output_signature
outputs = call_fn(inputs, *args, **kwargs)
File "/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/autograph/impl/api.py", line 670, in wrapper
raise e.ag_error_metadata.to_exception(e)
TypeError: in user code:
/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow_hub/keras_layer.py:237 call *
result = smart_cond.smart_cond(training,
/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1669 __call__ **
return self._call_impl(args, kwargs)
/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1685 _call_impl
raise structured_err
/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1679 _call_impl
cancellation_manager)
/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1756 _call_with_structured_signature
self._structured_signature_check_missing_args(args, kwargs)
/data/src/mmsearch-modeling/build/modeling-pcv2/environments/development-venv/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1780 _structured_signature_check_missing_args
", ".join(sorted(missing_arguments))))
TypeError: signature_wrapper(*, args_0_1, args_0_2, args_0) missing required arguments: args_0, args_0_1, args_0_2
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60212/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60212/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60211 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60211/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60211/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60211/events | https://github.com/tensorflow/tensorflow/issues/60211 | 1,652,244,407 | I_kwDOArmXAs5iez-3 | 60,211 | RPC server that batches requests | {
"login": "cemlyn007",
"id": 49565105,
"node_id": "MDQ6VXNlcjQ5NTY1MTA1",
"avatar_url": "https://avatars.githubusercontent.com/u/49565105?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cemlyn007",
"html_url": "https://github.com/cemlyn007",
"followers_url": "https://api.github.com/users/cemlyn007/followers",
"following_url": "https://api.github.com/users/cemlyn007/following{/other_user}",
"gists_url": "https://api.github.com/users/cemlyn007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cemlyn007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cemlyn007/subscriptions",
"organizations_url": "https://api.github.com/users/cemlyn007/orgs",
"repos_url": "https://api.github.com/users/cemlyn007/repos",
"events_url": "https://api.github.com/users/cemlyn007/events{/privacy}",
"received_events_url": "https://api.github.com/users/cemlyn007/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 996845227,
"node_id": "MDU6TGFiZWw5OTY4NDUyMjc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:dist-strat",
"name": "comp:dist-strat",
"color": "0052cc",
"default": false,
"description": "Distribution Strategy related issues"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | open | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @cemlyn007 ,\r\n\r\nThanks for reporting this. Currently this module is under experimental stage.Could you please confirm whether this API can't handle server side batching. Have you tested this ? I know this is under experimental stage and still many features might not be available right now.\r\n\r\n If you want to contribute you may please raise a Pull request for same and Team may happily review it. Thanks!\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"I can confirm that in this [code](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/distribute/experimental/rpc/kernels/rpc_ops.cc) the server does not support server-side batching. I'll have a think about what to do because we are using an older version of TensorFlow (2.8) so we might just decide to implement this as a custom operation."
] | 2023-04-03T15:00:03 | 2023-04-17T06:59:48 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Feature Request
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.8.0
### Custom Code
No
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
Currently the only implemented `GrpcServer`, that implements `Server` does not handle server side batching. Perhaps we would want an additional implementation that supports server side batching?
This could be done similar to how SEED-RL wrote their batching layer (https://github.com/google-research/seed_rl/tree/master/grpc).
`Server`: https://github.com/tensorflow/tensorflow/blob/071ef3748e5fdb67a0438f357f37b962edae83e2/tensorflow/python/distribute/experimental/rpc/rpc_ops.py#L51
`GrpcServer`: https://github.com/tensorflow/tensorflow/blob/071ef3748e5fdb67a0438f357f37b962edae83e2/tensorflow/python/distribute/experimental/rpc/rpc_ops.py#L260
```
### Standalone code to reproduce the issue
```shell
N/A
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60211/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60211/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60210 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60210/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60210/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60210/events | https://github.com/tensorflow/tensorflow/issues/60210 | 1,652,145,376 | I_kwDOArmXAs5iebzg | 60,210 | Tensorflow Lite library is crashing in WASM library at 3rd inference | {
"login": "L1onKing",
"id": 32218450,
"node_id": "MDQ6VXNlcjMyMjE4NDUw",
"avatar_url": "https://avatars.githubusercontent.com/u/32218450?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/L1onKing",
"html_url": "https://github.com/L1onKing",
"followers_url": "https://api.github.com/users/L1onKing/followers",
"following_url": "https://api.github.com/users/L1onKing/following{/other_user}",
"gists_url": "https://api.github.com/users/L1onKing/gists{/gist_id}",
"starred_url": "https://api.github.com/users/L1onKing/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/L1onKing/subscriptions",
"organizations_url": "https://api.github.com/users/L1onKing/orgs",
"repos_url": "https://api.github.com/users/L1onKing/repos",
"events_url": "https://api.github.com/users/L1onKing/events{/privacy}",
"received_events_url": "https://api.github.com/users/L1onKing/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 3531398540,
"node_id": "LA_kwDOArmXAs7SfN2M",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.7",
"name": "TF 2.7",
"color": "77237D",
"default": false,
"description": "Issues related to TF 2.7.0"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@L1onKing Thanks for reporting the issue.\r\n\r\nHave you checked with latest stable version TF 2.12 and see if the issue still exists?\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Hello @pjpratik! Thank you for your response.\r\n\r\nI am trying to figure out how to compile it using bazel. Bazel is a new thing to me, so far I don't understand how to work with it. Can you maybe guide me to some tutorial that explains how to build TFLite for WASM using Bazel? Thank you very much!",
"Hi @L1onKing \r\n\r\nFor C++ library, the TFLite provides `libtensorflowlite.so` which can be built using `bazel build --config=elinux_aarch64 -c opt //tensorflow/lite:libtensorflowlite.so`. I've created a sample gist to build the same using bazel which can be found [here](https://colab.research.google.com/gist/pjpratik/1d1e24c386f42b4f483732dd324d418c/60210.ipynb). Please refer to cross-compilation for ARM with Bazel [here](https://www.tensorflow.org/lite/guide/build_arm#cross-compilation_for_arm_with_bazel).\r\n\r\nAlso, the TFLite supports for Tensorflow.js in which under the hood, the TFLite C++ runtime is packaged in a set of WASM modules with bazel. Please refer to [this](https://github.com/tensorflow/tfjs/tree/master/tfjs-tflite#tflite-support-for-tensorflowjs) documentation for the detailed use and let us know if it helps.\r\n\r\nAnd, please find the relevant thread #46359 \r\n\r\nThanks.",
"bazel build --config=elinux_aarch64 -c opt //tensorflow/lite:libtensorflowlite.so - so to my understanding, I need to run a command of such format from tensorflow repo directory. I have three questions on which I struggle to find an answer:\r\n\r\n1. What is the `config` value if I want to build libtensorflowlite.a with WASM?\r\n2. How to enable XNNPack during this build?\r\n3. Where to find relevant public headers that I need to include in my project?\r\n\r\n@pjpratik Thank you very much for your help!",
"Hi @L1onKing \r\n\r\n>What is the config value if I want to build libtensorflowlite.a with WASM?\r\n\r\nThe `config` value for WASM is not available in `.bazelrc` afaik. We need to build the Bazel Emscripten toolchain manually using the instructions given [here](https://github.com/emscripten-core/emsdk/tree/master/bazel#bazel-emscripten-toolchain) and set `--confg=wasm`. Also, the bazel build generates the `.so` sharable dynamic object file instead of `.a` as CMAKE does.\r\n\r\n>How to enable XNNPack during this build?\r\n\r\nThe XNNPACK can be enable by adding `--define tflite_with_xnnpack=true` during bazel build.\r\n\r\nAs this [comment](https://github.com/tensorflow/tensorflow/issues/46359#issuecomment-1215595828) suggests, try the TFLite with TFjs which uses WASM backend given the bazel support for which comes with pre built binaries.\r\n\r\n\r\nThanks.\r\n\r\n",
"Hi @pjpratik ! \r\n\r\nThank you for your recommendations, for the time being I am exploring this - https://github.com/tensorflow/tfjs/tree/master/tfjs-tflite\r\n\r\nSo what I did:\r\n1. Downloaded this repo\r\n2. Navigated to tfjs-tflite folder where BUILD.bazel is located\r\n3. Ran the command `bazel build //tfjs-tflite:tf-tflite`\r\n\r\nBut I am having next output\r\n\r\n```\r\nINFO: Repository npm instantiated at:\r\n /home/nabeel/Documents/algoface/tfjs/WORKSPACE:67:13: in <toplevel>\r\n /home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/build_bazel_rules_nodejs/index.bzl:83:18: in yarn_install\r\nRepository rule yarn_install defined at:\r\n /home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/build_bazel_rules_nodejs/internal/npm_install/npm_install.bzl:1002:31: in <toplevel>\r\nERROR: An error occurred during the fetch of repository 'npm':\r\n Traceback (most recent call last):\r\n\tFile \"/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/build_bazel_rules_nodejs/internal/npm_install/npm_install.bzl\", line 866, column 40, in _yarn_install_impl\r\n\t\tyarn_version = _detect_yarn_version(repository_ctx, yarn_cmd)\r\n\tFile \"/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/build_bazel_rules_nodejs/internal/npm_install/npm_install.bzl\", line 844, column 13, in _detect_yarn_version\r\n\t\tfail(\"yarn --version failed: %s (%s)\" % (result.stdout, result.stderr))\r\nError in fail: yarn --version failed: (/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.28' not found (required by /home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node)\r\n)\r\nERROR: /home/nabeel/Documents/algoface/tfjs/WORKSPACE:67:13: fetching yarn_install rule //external:npm: Traceback (most recent call last):\r\n\tFile \"/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/build_bazel_rules_nodejs/internal/npm_install/npm_install.bzl\", line 866, column 40, in _yarn_install_impl\r\n\t\tyarn_version = _detect_yarn_version(repository_ctx, yarn_cmd)\r\n\tFile \"/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/build_bazel_rules_nodejs/internal/npm_install/npm_install.bzl\", line 844, column 13, in _detect_yarn_version\r\n\t\tfail(\"yarn --version failed: %s (%s)\" % (result.stdout, result.stderr))\r\nError in fail: yarn --version failed: (/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.28' not found (required by /home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node)\r\n)\r\nERROR: Skipping '//tfjs-tflite:tf-tflite': no such package '@npm//@bazel/concatjs': yarn --version failed: (/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.28' not found (required by /home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node)\r\n)\r\nWARNING: Target pattern parsing failed.\r\nERROR: no such package '@npm//@bazel/concatjs': yarn --version failed: (/home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.28' not found (required by /home/nabeel/.cache/bazel/_bazel_nabeel/01ad2d90cd2af4a5ee7bc50cb9e6914b/external/nodejs_linux_amd64/bin/nodejs/bin/node)\r\n)\r\nINFO: Elapsed time: 3.087s\r\nINFO: 0 processes.\r\nFAILED: Build did NOT complete successfully (0 packages loaded)\r\n currently loading: tfjs-tflite\r\n```\r\nIt looks like the issue is in incompatibility of bazel and glibc.\r\n\r\nThe output of `bazel version` on my machine:\r\n\r\n```\r\nBuild label: 5.3.0\r\nBuild target: bazel-out/k8-opt/bin/src/main/java/com/google/devtools/build/lib/bazel/BazelServer_deploy.jar\r\nBuild time: Tue Aug 23 00:45:53 2022 (1661215553)\r\nBuild timestamp: 1661215553\r\nBuild timestamp as int: 1661215553\r\n\r\n```\r\n\r\nCould you please advise what version of bazel should I use in order to make it run? Thank you very much!\r\n",
"Hi @L1onKing \r\n\r\nThe Bazel version 5.3.0 should be compatible. Moreover, you can build the `tfjs-tflite` using `yarn build` which inturn uses bazel with wasm backend.\r\n\r\n- Navigate to `tfjs-tflite` repo\r\n- Check for `yarn` installation\r\n- Run `yarn build`\r\n\r\nPlease check this [gist](https://colab.research.google.com/gist/pjpratik/35f081254f9a619cc386b1cd085f059a/60210.ipynb) provided with the `tfjs-tflite` build and can be tested with`yarn test` with successful build.\r\n\r\nThanks.\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Hi @pjpratik ! Sorry for a long response, I was unavailable last week. Actually I did try `yarn build` command from `tfjs-tflite` folder, but that is the output I got:\r\n\r\ntfjs/tfjs-tflite$ yarn build\r\n00h00m00s 0/0: : ERROR: [Errno 2] No such file or directory: 'build'\r\n\r\nyarn is installed and available in Terminal. Could you advise please?",
"**UPDATE**\r\n\r\nI have figured an issue with yarn and now `yarn build` command executes, but I have exactly the same issue:\r\n\r\n`libc.so.6: version `GLIBC_2.28' not found`\r\n\r\n\r\nPlease advise how to fix it",
"Hi @L1onKing \r\n\r\nCan you please check if latest `npm` and `nodejs` versions are installed?\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60210\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60210\">No</a>\n"
] | 2023-04-03T14:07:06 | 2023-05-24T01:58:20 | 2023-05-24T01:58:18 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.7.0
### Custom Code
Yes
### OS Platform and Distribution
Emscripten, Ubuntu 18.04
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
Hello! I have C++ code that I want to deploy as WASM library and this code contains TFLite library. I have compiled TFLite library with XNNPack support using Emscripten toolchain quite easy, so no issue there. I have a leight-weight convolution+dense model that runs perfectly on Desktop, but I am starting having problems in the browser.
In 99% of cases I have an error on the third inference:
Uncaught RuntimeError: memory access out of bounds
Through some trivial debugging I have found out that the issue comes from _interpreter->Invoke() method. Does not matter if I put any input or not, I just need to call Invoke() three times and I have a crash.
First thing first: I decided to add more memory to my WASM library by adding this line to CMake:
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -s TOTAL_STACK=134217728 -s TOTAL_MEMORY=268435456")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -s TOTAL_STACK=134217728 -s TOTAL_MEMORY=268435456")
128 MB and 256 MB in total for 1 MB model - I think this is more than enough. And on top of that, I am allowing Memory Growth. But unfortunately, I have exactly the same issue.
I am beating on this problem for 2 weeks straight and at this stage I have no clue how to fix it. Also I have tried to set custom allocation using TfLiteCustomAllocation but in this case I have a crash on the very first inference. I guess I was not using it right, but unfortunately I couldn't find even one tutorial describing how to apply custom allocation in TFLite.
I said that I have a crash in 99% of cases. There was one time when WASM library worked and inference worked as well. It happens just randomly once, and I couldn't reproduce it anymore.
```
### Standalone code to reproduce the issue
```shell
Here is the code that does TFLite inference
#include <cstdlib>
#include "tflite_model.h"
#include <iostream>
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/util.h"
namespace tracker {
#ifdef EMSCRIPTEN
void TFLiteModel::init(std::stringstream& stream) {
std::string img_str = stream.str();
std::vector<char> img_model_data(img_str.size());
std::copy(img_str.begin(), img_str.end(), img_model_data.begin());
_model = tflite::FlatBufferModel::BuildFromBuffer(img_str.data(), img_str.size());
#else
void TFLiteModel::init(const std::string& path) {
_model = tflite::FlatBufferModel::BuildFromFile(path.c_str());
#endif
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*_model, resolver)(&_interpreter);
_interpreter->AllocateTensors();
/*for (int i = 0; i < _interpreter->tensors_size(); i++) {
TfLiteTensor* tensor = _interpreter->tensor(i);
if (tensor->allocation_type == kTfLiteArenaRw || tensor->allocation_type == kTfLiteArenaRwPersistent) {
int aligned_bytes = tensor->bytes + (tflite::kDefaultTensorAlignment - tensor->bytes % tflite::kDefaultTensorAlignment) % tflite::kDefaultTensorAlignment;
TfLiteCustomAllocation customAlloc;
int result = posix_memalign(&customAlloc.data, tflite::kDefaultTensorAlignment, tensor->bytes);
if (result != 0 || customAlloc.data == NULL) {
std::cout << "posix_memalign does not work!\n";
}
TfLiteStatus st = _interpreter->SetCustomAllocationForTensor(i, customAlloc);
std::cout << "status = " << st << std::endl;
if (tensor->bytes % tflite::kDefaultTensorAlignment != 0) {
std::cout << "bad! i " << i << ", size " << tensor->bytes << std::endl;
}
_allocations.push_back(customAlloc);
}
}
exit(0);*/
}
void TFLiteModel::forward(const cv::Mat& img_input, const std::vector<float>& lms_input) {
float* model_in = _interpreter->typed_input_tensor<float>(0);
std::memcpy(model_in, img_input.data, img_input.total() * img_input.elemSize());
float* lms_in = _interpreter->typed_input_tensor<float>(1);
std::memcpy(lms_in, lms_input.data(), sizeof(float) * lms_input.size());
_interpreter->Invoke();
}
float* TFLiteModel::out() {
return _interpreter->typed_output_tensor<float>(0);
}
std::vector<int> TFLiteModel::getOutputShape() const {
TfLiteTensor* outtensor = _interpreter->output_tensor(0);
TfLiteIntArray* dims = outtensor->dims;
std::vector<int> sh;
for (int i = 0; i < dims->size; i++) {
sh.push_back(dims->data[i]);
}
return sh;
}
}
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60210/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60210/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60209 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60209/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60209/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60209/events | https://github.com/tensorflow/tensorflow/issues/60209 | 1,651,570,377 | I_kwDOArmXAs5icPbJ | 60,209 | Python3.11 arm64 wheels for tensorflow-macos | {
"login": "jc-louis",
"id": 51329768,
"node_id": "MDQ6VXNlcjUxMzI5NzY4",
"avatar_url": "https://avatars.githubusercontent.com/u/51329768?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jc-louis",
"html_url": "https://github.com/jc-louis",
"followers_url": "https://api.github.com/users/jc-louis/followers",
"following_url": "https://api.github.com/users/jc-louis/following{/other_user}",
"gists_url": "https://api.github.com/users/jc-louis/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jc-louis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jc-louis/subscriptions",
"organizations_url": "https://api.github.com/users/jc-louis/orgs",
"repos_url": "https://api.github.com/users/jc-louis/repos",
"events_url": "https://api.github.com/users/jc-louis/events{/privacy}",
"received_events_url": "https://api.github.com/users/jc-louis/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Quick question, why is there a separate `tensorflow-macos` package? Would it be possible to add ARM64 macOS wheels for the main `tensorflow` package (since it already contains x86 macOS wheels anyway)?",
"@cbrnr I know there is `tensorflow-metal` GPU acceleration that is ARM64 macOS specific. I'm not sure if that has anything to do with having a separate `tensorflow-macos` package.",
"> @cbrnr I know there is `tensorflow-metal` GPU acceleration that is ARM64 macOS specific. I'm not sure if that has anything to do with having a separate `tensorflow-macos` package.\r\n\r\nI think both `tensorflow-metal` and `tensorflow-macos` are created and maintained by Apple folks.",
"Hi @jc-louis ,\r\n\r\nYes, `tensorflow-macos` and `tensorflow-metal` were developed and maintained by Apple. `pip install tensorflow-macos` installs the Apple package and `pip install tensorflow `installs Tensorflow package.\r\n\r\nRecently I observed that pip install tf-nightly installing Arm wheels on Mac and its collecting tf-nightly-macos. There seems some improvements here for which I need more context on this and will confirm.\r\n\r\n```\r\nUsing cached tf_nightly-2.13.0.dev20230417-cp310-cp310-macosx_12_0_arm64.whl (2.1 kB)\r\nCollecting tf-nightly-macos==2.13.0-dev20230417\r\n```\r\nCan you try `pip install tf-nightly` on Mac and check whether arm wheel is installing or not. You can give it a try and let us know if any problems.Though I can't officially confirm any thing on this for now.I will let you know about this once I got more context.\r\n\r\n\r\nThanks!",
"Here's the output for `pip install tf-nightly`:\r\n\r\n<details>\r\n\r\n```\r\nCollecting tf-nightly\r\n Downloading tf_nightly-2.13.0.dev20230417-cp310-cp310-macosx_12_0_arm64.whl (2.1 kB)\r\nCollecting tf-nightly-macos==2.13.0-dev20230417 (from tf-nightly)\r\n Downloading tf_nightly_macos-2.13.0.dev20230417-cp310-cp310-macosx_12_0_arm64.whl (188.2 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 188.2/188.2 MB 4.4 MB/s eta 0:00:00\r\nCollecting absl-py>=1.0.0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading absl_py-1.4.0-py3-none-any.whl (126 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.5/126.5 kB 18.9 MB/s eta 0:00:00\r\nCollecting astunparse>=1.6.0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\r\nCollecting flatbuffers>=23.1.21 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading flatbuffers-23.3.3-py2.py3-none-any.whl (26 kB)\r\nCollecting gast<=0.4.0,>=0.2.1 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading gast-0.4.0-py3-none-any.whl (9.8 kB)\r\nCollecting google-pasta>=0.1.1 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.5/57.5 kB 8.4 MB/s eta 0:00:00\r\nCollecting h5py>=2.9.0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading h5py-3.8.0-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.6/2.6 MB 11.9 MB/s eta 0:00:00\r\nCollecting libclang>=13.0.0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading libclang-16.0.0-py2.py3-none-macosx_11_0_arm64.whl (24.3 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 24.3/24.3 MB 31.3 MB/s eta 0:00:00\r\nCollecting numpy<1.24,>=1.22 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl (13.4 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.4/13.4 MB 102.6 MB/s eta 0:00:00\r\nCollecting opt-einsum>=2.3.2 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 65.5/65.5 kB 12.7 MB/s eta 0:00:00\r\nCollecting packaging (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached packaging-23.1-py3-none-any.whl (48 kB)\r\nCollecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading protobuf-4.22.3-cp37-abi3-macosx_10_9_universal2.whl (397 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 397.2/397.2 kB 52.5 MB/s eta 0:00:00\r\nRequirement already satisfied: setuptools in ./.direnv/python-3.10.10/lib/python3.10/site-packages (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly) (67.6.1)\r\nCollecting six>=1.12.0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)\r\nCollecting termcolor>=1.1.0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading termcolor-2.2.0-py3-none-any.whl (6.6 kB)\r\nCollecting typing-extensions>=3.6.6 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading typing_extensions-4.5.0-py3-none-any.whl (27 kB)\r\nCollecting wrapt<1.15,>=1.11.0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading wrapt-1.14.1-cp310-cp310-macosx_11_0_arm64.whl (35 kB)\r\nCollecting grpcio<2.0,>=1.24.3 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading grpcio-1.53.0-cp310-cp310-macosx_12_0_universal2.whl (8.4 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.4/8.4 MB 98.2 MB/s eta 0:00:00\r\nCollecting tensorboard<2.13,>=2.12 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading tensorboard-2.12.2-py3-none-any.whl (5.6 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.6/5.6 MB 101.9 MB/s eta 0:00:00\r\nCollecting tensorflow-estimator<2.13,>=2.12.0rc0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading tensorflow_estimator-2.12.0-py2.py3-none-any.whl (440 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 440.7/440.7 kB 55.0 MB/s eta 0:00:00\r\nCollecting keras<2.13,>=2.12.0rc0 (from tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading keras-2.12.0-py2.py3-none-any.whl (1.7 MB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 90.3 MB/s eta 0:00:00\r\nCollecting wheel<1.0,>=0.23.0 (from astunparse>=1.6.0->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached wheel-0.40.0-py3-none-any.whl (64 kB)\r\nCollecting google-auth<3,>=1.6.3 (from tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading google_auth-2.17.3-py2.py3-none-any.whl (178 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 178.2/178.2 kB 35.1 MB/s eta 0:00:00\r\nCollecting google-auth-oauthlib<1.1,>=0.5 (from tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading google_auth_oauthlib-1.0.0-py2.py3-none-any.whl (18 kB)\r\nCollecting markdown>=2.6.8 (from tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading Markdown-3.4.3-py3-none-any.whl (93 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 93.9/93.9 kB 12.3 MB/s eta 0:00:00\r\nCollecting requests<3,>=2.21.0 (from tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached requests-2.28.2-py3-none-any.whl (62 kB)\r\nCollecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading tensorboard_data_server-0.7.0-py3-none-any.whl (2.4 kB)\r\nCollecting tensorboard-plugin-wit>=1.6.0 (from tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 781.3/781.3 kB 63.5 MB/s eta 0:00:00\r\nCollecting werkzeug>=1.0.1 (from tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading Werkzeug-2.2.3-py3-none-any.whl (233 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 233.6/233.6 kB 35.7 MB/s eta 0:00:00\r\nCollecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading cachetools-5.3.0-py3-none-any.whl (9.3 kB)\r\nCollecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.3/155.3 kB 26.7 MB/s eta 0:00:00\r\nCollecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading rsa-4.9-py3-none-any.whl (34 kB)\r\nCollecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<1.1,>=0.5->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)\r\nCollecting charset-normalizer<4,>=2 (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl (123 kB)\r\nCollecting idna<4,>=2.5 (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached idna-3.4-py3-none-any.whl (61 kB)\r\nCollecting urllib3<1.27,>=1.21.1 (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached urllib3-1.26.15-py2.py3-none-any.whl (140 kB)\r\nCollecting certifi>=2017.4.17 (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached certifi-2022.12.7-py3-none-any.whl (155 kB)\r\nCollecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Using cached MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_universal2.whl (17 kB)\r\nCollecting pyasn1<0.5.0,>=0.4.6 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading pyasn1-0.4.8-py2.py3-none-any.whl (77 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 77.1/77.1 kB 12.0 MB/s eta 0:00:00\r\nCollecting oauthlib>=3.0.0 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard<2.13,>=2.12->tf-nightly-macos==2.13.0-dev20230417->tf-nightly)\r\n Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB)\r\n ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 151.7/151.7 kB 22.9 MB/s eta 0:00:00\r\nInstalling collected packages: tensorboard-plugin-wit, pyasn1, libclang, flatbuffers, wrapt, wheel, urllib3, typing-extensions, termcolor, tensorflow-estimator, tensorboard-data-server, six, rsa, pyasn1-modules, protobuf, packaging, oauthlib, numpy, MarkupSafe, markdown, keras, idna, grpcio, gast, charset-normalizer, certifi, cachetools, absl-py, werkzeug, requests, opt-einsum, h5py, google-pasta, google-auth, astunparse, requests-oauthlib, google-auth-oauthlib, tensorboard, tf-nightly-macos, tf-nightly\r\nSuccessfully installed MarkupSafe-2.1.2 absl-py-1.4.0 astunparse-1.6.3 cachetools-5.3.0 certifi-2022.12.7 charset-normalizer-3.1.0 flatbuffers-23.3.3 gast-0.4.0 google-auth-2.17.3 google-auth-oauthlib-1.0.0 google-pasta-0.2.0 grpcio-1.53.0 h5py-3.8.0 idna-3.4 keras-2.12.0 libclang-16.0.0 markdown-3.4.3 numpy-1.23.5 oauthlib-3.2.2 opt-einsum-3.3.0 packaging-23.1 protobuf-4.22.3 pyasn1-0.4.8 pyasn1-modules-0.2.8 requests-2.28.2 requests-oauthlib-1.3.1 rsa-4.9 six-1.16.0 tensorboard-2.12.2 tensorboard-data-server-0.7.0 tensorboard-plugin-wit-1.8.1 tensorflow-estimator-2.12.0 termcolor-2.2.0 tf-nightly-2.13.0.dev20230417 tf-nightly-macos-2.13.0.dev20230417 typing-extensions-4.5.0 urllib3-1.26.15 werkzeug-2.2.3 wheel-0.40.0 wrapt-1.14.1\r\n```\r\n</details>\r\n\r\nIndeed, `pip show tf-nightly` says:\r\n\r\n```\r\nName: tf-nightly\r\nVersion: 2.13.0.dev20230417\r\nSummary: TensorFlow is an open source machine learning framework for everyone.\r\nHome-page: https://www.tensorflow.org/\r\nAuthor: Google Inc.\r\nAuthor-email: packages@tensorflow.org\r\nLicense: Apache 2.0\r\nLocation: /Users/clemens/Desktop/temp/.direnv/python-3.10.10/lib/python3.10/site-packages\r\nRequires: tf-nightly-macos\r\nRequired-by: \r\n```\r\n",
"Hi @jc-louis ,\r\n\r\nPlease refer the below change in [setup.py](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/pip_package/setup.py) from TF master branch.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/3ace0c0eb8ef5856acc7a0fe6396b696ff800262/tensorflow/tools/pip_package/setup.py#L155-L159\r\n\r\nThis refers that the command `pip install tf-nightly` on mac-os with Darwin system and Arm64 Architecture (i.e Apple silicon) installs the package built by Apple.\r\n\r\n\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Please don't close, it would be nice to get a comment by Apple(?) folks about when Python 3.11 support will be added to `tensorflow-macos`. Would it be possible to update the 2.12 package? Or do we have to wait for 2.13?",
"According to the [developer forum](https://developer.apple.com/forums/thread/728962), they're working on providing wheels for 2.12",
"Python 3.11 arm64 wheels available for tf-nightly(2.13.0.Dev...) as per above [comment](https://github.com/tensorflow/tensorflow/issues/60209#issuecomment-1533310854) and same can be downloaded on Apple silicon also.Not sure whether Apple has plan to release Python 3.11 arm64 wheels for TF2.12 also.If they release then the same changes can be implemented in TF repo also for 2.12 Version. However the final decision here shall be taken from TF dev team.",
"I just tested it and it looks like `pip install tensorflow` on an M1 machine will now install `tensorflow==2.13.0rc0` successfully.",
"Python 3.11 wheels for `tensorflow-macos` are now available on PyPI (for both x86_64 and arm64), so I think this issue can be closed.",
"> Python 3.11 wheels for `tensorflow-macos` are now available on PyPI (for both x86_64 and arm64), so I think this issue can be closed.\n\nBut there are no 3.11 wheels for the latest stable version, just for an rc version. That's problematic.",
"Which latest stable version do you mean? There are wheels for 2.12 now: https://pypi.org/project/tensorflow-macos/#files",
"> Which latest stable version do you mean? There are wheels for 2.12 now: https://pypi.org/project/tensorflow-macos/#files\n\nYes, I just saw it was uploaded a couple of hours ago, sorry. I thought you were referring to the rc0 version.",
"Closing the issue as it seems resolved now. Please feel free to reopen if still an issue. Thanks!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60209\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60209\">No</a>\n"
] | 2023-04-03T08:14:33 | 2023-06-05T09:54:04 | 2023-06-05T09:54:01 | NONE | null | null | null | ### Current Behaviour?
For the package tensorflow 2.12 we have [precompiled wheels for python3.11](https://pypi.org/project/tensorflow/#files) but [not for the package tensorflow-macos](https://pypi.org/project/tensorflow-macos/#files). This means that we can use TF 2.12 + Python3.11 on macOS x86 (Intel mac) but not on arm64 (M1 mac)
- ✔️ `TF 2.12 Python3.10 macOS arm64` (package [tensorflow-macos](https://pypi.org/project/tensorflow-macos/#files))
`tensorflow_macos-2.12.0-cp310-cp310-macosx_12_0_arm64.whl`
- ✔️ `TF 2.12 Python3.11 macOS x86` (package [tensorflow](https://pypi.org/project/tensorflow/#files))
`tensorflow-2.12.0-cp311-cp311-macosx_10_15_x86_64.whl`
- ❌ `TF 2.12 Python3.11 macOS arm64` (package [tensorflow-macos](https://pypi.org/project/tensorflow-macos/#files))
### Standalone code to reproduce the issue
```shell
$ uname -m
arm64
$ python -V
Python 3.11.0
$ python3.11 -m pip install tensorflow-macos==2.12.0
ERROR: Could not find a version that satisfies the requirement tensorflow-macos==2.12.0 (from versions: none)
ERROR: No matching distribution found for tensorflow-macos==2.12.0
``` | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60209/reactions",
"total_count": 16,
"+1": 14,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 2,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60209/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60208 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60208/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60208/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60208/events | https://github.com/tensorflow/tensorflow/issues/60208 | 1,651,373,229 | I_kwDOArmXAs5ibfSt | 60,208 | XNNPACK/BUILD.bazel:4762:26: configurable attribute "deps" in @XNNPACK//:amalgam_microkernels doesn't match this configuration. Would a default condition help? | {
"login": "sukdamrong",
"id": 3434080,
"node_id": "MDQ6VXNlcjM0MzQwODA=",
"avatar_url": "https://avatars.githubusercontent.com/u/3434080?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sukdamrong",
"html_url": "https://github.com/sukdamrong",
"followers_url": "https://api.github.com/users/sukdamrong/followers",
"following_url": "https://api.github.com/users/sukdamrong/following{/other_user}",
"gists_url": "https://api.github.com/users/sukdamrong/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sukdamrong/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sukdamrong/subscriptions",
"organizations_url": "https://api.github.com/users/sukdamrong/orgs",
"repos_url": "https://api.github.com/users/sukdamrong/repos",
"events_url": "https://api.github.com/users/sukdamrong/events{/privacy}",
"received_events_url": "https://api.github.com/users/sukdamrong/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 2726299159,
"node_id": "MDU6TGFiZWwyNzI2Mjk5MTU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite-xnnpack",
"name": "comp:lite-xnnpack",
"color": "97F7B2",
"default": false,
"description": "TensorFlow Lite XNNPack related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@sukdamrong Thanks for reporting this issue.\r\n\r\nAs per this [comment](https://github.com/google/XNNPACK/issues/4598#issuecomment-1494631028), the 32 bit builds might not be supported for ios.\r\n\r\nI have tried with `--config=ios_fat` which builts a \"fat\" binary, containing armv7, arm64, and x86_64 and was able to build the framework successfully. Please find the screenshot below.\r\n\r\n<img width=\"565\" alt=\"Screenshot 2023-04-06 at 4 49 55 PM\" src=\"https://user-images.githubusercontent.com/118897289/230377639-3297cb26-7dc4-4160-a5b3-3459b3d3498c.png\">\r\n\r\nThanks.\r\n\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60208\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60208\">No</a>\n"
] | 2023-04-03T05:43:18 | 2023-04-21T01:53:39 | 2023-04-21T01:53:37 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0
### Custom Code
No
### OS Platform and Distribution
macMonterey 12.4
### Mobile device
_No response_
### Python version
3.11.2
### Bazel version
5.3.0
### GCC/Compiler version
N
### CUDA/cuDNN version
N
### GPU model and memory
N
### Current Behaviour?
```shell
I try to build iOS framework that support armv7 only on M1 MacBook with script
bazel build --ios_minimum_os='10.0' --config=ios_armv7 -c opt --cxxopt=--std=c++17 //tensorflow/lite/ios:TensorFlowLiteC_framework
external/XNNPACK/BUILD.bazel:4762:26: configurable attribute "deps" in @XNNPACK//:amalgam_microkernels doesn't match this configuration. Would a default condition help?
Conditions checked:
@XNNPACK//:aarch32
@XNNPACK//:aarch64
@XNNPACK//:x86
@XNNPACK//:emscripten_wasm
@XNNPACK//:emscripten_wasmsimd
@XNNPACK//:emscripten_wasmrelaxedsimd
@XNNPACK//:riscv
To see a condition's definition, run: bazel query --output=build <condition label>.
This instance of @XNNPACK//:amalgam_microkernels has configuration identifier 4cdd8f2. To inspect its configuration, run: bazel config 4cdd8f2.
For more help, see https://docs.bazel.build/configurable-attributes.html#why-doesnt-my-select-choose-what-i-expect.
ERROR: Analysis of target '//tensorflow/lite/ios:TensorFlowLiteC_framework' failed; build aborted:
INFO: Elapsed time: 0.142s
INFO: 0 processes.
FAILED: Build did NOT complete successfully (1 packages loaded, 0 targets configured)
```
### Standalone code to reproduce the issue
```shell
I try to build iOS framework that support armv7 only on M1 MacBook with script
bazel build --ios_minimum_os='10.0' --config=ios_armv7 -c opt --cxxopt=--std=c++17 //tensorflow/lite/ios:TensorFlowLiteC_framework
```
### Relevant log output
```shell
-
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60208/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60208/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60207 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60207/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60207/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60207/events | https://github.com/tensorflow/tensorflow/issues/60207 | 1,651,094,246 | I_kwDOArmXAs5iabLm | 60,207 | Writing custom ReduceOp | {
"login": "parismic",
"id": 35386154,
"node_id": "MDQ6VXNlcjM1Mzg2MTU0",
"avatar_url": "https://avatars.githubusercontent.com/u/35386154?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/parismic",
"html_url": "https://github.com/parismic",
"followers_url": "https://api.github.com/users/parismic/followers",
"following_url": "https://api.github.com/users/parismic/following{/other_user}",
"gists_url": "https://api.github.com/users/parismic/gists{/gist_id}",
"starred_url": "https://api.github.com/users/parismic/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/parismic/subscriptions",
"organizations_url": "https://api.github.com/users/parismic/orgs",
"repos_url": "https://api.github.com/users/parismic/repos",
"events_url": "https://api.github.com/users/parismic/events{/privacy}",
"received_events_url": "https://api.github.com/users/parismic/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 996845227,
"node_id": "MDU6TGFiZWw5OTY4NDUyMjc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:dist-strat",
"name": "comp:dist-strat",
"color": "0052cc",
"default": false,
"description": "Distribution Strategy related issues"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @parismic, to create an op, kindly follow this [guide](https://www.tensorflow.org/guide/create_op). Alternatively, you can also try creating a custom layer which is a common set of useful operations by following the instructions mentioned [here](https://www.tensorflow.org/tutorials/customization/custom_layers#implementing_custom_layers). Thank you!\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60207\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60207\">No</a>\n"
] | 2023-04-02T21:04:57 | 2023-04-20T01:52:58 | 2023-04-20T01:52:56 | NONE | null | null | null | I would like take a MirroredVariable, shape=(32,60), with 3 replica and reduce is first as a difference of pairs and than L2 norm it.
Is there a way of writing such a custom ReduceOp?
https://github.com/tensorflow/tensorflow/blob/0db597d0d758aba578783b5bf46c889700a45085/tensorflow/python/distribute/reduce_util.py#L23-L47 | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60207/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60207/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60206 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60206/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60206/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60206/events | https://github.com/tensorflow/tensorflow/issues/60206 | 1,650,914,092 | I_kwDOArmXAs5iZvMs | 60,206 | Support for CUDA 12 for newer GPUS. | {
"login": "blaze-Youssef",
"id": 83608661,
"node_id": "MDQ6VXNlcjgzNjA4NjYx",
"avatar_url": "https://avatars.githubusercontent.com/u/83608661?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/blaze-Youssef",
"html_url": "https://github.com/blaze-Youssef",
"followers_url": "https://api.github.com/users/blaze-Youssef/followers",
"following_url": "https://api.github.com/users/blaze-Youssef/following{/other_user}",
"gists_url": "https://api.github.com/users/blaze-Youssef/gists{/gist_id}",
"starred_url": "https://api.github.com/users/blaze-Youssef/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/blaze-Youssef/subscriptions",
"organizations_url": "https://api.github.com/users/blaze-Youssef/orgs",
"repos_url": "https://api.github.com/users/blaze-Youssef/repos",
"events_url": "https://api.github.com/users/blaze-Youssef/events{/privacy}",
"received_events_url": "https://api.github.com/users/blaze-Youssef/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1097547538,
"node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu",
"name": "comp:gpu",
"color": "0052cc",
"default": false,
"description": "GPU related issues"
}
] | closed | false | {
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Tried to pip install the nightly pacakge, didn't help.",
"Hello @blaze-Youssef !\r\nAs per the documentation, the latest CUDA version 11.2 is supported for TF v2.10.\r\nPlease check this [link](https://www.tensorflow.org/install/source_windows#gpu) for more information.\r\nThank you! ",
"@blaze-Youssef -\r\nStarting with TF 2.11 and above, TensorFlow recommends using Windows WSL for GPU Access. See instructions here - https://www.tensorflow.org/install/pip#windows-wsl2\r\nIf you are using Conda, you can create a Conda environment and install inside the conda env.\r\nYou could also give docker containers a try if you prefer that over creating your own conda env (https://www.tensorflow.org/install/docker)",
"Thank you so much, I got it working on docker for Windows using the tenserflow jupyer image.",
"Hi!\r\n@blaze-Youssef could you please help me solve this issue and give me some link where I can follow what you did to solve the issue? I'm not a programmer, I'm trying to use Tf for behavior analysis in neuroscience research, so I'm a bit of a noob honestly. I have the same issue, driver requiring cuda 12, Tf not supporting cuda 12 and my GPU is not activated during training at all. How did you manage to solve it? Thank you so much in advance! ",
"This steps works for me, nvidia RTX4090 (cuda 12) using cuda 11.8 and cuDNN 8.6 .\r\n\r\nhttps://github.com/fdmartins/tensorflow-2-rtx4090\r\n"
] | 2023-04-02T11:40:23 | 2023-09-20T13:30:40 | 2023-04-04T21:57:04 | NONE | null | null | null | Hello,
I have an rrx 3060, and I have Cuda 12.1 installed along with Cudnn.
I can't get Tensorflow to detect my gpu in Python.
As I have read in the docs you must have Cuda 11.8, but I am using another Nvidia app that requires CUDA 12, and I am afraid if I downgrade the CUDA version, I might encounter issues.
Please can someone help or guide me to another methkd of using Tensorflow locally along with my gpu.
I have Windows 11. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60206/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60206/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60205 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60205/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60205/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60205/events | https://github.com/tensorflow/tensorflow/issues/60205 | 1,650,896,459 | I_kwDOArmXAs5iZq5L | 60,205 | Tensorflow import error in virtual environment (vsc) - No module named 'tensorflow' | {
"login": "drishtia60",
"id": 84775303,
"node_id": "MDQ6VXNlcjg0Nzc1MzAz",
"avatar_url": "https://avatars.githubusercontent.com/u/84775303?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/drishtia60",
"html_url": "https://github.com/drishtia60",
"followers_url": "https://api.github.com/users/drishtia60/followers",
"following_url": "https://api.github.com/users/drishtia60/following{/other_user}",
"gists_url": "https://api.github.com/users/drishtia60/gists{/gist_id}",
"starred_url": "https://api.github.com/users/drishtia60/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/drishtia60/subscriptions",
"organizations_url": "https://api.github.com/users/drishtia60/orgs",
"repos_url": "https://api.github.com/users/drishtia60/repos",
"events_url": "https://api.github.com/users/drishtia60/events{/privacy}",
"received_events_url": "https://api.github.com/users/drishtia60/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1188421838,
"node_id": "MDU6TGFiZWwxMTg4NDIxODM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows",
"name": "subtype:windows",
"color": "b619ea",
"default": false,
"description": "Windows Build/Installation Issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@drishtia60,\r\nThere are at least 3 possible scenarios:\r\n\r\n```\r\n1. You need to install the MSVC 2019 redistributable.\r\n2. Your CPU does not support AVX2 instructions.\r\n3. Your CPU/Python is on 32 bits.\r\n4. There is a library that is in a different location/not installed on your system that cannot be loaded.\r\n```\r\nAlso pip install tensorflow will install a version thats compatible with GPU and CPU. So it gives you that warning message.\r\nIf you don't want to see warning messages and want to install the CPU only version, you could - pip install tensorflow-cpu that's a smaller wheel file for the CPU only version.\r\n\r\nTensorFlow 2.10 was the last TensorFlow release that supported GPU on native-Windows. Starting with TensorFlow 2.11, you will need to install [TensorFlow in WSL2](https://tensorflow.org/install/pip#windows-wsl2), or install tensorflow-cpu and, optionally, try the [TensorFlow-DirectML-Plugin](https://github.com/microsoft/tensorflow-directml-plugin#tensorflow-directml-plugin-)\r\nhttps://www.tensorflow.org/install/pip?hl=en#windows-native\r\n\r\nAlso please take a look at this https://github.com/tensorflow/tensorflow/issues/57103 and https://github.com/tensorflow/tensorflow/issues/56976 with a similar error and try to uninstall all the dependencies and recreate a fresh conda env .\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60205\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60205\">No</a>\n"
] | 2023-04-02T10:40:07 | 2023-04-19T01:55:31 | 2023-04-19T01:55:28 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf 2.11.0
### Custom Code
Yes
### OS Platform and Distribution
Windows 10
### Mobile device
_No response_
### Python version
python 3.7.9
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
ERROR: Could not install packages due to an OSError: [Errno 2] No such file or directory
HINT: This error might have occurred since this system does not have Windows Long Path support enabled. You can find information on how to enable this at https://pip.pypa.io/warnings/enable-long-paths
```
### Standalone code to reproduce the issue
```shell
Code :
import cv2
import numpy as np
import tensorflow as tf
model = tf.keras.models.load_model('keras_model.h5')
video = cv2.VideoCapture(0)
while True:
check,frame = video.read()
img = cv2.resize(frame,(224,224))
test_image = np.array(img, dtype=np.float32)
test_image = np.expand_dims(test_image, axis=0)
# 3. Normalizing the image
normalised_image = test_image/255.0
# Predict Result
prediction = model.predict(normalised_image)
print("Prediction : ", prediction)
cv2.imshow("Result",frame)
key = cv2.waitKey(1)
if key == 32:
print("Closing")
break
video.release()
This is the location of the tensorflow package on my C drive :
C:\Users\Asus\Downloads\PRO-C110-Student-Boilerplate-main (1)\PRO-C110-Student-Boilerplate-main\venv\Scripts\tensorboard.exe
Method of installing tensorflow :
pip install --ignore-installed --upgrade tensorflow
I did try: uninstalling and reinstalling protobuf but it makes no difference, neither does pip3
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60205/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60205/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60204 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60204/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60204/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60204/events | https://github.com/tensorflow/tensorflow/issues/60204 | 1,650,795,959 | I_kwDOArmXAs5iZSW3 | 60,204 | pip install tensorflow==2.11.1 not working on AWS arm64 | {
"login": "rhuddleston",
"id": 3074008,
"node_id": "MDQ6VXNlcjMwNzQwMDg=",
"avatar_url": "https://avatars.githubusercontent.com/u/3074008?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/rhuddleston",
"html_url": "https://github.com/rhuddleston",
"followers_url": "https://api.github.com/users/rhuddleston/followers",
"following_url": "https://api.github.com/users/rhuddleston/following{/other_user}",
"gists_url": "https://api.github.com/users/rhuddleston/gists{/gist_id}",
"starred_url": "https://api.github.com/users/rhuddleston/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rhuddleston/subscriptions",
"organizations_url": "https://api.github.com/users/rhuddleston/orgs",
"repos_url": "https://api.github.com/users/rhuddleston/repos",
"events_url": "https://api.github.com/users/rhuddleston/events{/privacy}",
"received_events_url": "https://api.github.com/users/rhuddleston/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@rhuddleston \r\nSorry for the late reply, Could you please try with `pip install tensorflow==2.11.*` to install TF 2.11. I was able to install the TF2.11 without any error on the linux virtual machine with python 3.10. Please find the screenshots below:\r\n[Screenshot 1](https://user-images.githubusercontent.com/111861663/229890752-269caf0a-6bc3-4d24-b233-58d4858facd8.png)\r\n[Screenshot 2](https://user-images.githubusercontent.com/111861663/229890807-259d86a8-94ea-4a53-be43-7679f0638e43.png)\r\n\r\n\r\nThank you !\r\n\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Also been having issues on a macOS M1 with pipenv.\r\n\r\nRecently, Dependabot wanted to bump `tensorflow` to 2.11.1 but that caused a version mismatch between `tensorflow-cpu-aws` so now `python -c \"import tensorflow\"` fails to find the import and `pipenv graph` has this:\r\n\r\n```sh\r\ntensorflow==2.11.1\r\n - tensorflow-cpu-aws [required: ==2.11.1, installed: ?]\r\n```",
"@rhuddleston,\r\nThe package tensorflow-cpu-aws is meant for **Arm/AArch64** processors and it can't be downloaded in `X86_64` architectures through pip. \r\n\r\nPip will try to resolve the wheels suitable for the particular host platform and if it is not found then it raises the error like no matching distribution found.\r\n\r\nThe pre-built pip wheels for X86_64 built and maintained by tensorflow itself which you can install through pip install tensorflow-cpu and this can be installed on x86_64 machines only.\r\n\r\nCould you please refer the documentation [source](https://www.tensorflow.org/install/pip#linux:~:text=Nightly-,Note%3A%20Starting%20with%20TensorFlow%202.10%2C%20Linux%20CPU%2Dbuilds%20for%20Aarch64,package.%20See%20this%20blog%20post%20for%20more%20information%20about%20this%20collaboration.,-conda%20install%20%2D) for more details.\r\n\r\nThis does not look like a problem that is specific to TensorFlow. I think your problem is all about creating a docker container for a foreign architecture from your x86 machine. In order to do that you need to add qemu to the mix so that there is an environment that allows the docker container to execute.\r\nSee https://www.docker.com/blog/multi-platform-docker-builds/\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60204\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60204\">No</a>\n"
] | 2023-04-02T04:00:32 | 2023-10-28T01:46:52 | 2023-10-28T01:46:50 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.11.1
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
When I run `pip install tensorflow==2.11.1` on an aws m6g.large instance (arm64 graviton) it throws the following error:
ERROR: Could not find a version that satisfies the requirement tensorflow-cpu-aws==2.11.1; platform_system == "Linux" and (platform_machine == "arm64" or platform_machine == "aarch64") (from tensorflow) (from versions: 2.9.1, 2.10.0rc0, 2.10.0rc2, 2.10.0rc3, 2.10.0, 2.10.1, 2.11.0rc0, 2.11.0rc1, 2.11.0rc2, 2.11.0, 2.12.0rc1, 2.12.0)
ERROR: No matching distribution found for tensorflow-cpu-aws==2.11.1; platform_system == "Linux" and (platform_machine == "arm64" or platform_machine == "aarch64")
I can see this is the case by navigating here: https://pypi.org/project/tensorflow-cpu-aws/2.11.1/#files
for some reason it was only built for python 3.7 and is lacking binaries for all other python versions. tensorflow 2.11.0 and 2.12.0 both work but we wanted to use 2.11.1 in this case, perhaps an error during that particular build?
For example compare to this: https://pypi.org/project/tensorflow-cpu-aws/2.11.0/#files or the 2.12.0
```
### Standalone code to reproduce the issue
```shell
`pip install tensorflow==2.11.1` on python 3.10 on an aws m6g instance
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60204/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60204/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60203 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60203/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60203/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60203/events | https://github.com/tensorflow/tensorflow/issues/60203 | 1,650,792,778 | I_kwDOArmXAs5iZRlK | 60,203 | Detected unsupported operations when trying to compile graph XLA_GPU_JIT: ResizeNearestNeighborGrad | {
"login": "milmor",
"id": 70667433,
"node_id": "MDQ6VXNlcjcwNjY3NDMz",
"avatar_url": "https://avatars.githubusercontent.com/u/70667433?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/milmor",
"html_url": "https://github.com/milmor",
"followers_url": "https://api.github.com/users/milmor/followers",
"following_url": "https://api.github.com/users/milmor/following{/other_user}",
"gists_url": "https://api.github.com/users/milmor/gists{/gist_id}",
"starred_url": "https://api.github.com/users/milmor/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/milmor/subscriptions",
"organizations_url": "https://api.github.com/users/milmor/orgs",
"repos_url": "https://api.github.com/users/milmor/repos",
"events_url": "https://api.github.com/users/milmor/events{/privacy}",
"received_events_url": "https://api.github.com/users/milmor/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @milmor,\r\nAs a workaround, kindly set `interpolation=bilinear` in the **Upsampling2d** layer, which is compatible with GPUs. Kindly find the gist of working code [here](https://colab.sandbox.google.com/gist/synandi/fdd7c053f3d0509a547cbbf390e48ac2/60203_bilinear.ipynb). Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60203\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60203\">No</a>\n"
] | 2023-04-02T03:43:17 | 2023-04-19T01:55:33 | 2023-04-19T01:55:31 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf 2.12
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
When defining blocks like the following:
self.conv_64 = tf.keras.Sequential([
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.UpSampling2D(2))
])
when training with @tf.function(jit_compile=True) got this error:
Detected unsupported operations when trying to compile graph __inference_train_step_8942[_XlaMustCompile=true,config_proto=6001324581131673121,executor_type=11160318154034397263] on XLA_GPU_JIT: ResizeNearestNeighborGrad (No registered 'ResizeNearestNeighborGrad' OpKernel for XLA_GPU_JIT devices compatible with node {{node gradient_tape/sequential_4/up_sampling2d_2/resize/ResizeNearestNeighborGrad}}){{node gradient_tape/sequential_4/up_sampling2d_2/resize/ResizeNearestNeighborGrad}}
```
### Standalone code to reproduce the issue
```shell
Use the DCGAN code https://www.tensorflow.org/tutorials/generative/dcgan
Use generator with UpSampling:
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.UpSampling2D(2))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
and train with jit=True:
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function(jit_compile=True)
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
```
This is a shame because it limits the potential of XLA in GANs
### Relevant log output
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60203/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60203/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60202 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60202/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60202/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60202/events | https://github.com/tensorflow/tensorflow/issues/60202 | 1,650,554,488 | I_kwDOArmXAs5iYXZ4 | 60,202 | [tensorflow-io-gcs-filesystem] Missing p39 win32 package for 0.32.0 | {
"login": "PhilippWillms",
"id": 38139241,
"node_id": "MDQ6VXNlcjM4MTM5MjQx",
"avatar_url": "https://avatars.githubusercontent.com/u/38139241?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/PhilippWillms",
"html_url": "https://github.com/PhilippWillms",
"followers_url": "https://api.github.com/users/PhilippWillms/followers",
"following_url": "https://api.github.com/users/PhilippWillms/following{/other_user}",
"gists_url": "https://api.github.com/users/PhilippWillms/gists{/gist_id}",
"starred_url": "https://api.github.com/users/PhilippWillms/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/PhilippWillms/subscriptions",
"organizations_url": "https://api.github.com/users/PhilippWillms/orgs",
"repos_url": "https://api.github.com/users/PhilippWillms/repos",
"events_url": "https://api.github.com/users/PhilippWillms/events{/privacy}",
"received_events_url": "https://api.github.com/users/PhilippWillms/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1188421838,
"node_id": "MDU6TGFiZWwxMTg4NDIxODM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows",
"name": "subtype:windows",
"color": "b619ea",
"default": false,
"description": "Windows Build/Installation Issues"
},
{
"id": 4511033337,
"node_id": "LA_kwDOArmXAs8AAAABDODn-Q",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10",
"name": "TF 2.10",
"color": "C15088",
"default": false,
"description": ""
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hello @PhilippWillms! \r\nCould you try the following and let us know if that helps?\r\n```\r\n$pip install tensorflow-io-gcs-filesystem\r\n```\r\nThank you!",
"Hi @sushreebarsa, I am sorry but it is still failing: \r\n\r\n> ERROR: Ignored the following versions that require a different python version: 0.23.0 Requires-Python >=3.6, <3.10\r\nERROR: Could not find a version that satisfies the requirement tensorflow-io-gcs-filesystem==0.32.0 (from versions: 0.23.1, 0.24.0, 0.25.0, 0.26.0, 0.27.0, 0.28.0, 0.29.0, 0.30.0, 0.31.0)\r\nERROR: No matching distribution found for tensorflow-io-gcs-filesystem==0.32.0\r\n\r\nRecall that I need a Windows built.",
"Hi @PhilippWillms ,\r\n\r\nYou need to have `tensorflow-io-gcs-filesystem >= 0.23.1` for building pip package. You can proceed with 0.31 version also.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/bc54be865c99c9c8b8174c98bf8665af4ab10949/tensorflow/tools/pip_package/setup.py#L108\r\n\r\nI agree that the latest package for Windows seems to be unavailable for now. I tested in Colab(Linux) and 0.32 version available there. We will note this and inform concerned.\r\n\r\nMeanwhile you can go ahead with the package >=0.23.1 and <0.32 and come back if any problem arises. Thanks!\r\n",
"Ok, I followed that proposal and restricted to the mentioned version range in my TOML file.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60202\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60202\">No</a>\n",
"Imho this is not a proper solution as one has to manually create a top-level dependency to tensorflow-io-gcs-filesystem with the mentioned version restriction. Otherwise e.g. poetry resolves to the newest available version (0.32.0) which fails by default. Please consider to release the Windows wheels for current versions of tensorflow-io-gcs-filesystem again or add the version restriction in the tensorflow package already, so it doesn't have to be restricted at top level."
] | 2023-04-01T16:40:15 | 2023-05-12T11:59:26 | 2023-04-09T20:24:00 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.10.1
### Custom Code
No
### OS Platform and Distribution
Windows
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The PyPI server is currently lacking a win32 wheel for python 3.9 for sub-package tensorflow-io-gcs-filesystem.
```
### Standalone code to reproduce the issue
```shell
$ conda create -n tf39 python=3.9
$ conda activate tf39
$ pip install tensorflow-io-gcs-filesystem==0.32.0
```
### Relevant log output
```shell
ERROR: Could not find a version that satisfies the requirement tensorflow-io-gcs-filesystem==0.32.0 (from versions: 0.23.1, 0.24.0, 0.25.0, 0.26.0, 0.27.0, 0.28.0, 0.29.0, 0.30.0, 0.31.0)
ERROR: No matching distribution found for tensorflow-io-gcs-filesystem==0.32.0
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60202/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60202/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60201 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60201/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60201/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60201/events | https://github.com/tensorflow/tensorflow/issues/60201 | 1,650,367,717 | I_kwDOArmXAs5iXpzl | 60,201 | A check fail can be triggered in DepthwiseConv2dNativeBackpropInput | {
"login": "shijy16",
"id": 31403391,
"node_id": "MDQ6VXNlcjMxNDAzMzkx",
"avatar_url": "https://avatars.githubusercontent.com/u/31403391?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shijy16",
"html_url": "https://github.com/shijy16",
"followers_url": "https://api.github.com/users/shijy16/followers",
"following_url": "https://api.github.com/users/shijy16/following{/other_user}",
"gists_url": "https://api.github.com/users/shijy16/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shijy16/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shijy16/subscriptions",
"organizations_url": "https://api.github.com/users/shijy16/orgs",
"repos_url": "https://api.github.com/users/shijy16/repos",
"events_url": "https://api.github.com/users/shijy16/events{/privacy}",
"received_events_url": "https://api.github.com/users/shijy16/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@shijy16,\r\nI tried to execute the mentioned code on both tensorflow v2.12 [CPU](https://colab.research.google.com/gist/tilakrayal/567f4b305c69b199c9db8448f6763eab/untitled1064.ipynb) and [GPU](https://colab.research.google.com/gist/tilakrayal/047904e5371c1ffd7bdfe92a024b490f/untitled1065.ipynb) & it was executing with the different error where it was mentioned that **Current implementation only supports equal length strides in the row and column dimensions** and also I was not able to get any crash/abort for the mentioned code. Thank you! ",
"@tilakrayal \r\nHi, I can still replicate this bug on my local machine. I think this is a **Intel OneDNN library** related bug, and Intel OneDNN is not supported on Colab. \r\nIntel OneDNN is enabled by default on my local machine, thus the crash can be replicated. If I disable Intel OneDNN as the code bellow, the same error in Colab is thrown.\r\n````python\r\nimport os\r\nos.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'\r\nimport tensorflow as tf\r\nprint(tf.__version__)\r\nwith tf.device(\"CPU\"):\r\n strides = [1, 0, 1, 1]\r\n padding = \"VALID\"\r\n explicit_paddings = []\r\n data_format = \"NHWC\"\r\n dilations = [1, 0, 77, 1, 64]\r\n input_sizes = tf.saturate_cast(tf.random.uniform([3], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.int32)\r\n filter = tf.random.uniform([16, 3, 3, 5], dtype=tf.bfloat16, minval=-1024, maxval=1024)\r\n out_backprop = tf.random.uniform([1, 0, 0, 1], dtype=tf.bfloat16, minval=-1024, maxval=1024)\r\n res = tf.raw_ops.DepthwiseConv2dNativeBackpropInput(\r\n strides=strides,\r\n padding=padding,\r\n explicit_paddings=explicit_paddings,\r\n data_format=data_format,\r\n dilations=dilations,\r\n input_sizes=input_sizes,\r\n filter=filter,\r\n out_backprop=out_backprop,\r\n )\r\n````",
"@shijy16 Please don't file vulnerabilities on GitHub. Please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow rules for responsible disclosure.",
"Hi @shijy16 \r\nThis has been fixed. tested with TF2.16v and found raising an exception rather than check fail.Please refer attached [gist](https://colab.sandbox.google.com/gist/SuryanarayanaY/09759376b26be8e89764152672ae2eaa/60201_nightly_success.ipynb).\r\n\r\nThanks!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60201\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60201\">No</a>\n"
] | 2023-04-01T08:40:42 | 2024-04-20T01:47:34 | 2024-04-20T01:47:28 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.13.0-dev20230331
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
CUDA 11.8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The following code can trigger a crash in `tf.raw_ops.DepthwiseConv2dNativeBackpropInput` due to check-fail in the latest version of TensorFlow.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
with tf.device("CPU"):
strides = [1, 0, 1, 1]
padding = "VALID"
explicit_paddings = []
data_format = "NHWC"
dilations = [1, 0, 77, 1, 64]
input_sizes = tf.saturate_cast(tf.random.uniform([3], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.int32)
filter = tf.random.uniform([16, 3, 3, 5], dtype=tf.bfloat16, minval=-1024, maxval=1024)
out_backprop = tf.random.uniform([1, 0, 0, 1], dtype=tf.bfloat16, minval=-1024, maxval=1024)
res = tf.raw_ops.DepthwiseConv2dNativeBackpropInput(
strides=strides,
padding=padding,
explicit_paddings=explicit_paddings,
data_format=data_format,
dilations=dilations,
input_sizes=input_sizes,
filter=filter,
out_backprop=out_backprop,
)
```
### Relevant log output
```shell
2023-04-01 16:37:53.415934: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-01 16:37:53.465275: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-01 16:37:54.257156: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-04-01 16:37:55.809665: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14561 MB memory: -> device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:2f:00.0, compute capability: 7.0
2023-04-01 16:37:55.854746: F tensorflow/core/kernels/mkl/mkl_conv_grad_input_ops.cc:537] Non-OK-status: tensor::MakeShape(input_tensor, &input_tf_shape) status: INVALID_ARGUMENT: Dimension -510 must be >= 0
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60201/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60201/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60200 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60200/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60200/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60200/events | https://github.com/tensorflow/tensorflow/issues/60200 | 1,650,366,458 | I_kwDOArmXAs5iXpf6 | 60,200 | A check fail can be triggered in ThreadUnsafeUnigramCandidateSampler | {
"login": "shijy16",
"id": 31403391,
"node_id": "MDQ6VXNlcjMxNDAzMzkx",
"avatar_url": "https://avatars.githubusercontent.com/u/31403391?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shijy16",
"html_url": "https://github.com/shijy16",
"followers_url": "https://api.github.com/users/shijy16/followers",
"following_url": "https://api.github.com/users/shijy16/following{/other_user}",
"gists_url": "https://api.github.com/users/shijy16/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shijy16/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shijy16/subscriptions",
"organizations_url": "https://api.github.com/users/shijy16/orgs",
"repos_url": "https://api.github.com/users/shijy16/repos",
"events_url": "https://api.github.com/users/shijy16/events{/privacy}",
"received_events_url": "https://api.github.com/users/shijy16/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@SuryanarayanaY \r\nI was able to reproduce the issue on Coalb using TF v2.12 and tf-nightly. Please find the gist of [2.12](https://colab.research.google.com/gist/tiruk007/44dd95a1bb2324ccc3bc3afbc97838a1/untitled180.ipynb) and [tf-nightly](https://colab.research.google.com/gist/tiruk007/029818642e75ec9351c6c00c1341403f/untitled180.ipynb) for reference.\r\n\r\nThank you !",
"Checked in tf-nightly(2.15.0-dev20231004). Crash due to check fail.\r\n\r\n<img width=\"1509\" alt=\"Screenshot 2023-10-04 at 3 00 34 PM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/455d7556-4cbf-41ac-805a-982984968e0e\">\r\n"
] | 2023-04-01T08:36:16 | 2024-03-08T14:24:03 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.13.0-dev20230331
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
CUDA 11.8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The following code can trigger a crash in `tf.raw_ops.ThreadUnsafeUnigramCandidateSampler` due to check-fail in the latest version of TensorFlow.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
with tf.device("GPU:0"):
num_true = 11
num_sampled = 2
unique = False
range_max = 7612169259283414040
seed = -111
seed2 = -11
true_classes = tf.saturate_cast(tf.random.uniform([12, 11], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.int64)
res = tf.raw_ops.ThreadUnsafeUnigramCandidateSampler(
num_true=num_true,
num_sampled=num_sampled,
unique=unique,
range_max=range_max,
seed=seed,
seed2=seed2,
true_classes=true_classes,
)
```
### Relevant log output
```shell
2023-04-01 16:33:33.009606: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-01 16:33:33.057487: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-01 16:33:33.874853: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-04-01 16:33:35.397082: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14561 MB memory: -> device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:2f:00.0, compute capability: 7.0
2023-04-01 16:33:40.359234: F tensorflow/core/kernels/range_sampler.cc:183] Check failed: range < kint32max (7612169259283414040 vs. 2147483647)
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60200/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60200/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60199 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60199/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60199/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60199/events | https://github.com/tensorflow/tensorflow/issues/60199 | 1,650,365,189 | I_kwDOArmXAs5iXpMF | 60,199 | A check fail can be triggered in MatrixDeterminant | {
"login": "shijy16",
"id": 31403391,
"node_id": "MDQ6VXNlcjMxNDAzMzkx",
"avatar_url": "https://avatars.githubusercontent.com/u/31403391?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shijy16",
"html_url": "https://github.com/shijy16",
"followers_url": "https://api.github.com/users/shijy16/followers",
"following_url": "https://api.github.com/users/shijy16/following{/other_user}",
"gists_url": "https://api.github.com/users/shijy16/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shijy16/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shijy16/subscriptions",
"organizations_url": "https://api.github.com/users/shijy16/orgs",
"repos_url": "https://api.github.com/users/shijy16/repos",
"events_url": "https://api.github.com/users/shijy16/events{/privacy}",
"received_events_url": "https://api.github.com/users/shijy16/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @shijy16, \r\n\r\nI was able to replicate the issue in Ubuntu using tf-nightly(2.13.0-dev20230331). Please find the log below.\r\n```\r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60199.py\r\n2023-04-03 13:20:37.981051: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-03 13:20:38.789344: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-03 13:20:41.739112: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-03 13:20:41.761387: F tensorflow/core/framework/tensor_shape.cc:201] Non-OK-status: InitDims(dim_sizes) status: INVALID_ARGUMENT: Encountered overflow when multiplying 7678600331551628182 with 15, result: -1\r\nAborted (core dumped)\r\n```\r\nThank you!",
"@shijy16,\r\nThis indicates the problem is due to a memory issue where the OS crashed in allocating the required memory which is expected.\r\n\r\nAlso please refer to the developer https://github.com/tensorflow/tensorflow/issues/59168#issuecomment-1405633596 related to malloc with high input size which will eventually lead to an OS crash. Thank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60199\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60199\">No</a>\n"
] | 2023-04-01T08:30:49 | 2024-02-10T01:46:09 | 2024-02-10T01:46:03 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.13.0-dev20230331
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
CUDA 11.8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The following code can trigger a crash in `tf.raw_ops.MatrixDeterminant` due to check-fail in the latest version of TensorFlow.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
with tf.device("CPU"):
input = tf.complex(tf.random.uniform([0, 1, 7678600331551628182, 15], dtype=tf.float32, minval=-18446744073709551615, maxval=18446744073709551615),tf.random.uniform([0, 1, 7678600331551628182, 15], dtype=tf.float32, minval=-18446744073709551615, maxval=18446744073709551615))
res = tf.raw_ops.MatrixDeterminant(
input=input,
)
```
### Relevant log output
```shell
2023-04-01 16:27:43.185649: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-01 16:27:43.233461: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-01 16:27:44.034698: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-04-01 16:27:45.582999: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14561 MB memory: -> device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:2f:00.0, compute capability: 7.0
2023-04-01 16:27:45.620825: F tensorflow/core/framework/tensor_shape.cc:201] Non-OK-status: InitDims(dim_sizes) status: INVALID_ARGUMENT: Encountered overflow when multiplying 7678600331551628182 with 15, result: -1
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60199/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60199/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60198 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60198/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60198/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60198/events | https://github.com/tensorflow/tensorflow/issues/60198 | 1,650,364,628 | I_kwDOArmXAs5iXpDU | 60,198 | A check fail can be triggered in TridiagonalSolve | {
"login": "shijy16",
"id": 31403391,
"node_id": "MDQ6VXNlcjMxNDAzMzkx",
"avatar_url": "https://avatars.githubusercontent.com/u/31403391?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shijy16",
"html_url": "https://github.com/shijy16",
"followers_url": "https://api.github.com/users/shijy16/followers",
"following_url": "https://api.github.com/users/shijy16/following{/other_user}",
"gists_url": "https://api.github.com/users/shijy16/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shijy16/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shijy16/subscriptions",
"organizations_url": "https://api.github.com/users/shijy16/orgs",
"repos_url": "https://api.github.com/users/shijy16/repos",
"events_url": "https://api.github.com/users/shijy16/events{/privacy}",
"received_events_url": "https://api.github.com/users/shijy16/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@sachinprasadhs I was able to replicate the issue on colab using TF v[2.12](https://colab.research.google.com/gist/sushreebarsa/23002b3c2d4cbd311f739dcdd37e2157/60198.ipynb) and tf-[nightly](https://colab.research.google.com/gist/sushreebarsa/fa9c18ffb6f4829647d36d78942c05af/untitled784.ipynb#scrollTo=hIczSZUMnMVl)(2.13.0-dev20230403), please find the attached gists. Thank you!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60198\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60198\">No</a>\n"
] | 2023-04-01T08:28:35 | 2023-05-03T17:28:23 | 2023-05-03T17:28:21 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.13.0-dev20230331
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
CUDA 11.8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The following code can trigger a crash in `tf.raw_ops.TridiagonalSolve` due to check-fail in the latest version of TensorFlow.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
with tf.device("GPU:0"):
partial_pivoting = True
perturb_singular = False
diagonals = tf.complex(tf.random.uniform([2, 13, 0, 13, 857005098598382018], dtype=tf.float32, minval=-1024, maxval=1024),tf.random.uniform([2, 13, 0, 13, 857005098598382018], dtype=tf.float32, minval=-1024, maxval=1024))
rhs = tf.complex(tf.random.uniform([15, 15, 12, 1, 10, 16], dtype=tf.float32, minval=-1024, maxval=1024),tf.random.uniform([15, 15, 12, 1, 10, 16], dtype=tf.float32, minval=-1024, maxval=1024))
res = tf.raw_ops.TridiagonalSolve(
partial_pivoting=partial_pivoting,
perturb_singular=perturb_singular,
diagonals=diagonals,
rhs=rhs,
)
```
### Relevant log output
```shell
2023-04-01 16:22:38.864472: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-01 16:22:38.915491: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-01 16:22:39.745143: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-04-01 16:22:41.321428: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14561 MB memory: -> device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:2f:00.0, compute capability: 7.0
2023-04-01 16:22:41.585403: F tensorflow/core/framework/tensor_shape.cc:201] Non-OK-status: InitDims(dim_sizes) status: INVALID_ARGUMENT: Encountered overflow when multiplying 13 with 857005098598382018, result: -7305677791930585382
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60198/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60198/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60197 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60197/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60197/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60197/events | https://github.com/tensorflow/tensorflow/issues/60197 | 1,650,363,466 | I_kwDOArmXAs5iXoxK | 60,197 | A check fail can be triggered in LearnedUnigramCandidateSampler | {
"login": "shijy16",
"id": 31403391,
"node_id": "MDQ6VXNlcjMxNDAzMzkx",
"avatar_url": "https://avatars.githubusercontent.com/u/31403391?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shijy16",
"html_url": "https://github.com/shijy16",
"followers_url": "https://api.github.com/users/shijy16/followers",
"following_url": "https://api.github.com/users/shijy16/following{/other_user}",
"gists_url": "https://api.github.com/users/shijy16/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shijy16/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shijy16/subscriptions",
"organizations_url": "https://api.github.com/users/shijy16/orgs",
"repos_url": "https://api.github.com/users/shijy16/repos",
"events_url": "https://api.github.com/users/shijy16/events{/privacy}",
"received_events_url": "https://api.github.com/users/shijy16/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@shijy16,\r\nI can see the **range_max = 3031324185113192368** which you are trying is a very big value. Could you please provide any usecase you are trying the big value. \r\n\r\n\r\nrange_max | An int that is >= 1. The sampler will sample integers from the interval [0, range_max).\r\n-- | --\r\n\r\n\r\n\r\nThank you!",
"@tilakrayal \r\nHi, I am doing API testing to find potential bugs/vulnerabilites. \r\nAlthough the error message seems reasonable, the abort/crash is unacceptable. Instead, an exception that can be catched with external code like `try: ... except: ...` should be placed here.",
"@shijy16 Please don't file vulnerabilities on GitHub. Please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow rules for responsible disclosure."
] | 2023-04-01T08:23:48 | 2023-04-11T18:15:22 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.13.0-dev20230331
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
CUDA 11.8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The following code can trigger a crash in `tf.raw_ops.LearnedUnigramCandidateSampler` due to check-fail in the latest version of TensorFlow.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
with tf.device("GPU:0"):
num_true = 13
num_sampled = 48
unique = True
range_max = 3031324185113192368
seed = 93
seed2 = 11
true_classes = tf.saturate_cast(tf.random.uniform([14, 13], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.int64)
res = tf.raw_ops.LearnedUnigramCandidateSampler(
num_true=num_true,
num_sampled=num_sampled,
unique=unique,
range_max=range_max,
seed=seed,
seed2=seed2,
true_classes=true_classes,
)
```
### Relevant log output
```shell
2023-04-01 16:20:32.160750: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-01 16:20:32.211959: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-01 16:20:33.026789: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-04-01 16:20:34.550122: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14561 MB memory: -> device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:2f:00.0, compute capability: 7.0
2023-04-01 16:20:39.689581: F tensorflow/core/kernels/range_sampler.cc:183] Check failed: range < kint32max (3031324185113192368 vs. 2147483647)
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60197/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60197/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60196 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60196/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60196/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60196/events | https://github.com/tensorflow/tensorflow/issues/60196 | 1,650,362,849 | I_kwDOArmXAs5iXonh | 60,196 | A check fail can be triggered in StatelessRandomGammaV2 | {
"login": "shijy16",
"id": 31403391,
"node_id": "MDQ6VXNlcjMxNDAzMzkx",
"avatar_url": "https://avatars.githubusercontent.com/u/31403391?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shijy16",
"html_url": "https://github.com/shijy16",
"followers_url": "https://api.github.com/users/shijy16/followers",
"following_url": "https://api.github.com/users/shijy16/following{/other_user}",
"gists_url": "https://api.github.com/users/shijy16/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shijy16/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shijy16/subscriptions",
"organizations_url": "https://api.github.com/users/shijy16/orgs",
"repos_url": "https://api.github.com/users/shijy16/repos",
"events_url": "https://api.github.com/users/shijy16/events{/privacy}",
"received_events_url": "https://api.github.com/users/shijy16/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@SuryanarayanaY \r\nI was able to reproduce the issue on Coalb using TF v2.12 and tf-nightly. Please find the gist of [tf-nightly](https://colab.research.google.com/gist/tiruk007/4ee179e7a10dc5bbdb4e8df74faf72b4/nightly.ipynb) and [2.12](https://colab.research.google.com/gist/tiruk007/36a4995d912f43acec5185fa2467d781/2-12.ipynb) for reference.\r\n\r\nThank you !",
"Checked in tf-nightly(2.15.0-dev20231004).Check fail with crash observed.\r\n\r\n\r\n<img width=\"1512\" alt=\"Screenshot 2023-10-04 at 3 24 58 PM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/b240b4a7-0953-4165-8fc6-80942504f6a4\">\r\n\r\n\r\n",
"Issue persists in current nightly also."
] | 2023-04-01T08:21:17 | 2024-03-08T10:59:43 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.13.0-dev20230331
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
CUDA 11.8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The following code can trigger a crash in `tf.raw_ops.StatelessRandomGammaV2` due to check-fail in the latest version of TensorFlow.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
with tf.device("GPU:0"):
shape = [94, 47, 76, 127, 90]
seed = tf.saturate_cast(tf.random.uniform([2], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.int32)
alpha = tf.saturate_cast(tf.random.uniform([], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.half)
res = tf.raw_ops.StatelessRandomGammaV2(
shape=shape,
seed=seed,
alpha=alpha,
)
```
### Relevant log output
```shell
2023-04-01 16:17:25.774398: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-01 16:17:25.823488: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-01 16:17:26.620798: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-04-01 16:17:28.156561: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14561 MB memory: -> device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:2f:00.0, compute capability: 7.0
2023-04-01 16:17:28.418600: F ./tensorflow/core/util/gpu_launch_config.h:129] Check failed: work_element_count >= 0 (0 vs. -457139056)
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60196/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60196/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60195 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60195/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60195/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60195/events | https://github.com/tensorflow/tensorflow/issues/60195 | 1,650,339,229 | I_kwDOArmXAs5iXi2d | 60,195 | A check fail can be triggered in Conv3DBackpropFilterV2 | {
"login": "shijy16",
"id": 31403391,
"node_id": "MDQ6VXNlcjMxNDAzMzkx",
"avatar_url": "https://avatars.githubusercontent.com/u/31403391?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shijy16",
"html_url": "https://github.com/shijy16",
"followers_url": "https://api.github.com/users/shijy16/followers",
"following_url": "https://api.github.com/users/shijy16/following{/other_user}",
"gists_url": "https://api.github.com/users/shijy16/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shijy16/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shijy16/subscriptions",
"organizations_url": "https://api.github.com/users/shijy16/orgs",
"repos_url": "https://api.github.com/users/shijy16/repos",
"events_url": "https://api.github.com/users/shijy16/events{/privacy}",
"received_events_url": "https://api.github.com/users/shijy16/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @shijy16 Thank you for reporting this issue!\r\n\r\nI'm facing a different error when tried to replicate the issue in Ubuntu 20.04 using tf-nightly(2.13.0-dev20230402). Please find the output log below.\r\n\r\nThe issue has been resolved in the lastest tf-nightly version(2.13.0-dev20230402). Thank you!",
"@synandi \r\nThanks for your response!\r\nI tried to replicate the issue again on `2.13.0-dev20230402` and can still replicate the crash. \r\nAnd it seems interesting because sometimes an `InvalidArgumentError` was thrown, and sometimes it ended with a crash due to check-fail. This is the output log:\r\n\r\nThis behaviour seems to be caused by using uninitailized values (just a guess).\r\nPlease executed the code for more times or simply add a for loop to replicate the crash as following:\r\n````python\r\nimport tensorflow as tf\r\nwith tf.device(\"CPU\"):\r\n for i in range(100):\r\n strides = [1, 1, 1, 1, 1]\r\n padding = \"VALID\"\r\n data_format = \"NCDHW\"\r\n dilations = [1, 1, 1, 1, 1]\r\n input = tf.random.uniform([1], dtype=tf.bfloat16, minval=-1024, maxval=1024)\r\n filter_sizes = tf.saturate_cast(tf.random.uniform([1], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.int32)\r\n out_backprop = tf.random.uniform([2, 12, 3, 5, 10], dtype=tf.bfloat16, minval=-1024, maxval=1024)\r\n try:\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n strides=strides,\r\n padding=padding,\r\n data_format=data_format,\r\n dilations=dilations,\r\n input=input,\r\n filter_sizes=filter_sizes,\r\n out_backprop=out_backprop,\r\n )\r\n except:\r\n pass\r\n````",
"@shijy16, I tried executing the code multiple times using tf-nightly(2.13.0-dev20230402). I'm facing `InvalidArgumentError` without crash. Please check the log below \r\n\r\n```\r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:05.654152: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:06.482887: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:40:09.522641: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:40:09.524565: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:14.139250: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:14.970103: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:40:18.011821: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:40:18.013777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:22.329471: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:23.166682: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:40:26.442930: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:40:26.444873: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:30.577044: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:31.387829: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:40:34.419442: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:40:34.421327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:37.197768: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:38.015651: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:40:41.037032: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:40:41.039006: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:43.719981: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:44.536964: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:40:47.558622: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:40:47.560566: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:50.022309: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:50.838318: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:40:53.889195: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13492 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:40:53.891310: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:40:57.744063: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:40:58.559910: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:41:01.646660: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13498 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:41:01.648587: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:41:04.205750: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:41:05.019126: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:41:08.034700: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13498 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:41:08.036647: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ python 60195.py\r\n2023-04-04 09:41:10.367393: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-04-04 09:41:11.197626: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\r\n2023-04-04 09:41:14.278666: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13498 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5\r\n2023-04-04 09:41:14.280686: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13599 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:00:05.0, compute capability: 7.5\r\nTraceback (most recent call last):\r\n File \"/home/ynandi/60195.py\", line 13, in <module>\r\n res = tf.raw_ops.Conv3DBackpropFilterV2(\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/util/tf_export.py\", line 413, in wrapper\r\n return f(**kwargs)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py\", line 2209, in conv3d_backprop_filter_v2\r\n _ops.raise_from_not_ok_status(e, name)\r\n File \"/home/ynandi/miniconda3/envs/tf/lib/python3.9/site-packages/tensorflow/python/framework/ops.py\", line 6653, in raise_from_not_ok_status\r\n raise core._status_to_exception(e) from None # pylint: disable=protected-access\r\ntensorflow.python.framework.errors_impl.InvalidArgumentError: {{function_node __wrapped__Conv3DBackpropFilterV2_device_/job:localhost/replica:0/task:0/device:CPU:0}} Conv3DBackpropFilterOpV2 only supports NDHWC on the CPU. [Op:Conv3DBackpropFilterV2] name: \r\n(tf) ynandi@sindhu-ubuntu-2005:~$ \r\n```\r\n\r\nThank you!",
"@synandi \r\nHi, sorry for that.\r\n\r\nI just noticed that the bug can only be replicated when Intel OneDNN is enabled. In the following code, Intel OneDNN is enabled, it ended with a crash.\r\n\r\nIn the following code, Intel OneDNN is disabled by setting environment viriable `TF_ENABLE_ONEDNN_OPTS` as 0, and it ended normally.\r\n\r\nSince your TensorFlow binary seems to be compiled without Intel OneDNN support (there is no output log as below when tensorflow is loaded), the bug cannot be replicated.\r\n````\r\noneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\r\n````",
"@shijy16 Please don't file vulnerabilities on GitHub. Please consult https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md and follow rules for responsible disclosure.",
"@mihaimaruseac \r\nHi, the bugs I reported here are mostly `check fails`, which are not considered as vulnerabilities according to the rules below. Thus I think reporting them here is okay.\r\n````\r\nIf an assertion failure only leads to program termination and no other exploits, we will no longer consider assertion failures (e.g., CHECK-fails) as vulnerabilities. \r\n````",
"Hi @shijy16 ,\r\n\r\nThe issue has been resolved already. Please check the attached [gist](https://colab.sandbox.google.com/gist/SuryanarayanaY/e536570d5a78a1c9a8facedc7f49aeb0/60195_nightly_success.ipynb) with Tf2.16.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60195\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60195\">No</a>\n"
] | 2023-04-01T07:09:21 | 2024-04-20T01:47:37 | 2024-04-20T01:47:29 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.13.0-dev20230331
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
CUDA 11.5
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The following code can trigger a crash in `tf.raw_ops.Conv3DBackpropFilterV2` due to check-fail in the latest version of TensorFlow.
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
with tf.device("CPU"):
strides = [1, 1, 1, 1, 1]
padding = "VALID"
data_format = "NCDHW"
dilations = [1, 1, 1, 1, 1]
input = tf.random.uniform([1], dtype=tf.bfloat16, minval=-1024, maxval=1024)
filter_sizes = tf.saturate_cast(tf.random.uniform([1], minval=-1024, maxval=1024, dtype=tf.int64), dtype=tf.int32)
out_backprop = tf.random.uniform([2, 12, 3, 5, 10], dtype=tf.bfloat16, minval=-1024, maxval=1024)
res = tf.raw_ops.Conv3DBackpropFilterV2(
strides=strides,
padding=padding,
data_format=data_format,
dilations=dilations,
input=input,
filter_sizes=filter_sizes,
out_backprop=out_backprop,
)
```
### Relevant log output
```shell
2023-04-01 15:05:13.595051: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2023-04-01 15:05:13.597635: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-04-01 15:05:13.640719: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-04-01 15:05:13.641231: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-01 15:05:14.394924: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2.13.0-dev20230331
2023-04-01 15:05:15.220833: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1956] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
2023-04-01 15:05:15.267117: F ./tensorflow/core/util/tensor_format.h:427] Check failed: index >= 0 && index < num_total_dims Invalid index from the dimension: 1, 1, C
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60195/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60195/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60194 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60194/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60194/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60194/events | https://github.com/tensorflow/tensorflow/issues/60194 | 1,650,297,376 | I_kwDOArmXAs5iXYog | 60,194 | Issue OS | {
"login": "hartpoli",
"id": 65838275,
"node_id": "MDQ6VXNlcjY1ODM4Mjc1",
"avatar_url": "https://avatars.githubusercontent.com/u/65838275?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/hartpoli",
"html_url": "https://github.com/hartpoli",
"followers_url": "https://api.github.com/users/hartpoli/followers",
"following_url": "https://api.github.com/users/hartpoli/following{/other_user}",
"gists_url": "https://api.github.com/users/hartpoli/gists{/gist_id}",
"starred_url": "https://api.github.com/users/hartpoli/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hartpoli/subscriptions",
"organizations_url": "https://api.github.com/users/hartpoli/orgs",
"repos_url": "https://api.github.com/users/hartpoli/repos",
"events_url": "https://api.github.com/users/hartpoli/events{/privacy}",
"received_events_url": "https://api.github.com/users/hartpoli/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
},
{
"id": 2498949452,
"node_id": "MDU6TGFiZWwyNDk4OTQ5NDUy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.5",
"name": "TF 2.5",
"color": "5319e7",
"default": false,
"description": "Issues related to TF 2.5"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"System Information:\r\n\r\nOS Platform and Distribution: Linux Ubuntu 18.04\r\nTensorFlow installed from: TensorFlow binary\r\nTensorFlow version: 2.5.0",
"Issue Description:\r\n\r\nWhen trying to convert a TensorFlow model to a TensorFlow Lite model using the tflite_convert command, I am getting an error message saying \"ValueError: The requested operation is not available.\" I am using the following command: \r\n\r\ntflite_convert --saved_model_dir=/path/to/saved_model --output_file=/path/to/output.tflite\r\n",
"Output of tflite_convert:\r\n\r\noutput of tflite_convert here",
"Standalone Code:\r\n\r\ninclude a minimal reproducible code snippet here that demonstrates the issue",
"Additional Information:\r\n\r\nAttached is the saved_model directory I am using for the conversion\r\nThe TensorFlow model was trained using TensorFlow version 2.4.0\r\nI have also tried converting the model using the --enable_v1_converter flag, but I still get the same error message.",
"With this information, it would be easier for someone to help diagnose the issue and provide a solution.",
"Hi @hartpoli Thanks for reporting the issue.\r\n\r\nCould you please provide a toy model to reproduce the issue, else it is hard to debug from the error.\r\n\r\nAlso, can you check in latest TF 2.12 and see if the issue still exists?\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60194\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60194\">No</a>\n"
] | 2023-04-01T04:59:00 | 2023-04-19T01:55:36 | 2023-04-19T01:55:33 | NONE | null | null | null | desc: | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60194/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60194/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60193 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60193/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60193/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60193/events | https://github.com/tensorflow/tensorflow/pull/60193 | 1,650,212,351 | PR_kwDOArmXAs5NZXxy | 60,193 | [tflite] Add png to tflite evaluation tool | {
"login": "freedomtan",
"id": 3395998,
"node_id": "MDQ6VXNlcjMzOTU5OTg=",
"avatar_url": "https://avatars.githubusercontent.com/u/3395998?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/freedomtan",
"html_url": "https://github.com/freedomtan",
"followers_url": "https://api.github.com/users/freedomtan/followers",
"following_url": "https://api.github.com/users/freedomtan/following{/other_user}",
"gists_url": "https://api.github.com/users/freedomtan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/freedomtan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/freedomtan/subscriptions",
"organizations_url": "https://api.github.com/users/freedomtan/orgs",
"repos_url": "https://api.github.com/users/freedomtan/repos",
"events_url": "https://api.github.com/users/freedomtan/events{/privacy}",
"received_events_url": "https://api.github.com/users/freedomtan/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | open | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Sorry, I am probably not the person to review it",
"@gbaned from `git blame tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.cc`, the file was mainly touched by @srjoglekar246 and @thaink ",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @gbaned, is there anything I can do to move forward?",
"> Hi @gbaned, is there anything I can do to move forward?\r\n\r\nHi @freedomtan Sorry for the delay. Nothing pending from your end. ",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!",
"Hi @Ferev Can you please review this PR ? Thank you!\r\n\r\n",
"Hi @Ferev Can you please review this PR ? Thank you!"
] | 2023-04-01T00:47:36 | 2024-06-07T16:06:04 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60193",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60193",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60193.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60193.patch",
"merged_at": null
} | Currently, image preprocessing in `tensorflow/lite/tools/evaluation` only supports `jpeg` and `raw` images. This patch add `png` support.
Why we need `png`:
1. raw rgb files are larger
2. the jpeg used in tensorflow doesn't support lossless compression, which is needed for some picture quality models.
3. some datasets uses the png format | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60193/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60193/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60192 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60192/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60192/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60192/events | https://github.com/tensorflow/tensorflow/issues/60192 | 1,650,008,610 | I_kwDOArmXAs5iWSIi | 60,192 | Masked LSTM and GRU using cuDNN 8.1+ give randomly corrupted results and crashes, even during inference. | {
"login": "foxik",
"id": 560016,
"node_id": "MDQ6VXNlcjU2MDAxNg==",
"avatar_url": "https://avatars.githubusercontent.com/u/560016?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/foxik",
"html_url": "https://github.com/foxik",
"followers_url": "https://api.github.com/users/foxik/followers",
"following_url": "https://api.github.com/users/foxik/following{/other_user}",
"gists_url": "https://api.github.com/users/foxik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/foxik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/foxik/subscriptions",
"organizations_url": "https://api.github.com/users/foxik/orgs",
"repos_url": "https://api.github.com/users/foxik/repos",
"events_url": "https://api.github.com/users/foxik/events{/privacy}",
"received_events_url": "https://api.github.com/users/foxik/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547538,
"node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu",
"name": "comp:gpu",
"color": "0052cc",
"default": false,
"description": "GPU related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "kaixih",
"id": 4001424,
"node_id": "MDQ6VXNlcjQwMDE0MjQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/4001424?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kaixih",
"html_url": "https://github.com/kaixih",
"followers_url": "https://api.github.com/users/kaixih/followers",
"following_url": "https://api.github.com/users/kaixih/following{/other_user}",
"gists_url": "https://api.github.com/users/kaixih/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kaixih/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kaixih/subscriptions",
"organizations_url": "https://api.github.com/users/kaixih/orgs",
"repos_url": "https://api.github.com/users/kaixih/repos",
"events_url": "https://api.github.com/users/kaixih/events{/privacy}",
"received_events_url": "https://api.github.com/users/kaixih/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "kaixih",
"id": 4001424,
"node_id": "MDQ6VXNlcjQwMDE0MjQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/4001424?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kaixih",
"html_url": "https://github.com/kaixih",
"followers_url": "https://api.github.com/users/kaixih/followers",
"following_url": "https://api.github.com/users/kaixih/following{/other_user}",
"gists_url": "https://api.github.com/users/kaixih/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kaixih/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kaixih/subscriptions",
"organizations_url": "https://api.github.com/users/kaixih/orgs",
"repos_url": "https://api.github.com/users/kaixih/repos",
"events_url": "https://api.github.com/users/kaixih/events{/privacy}",
"received_events_url": "https://api.github.com/users/kaixih/received_events",
"type": "User",
"site_admin": false
},
{
"login": "reedwm",
"id": 6510203,
"node_id": "MDQ6VXNlcjY1MTAyMDM=",
"avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/reedwm",
"html_url": "https://github.com/reedwm",
"followers_url": "https://api.github.com/users/reedwm/followers",
"following_url": "https://api.github.com/users/reedwm/following{/other_user}",
"gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/reedwm/subscriptions",
"organizations_url": "https://api.github.com/users/reedwm/orgs",
"repos_url": "https://api.github.com/users/reedwm/repos",
"events_url": "https://api.github.com/users/reedwm/events{/privacy}",
"received_events_url": "https://api.github.com/users/reedwm/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@gbaned Could I humbly ask you to assign some CUDA GPU developer to review this bug? It has been causing silent corruption in masked LSTM and GRU code on GPU since TensorFlow 2.5 (the first TF to use cuDNN 8.1 or newer), and it can be replicated.",
"@sachinprasadhs,\r\nI was able to reproduce the issue on tensorflow v2.11, [v2.12](https://colab.research.google.com/gist/tilakrayal/eaed5692e296bf592bc20505e7d4a031/lstm_gru_cudnn_bug.ipynb) and nightly. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/2fd174e9d58ca52f04b969f29f0014c3/lstm_gru_cudnn_bug_nightly.ipynb).",
"Hi, Thanks for your detailed input and pointers, that will certainly help us to investigate further.\r\nBefore moving forward, could you please confirm if you are observing the same behavior with the below configurations using TensorFlow 2.12. \r\nWe had observed the similar behavior with CUDA 11.2 and it was not appearing with the CUDA 11.8 version. Reference issue https://github.com/tensorflow/tensorflow/issues/59671#issuecomment-1471169393\r\n\r\n\r\n<h4 id=\"gpu\" data-text=\"GPU\" role=\"presentation\" style=\"box-sizing: inherit; margin: 32px 0px 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: ; font-stretch: ; font-size: 16px; line-height: ; font-family: Roboto, "Noto Sans", "Noto Sans JP", "Noto Sans KR", "Noto Naskh Arabic", "Noto Sans Thai", "Noto Sans Hebrew", "Noto Sans Bengali", sans-serif; font-optical-sizing: ; font-kerning: ; font-feature-settings: ; font-variation-settings: ; letter-spacing: normal; overflow: hidden; text-overflow: ellipsis; margin-inline-end: -40px; padding-inline-end: 40px; color: rgb(32, 33, 36); orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\"><span class=\"devsite-heading\" role=\"heading\" aria-level=\"4\" style=\"box-sizing: inherit;\">GPU</span><button type=\"button\" class=\"devsite-heading-link button-flat material-icons\" aria-label=\"Copy link to this section: GPU\" data-title=\"Copy link to this section: GPU\" data-id=\"gpu\" style=\"box-sizing: border-box; appearance: none; background: 0px center; border: 0px; border-radius: var(--devsite-button-border-radius,2px); box-shadow: none; color: var(--devsite-icon-color,var(--devsite-secondary-text-color)); cursor: pointer; display: inline-block; font-style: normal; font-variant-ligatures: ; font-variant-caps: ; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: normal; font-stretch: ; font-size: 24px; font-family: "Material Icons"; font-optical-sizing: ; font-kerning: ; font-feature-settings: "liga"; font-variation-settings: ; height: 24px; letter-spacing: normal; line-height: 1; margin: var(--devsite-button-margin,0); margin-inline-end: var(--devsite-button-margin-x-end); max-width: var(--devsite-button-max-width,none); min-width: 36px; outline: 0px; overflow: hidden; padding: 0px 8px; text-align: center; text-decoration: none; text-overflow: ellipsis; text-transform: none; transition: background-color 0.2s ease 0s, border 0.2s ease 0s, box-shadow 0.2s ease 0s; vertical-align: bottom; white-space: nowrap; width: var(--devsite-button-width,auto); overflow-wrap: normal; direction: ltr; -webkit-font-smoothing: antialiased; opacity: 0;\"></button></h4><div class=\"devsite-table-wrapper\" style=\"box-sizing: inherit; margin: var(--devsite-table-margin,16px 0); padding: 0px; overflow: auto; color: rgb(32, 33, 36); font-family: Roboto, "Noto Sans", "Noto Sans JP", "Noto Sans KR", "Noto Naskh Arabic", "Noto Sans Thai", "Noto Sans Hebrew", "Noto Sans Bengali", sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\">\r\n\r\nVersion | Python version | Compiler | Build tools | cuDNN | CUDA\r\n-- | -- | -- | -- | -- | --\r\ntensorflow-2.12.0 | 3.8-3.11 | GCC 9.3.1 | Bazel 5.3.0 | 8.6 | 11.8\r\n\r\n</div>",
"Hi @sachinprasadhs,\r\n\r\nI confirm that I am observing the same behavior (that is, corrupted results, i.e. nonzero batch differences, plus occasional crashes with `CUDA_ERROR_ILLEGAL_ADDRESS`) when using every following configuration:\r\n- TF nightly (2.13.0.dev20230404) from PyPI, cuDNN 8.6, CUDA 11.8\r\n- TF 2.12.0 from PyPI, cuDNN 8.6, CUDA 11.8 (listed on https://www.tensorflow.org/install/source)\r\n- TF 2.11.0 from PyPI, cuDNN 8.1, CUDA 11.2 (listed on https://www.tensorflow.org/install/source)\r\n- TF 2.5.3 from PyPI, cuDNN 8.1, CUDA 11.2 (listed https://www.tensorflow.org/install/source)\r\n\r\nOn the other hand, the following configurations do not exhibit the problem:\r\n- TF 2.4.4 from PyPI, cuDNN 8.0, CUDA 11.0\r\n- custom build of TF 2.11.1, GCC 9, cuDNN 8.0, CUDA 11.1\r\n- custom build of TF 2.8.0, GCC 7, cuDNN 8.0, CUDA 11.1\r\n\r\nNote that there is quite a different codepath for RNNs in cuDNN 8.1 (new set of APIs are used), see https://github.com/tensorflow/tensorflow/blob/4f1dd6d5123f4eb6afc85fac36df09b4a8b49c83/tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc#L1971-L1975 so my guess is that the problem is somewhere there (while it is not in the codepath for cuDNN < 8.1).\r\n\r\nI believe the main problem are actually the corrupted results -- even if there is no crash, the outputs are wrong for some batches. To me, the occasional crash is just an indication that the implementation is actually wrong (and this sometimes manifests in a crash, showing that there is some memory indexing error, which would be consistent with randomly corrupted results).\r\n\r\nIn the issue you mention, no RNNs are being used, so I believe these are two independent issues (because I believe the crash here is caused by the code calling the cuDNN RNN).",
"@kaixih can you look into this?",
"@kaixih A gentle remainder after two weeks -- I would be great if you could find the time to look into the issue (as the original code author) :pray: ",
"Just ran the script on A6000 with the TF2.12 + cuda 12.1 + cudnn 8.9. But I couldn't see the crash even after I use 1000 steps instead of 100 steps. Need to find to try other containers with different settings.",
"@kaixih Thanks a lot for looking in to it!\r\n\r\n- Did you observe the changing results (i.e., non-zero max difference)? I believe it is even more serious than the crashes, because for identical batches the results can vary a lot (causing incorrect outputs of CuDNN LSTM/GRU on all PyPI versions of TF 2.5-TF 2.12).\r\n - My guess is that once we find out the reason for the differing results, it will solve the crashing too. My guess is that the differing results are caused by some memory overwriting, because I have observed the different results only when there are at least _two_ RNNs computed in parallel (for example a Bidirectional layer, which runs two RNNs in the same inputs).\r\n- When I was creating the demonstration example, I found out that the larger the dimensionalities of the LSTM/GRU, the larger chance for difference and the larger change for a crash -- so maybe increasing 2048 to 8192 could make the crash happen.\r\n - On GeForce 1080, dimensionalities like 256 were enough to trigger different results; on A40, it had to be increased to thousands (I kept 2048 as it was enough to trigger the problem on Colab).\r\n\r\nCheers!",
"Yes, I also observed the changing results. If I use the `CUDA_LAUNCH_BLOCKING=1`, the results will be all the same. I think it is a bug. Let me dig into it to confirm if this is a cuDNN issue or TF issue.",
"I just want to add that I can observe similar behavior when using TCN code running under Tensorflow 2.12, CuDNN 8.8, CUDA 11.8 on a GV100 GPU. Our code also uses padding to adjust the sequence length for variable length time series data. Padded sequences are masked out with a masking layer. Our pipeline runs Bayesian optimization with keras tuner to find the optimal hyperparameters. We get the CUDA_ERROR_ILLEGAL_ADDRESS error somewhat randomly, it completes a few trials of BO and then crashes in the middle of an epoch after training for some batches.\r\n\r\nthe same code used to run on the same server with older software, Tensorflow 2.3 and CUDA 10.2 without these crashes.",
"A gentle reminder after two weeks -- thanks for looking into this :pray: :+1: ",
"I hope this issue will be resolved soon.\r\nThe main reason is that Python 3.8 EOL is coming next year, and when Python 3.8 goes EOL, I will need to move to Python 3.9+, which will also require moving to TF2.5+, which will be affected by this issue.\r\n\r\nDue to the EOL of Python 3.7, I considered moving to Python 3.10+, but this issue forced me to move to Python 3.8. However, only a year later I need to move to Python 3.9+. Therefore, I would appreciate it if you could resolve this issue as soon as possible. Maybe there are others in the same situation as me.\r\n\r\nThank you.",
"A gentle reminder after two weeks -- thanks for looking into this :bow: ",
"Can you try the latest cuDNN like 8.9.2: https://docs.nvidia.com/deeplearning/cudnn/release-notes/index.html?\r\n\r\nBasically, we guess the root cause is because the TF uses the async memcopy to prepare the `devSeqLengths` and when the copy actually happens, the host side memory might already be freed, causing the corrupted content in `devSeqLengths`. So, we have some workaround from the cuDNN side to not rely on this behavior. So, can you give a shot of this cudnn version and see if the issue is gone?\r\n\r\n",
"Hi, thanks a lot for all your work! It is great that just an update of cuDNN will be able to fix this.\r\n\r\nI verified that the example from this issue (forward pass only) no longer produces any differences (and have never crashed so far) when using:\r\n- TF 2.11, CUDA 11.2, cuDNN 8.9.1 and cuDNN 8.9.2\r\n- TF 2.12, CUDA 11.8, cuDNN 8.9.1 and cuDNN 8.9.2\r\n\r\nI used both RTX A4000 with cc 8.6 and Quadro P5000 with cc 6.1 for the tests.\r\n\r\nIn a few days I will test also our initial workload of training a RNN seq2seq model, which consists of a complex computation graph with quite a few RNN layers, and will report here. Leaving open until then.\r\n\r\nBTW, in the release notes for 8.9.1, it is said that\r\n> _Starting in cuDNN 8.9.1, the const int32_t devSeqLengths[] argument in cudnnRNNForward(), cudnnRNNBackwardData_v8(), and cudnnRNNBackwardWeights_v8() APIs will be ignored. All three functions will source variable sequence length arrays from RNN data descriptors, configured through the seqLengthArray parameter of cudnnSetRNNDataDescriptor(). The user does not need to transfer this array to device memory; the operation will be performed automatically by RNN APIs. This refinement simplifies the usage of cuDNN RNN APIs. It is also a workaround for random crashes in multi-GPU RNN training on TensorFlow._\r\n\r\nNote that the problem was not only in multi-GPU training, but also in single-GPU training and also single-GPU inference, and the problem was not just the crashes, but also \"just\" silently worse results (in a few tasks we trained models for ~10 hours and performed inference on million of tokens, and we did not experience any crash, just bad results -- during inference, some of the batches produced corrupted results, while other worked fine).\r\n\r\n:pray: Lastly, out of curiosity, is the TF implementation incorrect and you just decided to fix it on the cuDNN side, or is the problem not as simple as saying \"there is a bug on this line in the TF implementation\"? Was this affecting also for example PyTorch, or TF only?",
"Yes, the quoted lines are mainly for resolving another separate issue reported to our cudnn team, which was only reproducible in the multi-GPU settings. I happened to notice it and thought the root cause might be similar to this one. From what we have seen so far, the root cause should be the corrupted `devSeqLengths` on the device side, so depending on its content, it might cause wrong results or even a crash.\r\n\r\nAt this moment, we are not sure if it is TF implementation error or not. I would argue that we need to be very careful to correctly use the cudnn rnn APIs (of course before 8.9.1). For example, currently our guess is that in TF, under some circumstances when we copy the host data to prepare the device array `devSeqLengths`, the host memory might be already freed since it is an async copy. To mitigate such usage overhead, cudnn decides to help users to prepare the `devSeqLengths` so that no explicit `devSeqLengths` is needed anymore. Not very familiar with how the pytorch calls the cudnn. But if it can guarantee the correct devSeqLengths, it should be fine. Hope this explains the backstory.",
"Thanks a lot for the detailed response! I initially thought that the fix in 8.9.1 was motivated by this issue, but it seems it was completely independent ;-) I will report back when I try the full training, but I assume it will work fine given that the forward pass seem to be fixed with 8.9.1.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Sorry for the delay, something else showed up, I will send the experiment results in a few days.",
"I have trained a lemmatizer architecture with a three-layer character LSTM encoder, two-layer sentence-level word LSTM contextualizer, and three-layer character LSTM decoder, and with CUDA 11.8 and cuDNN <8.9.1, it either crashes or gives suboptimal results, and with cuDNN 8.9.2 the results are correct,i.e., they are virtually identical to using cuDNN 8.0.5 (which uses a different code path to cuDNN LSTM).\r\n\r\nSo I think we can close the issue :tada:",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60192\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60192\">No</a>\n",
"Thanks @kaixih for the help :muscle: ",
"> On the other hand, the following configurations do not exhibit the problem:\r\n> \r\n> * TF 2.4.4 from PyPI, cuDNN 8.0, CUDA 11.0\r\n\r\nI have used exactly this combination for my gtx1660ti but there werent deterministic results for LSTM training, even used this code:\r\n```\r\nos.environ['TF_DETERMINISTIC_OPS'] = '1'\r\nos.environ['TF_CUDNN_DETERMINISM'] = '1'\r\n```\r\n\r\nNow I put this debugging method:\r\n`os.environ['CUDA_LAUNCH_BLOCKING'] = '1'`\r\nand the results begin deterministic. The only problem is that my gpu usage fall to 30%.... any ideas?",
"### Problem solved: Determinism LSTM bidirectional with Tensorflow-GPU:\r\n\r\n**My config:**\r\n\r\n> cuda_11.0.3_451.82_win10\r\n> cudnn-11.0-windows-x64-v8.0.5.39\r\n> tensorflow_gpu-2.4.4-cp38-cp38-win_amd64.whl\r\n> python-3.8.7-amd64\r\n> nvidia driver 536.23\r\n> gpu 1660ti\r\n> i5 3570k (base clock)\r\n\r\n**My code:**\r\n\r\n```\r\nimport os\r\nimport numpy as np\r\nimport tensorflow as tf\r\nimport random\r\n\r\nos.environ['TF_DETERMINISTIC_OPS'] = '1'\r\nos.environ['TF_CUDNN_DETERMINISM'] = '1'\r\nos.environ[\"CUBLAS_WORKSPACE_CONFIG\"] = \":4096:8\"\r\ntf.random.set_global_generator(tf.random.Generator.from_seed(1))\r\n\r\nnp.random.seed(1)\r\ntf.random.set_seed(1)\r\nrandom.seed(1)`\r\n```\r\n\r\n**Cublas vs Cuda blocking compared to Non-deterministism standard model:**\r\n\r\nStandard LSTM bidirectional non-deterministic model\r\n\r\n> CPU usage: 15%\r\n> GPU usage: 100%\r\n> Time: 100% (fastest)\r\n\r\n`os.environ['CUDA_LAUNCH_BLOCKING'] = '1'`\r\n\r\n> CPU usage: 50%\r\n> GPU usage: 30%\r\n> Time: 25%\r\n\r\n`os.environ[\"CUBLAS_WORKSPACE_CONFIG\"] = \":4096:8\"`\r\n\r\n> CPU usage: 50%\r\n> GPU usage: 70%\r\n> Time: 80%\r\n\r\n_Interesting: The results using Cuda block or Cublas cfg are the same_\r\n_Important: If you are using a model with Cublas then starting any cpu intensive task will slow down the training and will not return to the original speed._"
] | 2023-03-31T20:47:35 | 2023-12-24T00:26:20 | 2023-06-18T14:15:19 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
TF 2.12, TF 2.11, TF nightly, TF 2.8
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 20.04, Colab
### Mobile device
_No response_
### Python version
3.9, 3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
cuDNN 8.1 or newer
### GPU model and memory
I have observed the issue on GeForce 1080 Ti, GeForce 3090 RTX, A40, T4 from Collab.
### Current Behaviour?
When LSTM or GRU with mask use cuDNN 8.1+ implementation, it randomly give corrupted results (even during inference), and sometimes even crash with error `CUDA_ERROR_ILLEGAL_ADDRESS`.
It has taken me quite some time to be able to reproduce the problem, but I have found it (it manifests reliably on Colab).
Important comments:
- Of course, the problem manifests only when a GPU is available (the CPU implementation is fine).
- The bug manifests only with cuDNN 8.1+, because older cuDNN use different RNN methods. I even recompiled TF 2.11 and TF 2.8 with CUDA 11.1 and cuDNN 8.0, and they work fine.
- The bug manifests only when a `mask` is passed to the GRU and LSTM (the masked RNN calls also use a specific code path).
- The problem is not data-dependent, the same batch sometimes does and sometimes does not trigger the bug (I use the same batch in the example below).
- Sometimes the RNN call end with a `CUDA_ERROR_ILLEGAL_ADDRESS` and crash the program.
- Different GPU models differ in how frequently the corruption happens -- cards with CC 6.1 seem to trigger it more often; cards with CC 8.6 seem to trigger it less, but they still do
- When the dimensionalities of the cells are larger, the problem manifests more often.
- Note that before the recent Colab update, it used cuDNN 8.0.[56] for a very long time (I assume specific Colab packages were being build), so the bug was not manifesting there; but now it does.
My initial guess is that the different RNN calls somehow share memory and sometimes overwrite it (and maybe sometimes is the memory freed from one place and being accessed from the other place, causing the crash).
### Standalone code to reproduce the issue
The Colab notebook showing the problem with TF 2.12.0: https://colab.research.google.com/drive/17a4AcbGf9CyCl4de_vPEbB3QlTwxlV1b?usp=sharing
The Colab notebook showing the problem with TF nightly https://colab.research.google.com/drive/1ONQ7EBF9iLkSmmJE3yb04nSNbhW9fnlV?usp=sharing
The code triggering the problem:
```python
import numpy as np
import tensorflow as tf
print(tf.__version__)
def create_model(use_mask: bool) -> tf.keras.Model:
inputs = tf.keras.layers.Input(shape=[None], dtype=tf.int32)
if use_mask:
mask = inputs >= 0
else:
mask = None
h = tf.keras.layers.Embedding(64, 2048)(tf.math.maximum(inputs, 0))
h1 = tf.keras.layers.Bidirectional(tf.keras.layers.GRU(2048, return_sequences=True), merge_mode="sum")(h, mask=mask)
h2 = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(2048, return_sequences=True), merge_mode="sum")(h, mask=mask)
h = tf.keras.layers.Dense(10)(h1 + h2)
return tf.keras.Model(inputs, h)
# Data
data = tf.data.Dataset.from_tensor_slices([[j if j <= i else -1 for j in range(64)] for i in range(64)]).batch(64)
# However, when masking is used, even prediction on GPU gives different result.
# It also sometimes crases with the error `CUDA_ERROR_ILLEGAL_ADDRESS`.
# The full error log is copied below.
# If `use_mask=False` is passed, no problem happens.
# Models
tf.keras.utils.set_random_seed(42)
model = create_model(use_mask=True)
# Run prediction
gold = None
for i in range(100):
result = model.predict(data, verbose=0)
if gold is None:
gold = result
print("Batch {}, max difference {}, mean difference {}".format(i, np.max(np.abs(gold - result)), np.mean(np.abs(gold - result))))
```
### Relevant log output
```shell
Batch 0, max difference 0.0, mean difference 0.0
Batch 1, max difference 0.0, mean difference 0.0
Batch 2, max difference 0.0, mean difference 0.0
Batch 3, max difference 0.0, mean difference 0.0
Batch 4, max difference 0.0, mean difference 0.0
Batch 5, max difference 0.0, mean difference 0.0
Batch 6, max difference 1.6253925561904907, mean difference 0.032524894922971725
Batch 7, max difference 1.5961412191390991, mean difference 0.034154243767261505
Batch 8, max difference 0.0, mean difference 0.0
Batch 9, max difference 0.13439376652240753, mean difference 0.009293164126574993
Batch 10, max difference 0.0, mean difference 0.0
Batch 11, max difference 0.0, mean difference 0.0
Batch 12, max difference 0.0, mean difference 0.0
Batch 13, max difference 0.0, mean difference 0.0
Batch 14, max difference 0.0, mean difference 0.0
Batch 15, max difference 0.0, mean difference 0.0
Batch 16, max difference 0.0, mean difference 0.0
Batch 17, max difference 0.0, mean difference 0.0
Batch 18, max difference 0.0, mean difference 0.0
Batch 19, max difference 0.0, mean difference 0.0
Batch 20, max difference 0.0900668054819107, mean difference 0.006251291837543249
Batch 21, max difference 1.516040325164795, mean difference 0.03404051065444946
Batch 22, max difference 0.0, mean difference 0.0
Batch 23, max difference 0.09510315954685211, mean difference 0.004909028299152851
Batch 24, max difference 0.0, mean difference 0.0
Batch 25, max difference 0.0, mean difference 0.0
Batch 26, max difference 0.0, mean difference 0.0
Batch 27, max difference 0.10816850513219833, mean difference 0.006311381701380014
Batch 28, max difference 0.06991208344697952, mean difference 0.004763560835272074
Batch 29, max difference 0.0, mean difference 0.0
Batch 30, max difference 0.0, mean difference 0.0
Batch 31, max difference 0.12369412928819656, mean difference 0.0054976968094706535
Batch 32, max difference 1.114426612854004, mean difference 0.01574256643652916
Batch 33, max difference 1.1078299283981323, mean difference 0.01561223715543747
Batch 34, max difference 0.0, mean difference 0.0
Batch 35, max difference 0.07631748914718628, mean difference 0.004826296120882034
Batch 36, max difference 0.10820074379444122, mean difference 0.006503588054329157
Batch 37, max difference 0.09048224240541458, mean difference 0.006238402798771858
Batch 38, max difference 0.0, mean difference 0.0
Batch 39, max difference 0.0, mean difference 0.0
Batch 40, max difference 0.1100485697388649, mean difference 0.014095092192292213
Batch 41, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 42, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 43, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 44, max difference 0.06849975883960724, mean difference 0.004877315368503332
Batch 45, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 46, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 47, max difference 0.09048224240541458, mean difference 0.006395397242158651
Batch 48, max difference 0.12369412928819656, mean difference 0.005698652006685734
Batch 49, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 50, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 51, max difference 1.1203747987747192, mean difference 0.016059130430221558
Batch 52, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 53, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 54, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 55, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 56, max difference 0.07624031603336334, mean difference 0.0050272345542907715
Batch 57, max difference 1.6275964975357056, mean difference 0.032646626234054565
Batch 58, max difference 0.043441060930490494, mean difference 0.0046346113085746765
Batch 59, max difference 0.007873136550188065, mean difference 0.0007940558716654778
Batch 60, max difference 0.08132395148277283, mean difference 0.0063618021085858345
```
Then the following error appeared and crashed the program:
```shell
Mar 31, 2023, 10:30:50 PM WARNING 2023-03-31 20:30:50.700469: E tensorflow/compiler/xla/stream_executor/cuda/cuda_event.cc:29] Error polling for event status: failed to query event: CUDA_ERROR_ILLEGAL_ADDRESS: an illegal memory access was encountered
Mar 31, 2023, 10:30:50 PM WARNING 2023-03-31 20:30:50.700546: F tensorflow/core/common_runtime/device/device_event_mgr.cc:223] Unexpected Event status: 1
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60192/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60192/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60191 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60191/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60191/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60191/events | https://github.com/tensorflow/tensorflow/issues/60191 | 1,649,834,925 | I_kwDOArmXAs5iVnut | 60,191 | Fail to compile TF 2.12.0 with XCode 14.3 due to Compiler flag in boringssl/src/crypto/x509 | {
"login": "feranick",
"id": 35967,
"node_id": "MDQ6VXNlcjM1OTY3",
"avatar_url": "https://avatars.githubusercontent.com/u/35967?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/feranick",
"html_url": "https://github.com/feranick",
"followers_url": "https://api.github.com/users/feranick/followers",
"following_url": "https://api.github.com/users/feranick/following{/other_user}",
"gists_url": "https://api.github.com/users/feranick/gists{/gist_id}",
"starred_url": "https://api.github.com/users/feranick/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/feranick/subscriptions",
"organizations_url": "https://api.github.com/users/feranick/orgs",
"repos_url": "https://api.github.com/users/feranick/repos",
"events_url": "https://api.github.com/users/feranick/events{/privacy}",
"received_events_url": "https://api.github.com/users/feranick/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"The issue is related to an unused variable in `external/boringssl/src/crypto/x509/t_x509.c:321:18`. Removing that variable fixes the issue. See attached.\r\n\r\nPatch: [issue_60191_patch.txt](https://github.com/tensorflow/tensorflow/files/11149628/issue_60191_patch.txt)\r\n\r\n",
"@feranick \r\nCould you please elaborate more and provide detailed steps to replicate the issue reported here ?\r\n\r\nThank you!",
"> Could you please elaborate more and provide detailed steps to replicate the issue reported here ?\r\n\r\n1. Make sure you have `XCode 14.3` installed (earlier versions won't compile TF as per issue: https://github.com/tensorflow/tensorflow/issues/58368 )\r\n2. `git clone` TF and checkout version 2.12.0 (or 2.11.1)\r\n3. `cd` in the folder `tensorflow` run `./configure` with all default options. \r\n4. run compilation: `bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package --verbose_failures`\r\n\r\nAt some point compilation will stop with the error in this issue. \r\n\r\nTo fix it:\r\n1. run your text editor (I use nano) into the external folder with the problematic library boringssl: `nano /private/var/tmp/_bazel_YOU-AS-USER/SOME_ALPHANUMERIC/external/boringssl/src/crypto/x509/t_x509.c`\r\n2. modify the code according to the patch attached (essentially remove all references to the unused variable `l`)\r\n3. restart compilation: `bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package --verbose_failures`\r\n\r\nPatch: \r\n[issue_60191_patch.txt](https://github.com/tensorflow/tensorflow/files/11150058/issue_60191_patch.txt)\r\n\r\n\r\n\r\n",
"There might be ways to disable the `-Wunused-but-set-variable` flag, but I prefer to actually fix the code by removing the useless variable in first place. \r\n\r\nRemoving the variable should be applied in the ustream version as well (or make it do something useful, if that was the intent)",
"Note: the issue is not present in the master git for boringssl: \r\nhttps://boringssl.googlesource.com/boringssl/\r\n\r\nTh unused variable is simply removed as per my patch above. Therefore TF either needs to resync boringssl for a newer release or apply my patch (attached). \r\nPatch: \r\n[issue_60191_patch.txt](https://github.com/tensorflow/tensorflow/files/11149626/issue_60191_patch.txt)\r\n",
"@feranick ,\r\n\r\nThanks for bringing this with the solution. If you are willing to contribute please feel free to raise a PR.\r\n\r\nThanks!",
"I would... Unfortunately the library is not included in the main TF tree, as it is pulled from private google servers. It needs to be fixed internally. BTW, TF pulls a specific version (can't tell you which one), but the bug is no longer present in the current master for boringssl (basically it has my patch applied). So bazel or whatever software pulls boringssl from the server needs to be updated to pull a more recent version, something only people with access to Google boringssl private repo can do.\r\nhttps://boringssl.googlesource.com/boringssl/\r\nIt is also fixed in the github repo:\r\nhttps://github.com/google/boringssl\r\nSo all this really needs is to pull a more recent version of boringssl. ",
"Also, correct me if I am wrong.The file you mentioned for correction seems to be a temp file generated during bazel build.Not sure we can fix this from TF source tree. May be its related to Bazel.\r\n\r\nI have gone through the bazel build docs in TF repo and found this one have some context for boring SSL. \r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/bc54be865c99c9c8b8174c98bf8665af4ab10949/tensorflow/workspace2.bzl#L557-L563\r\n\r\nWhether we can do something here by changing URL or any thing to rectify this problem ?",
"> Whether we can do something here by changing URL or any thing to rectify this problem ?\r\n\r\nYes, you are correct. Bazel builds it within a temporary folder.\r\n\r\nAnd yes, I would think changing the URL might do it. However, I am not sure what URL/file to use from git as it probably uses an internal branch that is tar zipped. So the question is whether that package is there exclusively for TF... Maybe one can create a new package branched from main and placed in the same folder and then correct the reference URL in bazel.... ",
"OK, on a deeper inspection, it seems that the link has been already fixed in TF master. When looking at `tensorflow/tensorflow/workspace2.bzl`\r\n\r\nTF Master:\r\n```\r\n tf_http_archive(\r\n name = \"boringssl\",\r\n sha256 = \"9dc53f851107eaf87b391136d13b815df97ec8f76dadb487b58b2fc45e624d2c\",\r\n strip_prefix = \"boringssl-c00d7ca810e93780bd0c8ee4eea28f4f2ea4bcdc\",\r\n system_build_file = \"//third_party/systemlibs:boringssl.BUILD\",\r\n urls = tf_mirror_urls(\"https://github.com/google/boringssl/archive/c00d7ca810e93780bd0c8ee4eea28f4f2ea4bcdc.tar.gz\"),\r\n )\r\n```\r\n\r\nwhile for TF 2.12.0:\r\n```\r\ntf_http_archive(\r\n name = \"boringssl\",\r\n sha256 = \"534fa658bd845fd974b50b10f444d392dfd0d93768c4a51b61263fd37d851c40\",\r\n strip_prefix = \"boringssl-b9232f9e27e5668bc0414879dcdedb2a59ea75f2\",\r\n system_build_file = \"//third_party/systemlibs:boringssl.BUILD\",\r\n urls = tf_mirror_urls(\"https://github.com/google/boringssl/archive/b9232f9e27e5668bc0414879dcdedb2a59ea75f2.tar.gz\"),\r\n )\r\n```\r\nSo, in principle, one would only need to replace the reference links in `workspace2.bzl`to the newer version now in master...",
"I am doing a test build where I replaced the strings above from main. Will report shortly.",
"So far compilation is proceeding normally, beyond the point where it would crash because of this issue. It seems like the proposed solution (swapping the `tf_http_archive` from master) will fix the issue, possibly also for the 2.12.0 branch.",
"I can confirm that compilation proceeds correctly on any platform I tried (MacOSX, linux).",
"> Thanks for bringing this with the solution. If you are willing to contribute please feel free to raise a PR.\r\n\r\nPull request is in https://github.com/tensorflow/tensorflow/pull/60259\r\n",
"@feranick ,\r\n\r\nThanks for all your effort and time in resolving and raising the PR. Our Team will review and update.\r\n\r\nThanks!",
"Hi @feranick ,\r\n\r\nI can see nightly build was updated as required.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/0bc361b51ee4bad40392e77641ab74bd1ec4331a/tensorflow/workspace2.bzl#L569-L575\r\n\r\nCan we mark this as resolved. Please spare some time to verify and close the issue.\r\n\r\nThanks!",
"It works now. Thanks for pushing it. Closing.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60191\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60191\">No</a>\n"
] | 2023-03-31T18:32:20 | 2023-06-22T12:18:58 | 2023-06-22T12:18:56 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
No
### OS Platform and Distribution
macOS 13.3
### Mobile device
_No response_
### Python version
3.10
### Bazel version
5.3.0
### GCC/Compiler version
XCode 14.3
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
Using standard compiling procedure (no special flags), compilation of the external library: boringssl/src/crypto/x509 fails. Log attached below.
```
### Standalone code to reproduce the issue
```shell
Compile TF 2.12.0 using MacOS 13.x and XCode 14.3 (not earlier).
```
### Relevant log output
```shell
: /private/var/tmp/_bazel_alex/dc1a9368c8e4ba5b96348c2850b37ab0/external/boringssl/BUILD:161:11: Compiling src/crypto/x509/t_x509.c [for host] failed: (Exit 1): cc_wrapper.sh failed: error executing command external/local_config_cc/cc_wrapper.sh -U_FORTIFY_SOURCE -fstack-protector -Wall -Wthread-safety -Wself-assign -Wunused-but-set-parameter -Wno-free-nonheap-object -fcolor-diagnostics ... (remaining 44 arguments skipped)
external/boringssl/src/crypto/x509/t_x509.c:321:18: error: variable 'l' set but not used [-Werror,-Wunused-but-set-variable]
int ret = 0, l, i;
^
1 error generated.
Target //tensorflow/tools/pip_package:build_pip_package failed to build
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60191/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60191/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60190 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60190/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60190/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60190/events | https://github.com/tensorflow/tensorflow/pull/60190 | 1,649,633,663 | PR_kwDOArmXAs5NXfIF | 60,190 | Add big-endian support to String TensorType in TFLite FlatBuffer models | {
"login": "kun-lu20",
"id": 78156688,
"node_id": "MDQ6VXNlcjc4MTU2Njg4",
"avatar_url": "https://avatars.githubusercontent.com/u/78156688?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kun-lu20",
"html_url": "https://github.com/kun-lu20",
"followers_url": "https://api.github.com/users/kun-lu20/followers",
"following_url": "https://api.github.com/users/kun-lu20/following{/other_user}",
"gists_url": "https://api.github.com/users/kun-lu20/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kun-lu20/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kun-lu20/subscriptions",
"organizations_url": "https://api.github.com/users/kun-lu20/orgs",
"repos_url": "https://api.github.com/users/kun-lu20/repos",
"events_url": "https://api.github.com/users/kun-lu20/events{/privacy}",
"received_events_url": "https://api.github.com/users/kun-lu20/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @terryheo ,\r\n\r\nHope all is well with you and thanks for helping us review the previous TFLite related PRs.\r\n\r\nCould you please review this PR when you have a chance? Thanks again!",
"Hi @terryheo ,\r\n\r\nCould you please take a look at this PR when you have some time?\r\n\r\nThank you very much!",
"Hi @terryheo Can you please review this PR ? Thank you!",
"Hi @terryheo ,\r\n\r\nCould you please review this PR when you have a chance? \r\n\r\nThank you very much!",
"Hi @zichuan-wei ,\r\n\r\nThank you so much for reviewing this PR. \r\n\r\nI've made changes as per your review comment. Could you please take a look again? Thanks!",
"Hi @zichuan-wei ,\r\n\r\nCould you please review this PR again? Thank you very much!",
"Hi @zichuan-wei ,\r\n\r\nCould you please take a look at the code change when you have a chance?\r\n\r\nThanks!",
"Hi @zichuan-wei ,\r\n\r\nI think the failures in `Py+CPP Test Suite` check are not related to the code changes in this PR, since the changes are specific to Big-Endian systems and most are enclosed in `#if FLATBUFFERS_LITTLEENDIAN == 0` macros.\r\n\r\nHowever, I'm not sure why the `feedback/copybara - Google internal checks` failed, since I couldn't access the logs.\r\n\r\nCould you please take a look? Thank you very much!",
"Hi @gbaned ,\r\n\r\nSince I couldn't access the logs, could you please help check why the `feedback/copybara - Google internal checks` failed? \r\n\r\nThank you very much!",
"> Hi @gbaned ,\r\n> \r\n> Since I couldn't access the logs, could you please help check why the `feedback/copybara - Google internal checks` failed?\r\n> \r\n> Thank you very much!\r\n\r\nHi @kun-lu20 Sorry for the delay in response. We will check it. Thank you so much!",
"Hi @gbaned ,\r\n\r\nDo you have any updates reg this PR? \r\n\r\nThank you very much!",
"> Hi @gbaned ,\r\n> \r\n> Do you have any updates reg this PR?\r\n> \r\n> Thank you very much!\r\n\r\nHi @kun-lu20 Sorry for the delay in response. We are working on this PR internally. Thank you so much!",
"@gbaned Thanks for letting me know!"
] | 2023-03-31T16:01:40 | 2023-09-28T19:05:03 | 2023-09-28T19:05:02 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60190",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60190",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60190.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60190.patch",
"merged_at": "2023-09-28T19:05:02"
} | PR #58494 has added big-endian support to numeric TensorTypes in TFLite FlatBuffers. However, since TFLite uses `tflite::DynamicBuffer` to encode vector of strings, the header of string buffer contains raw bytes which record the number of strings, the offsets of each string, etc., as shown in the following code snippet: https://github.com/tensorflow/tensorflow/blob/864bf2ca8e4f314d9ad01d240d9e3fec2b653c93/tensorflow/lite/string_util.cc#L78-L87 Thus the String TensorType will have endianness issue if a TFLite model is used across platforms with different endianness formats.
This PR aims to solve this issue in both C++ and Python code and uses the same guidelines on big-endian machines as PR #58494 , such as:
1. Convert the string buffers from LE(little-endian) to BE(big-endian) format when loading a TFLite model from a file.
2. Convert the string buffers from BE to LE format when writing a serialized binary string of TFLite model to a file.
3. Keep the header of string buffers in BE format when the model/buffer is in memory.
An argument `bool from_big_endian` was added to the function declaration of `FlatBufferModel::ByteSwapBuffer()` , because in this function we need to know the endianness of the raw bytes in the header of string buffer, so that we can read the `num_of_strings` data correctly.
After applying this PR, the String TensorType will be correctly byte-swapped along with other numeric TensorTypes when necessary. We've tested the code change on TensorFlow test suite, it won't cause any regressions on BE/LE platforms, and can fix the following test failure on s390x (big-endian arch) in master branch:
```bash
//tensorflow/compiler/xla/service/cpu/tests:cpu_infeed_test
```
We've also tested this PR with the [tensorflow/serving](https://github.com/tensorflow/serving) test suite, failures in the following test cases could pass on s390x after this change, since the string tensors in TFLite models which were generated on LE machines could now be loaded successfully on BE platforms.
```bash
//tensorflow_serving/servables/tensorflow:saved_model_bundle_factory_test
//tensorflow_serving/servables/tensorflow:tflite_interpreter_pool_test
//tensorflow_serving/servables/tensorflow:tflite_session_test
``` | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60190/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60190/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60189 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60189/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60189/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60189/events | https://github.com/tensorflow/tensorflow/pull/60189 | 1,649,515,505 | PR_kwDOArmXAs5NXFI6 | 60,189 | Enable secure grpc++/grpc deps and ssl features on s390x | {
"login": "kun-lu20",
"id": 78156688,
"node_id": "MDQ6VXNlcjc4MTU2Njg4",
"avatar_url": "https://avatars.githubusercontent.com/u/78156688?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kun-lu20",
"html_url": "https://github.com/kun-lu20",
"followers_url": "https://api.github.com/users/kun-lu20/followers",
"following_url": "https://api.github.com/users/kun-lu20/following{/other_user}",
"gists_url": "https://api.github.com/users/kun-lu20/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kun-lu20/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kun-lu20/subscriptions",
"organizations_url": "https://api.github.com/users/kun-lu20/orgs",
"repos_url": "https://api.github.com/users/kun-lu20/repos",
"events_url": "https://api.github.com/users/kun-lu20/events{/privacy}",
"received_events_url": "https://api.github.com/users/kun-lu20/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks @sagunb !",
"Looks like the following error shown in the PR checking logs wasn't caused by the code change in this PR:\r\n\r\n```bash\r\nexternal/llvm-project/llvm/include/llvm/IR/Attributes.h:91:14: fatal error: 'llvm/IR/Attributes.inc' file not found\r\n #include \"llvm/IR/Attributes.inc\"\r\n ^~~~~~~~~~~~~~~~~~~~~~~~\r\n1 error generated.\r\n```\r\n\r\n@sagunb @Neilblaze Could you please help me check the status of this PR? Please let me know if there is any change I should make at my end. Thank you very much!",
"Hi @gbaned ,\r\n\r\nCould you please help me check the status of this PR?\r\n\r\nThank you very much!",
"> Hi @gbaned ,\r\n> \r\n> Could you please help me check the status of this PR?\r\n> \r\n> Thank you very much!\r\n\r\nHi @kun-lu20 This PR is processing internally. Thank you so much!",
"@gbaned Thanks for checking!"
] | 2023-03-31T14:56:16 | 2023-07-17T04:04:47 | 2023-07-17T04:04:46 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60189",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60189",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60189.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60189.patch",
"merged_at": "2023-07-17T04:04:46"
} | Since `boringssl` has not been supported on s390x yet, `@com_github_grpc_grpc//:grpc_unsecure` and `@com_github_grpc_grpc//:grpc++_unsecure` deps used to be chosen when building TensorFlow on s390x.
However, we can enable secure grpc++/grpc deps and ssl related features for TensorFlow on s390x via `openssl` by using `TF_SYSTEM_LIBS="boringssl"` flag in bazel commands.
This PR aims to enable the above-mentioned features on s390x by removing the specific `grpc_unsecure` and `grpc++_unsecure` deps from BUILD files and adding the `TF_SYSTEM_LIBS="boringssl"` flag as a default option for Bazel during the configuration stage on s390x.
After applying the above change, the following test cases would pass on s390x:
```bash
//tensorflow/core/platform/cloud:compute_engine_metadata_client_test
//tensorflow/core/platform/cloud:compute_engine_zone_provider_test
//tensorflow/core/platform/cloud:curl_http_request_test
//tensorflow/core/platform/cloud:gcs_file_system_test
//tensorflow/core/platform/cloud:google_auth_provider_test
//tensorflow/core/platform/cloud:oauth_client_test
```
Fixes https://github.com/tensorflow/tensorflow/issues/51770 . | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60189/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60189/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60188 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60188/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60188/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60188/events | https://github.com/tensorflow/tensorflow/issues/60188 | 1,649,459,157 | I_kwDOArmXAs5iUL_V | 60,188 | Tflite benchmark app build issues | {
"login": "mescoulan-gpsw",
"id": 38665402,
"node_id": "MDQ6VXNlcjM4NjY1NDAy",
"avatar_url": "https://avatars.githubusercontent.com/u/38665402?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mescoulan-gpsw",
"html_url": "https://github.com/mescoulan-gpsw",
"followers_url": "https://api.github.com/users/mescoulan-gpsw/followers",
"following_url": "https://api.github.com/users/mescoulan-gpsw/following{/other_user}",
"gists_url": "https://api.github.com/users/mescoulan-gpsw/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mescoulan-gpsw/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mescoulan-gpsw/subscriptions",
"organizations_url": "https://api.github.com/users/mescoulan-gpsw/orgs",
"repos_url": "https://api.github.com/users/mescoulan-gpsw/repos",
"events_url": "https://api.github.com/users/mescoulan-gpsw/events{/privacy}",
"received_events_url": "https://api.github.com/users/mescoulan-gpsw/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @mescoulan-gpsw Thanks for reporting the issue.\r\n\r\nI was able to successfully build the benchmark model with r2.12 version on MacOS with Bazel 5.3.0 as per the instructions given [here](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark#on-android). Please find the screenshot below.\r\n\r\n<img width=\"564\" alt=\"Screenshot 2023-04-03 at 11 20 26 PM\" src=\"https://user-images.githubusercontent.com/118897289/229589801-6d19df8a-7147-4ce2-815a-49bda86f5d45.png\">\r\n\r\n\r\nThe `configure` options are given for your reference.\r\n\r\n\r\n<img width=\"593\" alt=\"Screenshot 2023-04-03 at 11 21 22 PM\" src=\"https://user-images.githubusercontent.com/118897289/229589829-e21515dd-2361-4289-aa46-fb306d83ba99.png\">\r\n\r\n\r\nCan you try you using r2.12 and using [this](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark#on-android) and let us know if the issue still exists?\r\n\r\nThanks.\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60188\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60188\">No</a>\n",
"Hello @pjpratik , sorry for late reply.\r\nBy using r2.12, bazel 5.3.0 and the exact same configure options as you I was able to build successfully. Thank you !"
] | 2023-03-31T14:28:44 | 2023-04-19T14:52:02 | 2023-04-19T01:55:35 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.8
### Custom Code
Yes
### OS Platform and Distribution
macos
### Mobile device
_No response_
### Python version
3.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
Trying to build the android benchmark app from source using bazel
I did the configuration setup as follow:
➜ tensorflow git:(master) ✗ ./configure
You have bazel 5.3.0 installed.
Please specify the location of python. [Default is /Library/Frameworks/Python.framework/Versions/3.8/bin/python3]: /Library/Frameworks/Python.framework/Versions/3.8/bin/python3
Found possible Python library paths:
/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages
Please input the desired Python library path to use. Default is [/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages]
Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow.
Do you wish to build TensorFlow with CUDA support? [y/N]: n
No CUDA support will be enabled for TensorFlow.
Do you wish to download a fresh release of clang? (Experimental) [y/N]: n
Clang will not be downloaded.
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -Wno-sign-compare]:
Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: y
Searching for NDK and SDK installations.
Please specify the home path of the Android NDK to use. [Default is /library/Android/Sdk/ndk-bundle]: /Library/Android/sdk/ndk/21.4.7075529
Please specify the (min) Android NDK API level to use. [Available levels: ['16', '17', '18', '19', '21', '22', '23', '24', '26', '27', '28', '29', '30']] [Default is 26]: 21
Please specify the home path of the Android SDK to use. [Default is /library/Android/Sdk]: /library/Android/Sdk
Please specify the Android SDK API level to use. [Available levels: ['23', '28', '33', '33-ext5']] [Default is 33-ext5]: 28
Please specify an Android build tools version to use. [Available versions: ['28.0.3', '30.0.0', '33.0.2']] [Default is 33.0.2]: 30.0.0
Do you wish to build TensorFlow with iOS support? [y/N]: n
No iOS support will be enabled for TensorFlow.
Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
--config=mkl # Build with MKL support.
--config=mkl_aarch64 # Build with oneDNN and Compute Library for the Arm Architecture (ACL).
--config=monolithic # Config for mostly static monolithic build.
--config=numa # Build with NUMA support.
--config=dynamic_kernels # (Experimental) Build kernels into separate shared objects.
--config=v1 # Build with TensorFlow 1 API instead of TF 2 API.
Preconfigured Bazel build configs to DISABLE default on features:
--config=nogcp # Disable GCP support.
--config=nonccl # Disable NVIDIA NCCL support.
Configuration finished
```
### Standalone code to reproduce the issue
```shell
bazel build -c opt --config=android_arm64 tensorflow/lite/tools/benchmark/android:benchmark_model --verbose_failures
```
### Relevant log output
```shell
# Execution platform: @local_execution_config_platform//:platform
tensorflow/lite/delegates/gpu/delegate.cc:796:7: error: use of undeclared identifier 'AHardwareBuffer_acquire'; did you mean 'AHardwareBuffer_Plane'?
AHardwareBuffer_acquire(ahwb);
^
external/androidndk/ndk/sysroot/usr/include/android/hardware_buffer.h:320:3: note: 'AHardwareBuffer_Plane' declared here
} AHardwareBuffer_Plane;
^
tensorflow/lite/delegates/gpu/delegate.cc:804:9: error: use of undeclared identifier 'AHardwareBuffer_release'; did you mean 'AHardwareBuffer_Plane'?
AHardwareBuffer_release(b);
^
external/androidndk/ndk/sysroot/usr/include/android/hardware_buffer.h:320:3: note: 'AHardwareBuffer_Plane' declared here
} AHardwareBuffer_Plane;
^
tensorflow/lite/delegates/gpu/delegate.cc:812:7: error: use of undeclared identifier 'AHardwareBuffer_describe'
AHardwareBuffer_describe(uptr_ahwb.get(), &desc_ahwb);
^
tensorflow/lite/delegates/gpu/delegate.cc:1194:18: error: use of undeclared identifier 'AHardwareBuffer_lock'
return AHardwareBuffer_lock(buffer, this->usage_, -1 /* fence */,
^
tensorflow/lite/delegates/gpu/delegate.cc:1221:24: error: use of undeclared identifier 'AHardwareBuffer_unlock'
return AHardwareBuffer_unlock(buffer, nullptr /* fence */);
^
5 errors generated.
Target //tensorflow/lite/tools/benchmark/android:benchmark_model failed to build
INFO: Elapsed time: 306.142s, Critical Path: 27.97s
INFO: 648 processes: 17 internal, 631 local.
FAILED: Build did NOT complete successfully
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60188/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60188/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60187 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60187/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60187/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60187/events | https://github.com/tensorflow/tensorflow/issues/60187 | 1,649,301,140 | I_kwDOArmXAs5iTlaU | 60,187 | Tensorflow build error with v2.12.0 | {
"login": "alien2327",
"id": 44251382,
"node_id": "MDQ6VXNlcjQ0MjUxMzgy",
"avatar_url": "https://avatars.githubusercontent.com/u/44251382?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alien2327",
"html_url": "https://github.com/alien2327",
"followers_url": "https://api.github.com/users/alien2327/followers",
"following_url": "https://api.github.com/users/alien2327/following{/other_user}",
"gists_url": "https://api.github.com/users/alien2327/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alien2327/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alien2327/subscriptions",
"organizations_url": "https://api.github.com/users/alien2327/orgs",
"repos_url": "https://api.github.com/users/alien2327/repos",
"events_url": "https://api.github.com/users/alien2327/events{/privacy}",
"received_events_url": "https://api.github.com/users/alien2327/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @alien2327 ,\r\n\r\nThis is reported by other community member at #60031 and PR has been raised by a contributor for this which is under review. Please go through the issue and confirm if this is different to the other issue mentioned.\r\n\r\nThanks!",
"Hi, @SuryanarayanaY !\r\n\r\nThank you for let me know #60031, and yes, this is the same error what I saw.\r\n\r\nAgain, thank you and your team for all the effort to support tf!\r\nBest regards",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60187\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60187\">No</a>\n"
] | 2023-03-31T12:50:06 | 2023-04-04T08:48:43 | 2023-04-04T08:48:40 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 22.04 (Docker)
### Mobile device
_No response_
### Python version
3.10.6
### Bazel version
5.3.0
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
When I try to build tensorflow from source, error occured by two file.
- tensorflow/compiler/tf2tensorrt/common/utils.cc:209:10
- tensorflow/compiler/tf2tensorrt/convert/weights.cc:61:10
Since there was no default statement in switch, I just add something like, default: break; and the error has gone.
It is okay to add just defualt and do nothing? or should I use some flags that makes compiler ignore w/o-switch?
Thanks!
```
### Standalone code to reproduce the issue
```shell
Same above.
```
### Relevant log output
```shell
ERROR: /tmp/tensorflow/tensorflow/compiler/tf2tensorrt/BUILD:565:16: Compiling tensorflow/compiler/tf2tensorrt/convert/weights.cc failed: (Exit 1): crosstool_wrapper_driver_is_not_gcc failed: error executing command external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc -MD -MF bazel-out/k8-opt/bin/tensorflow/compiler/tf2tensorrt/_objs/trt_weights/weights.pic.d ... (remaining 180 arguments skipped)
tensorflow/compiler/tf2tensorrt/convert/weights.cc: In member function ‘size_t tensorflow::tensorrt::convert::TRT_ShapedWeights::size_bytes() const’:
tensorflow/compiler/tf2tensorrt/convert/weights.cc:61:10: error: enumeration value ‘kFP8’ not handled in switch [-Werror=switch]
61 | switch (type_) {
| ^
cc1plus: some warnings being treated as errors
Target //tensorflow/tools/pip_package:build_pip_package failed to build
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60187/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60187/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60186 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60186/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60186/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60186/events | https://github.com/tensorflow/tensorflow/pull/60186 | 1,649,283,997 | PR_kwDOArmXAs5NWS4H | 60,186 | Lite: Support binding non-bphwc4 metal buffer to tensor | {
"login": "jongkweh",
"id": 92666095,
"node_id": "U_kgDOBYX47w",
"avatar_url": "https://avatars.githubusercontent.com/u/92666095?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jongkweh",
"html_url": "https://github.com/jongkweh",
"followers_url": "https://api.github.com/users/jongkweh/followers",
"following_url": "https://api.github.com/users/jongkweh/following{/other_user}",
"gists_url": "https://api.github.com/users/jongkweh/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jongkweh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jongkweh/subscriptions",
"organizations_url": "https://api.github.com/users/jongkweh/orgs",
"repos_url": "https://api.github.com/users/jongkweh/repos",
"events_url": "https://api.github.com/users/jongkweh/events{/privacy}",
"received_events_url": "https://api.github.com/users/jongkweh/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @terryheo Can you please review this PR ? Thank you!",
"Hi @jongkweh Can you please check @terryheo's comments and keep us posted ? Thank you!",
"This PR is stale because it has been open for 14 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This PR was closed because it has been inactive for 14 days since being marked as stale. Please reopen if you'd like to work on this further."
] | 2023-03-31T12:37:20 | 2023-09-30T01:47:14 | 2023-09-30T01:47:05 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60186",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60186",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60186.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60186.patch",
"merged_at": null
} | ## Purpose
This is to support binding non-bphwc4 metal buffer to tensor.
## Background
When binding metal buffer to tensor, the current implementation assumes the metal buffer to be in bphwc4 format.
In order to bind a metal buffer to tensor, the user needs to convert the metal buffer to bphwc4 format. (for CPU inputs, this is taken care inside the metal delegate). PHWC4 is a unique format used inside TfLite so i think this should be taken care inside metal delegate just like the CPU input buffers.
## Considerations
If we forcefully convert every binded metal buffer to phwc4 format, users that already are already using `TFLGpuDelegateBindMetalBufferToTensor` function with custom phwc4 might be affected.
So there needs to be a way to check whether the input metal buffer is in phwc4 format.
I guess you could add a parameter for `TFLGpuDelegateBindMetalBufferToTensor` the function but without adding extra parameter, one way we can estimate is by the metal buffer length (but it might not be enough). | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60186/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60186/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60185 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60185/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60185/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60185/events | https://github.com/tensorflow/tensorflow/issues/60185 | 1,648,889,131 | I_kwDOArmXAs5iSA0r | 60,185 | TFTRT Convert using trt.TrtGraphConverterV2 failed due to “Attribute _tftrt_convert_function was not found” | {
"login": "Weili17",
"id": 31896190,
"node_id": "MDQ6VXNlcjMxODk2MTkw",
"avatar_url": "https://avatars.githubusercontent.com/u/31896190?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Weili17",
"html_url": "https://github.com/Weili17",
"followers_url": "https://api.github.com/users/Weili17/followers",
"following_url": "https://api.github.com/users/Weili17/following{/other_user}",
"gists_url": "https://api.github.com/users/Weili17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Weili17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Weili17/subscriptions",
"organizations_url": "https://api.github.com/users/Weili17/orgs",
"repos_url": "https://api.github.com/users/Weili17/repos",
"events_url": "https://api.github.com/users/Weili17/events{/privacy}",
"received_events_url": "https://api.github.com/users/Weili17/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1754777628,
"node_id": "MDU6TGFiZWwxNzU0Nzc3NjI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu:tensorrt",
"name": "comp:gpu:tensorrt",
"color": "ea98ba",
"default": false,
"description": "Issues specific to TensorRT"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@Weili17,\r\nIn order to expedite the trouble-shooting process, could you please provide a complete code you are using, it helps to analyse the issue in an effective way. Thank you!\r\n",
"> @Weili17, In order to expedite the trouble-shooting process, could you please provide a complete code you are using, it helps to analyse the issue in an effective way. Thank you!\r\n\r\nThanks for your reply. I use the trt converter api to optimize my saved model, but when I test the converted model, found out there is no performance(latency) gain when predict. So I print the tf log and found that the conversion process failed with the log “Attribute _tftrt_convert_function was not found”, but I don't know what to do in next step.\r\n\r\nThis is my code.\r\n\r\nfrom __future__ import absolute_import, division, print_function, unicode_literals\r\n\r\nimport numpy as np\r\nimport matplotlib.pyplot as plt\r\n\r\nimport tensorflow as tf\r\nfrom tensorflow import keras\r\nfrom tensorflow.python.compiler.tensorrt import trt_convert as trt\r\nfrom tensorflow.python.saved_model import tag_constants\r\n\r\nconversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS._replace(\r\n precision_mode=trt.TrtPrecisionMode.FP32,\r\n max_workspace_size_bytes=2000000000,\r\n minimum_segment_size= 50)\r\n\r\nconverter = trt.TrtGraphConverterV2(input_saved_model_dir='my_saved_model',\r\n input_saved_model_signature_key='serving_default',\r\n conversion_params=conversion_params)\r\nconverter.convert()\r\nconverter.save(output_saved_model_dir='tftrt_saved_model')\r\nprint('Done Converting to TF-TRT FP32')",
"@Weili17,\r\nI was facing a different error while executing the mentioned code. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/e430fae8f49dc675986f8bdeed4cdb68/untitled1076.ipynb) and provide the colab gist with the reported error. \r\n\r\nThe converter takes a SavedModel as input, and processes it:\r\n\r\n1. Load the SavedModel using **tf.saved_model.load**.\r\n2. Extract the default serving signature from the .signatures map.\r\n3. Run a grappler optimization pass on the signature function. This returns a GraphDef.\r\n4. Create a new ConcreteFunction by importing the GraphDef with wrap_function.\r\n6. Save a new SavedModel using tf.saved_model.save, with the converted signature function as the default serving signature.\r\n`A note about the input: `the input SavedModel's default signature function must be labeled with a specific **attribute (_tftrt_convert_function),** otherwise the optimization will not run. \r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Closing this as stale. Please reopen if this is still a valid request. Thank you!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60185\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60185\">No</a>\n"
] | 2023-03-31T08:09:13 | 2023-06-17T06:26:28 | 2023-06-17T06:26:25 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf2.8.0
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
3.10.6
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.6/8
### GPU model and memory
_No response_
### Current Behaviour?
```shell
A bug happened!
```
### Standalone code to reproduce the issue
```shell
convert my custom model using trt.TrtGraphConverterV2. There is no benefit in comparing the performance before and after conversion. Inspect the tf log, found that the conversion actually failed with the log “Attribute _tftrt_convert_function was not found”
```
### Relevant log output
```shell
2023-03-31 15:29:29.663291: I tensorflow/compiler/tf2tensorrt/convert/trt_optimization_pass.cc:167] Attribute _tftrt_convert_function was not found.
2023-03-31 15:29:29.663297: I tensorflow/compiler/tf2tensorrt/convert/trt_optimization_pass.cc:375] Not optimizing this grappler item: TRTEngineOp_0_2_native_segment
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60185/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60185/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60184 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60184/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60184/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60184/events | https://github.com/tensorflow/tensorflow/issues/60184 | 1,648,804,555 | I_kwDOArmXAs5iRsLL | 60,184 | Linker Errors while building tensorflow from source | {
"login": "p3achyjr",
"id": 8763808,
"node_id": "MDQ6VXNlcjg3NjM4MDg=",
"avatar_url": "https://avatars.githubusercontent.com/u/8763808?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/p3achyjr",
"html_url": "https://github.com/p3achyjr",
"followers_url": "https://api.github.com/users/p3achyjr/followers",
"following_url": "https://api.github.com/users/p3achyjr/following{/other_user}",
"gists_url": "https://api.github.com/users/p3achyjr/gists{/gist_id}",
"starred_url": "https://api.github.com/users/p3achyjr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/p3achyjr/subscriptions",
"organizations_url": "https://api.github.com/users/p3achyjr/orgs",
"repos_url": "https://api.github.com/users/p3achyjr/repos",
"events_url": "https://api.github.com/users/p3achyjr/events{/privacy}",
"received_events_url": "https://api.github.com/users/p3achyjr/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"I should mention that I am using my own toolchain, but is it essentially just clang. Code here: https://github.com/p3achyjr/p3achyGo/blob/main/toolchain/BUILD\r\n\r\nI noticed that the generated CUDA toolchain file adds CUDA include paths, whereas I just add c/c++ include paths. Could this have something to do with it?\r\n\r\nAt any rate, is there a principled way to include tensorflow in a bazel project without building the entire thing statically every time? It's very hard to know which target to build just from perusing the source code (do I use `:tensorflow_cc`? `:tensorflow_framework`? Do I define my own `transitive_hdrs` rule?)",
"@p3achyjr \r\nSorry for the late reply, As per the documentation, TF v2.11.0 requires 8.1 cuDNN and 11.2 CUDA version.Could you please make sure to follow the instructions mentioned [here](https://www.tensorflow.org/install/source#linux) and check the [tested build configuration](https://www.tensorflow.org/install/source#gpu) as well. Please let us know if it helps?\r\nThank you!",
"I tried using gcc 8 and gcc 9 today, and both failed. gcc8 gave the standard \"lld undefined symbol\". gcc failed much more catastrophically--It says the following command failed.\r\n\r\n```\r\ncd /home/axlui/.cache/bazel/_bazel_axlui/f4685961e4a033eb3c5c8f3ed28f41d5/execroot/__main__ && exec env - CUDA_TOOLKIT_PATH=/usr/local/cuda-11.3 CUDNN_INSTALL_PATH=/usr/local/cuda GCC_HOST_COMPILER_PATH=/usr/bin/x86_64-linux-gnu-gcc-8 LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/nccl2/lib:/usr/local/cuda/extras/CUPTI/lib64 PATH=/home/axlui/.cache/bazelisk/downloads/bazelbuild/bazel-6.1.1-linux-x86_64/bin:/home/axlui/.local/bin:/usr/lib/llvm-12/bin:/home/axlui/.local/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/usr/local/go/bin PWD=/proc/self/cwd PYTHONPATH=/home/axlui/p3achyGo/python:/usr/lib/llvm-12/bin:/home/axlui/.local/bin:/usr/local/cuda/bin:/opt/conda/bin:/opt/conda/condabin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/usr/local/go/bin PYTHON_BIN_PATH=/opt/conda/bin/python3 PYTHON_LIB_PATH=/bin TF_CUDA_COMPUTE_CAPABILITIES=7.5 TF_CUDA_VERSION=11 TF_CUDNN_VERSION=8 external/local_config_cuda/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc @bazel-out/k8-opt/bin/cc/main-2.params\r\n```\r\n\r\nWhen I run this by hand, it spits out tons of linker errors, such as:\r\n\r\n```\r\n/usr/bin/ld: mkl_nn_ops.cc:(.text.startup._Z41__static_initialization_and_destruction_0ii.constprop.218+0x731f): undefined reference to `tensorflow::shape_inference::BatchMatMulV2Shape(tensorflow::shape_inference::InferenceContext*)'\r\n/usr/bin/ld: mkl_nn_ops.cc:(.text.startup._Z41__static_initialization_and_destruction_0ii.constprop.218+0x7372): undefined reference to `tensorflow::register_op::OpDefBuilderWrapper::operator()()'\r\n/usr/bin/ld: mkl_nn_ops.cc:(.text.startup._Z41__static_initialization_and_destruction_0ii.constprop.218+0x7437): undefined reference to `tensorflow::register_op::OpDefBuilderWrapper::operator()()'\r\n/usr/bin/ld: mkl_nn_ops.cc:(.text.startup._Z41__static_initialization_and_destruction_0ii.constprop.218+0x750c): undefined reference to `tensorflow::register_op::OpDefBuilderWrapper::operator()()'\r\n```\r\n\r\nMaybe you could take a look at how I've setup the build? I don't know if I'm using it right. https://github.com/p3achyjr/p3achyGo/blob/main/cc/nn/BUILD",
"@p3achyjr ,\r\n\r\nCould you please confirm are you using the TF standard Build instructions mentioned [here](https://www.tensorflow.org/install/source). Are you getting the error during `./configure` ?\r\n\r\nCan you provide exact commands you have used to replicate the reported error ?",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60184\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60184\">No</a>\n"
] | 2023-03-31T07:10:47 | 2023-04-27T01:54:34 | 2023-04-27T01:54:32 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.11
### Custom Code
Yes
### OS Platform and Distribution
Debian GNU/Linux 10
### Mobile device
_No response_
### Python version
3.7
### Bazel version
6.1.1
### GCC/Compiler version
LLVM 12
### CUDA/cuDNN version
11, 8
### GPU model and memory
T4
### Current Behaviour?
```shell
I'm trying to build tensorflow from source via the tutorial (using configure.py). However, when I do so, I run into linker errors, such as
ld.lld: error: undefined symbol: tensorflow::Tensor::Tensor()
>>> referenced by nn_interface.cc
>>> nn_interface.o:(nn::NNInterface::Infer(tensorflow::Scope&, tensorflow::ClientSession&)) in archive bazel-out/k8-opt/bin/cc/nn/libnn_interface.a
>>> referenced by nn_interface.cc
>>> nn_interface.o:(nn::NNInterface::Infer(tensorflow::Scope&, tensorflow::ClientSession&)) in archive bazel-out/k8-opt/bin/cc/nn/libnn_interface.a
>>> referenced by nn_interface.cc
>>> nn_interface.o:(nn::NNInterface::Infer(tensorflow::Scope&, tensorflow::ClientSession&)) in archive bazel-out/k8-opt/bin/cc/nn/libnn_interface.a
>>> referenced 3 more times
I have tried running this multiple times, with both gcc/llvm, and via the config script/through a dependency in my project. When I build TF as a monolithic build, everything works fine, but when I try to build using the TF defaults, I always run into linker issues. What could be going on?
```
### Standalone code to reproduce the issue
```shell
git clone <tensorflow>
cd tensorflow
./configure
```
### Relevant log output
```shell
ld.lld: error: undefined symbol: tensorflow::Tensor::Tensor()
>>> referenced by nn_interface.cc
>>> nn_interface.o:(nn::NNInterface::Infer(tensorflow::Scope&, tensorflow::ClientSession&)) in archive bazel-out/k8-opt/bin/cc/nn/libnn_interface.a
>>> referenced by nn_interface.cc
>>> nn_interface.o:(nn::NNInterface::Infer(tensorflow::Scope&, tensorflow::ClientSession&)) in archive bazel-out/k8-opt/bin/cc/nn/libnn_interface.a
>>> referenced by nn_interface.cc
>>> nn_interface.o:(nn::NNInterface::Infer(tensorflow::Scope&, tensorflow::ClientSession&)) in archive bazel-out/k8-opt/bin/cc/nn/libnn_interface.a
>>> referenced 3 more times
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60184/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60184/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60183 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60183/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60183/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60183/events | https://github.com/tensorflow/tensorflow/issues/60183 | 1,648,742,017 | I_kwDOArmXAs5iRc6B | 60,183 | Please update/fix the tutorial of how to automatically add cuda/dnn path into environment when activate conda environment | {
"login": "TomMeowMeow",
"id": 32924623,
"node_id": "MDQ6VXNlcjMyOTI0NjIz",
"avatar_url": "https://avatars.githubusercontent.com/u/32924623?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/TomMeowMeow",
"html_url": "https://github.com/TomMeowMeow",
"followers_url": "https://api.github.com/users/TomMeowMeow/followers",
"following_url": "https://api.github.com/users/TomMeowMeow/following{/other_user}",
"gists_url": "https://api.github.com/users/TomMeowMeow/gists{/gist_id}",
"starred_url": "https://api.github.com/users/TomMeowMeow/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/TomMeowMeow/subscriptions",
"organizations_url": "https://api.github.com/users/TomMeowMeow/orgs",
"repos_url": "https://api.github.com/users/TomMeowMeow/repos",
"events_url": "https://api.github.com/users/TomMeowMeow/events{/privacy}",
"received_events_url": "https://api.github.com/users/TomMeowMeow/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 284443156,
"node_id": "MDU6TGFiZWwyODQ0NDMxNTY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-bug",
"name": "type:docs-bug",
"color": "159b2e",
"default": false,
"description": "Document issues"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 3911105852,
"node_id": "LA_kwDOArmXAs7pHr08",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20PR%20merge",
"name": "awaiting PR merge",
"color": "4080bf",
"default": false,
"description": "awaiting PR merge"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"editing sh file to new commands proposed by @TomMeowMeow automated the system path",
"The issue will move to closed status once the [#2214](https://github.com/tensorflow/docs/pull/2214) is merged. Thanks!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60183\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60183\">No</a>\n"
] | 2023-03-31T06:15:19 | 2023-04-05T05:58:52 | 2023-04-05T05:58:50 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Documentation Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.12
### Custom Code
No
### OS Platform and Distribution
_No response_
### Mobile device
Linux Ubuntu 22.04.2
### Python version
3.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
Hi guys,
First thanks for the support from TF 2.0 and cuda. I think there is a typo in tutorial which results the cuda would not be found by TF. In the main tutorail from https://www.tensorflow.org/install/pip#linux_setup (access from 2023.3.31).
Where you mention "For your convenience it is recommended that you automate it with the following commands. The system paths will be automatically configured when you activate this conda environment."
and the code be given is:
"mkdir -p $CONDA_PREFIX/etc/conda/activate.d
CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh"
This is somewhat problematic as this would only put "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib" inside the file "env_vars.sh",
and when I activate the conda environment, the cuda path was not automatically loaded simply as "CUDNN_PATH" was not defined. This would then result "GPU not found etc.. no GPU, cuda cannot be load etc.. fix issue etc...".
I believe the fix should be (may not be universal correct but works for me,please help check)"
"
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
"
In this case, the file "env_vars.sh" would contain:
"
CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib
"
Now finally, everytime I activate the conda environment, I no longer need to manually set up the environment path for CUDA.
I know this is somewhat fundamental, but this could be misleading to those high level devloper, and this could cause that CUDA cannot find GPU error without much detailed info. So please consider fixing this in the tutorial webpage: https://www.tensorflow.org/install/pip#linux_setup
Plus, another issue that one needs to update conda before install cuda, but if one is using environment module where the Anaconda was not installed in the global envrionment. Then one needs to be root or other account which has access to update the conda for that specific Anaconda version.
Specifically, say the Anaconda was installed in
/home/software/GlobalModules/apps/binapps/anaconda3/2020.07
If we activate conda envrionment and run:
conda upgrade -n base conda
it will return error no permissions (as the software was centrally distributed that user has no write access to the global installed pacakge (imaging that many users are sharing a HPC).
In which case, one has to be the root user or other user has write access to the folder where we install the Anaconda to update the conda for this version
However, this is not an issue of tensorflow of course, as it will only happen if one is using envrionment module. I provide here just in case anyone fails to update conda to install cuda etc.., as if the update of conda fails, then it will fail to install cuda somehow for no reason. Thanks.
```
### Standalone code to reproduce the issue
```shell
Note that I have installed environment module so this may not happen when only a universal conda was installed.
#connect to some server
ssh -X -p 3060 user@somelinuxserver.com
#environment module load anaconda
module load apps/binapps/anaconda3/2020.07
#activate (assume this venvPy3_8 was created following tutorial from https://www.tensorflow.org/install/pip#linux_setup)
conda activate venvPy3_8
#Try install cuda in virtual envrionment (as suggested)
conda install -c conda-forge cudatoolkit=11.8.0
pip install nvidia-cudnn-cu11==8.6.0.163
#Specify envirionment path (suppose to make my life easier but in fact not)
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
#pip install tensorflow==2.12.*
#Verify CPU setup (should return the CPU and not note that GPU not found)
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
#No GPU found etc...
#Veerify GPU setup (should return the physical GPU if successful)
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
#No GPU found etc...
#Fix, try instead (Go above step of enrionment path)
#Specify envirionment path
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
```
### Relevant log output
```shell
Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60183/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60183/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60182 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60182/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60182/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60182/events | https://github.com/tensorflow/tensorflow/pull/60182 | 1,648,620,372 | PR_kwDOArmXAs5NUFrX | 60,182 | tflite-runtime wheels for Python 3.11 | {
"login": "samypr100",
"id": 3933065,
"node_id": "MDQ6VXNlcjM5MzMwNjU=",
"avatar_url": "https://avatars.githubusercontent.com/u/3933065?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/samypr100",
"html_url": "https://github.com/samypr100",
"followers_url": "https://api.github.com/users/samypr100/followers",
"following_url": "https://api.github.com/users/samypr100/following{/other_user}",
"gists_url": "https://api.github.com/users/samypr100/gists{/gist_id}",
"starred_url": "https://api.github.com/users/samypr100/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/samypr100/subscriptions",
"organizations_url": "https://api.github.com/users/samypr100/orgs",
"repos_url": "https://api.github.com/users/samypr100/repos",
"events_url": "https://api.github.com/users/samypr100/events{/privacy}",
"received_events_url": "https://api.github.com/users/samypr100/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Is there anything else to adjust/todo on this one? Seems like the internal CI builds are working at a glance. Thanks!",
"@terryheo Just checking if this can be merged. Thanks!",
"> @terryheo Just checking if this can be merged. Thanks!\r\n\r\nHi @samypr100 Sorry for the delay. This PR is processing internally, Thank you!",
"@gbaned Just checking in if you found any issues during internal testing that the community can help address.\r\n\r\nDo you think that this MR will make it into the 2.13.0 release?\r\n\r\nThanks!",
"Good question, I'm curious too. Open to make any other changes needed 💯 to get this 🚢 ",
"Hi @terryheo Can you please assist on above comments from @johnthagen, @samypr100. Thank you!",
"Hello all,\r\nAnd thank you for all your work.\r\nAny news on this, or should we stay in python 3.10 for tflite-runtime?",
"Once this PR is merged, the next TF release (2.14?) will have Python 3.11 releases.",
"Thanks @terryheo I've just re-updated the branch w/ master to make sure it's clean",
"One of the tests seems to fail in 3.10 and is not failing in master (From what I checked, this is another that is failing).\r\n\r\n```\r\n//bazel_pip/tensorflow/python/data/experimental/kernel_tests/service:local_workers_test TIMEOUT in 1 out of 24 in 900.1s\r\n Stats over 24 runs: max = 900.1s, min = 6.1s, avg = 50.8s, dev = 177.1s\r\n```",
"@ShamoX Seems like the [arm-ci.yml](https://github.com/tensorflow/tensorflow/actions/workflows/arm-ci.yml?query=branch%3Amaster) workflow has been failing in master from what I'm seeing at least these past few days"
] | 2023-03-31T03:46:24 | 2023-06-12T18:16:30 | 2023-06-12T18:16:29 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60182",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60182",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60182.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60182.patch",
"merged_at": "2023-06-12T18:16:29"
} | Closes #60115
This is a follow on PR to #59423 adding support for Python 3.11 wheel while still retaining a minimum of glibc 2.31 runtime.
* The minimum Numpy versions was increased to `1.23.2` as it's the first version with Python 3.11 support.
* **Python 3.7 support was dropped** due to the Numpy upgrade.
* Fixed a typo in the include paths in download_toolchains.sh `aaarch64` --> `aarch64`
### Related Issues
* #58032 | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60182/reactions",
"total_count": 3,
"+1": 3,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60182/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60181 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60181/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60181/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60181/events | https://github.com/tensorflow/tensorflow/issues/60181 | 1,648,506,268 | I_kwDOArmXAs5iQjWc | 60,181 | How to evaluate a pretrained TF mobilenet_v2 saved_model for accuracy on test dataset | {
"login": "suyash-narain",
"id": 78979784,
"node_id": "MDQ6VXNlcjc4OTc5Nzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/78979784?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/suyash-narain",
"html_url": "https://github.com/suyash-narain",
"followers_url": "https://api.github.com/users/suyash-narain/followers",
"following_url": "https://api.github.com/users/suyash-narain/following{/other_user}",
"gists_url": "https://api.github.com/users/suyash-narain/gists{/gist_id}",
"starred_url": "https://api.github.com/users/suyash-narain/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/suyash-narain/subscriptions",
"organizations_url": "https://api.github.com/users/suyash-narain/orgs",
"repos_url": "https://api.github.com/users/suyash-narain/repos",
"events_url": "https://api.github.com/users/suyash-narain/events{/privacy}",
"received_events_url": "https://api.github.com/users/suyash-narain/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097545817,
"node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis",
"name": "comp:apis",
"color": "0052cc",
"default": false,
"description": "Highlevel API related issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"it seems that the labels in the validation set are not in the correct format for the model's output. MobileNetV2 outputs a 1001-dimensional vector, where each element represents the probability of the input image belonging to a specific class. The validation set labels are just integers representing the class index.\r\n\r\nTo preprocess the data, you need to convert the labels to one-hot vectors. You can use the tf.one_hot function for this purpose",
"> it seems that the labels in the validation set are not in the correct format for the model's output. MobileNetV2 outputs a 1001-dimensional vector, where each element represents the probability of the input image belonging to a specific class. The validation set labels are just integers representing the class index.\r\n> \r\n> To preprocess the data, you need to convert the labels to one-hot vectors. You can use the tf.one_hot function for this purpose\r\n\r\nHi @sunilgiri7 @sushreebarsa \r\nI was missing the one-hot vectors and once I converted the labels to one-hot, the error disappeared. But on evaluation, I was getting really bad accuracy on test data, to the tune of 0.1% accuracy on pretrained mobilenetv2 sourced from tfhub, which is totally incorrect.\r\n\r\n- for test data, I was using imagenet_val dataset consisting of 50000 images. \r\n- val.txt consists of 50000 ground truth labels for the imagenet_val dataset.\r\n- ImageNetLabels.txt was downloaded from https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt \r\n\r\non using the below script:\r\n\r\n```\r\nimport tensorflow as tf\r\nimport tensorflow_hub as hub\r\nimport numpy as np\r\nimport os\r\n\r\nm = tf.keras.Sequential([hub.KerasLayer(\"https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4\", output_shape=(1001,))])\r\nm.build([None, 224, 224, 3]) # Batch input shape.\r\n\r\nimages = '/home/Downloads/ILSVRC2012_img_val/'\r\nclasses = '/home/Documents/tflite_models/imagenet_classes.txt'\r\nlabels ='/home/Documents/val.txt'\r\n#labels ={}\r\n\r\nwith open(labels, 'r') as f:\r\n\tlabel_name = [line.strip() for line in f.readlines()]\r\n\r\nclass_map = {}\r\nwith open(classes, 'r') as f:\r\n\tclasses = [line.strip() for line in f]\r\n\tfor i, class_name in enumerate(classes):\r\n\t\tclass_map[class_name] = i\r\n\r\ntest_labels=[]\r\nfor label in label_name:\r\n\tif label in class_map:\r\n\t\ttest_labels.append(class_map[label])\r\n\telse:\r\n\t\tprint(f\"label '{label} not found in class_map\")\r\n\r\n#print(type(test_labels))\r\ntest_labels = tf.one_hot(test_labels, 1001)\r\n\r\nimage_paths = [os.path.join(images, filename) for filename in os.listdir(images)]\r\n\r\ndataset = tf.data.Dataset.from_tensor_slices((image_paths, test_labels))\r\n\r\ndef preprocess_image(image_path):\r\n\timage = tf.io.read_file(image_path)\r\n\timage = tf.image.decode_jpeg(image, channels=3)\r\n\timage = tf.image.resize(image, [224,224])\r\n\t#image = tf.image.convert_image_dtype(image, tf.float32)\r\n\timage = tf.cast(image, tf.float32) / 255.0\r\n\treturn image\r\n\r\ndataset = dataset.map(lambda image_path, label: (preprocess_image(image_path), label))\r\ndataset = dataset.batch(batch_size=32)\r\n\r\nmodel.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])\r\nloss, accuracy = model.evaluate(dataset)\r\n\r\nprint('loss: ', loss)\r\nprint('accuracy: ', accuracy)\r\n```\r\n\r\ni get the results as:\r\n\r\n> loss: 10.239829063415527\r\n> accuracy: 0.0009599999757483602\r\n\r\nam i missing something here?\r\nmy val.txt and imagenetlabels.txt file are attached\r\n\r\nthanks\r\n[val.txt](https://github.com/tensorflow/tensorflow/files/11127384/val.txt)\r\n[ImageNetLabels.txt](https://github.com/tensorflow/tensorflow/files/11127385/ImageNetLabels.txt)\r\n\r\n\r\n",
"issue might be with the evaluation process or the dataset suyash here is\nsome possibilities>\n- make sure image is in correct format(JPEG)\n- check preprocess function working correctly\n- check if class_map dict map each class name to correct index you could\nprint out dict and compare to ImageNetLabel.text if there any mismatch\n- Try evaluating the model on a smaller subset of the dataset (e.g. 100\nimages) to see if the accuracy improves. If it does, then the issue might\nbe with the size of the dataset or the distribution of the classes\n- Finally, you could try retraining the model on the ImageNet dataset\nhope this helps you suyash\n\nOn Fri, 31 Mar 2023 at 15:24, Suyash ***@***.***> wrote:\n\n> it seems that the labels in the validation set are not in the correct\n> format for the model's output. MobileNetV2 outputs a 1001-dimensional\n> vector, where each element represents the probability of the input image\n> belonging to a specific class. The validation set labels are just integers\n> representing the class index.\n>\n> To preprocess the data, you need to convert the labels to one-hot vectors.\n> You can use the tf.one_hot function for this purpose\n>\n> Hi @sunilgiri7 <https://github.com/sunilgiri7>\n> I was missing the one-hot vectors and once I converted the labels to\n> one-hot, the error disappeared. But on evaluation, I was getting really bad\n> accuracy on test data, to the tune of 0.1% accuracy on pretrained\n> mobilenetv2 sourced from tfhub, which is totally incorrect.\n>\n> - for test data, I was using imagenet_val dataset consisting of 50000\n> images.\n> - val.txt consists of 50000 ground truth labels for the imagenet_val\n> dataset.\n> - ImageNetLabels.txt was downloaded from\n> https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt\n>\n> on using the below script:\n>\n> import tensorflow as tf\n> import tensorflow_hub as hub\n> import numpy as np\n> import os\n>\n> m = tf.keras.Sequential([hub.KerasLayer(\"https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4\", output_shape=(1001,))])\n> m.build([None, 224, 224, 3]) # Batch input shape.\n>\n> images = '/home/mtk/Downloads/ILSVRC2012_img_val/'\n> classes = '/home/mtk/Documents/tflite_models/imagenet_classes.txt'\n> labels ='/home/mtk/Documents/val.txt'\n> #labels ={}\n>\n> with open(labels, 'r') as f:\n> \tlabel_name = [line.strip() for line in f.readlines()]\n>\n> class_map = {}\n> with open(classes, 'r') as f:\n> \tclasses = [line.strip() for line in f]\n> \tfor i, class_name in enumerate(classes):\n> \t\tclass_map[class_name] = i\n>\n> test_labels=[]\n> for label in label_name:\n> \tif label in class_map:\n> \t\ttest_labels.append(class_map[label])\n> \telse:\n> \t\tprint(f\"label '{label} not found in class_map\")\n>\n> #print(type(test_labels))\n> test_labels = tf.one_hot(test_labels, 1001)\n>\n> image_paths = [os.path.join(images, filename) for filename in os.listdir(images)]\n>\n> dataset = tf.data.Dataset.from_tensor_slices((image_paths, test_labels))\n>\n> def preprocess_image(image_path):\n> \timage = tf.io.read_file(image_path)\n> \timage = tf.image.decode_jpeg(image, channels=3)\n> \timage = tf.image.resize(image, [224,224])\n> \t#image = tf.image.convert_image_dtype(image, tf.float32)\n> \timage = tf.cast(image, tf.float32) / 255.0\n> \treturn image\n>\n> dataset = dataset.map(lambda image_path, label: (preprocess_image(image_path), label))\n> dataset = dataset.batch(batch_size=32)\n>\n> model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])\n> loss, accuracy = model.evaluate(dataset)\n>\n> print('loss: ', loss)\n> print('accuracy: ', accuracy)\n>\n> i get the results as:\n>\n> loss: 10.239829063415527\n> accuracy: 0.0009599999757483602\n>\n> am i missing something here?\n> my val.txt and imagenetlabels.txt file are attached\n>\n> thanks\n> val.txt <https://github.com/tensorflow/tensorflow/files/11127384/val.txt>\n> ImageNetLabels.txt\n> <https://github.com/tensorflow/tensorflow/files/11127385/ImageNetLabels.txt>\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/tensorflow/tensorflow/issues/60181#issuecomment-1492676976>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AZI5F7EXRWQ6OILLTWHEEF3W65KSXANCNFSM6AAAAAAWN7ZE2M>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n",
"@suyash-narain Could you refer to the comment above and let us know if there is any update?\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"> @suyash-narain Could you refer to the comment above and let us know if there is any update? Thank you!\r\n\r\nHi, @sushreebarsa, apologies for the late reply. \r\nIs it possible for you to provide with a sample script on how to preprocess data from a subset of imagenet correctly? My current method took into consideration all the bullet points asked by you and yet my accuracy lies around 0-1%, which is surely incorrect.\r\nthanks ",
"@suyash-narain Sorry for the late response!\r\nOn subsets with fewer training images, the model needs to be trained for more epochs and the hyper-parameters need to be adjusted as a requirement. This will give a better performance of the model.\r\nFor preprocessing data from subset of imagenet kindly have a look at [this](https://medium.com/swlh/subsets-of-imagenet-aca5342eb275) article.\r\n\r\nI tried to replicate the issue reported here and faced a different error. Please find the gist and let me know if I am missing something [here](https://colab.research.google.com/gist/sushreebarsa/b0583e20aff5bbf75683cc2aa71a45de/60181.ipynb?pli=1#scrollTo=HtPjd6ONypnv). \r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60181\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60181\">No</a>\n"
] | 2023-03-31T00:51:24 | 2023-06-24T02:07:39 | 2023-06-24T02:07:36 | NONE | null | null | null |
### System information
- **Have I written custom code (as opposed to using a stock example script
provided in TensorFlow)**: No
- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: Ubuntu 20.04
- **TensorFlow installed from (source or binary)**: binary
- **TensorFlow version (use command below)**:2.11
- **Python version**: 3.9
### Describe the problem
How can i use a pretrained saved_model and find its accuracy on a test dataset?
I have mobilenet_v2 saved model which is sourced from https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5
I have an imagenet validation dataset consisting of 50000 images, and a labels.txt file consisting of ground truth labels for those 50000 images.
I also have ImageNetLabels.txt sourced from https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt consisting of 1001 imagenet classes.
How do I preprocess this data so that i can run evaluate() function to find test_data loss and accuracy of this pretrained model?
I am currently using the below script, but it doesn't seem to work:
```
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import os
m = tf.keras.Sequential([hub.KerasLayer("https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4", output_shape=(1001,))])
m.build([None, 224, 224, 3])# Batch input shape.
images = '/home/Downloads/ILSVRC2012_img_val'
classes = '/home/Documents/ImageNetLabels.txt'
labels ='/home/Documents/val.txt'
with open(labels, 'r') as f:
label_name = [line.strip() for line in f.readlines()]
class_map = {}
with open(classes, 'r') as f:
classes = [line.strip() for line in f]
for i, class_name in enumerate(classes):
class_map[class_name] = i
test_labels=[]
for label in label_name:
if label in class_map:
test_labels.append(class_map[label])
else:
print(f"label '{label} not found in class_map")
image_paths = [os.path.join(images, filename) for filename in os.listdir(images)]
dataset = tf.data.Dataset.from_tensor_slices((image_paths, test_labels))
def preprocess_image(image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [224,224])
image = tf.image.convert_image_dtype(image, tf.float32)
image /= 255.0
return image
dataset = dataset.map(lambda image_path, label: (preprocess_image(image_path), label))
dataset = dataset.batch(batch_size=32)
m.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
loss, accuracy = m.evaluate(dataset)
print('loss: ', loss)
print('accuracy: ', accuracy)
```
I get the below error here:
> Traceback (most recent call last):
> File "test1234.py", line 74, in <module>
> loss, accuracy = m.evaluate(dataset)
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler
> raise e.with_traceback(filtered_tb) from None
> File "/tmp/__autograph_generated_filemqiwcebs.py", line 15, in tf__test_function
> retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)
> ValueError: in user code:
>
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1820, in test_function *
> return step_function(self, iterator)
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1804, in step_function **
> outputs = model.distribute_strategy.run(run_step, args=(data,))
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1792, in run_step **
> outputs = model.test_step(data)
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1758, in test_step
> self.compute_loss(x, y, y_pred, sample_weight)
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1082, in compute_loss
> return self.compiled_loss(
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/engine/compile_utils.py", line 265, in __call__
> loss_value = loss_obj(y_t, y_p, sample_weight=sw)
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/losses.py", line 152, in __call__
> losses = call_fn(y_true, y_pred)
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/losses.py", line 284, in call **
> return ag_fn(y_true, y_pred, **self._fn_kwargs)
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/losses.py", line 2004, in categorical_crossentropy
> return backend.categorical_crossentropy(
> File "/home/mtk/.local/lib/python3.8/site-packages/keras/backend.py", line 5532, in categorical_crossentropy
> target.shape.assert_is_compatible_with(output.shape)
>
> ValueError: Shapes (None, 1) and (None, 1001) are incompatible
I assume something is wrong in the way I preprocess my data though, but not sure how to go about it. Some insights would be nice
thanks | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60181/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60181/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60180 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60180/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60180/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60180/events | https://github.com/tensorflow/tensorflow/pull/60180 | 1,648,003,050 | PR_kwDOArmXAs5NSDrA | 60,180 | Use a custom rule for API files generation | {
"login": "meteorcloudy",
"id": 4171702,
"node_id": "MDQ6VXNlcjQxNzE3MDI=",
"avatar_url": "https://avatars.githubusercontent.com/u/4171702?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/meteorcloudy",
"html_url": "https://github.com/meteorcloudy",
"followers_url": "https://api.github.com/users/meteorcloudy/followers",
"following_url": "https://api.github.com/users/meteorcloudy/following{/other_user}",
"gists_url": "https://api.github.com/users/meteorcloudy/gists{/gist_id}",
"starred_url": "https://api.github.com/users/meteorcloudy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/meteorcloudy/subscriptions",
"organizations_url": "https://api.github.com/users/meteorcloudy/orgs",
"repos_url": "https://api.github.com/users/meteorcloudy/repos",
"events_url": "https://api.github.com/users/meteorcloudy/events{/privacy}",
"received_events_url": "https://api.github.com/users/meteorcloudy/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@mihaimaruseac, can you review?",
"@meteorcloudy this is causing the internal build to fail: [cl/520986273](http://cl/520986273). Can you take a look?",
"Yes, will do!",
"Great to have this merged.\r\nFrom https://github.com/tensorflow/tensorflow/issues/60167#issuecomment-1490907122, this is only a partial fix. How do you plan to finish removing the duplicate compilation?",
"Actually the change was automatically rollbacked due to some breakages, see https://github.com/tensorflow/tensorflow/issues/60298. Working on a rollforwad with fix.\r\n\r\nI think the API gen rule is the major one, theoretically we can also fix other similar genrule in a similar way. But in long term, I think there should be a way to tell Bazel that my target and exec are the exact same configuration, so Bazel can avoid building the target twice. /cc @gregestren @aiuto\r\n\r\nOn the other hand, I wonder if there is any way to avoid using those genrule at all? /cc @learning-to-play @mihaimaruseac ",
"In the mean time, can we roll back the commit that caused the regression?\r\nI suppose what you propose will take times to get it.",
"@nouiz Unfortunately, that will prevent updating Bazel to 6.x for TensorFlow. I think with the fix the performance regression is much less significant, which should be fine?",
"The fix is now rolled forward at https://github.com/tensorflow/tensorflow/commit/da439b7d05584f93e745511d66f6d74a58b54b34",
"I think getting rid of API generation genrule and requiring the files to be checked in is a long-term solution, needs several changes, including adding CI to test that the API files are up to date."
] | 2023-03-30T17:11:30 | 2023-04-13T08:58:39 | 2023-04-12T09:53:50 | MEMBER | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60180",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60180",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60180.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60180.patch",
"merged_at": "2023-04-12T09:53:50"
} | To prevent compiling the C++ code twice, we only want to build `api_gen_binary_target` for the target platform and not the execution platform.
To achieve this without causing confusion with source dependencies (e.g. putting `api_gen_binary_target` in `srcs` of the `genrule`), we use a custom rule to execute the command line for generating the API files.
Fixes https://github.com/tensorflow/tensorflow/issues/60167 | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60180/reactions",
"total_count": 3,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 3,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60180/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60179 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60179/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60179/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60179/events | https://github.com/tensorflow/tensorflow/issues/60179 | 1,647,640,464 | I_kwDOArmXAs5iNP-Q | 60,179 | Build failed `not all outputs were created or valid` on `darwin/amd64` | {
"login": "zyxkad",
"id": 91082411,
"node_id": "MDQ6VXNlcjkxMDgyNDEx",
"avatar_url": "https://avatars.githubusercontent.com/u/91082411?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/zyxkad",
"html_url": "https://github.com/zyxkad",
"followers_url": "https://api.github.com/users/zyxkad/followers",
"following_url": "https://api.github.com/users/zyxkad/following{/other_user}",
"gists_url": "https://api.github.com/users/zyxkad/gists{/gist_id}",
"starred_url": "https://api.github.com/users/zyxkad/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zyxkad/subscriptions",
"organizations_url": "https://api.github.com/users/zyxkad/orgs",
"repos_url": "https://api.github.com/users/zyxkad/repos",
"events_url": "https://api.github.com/users/zyxkad/events{/privacy}",
"received_events_url": "https://api.github.com/users/zyxkad/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"A recent commit (https://github.com/tensorflow/tensorflow/commit/51a8992bb9daba2364ac4bb931af1010d554f0fa) used non-standard GNU `realpath --relative`. Quick workaround is to use GNU realpath (in coreutils). On my mac, I used macport to install realpath to `/opt/local/libexec/gnubin`, then add `/opt/local/libexec/gnubin` before `/usr/bin` when running bazel.",
"> A recent commit ([51a8992](https://github.com/tensorflow/tensorflow/commit/51a8992bb9daba2364ac4bb931af1010d554f0fa)) used non-standard GNU `realpath --relative`. Quick workaround is to use GNU realpath (in coreutils). On my mac, I used macport to install realpath to `/opt/local/libexec/gnubin`, then add `/opt/local/libexec/gnubin` before `/usr/bin` when running bazel.\r\n\r\nCan you give a more specific command to explain how to do it? I don't know how to install GNU realpath. Thanks very much.",
"> > A recent commit ([51a8992](https://github.com/tensorflow/tensorflow/commit/51a8992bb9daba2364ac4bb931af1010d554f0fa)) used non-standard GNU `realpath --relative`. Quick workaround is to use GNU realpath (in coreutils). On my mac, I used macport to install realpath to `/opt/local/libexec/gnubin`, then add `/opt/local/libexec/gnubin` before `/usr/bin` when running bazel.\r\n> \r\n> Can you give a more specific command to explain how to do it? I don't know how to install GNU realpath. Thanks very much.\r\n\r\nI am a long time [macports](https://www.macports.org/) user, but I guess most people use [homebrew](https://brew.sh/), which I am not familiar. with For macports, I use `ports install coreutils` to install GNU realpath.\r\n",
"> For macports, I use `ports install coreutils` to install GNU realpath.\r\n\r\nFor homebrew is the same command, just do `brew install coreutils` :)",
"After install that, I got new error:\r\n\r\n```sh\r\n$ bazel build --verbose_failures //tensorflow/tools/pip_package:build_pip_package \r\nINFO: Options provided by the client: \r\n Inherited 'common' options: --isatty=1 --terminal_columns=156 \r\nINFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility\r\nINFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.tf_configure.bazelrc:\r\n 'build' options: --action_env PYTHON_BIN_PATH=/opt/homebrew/opt/python@3.11/bin/python3.11 --action_env PYTHON_LIB_PATH=/opt/homebrew/opt/python@3.11/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages --python_path=/opt/homebrew/opt/python@3.11/bin/python3.11\r\nINFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:\r\n 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:macos in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --apple_platform_type=macos --copt=-DGRPC_BAZEL_BUILD --copt=-w --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 0 targets configured). \r\nINFO: Found 1 target... \r\nERROR: /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/tensorflow/python/BUILD:3740:24: Linking tensorflow/python/_pywrap_tensorflow_internal.so failed: (Aborted): cc_wrapper.sh failed: error executing command \r\n (cd /private/var/tmp/_bazel_ckpn/f1a48392cd9981a14f58ae3ee34a93e9/execroot/org_tensorflow && \\ \r\n exec env - \\ \r\n APPLE_SDK_PLATFORM=MacOSX \\\r\n APPLE_SDK_VERSION_OVERRIDE=13.1 \\\r\n PATH='/opt/homebrew/opt/coreutils/libexec/gnubin:/Applications/CMake.app/Contents/bin:/Users/ckpn/Mine/projects/golang/bin:/opt/java/jdk-18.0.1.1.jdk/Contents/Home/bin:/opt/homebrew/opt/go/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/System/Cryptexes/App/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Applications/VMware Fusion Tech Preview.app/Contents/Public:/Library/Apple/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/appleinternal/bin:/Users/ckpn/.cargo/bin:/Applications/CMake.app/Contents/bin:/Users/ckpn/Mine/projects/golang/bin:/opt/java/jdk-18.0.1.1.jdk/Contents/Home/bin:/opt/homebrew/opt/go/bin:/opt/homebrew/bin:/opt/homebrew/sbin' \\\r\n PYTHON_BIN_PATH=/opt/homebrew/opt/python@3.11/bin/python3.11 \\\r\n PYTHON_LIB_PATH=/opt/homebrew/opt/python@3.11/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages \\\r\n TF2_BEHAVIOR=1 \\\r\n XCODE_VERSION_OVERRIDE=14.2.0.14C18 \\\r\n ZERO_AR_DATE=1 \\\r\n external/local_config_cc/cc_wrapper.sh @bazel-out/darwin_arm64-opt/bin/tensorflow/python/_pywrap_tensorflow_internal.so-2.params)\r\n# Configuration: 0d30b901d7e94aed4b42ed061313da68829eea8916fb0996d8f08d6e7e494092\r\n# Execution platform: @local_execution_config_platform//:platform\r\nld: malformed trie, terminalSize extends beyond trie data file 'bazel-out/darwin_arm64-opt/bin/_solib_darwin_arm64/libtensorflow_Slibtensorflow_Ucc.2.13.0.dylib'\r\nclang: error: linker command failed with exit code 1 (use -v to see invocation)\r\nError in child process '/usr/bin/xcrun'. 1\r\nexternal/local_config_cc/cc_wrapper.sh: line 69: 73858 Abort trap: 6 \"$(/usr/bin/dirname \"$0\")\"/wrapped_clang \"$@\"\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build \r\nINFO: Elapsed time: 0.681s, Critical Path: 0.21s \r\nINFO: 12 processes: 12 internal. \r\nFAILED: Build did NOT complete successfully\r\n```",
"Well, actually, it's an \"old\" linker error, see, https://github.com/tensorflow/tensorflow/issues/58368\r\n\r\n> After install that, I got new error:\r\n> \r\n> ```shell\r\n> $ bazel build --verbose_failures //tensorflow/tools/pip_package:build_pip_package \r\n> INFO: Options provided by the client: \r\n> Inherited 'common' options: --isatty=1 --terminal_columns=156 \r\n> INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:\r\n> Inherited 'common' options: --experimental_repo_remote_exec\r\n> INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:\r\n> 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility\r\n> INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.tf_configure.bazelrc:\r\n> 'build' options: --action_env PYTHON_BIN_PATH=/opt/homebrew/opt/python@3.11/bin/python3.11 --action_env PYTHON_LIB_PATH=/opt/homebrew/opt/python@3.11/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages --python_path=/opt/homebrew/opt/python@3.11/bin/python3.11\r\n> INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:\r\n> 'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\n> INFO: Found applicable config definition build:short_logs in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\n> INFO: Found applicable config definition build:v2 in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\n> INFO: Found applicable config definition build:macos in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --apple_platform_type=macos --copt=-DGRPC_BAZEL_BUILD --copt=-w --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17\r\n> INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (0 packages loaded, 0 targets configured). \r\n> INFO: Found 1 target... \r\n> ERROR: /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/tensorflow/python/BUILD:3740:24: Linking tensorflow/python/_pywrap_tensorflow_internal.so failed: (Aborted): cc_wrapper.sh failed: error executing command \r\n> (cd /private/var/tmp/_bazel_ckpn/f1a48392cd9981a14f58ae3ee34a93e9/execroot/org_tensorflow && \\ \r\n> exec env - \\ \r\n> APPLE_SDK_PLATFORM=MacOSX \\\r\n> APPLE_SDK_VERSION_OVERRIDE=13.1 \\\r\n> PATH='/opt/homebrew/opt/coreutils/libexec/gnubin:/Applications/CMake.app/Contents/bin:/Users/ckpn/Mine/projects/golang/bin:/opt/java/jdk-18.0.1.1.jdk/Contents/Home/bin:/opt/homebrew/opt/go/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/System/Cryptexes/App/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Applications/VMware Fusion Tech Preview.app/Contents/Public:/Library/Apple/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/appleinternal/bin:/Users/ckpn/.cargo/bin:/Applications/CMake.app/Contents/bin:/Users/ckpn/Mine/projects/golang/bin:/opt/java/jdk-18.0.1.1.jdk/Contents/Home/bin:/opt/homebrew/opt/go/bin:/opt/homebrew/bin:/opt/homebrew/sbin' \\\r\n> PYTHON_BIN_PATH=/opt/homebrew/opt/python@3.11/bin/python3.11 \\\r\n> PYTHON_LIB_PATH=/opt/homebrew/opt/python@3.11/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages \\\r\n> TF2_BEHAVIOR=1 \\\r\n> XCODE_VERSION_OVERRIDE=14.2.0.14C18 \\\r\n> ZERO_AR_DATE=1 \\\r\n> external/local_config_cc/cc_wrapper.sh @bazel-out/darwin_arm64-opt/bin/tensorflow/python/_pywrap_tensorflow_internal.so-2.params)\r\n> # Configuration: 0d30b901d7e94aed4b42ed061313da68829eea8916fb0996d8f08d6e7e494092\r\n> # Execution platform: @local_execution_config_platform//:platform\r\n> ld: malformed trie, terminalSize extends beyond trie data file 'bazel-out/darwin_arm64-opt/bin/_solib_darwin_arm64/libtensorflow_Slibtensorflow_Ucc.2.13.0.dylib'\r\n> clang: error: linker command failed with exit code 1 (use -v to see invocation)\r\n> Error in child process '/usr/bin/xcrun'. 1\r\n> external/local_config_cc/cc_wrapper.sh: line 69: 73858 Abort trap: 6 \"$(/usr/bin/dirname \"$0\")\"/wrapped_clang \"$@\"\r\n> Target //tensorflow/tools/pip_package:build_pip_package failed to build \r\n> INFO: Elapsed time: 0.681s, Critical Path: 0.21s \r\n> INFO: 12 processes: 12 internal. \r\n> FAILED: Build did NOT complete successfully\r\n> ```\r\n\r\n",
"> Well, actually, it's an \"old\" linker error, see, #58368\r\n\r\nThe new version of `XCode 14.3` include an updated version of the linker `ld` which fixes the original issue https://github.com/tensorflow/tensorflow/issues/58368. Unless there are other issues unrelated to the linker bug, this issue is resolved as well, and if so, this bug report should be closed.",
"Hi @zyxkad ,\r\n\r\nI have replicated the reported error.\r\n\r\n```\r\nsuryanarayanay-macbookpro:tensorflow suryanarayanay$ bazel build --verbose_failures //tensorflow/tools/pip_package:build_pip_package\r\nStarting local Bazel server and connecting to it...\r\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1 --terminal_columns=214\r\nINFO: Reading rc options for 'build' from /Users/suryanarayanay/tensorflow/.bazelrc:\r\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /Users/suryanarayanay/tensorflow/.bazelrc:\r\n 'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /Users/suryanarayanay/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /Users/suryanarayanay/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:macos in file /Users/suryanarayanay/tensorflow/.bazelrc: --apple_platform_type=macos --copt=-DGRPC_BAZEL_BUILD --copt=-w --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/tensorflow/runtime/archive/0aaa6e679847a4eeb407136e7b0bcef93ec652e6.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/llvm/llvm-project/archive/6330447c2509c3669d64ae753c8030be1a38dc72.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/benchmark/archive/f7547e29ccaed7b64ef4f7495ecfff1c9f6f3d03.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/flatbuffers/archive/v23.1.20.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/glennrp/libpng/archive/v1.6.39.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/boringssl/archive/c00d7ca810e93780bd0c8ee4eea28f4f2ea4bcdc.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/openxla/stablehlo/archive/458bdd95771e9861e6488868e315a1b0340058ba.zip failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/7adae8e6ded8fff33d92212ca1028d2419cd34d4.zip failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nWARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/pybind/pybind11_abseil/archive/2c4932ed6f6204f1656e245838f4f5eae69d2e29.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found\r\nINFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (605 packages loaded, 43895 targets configured).\r\nINFO: Found 1 target...\r\nINFO: SystemSuspensionEvent: Computer put to sleep\r\nINFO: SystemSuspensionEvent: Computer woken up\r\nERROR: /Users/suryanarayanay/tensorflow/tensorflow/BUILD:1128:21: declared output 'tensorflow/libtensorflow_framework.2.dylib' was not created by genrule. This is probably because the genrule actually didn't create this output, or because the output was a directory and the genrule was run remotely (note that only the contents of declared file outputs are copied from genrules run remotely)\r\nERROR: /Users/suryanarayanay/tensorflow/tensorflow/BUILD:1128:21: Executing genrule //tensorflow:libtensorflow_framework.2.dylib_sym [for host] failed: not all outputs were created or valid\r\nrealpath: illegal option -- -\r\nusage: realpath [-q] [path ...]\r\nTarget //tensorflow/tools/pip_package:build_pip_package failed to build\r\nINFO: Elapsed time: 1936.248s, Critical Path: 31.46s\r\nINFO: 6866 processes: 2275 internal, 4591 local.\r\nFAILED: Build did NOT complete successfully\r\nsuryanarayanay-macbookpro:tensorflow suryanarayanay$ \r\n```",
"The build fails with clang 14.0.0. \r\n\r\n```\r\nsuryanarayanay-macbookpro:tensorflow suryanarayanay$ xcrun ld -v\r\n@(#)PROGRAM:ld PROJECT:ld64-820.1\r\nBUILD 20:07:05 Nov 7 2022\r\nconfigured to support archs: armv6 armv7 armv7s arm64 arm64e arm64_32 i386 x86_64 x86_64h armv6m armv7k armv7m armv7em\r\nLTO support using: LLVM version 14.0.0, (clang-1400.0.29.202) (static support for 29, runtime is 29)\r\nTAPI support using: Apple TAPI version 14.0.0 (tapi-1400.0.11)\r\nsuryanarayanay-macbookpro:tensorflow suryanarayanay$ clang --version\r\nApple clang version 14.0.0 (clang-1400.0.29.202)\r\nTarget: arm64-apple-darwin22.3.0\r\nThread model: posix\r\nInstalledDir: /Library/Developer/CommandLineTools/usr/bin\r\n```\r\n@zyxkad, Could you please try with XCode 14.3 version as mentioned in **[comment-1492839793](https://github.com/tensorflow/tensorflow/issues/60179#issuecomment-1492839793)** and confirm if still a problem with it.",
"> The new version of `XCode 14.3` include an updated version of the linker `ld` which fixes the original issue #58368. Unless there are other issues unrelated to the linker bug, this issue is resolved as well, and if so, this bug report should be closed.\r\n\r\nNo, my issue is if I don't install `realpath`, then the build will falid. I'm not sure is that solved?",
"I have a event later for an hour, so I will test after that",
"Build successed! :)",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60179\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60179\">No</a>\n",
"@zyxkad ,\r\n\r\nThanks for the update and we are glad that your issue resolved. Please confirm whether upgrading XCode version worked for you or any other hacks so that it will help the larger community who visit this ticket. Thanks!",
"Solved environment:\r\n\r\nCommit: 55939be39409283c4b35a62049fe548a2de3ce44\r\n\r\n**XCode: 14.3**\r\n**clang**\r\n```\r\nApple clang version 14.0.3 (clang-1403.0.22.14.1)\r\n```\r\n**bazel 5.3.0**",
"@zyxkad Hello, building `TensorFlow 2.13` on my Apple M1 also encountered the same issue. Could you confirm if you were able to build it successfully with just the command `brew install coreutils`, without any other modifications?"
] | 2023-03-30T13:35:30 | 2023-07-17T07:50:13 | 2023-04-05T01:12:13 | NONE | null | null | null | ### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
faf4a8eb61d6344997e1860de30e6eae434b4411
### Custom Code
No
### OS Platform and Distribution
MacOS 13.3 (22E252) Apple M1 Pro
### Mobile device
N/A
### Python version
3.11
### Bazel version
bazel 5.3.0
### GCC/Compiler version
Apple clang version 14.0.0 (clang-1400.0.29.202)
### CUDA/cuDNN version
N/A
### GPU model and memory
16GB RAM, no NVIDIA GPU
### Current Behaviour?
<details>
<summary>Build logs</summary>
```
$ bazel build --verbose_failures //tensorflow/tools/pip_package:build_pip_package
Starting local Bazel server and connecting to it...
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=156
INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=/opt/homebrew/opt/python@3.11/bin/python3.11 --action_env PYTHON_LIB_PATH=/opt/homebrew/opt/python@3.11/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages --python_path=/opt/homebrew/opt/python@3.11/bin/python3.11
INFO: Reading rc options for 'build' from /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc:
'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils
INFO: Found applicable config definition build:short_logs in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:macos in file /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/.bazelrc: --apple_platform_type=macos --copt=-DGRPC_BAZEL_BUILD --copt=-w --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17
WARNING: Download from https://storage.googleapis.com/mirror.tensorflow.org/github.com/llvm/llvm-project/archive/6330447c2509c3669d64ae753c8030be1a38dc72.tar.gz failed: class java.io.FileNotFoundException GET returned 404 Not Found
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (606 packages loaded, 44253 targets configured).
INFO: Found 1 target...
ERROR: /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/tensorflow/BUILD:1128:21: declared output 'tensorflow/libtensorflow_framework.2.dylib' was not created by genrule. This is probably because the genrule actually didn't create this output, or because the output was a directory and the genrule was run remotely (note that only the contents of declared file outputs are copied from genrules run remotely)
ERROR: /Users/ckpn/Mine/projects/python/bert_tst/tensorflow/tensorflow/BUILD:1128:21: Executing genrule //tensorflow:libtensorflow_framework.2.dylib_sym failed: not all outputs were created or valid
realpath: illegal option -- -
usage: realpath [-q] [path ...]
Target //tensorflow/tools/pip_package:build_pip_package failed to build
INFO: Elapsed time: 589.942s, Critical Path: 78.69s
INFO: 4653 processes: 875 internal, 3778 local.
FAILED: Build did NOT complete successfully
```
</details>
Expect no error
### Standalone code to reproduce the issue
1. Prepare a computer with Mac M1 chip
2. Do `git clone https://github.com/tensorflow/tensorflow`
3. Install dependencies such as clang and bazel
4. Do `bazel build --verbose_failures //tensorflow/tools/pip_package:build_pip_package`
### Relevant log output
*See above*
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60179/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60179/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60178 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60178/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60178/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60178/events | https://github.com/tensorflow/tensorflow/issues/60178 | 1,647,407,121 | I_kwDOArmXAs5iMXAR | 60,178 | Could not find any cuda.h matching version '' in any subdirectory | {
"login": "tracerxia",
"id": 129376548,
"node_id": "U_kgDOB7YhJA",
"avatar_url": "https://avatars.githubusercontent.com/u/129376548?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tracerxia",
"html_url": "https://github.com/tracerxia",
"followers_url": "https://api.github.com/users/tracerxia/followers",
"following_url": "https://api.github.com/users/tracerxia/following{/other_user}",
"gists_url": "https://api.github.com/users/tracerxia/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tracerxia/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tracerxia/subscriptions",
"organizations_url": "https://api.github.com/users/tracerxia/orgs",
"repos_url": "https://api.github.com/users/tracerxia/repos",
"events_url": "https://api.github.com/users/tracerxia/events{/privacy}",
"received_events_url": "https://api.github.com/users/tracerxia/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@tracerxia \r\nSorry for the late reply. Could you please make sure to follow the instructions mentioned [here](https://www.tensorflow.org/install/source) and check the [tested build configuration](https://www.tensorflow.org/install/source#gpu) as well. Please let us know if it helps?\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60178\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60178\">No</a>\n"
] | 2023-03-30T11:12:18 | 2023-04-15T01:53:51 | 2023-04-15T01:53:49 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
v2.8.0
### Custom Code
Yes
### OS Platform and Distribution
linux ubuntu 2204
### Mobile device
linux ubuntu 2204
### Python version
3.10
### Bazel version
6.1.1
### GCC/Compiler version
11.3.0
### CUDA/cuDNN version
ananconda3 2023.03
### GPU model and memory
11.3
### Current Behaviour?
```shell
I wanted to configure tensorflow,then after running . /configure command, I get the error "Could not find any cudn.h matching version '10' in any subdirectory", and I don't know how to handle this error.
```
### Standalone code to reproduce the issue
```shell
(base) emma@emma-virtual-machine:~/tensorflow$ ./configure
You have bazel 3.1.0 installed.
Please specify the location of python. [Default is /usr/local/anaconda3/bin/python3]:
Found possible Python library paths:
/usr/local/anaconda3/lib/python3.10/site-packages
Please input the desired Python library path to use. Default is [/usr/local/anaconda3/lib/python3.10/site-packages]
Do you wish to build TensorFlow with ROCm support? [y/N]:
No ROCm support will be enabled for TensorFlow.
Do you wish to build TensorFlow with CUDA support? [y/N]: y
CUDA support will be enabled for TensorFlow.
Do you wish to build TensorFlow with TensorRT support? [y/N]:
No TensorRT support will be enabled for TensorFlow.
Could not find any cuda.h matching version '' in any subdirectory:
''
'include'
'include/cuda'
'include/*-linux-gnu'
'extras/CUPTI/include'
'include/cuda/CUPTI'
'local/cuda/extras/CUPTI/include'
of:
'/lib/x86_64-linux-gnu'
'/usr'
'/usr/lib/x86_64-linux-gnu/libfakeroot'
'/usr/local/lib'
Asking for detailed CUDA configuration...
Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10]:
Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]:
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60178/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60178/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60177 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60177/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60177/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60177/events | https://github.com/tensorflow/tensorflow/issues/60177 | 1,647,400,832 | I_kwDOArmXAs5iMVeA | 60,177 | TF2 keras model.fit() VS model.evaluate print different loss and AUC | {
"login": "jasonxcx",
"id": 41645407,
"node_id": "MDQ6VXNlcjQxNjQ1NDA3",
"avatar_url": "https://avatars.githubusercontent.com/u/41645407?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jasonxcx",
"html_url": "https://github.com/jasonxcx",
"followers_url": "https://api.github.com/users/jasonxcx/followers",
"following_url": "https://api.github.com/users/jasonxcx/following{/other_user}",
"gists_url": "https://api.github.com/users/jasonxcx/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jasonxcx/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jasonxcx/subscriptions",
"organizations_url": "https://api.github.com/users/jasonxcx/orgs",
"repos_url": "https://api.github.com/users/jasonxcx/repos",
"events_url": "https://api.github.com/users/jasonxcx/events{/privacy}",
"received_events_url": "https://api.github.com/users/jasonxcx/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"The **model.evaluat**e method is being called with **train_data** as the input, which suggests that it is being evaluated on the entire training set, whereas **model.fit** is being called with a **train_dataset** that has been batched and shuffled. This difference in the input data may cause the difference in AUC scores.\r\n\r\nThe issue might be with the evaluation process also, When using **model.evaluate()** to compute the AUC, the labels are provided as [**y_train.output_1, y_train.output_2, y_train.output_3]**, but during training, the labels are provided as **(y_train.output_1, y_train.output_2, y_train.output_3)** within the **tf.data.Dataset**.\r\n\r\nPlease check this improved code working: \r\n```\r\neval_dataset = tf.data.Dataset.from_tensor_slices((train_data, (y_train.output_1, y_train.output_2, y_train.output_3))).batch(batch_size)\r\n\r\nauc = model.evaluate(eval_dataset)\r\n\r\n# OR, to get the AUC values separately for each output:\r\noutput1_auc, output2_auc, output3_auc = model.evaluate(eval_dataset)\r\n```",
"Hi @jasonxcx, \r\n\r\nThe metrics on the training set are just the mean over all batches during **model.fit**, as the weights are changing with each batch. Using **model.evaluate** will keep the model weights fixed and compute loss/accuracy for the whole data you give in. \r\nKindly refer to the [official documents](https://keras.io/getting_started/faq/#why-is-my-training-loss-much-higher-than-my-testing-loss). Thank you! ",
"> The **model.evaluat**e method is being called with **train_data** as the input, which suggests that it is being evaluated on the entire training set, whereas **model.fit** is being called with a **train_dataset** that has been batched and shuffled. This difference in the input data may cause the difference in AUC scores.\r\n> \r\n> The issue might be with the evaluation process also, When using **model.evaluate()** to compute the AUC, the labels are provided as [**y_train.output_1, y_train.output_2, y_train.output_3]**, but during training, the labels are provided as **(y_train.output_1, y_train.output_2, y_train.output_3)** within the **tf.data.Dataset**.\r\n> \r\n> Please check this improved code working:\r\n> \r\n> ```\r\n> eval_dataset = tf.data.Dataset.from_tensor_slices((train_data, (y_train.output_1, y_train.output_2, y_train.output_3))).batch(batch_size)\r\n> \r\n> auc = model.evaluate(eval_dataset)\r\n> \r\n> # OR, to get the AUC values separately for each output:\r\n> output1_auc, output2_auc, output3_auc = model.evaluate(eval_dataset)\r\n> ```\r\n\r\nHi @pat749 \r\nThank you so much, but unluckily it still not work, my training result is 80+%, while my evaluation result is 60+%\r\n",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60177\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60177\">No</a>\n",
"neg labels and pos label are clustered, and the shuffle() seems not working"
] | 2023-03-30T11:08:35 | 2023-03-31T07:10:28 | 2023-03-31T06:16:36 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.11
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
3.7.3
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
My model generate 3 binary outputs with MMoE module, and I define a custom metric to combine these three AUC in callbacks. As I am using model.fit to train my dataset, it prints the final training AUC in the last epoch is 0.98. While I am using model.evaluate() on the SAME training dataset, it turns out the AUC is only 0.65. Can anyone can help me with it? Btw, I do not use BatchNormalization and Dropout layers, and also the batch_size is the same for both fitting and evaluation process.
I used exactly same dataset and same batch_size, I really don’t know why it occurs?
```
### Standalone code to reproduce the issue
```shell
class MergeMetrics(tf.keras.callbacks.Callback):
def __init__(self,**kargs):
super(MergeMetrics,self).__init__(**kargs)
def on_epoch_begin(self,epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
logs['merge_auc'] = 0.7 *logs["output_1_auc"]+ 0.2*logs["output_2_auc"] + 0.1*logs["output_3_auc"]
model = Modelname(some_parameters)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate, beta_1, beta_2),
loss={
"output_1_auc": ‘binary_crossentropy’
"output_2_auc": ‘binary_crossentropy’
"output_3_auc": ‘binary_crossentropy’
},
loss_weights=[1,1,1],
metrics={
"output_1_auc": [tf.keras.metrics.AUC(name='auc')],
"output_2_auc": [tf.keras.metrics.AUC(name='auc')],
"output_3_auc": [tf.keras.metrics.AUC(name='auc')]})
checkpoint = MergeMetrics()
checkpoint_filepath = os.path.join(path,'model')
model_check = tf.keras.callbacks.ModelCheckpoint(
filepath = checkpoint_filepath,
# filepath = path,
monitor= "merge_auc",
save_best_only = True,
mode='max',
save_weights_only = True,
save_freq="epoch")
train_dataset = tf.data.Dataset.from_tensor_slices((train_data, (y_train.output_1, y_train.output_2, y_train.output_3))).shuffle(10*batch_size).batch(batch_size)
model.fit(train_dataset, epochs=5, callbacks=[checkpoint,model_check])
model.load_weights(checkpoint_filepath) ## load weights of the best epoch
auc = model.evaluate(train_data, [y_train.output_1, y_train.output_2, y_train.output_3], batch_size=batch_size)
```
### Relevant log output
```shell
RESULT:
Fit process : output_1_auc:0.9862, output_2_auc: 0.9665, output_3_auc:0.5014, merge_auc: 0.9338
Evaluation process: output_1_auc: 0.7124500870704651, output_2_auc:0.6924731135368347, output_3_auc: 0.6774155497550964
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60177/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60177/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60176 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60176/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60176/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60176/events | https://github.com/tensorflow/tensorflow/issues/60176 | 1,647,363,742 | I_kwDOArmXAs5iMMae | 60,176 | Docs do not mention discontinuation of support for Python 3.7 in TF 2.11.1 | {
"login": "varunshankar",
"id": 5507980,
"node_id": "MDQ6VXNlcjU1MDc5ODA=",
"avatar_url": "https://avatars.githubusercontent.com/u/5507980?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/varunshankar",
"html_url": "https://github.com/varunshankar",
"followers_url": "https://api.github.com/users/varunshankar/followers",
"following_url": "https://api.github.com/users/varunshankar/following{/other_user}",
"gists_url": "https://api.github.com/users/varunshankar/gists{/gist_id}",
"starred_url": "https://api.github.com/users/varunshankar/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/varunshankar/subscriptions",
"organizations_url": "https://api.github.com/users/varunshankar/orgs",
"repos_url": "https://api.github.com/users/varunshankar/repos",
"events_url": "https://api.github.com/users/varunshankar/events{/privacy}",
"received_events_url": "https://api.github.com/users/varunshankar/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hello @varunshankar! Could you please have a look at [this](https://www.tensorflow.org/install/source_windows) page which explains well about the tested build configuration for different compatible versions. The compatible python version for TF v2.12. is 3.8 - 3.11 .\r\nThank you!",
"2.11.1 contains a critical security update ([CVE-2023-25668](https://github.com/advisories/GHSA-gw97-ff7c-9v96)) that would be nice to have with the same versions of Python which are compatible with 2.11 (i.e., Python 3.7). Can you please distribute 2.11.1 with Python 3.7 support?",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"@sushreebarsa we expect that there would be a build for python 3.7 for TF 2.11.1 especially given the number of vulnerabilities that are resolved in that release. Can you please provide with a tentative timeline on when this will be resolved? ",
"Hi @sushreebarsa I wonder if it's intentional to discontinue support for Python 3.7? Is there a technical problem preventing 2.11.1 patch been built on Python 3.7? (we need this patch to deploy on Python 3.7, so want to find a resolution)",
"It looks like python 3.7 was removed from some of the automations back in December [here](https://github.com/tensorflow/tensorflow/commit/90d257096c7afcc499ef8a934e78929fb3b7531d). Perhaps this is release to the reason we're not seeing 2.11.1 artifacts for python 3.7?\r\n\r\nFWIW, I was able to compile 2.11.1 with python 3.7 and successfully install the built wheel. This is without thorough testing, though, so I cannot say it's 100% functional.",
"Hi @sushreebarsa \r\nI'm also one of developers waiting your reply.\r\nMy team is deploying TF model using python 3.7 and we need to solve vulnerabilities mentioned above(ex. CVE-2023-25668). \r\nIf TF 2.11.1 is not supporting python 3.7 any more, I need a plan B ASAP.\r\n\bI look forward to hearing from you soon\r\nThanks in advance",
"@varunshankar @YONGARYZ Sorry for the late response!\r\n\r\nPlease have a look at the documentation [here](https://www.tensorflow.org/install/source#tested_build_configurations) which clearly mentions the build configuration of TF version 2.11. For TF v2.11 , the supported version of python is 3.7- 3.10. That means there is no discontinuation of python 3.7. If you see any compatibility issues then please let us know. Thank you! ",
"Hey @sushreebarsa. The issue is that the `tensorflow-cpu` version 2.11.1 for Python 3.7 isn't available on PyPi, which might give the impression that support for 3.7 has been discontinued.\r\n\r\n```shell\r\n$ docker run --platform=linux/amd64 --entrypoint /bin/bash python:3.7-slim -c \"pip install tensorflow-cpu==2.11.1\"\r\nERROR: Could not find a version that satisfies the requirement tensorflow-cpu==2.11.1 (from versions: 1.15.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.4.0, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0rc0, 2.9.0rc1, 2.9.0rc2, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0rc0, 2.10.0rc1, 2.10.0rc2, 2.10.0rc3, 2.10.0, 2.10.1, 2.11.0rc0, 2.11.0rc1, 2.11.0rc2, 2.11.0)\r\nERROR: No matching distribution found for tensorflow-cpu==2.11.1\r\n```",
"@sushreebarsa I have a same issue like @alcysec.\r\nAs you mentioned, the documentation from Tensorflow, PyPi[(link)](https://pypi.org/project/tensorflow-cpu/2.11.1/) clearly mentions TF 2.11.1 supports python 3.7. But I can't install using pip. (I'm using an official image python:3.7.13-slim. )\r\nThe reason might be the @camattin's mention above.\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60176\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60176\">No</a>\n",
"@sushreebarsa \r\nI'm still looking forward to your reply, but the issue has been closed. Plz reopen this issue.",
"@YONGARYZ Reopening the issue as per the request. Thank you!",
"@sushreebarsa Thank you for reopening the issue.\r\nCould you please make any comment about the issue?\r\nAs you mentioned in the previous comment (\"For TF v2.11 , the supported version of python is 3.7- 3.10.\"), definitely there is a problem.\r\nI need to make countermeasures for this issue. Therefore please let me know about whether you (or other contributors) are recognizing the issue. if then could you tell me brief plan for solving the issue? I need to make a decision in real quick.",
"Hi, \r\n\r\nThanks for reporting the issue, The usual practice in Tensorflow to support any Python version is, during the time of release if that Python version is within the support life cycle as defined here https://devguide.python.org/versions/.\r\nAs per the above link, during the patch release of `2.11.1` Python `3.7` was at `end-of-life `.\r\n\r\nFor any CVEs which needs the specific python version, you can follow out [Patching guidelines](https://github.com/tensorflow/tensorflow/blob/master/README.md#patching-guidelines).\r\n\r\nWhich basically explains to Build the Tensorflow pip package with the desired python version and cherrypick the chnages you need in the 2.11.0 branch. Thanks!",
"I see. \r\nThanks for the comment!",
"> Hi,\r\n> \r\n> Thanks for reporting the issue, The usual practice in Tensorflow to support any Python version is, during the time of release if that Python version is within the support life cycle as defined here https://devguide.python.org/versions/. As per the above link, during the patch release of `2.11.1` Python `3.7` was at `end-of-life `.\r\n\r\nThis is false. \r\n\r\n1. 2.11.1 was released on 3/20: https://github.com/tensorflow/tensorflow/releases/tag/v2.11.1\r\n2. The CVE was published 3/24: https://github.com/advisories/GHSA-gw97-ff7c-9v96\r\n3. This issue was reported to you on 3/30. \r\n4. Python 3.7 became EoL on 6/27 (as per your own link).\r\n\r\nFolks were left vulnerable for three months while this issue went unacknowledged *until* Python 3.7 became EoL and that was used as an excuse not to fix it. Fair enough, but no need to retcon when the timeline is public.",
"Apologies for the confusion.\r\n\r\nIt is challenging to follow the strict timeline as mentioned in the above comment.\r\n\r\n2.11.1 (3/20) was released in the same timeline as 2.12.0(3/23) and both followed the same python support window as mentioned below for 2.12.0. \r\n\r\n<h2 id=\"tested_build_configurations\" data-text=\"Tested build configurations\" role=\"presentation\" style=\"box-sizing: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: ; font-stretch: ; font-size: ; line-height: ; font-family: ; font-optical-sizing: ; font-kerning: ; font-feature-settings: ; font-variation-settings: ; letter-spacing: normal; margin: var(--devsite-h2-margin); overflow: hidden; text-overflow: ellipsis; border-bottom: var(--devsite-h2-border,var(--devsite-secondary-border)); padding: var(--devsite-h2-padding); margin-inline-end: -40px; padding-inline-end: 40px; color: rgb(32, 33, 36); orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\"><span class=\"devsite-heading\" role=\"heading\" aria-level=\"2\" style=\"box-sizing: inherit;\">Tested build configurations</span><button type=\"button\" class=\"devsite-heading-link button-flat material-icons\" aria-label=\"Copy link to this section: Tested build configurations\" data-title=\"Copy link to this section: Tested build configurations\" data-id=\"tested_build_configurations\" style=\"box-sizing: border-box; appearance: none; background: 0px center; border: 0px; border-radius: var(--devsite-button-border-radius,2px); box-shadow: none; color: var(--devsite-icon-color,var(--devsite-secondary-text-color)); cursor: pointer; display: inline-block; font-style: normal; font-variant-ligatures: ; font-variant-caps: ; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: normal; font-stretch: ; font-size: 24px; font-family: "Material Icons"; font-optical-sizing: ; font-kerning: ; font-feature-settings: "liga"; font-variation-settings: ; height: 24px; letter-spacing: normal; line-height: 1; margin: var(--devsite-button-margin,0); margin-inline-end: var(--devsite-button-margin-x-end); max-width: var(--devsite-button-max-width,none); min-width: 36px; outline: 0px; overflow: hidden; padding: 0px 8px; text-align: center; text-decoration: none; text-overflow: ellipsis; text-transform: none; transition: background-color 0.2s ease 0s, border 0.2s ease 0s, box-shadow 0.2s ease 0s; vertical-align: middle; white-space: nowrap; width: var(--devsite-button-width,auto); overflow-wrap: normal; direction: ltr; -webkit-font-smoothing: antialiased; opacity: 0;\"></button></h2><h3 id=\"cpu\" data-text=\"CPU\" role=\"presentation\" style=\"box-sizing: inherit; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: ; font-stretch: ; font-size: ; line-height: ; font-family: ; font-optical-sizing: ; font-kerning: ; font-feature-settings: ; font-variation-settings: ; letter-spacing: normal; margin-top: 0px; margin-right: ; margin-bottom: ; margin-left: ; overflow: hidden; text-overflow: ellipsis; margin-inline-end: -40px; padding-inline-end: 40px; color: rgb(32, 33, 36); orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\"><span class=\"devsite-heading\" role=\"heading\" aria-level=\"3\" style=\"box-sizing: inherit;\">CPU</span><button type=\"button\" class=\"devsite-heading-link button-flat material-icons\" aria-label=\"Copy link to this section: CPU\" data-title=\"Copy link to this section: CPU\" data-id=\"cpu\" style=\"box-sizing: border-box; appearance: none; background: 0px center; border: 0px; border-radius: var(--devsite-button-border-radius,2px); box-shadow: none; color: var(--devsite-icon-color,var(--devsite-secondary-text-color)); cursor: pointer; display: inline-block; font-style: normal; font-variant-ligatures: ; font-variant-caps: ; font-variant-numeric: ; font-variant-east-asian: ; font-variant-alternates: ; font-weight: normal; font-stretch: ; font-size: 24px; font-family: "Material Icons"; font-optical-sizing: ; font-kerning: ; font-feature-settings: "liga"; font-variation-settings: ; height: 24px; letter-spacing: normal; line-height: 1; margin: var(--devsite-button-margin,0); margin-inline-end: var(--devsite-button-margin-x-end); max-width: var(--devsite-button-max-width,none); min-width: 36px; outline: 0px; overflow: hidden; padding: 0px 8px; text-align: center; text-decoration: none; text-overflow: ellipsis; text-transform: none; transition: background-color 0.2s ease 0s, border 0.2s ease 0s, box-shadow 0.2s ease 0s; vertical-align: middle; white-space: nowrap; width: var(--devsite-button-width,auto); overflow-wrap: normal; direction: ltr; -webkit-font-smoothing: antialiased; opacity: 0;\"></button></h3><div class=\"devsite-table-wrapper\" style=\"box-sizing: inherit; margin: var(--devsite-table-margin,16px 0); padding: 0px; overflow: auto; color: rgb(32, 33, 36); font-family: Roboto, "Noto Sans", "Noto Sans JP", "Noto Sans KR", "Noto Naskh Arabic", "Noto Sans Thai", "Noto Sans Hebrew", "Noto Sans Bengali", sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\">\r\n\r\nVersion | Python version | Compiler | Build tools\r\n-- | -- | -- | --\r\ntensorflow-2.12.0 | 3.8-3.11 | MSVC 2019 | Bazel 5.3.0\r\n\r\n</div>\r\n\r\nHowever, as I mentioned above, you can follow [Patching guidelines](https://github.com/tensorflow/tensorflow/blob/master/README.md#patching-guidelines) for any patch specific to the python version you need.\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60176\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60176\">No</a>\n"
] | 2023-03-30T10:43:46 | 2023-08-09T01:52:34 | 2023-08-09T01:52:32 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.11.1
### Custom Code
No
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
3.7
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The release notes for TensorFlow 2.12.0 state that support for Python 3.7 has been discontinued. However, it seems that Python 3.7 support has also been removed from TensorFlow 2.11.1, despite this not being mentioned in the release notes or documentation. As a result, to maintain compatibility, we were forced to limit our application to using TensorFlow 2.11.0.
```
### Standalone code to reproduce the issue
```shell
NA
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60176/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60176/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60175 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60175/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60175/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60175/events | https://github.com/tensorflow/tensorflow/issues/60175 | 1,647,357,731 | I_kwDOArmXAs5iMK8j | 60,175 | Building TF from source instructions clarification wrt Python packages | {
"login": "freddan80",
"id": 15377492,
"node_id": "MDQ6VXNlcjE1Mzc3NDky",
"avatar_url": "https://avatars.githubusercontent.com/u/15377492?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/freddan80",
"html_url": "https://github.com/freddan80",
"followers_url": "https://api.github.com/users/freddan80/followers",
"following_url": "https://api.github.com/users/freddan80/following{/other_user}",
"gists_url": "https://api.github.com/users/freddan80/gists{/gist_id}",
"starred_url": "https://api.github.com/users/freddan80/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/freddan80/subscriptions",
"organizations_url": "https://api.github.com/users/freddan80/orgs",
"repos_url": "https://api.github.com/users/freddan80/repos",
"events_url": "https://api.github.com/users/freddan80/events{/privacy}",
"received_events_url": "https://api.github.com/users/freddan80/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 2012480497,
"node_id": "MDU6TGFiZWwyMDEyNDgwNDk3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-feature",
"name": "type:docs-feature",
"color": "159b2e",
"default": false,
"description": "Doc issues for new feature, or clarifications about functionality"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@freddan80,\r\nCould you please confirm whether you are facing the issue with protobuf 3.19.4 or protobuf 3.20.3? Also there is an issue which was already raised for the similar issue #59931 which was already assigned to the developer for the investigation. Thank you!",
"Hi @tilakrayal \r\nprotobuf 3.19.4 => doesn't work\r\nprotobuf 3.20.3 => works\r\n",
"Hi @freddan80 ,\r\n\r\nThe requirements for building the pip-package are listed in setup.py under `REQUIRED_PACKAGES` which is located [here](https://github.com/tensorflow/tensorflow/blob/r2.11/tensorflow/tools/pip_package/setup.py#L83).\r\n\r\nEven documentation also having a note mentioned. Please refer below snapshot of same.\r\n\r\n<img width=\"911\" alt=\"Screenshot 2023-04-06 at 3 34 22 PM\" src=\"https://user-images.githubusercontent.com/116063290/230345460-9348a949-f926-41b4-8f74-918426846123.png\">\r\n\r\nThanks!",
"Thx. I was hoping for a `requirements.txt` with all must-have dependencies listed, it's just simple and unambiguous. Anyways, `setup.py` has the protobuf issues listed, so they're being worked on. I'll check back next time I need to build from source to see if I run into an issue. Feel free to close this ticket in the meanwhile.",
"@freddan80 ,\r\n\r\nClosing the issue as per confirmation. Please feel free to open new ticket if you have any problems in your future builds.\r\n\r\nThanks!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60175\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60175\">No</a>\n"
] | 2023-03-30T10:39:22 | 2023-04-11T13:27:57 | 2023-04-11T13:27:54 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Documentation Feature Request
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
TF 2.11
### Custom Code
No
### OS Platform and Distribution
Ubuntu 22.04
### Mobile device
_No response_
### Python version
3.10.6
### Bazel version
5.3
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
Hi! Following the instructions on https://www.tensorflow.org/install/source usually works. However, this time I ran into an issue that took a while to figure out. It turns out to be an issue with the protobuf version:
protobuf 3.19.4 => no good
protobuf 3.20.3 => good
In the current instructions, the only Python related info is:
sudo apt install python3-dev python3-pip
and
pip install -U --user pip numpy wheel packaging requests opt_einsum
pip install -U --user keras_preprocessing --no-deps
Is there a reason not to refer to the following requirement specs?
pip install -r ./tensorflow/tools/ci_build/release/requirements_common.txt
pip install -r ./tensorflow/tools/ci_build/release/requirements_ubuntu.txt
Which would have avoided the issue for me... If not, I propose to add that.
Cheers!
```
### Standalone code to reproduce the issue
```shell
bazel build --verbose_failures //tensorflow/tools/pip_package:build_pip_package
```
### Relevant log output
```shell
ERROR: /home/ubuntu/repos/mirror-tensorflow/tensorflow/BUILD:1635:19: Executing genrule //tensorflow:tf_python_api_gen_v2 failed: (Exit 1): bash failed: error executing command
(cd /home/ubuntu/.cache/bazel/_bazel_ubuntu/0ef2ae1c374389fefaed577dece28985/execroot/org_tensorflow && \
exec env - \
PATH=/home/ubuntu/.cache/bazelisk/downloads/bazelbuild/bazel-5.3.0-linux-arm64/bin:/home/ubuntu/.vscode-server/bin/ee2b180d582a7f601fa6ecfdad8d9fd269ab1884/bin/remote-cli:/home/ubuntu/.local/bin:/home/ubuntu/bin:/home/ubuntu/.local/bin:/home/ubuntu/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/ubuntu/bin:/home/ubuntu/bin \
PYTHON_BIN_PATH=/usr/bin/python3 \
PYTHON_LIB_PATH=/usr/lib/python3.10/dist-packages \
TF2_BEHAVIOR=1 \
/bin/bash -c 'source external/bazel_tools/tools/genrule/genrule-setup.sh; bazel-out/aarch64-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2 --root_init_template=tensorflow/api_template.__init__.py --apidir=bazel-out/aarch64-opt/bin/tensorflow_api/v2/ --apiname=tensorflow --apiversion=2 --compat_apiversion=1 --compat_apiversion=2 --compat_init_template=tensorflow/compat_template_v1.__init__.py --compat_init_template=tensorflow/compat_template.__init__.py --packages=tensorflow.python,tensorflow.dtensor.python.accelerator_util,tensorflow.dtensor.python.api,tensorflow.dtensor.python.config,tensorflow.dtensor.python.d_checkpoint,tensorflow.dtensor.python.d_variable,tensorflow.dtensor.python.input_util,tensorflow.dtensor.python.layout,tensorflow.dtensor.python.mesh_util,tensorflow.dtensor.python.tpu_util,tensorflow.dtensor.python.save_restore,tensorflow.lite.python.analyzer,tensorflow.lite.python.lite,tensorflow.lite.python.authoring.authoring,tensorflow.python.modules_with_exports --output_package=tensorflow._api.v2 --use_relative_imports=True --loading=static --loading=default bazel-out/aarch64-opt/bin/tensorflow/_api/v2/v2.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/decorator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/dispatch/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/interim/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/multi_process_runner/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/eager_context/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/function/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/mixed_precision/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/monitoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/smart_cond/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/test/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/tf2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/types/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/saved_model/load/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/tracking/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__operators__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/audio/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/autograph/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/autodiff/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/bitwise/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/optimizer/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/threading/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/data/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/data/experimental/service/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/debugging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/debugging/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/cluster_resolver/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/partitioners/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/rpc/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/dtypes/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/dtypes/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/errors/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/extension_type/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/dtensor/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/numpy/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/numpy/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/tensorrt/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/dlpack/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/io/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/image/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/queue/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/linalg/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/linalg/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/authoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/microfrontend/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/microfrontend/python/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/microfrontend/python/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lookup/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lookup/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/math/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/math/special/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/mlir/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/mlir/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/nn/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/nn/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/experimental/client/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/experimental/server/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/quantization/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/ragged/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/random/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/raw_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/saved_model/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/sets/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/signal/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/sparse/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/strings/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/summary/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/summary/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/sysconfig/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/test/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/tpu/experimental/embedding/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/tpu/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/tpu/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/train/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/types/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/types/experimental/distributed/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/version/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/xla/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/xla/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/decorator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/dispatch/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/interim/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/multi_process_runner/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/eager_context/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/function/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/mixed_precision/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/monitoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/smart_cond/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/test/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/tf2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/types/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/saved_model/load/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/tracking/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__operators__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/audio/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/autograph/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/autodiff/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/bitwise/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/optimizer/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/threading/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/data/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/data/experimental/service/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/debugging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/debugging/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/cluster_resolver/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/partitioners/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/rpc/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/dtypes/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/dtypes/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/errors/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/extension_type/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/dtensor/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/numpy/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/numpy/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/tensorrt/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/dlpack/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/io/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/image/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/queue/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/linalg/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/linalg/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/authoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/microfrontend/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/microfrontend/python/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/microfrontend/python/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lookup/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lookup/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/math/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/math/special/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/mlir/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/mlir/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/nn/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/nn/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/experimental/client/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/experimental/server/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/quantization/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/ragged/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/random/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/raw_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/saved_model/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/sets/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/signal/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/sparse/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/strings/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/summary/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/summary/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/sysconfig/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/test/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/tpu/experimental/embedding/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/tpu/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/tpu/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/train/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/types/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/types/experimental/distributed/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/version/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/xla/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/xla/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__internal__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__internal__/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__internal__/types/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/app/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/audio/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/autograph/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/bitwise/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/optimizer/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/threading/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/data/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/data/experimental/service/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/debugging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/debugging/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distribute/cluster_resolver/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distribute/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distributions/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/dtypes/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/dtypes/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/errors/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/experimental/extension_type/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/io/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/image/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/queue/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/initializers/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/layers/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/layers/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/linalg/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/linalg/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/authoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/microfrontend/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/microfrontend/python/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/microfrontend/python/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/logging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lookup/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lookup/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/losses/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/manip/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/math/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/math/special/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/metrics/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mixed_precision/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mixed_precision/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mlir/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mlir/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nn/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nn/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nn/rnn_cell/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/profiler/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/python_io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/quantization/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/ragged/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/random/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/raw_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/resource_loader/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/strings/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/builder/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/loader/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/main_op/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/signature_constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/signature_def_utils/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/tag_constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/utils/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/sets/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/signal/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/sparse/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/spectral/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/summary/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/sysconfig/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/test/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/tpu/experimental/embedding/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/tpu/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/tpu/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/train/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/train/queue_runner/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/types/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/user_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/version/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/xla/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/xla/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v1/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v1/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v2/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v1/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v1/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v2/compat/__init__.py')
# Configuration: 6e760a068cbc11a6cc46e726655f369e4c10c58a67d5a62b8baed49245ffc3a5
# Execution platform: @local_execution_config_platform//:platform
Traceback (most recent call last):
File "/home/ubuntu/.cache/bazel/_bazel_ubuntu/0ef2ae1c374389fefaed577dece28985/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/tools/api/generator/create_python_api.py", line 22, in <module>
from tensorflow.python.tools.api.generator import doc_srcs
File "/home/ubuntu/.cache/bazel/_bazel_ubuntu/0ef2ae1c374389fefaed577dece28985/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/__init__.py", line 37, in <module>
from tensorflow.python.eager import context
File "/home/ubuntu/.cache/bazel/_bazel_ubuntu/0ef2ae1c374389fefaed577dece28985/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/python/eager/context.py", line 28, in <module>
from tensorflow.core.framework import function_pb2
File "/home/ubuntu/.cache/bazel/_bazel_ubuntu/0ef2ae1c374389fefaed577dece28985/execroot/org_tensorflow/bazel-out/aarch64-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2.runfiles/org_tensorflow/tensorflow/core/framework/function_pb2.py", line 5, in <module>
from google.protobuf.internal import builder as _builder
ImportError: cannot import name 'builder' from 'google.protobuf.internal' (/home/ubuntu/.local/lib/python3.10/site-packages/google/protobuf/internal/__init__.py)
Target //tensorflow/tools/pip_package:build_pip_package failed to build
ERROR: /home/ubuntu/repos/mirror-tensorflow/tensorflow/lite/python/BUILD:72:10 Middleman _middlemen/tensorflow_Slite_Spython_Stflite_Uconvert-runfiles failed: (Exit 1): bash failed: error executing command
(cd /home/ubuntu/.cache/bazel/_bazel_ubuntu/0ef2ae1c374389fefaed577dece28985/execroot/org_tensorflow && \
exec env - \
PATH=/home/ubuntu/.cache/bazelisk/downloads/bazelbuild/bazel-5.3.0-linux-arm64/bin:/home/ubuntu/.vscode-server/bin/ee2b180d582a7f601fa6ecfdad8d9fd269ab1884/bin/remote-cli:/home/ubuntu/.local/bin:/home/ubuntu/bin:/home/ubuntu/.local/bin:/home/ubuntu/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/ubuntu/bin:/home/ubuntu/bin \
PYTHON_BIN_PATH=/usr/bin/python3 \
PYTHON_LIB_PATH=/usr/lib/python3.10/dist-packages \
TF2_BEHAVIOR=1 \
/bin/bash -c 'source external/bazel_tools/tools/genrule/genrule-setup.sh; bazel-out/aarch64-opt/bin/tensorflow/create_tensorflow.python_api_tf_python_api_gen_v2 --root_init_template=tensorflow/api_template.__init__.py --apidir=bazel-out/aarch64-opt/bin/tensorflow_api/v2/ --apiname=tensorflow --apiversion=2 --compat_apiversion=1 --compat_apiversion=2 --compat_init_template=tensorflow/compat_template_v1.__init__.py --compat_init_template=tensorflow/compat_template.__init__.py --packages=tensorflow.python,tensorflow.dtensor.python.accelerator_util,tensorflow.dtensor.python.api,tensorflow.dtensor.python.config,tensorflow.dtensor.python.d_checkpoint,tensorflow.dtensor.python.d_variable,tensorflow.dtensor.python.input_util,tensorflow.dtensor.python.layout,tensorflow.dtensor.python.mesh_util,tensorflow.dtensor.python.tpu_util,tensorflow.dtensor.python.save_restore,tensorflow.lite.python.analyzer,tensorflow.lite.python.lite,tensorflow.lite.python.authoring.authoring,tensorflow.python.modules_with_exports --output_package=tensorflow._api.v2 --use_relative_imports=True --loading=static --loading=default bazel-out/aarch64-opt/bin/tensorflow/_api/v2/v2.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/decorator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/dispatch/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/interim/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/distribute/multi_process_runner/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/eager_context/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/function/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/mixed_precision/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/monitoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/smart_cond/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/test/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/tf2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/types/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/saved_model/load/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__internal__/tracking/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/__operators__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/audio/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/autograph/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/autodiff/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/bitwise/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/optimizer/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/config/threading/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/data/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/data/experimental/service/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/debugging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/debugging/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/cluster_resolver/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/partitioners/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/distribute/experimental/rpc/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/dtypes/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/dtypes/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/errors/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/extension_type/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/dtensor/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/numpy/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/numpy/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/tensorrt/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/experimental/dlpack/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/io/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/image/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/queue/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/linalg/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/linalg/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/authoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/microfrontend/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/microfrontend/python/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lite/experimental/microfrontend/python/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lookup/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/lookup/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/math/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/math/special/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/mlir/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/mlir/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/nn/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/nn/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/experimental/client/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/profiler/experimental/server/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/quantization/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/ragged/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/random/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/raw_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/saved_model/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/sets/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/signal/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/sparse/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/strings/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/summary/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/summary/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/sysconfig/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/test/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/tpu/experimental/embedding/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/tpu/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/tpu/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/train/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/types/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/types/experimental/distributed/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/version/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/xla/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/xla/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/decorator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/dispatch/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/interim/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/distribute/multi_process_runner/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/eager_context/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/function/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/mixed_precision/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/monitoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/smart_cond/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/test/combinations/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/tf2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/types/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/saved_model/load/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__internal__/tracking/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/__operators__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/audio/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/autograph/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/autodiff/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/bitwise/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/optimizer/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/config/threading/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/data/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/data/experimental/service/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/debugging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/debugging/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/cluster_resolver/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/coordinator/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/partitioners/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/distribute/experimental/rpc/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/dtypes/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/dtypes/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/errors/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/extension_type/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/dtensor/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/numpy/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/numpy/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/tensorrt/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/experimental/dlpack/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/io/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/image/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/queue/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/linalg/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/linalg/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/authoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/microfrontend/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/microfrontend/python/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lite/experimental/microfrontend/python/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lookup/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/lookup/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/math/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/math/special/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/mlir/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/mlir/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/nn/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/nn/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/experimental/client/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/profiler/experimental/server/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/quantization/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/ragged/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/random/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/raw_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/saved_model/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/sets/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/signal/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/sparse/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/strings/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/summary/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/summary/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/sysconfig/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/test/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/tpu/experimental/embedding/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/tpu/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/tpu/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/train/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/types/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/types/experimental/distributed/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/version/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/xla/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/xla/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__internal__/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__internal__/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/__internal__/types/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/app/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/audio/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/autograph/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/autograph/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/bitwise/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/optimizer/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/config/threading/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/data/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/data/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/data/experimental/service/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/debugging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/debugging/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distribute/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distribute/cluster_resolver/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distribute/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/distributions/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/dtypes/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/dtypes/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/errors/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/experimental/extension_type/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/feature_column/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/io/gfile/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/graph_util/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/image/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/queue/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/initializers/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/layers/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/layers/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/linalg/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/linalg/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/authoring/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/microfrontend/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/microfrontend/python/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lite/experimental/microfrontend/python/ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/logging/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lookup/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/lookup/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/losses/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/manip/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/math/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/math/special/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/metrics/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mixed_precision/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mixed_precision/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mlir/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/mlir/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nest/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nn/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nn/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/nn/rnn_cell/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/profiler/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/python_io/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/quantization/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/ragged/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/random/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/random/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/raw_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/resource_loader/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/strings/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/builder/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/loader/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/main_op/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/signature_constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/signature_def_utils/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/tag_constants/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/saved_model/utils/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/sets/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/signal/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/sparse/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/spectral/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/summary/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/sysconfig/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/test/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/test/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/tpu/experimental/embedding/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/tpu/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/tpu/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/train/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/train/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/train/queue_runner/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/types/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/types/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/user_ops/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/version/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/xla/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/xla/experimental/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v1/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v1/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v1/compat/v2/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v1/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v2/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v1/compat/__init__.py bazel-out/aarch64-opt/bin/tensorflow/_api/v2/compat/v2/compat/v2/compat/__init__.py')
# Configuration: 6e760a068cbc11a6cc46e726655f369e4c10c58a67d5a62b8baed49245ffc3a5
# Execution platform: @local_execution_config_platform//:platform
INFO: Elapsed time: 1090.456s, Critical Path: 327.25s
INFO: 16173 processes: 1835 internal, 14338 local.
FAILED: Build did NOT complete successfully
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60175/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60175/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60174 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60174/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60174/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60174/events | https://github.com/tensorflow/tensorflow/issues/60174 | 1,647,333,456 | I_kwDOArmXAs5iMFBQ | 60,174 | Dataset is never fully read when caching to disk | {
"login": "Thf772",
"id": 18517127,
"node_id": "MDQ6VXNlcjE4NTE3MTI3",
"avatar_url": "https://avatars.githubusercontent.com/u/18517127?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Thf772",
"html_url": "https://github.com/Thf772",
"followers_url": "https://api.github.com/users/Thf772/followers",
"following_url": "https://api.github.com/users/Thf772/following{/other_user}",
"gists_url": "https://api.github.com/users/Thf772/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Thf772/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Thf772/subscriptions",
"organizations_url": "https://api.github.com/users/Thf772/orgs",
"repos_url": "https://api.github.com/users/Thf772/repos",
"events_url": "https://api.github.com/users/Thf772/events{/privacy}",
"received_events_url": "https://api.github.com/users/Thf772/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1114343535,
"node_id": "MDU6TGFiZWwxMTE0MzQzNTM1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data",
"name": "comp:data",
"color": "0052cc",
"default": false,
"description": "tf.data related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"The behavior you are observing is expected, and it is not a logging issue. When we cache a dataset to disk with **dataset.cache(\"some_folder\")**, TensorFlow only partially caches the dataset to disk. The caching mechanism works by storing the elements of the dataset in memory as they are consumed, and then periodically flushing these elements to disk to avoid consuming too much memory.\r\n\r\nIf you want to ensure that the dataset is fully cached to disk, you can add a call to **dataset.prefetch()** after the call to **dataset.cache()**. This will cause TensorFlow to fully cache the dataset to disk before starting to consume it.\r\n\r\n```\r\nimport tensorflow as tf\r\n\r\ndataset = tf.data.Dataset.range(1_000_000, dtype=tf.float32)\r\ndataset = dataset.cache(\"cached\")\r\ndataset = dataset.prefetch(tf.data.AUTOTUNE)\r\nfor _ in dataset:\r\n pass # Exhaust the dataset to force it to cache\r\n\r\n```\r\n\r\n",
"Sorry, even with the addition of `prefetch` I am still seeing this log message.",
"Try `dataset = dataset.take(5000).cache(\"cached\")` #Use take() before cache(). the take() function is used to create a new dataset that contains only the first 500 elements of the original dataset. The cache() function is then called on this new dataset to ensure that only the first 500 elements are cached. Finally, the dataset is iterated over to force it to cache.\r\n\r\nBy using take() before cache(), the warning message should be resolved and the dataset should be properly cached. https://github.com/tensorflow/tensorflow/issues/42773\r\n",
"I have not tested this solution, however I will not use it because I want to iterate over the entire dataset and not just part of it. Additionally, I do not use `take` or any other function that limits the number of elements used from the dataset.",
"@Thf772 , I would second to the suggestion given by @bhagirath20. \r\n`Cache` should be used only when the dataset is small and if the dataset fits into your memory. \r\nThe existing behavior is expected.\r\nIn general, cache should be used after loading and preprocessing the data but before `shuffling, repeating, batching, and prefetching` so that each instance will only be read and preprocessed once instead of every epoch in your model.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60174\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60174\">No</a>\n"
] | 2023-03-30T10:22:23 | 2023-04-27T01:54:37 | 2023-04-27T01:54:34 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
v2.12.0-rc1-12-g0db597d0d75 2.12.0
### Custom Code
No
### OS Platform and Distribution
Windows 11
### Mobile device
_No response_
### Python version
Python 3.10.7
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
When caching a dataset to disk with `dataset.cache("some_folder")`, the dataset is never fully cached according to the log message. I have reproduced this consistently in my application code and in the MWE below.
When testing this MWE, the message does not appear on subsequent runs unless I delete the cache files, which makes me think Tensorflow is actually able to them, and this might be a logging issue.
When caching to memory (`dataset.cache()`), no log message is generated.
### Standalone code to reproduce the issue
```python
import tensorflow as tf
dataset = tf.data.Dataset.range(1_000_000, dtype=tf.float32)
dataset=dataset.cache("cached")
for _ in dataset:
pass # Exhaust the dataset to force it to cache
```
### Relevant log output
```text
2023-03-30 12:15:57.441876: W tensorflow/core/kernels/data/cache_dataset_ops.cc:296] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60174/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60174/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60173 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60173/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60173/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60173/events | https://github.com/tensorflow/tensorflow/pull/60173 | 1,647,323,089 | PR_kwDOArmXAs5NPwL4 | 60,173 | [Linaro:ARM_CI] Make ARM_CI_EXTENDED run on schedule | {
"login": "elfringham",
"id": 10442001,
"node_id": "MDQ6VXNlcjEwNDQyMDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/10442001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/elfringham",
"html_url": "https://github.com/elfringham",
"followers_url": "https://api.github.com/users/elfringham/followers",
"following_url": "https://api.github.com/users/elfringham/following{/other_user}",
"gists_url": "https://api.github.com/users/elfringham/gists{/gist_id}",
"starred_url": "https://api.github.com/users/elfringham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/elfringham/subscriptions",
"organizations_url": "https://api.github.com/users/elfringham/orgs",
"repos_url": "https://api.github.com/users/elfringham/repos",
"events_url": "https://api.github.com/users/elfringham/events{/privacy}",
"received_events_url": "https://api.github.com/users/elfringham/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1104829434,
"node_id": "MDU6TGFiZWwxMTA0ODI5NDM0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:mkl",
"name": "comp:mkl",
"color": "0052cc",
"default": false,
"description": "MKL related issues"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "nitins17",
"id": 29348997,
"node_id": "MDQ6VXNlcjI5MzQ4OTk3",
"avatar_url": "https://avatars.githubusercontent.com/u/29348997?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nitins17",
"html_url": "https://github.com/nitins17",
"followers_url": "https://api.github.com/users/nitins17/followers",
"following_url": "https://api.github.com/users/nitins17/following{/other_user}",
"gists_url": "https://api.github.com/users/nitins17/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nitins17/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nitins17/subscriptions",
"organizations_url": "https://api.github.com/users/nitins17/orgs",
"repos_url": "https://api.github.com/users/nitins17/repos",
"events_url": "https://api.github.com/users/nitins17/events{/privacy}",
"received_events_url": "https://api.github.com/users/nitins17/received_events",
"type": "User",
"site_admin": false
},
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-30T10:15:23 | 2023-04-03T08:47:28 | 2023-03-31T18:12:09 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60173",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60173",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60173.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60173.patch",
"merged_at": "2023-03-31T18:12:09"
} | Also bring it into line with running on new container | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60173/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60173/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60172 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60172/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60172/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60172/events | https://github.com/tensorflow/tensorflow/issues/60172 | 1,647,197,288 | I_kwDOArmXAs5iLjxo | 60,172 | TensorFlow cannot use GPU. | {
"login": "NoteDance",
"id": 63648431,
"node_id": "MDQ6VXNlcjYzNjQ4NDMx",
"avatar_url": "https://avatars.githubusercontent.com/u/63648431?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NoteDance",
"html_url": "https://github.com/NoteDance",
"followers_url": "https://api.github.com/users/NoteDance/followers",
"following_url": "https://api.github.com/users/NoteDance/following{/other_user}",
"gists_url": "https://api.github.com/users/NoteDance/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NoteDance/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NoteDance/subscriptions",
"organizations_url": "https://api.github.com/users/NoteDance/orgs",
"repos_url": "https://api.github.com/users/NoteDance/repos",
"events_url": "https://api.github.com/users/NoteDance/events{/privacy}",
"received_events_url": "https://api.github.com/users/NoteDance/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547538,
"node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu",
"name": "comp:gpu",
"color": "0052cc",
"default": false,
"description": "GPU related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"```\r\nimport tensorflow as tf\r\nprint(\"Num GPUs Available: \", len(tf.config.list_physical_devices('GPU')))\r\ntf.config.list_physical_devices('GPU')\r\ntf.config.list_physical_devices()\r\n\r\n```\r\nOutput :\r\n```\r\nNum GPUs Available: 1\r\n[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'),\r\n PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]\r\n\r\n```\r\nWhen I running this code I was getting true output . Please check if It is possible that another process is already using the GPU, preventing TensorFlow from accessing it. Check if any other GPU-intensive programs are running on your system and close them.",
"Hi @NoteDancing, \r\nAs per the official Tensorflow documenation,\r\n> TensorFlow 2.10 was the last TensorFlow release that supported GPU on native-Windows. Starting with TensorFlow 2.11, you will need to install [TensorFlow in WSL2](https://tensorflow.org/install/pip#windows-wsl2), or install tensorflow-cpu and, optionally, try the [TensorFlow-DirectML-Plugin](https://github.com/microsoft/tensorflow-directml-plugin#tensorflow-directml-plugin-)\r\n\r\nAlso note that,\r\n> TensorFlow with GPU access is supported for WSL2 on Windows 10 19044 or higher.\r\n\r\n Kindly refer to the [official documentation](https://www.tensorflow.org/install/pip#windows-wsl2) for more information. Thank you!",
"@synandi Tensorflow 2.12.0 Can't use GPU on Windows 11?",
"\r\n> @synandi Tensorflow 2.12.0 Can't use GPU on Windows 11?\r\n\r\n@NoteDancing Yes. In order to leverage GPU with TensorFlow 2.12, you must install TensorFlow in WSL2 or you can also try the [TensorFlow-DirectML-Plugin](https://github.com/microsoft/tensorflow-directml-plugin#tensorflow-directml-plugin-). Thank you!\r\n",
"@synandi Does tensorflow-directml-plugin make tensorflow 2.12.0 use GPU on windows 11?Thank you!\r\n",
"> @synandi Does tensorflow-directml-plugin make tensorflow 2.12.0 use GPU on windows 11?Thank you!\r\n\r\n@NoteDancing Yes. Kindly refer to the [TensorFlow-DirectML-Plugin](https://github.com/microsoft/tensorflow-directml-plugin#tensorflow-directml-plugin-). Thank you!",
"@synandi I try pip install tensorflow-directml-plugin, but I get error.\r\nERROR: Could not find a version that satisfies the requirement tensorflow-directml-plugin (from versions: none)\r\nERROR: No matching distribution found for tensorflow-directml-plugin",
"@NoteDancing Apologies for the inconvenence. We are working on it. As a workaround, kindly install Tensorflow in WSL2. Refer to this [document](https://www.tensorflow.org/install/pip#windows-wsl2) on how to install Tensorflow in WSL2. Thank you! ",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60172\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60172\">No</a>\n"
] | 2023-03-30T08:56:53 | 2023-04-15T01:53:54 | 2023-04-15T01:53:52 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Windows 11
### Mobile device
_No response_
### Python version
3.11.2
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.8/8.6
### GPU model and memory
_No response_
### Current Behaviour?
```shell
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
tf.config.list_physical_devices('GPU')
tf.config.list_physical_devices()
Num GPUs Available: 0
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')]
```
### Standalone code to reproduce the issue
```shell
I install CUDA 11.8 and CUDNN 8.6, but TensorFlow cannot use GPU.I also set %PATH% variable.
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60172/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60172/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60171 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60171/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60171/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60171/events | https://github.com/tensorflow/tensorflow/issues/60171 | 1,647,001,406 | I_kwDOArmXAs5iKz8- | 60,171 | Are there plans to release TF 2.9.4 to address CVEs? | {
"login": "alexlang74",
"id": 28828289,
"node_id": "MDQ6VXNlcjI4ODI4Mjg5",
"avatar_url": "https://avatars.githubusercontent.com/u/28828289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alexlang74",
"html_url": "https://github.com/alexlang74",
"followers_url": "https://api.github.com/users/alexlang74/followers",
"following_url": "https://api.github.com/users/alexlang74/following{/other_user}",
"gists_url": "https://api.github.com/users/alexlang74/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alexlang74/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alexlang74/subscriptions",
"organizations_url": "https://api.github.com/users/alexlang74/orgs",
"repos_url": "https://api.github.com/users/alexlang74/repos",
"events_url": "https://api.github.com/users/alexlang74/events{/privacy}",
"received_events_url": "https://api.github.com/users/alexlang74/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 4032183365,
"node_id": "LA_kwDOArmXAs7wVjxF",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9",
"name": "TF 2.9",
"color": "1CF842",
"default": false,
"description": "Issues found in the TF 2.9 release (or RCs)"
}
] | closed | false | {
"login": "learning-to-play",
"id": 66660475,
"node_id": "MDQ6VXNlcjY2NjYwNDc1",
"avatar_url": "https://avatars.githubusercontent.com/u/66660475?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/learning-to-play",
"html_url": "https://github.com/learning-to-play",
"followers_url": "https://api.github.com/users/learning-to-play/followers",
"following_url": "https://api.github.com/users/learning-to-play/following{/other_user}",
"gists_url": "https://api.github.com/users/learning-to-play/gists{/gist_id}",
"starred_url": "https://api.github.com/users/learning-to-play/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/learning-to-play/subscriptions",
"organizations_url": "https://api.github.com/users/learning-to-play/orgs",
"repos_url": "https://api.github.com/users/learning-to-play/repos",
"events_url": "https://api.github.com/users/learning-to-play/events{/privacy}",
"received_events_url": "https://api.github.com/users/learning-to-play/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "learning-to-play",
"id": 66660475,
"node_id": "MDQ6VXNlcjY2NjYwNDc1",
"avatar_url": "https://avatars.githubusercontent.com/u/66660475?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/learning-to-play",
"html_url": "https://github.com/learning-to-play",
"followers_url": "https://api.github.com/users/learning-to-play/followers",
"following_url": "https://api.github.com/users/learning-to-play/following{/other_user}",
"gists_url": "https://api.github.com/users/learning-to-play/gists{/gist_id}",
"starred_url": "https://api.github.com/users/learning-to-play/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/learning-to-play/subscriptions",
"organizations_url": "https://api.github.com/users/learning-to-play/orgs",
"repos_url": "https://api.github.com/users/learning-to-play/repos",
"events_url": "https://api.github.com/users/learning-to-play/events{/privacy}",
"received_events_url": "https://api.github.com/users/learning-to-play/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for opening the issue, Tensorflow 2.9 was release in May 2022, which is within the 1 year release window.\r\n@learning-to-play , Do we have any plan to release 2.9.4 for the CVEs listed in the issue? Thanks!",
"There aren't any plans to release TensorFlow 2.9.4. Please see [RELEASE.md](https://github.com/tensorflow/tensorflow/blob/r2.11/RELEASE.md): \"Security vulnerability fixes will no longer be patched to this Tensorflow version. The latest Tensorflow version includes the security vulnerability fixes. You can update to the latest version (recommended) or patch security vulnerabilities yourself steps. You can refer to the release notes of the latest Tensorflow version for a list of newly fixed vulnerabilities. If you have any questions, please create a GitHub issue to let us know.\"\r\n",
"Thanks for the clarification, @learning-to-play . I'm sorry to hear that, as it negatively affects the use of Tensorflow in production environments, where you can't easily jump versions, or want to spend the effort re-building and patching TF. ",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60171\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60171\">No</a>\n",
"@alexlang74 Thank you very much for letting us know!\r\n@rishikasinha-tf FYI",
"I have been saying that this would be a negative of dropping support for older patch releases for almost half a year now.\r\n\r\nHowever, the cost of doing these patches is expensive, it doesn't scale given the ratio between number of users of patch release and number of users of latest `.0` release."
] | 2023-03-30T06:33:53 | 2023-04-11T16:26:09 | 2023-04-11T05:25:04 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.9.3
### Custom Code
No
### OS Platform and Distribution
RHEL 8
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
We're using TF 2.9.3 in our product images. Our latest twistlock scans reveal several security findings. Are there plans to release a 2.9.4 that addresses these CVEs?
Findings are:
| CVE | URL |
| --- | --- |
| CVE-2023-25669 | https://nvd.nist.gov/vuln/detail/CVE-2023-25669|
| CVE-2023-25673 | https://nvd.nist.gov/vuln/detail/CVE-2023-25673|
| CVE-2023-25674 | https://nvd.nist.gov/vuln/detail/CVE-2023-25674|
| CVE-2023-27579 | https://nvd.nist.gov/vuln/detail/CVE-2023-27579|
| CVE-2023-25667 | https://nvd.nist.gov/vuln/detail/CVE-2023-25667|
| CVE-2023-25675 | https://nvd.nist.gov/vuln/detail/CVE-2023-25675|
| CVE-2023-25670 | https://nvd.nist.gov/vuln/detail/CVE-2023-25670|
| CVE-2023-25671 | https://nvd.nist.gov/vuln/detail/CVE-2023-25671|
| CVE-2023-25672 | https://nvd.nist.gov/vuln/detail/CVE-2023-25672|
| CVE-2023-25801 | https://nvd.nist.gov/vuln/detail/CVE-2023-25801|
| CVE-2023-25676 | https://nvd.nist.gov/vuln/detail/CVE-2023-25676|
| CVE-2023-25668 | https://nvd.nist.gov/vuln/detail/CVE-2023-25668|
| CVE-2023-25666 | https://nvd.nist.gov/vuln/detail/CVE-2023-25666|
| CVE-2023-25665 | https://nvd.nist.gov/vuln/detail/CVE-2023-25665|
| CVE-2023-25664 | https://nvd.nist.gov/vuln/detail/CVE-2023-25664|
| CVE-2023-25663 | https://nvd.nist.gov/vuln/detail/CVE-2023-25663|
| CVE-2023-25662 | https://nvd.nist.gov/vuln/detail/CVE-2023-25662|
| CVE-2023-25661 | https://nvd.nist.gov/vuln/detail/CVE-2023-25661|
| CVE-2023-25660 | https://nvd.nist.gov/vuln/detail/CVE-2023-25660|
| CVE-2023-25659 | https://nvd.nist.gov/vuln/detail/CVE-2023-25659|
| CVE-2023-25658 | https://nvd.nist.gov/vuln/detail/CVE-2023-25658|
```
### Standalone code to reproduce the issue
```shell
N/A
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60171/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60171/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60170 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60170/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60170/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60170/events | https://github.com/tensorflow/tensorflow/issues/60170 | 1,646,996,427 | I_kwDOArmXAs5iKyvL | 60,170 | Non deterministic training of LSTM with recurrent_dropout>0 | {
"login": "ftesser",
"id": 983665,
"node_id": "MDQ6VXNlcjk4MzY2NQ==",
"avatar_url": "https://avatars.githubusercontent.com/u/983665?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ftesser",
"html_url": "https://github.com/ftesser",
"followers_url": "https://api.github.com/users/ftesser/followers",
"following_url": "https://api.github.com/users/ftesser/following{/other_user}",
"gists_url": "https://api.github.com/users/ftesser/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ftesser/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ftesser/subscriptions",
"organizations_url": "https://api.github.com/users/ftesser/orgs",
"repos_url": "https://api.github.com/users/ftesser/repos",
"events_url": "https://api.github.com/users/ftesser/events{/privacy}",
"received_events_url": "https://api.github.com/users/ftesser/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@ftesser,\r\nI was facing a different assertion error while executing the mentioned code. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/740c36db1b70b0946d60e7984a61f254/untitled1059.ipynb). Thank you!",
"> @ftesser, I was facing a different assertion error while executing the mentioned code. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/740c36db1b70b0946d60e7984a61f254/untitled1059.ipynb). Thank you!\r\n\r\nThe assertion \"assert history.history['loss'] == history_0.history['loss']\" is precisely the assertion that I inserted to verify the determinism, i.e. I check that the history of the new training is equal to the history of training \"0\".\r\n\r\nSo the behavior I described in the issue was reproduced.\r\nIf you try to set recurrent_dropout=0 the assertion does not fails.\r\n\r\n\r\n",
"@ftesser,\r\nThank you for opening this issue. Development of keras moved to another [repository](https://github.com/keras-team/keras/issues). \r\n\r\nCould you please post this issue on keras-team/keras [repo](https://github.com/keras-team/keras/issues).\r\nTo know more please refer:\r\nhttps://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999\r\nThank you!\r\n",
"> @ftesser, Thank you for opening this issue. Development of keras moved to another [repository](https://github.com/keras-team/keras/issues).\r\n> \r\n> Could you please post this issue on keras-team/keras [repo](https://github.com/keras-team/keras/issues). To know more please refer: https://discuss.tensorflow.org/t/keras-project-moved-to-new-repository-in-https-github-com-keras-team-keras/1999 Thank you!\r\n\r\nthanks @tilakrayal (I opened the issue https://github.com/keras-team/tf-keras/issues/49)",
"@ftesser,\r\nCould you please feel free to move this issue to closed status, so that we can track in Keras repo. Thank you!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60170\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60170\">No</a>\n"
] | 2023-03-30T06:29:27 | 2023-09-22T06:29:19 | 2023-04-17T09:07:43 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
tf 2.12.0
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 22.04.2 LTS
### Mobile device
_No response_
### Python version
3.10.6
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
The training of a LSTM model with recurrent_droput>0 is not deterministic: setting the op_determinism configuration (https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism) different runs of creation and train of the same model produce different model (different training history).
In contrast, deterministic training is obtained with recurrent_dropout=0 and also also with the dropout>0.
The code below has been used to reproduce the bug.
Note that the `det_session` function is used each time before the creation of the model.
This function contains the suggested setting from https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism, but I have tested this code, with the same results, also with the following version in which suggested determinism sets from various issues or sites have been added:
```python
def det_session():
os.environ['PYTHONHASHSEED'] = str(1)
rn.seed(1)
np.random.seed(1)
tf.random.set_seed(1)
tf.keras.utils.set_random_seed(1)
tf.config.experimental.enable_op_determinism()
```
### Standalone code to reproduce the issue
```python
import tensorflow as tf
from tensorflow.keras.losses import mean_squared_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import RMSprop
def det_session():
tf.keras.utils.set_random_seed(1)
tf.config.experimental.enable_op_determinism()
def create_model(inputs_shape):
# Define the model
model = Sequential()
model.add(tf.keras.layers.LSTM(4, input_shape=(inputs_shape[1], inputs_shape[2]), dropout=0.0, recurrent_dropout=0.1))
# Compile the model
model.compile(optimizer=RMSprop(1e-3), loss=mean_squared_error)
# Give a summary
model.summary()
return model
if __name__ == '__main__':
inputs = tf.random.normal([32, 10, 8])
outputs = tf.random.normal([32, 4])
# Create and train the model the first time
det_session()
model = create_model(inputs.shape)
history_0 = model.fit(inputs, outputs, epochs=10)
# Create and train the model more times and check the loss history
for _ in range(10):
# Create and train the model again and check the history loss
det_session()
model = create_model(inputs.shape)
history = model.fit(inputs, outputs, epochs=10)
assert history.history['loss'] == history_0.history['loss'], 'Losses history does not corresponds'
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60170/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60170/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60169 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60169/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60169/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60169/events | https://github.com/tensorflow/tensorflow/pull/60169 | 1,646,792,599 | PR_kwDOArmXAs5NN_Jx | 60,169 | Fixed the broken links in metadata.md | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @lu-wang-g Can you please review this PR ? Thank you!"
] | 2023-03-30T02:08:36 | 2023-06-08T20:18:33 | 2023-05-09T16:52:54 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60169",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60169",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60169.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60169.patch",
"merged_at": "2023-05-09T16:52:54"
} | Fixed the broken lines for 'TensorFlow Lite Android code generator' and 'Android Studio ML Binding feature' | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60169/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60169/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60168 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60168/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60168/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60168/events | https://github.com/tensorflow/tensorflow/issues/60168 | 1,646,682,925 | I_kwDOArmXAs5iJmMt | 60,168 | [TF-TRT QAT Explicit precision] Assertion outScales.size() == 1 when converting QAT TF model | {
"login": "aboubezari",
"id": 126983138,
"node_id": "U_kgDOB5Gb4g",
"avatar_url": "https://avatars.githubusercontent.com/u/126983138?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/aboubezari",
"html_url": "https://github.com/aboubezari",
"followers_url": "https://api.github.com/users/aboubezari/followers",
"following_url": "https://api.github.com/users/aboubezari/following{/other_user}",
"gists_url": "https://api.github.com/users/aboubezari/gists{/gist_id}",
"starred_url": "https://api.github.com/users/aboubezari/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/aboubezari/subscriptions",
"organizations_url": "https://api.github.com/users/aboubezari/orgs",
"repos_url": "https://api.github.com/users/aboubezari/repos",
"events_url": "https://api.github.com/users/aboubezari/events{/privacy}",
"received_events_url": "https://api.github.com/users/aboubezari/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1754777628,
"node_id": "MDU6TGFiZWwxNzU0Nzc3NjI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu:tensorrt",
"name": "comp:gpu:tensorrt",
"color": "ea98ba",
"default": false,
"description": "Issues specific to TensorRT"
},
{
"id": 4032183365,
"node_id": "LA_kwDOArmXAs7wVjxF",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9",
"name": "TF 2.9",
"color": "1CF842",
"default": false,
"description": "Issues found in the TF 2.9 release (or RCs)"
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"One additional thing I noticed when debugging: If I am to multiply the quantization or dequantization scale by a constant, the issue goes away and the engine can be built. For example, changing [these lines](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/tf2tensorrt/convert/ops/quantization_ops.cc#L69-L77) to this: \r\n```cpp\r\n if (scale_from_min_side < scale_from_max_side) {\r\n scales.quantize_scale[0] = scale_from_min_side;\r\n scales.dequantize_scale[0] = *min_range / min_quantized;\r\n *max_range = max_quantized * scales.dequantize_scale[0] * 2.0f;\r\n } else {\r\n scales.quantize_scale[0] = scale_from_max_side;\r\n scales.dequantize_scale[0] = *max_range / max_quantized;\r\n *min_range = min_quantized * scales.dequantize_scale[0] * 2.0f;\r\n }\r\n```\r\nI suspect it's some sort of overflow problem when the scale factors are actually correct. Will keep digging.",
"Second update, it still works when I update the scaling factors to a very small adjustment, like `1.00001` or `0.99999`, but not when we keep the original value (no adjustment). ",
"Third update: The issue was resolved by ensuring that `narrow_range=False` on the tensorflow side, and retraining the QAT model with that setting. The warning should be an error on the TF-TRT side. I will close this issue as I no longer need support. ",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60168\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60168\">No</a>\n"
] | 2023-03-29T23:41:13 | 2023-03-31T06:00:42 | 2023-03-31T06:00:39 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.9
### Custom Code
Yes
### OS Platform and Distribution
Linux Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I am currently working through supporting TF-TRT with explicit quant / dequant nodes, and am in the final stages of making it work. Here is a summary of the fixes I landed:
- Implement a explicit convert for `FakeQuantWithMinMaxVars` keras API
- Support Conv2D with a tensor input in explicit conversion (transpose 2nd input to `KCRS` format) to be compatible with TRT conv layer
The conversion actually runs through, but I get an error when building the engine almost immediately:
```shell
Internal Error (Assertion outScales.size() == 1 failed. )
```
### Standalone code to reproduce the issue
I am building the code from a custom TF-TRT branch off of r2.9, with minimal non-breaking changes. I can clean up my changes and open a PR on r2.9 so people can understand the changes better.
### Relevant log output
```shell
W20230329 16:29:04.094142 99658 quantization_ops.cc:309] FakeQuantWithMinMaxVars has narrow_range=true, but for TensorRT conversion, narrow_range=false is recommended.
W20230329 16:29:04.138859 99658 quantization_ops.cc:309] FakeQuantWithMinMaxVars has narrow_range=true, but for TensorRT conversion, narrow_range=false is recommended.
E20230329 16:29:05.544306 99658 convert_nodes.cc:7274] use_explicit_precision: 1
E20230329 16:29:05.544360 99658 convert_nodes.cc:7280] Build cuda engine
E20230329 16:29:05.545313 99658 convert_nodes.cc:1287] Setting TensorRT network name to TF:2.9.1, TRT:8.5.1-Precision:INT8, Calibration:0, Max-Batch-Size:1, Max-Workspace-Size:4294967296
E20230329 16:29:12.417982 99658 trt_logger.cc:40] DefaultLogger 2: [pointWiseV2Builder.cpp::toExpr::279] Error Code 2: Internal Error (Assertion outScales.size() == 1 failed. )
W20230329 16:29:12.464977 99658 trt_engine_op.cc:1047] TF-TRT Warning: Engine creation for TRTEngineOp_000_000 failed. The native segment will be used instead. Reason: INTERNAL: Failed to build TensorRT engine
W20230329 16:29:12.465102 99658 trt_engine_op.cc:888] TF-TRT Warning: Engine retrieval for input shapes: [[1,7,12], [1,7,15], [1,7,12], [1,6,5,550400], [7,3,1208,1920], [1,15,1,1]] failed. Running native segment for TRTEngineOp_000_000
```
</details>
Following up from this issue: https://github.com/tensorflow/tensorflow/issues/59711
It can possibly help solve both. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60168/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60168/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60167 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60167/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60167/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60167/events | https://github.com/tensorflow/tensorflow/issues/60167 | 1,646,522,776 | I_kwDOArmXAs5iI_GY | 60,167 | Compilation times double after commit removing distinct_host_configuration=false option | {
"login": "nluehr",
"id": 1873655,
"node_id": "MDQ6VXNlcjE4NzM2NTU=",
"avatar_url": "https://avatars.githubusercontent.com/u/1873655?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nluehr",
"html_url": "https://github.com/nluehr",
"followers_url": "https://api.github.com/users/nluehr/followers",
"following_url": "https://api.github.com/users/nluehr/following{/other_user}",
"gists_url": "https://api.github.com/users/nluehr/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nluehr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nluehr/subscriptions",
"organizations_url": "https://api.github.com/users/nluehr/orgs",
"repos_url": "https://api.github.com/users/nluehr/repos",
"events_url": "https://api.github.com/users/nluehr/events{/privacy}",
"received_events_url": "https://api.github.com/users/nluehr/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Related issue is https://github.com/bazelbuild/bazel/issues/14848#issuecomment-1183500102",
"I'll send a fix for this soon",
"@nluehr Can you check if https://github.com/tensorflow/tensorflow/pull/60180 fixes the performance regression for you?",
"I confirmed that with the fix from https://github.com/tensorflow/tensorflow/pull/60180, building takes 70 minutes, compared to 114 minutes without the fix and 62 minutes with distinct_host_configuration=false.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60167\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60167\">No</a>\n",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60167\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60167\">No</a>\n"
] | 2023-03-29T21:00:11 | 2023-05-10T21:06:49 | 2023-05-10T21:06:44 | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Build/Install
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
master at commit bdacdadc5
### Custom Code
No
### OS Platform and Distribution
Ubuntu 20.04
### Mobile device
_No response_
### Python version
3.8
### Bazel version
5.3.0
### GCC/Compiler version
Ubuntu 9.4.0-1ubuntu1~20.04.1
### CUDA/cuDNN version
CUDA 11.8, CUDNN 8.6
### GPU model and memory
N/A
### Current Behaviour?
```shell
Since commit [fa2a678486](https://github.com/tensorflow/tensorflow/commit/fa2a6784860c40e3b189f21208154b851af2fee8) removed the `--distinct_host_configuration=false` option build times have doubled.
TensorFlow builds now take 114 minutes on a machine with dual 20-core CPUs.
Disabling distinct host configuration, the same build takes 62 minutes.
This significantly increases the stress on build and test CIs as well as reducing developer productivity.
```
### Standalone code to reproduce the issue
```shell
I'm building using the sig-build docker environment as documented [here](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tf_sig_build_dockerfiles).
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60167/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60167/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60166 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60166/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60166/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60166/events | https://github.com/tensorflow/tensorflow/issues/60166 | 1,646,456,385 | I_kwDOArmXAs5iIu5B | 60,166 | tf.linalg.diag_part() is slow on TPU | {
"login": "johnypark",
"id": 17522132,
"node_id": "MDQ6VXNlcjE3NTIyMTMy",
"avatar_url": "https://avatars.githubusercontent.com/u/17522132?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/johnypark",
"html_url": "https://github.com/johnypark",
"followers_url": "https://api.github.com/users/johnypark/followers",
"following_url": "https://api.github.com/users/johnypark/following{/other_user}",
"gists_url": "https://api.github.com/users/johnypark/gists{/gist_id}",
"starred_url": "https://api.github.com/users/johnypark/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/johnypark/subscriptions",
"organizations_url": "https://api.github.com/users/johnypark/orgs",
"repos_url": "https://api.github.com/users/johnypark/repos",
"events_url": "https://api.github.com/users/johnypark/events{/privacy}",
"received_events_url": "https://api.github.com/users/johnypark/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 1463677878,
"node_id": "MDU6TGFiZWwxNDYzNjc3ODc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:performance",
"name": "type:performance",
"color": "159b2e",
"default": false,
"description": "Performance Issue"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | open | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60166\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60166\">No</a>\n",
"@johnypark \r\nI tried to reproduce the issue on Colab using TF v2.12 but facing a different error. Could you please refer to the gist [here](https://colab.research.google.com/gist/tiruk007/872b0bc68dcffe20b7351a5eb9eeafdb/untitled177.ipynb) for reference. Could you please provide detailed steps to replicate the issue reported here.\r\n\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you."
] | 2023-03-29T20:12:29 | 2023-07-08T02:08:19 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Performance
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.11.0
### Custom Code
Yes
### OS Platform and Distribution
Google colab
### Mobile device
_No response_
### Python version
3.9.16
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
I am working on implementing efficient attention mechanisms using tensorflow. (such as longformer).
The local interaction in the longformer only requires tokens to interact with their neighboring ones, which could reduce the computation overhead calculating the full dot product between two tensors.
The problem I am currently experiencing is that tf.linalg.diag_part(), a function used for extracting the band diagonal from the key tensor, works extremely slow on TPU.
In my test, the efficient attention takes 52sec to compute, whereas it takes 2sec to compute the regular dot product attention.
I tried warping it on @tf.function decorator jit_compile=True, but it is still slower than the full dot product calculation.
Using CPU, the efficient attention gets x4-5 performance boost depending on the settings.
There may be some limitations in tf.linalg.diag_part() in parallel use. The source code is written in C++, which I lack expertise in.
Is there any way to enhance the performance of tf.linalg.diag_part() in parallel processing?
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
from functools import partial
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
strategy = tf.distribute.TPUStrategy(resolver)
def split_head(input, B, N, D, num_heads):
assert D/num_heads == D//num_heads, "D must be divisible by num_heads"
x = tf.reshape(input,
(B, N, num_heads, D//num_heads))
return tf.transpose(x, perm = (0, 2, 1, 3))
B = 2048
N = 1024
D = 1024
H = 32
b_k = 15
input = tf.ones((B, N, D))
with strategy.scope():
#tf.reshape(tf.range(B*N*D), (B,N,D))
q = input
k = input
split_head = partial(split_head, B= B, N=N, D= D)
q = split_head(q, num_heads= H)
k = split_head(k, num_heads= H)
print(B,N,D)
k_T = tf.transpose(k, perm =(0, 1, 3, 2))
print(k_T.shape)
band_k = extract_band(input = k, b_k = b_k)
print(band_k.shape)
if N >= D//H:
attention = q@tf.transpose(band_k, perm = (0, 1, 3, 2))
print(attention.shape)
attention = tf.reduce_mean(attention, axis = 1) # combine head
attention_map = tf.linalg.diag(tf.transpose(attention, perm = (0, 2, 1) ), k = (-b_k//2, b_k//2))
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60166/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60166/timeline | null | reopened | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60165 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60165/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60165/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60165/events | https://github.com/tensorflow/tensorflow/issues/60165 | 1,646,182,447 | I_kwDOArmXAs5iHsAv | 60,165 | tf.estimator.BestExporter / tf.compat.v1.gfile.Rename not working for saved_models in S3 | {
"login": "j99ca",
"id": 2538015,
"node_id": "MDQ6VXNlcjI1MzgwMTU=",
"avatar_url": "https://avatars.githubusercontent.com/u/2538015?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/j99ca",
"html_url": "https://github.com/j99ca",
"followers_url": "https://api.github.com/users/j99ca/followers",
"following_url": "https://api.github.com/users/j99ca/following{/other_user}",
"gists_url": "https://api.github.com/users/j99ca/gists{/gist_id}",
"starred_url": "https://api.github.com/users/j99ca/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/j99ca/subscriptions",
"organizations_url": "https://api.github.com/users/j99ca/orgs",
"repos_url": "https://api.github.com/users/j99ca/repos",
"events_url": "https://api.github.com/users/j99ca/events{/privacy}",
"received_events_url": "https://api.github.com/users/j99ca/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097545817,
"node_id": "MDU6TGFiZWwxMDk3NTQ1ODE3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:apis",
"name": "comp:apis",
"color": "0052cc",
"default": false,
"description": "Highlevel API related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi, Estimator `tf.estimator.BestExporter` is deprecated from Tensorflow 2.12 since it uses Tensorflow V1 behavior.\r\nCould you please migrate from Estimator to Keras API which will enable you to perform the tasks such as [model building](https://www.tensorflow.org/guide/keras/custom_layers_and_models), gradient application, [training](https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit), evaluation, and prediction.\r\nRefer Migration guide here https://www.tensorflow.org/guide/migrate/migrating_estimator for more details. Thanks!",
"The issue persists with the tf.io.gfile.rename function. We use this function for various tasks. It worked before Tensorflow 2.6. According to the documentation, it should still work. However it is not working with S3 folders, as you can see in the example code above",
"Thanks for pointing out, \r\n`tf.compat.v1.gfile` is uses Tensorflow 1 behavior and usually we do not make any changes to the legacy code.\r\nAlternative to that from Tensorflow 2 is `tf.io.gfile.rename` https://www.tensorflow.org/api_docs/python/tf/io/gfile/rename.\r\nCould you please use the above API and let us know if you still face an error. Thanks!",
"The issue still exists for tf.io.gfile.rename:\r\n\r\n```\r\nprint(tf.io.gfile.exists(SOURCE_DIR))\r\ntf.io.gfile.rename(SOURCE_DIR, DEST_DIR)\r\n```\r\n\r\nWhich outputs:\r\n```\r\nTrue\r\nTraceback (most recent call last):\r\n File \"/home/j99ca/.config/JetBrains/PyCharm2023.1/scratches/tf2_s3_rename_test.py\", line 9, in <module>\r\n tf.io.gfile.rename(SOURCE_DIR, DEST_DIR)\r\n File \"/home/j99ca/venvs/eigen-ml-tf2-12/lib/python3.10/site-packages/tensorflow/python/lib/io/file_io.py\", line 622, in rename_v2\r\n _pywrap_file_io.RenameFile(\r\ntensorflow.python.framework.errors_impl.FailedPreconditionError: Source is a directory or empty file\r\n```",
"Any resolution on this issue? The documentation states that tf.io.gfile.rename should work with directories. Again, this issue seems to be for S3 even with importing tensorflow_io. Local files seem to work. I haven't tried gcs or any other cloud provider. Other operations seem to work fine like checking if the folder exists in S3 with tf.io.gfile.exists",
"@sachinprasadhs is there any progress for this issue?",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60165\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60165\">No</a>\n"
] | 2023-03-29T16:54:22 | 2023-12-13T17:05:54 | 2023-12-13T17:05:50 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.12
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu 22.04.2
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
When either using tf.estimator.BestExporter or using tf.compat.v1.gfile.Rename directly when the source and destination are folders in S3, an error is thrown. This error seems to go back to Tensorflow 2.6 when the S3 support was moved into tensorflow_io. In Tensorflow 2.5 this behaves properly. It also functions properly if the folders are local.
Right now if you are using Tensorflow >= 2.6 and using a tf.estimator.BestExporter with the output being written to S3, an exception is thrown
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
import tensorflow_io as tfio
SOURCE_DIR = 's3://.../best_exporter/1'
DEST_DIR = 's3://.../best_exporter/old'
tf.compat.v1.gfile.Rename(SOURCE_DIR, DEST_DIR)
```
### Relevant log output
```shell
Traceback (most recent call last):
File "/home/j99ca/.config/JetBrains/PyCharm2022.3/scratches/tf2_s3_rename_test.py", line 14, in <module>
tf.compat.v1.gfile.Rename(SOURCE_DIR, DEST_DIR)
File "/home/j99ca/venvs/tf2-12/lib/python3.10/site-packages/tensorflow/python/lib/io/file_io.py", line 606, in rename
rename_v2(oldname, newname, overwrite)
File "/home/j99ca/venvs/tf2-12/lib/python3.10/site-packages/tensorflow/python/lib/io/file_io.py", line 622, in rename_v2
_pywrap_file_io.RenameFile(
tensorflow.python.framework.errors_impl.FailedPreconditionError: Source is a directory or empty file
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60165/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60165/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60164 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60164/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60164/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60164/events | https://github.com/tensorflow/tensorflow/issues/60164 | 1,645,998,992 | I_kwDOArmXAs5iG_OQ | 60,164 | JVP using tf.autodiff.ForwardAccumulator becomes None under graph execution | {
"login": "LeeroyClaim",
"id": 65748692,
"node_id": "MDQ6VXNlcjY1NzQ4Njky",
"avatar_url": "https://avatars.githubusercontent.com/u/65748692?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/LeeroyClaim",
"html_url": "https://github.com/LeeroyClaim",
"followers_url": "https://api.github.com/users/LeeroyClaim/followers",
"following_url": "https://api.github.com/users/LeeroyClaim/following{/other_user}",
"gists_url": "https://api.github.com/users/LeeroyClaim/gists{/gist_id}",
"starred_url": "https://api.github.com/users/LeeroyClaim/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LeeroyClaim/subscriptions",
"organizations_url": "https://api.github.com/users/LeeroyClaim/orgs",
"repos_url": "https://api.github.com/users/LeeroyClaim/repos",
"events_url": "https://api.github.com/users/LeeroyClaim/events{/privacy}",
"received_events_url": "https://api.github.com/users/LeeroyClaim/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1190546177,
"node_id": "MDU6TGFiZWwxMTkwNTQ2MTc3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:autograph",
"name": "comp:autograph",
"color": "0052cc",
"default": false,
"description": "Autograph related issues"
},
{
"id": 3255468475,
"node_id": "MDU6TGFiZWwzMjU1NDY4NDc1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/2.6.0",
"name": "2.6.0",
"color": "FA96B6",
"default": false,
"description": ""
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"When using **tf.autodiff.ForwardAccumulator** with **@tf.function**, the forward-pass is executed during tracing, which means that the **ForwardAccumulator** instance is not being executed during the graph execution. To fix this, you can wrap the **ForwardAccumulator** instance with **tf.custom_gradient**.\r\n```\r\n@tf.function\r\ndef train(self, data):\r\n with tf.GradientTape() as upper_tape:\r\n loss1= self.loss1(data)\r\n grad1 = upper_tape.gradient(loss1, self.net1.variables)\r\n\r\n def jvp_with_acc(tangents):\r\n with tf.autodiff.ForwardAccumulator(primals=self.net1.variables, tangents=tangents) as acc:\r\n with tf.GradientTape() as lower_tape:\r\n loss2 = self.loss2(data)\r\n grad2 = lower_tape.gradient(loss2, self.net2.variables)\r\n\r\n final_grad = acc.jvp(grad2)\r\n return final_grad, None\r\n\r\n final_grad = jvp_with_acc(grad1)\r\n self.optimizer.apply_gradients(zip(final_grad, self.net2.variables))\r\n```\r\n",
"> When using **tf.autodiff.ForwardAccumulator** with **@tf.function**, the forward-pass is executed during tracing, which means that the **ForwardAccumulator** instance is not being executed during the graph execution. To fix this, you can wrap the **ForwardAccumulator** instance with **tf.custom_gradient**.\r\n> \r\n> ```\r\n> @tf.function\r\n> def train(self, data):\r\n> with tf.GradientTape() as upper_tape:\r\n> loss1= self.loss1(data)\r\n> grad1 = upper_tape.gradient(loss1, self.net1.variables)\r\n> \r\n> def jvp_with_acc(tangents):\r\n> with tf.autodiff.ForwardAccumulator(primals=self.net1.variables, tangents=tangents) as acc:\r\n> with tf.GradientTape() as lower_tape:\r\n> loss2 = self.loss2(data)\r\n> grad2 = lower_tape.gradient(loss2, self.net2.variables)\r\n> \r\n> final_grad = acc.jvp(grad2)\r\n> return final_grad, None\r\n> \r\n> final_grad = jvp_with_acc(grad1)\r\n> self.optimizer.apply_gradients(zip(final_grad, self.net2.variables))\r\n> ```\r\n\r\nThank you so much for replying. I managed to get the code to work under eager mode using the following code, yet when I turn on graph mode using @tf.function I got \"ValueError: Tried to convert 'input' to a tensor and failed. Error: None values not supported.\". I guess it is because \"grad1\" is None when first building the graph. Is there something I can do?\r\n\r\n```\r\ndef train(self, data):\r\n with tf.GradientTape() as upper_tape:\r\n loss1= self.loss1(data)\r\n grad1 = upper_tape.gradient(loss1, self.net1.variables)\r\n \r\n @tf.custom_gradient\r\n def jvp_with_acc(tangents):\r\n with tf.autodiff.ForwardAccumulator(primals=self.net1.variables, tangents=tangents) as acc:\r\n with tf.GradientTape() as lower_tape:\r\n loss2 = self.loss2(data)\r\n grad2 = lower_tape.gradient(loss2, self.net2.variables)\r\n\r\n final_grad = acc.jvp(grad2)\r\n def grad(variables):\r\n return None\r\n return final_grad, grad\r\n\r\n final_grad = jvp_with_acc(grad1)\r\n self.optimizer.apply_gradients(zip(final_grad, self.net2.variables))\r\n\r\n```",
" you can try explicitly converting your input to a **tf.Tensor** before computing the gradients. You can also try setting a default value for **grad1** in case it is not being computed properly",
"> \r\n\r\nTurns out the error comes from somewhere else in my loss function. The code is all good now. Much thanks.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60164\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60164\">No</a>\n"
] | 2023-03-29T14:59:40 | 2023-03-30T08:31:45 | 2023-03-30T08:31:42 | NONE | null | null | null | I'm new to Tensorflow. I'm trying to compute a Jacobian-Vector Product using tf.autodiff.ForwardAccumulator with a train function looks something like the code below. The jvp looks fine under eager execution. However, the jvp becomes a list of Nones when activate graph execution using @tf.function.
What could be the issue here?
### Tensorflow Version
tf 2.6.0
### Python version
3.7
### Train code
```shell
@tf.function
def train(self, data):
with tf.GradientTape() as upper_tape:
loss1= self.loss1(data)
grad1 = upper_tape.gradient(loss1, self.net1.variables)
with tf.autodiff.ForwardAccumulator(primals=self.net1.variables, tangents=grad1) as acc:
with tf.GradientTape() as lower_tape:
loss2 = self.loss2(data)
grad2 = lower_tape.gradient(loss2, self.net2.variables)
final_grad = acc.jvp(grad2)
self.optimizer.apply_gradients(zip(final_grad, self.net2.variables))
```
grad1 and grad2 are correctly computed under both eager mode and graph mode. The only problem is with the jvp. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60164/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60164/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60163 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60163/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60163/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60163/events | https://github.com/tensorflow/tensorflow/issues/60163 | 1,645,951,281 | I_kwDOArmXAs5iGzkx | 60,163 | How to solve the backpropagation problem of tf.signal.rfft? | {
"login": "Evan-0715",
"id": 53610899,
"node_id": "MDQ6VXNlcjUzNjEwODk5",
"avatar_url": "https://avatars.githubusercontent.com/u/53610899?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Evan-0715",
"html_url": "https://github.com/Evan-0715",
"followers_url": "https://api.github.com/users/Evan-0715/followers",
"following_url": "https://api.github.com/users/Evan-0715/following{/other_user}",
"gists_url": "https://api.github.com/users/Evan-0715/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Evan-0715/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Evan-0715/subscriptions",
"organizations_url": "https://api.github.com/users/Evan-0715/orgs",
"repos_url": "https://api.github.com/users/Evan-0715/repos",
"events_url": "https://api.github.com/users/Evan-0715/events{/privacy}",
"received_events_url": "https://api.github.com/users/Evan-0715/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1566679705,
"node_id": "MDU6TGFiZWwxNTY2Njc5NzA1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:signal",
"name": "comp:signal",
"color": "0052cc",
"default": false,
"description": "tf.signal related issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @Evan-0715, the code provided above does not raise any error. Please find the gist [here](https://colab.sandbox.google.com/gist/synandi/03334bfe2386f6dc345e3e063a7d7d57/60163.ipynb). Kindly share complete reproducible code so that we can replicate the issue from our end. Thank you! ",
"```\r\nimport numpy as np\r\nimport tensorflow as tf\r\nfrom tensorflow.keras import layers, models, Model, Sequential\r\nfrom keras.layers import concatenate\r\nfrom tensorflow.keras.layers import Conv2D, Flatten, Dense\r\nfrom tensorflow import matmul, reshape, reduce_sum, transpose\r\n\r\ndef hilbert_transform(x, N=None, axis=-1):\r\n if x.dtype == tf.complex64 or x.dtype == tf.complex128:\r\n raise ValueError(\"x must be real.\")\r\n if N is None:\r\n N = x.shape[axis]\r\n if N <= 0:\r\n raise ValueError(\"N must be positive.\")\r\n x_br = tf.signal.rfft3d(x[:, :, :1])\r\n x_bi = tf.signal.rfft3d(x[:, :, 1:])\r\n x_complex = concatenate([x_br, x_bi], axis=-1)\r\n\r\n h = np.zeros(N)\r\n if N % 2 == 0:\r\n h[0] = h[N // 2] = 1\r\n h[1:N // 2] = 2\r\n else:\r\n h[0] = 1\r\n h[1:(N + 1) // 2] = 2\r\n if x.shape.ndims > 1:\r\n ind = [tf.newaxis] * x.shape.ndims\r\n ind[axis] = slice(None)\r\n h = h[tuple(ind)]\r\n x_complex_h = x_complex * h\r\n x_bj = tf.signal.ifft3d(x_complex_h[:, :, :1])\r\n x_bk = tf.signal.ifft3d(x_complex_h[:, :, 1:])\r\n x_hilbert = concatenate([tf.math.imag(x_bj), tf.math.imag(x_bk)], axis=-1)\r\n return x_hilbert\r\nclass ImageUpgradingBlock(tf.keras.layers.Layer):\r\n def __init__(self, **kwargs):\r\n super().__init__(**kwargs)\r\n self.conv1 = tf.keras.layers.Conv2D(filters=3, kernel_size=64)\r\n self.conv2 = tf.keras.layers.Conv2D(filters=3, kernel_size=64)\r\n\r\n def call(self, inputs, *args, **kwargs):\r\n maps_x = inputs[:, :, :, :3]\r\n v1 = self.conv1(maps_x)\r\n v2 = self.conv2(maps_x)\r\n v1 = reshape(v1, [-1, 3, 1]) # basis vector with shape(-1,3,1)\r\n v2 = reshape(v2, [-1, 3, 1])\r\n V = concatenate([v1, v2], axis=-1) # the 2-D column subspace with shape(_,3,2)\r\n V = V / (1e-6 + reduce_sum(abs(V), axis=1, keepdims=True))\r\n b_, h_, w_, c = maps_x.shape\r\n maps_x_t = transpose(reshape(maps_x, [-1, h_ * w_, c]), perm=[0, 2, 1])\r\n V_t = transpose(V, perm=[0, 2, 1]) \r\n mat = matmul(V_t, V)\r\n mat_inv = tf.linalg.inv(mat)\r\n # Projection ---> Y = V×(V_t×V)_(-1)×V_t×(X)\r\n reconstruct_x_t = matmul(V, matmul(matmul(mat_inv, V_t), maps_x_t))\r\n if b_ is None: \r\n reconstruct_x = tf.linalg.lstsq(tf.squeeze(V, axis=[0]), tf.squeeze(reconstruct_x_t, axis=[0]))\r\n reconstruct_x = tf.expand_dims(reconstruct_x, axis=0) # shape(1,c,h*w) why can‘t(None,c,h*w)\r\n else:\r\n reconstruct_x = tf.linalg.lstsq(V, reconstruct_x_t)\r\n reconstruct_x = transpose(reconstruct_x, perm=[0, 2, 1]) # shape(-1,h*w,c)\r\n reconstruct_x_h = hilbert_transform(reconstruct_x, axis=1)\r\n reconstruct_x = reshape(concatenate([reconstruct_x, reconstruct_x_h], axis=-1), [-1, h_, w_, c * 2 - 2])\r\n return reconstruct_x\r\n\r\n def get_config(self):\r\n config = super().get_config()\r\n return config\r\ndef RQIUNet():\r\n input_image = layers.Input(shape=(64, 64, 3), dtype=\"float32\")\r\n x_4d = ImageUpgradingBlock()(input_image)\r\n result = Conv2D(3, 3, padding=\"same\")(x_4d)\r\n model = models.Model(inputs=input_image, outputs=result)\r\n return model\r\n\r\nloss_fn = tf.keras.losses.MeanSquaredError()\r\noptimizer = tf.keras.optimizers.Adam()\r\n\r\n\r\n@tf.function\r\ndef train_step(inputs, targets):\r\n with tf.GradientTape() as tape:\r\n predictions = RQIUNet()(inputs)\r\n loss = loss_fn(targets, predictions)\r\n gradients = tape.gradient(loss, RQIUNet().trainable_variables)\r\n optimizer.apply_gradients(zip(gradients, RQIUNet().trainable_variables))\r\n return loss\r\n\r\n\r\nx = tf.random.normal((1, 64, 64, 3))\r\ny = tf.random.normal((1, 64, 64, 3))\r\n\r\nfor i in range(10):\r\n loss = train_step(x, y)\r\n print(f\"Step {i}, Loss: {loss:.4f}\")\r\n```\r\nHi, synandi. As the original project was quite large, I converted it into a small instance, which took a little time, sorry for that. If you run this line of code, you will get the error:\r\n LookupError: gradient registry has no entry for: RFFT3D\r\nWaiting for your reply, it will help me a lot in my experiment.",
"@Evan-0715 Thank you for sharing the complete reproducible code. I was able to replicate the error in Colab using TF v2.12 and tf-nightly(v2.13.0a20230330). Kindly refer to this [gist-2.12](https://colab.sandbox.google.com/gist/synandi/57f3d2e6c05981c76d519d44f334ef59/60163_3.ipynb) and [tf-nightly](https://colab.sandbox.google.com/gist/synandi/f9aa87c44146cdaee92ccf7e739fab0a/60163_nightly.ipynb). Thank you!\r\n\r\n",
"@Evan-0715 You are right that TensorFlow might not have implemented gradients for tf.signal.rfft3d. One way to resolve this is to replace the rfft3d and ifft3d functions with their 1D counterparts, rfft and irfft, which have gradients defined.\r\n\r\nHere's the modified hilbert_transform function using tf.signal.rfft and tf.signal.irfft: \r\n\r\ndef hilbert_transform(x, N=None, axis=-1):\r\n if x.dtype == tf.complex64 or x.dtype == tf.complex128:\r\n raise ValueError(\"x must be real.\")\r\n if N is None:\r\n N = x.shape[axis]\r\n if N <= 0:\r\n raise ValueError(\"N must be positive.\")\r\n x_br = tf.signal.rfft(x[:, :, :1])\r\n x_bi = tf.signal.rfft(x[:, :, 1:])\r\n x_complex = tf.concat([x_br, x_bi], axis=-1)\r\n\r\n h = np.zeros(N)\r\n if N % 2 == 0:\r\n h[0] = h[N // 2] = 1\r\n h[1:N // 2] = 2\r\n else:\r\n h[0] = 1\r\n h[1:(N + 1) // 2] = 2\r\n if x.shape.ndims > 1:\r\n ind = [tf.newaxis] * x.shape.ndims\r\n ind[axis] = slice(None)\r\n h = h[tuple(ind)]\r\n x_complex_h = x_complex * h\r\n x_bj = tf.signal.irfft(x_complex_h[:, :, :1])\r\n x_bk = tf.signal.irfft(x_complex_h[:, :, 1:])\r\n x_hilbert = tf.concat([tf.math.imag(x_bj), tf.math.imag(x_bk)], axis=-1)\r\n return x_hilbert\r\n\r\nHowever, there is another issue in your code. You are creating a new instance of the model at every training step, which will reset the model's weights and gradients. You should create an instance of the model and pass it as an argument to the train_step function.\r\n\r\nHere's the modified train_step function:\r\n\r\n@tf.function\r\ndef train_step(model, inputs, targets):\r\n with tf.GradientTape() as tape:\r\n predictions = model(inputs)\r\n loss = loss_fn(targets, predictions)\r\n gradients = tape.gradient(loss, model.trainable_variables)\r\n optimizer.apply_gradients(zip(gradients, model.trainable_variables))\r\n return loss\r\n\r\nAnd you should create the model outside the loop:\r\nx = tf.random.normal((1, 64, 64, 3))\r\ny = tf.random.normal((1, 64, 64, 3))\r\n\r\nmodel = RQIUNet()\r\n\r\nfor i in range(10):\r\n loss = train_step(model, x, y)\r\n print(f\"Step {i}, Loss: {loss:.4f}\")\r\n\r\n\r\nWith these changes, the code should run without the LookupError and should train the model correctly",
"Thanks a lot! @synandi @Adesoji1 It really helped me to implement the Hilbert transform. If a input has tensor shape (b,h,w,2), it can be considered as a complex signal. Tensorflow's Hilbert transform code for its implementation is:\r\n```\r\ndef hilbert_transform(x, N=None, axis=-1):\r\n ##Constructing complex number\r\n x_complex = tf.complex(x[:, :, :1], x[:, :, 1:])\r\n if x_complex.dtype != tf.complex64 and x_complex.dtype != tf.complex128:\r\n raise ValueError(\"x must be complex.\")\r\n if N is None:\r\n N = x.shape[axis]\r\n if N <= 0:\r\n raise ValueError(\"N must be positive.\")\r\n x_t = transpose(x_complex, perm=[0, 2, 1])\r\n x_f = tf.signal.fft(x_t)\r\n x_f = transpose(x_f, perm=[0, 2, 1])\r\n\r\n h = np.zeros(N)\r\n if N % 2 == 0:\r\n h[0] = h[N // 2] = 1\r\n h[1:N // 2] = 2\r\n else:\r\n h[0] = 1\r\n h[1:(N + 1) // 2] = 2\r\n if x.shape.ndims > 1:\r\n ind = [tf.newaxis] * x.shape.ndims\r\n ind[axis] = slice(None)\r\n h = h[tuple(ind)]\r\n x_f_h = x_f * h\r\n x_f = transpose(x_f_h, perm=[0, 2, 1])\r\n x_hilbert = tf.signal.ifft(x_f)\r\n x_hilbert = transpose(x_hilbert, perm=[0, 2, 1])\r\n x_hilbert = concatenate([tf.math.imag(x_hilbert), tf.math.real(x_hilbert)], axis=-1)\r\n return x_hilbert\r\n```\r\nIt will return the output of a complex linear time-invariant system which has the shape (b,h,w,2). Thanks again!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60163\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60163\">No</a>\n",
"In addition, this can be added to the network for forward and backward propagation."
] | 2023-03-29T14:35:28 | 2023-04-05T12:20:18 | 2023-04-04T03:49:17 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Feature Request
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.11
### Custom Code
Yes
### OS Platform and Distribution
Windows 10
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
I x wanted to implement the Hilbert transform in the model built by tensorflowd, but I found no callable API. so I implemented it myself using tf.signal.rfft and tf.signal.ifft. However, when I was training, I found the following error reported:
LookupError: gradient registry has no entry for: RFFT3D
I think it may be that tensorflow has not defined the corresponding backpropagation method for rfft3d yet. I want to provide my code train.py & model.py
```
### Standalone code to reproduce the issue
```
def hilbert_transform(x, N=None, axis=-1):
if x.dtype == tf.complex64 or x.dtype == tf.complex128:
raise ValueError("x must be real.")
if N is None:
N = x.shape[axis]
if N <= 0:
raise ValueError("N must be positive.")
x_br = tf.signal.rfft3d(x[:, :, :1])
x_bi = tf.signal.rfft3d(x[:, :, 1:])
x_complex = concatenate([x_br, x_bi], axis=-1)
h = np.zeros(N)
if N % 2 == 0:
h[0] = h[N // 2] = 1
h[1:N // 2] = 2
else:
h[0] = 1
h[1:(N + 1) // 2] = 2
if x.shape.ndims > 1:
ind = [tf.newaxis] * x.shape.ndims
ind[axis] = slice(None)
h = h[tuple(ind)]
x_complex_h = x_complex * h
x_bj = tf.signal.ifft3d(x_complex_h[:, :, :1])
x_bk = tf.signal.ifft3d(x_complex_h[:, :, 1:])
x_hilbert = concatenate([tf.math.imag(x_bj), tf.math.imag(x_bk)], axis=-1)
return x_hilbert
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60163/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60163/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60162 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60162/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60162/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60162/events | https://github.com/tensorflow/tensorflow/issues/60162 | 1,645,540,752 | I_kwDOArmXAs5iFPWQ | 60,162 | test | {
"login": "ruirui5757",
"id": 111052607,
"node_id": "U_kgDOBp6HPw",
"avatar_url": "https://avatars.githubusercontent.com/u/111052607?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ruirui5757",
"html_url": "https://github.com/ruirui5757",
"followers_url": "https://api.github.com/users/ruirui5757/followers",
"following_url": "https://api.github.com/users/ruirui5757/following{/other_user}",
"gists_url": "https://api.github.com/users/ruirui5757/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ruirui5757/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ruirui5757/subscriptions",
"organizations_url": "https://api.github.com/users/ruirui5757/orgs",
"repos_url": "https://api.github.com/users/ruirui5757/repos",
"events_url": "https://api.github.com/users/ruirui5757/events{/privacy}",
"received_events_url": "https://api.github.com/users/ruirui5757/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
}
] | closed | false | {
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60162\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60162\">No</a>\n",
"tested"
] | 2023-03-29T10:50:13 | 2023-03-29T10:51:06 | 2023-03-29T10:50:49 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf2.8
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
mate
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
A bug happened!
```
### Standalone code to reproduce the issue
```shell
test
```
### Relevant log output
```shell
test
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60162/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60162/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60161 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60161/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60161/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60161/events | https://github.com/tensorflow/tensorflow/pull/60161 | 1,645,358,941 | PR_kwDOArmXAs5NJIga | 60,161 | Fix building for host architecture by default | {
"login": "RoboTux",
"id": 272327,
"node_id": "MDQ6VXNlcjI3MjMyNw==",
"avatar_url": "https://avatars.githubusercontent.com/u/272327?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RoboTux",
"html_url": "https://github.com/RoboTux",
"followers_url": "https://api.github.com/users/RoboTux/followers",
"following_url": "https://api.github.com/users/RoboTux/following{/other_user}",
"gists_url": "https://api.github.com/users/RoboTux/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RoboTux/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RoboTux/subscriptions",
"organizations_url": "https://api.github.com/users/RoboTux/orgs",
"repos_url": "https://api.github.com/users/RoboTux/repos",
"events_url": "https://api.github.com/users/RoboTux/events{/privacy}",
"received_events_url": "https://api.github.com/users/RoboTux/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
},
{
"id": 4976895819,
"node_id": "LA_kwDOArmXAs8AAAABKKVnSw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/override-stale",
"name": "override-stale",
"color": "B3255B",
"default": false,
"description": "This label should be used to override stale bot action on PR and Issue which demands additional time"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@tpopp could you take a look?",
"Checking, should I review this again or not (it is marked as draft)?",
"Hi @tpopp! @RoboTux is ooo until April 11th. He asked me to let you know he wanted to have a look at the CI failures before taking it out of draft. Cheers and have a nice weekend!",
"> Hi @tpopp! @RoboTux is ooo until April 11th. He asked me to let you know he wanted to have a look at the CI failures before taking it out of draft. Cheers and have a nice weekend!\r\n\r\nI'm slowly catching up but the problem seems to be that tensorflow/python/tools/saved_model_cli_test.py assumes both x86 and aarch64 are always available. I'll see how to remove that expectation on Monday, any suggestion welcome though.",
"I'll share it with others in the US in hopes that someone else has thoughts but won't be able to look earlier than Monday or Tuesday myself. ",
"FYI: I have a revised patch that I'm going to push shortly (probably tomorrow). That should fix the python test failures observed with the current patch.",
"Hey, sorry, I just came back from vacation. I'm going to see if I can find a more appropriate person to review this and will try to, in parallel, make sure everything passes, so there are no unexpected surprises later.",
"To me it seems like @jakeharmon8 and @MichaelHudgins might be the ones who should look at this?",
"Failure seems unrelated:\r\n\"ModuleNotFoundError: No module named 'tensorflow.compiler.mlir.stablehlo'\"\r\n\r\nIt also passed CI before this last merge.",
"> Failure seems unrelated: \"ModuleNotFoundError: No module named 'tensorflow.compiler.mlir.stablehlo'\"\r\n> \r\n> It also passed CI before this last merge.\r\n\r\nSame error on master as well: https://github.com/tensorflow/tensorflow/actions/runs/5010911951/jobs/8981212479",
"@RoboTux That failure was introduced with https://github.com/tensorflow/tensorflow/commit/c09dcc2c7d07a84cdb9f9b5342d7803f5dbc50b3",
"@vam-google or @jakeharmon8 could you PTAL?",
"Ping?",
"@RoboTux can you please take a look at the errors in \"Py+CPP Test Suite - Ubuntu CPU, Python 3.9\". They do look related to the PR ",
"I'm working on fixing remaining issues.",
"The latest push should fix the API and codestyle issues. Note: this does indeed introduce a new function in the test API and follows a similar pattern to ROCm and cuda. Let me know if it isn't fine.",
"All remaining issues seem unrelated to this change:\r\n- Arm CI fails to find the pip package it created (ls: cannot access '/tensorflow/whl/-*310*310*.whl': No such file or directory)\r\n- AMD ROCm fails to find clang\r\n- MacOS has 16 tests timing out",
"@jakeharmon8 @MichaelHudgins ",
"Ping?",
"@jakeharmon8 can you rereview? \r\n@RoboTux can you please rebase?",
"> @jakeharmon8 can you rereview? @RoboTux can you please rebase?\r\n\r\nSure thing, done.",
"Windows build failure looks unrelated:\r\n\r\n```\r\nexternal/llvm-project/mlir/lib/Interfaces/ViewLikeInterface.cpp(118): error C2065: 'not': undeclared identifier\r\nexternal/llvm-project/mlir/lib/Interfaces/ViewLikeInterface.cpp(118): error C2146: syntax error: missing ')' before identifier 'scalables'\r\nexternal/llvm-project/mlir/lib/Interfaces/ViewLikeInterface.cpp(118): error C2059: syntax error: ')'\r\nexternal/llvm-project/mlir/lib/Interfaces/ViewLikeInterface.cpp(119): error C2146: syntax error: missing ';' before identifier 'printer'\r\n```",
"MacOS build seems to fail for performance reasons if I read this correctly:\r\n```\r\n//tensorflow/python/kernel_tests/linalg/sparse:csr_sparse_matrix_sparse_mat_mul_grad_test_cpu FAILED in 150 out of 150 in 1.2s\r\n Stats over 150 runs: max = 1.2s, min = 0.5s, avg = 0.8s, dev = 0.1s\r\n```\r\n\r\nSince this code only changes the build system that must be unrelated.\r\n\r\nAs to ARM CI there is one test where TF crashes which I'm not sure about and one x86 dialect loading failure which is most likely related to this diff. I'll have a look now\r\n\r\n```\r\nFAIL: //tensorflow/compiler/xla/mlir/math/transforms/tests:math_optimization.mlir.test\r\n(...)\r\nLLVM ERROR: Building op `x86vector.avx.rsqrt` but it isn't registered in this MLIRContext: the dialect may not be loaded or this operation isn't registered by the dialect.\r\n```",
"//tensorflow/dtensor/mlir/tests:spmd_expansion.mlir.test is known as flaky, see https://github.com/tensorflow/tensorflow/issues/61164",
"Hi @RoboTux Can you please resolve conflicts? Thank you!",
"fyi - @RoboTux is on leave until 26th.",
"I can confirm that this PR works for Windows CUDA build. The remaining are resolving conflicts and merge quickly before new merge conflicts happens.",
"Ping?",
"There are two more blockers that I'm working on:\r\n\r\n1) Internal technical issues that I should have fixed soon\r\n2) Changes to the API normally require an RFC+Review (see [here](https://github.com/tensorflow/community/blob/master/rfcs/yyyymmdd-rfc-template.md)). I'm looking into what the process is for external contributors, and whether or not there's a shorter process for small changes like this. If you'd like to avoid that red tape, you could refactor this to remove the API changes.",
"> There are two more blockers that I'm working on:\r\n> \r\n> 1. Internal technical issues that I should have fixed soon\r\n> \r\n> 2. Changes to the API normally require an RFC+Review (see [here](https://github.com/tensorflow/community/blob/master/rfcs/yyyymmdd-rfc-template.md)). I'm looking into what the process is for external contributors, and whether or not there's a shorter process for small changes like this. If you'd like to avoid that red tape, you could refactor this to remove the API changes.\r\n\r\nI'm not sure how I could remove the API change. I need a way to skip a target CPU specific test if the support for that target is not built in so need a way to query that."
] | 2023-03-29T09:13:36 | 2024-03-06T00:40:36 | 2024-03-06T00:40:35 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60161",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60161",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60161.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60161.patch",
"merged_at": null
} | By default Tensorflow build aims to only build what is relevant for the host targets. However, due to some missing guards here and there code for other architecture may end up being built. For instance, when building tensorflow/compiler/mlir:tf-opt on AArch64 code specific to x86 also ends up being built. This commit fixes that (aka issue #59595). | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60161/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60161/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60160 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60160/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60160/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60160/events | https://github.com/tensorflow/tensorflow/pull/60160 | 1,645,323,771 | PR_kwDOArmXAs5NJA7p | 60,160 | Use MKL Rewrite pass in convolution microbenchmark | {
"login": "milpuz01",
"id": 79916358,
"node_id": "MDQ6VXNlcjc5OTE2MzU4",
"avatar_url": "https://avatars.githubusercontent.com/u/79916358?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/milpuz01",
"html_url": "https://github.com/milpuz01",
"followers_url": "https://api.github.com/users/milpuz01/followers",
"following_url": "https://api.github.com/users/milpuz01/following{/other_user}",
"gists_url": "https://api.github.com/users/milpuz01/gists{/gist_id}",
"starred_url": "https://api.github.com/users/milpuz01/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/milpuz01/subscriptions",
"organizations_url": "https://api.github.com/users/milpuz01/orgs",
"repos_url": "https://api.github.com/users/milpuz01/repos",
"events_url": "https://api.github.com/users/milpuz01/events{/privacy}",
"received_events_url": "https://api.github.com/users/milpuz01/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169365494,
"node_id": "MDU6TGFiZWwxMTY5MzY1NDk0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:M",
"name": "size:M",
"color": "adafea",
"default": false,
"description": "CL Change Size: Medium"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"cc: @penpornk @cantonios "
] | 2023-03-29T08:55:28 | 2023-04-25T16:32:12 | 2023-04-25T16:32:11 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60160",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60160",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60160.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60160.patch",
"merged_at": "2023-04-25T16:32:11"
} | Instead of hard-coding whether to use Eigen or MKL node in https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/conv_ops_benchmark_test.cc leverage MklLayoutRewritePass class to decide whether to rewrite node or not.
This also aligns with change present in this PR: https://github.com/tensorflow/tensorflow/pull/60026 where decision whether to rewrite node is decided based if computation cost amortizes overhead cost. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60160/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60160/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60159 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60159/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60159/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60159/events | https://github.com/tensorflow/tensorflow/issues/60159 | 1,645,109,270 | I_kwDOArmXAs5iDmAW | 60,159 | Tired to convert Y tensor failed also convert none to tensor | {
"login": "Ruparani777",
"id": 96835039,
"node_id": "U_kgDOBcWV3w",
"avatar_url": "https://avatars.githubusercontent.com/u/96835039?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Ruparani777",
"html_url": "https://github.com/Ruparani777",
"followers_url": "https://api.github.com/users/Ruparani777/followers",
"following_url": "https://api.github.com/users/Ruparani777/following{/other_user}",
"gists_url": "https://api.github.com/users/Ruparani777/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Ruparani777/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Ruparani777/subscriptions",
"organizations_url": "https://api.github.com/users/Ruparani777/orgs",
"repos_url": "https://api.github.com/users/Ruparani777/repos",
"events_url": "https://api.github.com/users/Ruparani777/events{/privacy}",
"received_events_url": "https://api.github.com/users/Ruparani777/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@Ruparani777,\r\ntensorflow/python/keras code is a legacy copy of Keras since the TensorFlow v2.7 release, and will be deleted in the v2.12 release. Please remove any import of `tensorflow.python.keras` and use the public API with from `tensorflow import keras or import tensorflow as tf`; **tf.keras**\r\n\r\nAlso I tried to execute the given code in tensorflow v2.12 and it was executed without any errors/issues. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/3a7b99a5268fd3f2659c139fc97dc180/untitled1057.ipynb). Thank you!",
"Do This below.\r\n\r\nfrom tensorflow.keras.layers import Input, Dense\r\nfrom tensorflow.keras.models import Model\r\nfrom tensorflow.keras.optimizers import Nadam\r\nimport numpy as np\r\n\r\nipt = Input(shape=(4,))\r\nout = Dense(1, activation='sigmoid')(ipt)\r\n\r\nmodel = Model(ipt, out)\r\nmodel.compile(optimizer=Nadam(lr=1e-4), loss='binary_crossentropy')\r\n\r\nX = np.random.randn(32, 4)\r\nY = np.random.randint(0, 2, (32, 1))\r\nmodel.train_on_batch(X, Y) \r\n\r\nLog output result is \r\n\r\n2023-03-31 22:52:20.351042: I tensorflow/compiler/xla/service/service.cc:181] StreamExecutor device (0): NVIDIA GeForce RTX 2060, Compute Capability 7.5\r\n2023-03-31 22:52:20.421809: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\r\n2023-03-31 22:52:20.926921: I tensorflow/tsl/platform/default/subprocess.cc:304] Start cannot spawn child process: No such file or directory\r\n2023-03-31 22:52:21.114032: I tensorflow/compiler/jit/xla_compilation_cache.cc:477] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process\r\n0.9700681567192078..\r\n\r\nOS\r\nWSL\r\nPython 3.8\r\nTensorflow 2.10",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60159\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60159\">No</a>\n"
] | 2023-03-29T06:19:42 | 2023-04-09T08:42:08 | 2023-04-09T08:42:05 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf 2.8
### Custom Code
Yes
### OS Platform and Distribution
Windows
### Mobile device
_No response_
### Python version
3.9
### Bazel version
no
### GCC/Compiler version
no
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
A bug happened!
```
### Standalone code to reproduce the issue
```shell
from tensorflow.python.keras.layers import Input, Dense
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.optimizers import Nadam
import numpy as np
ipt = Input(shape=(4,))
out = Dense(1, activation='sigmoid')(ipt)
model = Model(ipt, out)
model.compile(optimizer=Nadam(lr=1e-4), loss='binary_crossentropy')
X = np.random.randn(32,4)
Y = np.random.randint(0,2,(32,1))
model.train_on_batch(X,Y)from tensorflow.python.keras.layers import Input, Dense
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.optimizers import Nadam
import numpy as np
ipt = Input(shape=(4,))
out = Dense(1, activation='sigmoid')(ipt)
model = Model(ipt, out)
model.compile(optimizer=Nadam(lr=1e-4), loss='binary_crossentropy')
X = np.random.randn(32,4)
Y = np.random.randint(0,2,(32,1))
model.train_on_batch(X,Y)
```
### Relevant log output
```shell
File "<ipython-input-1-2db039c052cf>", line 20, in <module>
model.train_on_batch(X,Y)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 1017, in train_on_batch
self._make_train_function()
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 2116, in _make_train_function
params=self._collected_trainable_weights, loss=self.total_loss)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\optimizers.py", line 653, in get_updates
grads = self.get_gradients(loss, params)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\optimizers.py", line 92, in get_gradients
if None in grads:
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 1336, in tensor_equals
return gen_math_ops.equal(self, other)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 3626, in equal
name=name)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 545, in _apply_op_helper
(input_name, err))
ValueError: Tried to convert 'y' to a tensor and failed. Error: None values not supported.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60159/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60159/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60158 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60158/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60158/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60158/events | https://github.com/tensorflow/tensorflow/issues/60158 | 1,645,049,559 | I_kwDOArmXAs5iDXbX | 60,158 | DepthToSpace produce GPU address fault with Metal delegate | {
"login": "gyujin-kim",
"id": 54428778,
"node_id": "MDQ6VXNlcjU0NDI4Nzc4",
"avatar_url": "https://avatars.githubusercontent.com/u/54428778?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gyujin-kim",
"html_url": "https://github.com/gyujin-kim",
"followers_url": "https://api.github.com/users/gyujin-kim/followers",
"following_url": "https://api.github.com/users/gyujin-kim/following{/other_user}",
"gists_url": "https://api.github.com/users/gyujin-kim/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gyujin-kim/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gyujin-kim/subscriptions",
"organizations_url": "https://api.github.com/users/gyujin-kim/orgs",
"repos_url": "https://api.github.com/users/gyujin-kim/repos",
"events_url": "https://api.github.com/users/gyujin-kim/events{/privacy}",
"received_events_url": "https://api.github.com/users/gyujin-kim/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1093464312,
"node_id": "MDU6TGFiZWwxMDkzNDY0MzEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:others",
"name": "type:others",
"color": "159b2e",
"default": false,
"description": "issues not falling in bug, perfromance, support, build and install or feature"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
},
{
"id": 2671339633,
"node_id": "MDU6TGFiZWwyNjcxMzM5NjMz",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteGpuDelegate",
"name": "TFLiteGpuDelegate",
"color": "F71F04",
"default": false,
"description": "TFLite Gpu delegate issue"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "impjdi",
"id": 9742927,
"node_id": "MDQ6VXNlcjk3NDI5Mjc=",
"avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/impjdi",
"html_url": "https://github.com/impjdi",
"followers_url": "https://api.github.com/users/impjdi/followers",
"following_url": "https://api.github.com/users/impjdi/following{/other_user}",
"gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/impjdi/subscriptions",
"organizations_url": "https://api.github.com/users/impjdi/orgs",
"repos_url": "https://api.github.com/users/impjdi/repos",
"events_url": "https://api.github.com/users/impjdi/events{/privacy}",
"received_events_url": "https://api.github.com/users/impjdi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "impjdi",
"id": 9742927,
"node_id": "MDQ6VXNlcjk3NDI5Mjc=",
"avatar_url": "https://avatars.githubusercontent.com/u/9742927?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/impjdi",
"html_url": "https://github.com/impjdi",
"followers_url": "https://api.github.com/users/impjdi/followers",
"following_url": "https://api.github.com/users/impjdi/following{/other_user}",
"gists_url": "https://api.github.com/users/impjdi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/impjdi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/impjdi/subscriptions",
"organizations_url": "https://api.github.com/users/impjdi/orgs",
"repos_url": "https://api.github.com/users/impjdi/repos",
"events_url": "https://api.github.com/users/impjdi/events{/privacy}",
"received_events_url": "https://api.github.com/users/impjdi/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"* Additional Info.\r\nI am using TensorFlow Lite C API with podspec dependency 'TensorFlowLiteC', 'TensorFlowLiteC/Metal' (version is 2.11.0)\r\nThe interpreter option is default and delegate option is as followed.\r\n - allow_precision_loss = true\r\n - wait_type = TFLGpuDelegateWaitTypePassive\r\n - enable_quantization = true\r\n\r\ntflite with other target_spec.supported_types(fp16, fp32) has same problem.\r\n(current is default convert option, it has int8 type inside)\r\nAnd when I running on Android device with same tflite file, it is working well.",
"Hi @gyujin-kim Thanks for reporting this issue.\r\n\r\nCan you please provide the steps you have followed in order to reproduce the issue?\r\n\r\nAre you using the [ESRGAN model](https://tfhub.dev/captain-pool/lite-model/esrgan-tf2/1) from TF Hub? \r\n\r\nThanks.",
"Hi @pjpratik \r\nI am using [ECBSR](https://github.com/xindongzhang/ECBSR).\r\nAs mentioned above, i'am using TensorFow C API(not C++).\r\nCurrent test sequence is as followed.\r\n 1. Input image is RGB and it is resized to model input size & converted to YUV420. \r\n 2. Only Y-channel data is served to model input as float.\r\n ( just cast to float, (float)input )\r\nI think, pre-process step can be skipped.\r\nBecause this issue is the image offset(shape) problem, 1 channel data of input(ex. R channel data) is served to model, same issue will be produced.\r\nAnd i can't share current test code cause the company policy.\r\nI will try to attach SR model to another sample app.\r\n\r\nThanks.\r\n",
"@gyujin-kim Thanks for the information.\r\n\r\n@sachinprasadhs Could you please look into this issue. Thanks.",
"Hi @sachinprasadhs @impjdi \r\nI applied super-resolution to [tensorflow lite segmentation example](https://github.com/tensorflow/examples/tree/master/lite/examples/image_segmentation/ios).\r\n(https://drive.google.com/file/d/1PoGE9gd1X8HODtl5TvNBQc5aQQWsTEjE/view?usp=share_link)\r\nAlthough it is different from the environment I actually use (C API vs Swift API), the test result using random input produced the same issue.\r\n\r\nCreate an interpreter: ImageSegmentationHelper.swift line 64-81\r\ninvoke : ImageSegmentationHelper.swift line 161~211\r\nYou can test 2x and 4x by modifying ImageSegmentationHelper.swift line 367.\r\n2x works fine, 4x is giving 'GPU address fault'.\r\n\r\nPlease review.\r\nthank you",
"https://github.com/tensorflow/tensorflow/commit/c6250a0571668e920989f9506c2fbdfc53baff6d\r\nDepth to space fixed in this commit",
"@roserg \r\nI confirmed that the problem was resolved in the version 'TensorFlowLiteC 0.0.1-nightly.20230406'.\r\nthank you for your hard work.\r\n\r\nAlso, thank you for all the members who cared about this issue(@tiruk007, @pjpratik , @sachinprasadhs, @impjdi ).\r\nThanks.",
"@gyujin-kim , Thanks for confirming, could you please close the issue as well, Thanks!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60158\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60158\">No</a>\n"
] | 2023-03-29T05:15:17 | 2023-04-07T20:56:32 | 2023-04-07T20:56:29 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Others
### Have you reproduced the bug with TF nightly?
Yes
### Source
binary
### Tensorflow Version
2.11.0
### Custom Code
No
### OS Platform and Distribution
macOS Ventura 13.2.1
### Mobile device
iPhone12
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
I am testing 2x and 4x super-resolution using tflite on iphone using metal delegate.
The two models use almost the same network and determine the multiplier in DepthToSpace,
but 'GPU address fault' occurs at 4x.
--Execution of the command buffer was aborted due to an error during execution. Caused GPU Address Fault Error (0000000b:kIOGPUCommandBufferCallbackErrorPageFault)
When I checked the detailed log through the shader validation option, 'bad memory access (over access)' was occurring.
-- buffer: <unnamed>, length:4915200, resident:Read Write
-- [GPUDebug] Invalid device load executing kernel function "ComputeFunction" encoder: "", dispatch: 0, at offset 4915232
-- file:///program_source:35:0 - ComputeFunction()
The peculiarity is that the fault address offset is not constant.
(ex: 4915248, 4917808, 4918176, 4917792, 4917776, 4918240, 4915216, ...)
Here is the tflite I used
https://drive.google.com/drive/folders/1LAQjbJeXaeGQrhNc-fDiFRfsIyO5tGBR?usp=share_link
```
### Standalone code to reproduce the issue
```shell
It is 1-channel(luminance) super-resolution(2x, 4x) model with 320x240 resolution.
2x is working well, and 4x is not working. I/O type is float32
```
### Relevant log output
```shell
* with Metal API Validation option
2023-03-28 10:45:30.501062+0900 EditorDemo[2735:416512] TensorFlow Lite version : 2.11.0
2023-03-28 10:45:30.503471+0900 EditorDemo[2735:416512] Created TensorFlow Lite delegate for Metal.
INFO: Created TensorFlow Lite delegate for Metal.
2023-03-28 10:45:30.513366+0900 EditorDemo[2735:416512] Initialized TensorFlow Lite runtime.
INFO: Initialized TensorFlow Lite runtime.
2023-03-28 10:45:33.801156+0900 EditorDemo[2735:416822] Execution of the command buffer was aborted due to an error during execution. Caused GPU Address Fault Error (0000000b:kIOGPUCommandBufferCallbackErrorPageFault)
2023-03-28 10:45:33.802032+0900 EditorDemo[2735:416822] Execution of the command buffer was aborted due to an error during execution. Caused GPU Address Fault Error (0000000b:kIOGPUCommandBufferCallbackErrorPageFault)
* with Metal Shader Validation option
2023-03-28 10:49:39.145090+0900 EditorDemo[2747:418356] TensorFlow Lite version : 2.11.0
2023-03-28 10:49:39.145399+0900 EditorDemo[2747:418356] Created TensorFlow Lite delegate for Metal.
INFO: Created TensorFlow Lite delegate for Metal.
2023-03-28 10:49:39.146572+0900 EditorDemo[2747:418356] Initialized TensorFlow Lite runtime.
INFO: Initialized TensorFlow Lite runtime.
2023-03-28 10:49:45.131812+0900 EditorDemo[2747:418729] [GPUDebug] Invalid device load executing kernel function "ComputeFunction" encoder: "", dispatch: 0, at offset 4915232
file:///program_source:35:0 - ComputeFunction()
buffer: <unnamed>, length:4915200, resident:Read Write
2023-03-28 10:49:45.134406+0900 EditorDemo[2747:418729] [GPUDebug] Invalid device load executing kernel function "ComputeFunction" encoder: "", dispatch: 0, at offset 4915232
file:///program_source:35:0 - ComputeFunction()
buffer: <unnamed>, length:4915200, resident:Read Write
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60158/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60158/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60157 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60157/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60157/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60157/events | https://github.com/tensorflow/tensorflow/issues/60157 | 1,644,973,646 | I_kwDOArmXAs5iDE5O | 60,157 | spam removed | {
"login": "sssssshift",
"id": 128574415,
"node_id": "U_kgDOB6njzw",
"avatar_url": "https://avatars.githubusercontent.com/u/128574415?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sssssshift",
"html_url": "https://github.com/sssssshift",
"followers_url": "https://api.github.com/users/sssssshift/followers",
"following_url": "https://api.github.com/users/sssssshift/following{/other_user}",
"gists_url": "https://api.github.com/users/sssssshift/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sssssshift/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sssssshift/subscriptions",
"organizations_url": "https://api.github.com/users/sssssshift/orgs",
"repos_url": "https://api.github.com/users/sssssshift/repos",
"events_url": "https://api.github.com/users/sssssshift/events{/privacy}",
"received_events_url": "https://api.github.com/users/sssssshift/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1593512946,
"node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid",
"name": "invalid",
"color": "db6f57",
"default": true,
"description": "Hacktoberfest spam PR"
}
] | closed | true | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @sssssshift, We see that the issue [template]( https://github.com/tensorflow/tensorflow/issues/new/choose) has not been filled, could you please do so as it helps us analyze the issue [tf version, steps followed before you ran into this error or stand alone code/colab gist to reproduce the issue faced]. Thank you!\t"
] | 2023-03-29T03:29:10 | 2023-03-29T15:39:23 | 2023-03-29T15:39:12 | NONE | spam | null | null | Please go to Stack Overflow for help and support:
https://stackoverflow.com/questions/tagged/tensorflow
If you open a GitHub issue, here is our policy:
1. It must be a bug, a feature request, or a significant problem with the
documentation (for small docs fixes please send a PR instead).
2. The form below must be filled out.
3. It shouldn't be a TensorBoard issue. Those go
[here](https://github.com/tensorflow/tensorboard/issues).
**Here's why we have that policy**: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.
------------------------
### System information
- **Have I written custom code (as opposed to using a stock example script
provided in TensorFlow)**:
- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**:
- **Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue
happens on a mobile device**:
- **TensorFlow installed from (source or binary)**:
- **TensorFlow version (use command below)**:
- **Python version**:
- **Bazel version (if compiling from source)**:
- **GCC/Compiler version (if compiling from source)**:
- **CUDA/cuDNN version**:
- **GPU model and memory**:
- **Exact command to reproduce**:
You can collect some of this information using our environment capture script:
https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh
You can obtain the TensorFlow version with:
```bash
python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)"
```
### Describe the problem
Describe the problem clearly here. Be sure to convey here why it's a bug in TensorFlow or a feature request.
### Source code / logs
Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. Try to provide a reproducible test case that is the bare minimum necessary to generate the problem.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60157/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60157/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60156 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60156/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60156/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60156/events | https://github.com/tensorflow/tensorflow/issues/60156 | 1,644,938,598 | I_kwDOArmXAs5iC8Vm | 60,156 | Tensorflow cann't detect or use CUDA but pytorch can in windows 11 and python 3.9.10 | {
"login": "bluesteven",
"id": 51227406,
"node_id": "MDQ6VXNlcjUxMjI3NDA2",
"avatar_url": "https://avatars.githubusercontent.com/u/51227406?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bluesteven",
"html_url": "https://github.com/bluesteven",
"followers_url": "https://api.github.com/users/bluesteven/followers",
"following_url": "https://api.github.com/users/bluesteven/following{/other_user}",
"gists_url": "https://api.github.com/users/bluesteven/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bluesteven/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bluesteven/subscriptions",
"organizations_url": "https://api.github.com/users/bluesteven/orgs",
"repos_url": "https://api.github.com/users/bluesteven/repos",
"events_url": "https://api.github.com/users/bluesteven/events{/privacy}",
"received_events_url": "https://api.github.com/users/bluesteven/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1188421838,
"node_id": "MDU6TGFiZWwxMTg4NDIxODM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows",
"name": "subtype:windows",
"color": "b619ea",
"default": false,
"description": "Windows Build/Installation Issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@bluesteven \r\nBeginning with Tensorflow **2.11**, support for GPU on native windows has changed. You will need to install TensorFlow in **WSL2** or install tensorflow-cpu within windows machines or try the **TensorFlow-DirectML-Plugin**. \r\nhttps://www.tensorflow.org/install/pip#windows-native\r\nhttps://www.tensorflow.org/install/pip#windows-wsl2\r\n\r\nGoing forward, Tensorflow support will be developed and maintained by Tensorflow Official build collaborators (Intel, AWS, ARM, linaro etc.). For more details please take a look at this [link].(https://blog.tensorflow.org/2022/09/announcing-tensorflow-official-build-collaborators.html)\r\n\r\nThank you !",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60156\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60156\">No</a>\n"
] | 2023-03-29T02:39:34 | 2023-04-14T01:51:59 | 2023-04-14T01:51:57 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.11.0
### Custom Code
Yes
### OS Platform and Distribution
Windows 11
### Mobile device
_No response_
### Python version
3.9.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.6r11.6/8.6
### GPU model and memory
_No response_
### Current Behaviour?
```shell
import tensorflow as tf
print(tf.test.is_build_with_cuda()) # false is returned
tf.config.list_physical_devices('GPU') # [] is returned
import torch
torch.cuda.is_available() # true is returned
print(torch.device("cuda:0" if torch.cuda.is_available() else "cpu")) #'cuda:0' is returned
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
print(tf.test.is_build_with_cuda()) # result show false
tf.config.list_physical_devices('GPU') # result show []
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60156/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60156/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60155 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60155/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60155/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60155/events | https://github.com/tensorflow/tensorflow/pull/60155 | 1,644,860,078 | PR_kwDOArmXAs5NHeZ- | 60,155 | [oneDNN] Enabling optimized implementation for FP32 Eigen Leakyrelu | {
"login": "othakkar",
"id": 87341429,
"node_id": "MDQ6VXNlcjg3MzQxNDI5",
"avatar_url": "https://avatars.githubusercontent.com/u/87341429?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/othakkar",
"html_url": "https://github.com/othakkar",
"followers_url": "https://api.github.com/users/othakkar/followers",
"following_url": "https://api.github.com/users/othakkar/following{/other_user}",
"gists_url": "https://api.github.com/users/othakkar/gists{/gist_id}",
"starred_url": "https://api.github.com/users/othakkar/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/othakkar/subscriptions",
"organizations_url": "https://api.github.com/users/othakkar/orgs",
"repos_url": "https://api.github.com/users/othakkar/repos",
"events_url": "https://api.github.com/users/othakkar/events{/privacy}",
"received_events_url": "https://api.github.com/users/othakkar/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "penpornk",
"id": 38085909,
"node_id": "MDQ6VXNlcjM4MDg1OTA5",
"avatar_url": "https://avatars.githubusercontent.com/u/38085909?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/penpornk",
"html_url": "https://github.com/penpornk",
"followers_url": "https://api.github.com/users/penpornk/followers",
"following_url": "https://api.github.com/users/penpornk/following{/other_user}",
"gists_url": "https://api.github.com/users/penpornk/gists{/gist_id}",
"starred_url": "https://api.github.com/users/penpornk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/penpornk/subscriptions",
"organizations_url": "https://api.github.com/users/penpornk/orgs",
"repos_url": "https://api.github.com/users/penpornk/repos",
"events_url": "https://api.github.com/users/penpornk/events{/privacy}",
"received_events_url": "https://api.github.com/users/penpornk/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"<!--table\r\n\t{mso-displayed-decimal-separator:\"\\.\";\r\n\tmso-displayed-thousand-separator:\"\\,\";}\r\n@page\r\n\t{margin:.75in .7in .75in .7in;\r\n\tmso-header-margin:.3in;\r\n\tmso-footer-margin:.3in;}\r\ntr\r\n\t{mso-height-source:auto;}\r\ncol\r\n\t{mso-width-source:auto;}\r\nbr\r\n\t{mso-data-placement:same-cell;}\r\ntd\r\n\t{padding-top:1px;\r\n\tpadding-right:1px;\r\n\tpadding-left:1px;\r\n\tmso-ignore:padding;\r\n\tcolor:black;\r\n\tfont-size:11.0pt;\r\n\tfont-weight:400;\r\n\tfont-style:normal;\r\n\ttext-decoration:none;\r\n\tfont-family:Calibri, sans-serif;\r\n\tmso-font-charset:0;\r\n\tmso-number-format:General;\r\n\ttext-align:general;\r\n\tvertical-align:bottom;\r\n\tborder:none;\r\n\tmso-background-source:auto;\r\n\tmso-pattern:auto;\r\n\tmso-protection:locked visible;\r\n\twhite-space:nowrap;\r\n\tmso-rotate:0;}\r\n.xl63\r\n\t{font-weight:700;\r\n\ttext-align:center;\r\n\tborder:.5pt solid windowtext;}\r\n.xl64\r\n\t{font-weight:700;\r\n\ttext-align:center;\r\n\tvertical-align:middle;\r\n\tborder:.5pt solid windowtext;}\r\n.xl65\r\n\t{text-align:left;\r\n\tvertical-align:middle;\r\n\tborder:.5pt solid windowtext;}\r\n.xl66\r\n\t{text-align:center;\r\n\tborder:.5pt solid windowtext;}\r\n-->\r\n\r\n</head>\r\n\r\n<body link=\"#0563C1\" vlink=\"#954F72\">\r\n\r\n\r\n\r\nBenchmark | Ratio of items per sec (new functor / old functor)\r\n-- | --\r\nBM_cpu_LeakyRelu_DT_FLOAT/4096/real_time | 1.079846785\r\nBM_cpu_LeakyRelu_DT_FLOAT/8192/real_time | 1.191555821\r\nBM_cpu_LeakyRelu_DT_FLOAT/16384/real_time | 0.966524242\r\nBM_cpu_LeakyRelu_DT_FLOAT/24576/real_time | 0.90974655\r\nBM_cpu_LeakyRelu_DT_FLOAT/32768/real_time | 0.93021272\r\nBM_cpu_LeakyRelu_DT_FLOAT/49152/real_time | 2.379710511\r\nBM_cpu_LeakyRelu_DT_FLOAT/65536/real_time | 2.113627383\r\nBM_cpu_LeakyRelu_DT_FLOAT/98304/real_time | 1.543279438\r\nBM_cpu_LeakyRelu_DT_FLOAT/131072/real_time | 1.776233302\r\nBM_cpu_LeakyRelu_DT_FLOAT/196608/real_time | 1.138081174\r\nBM_cpu_LeakyRelu_DT_FLOAT/262144/real_time | 1.16168108\r\nBM_cpu_LeakyRelu_DT_FLOAT/524288/real_time | 1.157432143\r\nBM_cpu_LeakyRelu_DT_FLOAT/1048576/real_time | 0.992303435\r\nBM_cpu_LeakyRelu_DT_FLOAT/2097152/real_time | 0.969126351\r\nBM_cpu_LeakyRelu_DT_FLOAT/4194304/real_time | 0.99186018\r\nBM_cpu_LeakyRelu_DT_FLOAT/16777216/real_time | 1.07124154\r\nBM_cpu_LeakyRelu_DT_FLOAT/33554432/real_time | 0.999279574\r\nBM_cpu_LeakyRelu_DT_FLOAT/67108864/real_time | 1.15118183\r\nBM_cpu_LeakyRelu_DT_FLOAT/134217728/real_time | 1.184103842\r\nBM_cpu_LeakyRelu_DT_FLOAT/268435456/real_time | 1.150457119\r\nBM_cpu_LeakyRelu_DT_FLOAT/536870912/real_time | 1.127747369\r\n\r\n\r\n\r\n</body>\r\n\r\n</html>\r\n"
] | 2023-03-29T00:50:08 | 2023-03-30T21:18:22 | 2023-03-30T21:18:21 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60155",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60155",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60155.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60155.patch",
"merged_at": "2023-03-30T21:18:21"
} | This PR enables the optimized implementation for FP32 using the new Eigen LeakyRelu functor leading to approximately 55% performance gain on average. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60155/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60155/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60154 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60154/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60154/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60154/events | https://github.com/tensorflow/tensorflow/issues/60154 | 1,644,721,198 | I_kwDOArmXAs5iCHQu | 60,154 | [Feature Request] MatrixSquareRoot for tflite | {
"login": "petered",
"id": 1148799,
"node_id": "MDQ6VXNlcjExNDg3OTk=",
"avatar_url": "https://avatars.githubusercontent.com/u/1148799?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/petered",
"html_url": "https://github.com/petered",
"followers_url": "https://api.github.com/users/petered/followers",
"following_url": "https://api.github.com/users/petered/following{/other_user}",
"gists_url": "https://api.github.com/users/petered/gists{/gist_id}",
"starred_url": "https://api.github.com/users/petered/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/petered/subscriptions",
"organizations_url": "https://api.github.com/users/petered/orgs",
"repos_url": "https://api.github.com/users/petered/repos",
"events_url": "https://api.github.com/users/petered/events{/privacy}",
"received_events_url": "https://api.github.com/users/petered/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 2691740411,
"node_id": "MDU6TGFiZWwyNjkxNzQwNDEx",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite-kernels",
"name": "comp:lite-kernels",
"color": "D97FB4",
"default": false,
"description": "TensorFlow Lite kernel issues"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
},
{
"login": "vamsimanchala",
"id": 110555921,
"node_id": "U_kgDOBpbzEQ",
"avatar_url": "https://avatars.githubusercontent.com/u/110555921?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vamsimanchala",
"html_url": "https://github.com/vamsimanchala",
"followers_url": "https://api.github.com/users/vamsimanchala/followers",
"following_url": "https://api.github.com/users/vamsimanchala/following{/other_user}",
"gists_url": "https://api.github.com/users/vamsimanchala/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vamsimanchala/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vamsimanchala/subscriptions",
"organizations_url": "https://api.github.com/users/vamsimanchala/orgs",
"repos_url": "https://api.github.com/users/vamsimanchala/repos",
"events_url": "https://api.github.com/users/vamsimanchala/events{/privacy}",
"received_events_url": "https://api.github.com/users/vamsimanchala/received_events",
"type": "User",
"site_admin": false
},
{
"login": "pkgoogle",
"id": 132095473,
"node_id": "U_kgDOB9-d8Q",
"avatar_url": "https://avatars.githubusercontent.com/u/132095473?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pkgoogle",
"html_url": "https://github.com/pkgoogle",
"followers_url": "https://api.github.com/users/pkgoogle/followers",
"following_url": "https://api.github.com/users/pkgoogle/following{/other_user}",
"gists_url": "https://api.github.com/users/pkgoogle/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pkgoogle/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pkgoogle/subscriptions",
"organizations_url": "https://api.github.com/users/pkgoogle/orgs",
"repos_url": "https://api.github.com/users/pkgoogle/repos",
"events_url": "https://api.github.com/users/pkgoogle/events{/privacy}",
"received_events_url": "https://api.github.com/users/pkgoogle/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi, Thanks for the feature request. \r\nRight now, we don't have all the tensorflow ops under TFLite builtin ops. \r\nWe will update in the document when it is available. \r\nTill then you can use the SELECT_TF_OPS to enable Tensorflow ops as below.\r\n\r\n```\r\nconverter.target_spec.supported_ops = [\r\n tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\r\n tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\r\n]\r\n```",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"I'd say it's worth keeping open, data whitening is pretty common operation\nand this is a part of it\n\nOn Thu, Apr 13, 2023, 6:52 PM github-actions[bot] ***@***.***>\nwrote:\n\n> This issue was closed because it has been inactive for 7 days since being\n> marked as stale. Please reopen if you'd like to work on this further.\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/tensorflow/tensorflow/issues/60154#issuecomment-1507816841>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AAIYO7ZUKSABET4HYA2NY6TXBCUU3ANCNFSM6AAAAAAWLEZOM4>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n",
"Hi @vamsimanchala, can you please take a look? Thanks."
] | 2023-03-28T22:08:22 | 2023-07-27T20:45:57 | null | NONE | null | null | null | Tensorflow lite currently will not compile graphs containing `tf.linalg.sqrtm`. If you try, you get
```
Some ops in the model are custom ops, See instructions to implement custom ops: https://www.tensorflow.org/lite/guide/ops_custom
Custom ops: MatrixSquareRoot
Details:
tf.MatrixSquareRoot(tensor<3x3xf32>) -> (tensor<3x3xf32>) : {T = f32, device = ""}
```
As a work around, I am using an approximate solution:
```
def tf_denmann_beavers_sqrtm(matrix: TensorInvCovMat, n_iter=10):
"""
Approximate the matrix-square-root by Denmann Beavers iteration
https://en.wikipedia.org/wiki/Square_root_of_a_matrix#By_Denman%E2%80%93Beavers_iteration
Convergence is not guaranteed. Use at your own risk!
"""
ym = matrix
zm = tf.eye(tf.shape(matrix[0])[0], dtype=matrix.dtype)
for i in range(n_iter):
ym_ = 0.5 * (ym + tf.linalg.inv(zm))
zm = 0.5 * (zm + tf.linalg.inv(ym))
ym = ym_
return ym
```
But it is not ideal.
Can we please get `tf.linalg.sqrtm` included as a standard tflite op? | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60154/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60154/timeline | null | reopened | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60153 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60153/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60153/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60153/events | https://github.com/tensorflow/tensorflow/issues/60153 | 1,644,568,639 | I_kwDOArmXAs5iBiA_ | 60,153 | Correct way to implement RNN if looping over tensor is yet not allowed | {
"login": "AlbertoSinigaglia",
"id": 25763924,
"node_id": "MDQ6VXNlcjI1NzYzOTI0",
"avatar_url": "https://avatars.githubusercontent.com/u/25763924?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/AlbertoSinigaglia",
"html_url": "https://github.com/AlbertoSinigaglia",
"followers_url": "https://api.github.com/users/AlbertoSinigaglia/followers",
"following_url": "https://api.github.com/users/AlbertoSinigaglia/following{/other_user}",
"gists_url": "https://api.github.com/users/AlbertoSinigaglia/gists{/gist_id}",
"starred_url": "https://api.github.com/users/AlbertoSinigaglia/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/AlbertoSinigaglia/subscriptions",
"organizations_url": "https://api.github.com/users/AlbertoSinigaglia/orgs",
"repos_url": "https://api.github.com/users/AlbertoSinigaglia/repos",
"events_url": "https://api.github.com/users/AlbertoSinigaglia/events{/privacy}",
"received_events_url": "https://api.github.com/users/AlbertoSinigaglia/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"**use **tf.cond** to conditionally execute the loop based on the input length**\r\nIn the code, the for loop is iterating over a **tf.Tensor** object created by **tf.range(tf.shape(inputs)[1])**. This tensor has a symbolic shape, which means that its size is not known until runtime. TensorFlow's AutoGraph cannot handle iterating over such symbolic tensors, as it requires knowing the size of the tensor at graph construction time.\r\n\r\n```\r\nimport tensorflow as tf\r\n\r\nclass MyModel1(tf.keras.Model):\r\n def __init__(self, input_text_processor, *args, **kwargs):\r\n super().__init__(*args, **kwargs)\r\n self.input_text_processor = input_text_processor\r\n\r\n def call(self, data, training=True, max_len=50):\r\n inputs = self.input_text_processor(data)\r\n def loop_body(i):\r\n return i+1\r\n i = tf.constant(0)\r\n cond = lambda i: tf.less(i, tf.shape(inputs)[1])\r\n i = tf.cond(tf.less(tf.shape(inputs)[1], max_len), lambda: tf.shape(inputs)[1], lambda: max_len)\r\n tf.while_loop(cond, loop_body, [i])\r\n return []\r\n\r\n def train_step(self, data):\r\n self.call(data)\r\n return {\"loss\" : 0}\r\n\r\ndataset = [\r\n \"hi\", \"what's up\", \"what's the weather\"\r\n]\r\ninput_text_processor = tf.keras.layers.TextVectorization()\r\ninput_text_processor.adapt(dataset)\r\n\r\nwith tf.device(\"/CPU:0\"):\r\n model = MyModel1(input_text_processor)\r\n model.compile(tf.optimizers.Adam(), loss=tf.keras.losses.SparseCategoricalCrossentropy())\r\n hist = model.fit(dataset, epochs=5)\r\n```\r\n### OUTPUT\r\n```\r\nEpoch 1/5\r\n1/1 [==============================] - 0s 471ms/step - loss: 0.0000e+00\r\nEpoch 2/5\r\n1/1 [==============================] - 0s 18ms/step - loss: 0.0000e+00\r\nEpoch 3/5\r\n1/1 [==============================] - 0s 49ms/step - loss: 0.0000e+00\r\nEpoch 4/5\r\n1/1 [==============================] - 0s 13ms/step - loss: 0.0000e+00\r\nEpoch 5/5\r\n1/1 [==============================] - 0s 18ms/step - loss: 0.0000e+00\r\n```",
"thank you so much, finally I was able to do it with your hint... please consider adding more examples in the docs for `tf.while_loop`, in order to make it work I had to fight for a while with `shape_invariants` and what to do if I want more than one input for the body of the loop... Also, I would like to ask what should I use in the `shape_invariants` if I have a list of vector (say for example the state of a LSTM, which is [h_state, m_state])\r\n\r\n\r\nAnyway, thank you so much",
"@AlbertoSinigaglia It's my pleasure to help.\r\nIf you have a list of vectors as the state of a LSTM in TensorFlow, you can use a tuple of TensorShape objects in the **shape_invariants** argument of the **tf.function** decorator to specify the shape of each vector.\r\n",
"@pat749 that makes total sense, thank you so much",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60153\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60153\">No</a>\n"
] | 2023-03-28T19:51:01 | 2023-03-29T19:43:51 | 2023-03-29T19:43:48 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.11
### Custom Code
No
### OS Platform and Distribution
MaxOS 12.3.1
### Mobile device
-
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
M1 Max 26 cores GPU 32 GB ram
### Current Behaviour?
```shell
it throws : Iterating over a symbolic `tf.Tensor` is not allowed: AutoGraph did convert this function. This might indicate you are trying to use an unsupported feature. yet the code in my opinion can be easily converted to a graph, just conditioned on the `tf.shape(inputs)[1]`... this would allow building RNNs that accepts long and short inputs, without having to pad it, which is extremely useful if the length of the strings in the dataset is very skewed, and we have many short phrases and few long ones
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
class MyModel1(tf.keras.Model):
def __init__(self, input_text_processor, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_text_processor = input_text_processor
def call(self, data, training=True, max_len=50):
inputs = self.input_text_processor(data)
for _ in tf.range(tf.shape(inputs)[1]):
pass
return []
def train_step(self, data):
self.call(data)
return {"loss" : 0}
dataset = [
"hi", "what's up", "what's the weather"
]
input_text_processor = tf.keras.layers.TextVectorization()
input_text_processor.adapt(dataset)
with tf.device("/CPU:0"):
model = MyModel1(input_text_processor)
model.compile(tf.optimizers.Adam(), loss=tf.keras.losses.SparseCategoricalCrossentropy())
hist = model.fit(dataset, epochs=5)
```
### Relevant log output
```shell
Epoch 1/5
Traceback (most recent call last):
File "/Users/username/ml/tensorflow-journey/39-rnn-enc-dec-attention/rnn-enc-dec-attention.py", line 23, in <module>
hist = model.fit(dataset, epochs=5)
File "/opt/homebrew/Caskroom/miniforge/base/envs/ml-apple-metal-3-10/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/opt/homebrew/Caskroom/miniforge/base/envs/ml-apple-metal-3-10/lib/python3.10/site-packages/tensorflow/python/framework/func_graph.py", line 1269, in autograph_handler
raise e.ag_error_metadata.to_exception(e)
tensorflow.python.framework.errors_impl.OperatorNotAllowedInGraphError: in user code:
File "/opt/homebrew/Caskroom/miniforge/base/envs/ml-apple-metal-3-10/lib/python3.10/site-packages/keras/engine/training.py", line 1249, in train_function *
return step_function(self, iterator)
File "/opt/homebrew/Caskroom/miniforge/base/envs/ml-apple-metal-3-10/lib/python3.10/site-packages/keras/engine/training.py", line 1233, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/opt/homebrew/Caskroom/miniforge/base/envs/ml-apple-metal-3-10/lib/python3.10/site-packages/keras/engine/training.py", line 1222, in run_step **
outputs = model.train_step(data)
File "/Users/username/ml/tensorflow-journey/39-rnn-enc-dec-attention/rnn-enc-dec-attention.py", line 13, in train_step
self.call(data)
File "/Users/username/ml/tensorflow-journey/39-rnn-enc-dec-attention/rnn-enc-dec-attention.py", line 8, in call
for _ in tf.range(tf.shape(inputs)[1]):
OperatorNotAllowedInGraphError: Iterating over a symbolic `tf.Tensor` is not allowed: AutoGraph did convert this function. This might indicate you are trying to use an unsupported feature.
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60153/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60153/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60152 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60152/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60152/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60152/events | https://github.com/tensorflow/tensorflow/issues/60152 | 1,644,522,888 | I_kwDOArmXAs5iBW2I | 60,152 | weighted_metrics argument for compile() doesn't account for weights | {
"login": "jackgle",
"id": 21147291,
"node_id": "MDQ6VXNlcjIxMTQ3Mjkx",
"avatar_url": "https://avatars.githubusercontent.com/u/21147291?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jackgle",
"html_url": "https://github.com/jackgle",
"followers_url": "https://api.github.com/users/jackgle/followers",
"following_url": "https://api.github.com/users/jackgle/following{/other_user}",
"gists_url": "https://api.github.com/users/jackgle/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jackgle/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jackgle/subscriptions",
"organizations_url": "https://api.github.com/users/jackgle/orgs",
"repos_url": "https://api.github.com/users/jackgle/repos",
"events_url": "https://api.github.com/users/jackgle/events{/privacy}",
"received_events_url": "https://api.github.com/users/jackgle/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"It seems that some normalization is applied to weighted_metrics that is not applied to the losses. So if the same function is passed to loss and weighted_metrics, it seems the resulting values will be same except for a scale/shift. \r\n\r\nSince in my example, the same weight was applied to every sample, the scaling effect of the weight is only seen in the loss, and the \"weighted_metric\" is equal to the unweighted \"metric\".",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60152\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60152\">No</a>\n"
] | 2023-03-28T19:12:57 | 2023-03-30T00:53:02 | 2023-03-30T00:52:59 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.12.0-dev20221213
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
3.7.6
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
When using weighted_metrics, values that would be expected with no weighting are seen.
I expected that when I use sample_weight in fit() and pass the same function to the "metrics" and "weighted_metrics" in compile(), the scores would differ, but they are the same.
```
### Standalone code to reproduce the issue
```shell
import os
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import tensorflow as tf
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# add channel axis
x_train = x_train[..., np.newaxis]
x_test = x_test[..., np.newaxis]
# subsample
train_idx = np.random.choice(len(x_train), 1000, replace=0)
test_idx = np.random.choice(len(x_test), 1000, replace=0)
x_train = x_train[train_idx]
x_test = x_test[test_idx]
# convert 1-hot
y_train = tf.one_hot(y_train[train_idx], 10)
y_test = tf.one_hot(y_test[test_idx], 10)
# define the model
def get_model():
model = tf.keras.Sequential([
tf.keras.layers.Input((28, 28, 1)),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
return model
##################### first, no weighting #####################
# initialize model
model = get_model()
# compile
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['categorical_crossentropy'],
weighted_metrics=['categorical_crossentropy'])
# train the model
history = model.fit(x_train, y_train,
validation_data = (x_train, y_train),
epochs=5,
steps_per_epoch=5,
verbose=0)
h = history.history
print('No weighting:')
print('final_loss:',h['loss'][-1])
print('final_categorical_crossentropy ():',h['categorical_crossentropy'][-1])
print('final_weighted_categorical_crossentropy ():',h['weighted_categorical_crossentropy'][-1])
##################### add weights #####################
# categorical_crossentropy should differ from weighted_categorical_crossentropy
# define sample weights
sample_weights = np.ones((len(x_train), 1))*2
val_sample_weights = np.ones((len(x_test), 1))*2
# initialize model
model = get_model()
# compile
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['categorical_crossentropy'],
weighted_metrics=['categorical_crossentropy'])
# train the model
history = model.fit(x_train, y_train,
sample_weight = sample_weights,
validation_data = (x_train, y_train, val_sample_weights),
epochs=5,
steps_per_epoch=5,
verbose=0)
h = history.history
print('\nWith Weighting:')
print('final_loss:',h['loss'][-1])
print('final_categorical_crossentropy ():',h['categorical_crossentropy'][-1])
print('final_weighted_categorical_crossentropy ():',h['weighted_categorical_crossentropy'][-1])
```
### Relevant log output
```shell
No weighting:
final_loss: 2.071871042251587
final_categorical_crossentropy (): 2.071871042251587
final_weighted_categorical_crossentropy (): 2.071871042251587
With Weighting:
final_loss: 3.7742838859558105
final_categorical_crossentropy (): 1.8871419429779053
final_weighted_categorical_crossentropy (): 1.8871419429779053
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60152/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60152/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60151 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60151/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60151/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60151/events | https://github.com/tensorflow/tensorflow/issues/60151 | 1,644,422,008 | I_kwDOArmXAs5iA-N4 | 60,151 | Build TensorFlow Lite for iOS failed!!!! | {
"login": "UnivexDont",
"id": 29479617,
"node_id": "MDQ6VXNlcjI5NDc5NjE3",
"avatar_url": "https://avatars.githubusercontent.com/u/29479617?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/UnivexDont",
"html_url": "https://github.com/UnivexDont",
"followers_url": "https://api.github.com/users/UnivexDont/followers",
"following_url": "https://api.github.com/users/UnivexDont/following{/other_user}",
"gists_url": "https://api.github.com/users/UnivexDont/gists{/gist_id}",
"starred_url": "https://api.github.com/users/UnivexDont/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/UnivexDont/subscriptions",
"organizations_url": "https://api.github.com/users/UnivexDont/orgs",
"repos_url": "https://api.github.com/users/UnivexDont/repos",
"events_url": "https://api.github.com/users/UnivexDont/events{/privacy}",
"received_events_url": "https://api.github.com/users/UnivexDont/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @UnivexDont Thanks for reporting the issue.\r\n\r\nCan you please provide the steps you have followed in order to reproduce the issue?\r\n\r\nThanks.",
"> \r\n1. clone tensorflow \r\n2. cd tensorflow && ./configure Then notice me install Bazel.\r\n3. brew install bazel 5.3.0\r\n4. ./configure step by step Then I selected iOS.\r\n5. bazel build --ios_multi_cpus=arm64,x86_64 -c opt --cxxopt=--std=c++17 \\\r\n //tensorflow/lite/ios:TensorFlowLiteC_framework\r\n\r\nThese are all the steps I took.\r\n",
"Hi @UnivexDont \r\n\r\nI have tried on MacOS 13.2 with bazel 5.3.0 on TF 2.11 and able to build without any error. Please find the screenshot below.\r\n\r\n<img width=\"555\" alt=\"Screenshot 2023-03-30 at 7 11 38 PM\" src=\"https://user-images.githubusercontent.com/118897289/228856905-232830dc-f149-4a66-93aa-c85d9b99b188.png\">\r\n\r\nCan you try on r2.11 and r2.12 and check if the issue still exists?\r\n\r\nAlso, do `bazel clean --expunge` and try the steps again.\r\n\r\nThanks.",
"> `bazel clean --expunge`\r\n\r\nThanks for your helping, I got successfully when i did `bazel clean --expunge`.👍🏻👍🏻👍🏻👍🏻👍🏻👍🏻",
"@UnivexDont Glad it helped.\r\n\r\nFeel free to close the issue if it is resolved.\r\n\r\nThanks.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60151\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60151\">No</a>\n"
] | 2023-03-28T17:56:08 | 2023-03-31T09:31:34 | 2023-03-31T09:31:31 | NONE | null | null | null | Please go to Stack Overflow for help and support:
https://stackoverflow.com/questions/tagged/tensorflow
If you open a GitHub issue, here is our policy:
1. `bazel build --config=ios_arm64 -c opt --cxxopt=--std=c++17 \
//tensorflow/lite/ios:TensorFlowLiteC_framework
❯ bazel build --incompatible_run_shell_command_string=false --verbose_failures --config=ios_arm64 -c opt //tensorflow/lite/ios:TensorFlowLiteCMetal_framework
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=170
INFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false
INFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=/Users/thao/miniforge3/bin/python --action_env PYTHON_LIB_PATH=/Users/thao/miniforge3/lib/python3.10/site-packages --python_path=/Users/thao/miniforge3/bin/python
INFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:
'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils
INFO: Found applicable config definition build:short_logs in file /Users/thao/Desktop/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file /Users/thao/Desktop/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:ios_arm64 in file /Users/thao/Desktop/tensorflow/.bazelrc: --config=ios --cpu=ios_arm64
INFO: Found applicable config definition build:ios in file /Users/thao/Desktop/tensorflow/.bazelrc: --apple_platform_type=ios --apple_bitcode=embedded --copt=-fembed-bitcode --copt=-Wno-c++11-narrowing --noenable_platform_specific_config --copt=-w --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --define=with_xla_support=false
INFO: Build option --cxxopt has changed, discarding analysis cache.
ERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19: in cc_toolchain_suite rule @local_config_cc//:toolchain: cc_toolchain_suite '@local_config_cc//:toolchain' does not contain a toolchain for cpu 'ios_arm64'
ERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19: Analysis of target '@local_config_cc//:toolchain' failed
ERROR: Analysis of target '//tensorflow/lite/ios:TensorFlowLiteCMetal_framework' failed; build aborted:
INFO: Elapsed time: 45.455s
INFO: 0 processes.
FAILED: Build did NOT complete successfully (66 packages loaded, 1118 targets configured)`
**Here's why we have that policy**: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.
------------------------
### System information
MacOS-M1Max : 13.3
Tensorflow:2.9.2
Python: 3.10.0
### Describe the problem
Describe the problem clearly here. Be sure to convey here why it's a bug in TensorFlow or a feature request.
### Source code / logs
Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. Try to provide a reproducible test case that is the bare minimum necessary to generate the problem.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60151/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60151/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60150 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60150/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60150/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60150/events | https://github.com/tensorflow/tensorflow/issues/60150 | 1,644,398,154 | I_kwDOArmXAs5iA4ZK | 60,150 | Cannot install tensorflow modules use pip | {
"login": "zyxkad",
"id": 91082411,
"node_id": "MDQ6VXNlcjkxMDgyNDEx",
"avatar_url": "https://avatars.githubusercontent.com/u/91082411?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/zyxkad",
"html_url": "https://github.com/zyxkad",
"followers_url": "https://api.github.com/users/zyxkad/followers",
"following_url": "https://api.github.com/users/zyxkad/following{/other_user}",
"gists_url": "https://api.github.com/users/zyxkad/gists{/gist_id}",
"starred_url": "https://api.github.com/users/zyxkad/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zyxkad/subscriptions",
"organizations_url": "https://api.github.com/users/zyxkad/orgs",
"repos_url": "https://api.github.com/users/zyxkad/repos",
"events_url": "https://api.github.com/users/zyxkad/events{/privacy}",
"received_events_url": "https://api.github.com/users/zyxkad/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"TensorFlow not found using pip I think Tensorflow does not currently have support for Python 3.7 and if you have Python 3.7 currently installed this might be the cause of the error message Could not find a version that satisfies the requirement tensorflow (from versions: ) No matching distribution found for tensorflow.",
"@zyxkad,\r\nCould you please take a look at this similar issue https://github.com/tensorflow/tensorflow/issues/47782 where it was mentioned that https://github.com/tensorflow/tensorflow/issues/47782#issuecomment-799601893, the official pip packages are built for **x86_64**. For **ARM**, we have to build from the source.\r\n\r\nAlso kindly have a look at the official doc link https://www.tensorflow.org/install/source for source installation on MacOS.\r\n\r\nThank you!",
"Thanks, I will see if I can build it.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60150\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60150\">No</a>\n",
"@tilakrayal\r\nI just found a pip library called [tensorflow-macos](https://pypi.org/project/tensorflow-macos). I can install it but I'm not sure is this usable?"
] | 2023-03-28T17:40:33 | 2023-03-29T16:07:58 | 2023-03-29T15:00:51 | NONE | null | null | null | Please go to Stack Overflow for help and support:
https://stackoverflow.com/questions/tagged/tensorflow
If you open a GitHub issue, here is our policy:
1. It must be a bug, a feature request, or a significant problem with the
documentation (for small docs fixes please send a PR instead).
2. The form below must be filled out.
3. It shouldn't be a TensorBoard issue. Those go
[here](https://github.com/tensorflow/tensorboard/issues).
**Here's why we have that policy**: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.
------------------------
### System information
- **Have I written custom code (as opposed to using a stock example script
provided in TensorFlow)**: No
- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: Darwin
- **Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue
happens on a mobile device**: N/A
- **TensorFlow installed from (source or binary)**: `pip3 install tf-nightly`
- **TensorFlow version (use command below)**: `2.13.0.dev20230325`
- **Python version**: `Python 3.11.2`
- **Bazel version (if compiling from source)**: no bazel installed
- **GCC/Compiler version (if compiling from source)**: Not compiling from source
```bash
$ clang --version
Apple clang version 13.1.6 (clang-1316.0.21.2.3)
Target: arm64-apple-darwin21.2.0
Thread model: posix
InstalledDir: /Library/Developer/CommandLineTools/usr/bin
```
- **CUDA/cuDNN version**:
- **GPU model and memory**: 16GB memory. Mac M1 built in GPU?
- **Exact command to reproduce**:
You can collect some of this information using our environment capture script:
https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh
P.S: I don't think this script work, because it gave me my python2 version, not python3
You can obtain the TensorFlow version with:
```bash
$ python3 -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)"
v1.12.1-91636-g1057ad694db 2.13.0-dev20230325
```
### Describe the problem
I am following this document: <https://www.tensorflow.org/text/tutorials/classify_text_with_bert#setup>
So when I try to install tensorflow, it gave me mo matching distribution found errors.
### Source code / logs
```bash
$ pip3 install tensorflow
ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)
ERROR: No matching distribution found for tensorflow
```
```bash
$ pip3 install -q -U "tensorflow-text==2.11.*"
ERROR: Could not find a version that satisfies the requirement tensorflow-text==2.11.* (from versions: none)
ERROR: No matching distribution found for tensorflow-text==2.11.*
$ pip3 install -q tf-models-official==2.11.0
ERROR: Could not find a version that satisfies the requirement opencv-python-headless==4.5.2.52 (from tf-models-official) (from versions: 3.4.10.37, 3.4.11.39, 3.4.11.41, 3.4.11.43, 3.4.11.45, 3.4.13.47, 3.4.15.55, 3.4.16.59, 3.4.17.61, 3.4.17.63, 3.4.18.65, 4.3.0.38, 4.4.0.40, 4.4.0.42, 4.4.0.44, 4.4.0.46, 4.5.1.48, 4.5.3.56, 4.5.4.58, 4.5.4.60, 4.5.5.62, 4.5.5.64, 4.6.0.66, 4.7.0.68, 4.7.0.72)
ERROR: No matching distribution found for opencv-python-headless==4.5.2.52
``` | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60150/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60150/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60149 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60149/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60149/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60149/events | https://github.com/tensorflow/tensorflow/issues/60149 | 1,644,353,523 | I_kwDOArmXAs5iAtfz | 60,149 | tf.data.Dataset.from_generator crashes with abortion | {
"login": "trickiwoo",
"id": 121965696,
"node_id": "U_kgDOB0UMgA",
"avatar_url": "https://avatars.githubusercontent.com/u/121965696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/trickiwoo",
"html_url": "https://github.com/trickiwoo",
"followers_url": "https://api.github.com/users/trickiwoo/followers",
"following_url": "https://api.github.com/users/trickiwoo/following{/other_user}",
"gists_url": "https://api.github.com/users/trickiwoo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/trickiwoo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/trickiwoo/subscriptions",
"organizations_url": "https://api.github.com/users/trickiwoo/orgs",
"repos_url": "https://api.github.com/users/trickiwoo/repos",
"events_url": "https://api.github.com/users/trickiwoo/events{/privacy}",
"received_events_url": "https://api.github.com/users/trickiwoo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1114343535,
"node_id": "MDU6TGFiZWwxMTE0MzQzNTM1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:data",
"name": "comp:data",
"color": "0052cc",
"default": false,
"description": "tf.data related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Tensorflow Version\r\n2.13.0-dev20230208\r\npython 3.8 version\r\nOS : WSL\r\nCUDA/cuDNN version\r\n12.0/8.8.1.3\r\nNvidia RTX 2060 (6GB)\r\nimport tensorflow as tf\r\nimport numpy as np\r\nds = tf.data.Dataset.from_tensors([1]).repeat(-1)\r\ndef gen():\r\n for _ in ds:\r\n yield _\r\nds = tf.data.Dataset.from_generator(\r\n gen, output_types=tf.int32)\r\nlist(ds.take(2).as_numpy_iterator())\r\nRelevant log output\r\nYour kernel may have been built without NUMA support.\r\n2023-03-31 22:33:41.003743: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1635] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3854 MB memory: -> device: 0, name: NVIDIA GeForce RTX 2060, pci bus id: 0000:01:00.0, compute capability: 7.5 \r\n\r\nThere is no error with your code. \r\n\r\nimport tensorflow as tf\r\n\r\nprint(\"TensorFlow Nightly version:\", tf.__version__)\r\n\r\nTensorFlow Nightly version: 2.13.0-dev20230331\r\n",
"@trickiwoo \r\n As per [documentation](https://www.tensorflow.org/api_docs/python/tf/data/Dataset#repeat) of tf.data.Dataset.repeat \"`The default behavior (if count is None or -1) is for the dataset to be repeated indefinitely`\". I was able to execute the given code with a positive value. please find the gist [here](https://colab.research.google.com/gist/tiruk007/05bf29c3170397a6afdfd2ab373eb3f3/untitled178.ipynb) for reference.\r\n\r\nThank you!\r\n",
"@tiruk007 Thanks for the reference. This bug does only exists with `repeat(-1)`. In my understanding, crashes like this seem to be a vulnerability according to https://github.com/tensorflow/tensorflow/issues/60121#issuecomment-1485230826, so I have also reported this bug to the Google OSS VRP program.",
"@Adesoji1 I tried and can still reproduce this bug in `2.13.0-dev20230402` locally and on Colab, can you try again on Colab?",
"@trickiwoo I ran the previous code on a jupyter kernel in a window subsystem for Linux. I would try colab ",
"@trickiwoo ,\r\n\r\nOur team is looking into it Google OSS VRP program and will get back to you. Thanks for reporting."
] | 2023-03-28T17:06:53 | 2023-04-06T05:35:18 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0-dev20230208
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
tf.data.Dataset.from_generator crashes with abortion
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
import numpy as np
ds = tf.data.Dataset.from_tensors([1]).repeat(-1)
def gen():
for _ in ds:
yield _
ds = tf.data.Dataset.from_generator(
gen, output_types=tf.int32)
list(ds.take(2).as_numpy_iterator())
```
### Relevant log output
```shell
2023-03-28 12:06:28.440209: F tensorflow/tsl/platform/default/env.cc:74] Check failed: ret == 0 (11 vs. 0)Thread tf_data_private_threadpool creation via pthread_create() failed.
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60149/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60149/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60148 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60148/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60148/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60148/events | https://github.com/tensorflow/tensorflow/issues/60148 | 1,644,340,251 | I_kwDOArmXAs5iAqQb | 60,148 | TensorArray.gather crash with Segmentation fault | {
"login": "trickiwoo",
"id": 121965696,
"node_id": "U_kgDOB0UMgA",
"avatar_url": "https://avatars.githubusercontent.com/u/121965696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/trickiwoo",
"html_url": "https://github.com/trickiwoo",
"followers_url": "https://api.github.com/users/trickiwoo/followers",
"following_url": "https://api.github.com/users/trickiwoo/following{/other_user}",
"gists_url": "https://api.github.com/users/trickiwoo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/trickiwoo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/trickiwoo/subscriptions",
"organizations_url": "https://api.github.com/users/trickiwoo/orgs",
"repos_url": "https://api.github.com/users/trickiwoo/repos",
"events_url": "https://api.github.com/users/trickiwoo/events{/privacy}",
"received_events_url": "https://api.github.com/users/trickiwoo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"The **enable_v2_behavior()** function was introduced in TensorFlow 2.0 and is no longer needed in TensorFlow 2.0 and later versions.",
"enable_v2_behavior () is called or # 2) the TF2_BEHAVIOR=1 environment variable is set.",
"Hi @trickiwoo, I was able to replicate the issue using TF-nightly(2.13.0-dev20230208). Please find the screenshot below.\r\n\r\n\r\nThank you!",
"Thanks @pat749 and @Ruparani777 for pointing out the issue! I checked and found that `enable_v2_behavior` is not needed to trigger this bug, here is the minimized code that triggers Segmentation fault:\r\n```\r\nimport tensorflow as tf\r\n\r\n@tf.function\r\ndef foo():\r\n ta = tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True)\r\n ta.write(0, tf.constant(0))\r\n return ta.gather([0])\r\n\r\nfoo()\r\n```\r\nOutput:\r\n```\r\nSegmentation fault (core dumped)\r\n```",
"Use a different version of the library: If the segmentation fault is caused by a bug in a library, then using a different version of the library can sometimes help to remove the error.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60148\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60148\">No</a>\n"
] | 2023-03-28T16:57:37 | 2023-07-14T19:42:37 | 2023-07-14T19:42:34 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0-dev20230208
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
TensorArray.gather crash with Segmentation fault
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
import numpy as np
tf = tf.compat.v2
tf.enable_v2_behavior()
@tf.function
def foo():
ta = tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True)
ta.write(0, tf.constant(0))
return ta.gather([0])
foo()
```
### Relevant log output
```shell
Segmentation fault (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60148/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60148/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60147 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60147/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60147/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60147/events | https://github.com/tensorflow/tensorflow/issues/60147 | 1,644,316,902 | I_kwDOArmXAs5iAkjm | 60,147 | tf.raw_ops.ResourceScatterUpdate crash with abortion | {
"login": "trickiwoo",
"id": 121965696,
"node_id": "U_kgDOB0UMgA",
"avatar_url": "https://avatars.githubusercontent.com/u/121965696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/trickiwoo",
"html_url": "https://github.com/trickiwoo",
"followers_url": "https://api.github.com/users/trickiwoo/followers",
"following_url": "https://api.github.com/users/trickiwoo/following{/other_user}",
"gists_url": "https://api.github.com/users/trickiwoo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/trickiwoo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/trickiwoo/subscriptions",
"organizations_url": "https://api.github.com/users/trickiwoo/orgs",
"repos_url": "https://api.github.com/users/trickiwoo/repos",
"events_url": "https://api.github.com/users/trickiwoo/events{/privacy}",
"received_events_url": "https://api.github.com/users/trickiwoo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Try this below\r\n\r\nimport tensorflow as tf\r\nimport numpy as np\r\n\r\ninit = np.random.rand(20).astype(np.float32) # Convert to float32\r\n\r\nresource = tf.Variable(init, dtype=tf.float32)\r\nresource_var = resource.handle\r\nindices = np.array([1, 3, 5], dtype=np.int32)\r\n\r\n# Make sure the updates tensor has the correct shape: (len(indices),)\r\nupdate = np.random.rand(len(indices)).astype(np.float32) # Convert to float32\r\n\r\ntf.raw_ops.ResourceScatterUpdate(resource=resource_var, indices=indices, updates=update)\r\nNow, the 'updates' tensor has a shape that matches the size of the 'indices' tensor, and the error should be resolved.",
"@trickiwoo Could you please let us know if the above workaround worked for you?\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Thanks for providing the workaround. However, in my understanding, crashes like this seem to be a vulnerability according to https://github.com/tensorflow/tensorflow/issues/60121#issuecomment-1485230826",
"I was able to reproduce the issue in Tensorflow 2.12, please find the attached Gist [here](https://gist.github.com/sachinprasadhs/028763a39c0f83e59f6a5ba2807fef8a). Thanks!",
"@trickiwoo,\r\nI tried to execute the mentioned code on tf-nightly and the code was executed with the error and also observed that the crash did not happen. And the same has been in the respective files. Kindly find the [gist](https://colab.research.google.com/gist/tilakrayal/58a438e3530de19720ef3cac0201383f/untitled1681.ipynb) for the [reference](https://colab.research.google.com/gist/tilakrayal/64c329a1db61dd97eaaffed5e04e2f54/untitled1682.ipynb).\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L22 \r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/resource_variable_ops.cc#L1120\r\n\r\n> // Check data type of update and resource to scatter.\r\n> const DataType update_dtype = c->input(2).dtype();\r\n> OP_REQUIRES(c, v->tensor()->dtype() == update_dtype,\r\n> errors::InvalidArgument(\r\n> \"DType of scatter resource and updates does not match.\"));\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60147\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60147\">No</a>\n"
] | 2023-03-28T16:41:15 | 2024-02-10T01:46:11 | 2024-02-10T01:46:05 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0-dev20230208
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
tf.raw_ops.ResourceScatterUpdate crash with abortion
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
import numpy as np
init = np.random.rand(20)
update = np.random.rand(20)
resource = tf.Variable(init, dtype=tf.float32)
resource_var = resource.handle
indices = np.array([1, 3, 5], dtype=np.int32)
tf.raw_ops.ResourceScatterUpdate(resource=resource_var, indices=indices, updates=update)
```
### Relevant log output
```shell
2023-03-28 11:39:22.735062: F tensorflow/core/framework/tensor.cc:770] Check failed: dtype() == expected_dtype (1 vs. 2) double expected, got float
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60147/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60147/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60146 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60146/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60146/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60146/events | https://github.com/tensorflow/tensorflow/pull/60146 | 1,644,307,578 | PR_kwDOArmXAs5NFoCd | 60,146 | Make tfcompile more friendly on other archs. | {
"login": "adpopescu",
"id": 5844458,
"node_id": "MDQ6VXNlcjU4NDQ0NTg=",
"avatar_url": "https://avatars.githubusercontent.com/u/5844458?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/adpopescu",
"html_url": "https://github.com/adpopescu",
"followers_url": "https://api.github.com/users/adpopescu/followers",
"following_url": "https://api.github.com/users/adpopescu/following{/other_user}",
"gists_url": "https://api.github.com/users/adpopescu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/adpopescu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/adpopescu/subscriptions",
"organizations_url": "https://api.github.com/users/adpopescu/orgs",
"repos_url": "https://api.github.com/users/adpopescu/repos",
"events_url": "https://api.github.com/users/adpopescu/events{/privacy}",
"received_events_url": "https://api.github.com/users/adpopescu/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-28T16:34:02 | 2023-06-28T08:49:43 | 2023-06-28T08:49:42 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60146",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60146",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60146.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60146.patch",
"merged_at": "2023-06-28T08:49:42"
} | Currently tfcompile and tfcompile_wrapper use hard coded values for target_triple. The hard coded value is `x86_64-pc-linux`. This makes the following test(s) fail on s390x:
//tensorflow/python/tools:saved_model_cli_test
I've removed the hard coded string and changed it so that the default value from llvm is used instead.
In the case where a specific target_triple is desired such as in the `testAOTCompileCPUFreezesAndCompilesVariablesToFeedNoneTargetAarch64Linux` and `testAOTCompileCPUFreezesAndCompilesVariablesToFeedNoneTargetAarch64Android` subtests, the set value is still allowed to follow through.
The subtests above cause additional failures on big endian systems due to a check for little endianness. I added an exception to skip these two subtests on s390x.
tfcompile_wrapper doesn't set a default target_cpu. This is causing the following test case to fail on s390x:
//tensorflow/python/tools:aot_compiled_test
I've made a similar change where I use the value from llvm as the default. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60146/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60146/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60145 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60145/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60145/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60145/events | https://github.com/tensorflow/tensorflow/pull/60145 | 1,644,283,640 | PR_kwDOArmXAs5NFjFl | 60,145 | [NVIDIA XLA:GPU] Fused MHA Support in XLA GPU: SE | {
"login": "AyanmoI",
"id": 42984676,
"node_id": "MDQ6VXNlcjQyOTg0Njc2",
"avatar_url": "https://avatars.githubusercontent.com/u/42984676?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/AyanmoI",
"html_url": "https://github.com/AyanmoI",
"followers_url": "https://api.github.com/users/AyanmoI/followers",
"following_url": "https://api.github.com/users/AyanmoI/following{/other_user}",
"gists_url": "https://api.github.com/users/AyanmoI/gists{/gist_id}",
"starred_url": "https://api.github.com/users/AyanmoI/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/AyanmoI/subscriptions",
"organizations_url": "https://api.github.com/users/AyanmoI/orgs",
"repos_url": "https://api.github.com/users/AyanmoI/repos",
"events_url": "https://api.github.com/users/AyanmoI/events{/privacy}",
"received_events_url": "https://api.github.com/users/AyanmoI/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1173072136,
"node_id": "MDU6TGFiZWwxMTczMDcyMTM2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL",
"name": "size:XL",
"color": "adafea",
"default": false,
"description": "CL Change Size:Extra Large"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "cheshire",
"id": 348959,
"node_id": "MDQ6VXNlcjM0ODk1OQ==",
"avatar_url": "https://avatars.githubusercontent.com/u/348959?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cheshire",
"html_url": "https://github.com/cheshire",
"followers_url": "https://api.github.com/users/cheshire/followers",
"following_url": "https://api.github.com/users/cheshire/following{/other_user}",
"gists_url": "https://api.github.com/users/cheshire/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cheshire/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cheshire/subscriptions",
"organizations_url": "https://api.github.com/users/cheshire/orgs",
"repos_url": "https://api.github.com/users/cheshire/repos",
"events_url": "https://api.github.com/users/cheshire/events{/privacy}",
"received_events_url": "https://api.github.com/users/cheshire/received_events",
"type": "User",
"site_admin": false
},
{
"login": "reedwm",
"id": 6510203,
"node_id": "MDQ6VXNlcjY1MTAyMDM=",
"avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/reedwm",
"html_url": "https://github.com/reedwm",
"followers_url": "https://api.github.com/users/reedwm/followers",
"following_url": "https://api.github.com/users/reedwm/following{/other_user}",
"gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/reedwm/subscriptions",
"organizations_url": "https://api.github.com/users/reedwm/orgs",
"repos_url": "https://api.github.com/users/reedwm/repos",
"events_url": "https://api.github.com/users/reedwm/events{/privacy}",
"received_events_url": "https://api.github.com/users/reedwm/received_events",
"type": "User",
"site_admin": false
},
{
"login": "chsigg",
"id": 7523982,
"node_id": "MDQ6VXNlcjc1MjM5ODI=",
"avatar_url": "https://avatars.githubusercontent.com/u/7523982?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/chsigg",
"html_url": "https://github.com/chsigg",
"followers_url": "https://api.github.com/users/chsigg/followers",
"following_url": "https://api.github.com/users/chsigg/following{/other_user}",
"gists_url": "https://api.github.com/users/chsigg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/chsigg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/chsigg/subscriptions",
"organizations_url": "https://api.github.com/users/chsigg/orgs",
"repos_url": "https://api.github.com/users/chsigg/repos",
"events_url": "https://api.github.com/users/chsigg/events{/privacy}",
"received_events_url": "https://api.github.com/users/chsigg/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gcforster",
"id": 108087815,
"node_id": "U_kgDOBnFKBw",
"avatar_url": "https://avatars.githubusercontent.com/u/108087815?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gcforster",
"html_url": "https://github.com/gcforster",
"followers_url": "https://api.github.com/users/gcforster/followers",
"following_url": "https://api.github.com/users/gcforster/following{/other_user}",
"gists_url": "https://api.github.com/users/gcforster/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gcforster/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gcforster/subscriptions",
"organizations_url": "https://api.github.com/users/gcforster/orgs",
"repos_url": "https://api.github.com/users/gcforster/repos",
"events_url": "https://api.github.com/users/gcforster/events{/privacy}",
"received_events_url": "https://api.github.com/users/gcforster/received_events",
"type": "User",
"site_admin": false
},
{
"login": "xla-rotation",
"id": 116104012,
"node_id": "U_kgDOBuubTA",
"avatar_url": "https://avatars.githubusercontent.com/u/116104012?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/xla-rotation",
"html_url": "https://github.com/xla-rotation",
"followers_url": "https://api.github.com/users/xla-rotation/followers",
"following_url": "https://api.github.com/users/xla-rotation/following{/other_user}",
"gists_url": "https://api.github.com/users/xla-rotation/gists{/gist_id}",
"starred_url": "https://api.github.com/users/xla-rotation/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/xla-rotation/subscriptions",
"organizations_url": "https://api.github.com/users/xla-rotation/orgs",
"repos_url": "https://api.github.com/users/xla-rotation/repos",
"events_url": "https://api.github.com/users/xla-rotation/events{/privacy}",
"received_events_url": "https://api.github.com/users/xla-rotation/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@akuegel @cheshire Based on https://github.com/tensorflow/tensorflow/pull/60139#issuecomment-1486799319, I created this new PR.",
"@akuegel Possible to merge this now? Hopefully no more issues :)"
] | 2023-03-28T16:19:28 | 2023-03-29T22:46:27 | 2023-03-29T22:46:27 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60145",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60145",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60145.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60145.patch",
"merged_at": "2023-03-29T22:46:26"
} | cuDNN currently supports the following patterns for Multi-headed attention:
BMM1 - BMM2
BMM1 - Scale - Bias - Mask - Softmax - BMM2
BMM1 - Scale - Bias - Mask - Softmax - Dropout - BMM2
BMM1 - Scale - Mask - Softmax - BMM2
BMM1 - Scale - Mask - Softmax - Dropout - BMM2
BMM1 - Softmax - Dropout - BMM2
This PR adds support for the stream executor for these patterns. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60145/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60145/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60144 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60144/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60144/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60144/events | https://github.com/tensorflow/tensorflow/issues/60144 | 1,644,274,375 | I_kwDOArmXAs5iAaLH | 60,144 | GPU install error | {
"login": "sparrow84001",
"id": 37022413,
"node_id": "MDQ6VXNlcjM3MDIyNDEz",
"avatar_url": "https://avatars.githubusercontent.com/u/37022413?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sparrow84001",
"html_url": "https://github.com/sparrow84001",
"followers_url": "https://api.github.com/users/sparrow84001/followers",
"following_url": "https://api.github.com/users/sparrow84001/following{/other_user}",
"gists_url": "https://api.github.com/users/sparrow84001/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sparrow84001/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sparrow84001/subscriptions",
"organizations_url": "https://api.github.com/users/sparrow84001/orgs",
"repos_url": "https://api.github.com/users/sparrow84001/repos",
"events_url": "https://api.github.com/users/sparrow84001/events{/privacy}",
"received_events_url": "https://api.github.com/users/sparrow84001/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 4257391797,
"node_id": "LA_kwDOArmXAs79wqS1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/wsl2",
"name": "wsl2",
"color": "A352E6",
"default": false,
"description": "Windows Subsystem for Linux"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@sparrow84001 \r\nCould you please make sure to follow the instructions mentioned [here](https://www.tensorflow.org/install/pip#windows-wsl2) and check the [tested build configuration](https://www.tensorflow.org/install/source#gpu) as well. I was able to find the GPU. Please find the below screenshots for reference:\r\n[Screenshot1](https://user-images.githubusercontent.com/111861663/228694081-53a0ae08-b249-4e8c-a7bb-933bbbd8e691.png)\r\n[Screenshot2](https://user-images.githubusercontent.com/111861663/228694091-7d657bfa-61ce-401a-89e3-78b06d680541.png)\r\n[Screenshot3](https://user-images.githubusercontent.com/111861663/228694268-94bed77a-53ab-414a-aeba-113f93ed7bc7.png)\r\n[Screenshot4](https://user-images.githubusercontent.com/111861663/228694279-7faa8db8-24a8-4215-984a-79b8f01a89a7.png)\r\n\r\nThank you !\r\n",
"Thanks for your reply.\r\n\r\nYea, that's the same msg as your **Screenshot4**\r\n\r\n\r\n",
"@sparrow84001,\r\nApologies for the delay. Could you please confirm whether you are facing the same issue in the latest TensorFlow. Also looks like there is another issue raised for the installation issue where it was assigned to the Developer team. Please feel free to move this issue to closed status, if my understanding is correct. Thank you!"
] | 2023-03-28T16:13:32 | 2024-06-05T12:48:58 | null | NONE | null | null | null | I am using wsl2
GPU Quadro p1000
When installing TensorFlow 2.12 through pip and conda (https://www.tensorflow.org/install/pip) after installing that build was cpu (onednn) don't use cuda (cudnn) and the error said 1) Don't have cuda driver 2)Don't open tensorrt lib
I have tried 3 times but every time build cpu based not gpu based.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60144/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60144/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60143 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60143/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60143/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60143/events | https://github.com/tensorflow/tensorflow/pull/60143 | 1,644,264,065 | PR_kwDOArmXAs5NFe5v | 60,143 | [NVIDIA TFTRT] Add kFP8 to nvinfer1::DataType enums for TRT 8.6.x | {
"login": "nluehr",
"id": 1873655,
"node_id": "MDQ6VXNlcjE4NzM2NTU=",
"avatar_url": "https://avatars.githubusercontent.com/u/1873655?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nluehr",
"html_url": "https://github.com/nluehr",
"followers_url": "https://api.github.com/users/nluehr/followers",
"following_url": "https://api.github.com/users/nluehr/following{/other_user}",
"gists_url": "https://api.github.com/users/nluehr/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nluehr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nluehr/subscriptions",
"organizations_url": "https://api.github.com/users/nluehr/orgs",
"repos_url": "https://api.github.com/users/nluehr/repos",
"events_url": "https://api.github.com/users/nluehr/events{/privacy}",
"received_events_url": "https://api.github.com/users/nluehr/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
},
{
"id": 1754777628,
"node_id": "MDU6TGFiZWwxNzU0Nzc3NjI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu:tensorrt",
"name": "comp:gpu:tensorrt",
"color": "ea98ba",
"default": false,
"description": "Issues specific to TensorRT"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-28T16:07:10 | 2023-04-04T17:49:44 | 2023-03-30T15:16:28 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60143",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60143",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60143.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60143.patch",
"merged_at": "2023-03-30T15:16:27"
} | This is an NFC, but is needed to build with TRT 8.6. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60143/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60143/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60142 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60142/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60142/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60142/events | https://github.com/tensorflow/tensorflow/pull/60142 | 1,644,229,674 | PR_kwDOArmXAs5NFXgO | 60,142 | [NVIDIA XLA] Skip TestCudnnConvInt8x32Bias test for sm 6.0 and earlier | {
"login": "nluehr",
"id": 1873655,
"node_id": "MDQ6VXNlcjE4NzM2NTU=",
"avatar_url": "https://avatars.githubusercontent.com/u/1873655?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nluehr",
"html_url": "https://github.com/nluehr",
"followers_url": "https://api.github.com/users/nluehr/followers",
"following_url": "https://api.github.com/users/nluehr/following{/other_user}",
"gists_url": "https://api.github.com/users/nluehr/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nluehr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nluehr/subscriptions",
"organizations_url": "https://api.github.com/users/nluehr/orgs",
"repos_url": "https://api.github.com/users/nluehr/repos",
"events_url": "https://api.github.com/users/nluehr/events{/privacy}",
"received_events_url": "https://api.github.com/users/nluehr/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-28T15:46:43 | 2023-04-04T17:50:05 | 2023-03-30T17:48:58 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60142",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60142",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60142.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60142.patch",
"merged_at": "2023-03-30T17:48:58"
} | cudnnConvolutionBiasActivationForward() for int8 is only supported on GPUs with compute capability 6.1 or later.
This PR disables TestCudnnConvInt8x32Bias which currently fails on SM 6.0 GPUs, such as P100. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60142/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60142/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60141 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60141/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60141/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60141/events | https://github.com/tensorflow/tensorflow/issues/60141 | 1,643,743,833 | I_kwDOArmXAs5h-YpZ | 60,141 | ImportError: Traceback | {
"login": "Giamy98",
"id": 126184435,
"node_id": "U_kgDOB4Vr8w",
"avatar_url": "https://avatars.githubusercontent.com/u/126184435?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Giamy98",
"html_url": "https://github.com/Giamy98",
"followers_url": "https://api.github.com/users/Giamy98/followers",
"following_url": "https://api.github.com/users/Giamy98/following{/other_user}",
"gists_url": "https://api.github.com/users/Giamy98/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Giamy98/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Giamy98/subscriptions",
"organizations_url": "https://api.github.com/users/Giamy98/orgs",
"repos_url": "https://api.github.com/users/Giamy98/repos",
"events_url": "https://api.github.com/users/Giamy98/events{/privacy}",
"received_events_url": "https://api.github.com/users/Giamy98/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@Giamy98 \r\nWe see that the issue [template]( https://github.com/tensorflow/tensorflow/issues/new/choose) has not been filled, could you please do so as it helps us analyze the issue [tf version, steps followed before you ran into this error or stand alone code/colab gist to reproduce the issue faced] and Could you please make sure to follow the instructions mentioned [here](https://www.tensorflow.org/install/pip#linux) and check the [tested build configuration](https://www.tensorflow.org/install/source#gpu) as well. Please let us know if it helps? \r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Commenting to keep this issue active. I am also facing the same issue when i try importing some modules from tensor on my local machine (visual studio code)",
"@MawuliB \r\nwe are waiting for more details from the user who raises the issue. For further assistance, Could you please raise the new issue [here](https://github.com/tensorflow/tensorflow/issues/new/choose) with the required details.\r\nThank you !",
"Closing this as stale. Please reopen if this is still a valid request. Thank you!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60141\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60141\">No</a>\n"
] | 2023-03-28T11:27:53 | 2023-07-28T11:15:13 | 2023-07-28T11:15:11 | NONE | null | null | null | I have this error after installing Tensorflow, when I try to import it.
ImportError Traceback (most recent call last)
File ~\anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py:62
61 try:
---> 62 from tensorflow.python._pywrap_tensorflow_internal import *
63 # This try catch logic is because there is no bazel equivalent for py_extension.
64 # Externally in opensource we must enable exceptions to load the shared object
65 # by exposing the PyInit symbols with pybind. This error will only be
66 # caught internally or if someone changes the name of the target _pywrap_tensorflow_internal.
67
68 # This logic is used in other internal projects using py_extension.
ImportError: DLL load failed while importing _pywrap_tensorflow_internal: Routine di inizializzazione della libreria di collegamento dinamico (DLL) non riuscita.
During handling of the above exception, another exception occurred:
ImportError Traceback (most recent call last)
Cell In[1], line 1
----> 1 import tensorflow as tf
File ~\anaconda3\lib\site-packages\tensorflow\__init__.py:37
34 import sys as _sys
35 import typing as _typing
---> 37 from tensorflow.python.tools import module_util as _module_util
38 from tensorflow.python.util.lazy_loader import LazyLoader as _LazyLoader
40 # Make sure code inside the TensorFlow codebase can use tf2.enabled() at import.
File ~\anaconda3\lib\site-packages\tensorflow\python\__init__.py:36
27 import traceback
29 # We aim to keep this file minimal and ideally remove completely.
30 # If you are adding a new file with @tf_export decorators,
31 # import it in modules_with_exports.py instead.
32
33 # go/tf-wildcard-import
34 # pylint: disable=wildcard-import,g-bad-import-order,g-import-not-at-top
---> 36 from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow
37 from tensorflow.python.eager import context
39 # pylint: enable=wildcard-import
40
41 # Bring in subpackages.
File ~\anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py:77
75 sys.setdlopenflags(_default_dlopen_flags)
76 except ImportError:
---> 77 raise ImportError(
78 f'{traceback.format_exc()}'
79 f'\n\nFailed to load the native TensorFlow runtime.\n'
80 f'See https://www.tensorflow.org/install/errors '
81 f'for some common causes and solutions.\n'
82 f'If you need help, create an issue '
83 f'at https://github.com/tensorflow/tensorflow/issues '
84 f'and include the entire stack trace above this error message.')
ImportError: Traceback (most recent call last):
File "C:\Users\user\anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 62, in <module>
from tensorflow.python._pywrap_tensorflow_internal import *
ImportError: DLL load failed while importing _pywrap_tensorflow_internal: Routine di inizializzazione della libreria di collegamento dinamico (DLL) non riuscita.
Failed to load the native TensorFlow runtime.
See https://www.tensorflow.org/install/errors for some common causes and solutions.
If you need help, create an issue at https://github.com/tensorflow/tensorflow/issues and include the entire stack trace above this error message.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60141/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60141/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60140 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60140/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60140/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60140/events | https://github.com/tensorflow/tensorflow/issues/60140 | 1,643,693,999 | I_kwDOArmXAs5h-Mev | 60,140 | Internal error on Attention over LSTM with ragged input | {
"login": "diogoff",
"id": 7391155,
"node_id": "MDQ6VXNlcjczOTExNTU=",
"avatar_url": "https://avatars.githubusercontent.com/u/7391155?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/diogoff",
"html_url": "https://github.com/diogoff",
"followers_url": "https://api.github.com/users/diogoff/followers",
"following_url": "https://api.github.com/users/diogoff/following{/other_user}",
"gists_url": "https://api.github.com/users/diogoff/gists{/gist_id}",
"starred_url": "https://api.github.com/users/diogoff/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/diogoff/subscriptions",
"organizations_url": "https://api.github.com/users/diogoff/orgs",
"repos_url": "https://api.github.com/users/diogoff/repos",
"events_url": "https://api.github.com/users/diogoff/events{/privacy}",
"received_events_url": "https://api.github.com/users/diogoff/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 4257391797,
"node_id": "LA_kwDOArmXAs79wqS1",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/wsl2",
"name": "wsl2",
"color": "A352E6",
"default": false,
"description": "Windows Subsystem for Linux"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @diogoff, I was able to replicate the issue in Colab using TF v2.1. Please find the gist [here](https://colab.sandbox.google.com/gist/synandi/7e784fe9c6f992441574968e3d9c153d/60140.ipynb).\r\n\r\nAs a workaround, if you don't want to keep the output of the LSTM layer at each timestep, you can set `return_sequences=False` in the LSTM layer, it will output only the last hidden state of the LSTM layer, which is a fixed-size vector. Kindly refer to the gist of working code [here](https://colab.sandbox.google.com/gist/synandi/251766ce5404da9dfba77606cf529e7d/60140_1.ipynb). Thank you!\r\n",
"For my application, I need to keep the outputs of the LSTM at each time step.\r\nAlso, note that with `return_sequences=False` the output shape does not appear to conform to the input shapes required for Attention:\r\n\r\n- query tensor of shape `[batch_size, Tq, dim]`\r\n- value tensor of shape `[batch_size, Tv, dim]`\r\n\r\nFinally, note that it runs fine if we skip the LSTM layer. In this case, we are providing all the timesteps to Attention. So I don't see a reason why it shouldn't work after the LSTM as well.",
"Hi @diogoff ,\r\n\r\nThe `keras.layers.Attention` layer supposed to be used with Dense or CNN networks but not for RNN networks.\r\n\r\nFor source please refer the source code below.Attention class sub-classes the `BaseDenseAttention` class.\r\n\r\nhttps://github.com/keras-team/keras/blob/f9336cc5114b4a9429a242deb264b707379646b7/keras/layers/attention/attention.py#L30-L31\r\n\r\nAnd the build method of the attention class calls `super().build(input_shape)` as per source below.\r\n\r\nhttps://github.com/keras-team/keras/blob/f9336cc5114b4a9429a242deb264b707379646b7/keras/layers/attention/attention.py#L169\r\n\r\nFrom the `BaseDenseAttention` class there is a note saying this would be used for CNN or Dense but not for RNN.\r\n\r\nhttps://github.com/keras-team/keras/blob/f9336cc5114b4a9429a242deb264b707379646b7/keras/layers/attention/base_dense_attention.py#L32-L36\r\n\r\nIs that make sense for why we are getting the error ? Please check and come back. Thanks!\r\n\r\n",
"Although I confirm what you say, I don't think the problem has to do with RNN vs. CNN. I think the problem has to do with ragged vs. non-ragged input.\r\nTo show this, I've prepared this sample code:\r\n```\r\nimport numpy as np\r\nimport tensorflow as tf\r\n\r\n# -----------------------------------------------------------------------------\r\n\r\nsamples = np.array([[[0.1], [0.2], [0.3]],\r\n [[0.4], [0.5], [0.6]],\r\n [[0.7], [0.8], [0.9]]], dtype=np.float32)\r\n\r\ntargets = np.array([[0.25],\r\n [0.50],\r\n [0.75]], dtype=np.float32)\r\n\r\n# -----------------------------------------------------------------------------\r\n\r\nlayer_1 = tf.keras.layers.Input(shape=(None, 1), dtype=tf.float32)\r\n\r\nlayer_2 = tf.keras.layers.LSTM(1, return_sequences=True)(layer_1)\r\n\r\nlayer_3 = tf.keras.layers.Attention()([layer_2, layer_2])\r\n\r\nlayer_4 = tf.keras.layers.Lambda(lambda x: tf.reduce_sum(x, axis=1))(layer_3)\r\n\r\nmodel = tf.keras.models.Model([layer_1], [layer_4])\r\n\r\nmodel.summary()\r\n\r\n# -----------------------------------------------------------------------------\r\n\r\nmodel.compile(optimizer='adam', loss='mse')\r\n\r\nmodel.fit(samples, targets, batch_size=3, epochs=1, verbose=1)\r\n```\r\nThis runs without issue. So why shouldn't it run with ragged input?",
"Hi @diogoff ,\r\n\r\nThanks for pointing the Ragged Tensor Input. The error is arising from calculating gradients for a Ragged Tensor on GPU device. This support is not enabled yet which is still under development stage. Please refer to the code below.The Op is enabled for CPU only now.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/25ab98cf17d86a1e2d6fb0c8172f2c8a9ecde110/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L343-L354\r\n\r\n\r\nWorkaround is to use CPU runtime when used Ragged tensor within a model. With CPU only runtime the code executes fine.Please refer the attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/37c871eb850c1ccd92265a1f360642c5/60140.ipynb).",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60140\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60140\">No</a>\n"
] | 2023-03-28T10:56:09 | 2023-04-03T08:46:05 | 2023-04-03T08:46:02 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
binary
### Tensorflow Version
2.11.0
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu 22.04 LTS on Windows WSL2
### Mobile device
_No response_
### Python version
3.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
11.7/8.5
### GPU model and memory
_No response_
### Current Behaviour?
```shell
No problem if LSTM layer is skipped. However, if LSTM (or GRU) layer is included, got an internal error.
```
### Standalone code to reproduce the issue
```shell
import numpy as np
import tensorflow as tf
# -----------------------------------------------------------------------------
samples = [[[0.1], [0.2], [0.3]],
[[0.4], [0.5], [0.6], [0.7]],
[[0.8], [0.9]]]
targets = np.array([[0.25], [0.50], [0.75]], dtype=np.float32)
# -----------------------------------------------------------------------------
row_lengths = [len(s) for s in samples]
samples = np.concatenate(samples, axis=0)
samples = tf.RaggedTensor.from_row_lengths(samples, row_lengths)
# -----------------------------------------------------------------------------
layer_1 = tf.keras.layers.Input(shape=(None, 1), dtype=tf.float32, ragged=True)
layer_2 = tf.keras.layers.LSTM(1, return_sequences=True)(layer_1)
layer_3 = tf.keras.layers.Attention()([layer_2, layer_2])
layer_4 = tf.keras.layers.Lambda(lambda x: tf.reduce_sum(x, axis=1))(layer_3)
model = tf.keras.models.Model([layer_1], [layer_4])
model.summary()
# -----------------------------------------------------------------------------
model.compile(optimizer='adam', loss='mse')
model.fit(samples, targets, batch_size=3, epochs=1, verbose=1)
```
### Relevant log output
```shell
Traceback (most recent call last):
File "/home/user/model.py", line 38, in <module>
model.fit(samples, targets, batch_size=3, epochs=1, verbose=1)
File "/usr/local/lib/python3.10/dist-packages/keras/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/usr/local/lib/python3.10/dist-packages/tensorflow/python/eager/execute.py", line 52, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InternalError: Graph execution error:
Detected at node 'zeros_like_5' defined at (most recent call last):
File "/home/user/model.py", line 38, in <module>
model.fit(samples, targets, batch_size=3, epochs=1, verbose=1)
File "/usr/local/lib/python3.10/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1650, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1249, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1233, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1222, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1027, in train_step
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
File "/usr/local/lib/python3.10/dist-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 526, in minimize
grads_and_vars = self.compute_gradients(loss, var_list, tape)
File "/usr/local/lib/python3.10/dist-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 259, in compute_gradients
grads = tape.gradient(loss, var_list)
Node: 'zeros_like_5'
Detected at node 'zeros_like_5' defined at (most recent call last):
File "/home/user/model.py", line 38, in <module>
model.fit(samples, targets, batch_size=3, epochs=1, verbose=1)
File "/usr/local/lib/python3.10/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1650, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1249, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1233, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1222, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1027, in train_step
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
File "/usr/local/lib/python3.10/dist-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 526, in minimize
grads_and_vars = self.compute_gradients(loss, var_list, tape)
File "/usr/local/lib/python3.10/dist-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 259, in compute_gradients
grads = tape.gradient(loss, var_list)
Node: 'zeros_like_5'
2 root error(s) found.
(0) INTERNAL: No unary variant unary_op function found for op ZEROS_LIKE Variant type_name: RaggedTensorVariant for device type: GPU
[[{{node zeros_like_5}}]]
[[model/attention/RaggedSoftmax/RowPartitionFromRowLengths_2/assert_non_negative/assert_less_equal/Assert/AssertGuard/pivot_f/_168/_379]]
(1) INTERNAL: No unary variant unary_op function found for op ZEROS_LIKE Variant type_name: RaggedTensorVariant for device type: GPU
[[{{node zeros_like_5}}]]
0 successful operations.
0 derived errors ignored. [Op:__inference_train_function_10894]
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60140/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60140/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60139 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60139/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60139/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60139/events | https://github.com/tensorflow/tensorflow/pull/60139 | 1,643,479,434 | PR_kwDOArmXAs5NC0eq | 60,139 | [NVIDIA XLA:GPU] Fused MHA Support in XLA GPU: SE | {
"login": "AyanmoI",
"id": 42984676,
"node_id": "MDQ6VXNlcjQyOTg0Njc2",
"avatar_url": "https://avatars.githubusercontent.com/u/42984676?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/AyanmoI",
"html_url": "https://github.com/AyanmoI",
"followers_url": "https://api.github.com/users/AyanmoI/followers",
"following_url": "https://api.github.com/users/AyanmoI/following{/other_user}",
"gists_url": "https://api.github.com/users/AyanmoI/gists{/gist_id}",
"starred_url": "https://api.github.com/users/AyanmoI/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/AyanmoI/subscriptions",
"organizations_url": "https://api.github.com/users/AyanmoI/orgs",
"repos_url": "https://api.github.com/users/AyanmoI/repos",
"events_url": "https://api.github.com/users/AyanmoI/events{/privacy}",
"received_events_url": "https://api.github.com/users/AyanmoI/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1173072136,
"node_id": "MDU6TGFiZWwxMTczMDcyMTM2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL",
"name": "size:XL",
"color": "adafea",
"default": false,
"description": "CL Change Size:Extra Large"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "cheshire",
"id": 348959,
"node_id": "MDQ6VXNlcjM0ODk1OQ==",
"avatar_url": "https://avatars.githubusercontent.com/u/348959?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cheshire",
"html_url": "https://github.com/cheshire",
"followers_url": "https://api.github.com/users/cheshire/followers",
"following_url": "https://api.github.com/users/cheshire/following{/other_user}",
"gists_url": "https://api.github.com/users/cheshire/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cheshire/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cheshire/subscriptions",
"organizations_url": "https://api.github.com/users/cheshire/orgs",
"repos_url": "https://api.github.com/users/cheshire/repos",
"events_url": "https://api.github.com/users/cheshire/events{/privacy}",
"received_events_url": "https://api.github.com/users/cheshire/received_events",
"type": "User",
"site_admin": false
},
{
"login": "reedwm",
"id": 6510203,
"node_id": "MDQ6VXNlcjY1MTAyMDM=",
"avatar_url": "https://avatars.githubusercontent.com/u/6510203?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/reedwm",
"html_url": "https://github.com/reedwm",
"followers_url": "https://api.github.com/users/reedwm/followers",
"following_url": "https://api.github.com/users/reedwm/following{/other_user}",
"gists_url": "https://api.github.com/users/reedwm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/reedwm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/reedwm/subscriptions",
"organizations_url": "https://api.github.com/users/reedwm/orgs",
"repos_url": "https://api.github.com/users/reedwm/repos",
"events_url": "https://api.github.com/users/reedwm/events{/privacy}",
"received_events_url": "https://api.github.com/users/reedwm/received_events",
"type": "User",
"site_admin": false
},
{
"login": "chsigg",
"id": 7523982,
"node_id": "MDQ6VXNlcjc1MjM5ODI=",
"avatar_url": "https://avatars.githubusercontent.com/u/7523982?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/chsigg",
"html_url": "https://github.com/chsigg",
"followers_url": "https://api.github.com/users/chsigg/followers",
"following_url": "https://api.github.com/users/chsigg/following{/other_user}",
"gists_url": "https://api.github.com/users/chsigg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/chsigg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/chsigg/subscriptions",
"organizations_url": "https://api.github.com/users/chsigg/orgs",
"repos_url": "https://api.github.com/users/chsigg/repos",
"events_url": "https://api.github.com/users/chsigg/events{/privacy}",
"received_events_url": "https://api.github.com/users/chsigg/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
},
{
"login": "gcforster",
"id": 108087815,
"node_id": "U_kgDOBnFKBw",
"avatar_url": "https://avatars.githubusercontent.com/u/108087815?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gcforster",
"html_url": "https://github.com/gcforster",
"followers_url": "https://api.github.com/users/gcforster/followers",
"following_url": "https://api.github.com/users/gcforster/following{/other_user}",
"gists_url": "https://api.github.com/users/gcforster/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gcforster/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gcforster/subscriptions",
"organizations_url": "https://api.github.com/users/gcforster/orgs",
"repos_url": "https://api.github.com/users/gcforster/repos",
"events_url": "https://api.github.com/users/gcforster/events{/privacy}",
"received_events_url": "https://api.github.com/users/gcforster/received_events",
"type": "User",
"site_admin": false
},
{
"login": "xla-rotation",
"id": 116104012,
"node_id": "U_kgDOBuubTA",
"avatar_url": "https://avatars.githubusercontent.com/u/116104012?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/xla-rotation",
"html_url": "https://github.com/xla-rotation",
"followers_url": "https://api.github.com/users/xla-rotation/followers",
"following_url": "https://api.github.com/users/xla-rotation/following{/other_user}",
"gists_url": "https://api.github.com/users/xla-rotation/gists{/gist_id}",
"starred_url": "https://api.github.com/users/xla-rotation/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/xla-rotation/subscriptions",
"organizations_url": "https://api.github.com/users/xla-rotation/orgs",
"repos_url": "https://api.github.com/users/xla-rotation/repos",
"events_url": "https://api.github.com/users/xla-rotation/events{/privacy}",
"received_events_url": "https://api.github.com/users/xla-rotation/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@cheshire @akuegel Opened this new PR",
"> I attached comments to the places I had to adjust because of ClangTidy and Linter. It might be easier for you if you revert the revert PR, then you have all those fixes already and can add additional fixes for the build time issues on top.\r\n\r\nThe reopened PR seemed to have just the last commit and I don't think I can revert the reverted PR. Are u able to do that on your end? Otherwise, I'll manually make the changes.",
"> > I attached comments to the places I had to adjust because of ClangTidy and Linter. It might be easier for you if you revert the revert PR, then you have all those fixes already and can add additional fixes for the build time issues on top.\r\n> \r\n> The reopened PR seemed to have just the last commit and I don't think I can revert the reverted PR. Are u able to do that on your end? Otherwise, I'll manually make the changes.\r\n\r\nI could do that internally, and export it as a XLA PR. Would that help?\r\nBut I guess you are working in a git checkout of tensorflow? Then you can do\r\n\r\ngit revert 7a4d2e8b1a503a45ff86d40b0387fc832302379f\r\n\r\nAnd use that as a base commit for your new PR."
] | 2023-03-28T08:44:45 | 2023-03-28T16:22:47 | 2023-03-28T16:22:47 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60139",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60139",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60139.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60139.patch",
"merged_at": null
} | cuDNN currently supports the following patterns for Multi-headed attention:
BMM1 - BMM2
BMM1 - Scale - Bias - Mask - Softmax - BMM2
BMM1 - Scale - Bias - Mask - Softmax - Dropout - BMM2
BMM1 - Scale - Mask - Softmax - BMM2
BMM1 - Scale - Mask - Softmax - Dropout - BMM2
BMM1 - Softmax - Dropout - BMM2
This PR adds support for the stream executor for these patterns. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60139/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60139/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60138 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60138/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60138/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60138/events | https://github.com/tensorflow/tensorflow/pull/60138 | 1,643,283,756 | PR_kwDOArmXAs5NCKkX | 60,138 | Fix typo in lstm_ops.cc | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"已收到,我会尽快回复你!\n ——刘劲字"
] | 2023-03-28T06:27:14 | 2023-05-01T16:26:11 | 2023-03-30T15:20:52 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60138",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60138",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60138.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60138.patch",
"merged_at": "2023-03-30T15:20:51"
} | Fix typo in line 441. Change "wci_tensor->dims()" to "wcf_tensor->dims()".
Fixes https://github.com/tensorflow/tensorflow/issues/60114. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60138/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60138/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60137 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60137/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60137/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60137/events | https://github.com/tensorflow/tensorflow/issues/60137 | 1,643,258,833 | I_kwDOArmXAs5h8iPR | 60,137 | Issue in TF Docs and it's tools with dataclasses module in Python 3.6 and earlier | {
"login": "eslam69",
"id": 43995832,
"node_id": "MDQ6VXNlcjQzOTk1ODMy",
"avatar_url": "https://avatars.githubusercontent.com/u/43995832?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/eslam69",
"html_url": "https://github.com/eslam69",
"followers_url": "https://api.github.com/users/eslam69/followers",
"following_url": "https://api.github.com/users/eslam69/following{/other_user}",
"gists_url": "https://api.github.com/users/eslam69/gists{/gist_id}",
"starred_url": "https://api.github.com/users/eslam69/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eslam69/subscriptions",
"organizations_url": "https://api.github.com/users/eslam69/orgs",
"repos_url": "https://api.github.com/users/eslam69/repos",
"events_url": "https://api.github.com/users/eslam69/events{/privacy}",
"received_events_url": "https://api.github.com/users/eslam69/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 284443156,
"node_id": "MDU6TGFiZWwyODQ0NDMxNTY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-bug",
"name": "type:docs-bug",
"color": "159b2e",
"default": false,
"description": "Document issues"
}
] | closed | false | {
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@eslam69 Thank you for reporting this issue!\r\nPlease feel free to raise a PR to fix this. Thank you!",
"Sorry about the miscommunication, but TensorFlow currently only suppoorts 3.8+, soon 3.9+.\r\n\r\nI'll update the doc-tools setup.py to make that clear.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60137\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60137\">No</a>\n"
] | 2023-03-28T06:03:15 | 2023-03-31T04:43:59 | 2023-03-30T20:15:43 | NONE | null | null | null | Currently, the TensorFlow documentation tools requires using the `dataclasses` module. However, the `dataclasses` module is not included in the standard library in Python 3.6 and earlier, which can cause compatibility issues for users of these versions of Python.
https://github.com/tensorflow/docs/blob/master/setup.py#L36:L38
```python
# Dataclasses is in-built from py >=3.7. This version is a backport for py 3.6.
if (sys.version_info.major, sys.version_info.minor) == (3, 6):
REQUIRED_PKGS.append('dataclasses')
```
But in the **nbfmt** tool the `notebook_utils.py` file,
https://github.com/tensorflow/docs/blob/master/tools/tensorflow_docs/tools/nbfmt/notebook_utils.py#L119:L124
```python
@dataclasses.dataclass
class CellCopyStats:
processed_cells: int = 0
updated_cells: int = 0
unmatched_target_cells: list[str] = dataclasses.field(default_factory=list)
unmatched_source_cells: list[str] = dataclasses.field(default_factory=list)
out_of_order_target_cells: list[str] = dataclasses.field(default_factory=list)
```
`list` is used instead of the `typing.List` which will cause `TypeError: 'type' object is not subscriptable`, I think `typing.List` should be used to ensure backward compatibility.
To avoid these issues, the documentation should :
1. use the `typing.List` class instead of `list` to ensure backward compatibility with older versions of Python.
2. Require the installation of the `dataclasses` package for users of Python 3.6 and earlier, instead of requiring it for python 3.6 only, like the following:
```python
import sys
if sys.version_info < (3, 7):
REQUIRED_PKGS.append('dataclasses')
```
**I'm ready to start fixing it in a PR.** | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60137/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60137/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60136 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60136/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60136/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60136/events | https://github.com/tensorflow/tensorflow/issues/60136 | 1,642,987,731 | I_kwDOArmXAs5h7gDT | 60,136 | The Windows MSVC to clang migration linker issue | {
"login": "shangerxin",
"id": 3085654,
"node_id": "MDQ6VXNlcjMwODU2NTQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/3085654?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shangerxin",
"html_url": "https://github.com/shangerxin",
"followers_url": "https://api.github.com/users/shangerxin/followers",
"following_url": "https://api.github.com/users/shangerxin/following{/other_user}",
"gists_url": "https://api.github.com/users/shangerxin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shangerxin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shangerxin/subscriptions",
"organizations_url": "https://api.github.com/users/shangerxin/orgs",
"repos_url": "https://api.github.com/users/shangerxin/repos",
"events_url": "https://api.github.com/users/shangerxin/events{/privacy}",
"received_events_url": "https://api.github.com/users/shangerxin/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1188421838,
"node_id": "MDU6TGFiZWwxMTg4NDIxODM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:windows",
"name": "subtype:windows",
"color": "b619ea",
"default": false,
"description": "Windows Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
},
{
"id": 5244472328,
"node_id": "LA_kwDOArmXAs8AAAABOJhMCA",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:cpu-intel",
"name": "subtype:cpu-intel",
"color": "507561",
"default": false,
"description": "To track windows cpu issues"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"This specific issue is caused by `OpRegistrationData` type being defined as [struct OpRegistrationData](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/op_def_builder.h#L67) but declared in failing translation unit as [class OpRegistrationData](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/utils/shape_inference_utils.h#L30).\r\n\r\nClang apparently makes the difference here (unlike msvc) and it can't find the symbol with ` class` attribute while it is defined only as `struct`. \r\n\r\nChanging [class OpRegistrationData](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/utils/shape_inference_utils.h#L30) to `struct OpRegistrationData` fixes this spcific issue, and build passes further, but then fails on linking `_pywrap_internal` .dll on bfloat16.so symbols duplicate issue. Trying to fix that now.",
"OK. I will pull the latest code and verified on my end too. "
] | 2023-03-27T23:55:56 | 2023-04-25T03:04:35 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf 2.12
### Custom Code
No
### OS Platform and Distribution
Microsoft Windows Server 2019 Datacenter
### Mobile device
_No response_
### Python version
Python 3.10
### Bazel version
5.3.0
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
#### Background
We have switch the TensorFlow compilation from MSVC to clang-cl and resolved two compile errors. The compilation is complete but there is a link issue before we can complete package TensorFlow to wheel.
#### How to reproduce
1. Fix the const expression error
a. Add file to third_party\tf_runtime_clangcl.patch with content
```shell
diff --git a/include/tfrt/support/std_mutex.h b/include/tfrt/support/std_mutex.h
index 6238d097..9fb24279 100644
--- a/include/tfrt/support/std_mutex.h
+++ b/include/tfrt/support/std_mutex.h
@@ -50,7 +50,7 @@ class TFRT_CAPABILITY("mutex") mutex {
private:
friend class mutex_lock;
- std::mutex mu_;
+ std::mutex mu_{};
};
// Wrap std::unique_lock<std::mutex> with support for thread annotations.
```
b. Update workspace file at third_party\tf_runtime\workspace.bzl at line 19.
```shell
patch_file = ["//third_party:tf_runtime_clangcl.patch"],
```
2. Bypass the Google ABSL compilation error
a. Create file at third_party\absl\comd_google_absl_remove_static_assert.patch
```shell
diff --git a/absl/meta/type_traits.h b/absl/meta/type_traits.h
index d886cb30..819f87b4 100644
--- a/absl/meta/type_traits.h
+++ b/absl/meta/type_traits.h
@@ -495,9 +495,7 @@ struct is_trivially_copy_assignable
absl::is_copy_assignable<T>::value> {
#ifdef ABSL_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE
private:
- static constexpr bool compliant =
- std::is_trivially_copy_assignable<T>::value ==
- is_trivially_copy_assignable::value;
+ static constexpr bool compliant = true;
static_assert(compliant || std::is_trivially_copy_assignable<T>::value,
"Not compliant with std::is_trivially_copy_assignable; "
"Standard: false, Implementation: true");
```
b. Modify the file at third_party\absl\workspace.bzl at line 46
```shell
patch_file = ["//third_party/absl:com_google_absl_fix_mac_and_nvcc_build.patch", "//third_party/absl:comd_google_absl_remove_static_assert.patch"],
```
### Standalone code to reproduce the issue
#### Build with command
```shell
/> bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package --verbose_failures --compiler=clang-cl
```
### Relevant log output
```shell
\tensorflow>bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package --verbose_failures --compiler=clang-cl --copt=/clang:-Weverything --config=windows
WARNING: Ignoring JAVA_HOME, because it must point to a JDK, not a JRE.
WARNING: The following configs were expanded more than once: [monolithic]. For repeatable flags, repeats are counted twice and may lead to unexpected behavior.
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=189
INFO: Reading rc options for 'build' from d:\...\msvc_to_clang\tensorflow\.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Options provided by the client:
'build' options: --python_path=D:/.../msvc_to_clang/venv310/Scripts/python.exe
INFO: Reading rc options for 'build' from d:\...\msvc_to_clang\tensorflow\.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from d:\...\msvc_to_clang\tensorflow\.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=D:/.../msvc_to_clang/venv310/Scripts/python.exe --action_env PYTHON_LIB_PATH=D:/.../msvc_to_clang/venv310/lib/site-packages --python_path=D:/.../msvc_to_clang/venv310/Scripts/python.exe --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions --define=override_eigen_strong_inline=true --define=tf_use_clang_cl_instead_of_msvc=true
INFO: Reading rc options for 'build' from d:\...\msvc_to_clang\tensorflow\.bazelrc:
'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils
INFO: Found applicable config definition build:short_logs in file d:\...\msvc_to_clang\tensorflow\.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file d:\...\msvc_to_clang\tensorflow\.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:opt in file d:\...\msvc_to_clang\tensorflow\.tf_configure.bazelrc: --copt=/arch:AVX --host_copt=/arch:AVX
INFO: Found applicable config definition build:windows in file d:\...\msvc_to_clang\tensorflow\.bazelrc: --copt=/W0 --host_copt=/W0 --copt=/Zc:__cplusplus --host_copt=/Zc:__cplusplus --copt=/D_USE_MATH_DEFINES --host_copt=/D_USE_MATH_DEFINES --features=compiler_param_file --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions --cxxopt=/std:c++17 --host_cxxopt=/std:c++17 --config=monolithic --copt=-DWIN32_LEAN_AND_MEAN --host_copt=-DWIN32_LEAN_AND_MEAN --copt=-DNOGDI --host_copt=-DNOGDI --copt=/Zc:preprocessor --host_copt=/Zc:preprocessor --linkopt=/DEBUG --host_linkopt=/DEBUG --linkopt=/OPT:REF --host_linkopt=/OPT:REF --linkopt=/OPT:ICF --host_linkopt=/OPT:ICF --verbose_failures --features=compiler_param_file
INFO: Found applicable config definition build:monolithic in file d:\...\msvc_to_clang\tensorflow\.bazelrc: --define framework_shared_object=false --define tsl_protobuf_header_only=false --experimental_link_static_libraries_once=false
INFO: Found applicable config definition build:windows in file d:\...\msvc_to_clang\tensorflow\.bazelrc: --copt=/W0 --host_copt=/W0 --copt=/Zc:__cplusplus --host_copt=/Zc:__cplusplus --copt=/D_USE_MATH_DEFINES --host_copt=/D_USE_MATH_DEFINES --features=compiler_param_file --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions --cxxopt=/std:c++17 --host_cxxopt=/std:c++17 --config=monolithic --copt=-DWIN32_LEAN_AND_MEAN --host_copt=-DWIN32_LEAN_AND_MEAN --copt=-DNOGDI --host_copt=-DNOGDI --copt=/Zc:preprocessor --host_copt=/Zc:preprocessor --linkopt=/DEBUG --host_linkopt=/DEBUG --linkopt=/OPT:REF --host_linkopt=/OPT:REF --linkopt=/OPT:ICF --host_linkopt=/OPT:ICF --verbose_failures --features=compiler_param_file
INFO: Found applicable config definition build:monolithic in file d:\...\msvc_to_clang\tensorflow\.bazelrc: --define framework_shared_object=false --define tsl_protobuf_header_only=false --experimental_link_static_libraries_once=false
INFO: Analyzed target //tensorflow/tools/pip_package:build_pip_package (594 packages loaded, 33130 targets configured).
INFO: Found 1 target...
ERROR: D:/.../msvc_to_clang/tensorflow/tensorflow/distribute/experimental/rpc/kernels/BUILD:60:21: Linking tensorflow/distribute/experimental/rpc/kernels/gen_gen_rpc_ops_py_wrappers_cc.exe failed: (Exit 1): lld-link.exe failed: error executing command
cd /d C:/users/...sha/_bazel_...sha/mlvocmwh/execroot/org_tensorflow
SET LIB=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30133\lib\x64;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\lib\um\x64;C:\Program Files (x86)\Windows Kits\10\lib\10.0.19041.0\ucrt\x64;C:\Program Files (x86)\Windows Kits\10\lib\10.0.19041.0\um\x64;d:\...\msvc_to_clang\LLVM\lib\clang\15.0.6\lib\windows
SET PATH=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.29.30133\bin\HostX64\x64;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\IDE\VC\VCPackages;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\IDE\CommonExtensions\Microsoft\TestWindow;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\IDE\CommonExtensions\Microsoft\TeamFoundation\Team Explorer;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\MSBuild\Current\bin\Roslyn;C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8 Tools\x64\;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\Tools\devinit;C:\Program Files (x86)\Windows Kits\10\bin\10.0.19041.0\x64;C:\Program Files (x86)\Windows Kits\10\bin\x64;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\\MSBuild\Current\Bin;C:\Windows\Microsoft.NET\Framework64\v4.0.30319;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\IDE\;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\Tools\;;C:\Windows\system32;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin;C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja
SET PWD=/proc/self/cwd
SET PYTHON_BIN_PATH=D:/.../msvc_to_clang/venv310/Scripts/python.exe
SET PYTHON_LIB_PATH=D:/.../msvc_to_clang/venv310/lib/site-packages
SET RUNFILES_MANIFEST_ONLY=1
SET TEMP=C:\Users\...sha\AppData\Local\Temp\2
SET TF2_BEHAVIOR=1
SET TMP=C:\Users\...sha\AppData\Local\Temp\2
d:\...\msvc_to_clang\LLVM\bin\lld-link.exe @bazel-out/x64_windows-opt/bin/tensorflow/distribute/experimental/rpc/kernels/gen_gen_rpc_ops_py_wrappers_cc.exe-2.params
# Configuration: cfe8788e4ffcaa7fd26e4e99620edbfd250b250962129096b14aa1fc721dc89b
# Execution platform: @local_execution_config_platform//:platform
lld-link: warning: ignoring unknown argument '-lm'
lld-link: warning: ignoring unknown argument '-lpthread'
lld-link: warning: ignoring unknown argument '-lm'
lld-link: warning: ignoring unknown argument '-lpthread'
lld-link: warning: ignoring unknown argument '-lm'
lld-link: warning: allocator_registry_impl.lo.lib(cpu_allocator_impl.obj): locally defined symbol imported: struct std::atomic<int> tsl::profiler::internal::g_trace_level (defined in traceme_recorder_impl.lo.lib(traceme_recorder.obj)) [LNK4217]
lld-link: warning: utils.lib(utils.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_CPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: utils.lib(utils.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_GPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: memory_optimizer.lib(memory_optimizer.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_CPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: memory_optimizer.lib(memory_optimizer.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_GPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: arithmetic_optimizer.lib(arithmetic_optimizer.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_CPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: arithmetic_optimizer.lib(arithmetic_optimizer.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_GPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: pin_to_host_optimizer.lib(pin_to_host_optimizer.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_CPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: pin_to_host_optimizer.lib(pin_to_host_optimizer.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_GPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: gpu_id_impl.lib(gpu_id_manager.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_GPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: bfc_allocator.lib(bfc_allocator.obj): locally defined symbol imported: struct std::atomic<int> tsl::profiler::internal::g_trace_level (defined in traceme_recorder_impl.lo.lib(traceme_recorder.obj)) [LNK4217]
lld-link: warning: Pass.lib(pass.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_CPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: Pass.lib(pass.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_GPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: warning: pdll_utils.lib(utils.obj): locally defined symbol imported: char const *const tensorflow::DEVICE_CPU (defined in tensor.lo.lib(types.obj)) [LNK4217]
lld-link: error: undefined symbol: struct mlir::LogicalResult __cdecl mlir::tfg::InferReturnTypeComponentsForTFOp(class std::optional<class mlir::Location>, class mlir::Operation *, class mlir::ValueRange, __int64, class llvm::function_ref<class mlir::Attribute __cdecl(class mlir::Value)>, class llvm::function_ref<class tensorflow::shape_inference::ShapeHandle __cdecl(class tensorflow::shape_inference::InferenceContext &, class mlir::OpResult)>, class llvm::function_ref<class mlir::Type __cdecl(int)>, class llvm::function_ref<class tsl::Status __cdecl(class mlir::Operation *, class llvm::StringRef, class tensorflow::OpRegistrationData const *, bool, class google::protobuf::Map<class std::basic_string<char, struct std::char_traits<char>, class std::allocator<char>>, class tensorflow::AttrValue> *)>, class llvm::SmallVectorImpl<class mlir::ShapedTypeComponents> &)
>>> referenced by Pass.lib(pass.obj):(public: __cdecl `public: virtual void __cdecl mlir::tfg::ShapeInference::runOnOperation(void)'::`1'::<lambda_5>::operator()(class mlir::Operation *) const)
Target //tensorflow/tools/pip_package:build_pip_package failed to build
INFO: Elapsed time: 1397.717s, Critical Path: 378.14s
INFO: 10556 processes: 821 internal, 9735 local.
FAILED: Build did NOT complete successfully
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60136/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60136/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60135 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60135/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60135/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60135/events | https://github.com/tensorflow/tensorflow/issues/60135 | 1,642,944,043 | I_kwDOArmXAs5h7VYr | 60,135 | Make time series_from_array() more intuitive to use | {
"login": "James-Tipping",
"id": 50486384,
"node_id": "MDQ6VXNlcjUwNDg2Mzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/50486384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/James-Tipping",
"html_url": "https://github.com/James-Tipping",
"followers_url": "https://api.github.com/users/James-Tipping/followers",
"following_url": "https://api.github.com/users/James-Tipping/following{/other_user}",
"gists_url": "https://api.github.com/users/James-Tipping/gists{/gist_id}",
"starred_url": "https://api.github.com/users/James-Tipping/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/James-Tipping/subscriptions",
"organizations_url": "https://api.github.com/users/James-Tipping/orgs",
"repos_url": "https://api.github.com/users/James-Tipping/repos",
"events_url": "https://api.github.com/users/James-Tipping/events{/privacy}",
"received_events_url": "https://api.github.com/users/James-Tipping/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
},
{
"id": 4511033337,
"node_id": "LA_kwDOArmXAs8AAAABDODn-Q",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.10",
"name": "TF 2.10",
"color": "C15088",
"default": false,
"description": ""
}
] | closed | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @James-Tipping ,\r\n\r\nThe API is working as intended.\r\n```\r\ntf.keras.utils.timeseries_dataset_from_array(\r\n data,\r\n targets,\r\n sequence_length,\r\n sequence_stride=1,\r\n sampling_rate=1,\r\n batch_size=128,\r\n shuffle=False,\r\n seed=None,\r\n start_index=None,\r\n end_index=None\r\n)\r\n```\r\nSuppose for below code:\r\n```\r\nx = np.zeros((10, 3))\r\ny = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\r\ntest = keras.utils.timeseries_dataset_from_array(x[:-4], y[4:], sequence_length=4, batch_size=2000)\r\n```\r\nHere data is x[:-4] means data of 6 Rows and 3 columns. With `sequence_length=4` and default `sequence_stride=1` and \r\n`sampling_rate=1` we can get 3 data points (6-4+1=3) and for these data points the target indices are y[4:] i.e. starting from index-4 to next 3 i.e. upto index-6 which are `[5,6,7]` respectively.\r\n\r\nHence the first data point will be: \r\n```\r\narray([[0., 0., 0.],\r\n [0., 0., 0.],\r\n [0., 0., 0.],\r\n [0., 0., 0.]]\r\n```\r\nand corresponding target point is `5`.\r\n\r\nI am not sure why you are expecting other result. Could you please explain what is misleading here ?\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"Hi @SuryanarayanaY, thank you for your reply.\r\n\r\nThe issue is that timeseries_dataset_from_array is touted as a replacement for TimeseriesGenerator, when in fact they have different outputs. In fact, I would argue the output from TimeseriesGenerator is the expected result.\r\n\r\nLooking above at my examples, it is clear in this case that I require 6 different outputs, and not 3 outputs.\r\n\r\nTake the example of someone predicting stock market closing values. If we have data points for 120 days, and we want to use the previous 30 days as input, it's intuitive that there would be 90 (120 - 30) input sets, and 90 output sets of data. This isn't the case with timeseries_dataset_from_array.\r\n\r\nI came across this by following the (very well written) documentation for timeseries_dataset_from_array, as it was recommended instead of TimeseriesGenerator. Thus, either the documentation could be changed to reflect that they do not produce the same results, or the implementation could be changed.\r\n\r\nPlease feel free to correct me if I'm misunderstanding.",
"Hi @James-Tipping ,\r\n\r\nThere is implementation differences between `timeseries_dataset_from_array` and `TimeseriesGenerator` APIs. \r\n\r\n\r\nFrom `timeseries_dataset_from_array` API , the `targets` should be:\r\n\r\n\r\ntargets | Targets corresponding to timesteps in data. targets[i] should be the target corresponding to the window that starts at index i (see example 2 below). Pass None if you don't have target data (in this case the dataset will only yield the input data).\r\n-- | --\r\n\r\n```\r\nx = np.zeros((10, 3))\r\ny = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\r\ntest1 = keras.utils.timeseries_dataset_from_array(x, y[4:], sequence_length=4)\r\nprint(list(test1.as_numpy_iterator()))\r\n```\r\nHere the argument data(i.e. 'x') is of length 10, where as targets(y[4:]) is of length '6' and no of data points series data points generated from the input data 'x' which depends upon the values passed to `sequence_length`, `sequence_stride` , `sampling_rate` etc. Also\r\n\r\nWhereas `TimeseriesGenerator` the `targets` should be:\r\n\r\n\r\ntargets | Targets corresponding to timesteps in data. It should have same length as data.\r\n-- | --\r\n\r\nThis means we need to supply the data of same length corresponding to input timesteps.\r\n\r\nConsider this example code below:\r\n\r\n```\r\nx = np.zeros((10, 3))\r\ny = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\r\ntest2 = keras.preprocessing.sequence.TimeseriesGenerator(x, y, length=4) #This works\r\ntest2[0]\r\n\r\ntest2 = keras.preprocessing.sequence.TimeseriesGenerator(x, y[4:], length=4) #This fails\r\n```\r\n\r\nWith the API `timeseries_dataset_from_array` we have more flexibility than that of `TimeseriesGenerator`. Hence `timeseries_dataset_from_array` not exactly same copy as `TimeseriesGenerator` but with some more additional flexibility.\r\n\r\nThanks!\r\n\r\n\r\n\r\n\r\n",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further."
] | 2023-03-27T22:59:29 | 2023-05-19T01:55:15 | 2023-05-19T01:55:14 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Feature Request
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.10.0 (Tensorflow-macos)
### Custom Code
Yes
### OS Platform and Distribution
MacOS 13.2.1
### Mobile device
_No response_
### Python version
3.10.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
TimeseriesGenerator() is deprecated, and Tensorflow docs encourage the use of time series_from_array() instead. However, this is not intuitive to use, requiring far more boilerplate code to achieve the same effect.
In addition, the results are not as expected. I spent hours debugging my code to realise time series_from_array() is not behaving as expected. Using the code below, I would expect there to be 6 different inputs and outputs, however, there are only 3. Running the same code with TimeseriesGenerator(), without the [:-4] and [4:] indexing, produces the expected 6 inputs and outputs.
### Standalone code to reproduce the issue
```shell
x = np.zeros((10, 3))
y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
test = keras.utils.timeseries_dataset_from_array(x[:-4], y[4:], sequence_length=4, batch_size=2000)
list(test.as_numpy_iterator())
```
### Relevant log output
```shell
[(array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]]),
array([5, 6, 7]))]
```
### Code for TimeseriesGenerator() (expected output)
```Python
test = keras.preprocessing.sequence.TimeseriesGenerator(x, y, length=4)
test[0]
```
### Expected output
```shell
(array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]]),
array([ 5, 6, 7, 8, 9, 10]))
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60135/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60135/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60134 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60134/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60134/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60134/events | https://github.com/tensorflow/tensorflow/pull/60134 | 1,642,798,665 | PR_kwDOArmXAs5NAiNX | 60,134 | Fixed the broken links in image_classifier.md | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1169364259,
"node_id": "MDU6TGFiZWwxMTY5MzY0MjU5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XS",
"name": "size:XS",
"color": "adafea",
"default": false,
"description": "CL Change Size: Extra Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-27T20:56:45 | 2023-05-01T16:26:10 | 2023-03-29T15:50:54 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60134",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60134",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60134.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60134.patch",
"merged_at": "2023-03-29T15:50:54"
} | Fixed the broken links for 'image classification overview' in line 10 & 'TFLite Model Metadata' in line 277. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60134/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60134/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60133 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60133/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60133/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60133/events | https://github.com/tensorflow/tensorflow/issues/60133 | 1,642,665,619 | I_kwDOArmXAs5h6RaT | 60,133 | test | {
"login": "Hadrien-Cornier",
"id": 29749923,
"node_id": "MDQ6VXNlcjI5NzQ5OTIz",
"avatar_url": "https://avatars.githubusercontent.com/u/29749923?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Hadrien-Cornier",
"html_url": "https://github.com/Hadrien-Cornier",
"followers_url": "https://api.github.com/users/Hadrien-Cornier/followers",
"following_url": "https://api.github.com/users/Hadrien-Cornier/following{/other_user}",
"gists_url": "https://api.github.com/users/Hadrien-Cornier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Hadrien-Cornier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Hadrien-Cornier/subscriptions",
"organizations_url": "https://api.github.com/users/Hadrien-Cornier/orgs",
"repos_url": "https://api.github.com/users/Hadrien-Cornier/repos",
"events_url": "https://api.github.com/users/Hadrien-Cornier/events{/privacy}",
"received_events_url": "https://api.github.com/users/Hadrien-Cornier/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60133\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60133\">No</a>\n"
] | 2023-03-27T19:10:36 | 2023-03-27T19:30:09 | 2023-03-27T19:30:07 | NONE | null | null | null | null | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60133/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60133/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60132 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60132/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60132/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60132/events | https://github.com/tensorflow/tensorflow/pull/60132 | 1,642,608,650 | PR_kwDOArmXAs5M_5Va | 60,132 | [NVIDIA XLA] Cover D_amax output fusion for FP8 GEMM when Relu is present in epilogue | {
"login": "wenscarl",
"id": 25590028,
"node_id": "MDQ6VXNlcjI1NTkwMDI4",
"avatar_url": "https://avatars.githubusercontent.com/u/25590028?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wenscarl",
"html_url": "https://github.com/wenscarl",
"followers_url": "https://api.github.com/users/wenscarl/followers",
"following_url": "https://api.github.com/users/wenscarl/following{/other_user}",
"gists_url": "https://api.github.com/users/wenscarl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wenscarl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wenscarl/subscriptions",
"organizations_url": "https://api.github.com/users/wenscarl/orgs",
"repos_url": "https://api.github.com/users/wenscarl/repos",
"events_url": "https://api.github.com/users/wenscarl/events{/privacy}",
"received_events_url": "https://api.github.com/users/wenscarl/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 390482148,
"node_id": "MDU6TGFiZWwzOTA0ODIxNDg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20review",
"name": "awaiting review",
"color": "bc3869",
"default": false,
"description": "Pull request awaiting review"
},
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 1173072136,
"node_id": "MDU6TGFiZWwxMTczMDcyMTM2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL",
"name": "size:XL",
"color": "adafea",
"default": false,
"description": "CL Change Size:Extra Large"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@reedwm could you take a look?",
"> Please add a test.\r\n> \r\n> Also maybe move the amax logic to a new function\r\n\r\nThe following \"changing data type of C to BF16\" part is also in the body of F8ConvertD."
] | 2023-03-27T18:32:17 | 2023-04-08T03:02:50 | 2023-04-08T03:02:50 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60132",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60132",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60132.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60132.patch",
"merged_at": "2023-04-08T03:02:50"
} | In the presence of a ReLU activation, algsimp pass simplifies the possible abs op following ReLU, like abs(Relu(x)) -> Relu(x). This PR covers that corner case by adding possible patterns to match. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60132/reactions",
"total_count": 2,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 1,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60132/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60131 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60131/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60131/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60131/events | https://github.com/tensorflow/tensorflow/issues/60131 | 1,642,338,990 | I_kwDOArmXAs5h5Bqu | 60,131 | Memory leak in forward pass (e.g., of ResNet50 model) with TensorFlow 2.12.0 and Python 3.11 | {
"login": "Dobiasd",
"id": 5544610,
"node_id": "MDQ6VXNlcjU1NDQ2MTA=",
"avatar_url": "https://avatars.githubusercontent.com/u/5544610?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Dobiasd",
"html_url": "https://github.com/Dobiasd",
"followers_url": "https://api.github.com/users/Dobiasd/followers",
"following_url": "https://api.github.com/users/Dobiasd/following{/other_user}",
"gists_url": "https://api.github.com/users/Dobiasd/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Dobiasd/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Dobiasd/subscriptions",
"organizations_url": "https://api.github.com/users/Dobiasd/orgs",
"repos_url": "https://api.github.com/users/Dobiasd/repos",
"events_url": "https://api.github.com/users/Dobiasd/events{/privacy}",
"received_events_url": "https://api.github.com/users/Dobiasd/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Have you tried using ResNet50V2 I got a similar issue when I ran your code but when I tried it with ResNet50V2 I did not get a memory leak\r\n\r\n```\r\nimport numpy as np\r\nimport psutil\r\nimport tensorflow as tf\r\n\r\n\r\nmodel = tf.keras.applications.ResNet50V2() # VGG19 seems to not leak.\r\n\r\n# tf.config.threading.set_inter_op_parallelism_threads(0) and tf.config.threading.set_intra_op_parallelism_threads(0) do not help.\r\n\r\ninp = (np.random.rand(1, 224, 224, 3) * 255).astype('uint8')\r\n\r\n\r\nfor run in range(1, 9999999):\r\n model(inp)\r\n memory_usage_in_MiB = psutil.Process().memory_info().rss / (1024 * 1024)\r\n print(\r\n f'Memory usage after {run} run(s) (in MiB): {memory_usage_in_MiB:.3f}', flush=True)\r\n```\r\n\r\n\r\n```\r\nMemory usage after 1753 run(s) (in MiB): 348.219\r\nMemory usage after 1754 run(s) (in MiB): 348.875\r\nMemory usage after 1755 run(s) (in MiB): 337.938\r\nMemory usage after 1756 run(s) (in MiB): 336.734\r\nMemory usage after 1757 run(s) (in MiB): 339.516\r\nMemory usage after 1758 run(s) (in MiB): 345.094\r\nMemory usage after 1759 run(s) (in MiB): 340.312\r\nMemory usage after 1760 run(s) (in MiB): 339.547\r\nMemory usage after 1761 run(s) (in MiB): 340.281\r\nMemory usage after 1762 run(s) (in MiB): 341.266\r\nMemory usage after 1763 run(s) (in MiB): 339.000\r\nMemory usage after 1764 run(s) (in MiB): 340.906\r\nMemory usage after 1765 run(s) (in MiB): 340.469\r\nMemory usage after 1766 run(s) (in MiB): 340.391\r\nMemory usage after 1767 run(s) (in MiB): 341.953\r\nMemory usage after 1768 run(s) (in MiB): 339.672\r\nMemory usage after 1769 run(s) (in MiB): 342.922\r\nMemory usage after 1770 run(s) (in MiB): 346.969\r\nMemory usage after 1771 run(s) (in MiB): 318.844\r\n```",
"I just tested with `ResNet50V2`, and I get the memory leak there too: https://gist.github.com/Dobiasd/d2cabf576e1dd518610a2387b7772ecd\r\n\r\nDid you use the provided `Dockerfile` to make sure you have the same versions of Python and TensorFlow?",
"yeah my version of TensorFlow was wrong I was using the most up to date version from source, with the docker file I get the memory leak with ResNet50V2 as well",
"Hi!\r\n\r\nThank you for sharing! Could you help us out by running a bisect using your dockerfile? \r\n\r\nYou can use the nightly releases to pinpoint the version where it first appears. That alone should narrow it down a lot. But if you can identify the commit too that would be great!",
"@Dobiasd Could you please refer to the comment above and update on the same?\r\nThank you!",
"I just tried to ([available versions](https://gist.github.com/Dobiasd/fc4f72a8576e7524bdc4ccf3871fdf2c) of `tf-nightly` shown by `pip`, `2.12.0.dev20230105` being the oldest one), but some versions throw an error right from the beginning. Here are my results (focusing on the transitions where something changes):\r\n- `2.12.0.dev20230105`: [error](https://gist.github.com/Dobiasd/706db6cf6bd1477181d119c8d2cecbfe)\r\n- `2.12.0.dev20230127`: [error](https://gist.github.com/Dobiasd/3472e2cdb5ece498aa9519f55a2bddc8)\r\n- `2.12.0.dev20230201`: memleak\r\n- `2.12.0.dev20230203`: memleak\r\n- `2.13.0.dev20230206`: [error](https://gist.github.com/Dobiasd/11b5ed8689cb3dacae9d155c2992f7d0)\r\n- `2.13.0.dev20230405`: memleak\r\n\r\nSo I did not find the version that introduced the memleak, because it looks like it was introduced before the earliest version, which can be tested that way.\r\n\r\nFor further attempts, feel free to use the code, I provided, on your own. :wink:",
"I have replicated the issue on Colab also with tf-nightly version and with python 3.9.16.\r\n\r\nPlease refer the attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/21ab1b8d473948390ce22adb74a9f852/60131.ipynb) for details.\r\n",
"Yea I raised this issue a long time ago. `model.predict` has memory leak in more recent version of Tensorflow.\r\nIt still open. It stopped us from upgrading TF on our production backend.\r\nhttps://github.com/tensorflow/tensorflow/issues/58676",
"cc: @sampathweb , @sagunb ",
"See also #62203\n",
"Any news on this ? The issue is still present in tf-nighly and not specific to keras\r\n\r\n`Dockerfile`\r\n```Dockerfile\r\nFROM python:3.10.11\r\n#FROM python:3.11.2\r\n\r\nRUN pip install --no-cache-dir tf-nightly-cpu psutil==5.9.4\r\n\r\n# Disable the Docker cache from this stage on, see https://stackoverflow.com/a/58801213/1866775\r\nADD \"https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h\" skipcache\r\n\r\nADD ./memleak.py /\r\nRUN python /memleak.py\r\n```\r\n\r\n`memleak.py`:\r\n```python\r\nimport os, psutil\r\nprocess = psutil.Process()\r\nprint(process.memory_info().rss / 1000000) # Ram usage in MB\r\n\r\nimport tensorflow as tf\r\nprint(tf.__version__)\r\n\r\nwhile True:\r\n print(process.memory_info().rss / 1000000, flush=True)\r\n x = tf.random.normal(shape=(1,)) # Causing growing RAM\r\n```",
"I ran `memray` against the same python script in 3.10 and 3.11 \r\n\r\n```python\r\nimport tensorflow as tf\r\nfor _ in range(10000):\r\n for _ in range(100):\r\n x = tf.random.normal(shape=(1,)) # Causing growing RAM\r\n```\r\n\r\nThe memory flamegraphs look quite different\r\npy310 https://drive.google.com/file/d/1zLq-k2jRJqnc9l_ZRwWuN_VU6SL8-2gc/view?usp=drive_link\r\npy311 https://drive.google.com/file/d/1USJ9f5rkoza_wAnTG5iig1Bf2zuF03Da/view?usp=drive_link",
"Hi @Dobiasd ,\r\n\r\nThis got fixed. I have checked the code with latest Tf versions TF2.15( with python-3.11v) and tf-nightly(with python-3.10) and no memory leak observed now. Please refer attached [gist](https://colab.sandbox.google.com/gist/SuryanarayanaY/a198b94ac79152b37484a48835a3d7ed/60131_tf-nightly-py-3-11.ipynb#scrollTo=vp62uDa0gKS7).\r\n\r\nCould you please verify and confirm. Thanks!",
"Just tested changing `tensorflow==2.12.0` to `tensorflow==2.15.0.post1` (the latest TF 2.15) in [my original example](https://github.com/tensorflow/tensorflow/issues/60131#issue-1642338990), and the memory leak still exists: https://gist.github.com/Dobiasd/e1a5bd31378a92b690388bb62dffbcee\r\n\r\nCan you reproduce it? (maybe try to do it not in a Jupyter Notebook, but with Docker as in my example)",
"@SuryanarayanaY In your gist you're not actually running against a python3.11 kernel, simply print `sys.version` to check...\r\nIt seems that there's no easy way to install python3.11 in colab except for something like https://colab.research.google.com/drive/13C50iNZRjMRyepe_3xAtMKUQdIkKK0kS",
"For an additional data point I ran the above gist with python 3.11.8 and tensorflow 2.16.1 with the following results.\r\nMemory usage after 100 run(s) (in MiB): 867.309\r\nMemory usage after 200 run(s) (in MiB): 893.266\r\nMemory usage after 300 run(s) (in MiB): 872.895\r\nMemory usage after 400 run(s) (in MiB): 898.473\r\nMemory usage after 500 run(s) (in MiB): 884.656\r\nMemory usage after 600 run(s) (in MiB): 900.805\r\nMemory usage after 700 run(s) (in MiB): 905.102\r\nMemory usage after 800 run(s) (in MiB): 915.559\r\nMemory usage after 900 run(s) (in MiB): 947.211\r\nMemory usage after 1000 run(s) (in MiB): 942.445\r\nMemory usage after 1100 run(s) (in MiB): 967.773\r\nMemory usage after 1200 run(s) (in MiB): 993.973\r\nMemory usage after 1300 run(s) (in MiB): 983.297\r\nMemory usage after 1400 run(s) (in MiB): 977.977\r\nMemory usage after 1500 run(s) (in MiB): 988.398\r\nMemory usage after 1600 run(s) (in MiB): 998.324\r\nMemory usage after 1700 run(s) (in MiB): 1033.254\r\nMemory usage after 1800 run(s) (in MiB): 1028.336\r\nMemory usage after 1900 run(s) (in MiB): 1047.902\r\nMemory usage after 2000 run(s) (in MiB): 1039.895\r\n\r\nI also tested python 3.11.8 and tensorflow 2.13.1 & tensorflow 2.15.1 both versions also have the memory leak.",
"For others running into this issue I tested predict_on_batch approach instead of using the __call__ method and the memory leak is not present.\r\n\r\n```\r\nimport numpy as np\r\nimport psutil\r\nimport tensorflow as tf\r\nprint(tf.__version__)\r\n\r\nmodel = tf.keras.applications.ResNet50() # VGG19 seems to not leak.\r\n\r\ninp = (np.random.rand(1, 224, 224, 3) * 255).astype('uint8')\r\n\r\nfor run in range(1, 5000):\r\n model.predict_on_batch(inp)\r\n memory_usage_in_MiB = psutil.Process().memory_info().rss / (1024 * 1024)\r\n if run%100 == 0:\r\n print(f'Memory usage after {run} run(s) (in MiB): {memory_usage_in_MiB:.3f}', flush=True)\r\n```\r\n\r\nMemory usage after 100 run(s) (in MiB): 962.145\r\nMemory usage after 200 run(s) (in MiB): 981.012\r\nMemory usage after 300 run(s) (in MiB): 981.910\r\nMemory usage after 400 run(s) (in MiB): 981.195\r\nMemory usage after 500 run(s) (in MiB): 976.898\r\nMemory usage after 600 run(s) (in MiB): 980.027\r\nMemory usage after 700 run(s) (in MiB): 971.473\r\nMemory usage after 800 run(s) (in MiB): 973.348\r\nMemory usage after 900 run(s) (in MiB): 977.871\r\nMemory usage after 1000 run(s) (in MiB): 981.832\r\nMemory usage after 1100 run(s) (in MiB): 982.309\r\nMemory usage after 1200 run(s) (in MiB): 982.062\r\nMemory usage after 1300 run(s) (in MiB): 984.105\r\nMemory usage after 1400 run(s) (in MiB): 798.184\r\nMemory usage after 1500 run(s) (in MiB): 800.445\r\nMemory usage after 1600 run(s) (in MiB): 799.742\r\nMemory usage after 1700 run(s) (in MiB): 801.027\r\nMemory usage after 1800 run(s) (in MiB): 802.859\r\nMemory usage after 1900 run(s) (in MiB): 801.484\r\nMemory usage after 2000 run(s) (in MiB): 802.805\r\n\r\nThis test was run with python 3.11.8 and tensorflow 2.13.1",
"@Dobiasd,\r\nCould you please confirm, whether this is the same issue where we are tracking in the keras-team/Keras repo.\r\nhttps://github.com/keras-team/keras/issues/19500\r\n\r\nPlease correct me if I understand the right. Thank you",
"Yes, the two issues are similar.\r\n\r\nThe difference is, that in this one here, opened in 2023-03, the memory usage leaked slowly but steadily.\r\n\r\nIn the other one, opened in 2024-04, the memory grows very quickly immediately and then stays somewhat constant."
] | 2023-03-27T15:36:35 | 2024-06-11T13:45:03 | null | NONE | null | null | null | The following minimal example reproduces the memory leak I ran into. (No GPU, just CPU.)
`memleak.py`:
```python3
import numpy as np
import psutil
import tensorflow as tf
model = tf.keras.applications.ResNet50() # VGG19 seems to not leak.
# tf.config.threading.set_inter_op_parallelism_threads(0) and tf.config.threading.set_intra_op_parallelism_threads(0) do not help.
inp = (np.random.rand(1, 224, 224, 3) * 255).astype('uint8')
for run in range(1, 9999999):
model(inp)
memory_usage_in_MiB = psutil.Process().memory_info().rss / (1024 * 1024)
print(f'Memory usage after {run} run(s) (in MiB): {memory_usage_in_MiB:.3f}', flush=True)
```
`Dockerfile`:
```Dockerfile
FROM python:3.11.2
RUN pip install --no-cache-dir tensorflow==2.12.0 psutil==5.9.4
# Disable the Docker cache from this stage on, see https://stackoverflow.com/a/58801213/1866775
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
ADD ./memleak.py /
RUN python /memleak.py
```
[Output](https://gist.github.com/Dobiasd/ba800b40e117aa13d97deb44761888f6) (`docker build --rm .`):
```
Memory usage after 1 run(s) (in MiB): 604.324
Memory usage after 2 run(s) (in MiB): 606.906
Memory usage after 3 run(s) (in MiB): 606.906
Memory usage after 4 run(s) (in MiB): 606.906
Memory usage after 5 run(s) (in MiB): 606.906
Memory usage after 6 run(s) (in MiB): 607.164
Memory usage after 7 run(s) (in MiB): 607.164
Memory usage after 8 run(s) (in MiB): 607.164
Memory usage after 9 run(s) (in MiB): 607.164
Memory usage after 10 run(s) (in MiB): 607.164
Memory usage after 11 run(s) (in MiB): 607.422
Memory usage after 12 run(s) (in MiB): 607.422
[...]
Memory usage after 498 run(s) (in MiB): 626.242
Memory usage after 499 run(s) (in MiB): 626.242
Memory usage after 500 run(s) (in MiB): 626.242
Memory usage after 501 run(s) (in MiB): 626.500
Memory usage after 502 run(s) (in MiB): 626.500
[...]
[...]
Memory usage after 1996 run(s) (in MiB): 683.477
Memory usage after 1997 run(s) (in MiB): 683.734
Memory usage after 1998 run(s) (in MiB): 683.734
Memory usage after 1999 run(s) (in MiB): 683.734
Memory usage after 2000 run(s) (in MiB): 683.734
Memory usage after 2001 run(s) (in MiB): 683.734
[...]
Memory usage after 9996 run(s) (in MiB): 960.258
Memory usage after 9997 run(s) (in MiB): 960.508
Memory usage after 9998 run(s) (in MiB): 960.508
Memory usage after 9999 run(s) (in MiB): 960.508
Memory usage after 10000 run(s) (in MiB): 960.508
Memory usage after 10001 run(s) (in MiB): 960.508
[...]
Memory usage after 24997 run(s) (in MiB): 1547.840
Memory usage after 24998 run(s) (in MiB): 1547.840
Memory usage after 24999 run(s) (in MiB): 1534.230
Memory usage after 25000 run(s) (in MiB): 1532.348
Memory usage after 25001 run(s) (in MiB): 1533.441
Memory usage after 25002 run(s) (in MiB): 1544.711
[...]
```
When using the same TensorFlow version (`2.12.0`) but with Python `3.10.10` (instead of `3.11.2`), the memory usage does not grow. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60131/reactions",
"total_count": 4,
"+1": 4,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60131/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60130 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60130/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60130/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60130/events | https://github.com/tensorflow/tensorflow/issues/60130 | 1,642,099,381 | I_kwDOArmXAs5h4HK1 | 60,130 | URL fetch failure when tried to fetch the pretrained neural nets (ResNet) stored in tensorflow | {
"login": "Hongzhe12345",
"id": 115084467,
"node_id": "U_kgDOBtwMsw",
"avatar_url": "https://avatars.githubusercontent.com/u/115084467?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Hongzhe12345",
"html_url": "https://github.com/Hongzhe12345",
"followers_url": "https://api.github.com/users/Hongzhe12345/followers",
"following_url": "https://api.github.com/users/Hongzhe12345/following{/other_user}",
"gists_url": "https://api.github.com/users/Hongzhe12345/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Hongzhe12345/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Hongzhe12345/subscriptions",
"organizations_url": "https://api.github.com/users/Hongzhe12345/orgs",
"repos_url": "https://api.github.com/users/Hongzhe12345/repos",
"events_url": "https://api.github.com/users/Hongzhe12345/events{/privacy}",
"received_events_url": "https://api.github.com/users/Hongzhe12345/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097546578,
"node_id": "MDU6TGFiZWwxMDk3NTQ2NTc4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:keras",
"name": "comp:keras",
"color": "0052cc",
"default": false,
"description": "Keras related issues"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Below is the specific screenshot when I ran the code\r\n\r\n",
"@Hongzhe12345,\r\nThere might be some network issues which downloading the file and also the shape mis-match which cannot be solved except changing the architecture according to weights because vectors shape mis-match cause problems.\r\n\r\nI tried to execute the code and it was executed without any issue/error.\r\n```\r\nfrom keras.applications.resnet import ResNet50\r\nbase_model = tf.keras.applications.ResNet50(include_top = False, weights = 'imagenet', input_shape=(512,512,3),pooling='avg')\r\n```\r\nKindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/a6c1ec58601e03d0ea049be61ebd2869/untitled1056.ipynb) and below screenshot for the reference and the [link](https://stackoverflow.com/questions/60119041/failed-to-load-keras-resnet50-model-offline-using-weight-file).\r\n\r\n\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60130\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60130\">No</a>\n"
] | 2023-03-27T13:44:48 | 2023-04-12T01:53:30 | 2023-04-12T01:53:27 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
tf 2.11
### Custom Code
Yes
### OS Platform and Distribution
Ubuntu 20.04, Linux 5.4.0
### Mobile device
_No response_
### Python version
3.8
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
Hi,
When I tried to import the pre-trained ResNet in tensorflow, it always gave me 403 forbidden error which I have no clue to solve. What might cause this error?
```
### Standalone code to reproduce the issue
```shell
The code is:
base_model = tf.keras.applications.ResNet50(weights = 'imagenet', include_top = False, input_shape = (512,512,3))
for layer in base_model.layers:
layer.trainable = False
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60130/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60130/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60129 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60129/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60129/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60129/events | https://github.com/tensorflow/tensorflow/pull/60129 | 1,642,079,046 | PR_kwDOArmXAs5M-HES | 60,129 | Replace float_t with float in C++ source | {
"login": "jonathan-albrecht-ibm",
"id": 74002225,
"node_id": "MDQ6VXNlcjc0MDAyMjI1",
"avatar_url": "https://avatars.githubusercontent.com/u/74002225?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jonathan-albrecht-ibm",
"html_url": "https://github.com/jonathan-albrecht-ibm",
"followers_url": "https://api.github.com/users/jonathan-albrecht-ibm/followers",
"following_url": "https://api.github.com/users/jonathan-albrecht-ibm/following{/other_user}",
"gists_url": "https://api.github.com/users/jonathan-albrecht-ibm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jonathan-albrecht-ibm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jonathan-albrecht-ibm/subscriptions",
"organizations_url": "https://api.github.com/users/jonathan-albrecht-ibm/orgs",
"repos_url": "https://api.github.com/users/jonathan-albrecht-ibm/repos",
"events_url": "https://api.github.com/users/jonathan-albrecht-ibm/events{/privacy}",
"received_events_url": "https://api.github.com/users/jonathan-albrecht-ibm/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 987666414,
"node_id": "MDU6TGFiZWw5ODc2NjY0MTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ready%20to%20pull",
"name": "ready to pull",
"color": "2cd643",
"default": false,
"description": "PR ready for merge process"
},
{
"id": 1133285679,
"node_id": "MDU6TGFiZWwxMTMzMjg1Njc5",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:xla",
"name": "comp:xla",
"color": "0052cc",
"default": false,
"description": "XLA"
},
{
"id": 1169364458,
"node_id": "MDU6TGFiZWwxMTY5MzY0NDU4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:S",
"name": "size:S",
"color": "adafea",
"default": false,
"description": "CL Change Size: Small"
}
] | closed | false | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@cheshire, friendly ping :) Would you have some time to review this PR? Thank you!",
"Hi @cheshire Can you please review this PR ? Thank you!",
"TFTR @cheshire!"
] | 2023-03-27T13:37:07 | 2023-05-23T09:32:42 | 2023-05-23T09:32:41 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60129",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60129",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60129.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60129.patch",
"merged_at": "2023-05-23T09:32:41"
} | All current instances of float_t in C++ source files expect them to be a 32-bit floating point type but on s390x systems with glibc < 2.33 (eg. Ubuntu 20.04) float_t is a 64-bit floating point type. Change float_t to float which is 32-bit on all known platforms.
Fixes //tensorflow/compiler/xla:literal_test on Ubuntu 20.04 s390x. | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60129/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60129/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60128 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60128/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60128/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60128/events | https://github.com/tensorflow/tensorflow/issues/60128 | 1,641,582,242 | I_kwDOArmXAs5h2I6i | 60,128 | tf.distribute.MultiWorkerMirroredStrategy does not replicate tf.Variable among workers | {
"login": "pfaeffli",
"id": 15771726,
"node_id": "MDQ6VXNlcjE1NzcxNzI2",
"avatar_url": "https://avatars.githubusercontent.com/u/15771726?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pfaeffli",
"html_url": "https://github.com/pfaeffli",
"followers_url": "https://api.github.com/users/pfaeffli/followers",
"following_url": "https://api.github.com/users/pfaeffli/following{/other_user}",
"gists_url": "https://api.github.com/users/pfaeffli/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pfaeffli/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pfaeffli/subscriptions",
"organizations_url": "https://api.github.com/users/pfaeffli/orgs",
"repos_url": "https://api.github.com/users/pfaeffli/repos",
"events_url": "https://api.github.com/users/pfaeffli/events{/privacy}",
"received_events_url": "https://api.github.com/users/pfaeffli/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 996845227,
"node_id": "MDU6TGFiZWw5OTY4NDUyMjc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:dist-strat",
"name": "comp:dist-strat",
"color": "0052cc",
"default": false,
"description": "Distribution Strategy related issues"
},
{
"id": 4032183365,
"node_id": "LA_kwDOArmXAs7wVjxF",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9",
"name": "TF 2.9",
"color": "1CF842",
"default": false,
"description": "Issues found in the TF 2.9 release (or RCs)"
}
] | closed | false | {
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tiruk007",
"id": 111861663,
"node_id": "U_kgDOBqrfnw",
"avatar_url": "https://avatars.githubusercontent.com/u/111861663?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tiruk007",
"html_url": "https://github.com/tiruk007",
"followers_url": "https://api.github.com/users/tiruk007/followers",
"following_url": "https://api.github.com/users/tiruk007/following{/other_user}",
"gists_url": "https://api.github.com/users/tiruk007/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tiruk007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tiruk007/subscriptions",
"organizations_url": "https://api.github.com/users/tiruk007/orgs",
"repos_url": "https://api.github.com/users/tiruk007/repos",
"events_url": "https://api.github.com/users/tiruk007/events{/privacy}",
"received_events_url": "https://api.github.com/users/tiruk007/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@pfaeffli \r\nI tried to replicate the issue on the virtual linux machine using TFv2.12 but facing a different error. Please find the below screenshot for reference:\r\n\r\nCould you please provide detailed steps to replicate the issue reported here ?\r\n\r\nThank you !",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60128\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60128\">No</a>\n"
] | 2023-03-27T07:54:29 | 2023-04-14T01:52:05 | 2023-04-14T01:52:03 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.9
### Custom Code
Yes
### OS Platform and Distribution
tensorflow/tensorflow:2.11.0
### Mobile device
_No response_
### Python version
3.8.10
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
A variable is created with `synchronization=tf.VariableSynchronization.ON_WRITE`. But if `.assign(1)` is called the value is not distributed among workers.
Expected behavior: the variable is set to `1` on all workers.
There might be a lack of understanding on my side on how the distribution is working.
```
### Standalone code to reproduce the issue
```shell
`src/minimal-example.py`:
#!/usr/bin/env python3
# COPYRIGHT HSLU 2023 PFAEFFLI, ALL RIGHTS RESERVED
import json
import logging
import os
import time
from pathlib import Path
import tensorflow as tf
os.environ[
"CUDA_VISIBLE_DEVICES"
] = "-1" # Prevent that any GPUs are allocated unintendendly
def _is_chief(task_type, task_id, cluster_spec):
return (
task_type is None
or task_type == "chief"
or (
task_type == "worker"
and task_id == 0
and "chief" not in cluster_spec.as_dict()
)
)
def train():
if "WORKER" not in os.environ:
logging.warning("Missing env 'WORKER'")
wname = "UNK"
wname = os.environ["WORKER"]
# Logger
FORMAT = "%(asctime)s - " + wname + " %(message)s"
logging.basicConfig(format=FORMAT)
logger = logging.getLogger(wname)
logger.setLevel(logging.INFO)
logger.info(f"{tf.version.GIT_VERSION}, {tf.version.VERSION}")
# Load arguments
tf_config = json.loads(os.environ["TF_CONFIG"])
cluster_spec = tf.train.ClusterSpec(tf_config["cluster"])
# Debug info to check if tf_config is set correctly
logger.info(f"{wname}: TF_CONFIG {os.environ['TF_CONFIG']}")
# Prepare model
strategy = tf.distribute.MultiWorkerMirroredStrategy()
with strategy.scope():
dist_is_ready = tf.Variable(
initial_value=tf.constant(0, dtype=tf.dtypes.int64),
name="dist_is_ready",
synchronization=tf.VariableSynchronization.ON_WRITE,
aggregation=tf.VariableAggregation.SUM,
)
logger.info(f"{wname}: Replicas in sync: {strategy.num_replicas_in_sync}")
logger.info(f"{wname}: {dist_is_ready}")
task_type, task_id = (
strategy.cluster_resolver.task_type,
strategy.cluster_resolver.task_id,
)
if _is_chief(task_type, task_id, cluster_spec):
logger.info(f"{wname}: Assign ready")
dist_is_ready.assign(1)
else:
while dist_is_ready.numpy() < 1:
logger.error(f"{wname}: dist_is_ready is {dist_is_ready.numpy()}...")
logger.error(f"{wname}: Wait for chief...")
time.sleep(5)
logger.info(f"{wname}: All done. dist_is_ready is {dist_is_ready.numpy()}.")
if __name__ == "__main__":
train()
```
`docker/Dockerfile`
```
FROM tensorflow/tensorflow
RUN pip install --quiet --upgrade --pre tf-nightly
RUN mkdir -p /app/log
COPY ./src/* /app/
WORKDIR /app
```
`docker-compose.yml`
```
services:
worker0:
image: local/worker
build:
dockerfile: ./docker/Dockerfile
context: ./
command: ["./minimal-example.py"]
networks:
- cluster
environment:
TF_CONFIG: '{"cluster": {"worker": ["worker0:30000", "worker1:30000"]}, "task":
{"type": "worker", "index": 0}}'
TF_LOGDIR: /app/log
WORKER: worker0
volumes:
- ${PWD}/log/worker0:/app/log
worker1:
image: local/worker
build:
dockerfile: ./docker/Dockerfile
context: ./
command: ["./minimal-example.py"]
networks:
- cluster
environment:
TF_CONFIG: '{"cluster": {"worker": ["worker0:30000", "worker1:30000"]}, "task":
{"type": "worker", "index": 1}}'
TF_LOGDIR: /app/log
WORKER: worker1
volumes:
- ${PWD}/log/worker1:/app/log
networks:
cluster: {}
```
Start with
`docker compose build && docker compose up`
```
### Relevant log output
```shell
distributed-learning-worker1-1 | 2023-03-27 07:52:46,080 - worker1 worker1: dist_is_ready is 0...
distributed-learning-worker1-1 | 2023-03-27 07:52:46,080 - worker1 worker1: Wait for chief...
distributed-learning-worker0-1 | 2023-03-27 07:52:46,082 - worker0 worker0: All done. dist_is_ready is 1.
distributed-learning-worker0-1 exited with code 0
distributed-learning-worker1-1 | 2023-03-27 07:52:51,087 - worker1 worker1: dist_is_ready is 0...
distributed-learning-worker1-1 | 2023-03-27 07:52:51,087 - worker1 worker1: Wait for chief...
```
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60128/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60128/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60127 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60127/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60127/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60127/events | https://github.com/tensorflow/tensorflow/issues/60127 | 1,641,521,082 | I_kwDOArmXAs5h15-6 | 60,127 | GPU is not supported on qualcomm adreno 702 GPU device. How to enable that? | {
"login": "megleo",
"id": 50650564,
"node_id": "MDQ6VXNlcjUwNjUwNTY0",
"avatar_url": "https://avatars.githubusercontent.com/u/50650564?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/megleo",
"html_url": "https://github.com/megleo",
"followers_url": "https://api.github.com/users/megleo/followers",
"following_url": "https://api.github.com/users/megleo/following{/other_user}",
"gists_url": "https://api.github.com/users/megleo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/megleo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/megleo/subscriptions",
"organizations_url": "https://api.github.com/users/megleo/orgs",
"repos_url": "https://api.github.com/users/megleo/repos",
"events_url": "https://api.github.com/users/megleo/events{/privacy}",
"received_events_url": "https://api.github.com/users/megleo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 1097547538,
"node_id": "MDU6TGFiZWwxMDk3NTQ3NTM4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:gpu",
"name": "comp:gpu",
"color": "0052cc",
"default": false,
"description": "GPU related issues"
},
{
"id": 4032183365,
"node_id": "LA_kwDOArmXAs7wVjxF",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.9",
"name": "TF 2.9",
"color": "1CF842",
"default": false,
"description": "Issues found in the TF 2.9 release (or RCs)"
}
] | closed | false | {
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "pjpratik",
"id": 118897289,
"node_id": "U_kgDOBxY6iQ",
"avatar_url": "https://avatars.githubusercontent.com/u/118897289?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pjpratik",
"html_url": "https://github.com/pjpratik",
"followers_url": "https://api.github.com/users/pjpratik/followers",
"following_url": "https://api.github.com/users/pjpratik/following{/other_user}",
"gists_url": "https://api.github.com/users/pjpratik/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pjpratik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pjpratik/subscriptions",
"organizations_url": "https://api.github.com/users/pjpratik/orgs",
"repos_url": "https://api.github.com/users/pjpratik/repos",
"events_url": "https://api.github.com/users/pjpratik/events{/privacy}",
"received_events_url": "https://api.github.com/users/pjpratik/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @megleo, \r\n\r\nHexagon is a specialized processor designed by Qualcomm for mobile devices. TensorFlow Lite supports Hexagon delegate, which can be used to accelerate the inference process on devices that do not support GPUs or have limited GPU capabilities. Please refer to this document on [Hexagon Delegate](https://www.tensorflow.org/lite/android/delegates/hexagon). Thank you!",
"@synandi \r\nThanks for your reply.\r\n On my embedded device, there is no DSP device , but a Andreno GPU. So we expect to use GPU on our embedded devices.By using google example android app[ image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android_java) , it shown that \"GPU is not supportted\". So we just wonder that how to enable GPU using the following method but not work.\r\n\r\n1. In the [README.md](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/experimental/acceleration/compatibility/README.md), it seems give us the method to add gpu_compatibility. we follow it , but get the gpu_compatibility.bin is about 117Kb, which is more huge than the original one, and it may be Converted failed.\r\n\r\nThanks\r\nBRs",
"Hi @megleo \r\n\r\nCan you check the following lines in build.gradle (Module:app) after the gradle file is built?\r\n```\r\n// Tensorflow lite dependencies\r\n implementation 'org.tensorflow:tensorflow-lite-task-vision:0.4.0'\r\n // Import the GPU delegate plugin Library for GPU inference\r\n implementation 'org.tensorflow:tensorflow-lite-gpu:2.9.0'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu-delegate-plugin:0.4.0'\r\n```\r\nIf not you can add the project dependendcies and enable GPU acceleration if available, as given [here](https://www.tensorflow.org/lite/android/delegates/gpu#enable_gpu_acceleration_2).\r\n\r\n```\r\ndependencies {\r\n ...\r\n implementation 'org.tensorflow:tensorflow-lite'\r\n implementation 'org.tensorflow:tensorflow-lite-gpu'\r\n}\r\n```\r\n\r\nIf the GPU is not supported, we can set the num of threads to run the model.\r\n\r\nThanks.",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further."
] | 2023-03-27T07:09:29 | 2023-04-14T01:52:05 | 2023-04-14T01:52:05 | NONE | null | null | null | **System information**
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Android 10
- TensorFlow installed from (source or binary): source
- TensorFlow version (or github SHA if from source):2.9.2
**GPU is not supported on qualcomm adreno 702 GPU device.
On qualcomm adreno 702 GPU device,[ the tensorflow example android app](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android_java) can not work and it give us the toast "GPU is not supported on this device.".
Look into the tensorflow source code , and notice that int the tensorflow source code path tensorflow_src/tensorflow/lite/experimental/acceleration/compatibility,that give a way to add GPU device to make GPU work.**
**1. Following the tensorflow_src/tensorflow/lite/experimental/acceleration/compatibility/README.md, but it can not well on GPU, and the android app will crash. We do not know how to resolve this ?**
Very thanks for your reply.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60127/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60127/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60126 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60126/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60126/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60126/events | https://github.com/tensorflow/tensorflow/issues/60126 | 1,641,368,793 | I_kwDOArmXAs5h1UzZ | 60,126 | Build failure - stablehlo "File name too long" | {
"login": "bondhugula",
"id": 7008401,
"node_id": "MDQ6VXNlcjcwMDg0MDE=",
"avatar_url": "https://avatars.githubusercontent.com/u/7008401?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bondhugula",
"html_url": "https://github.com/bondhugula",
"followers_url": "https://api.github.com/users/bondhugula/followers",
"following_url": "https://api.github.com/users/bondhugula/following{/other_user}",
"gists_url": "https://api.github.com/users/bondhugula/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bondhugula/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bondhugula/subscriptions",
"organizations_url": "https://api.github.com/users/bondhugula/orgs",
"repos_url": "https://api.github.com/users/bondhugula/repos",
"events_url": "https://api.github.com/users/bondhugula/events{/privacy}",
"received_events_url": "https://api.github.com/users/bondhugula/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205615612,
"node_id": "MDU6TGFiZWwxMjA1NjE1NjEy",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:%20ubuntu/linux",
"name": "subtype: ubuntu/linux",
"color": "b619ea",
"default": false,
"description": "Ubuntu/Linux Build/Installation Issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "burmako",
"id": 1248216,
"node_id": "MDQ6VXNlcjEyNDgyMTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/1248216?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/burmako",
"html_url": "https://github.com/burmako",
"followers_url": "https://api.github.com/users/burmako/followers",
"following_url": "https://api.github.com/users/burmako/following{/other_user}",
"gists_url": "https://api.github.com/users/burmako/gists{/gist_id}",
"starred_url": "https://api.github.com/users/burmako/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/burmako/subscriptions",
"organizations_url": "https://api.github.com/users/burmako/orgs",
"repos_url": "https://api.github.com/users/burmako/repos",
"events_url": "https://api.github.com/users/burmako/events{/privacy}",
"received_events_url": "https://api.github.com/users/burmako/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "burmako",
"id": 1248216,
"node_id": "MDQ6VXNlcjEyNDgyMTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/1248216?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/burmako",
"html_url": "https://github.com/burmako",
"followers_url": "https://api.github.com/users/burmako/followers",
"following_url": "https://api.github.com/users/burmako/following{/other_user}",
"gists_url": "https://api.github.com/users/burmako/gists{/gist_id}",
"starred_url": "https://api.github.com/users/burmako/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/burmako/subscriptions",
"organizations_url": "https://api.github.com/users/burmako/orgs",
"repos_url": "https://api.github.com/users/burmako/repos",
"events_url": "https://api.github.com/users/burmako/events{/privacy}",
"received_events_url": "https://api.github.com/users/burmako/received_events",
"type": "User",
"site_admin": false
},
{
"login": "SuryanarayanaY",
"id": 116063290,
"node_id": "U_kgDOBur8Og",
"avatar_url": "https://avatars.githubusercontent.com/u/116063290?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SuryanarayanaY",
"html_url": "https://github.com/SuryanarayanaY",
"followers_url": "https://api.github.com/users/SuryanarayanaY/followers",
"following_url": "https://api.github.com/users/SuryanarayanaY/following{/other_user}",
"gists_url": "https://api.github.com/users/SuryanarayanaY/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SuryanarayanaY/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SuryanarayanaY/subscriptions",
"organizations_url": "https://api.github.com/users/SuryanarayanaY/orgs",
"repos_url": "https://api.github.com/users/SuryanarayanaY/repos",
"events_url": "https://api.github.com/users/SuryanarayanaY/events{/privacy}",
"received_events_url": "https://api.github.com/users/SuryanarayanaY/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"CC: @joker-eph ",
"`/home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916: /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc`\r\n\r\n@burmako \r\n",
"Hi folks! Thank you for reporting - we'll look into this shortly.\r\n\r\nIn the meanwhile, do you happen to know what's the maximum filename length expected here? `/home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc` is 252 characters long, and I'm not currently sure if this limit is imposed by Bazel, by Java or by something else.",
"> Hi folks! Thank you for reporting - we'll look into this shortly.\r\n> \r\n> In the meanwhile, do you happen to know what's the maximum filename length expected here? `/home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc` is 252 characters long, and I'm not currently sure if this limit is imposed by Bazel, by Java or by something else.\r\n\r\nAlthough Java is reporting this via an exception, I think it's the OS file system that's imposing the limit -- it might be the 255 byte limit (see https://en.wikipedia.org/wiki/Ext4) that this is exceeding. Can you go with `dims` instead of `dimensions` everywhere in that? I don't know if that'll provide a guarantee though.",
"I've tried to reproduce this on my machine which has the same version of Bazel and of Python, although it runs a different distribution of Linux ([gLinux](https://en.wikipedia.org/wiki/GLinux) rather than Ubuntu - not sure if that matters - although my filesystem is ext4, the same as yours) and unfortunately wasn't able to reproduce the issue.\r\n\r\nFwiw the equivalent path to the problematic file in the Bazel cache on my machine has 275 characters in it, and it seems to work properly. (My home directory is located elsewhere, and the path to that is longer than `/home/$USER`).\r\n\r\nCan you tell more about the problem that you're encountering? Did it start happening only recently? Is there anything that could be unusual about the environment, or it's pretty much a stock configuration?\r\n\r\nBy the way, I'm open to abbreviating the filenames as needed, but would like to debug this a bit further, so that we get this right the first time and make sure this doesn't happen again.",
"> I've tried to reproduce this on my machine which has the same version of Bazel and of Python, although it runs a different distribution of Linux ([gLinux](https://en.wikipedia.org/wiki/GLinux) rather than Ubuntu - not sure if that matters - although my filesystem is ext4, the same as yours) and unfortunately wasn't able to reproduce the issue.\r\n> \r\n> Fwiw the equivalent path to the problematic file in the Bazel cache on my machine has 275 characters in it, and it seems to work properly. (My home directory is located elsewhere, and the path to that is longer than `/home/$USER`).\r\n> \r\n> Can you tell more about the problem that you're encountering? Did it start happening only recently? Is there anything that could be unusual about the environment, or it's pretty much a stock configuration?\r\n> \r\n> By the way, I'm open to abbreviating the filenames as needed, but would like to debug this a bit further, so that we get this right the first time and make sure this doesn't happen again.\r\n\r\nEven I wasn't able to reproduce this on another Ubuntu 22.04 LTS - so, it looks like there was something different with that environment or the file system configuration. I'll be able to post more details tomorrow.",
"I'd like to help work on this issue.",
"@anuth212 Thank you for your offer to help! Can you try to reproduce this issue? This is currently an open question - how to reproduce and minimize the bug (because the most straightforward approach of cloning the repo and running Bazel works fine).",
"Just on a related note, I've been trying to build OpenXLA (outside of tensorflow), who also depends on `stablehlo`, and see the same problem during my build:\r\n\r\n```\r\nINFO: repository @stablehlo' used the following cache hits instead of downloading the corresponding file.\r\n * Hash '5f4f2dbba503bc18e1a64c3b87a51b8571519ca18158937e3048c094ae90e548' for https://storage.googleapis.com/mirror.tensorflow.org/github.com/openxla/stablehlo/archive/458bdd95771e9861e6488868e315a1b0340058ba.zip\r\nIf the definition of 'repository @stablehlo' was updated, verify that the hashes were also updated.\r\nERROR: An error occurred during the fetch of repository 'stablehlo':\r\n Traceback (most recent call last):\r\n File \"/mnt/.cache/external/xla/third_party/repo.bzl\", line 73, column 33, in _tf_http_archive_impl\r\n ctx.download_and_extract(\r\nError in download_and_extract: java.io.IOException: Error extracting /mnt/.cache/external/stablehlo/temp1913717006884866717/458bdd95771e9861e6488868e315a1b0340058ba.zip to /mnt/.cache/external/stablehlo/temp1913717006884866717: /mnt/.cache/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)\r\nERROR: /mnt/WORKSPACE:73:15: fetching _tf_http_archive rule //external:stablehlo: Traceback (most recent call last):\r\n File \"/mnt/.cache/external/xla/third_party/repo.bzl\", line 73, column 33, in _tf_http_archive_impl\r\n ctx.download_and_extract(\r\nError in download_and_extract: java.io.IOException: Error extracting /mnt/.cache/external/stablehlo/temp1913717006884866717/458bdd95771e9861e6488868e315a1b0340058ba.zip to /mnt/.cache/external/stablehlo/temp1913717006884866717: /mnt/.cache/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)\r\nI\r\n```\r\n\r\nI'm compiling it using a vanilla `tensorflow/tensorflow:devel-gpu` docker, with the exception that I upgraded Bazel to 6.1.1 (likely unrelated).\r\n\r\n",
"I cross-posted the issue in `openxla/stablehlo` repository, in https://github.com/openxla/stablehlo/issues/1364.\r\n\r\nAlso I checked the largest files are 142 chars in length, and using zip from the command line they extract normally. It could be an indication of an issue with the Java class doing this (?? I have no idea what goes inside bazel)",
"I ran into the same issue, the filename length is 146 char, which is larger than what cryptfs supports (143 chars). This fs is used at least by some linux distros when using an encrypted home directory. A simple workaround is to symlink $HOME/.cache/bazel to a directory on a standard ext4 partition, tensorflow should then build correctly.",
"Thanks, yes, I mentioned the same in the cross issue -- https://github.com/openxla/stablehlo/issues/1364 (I notice I linked it wrong above, apologies). They suggest they are going to configure it to limit them to be shorter, but I did the same, I linked the source code directory to a directory in a plain (unenctrypted) ext4 partition, and it's been working fine.\r\n\r\n",
"This issue is indeed due to the file system not supporting file names of that length as @fleiner describes. I had ecryptfs on Ubuntu 22.04 for my home dir.\r\n```\r\nmount | grep home\r\n/dev/nvme0n1p8 on /home type ext4 (rw,relatime)\r\n/home/.ecryptfs/uday/.Private on /home/uday type ecryptfs (rw,nosuid,nodev,relatime,ecryptfs_fnek_sig=334469eedce0651c,ecryptfs_sig=502c59492f8f5636,ecryptfs_cipher=aes,ecryptfs_key_bytes=16,ecryptfs_unlink_sigs)\r\n```\r\nHaving the bazel cache or the entire home dir on a typical ext4 or xfs will workaround the issue.",
"@fleiner fleiner The best suggestion I could give you is to try LONGPATHTOOL. It always helps me to resolve problems with path too long or filename too long. Thank you."
] | 2023-03-27T04:56:52 | 2023-07-24T09:25:12 | null | CONTRIBUTOR | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
git 1dce1ddd62b4d9f7434bffa347defe0ad286bfab Mar 26
### Custom Code
No
### OS Platform and Distribution
Linux Ubuntu 22.04.2 LTS
### Mobile device
_No response_
### Python version
3.10.6
### Bazel version
5.3.0
### GCC/Compiler version
11.3.0
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
TF build fails due to an issue with stablehlo integration.
$ bazel build //tensorflow/tools/pip_package:build_pip_package
g++ (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
uday@polymage-gpu-laptop:~/csa/courses/e0255/2023/e0255-asst-2/tensorflow$ bazel build //tensorflow/tools/pip_package:build_pip_package
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=146
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc:
'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils
INFO: Found applicable config definition build:short_logs in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:linux in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes
INFO: Found applicable config definition build:dynamic_kernels in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS
INFO: Build options --copt and --linkopt have changed, discarding analysis cache.
INFO: Repository stablehlo instantiated at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: in <toplevel>
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:965:28: in workspace
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:83:14: in _initialize_third_party
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/stablehlo/workspace.bzl:11:20: in repo
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive
Repository rule _tf_http_archive defined at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:89:35: in <toplevel>
INFO: Repository 'stablehlo' used the following cache hits instead of downloading the corresponding file.
* Hash '1295d499727ed77e34f8c3c82f7fc68d95ca6044da82579ac9d51b510c5b2cd7' for https://storage.googleapis.com/mirror.tensorflow.org/github.com/openxla/stablehlo/archive/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip
If the definition of 'stablehlo' was updated, verify that the hashes were also updated.
ERROR: An error occurred during the fetch of repository 'stablehlo':
Traceback (most recent call last):
File "/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl", line 73, column 33, in _tf_http_archive_impl
ctx.download_and_extract(
Error in download_and_extract: java.io.IOException: Error extracting /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip to /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916: /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)
ERROR: /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: fetching _tf_http_archive rule //external:stablehlo: Traceback (most recent call last):
File "/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl", line 73, column 33, in _tf_http_archive_impl
ctx.download_and_extract(
Error in download_and_extract: java.io.IOException: Error extracting /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip to /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916: /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)
ERROR: /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: fetching _tf_http_archive rule //external:stablehlo: Traceback (most recent call last):
File "/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl", line 73, column 33, in _tf_http_archive_impl
ctx.download_and_extract(
Error in download_and_extract: java.io.IOException: Error extracting /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip to /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916: /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)
INFO: Repository icu instantiated at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: in <toplevel>
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:965:28: in workspace
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:72:8: in _initialize_third_party
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/icu/workspace.bzl:8:20: in repo
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive
Repository rule _tf_http_archive defined at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:89:35: in <toplevel>
INFO: Repository go_sdk instantiated at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:23:14: in <toplevel>
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace0.bzl:135:20: in workspace
/home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/com_github_grpc_grpc/bazel/grpc_extra_deps.bzl:36:27: in grpc_extra_deps
/home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/io_bazel_rules_go/go/private/sdk.bzl:431:28: in go_register_toolchains
/home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/io_bazel_rules_go/go/private/sdk.bzl:130:21: in go_download_sdk
Repository rule _go_download_sdk defined at:
/home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/io_bazel_rules_go/go/private/sdk.bzl:117:35: in <toplevel>
INFO: Repository XNNPACK instantiated at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: in <toplevel>
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:972:21: in workspace
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:144:20: in _tf_repositories
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive
Repository rule _tf_http_archive defined at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:89:35: in <toplevel>
INFO: Repository boringssl instantiated at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: in <toplevel>
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:972:21: in workspace
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:565:20: in _tf_repositories
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive
Repository rule _tf_http_archive defined at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:89:35: in <toplevel>
ERROR: /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/tools/pip_package/BUILD:192:10: //tensorflow/tools/pip_package:licenses depends on @stablehlo//:LICENSE in repository @stablehlo which failed to fetch. no such package '@stablehlo//': java.io.IOException: Error extracting /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip to /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916: /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)
ERROR: Analysis of target '//tensorflow/tools/pip_package:build_pip_package' failed; build aborted:
INFO: Elapsed time: 1.345s
INFO: 0 processes.
FAILED: Build did NOT complete successfully (0 packages loaded, 4299 targets configured)
```
```
$ java --version
openjdk 11.0.18 2023-01-17
OpenJDK Runtime Environment (build 11.0.18+10-post-Ubuntu-0ubuntu122.04)
OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Ubuntu-0ubuntu122.04, mixed mode, sharing)
```
```
### Standalone code to reproduce the issue
```shell
Clone official TF repo at 1dce1ddd62b4d9f7434bffa347defe0ad286bfab (Mar 26):
Use default configure:
$ bazel build //tensorflow/tools/pip_package:build_pip_package
```
### Relevant log output
```
g++ (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
uday@polymage-gpu-laptop:~/csa/courses/e0255/2023/e0255-asst-2/tensorflow$ bazel build //tensorflow/tools/pip_package:build_pip_package
INFO: Options provided by the client:
Inherited 'common' options: --isatty=1 --terminal_columns=146
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc:
Inherited 'common' options: --experimental_repo_remote_exec
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc:
'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.tf_configure.bazelrc:
'build' options: --action_env PYTHON_BIN_PATH=/usr/bin/python3 --action_env PYTHON_LIB_PATH=/usr/lib/python3/dist-packages --python_path=/usr/bin/python3
INFO: Reading rc options for 'build' from /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc:
'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils
INFO: Found applicable config definition build:short_logs in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING
INFO: Found applicable config definition build:v2 in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
INFO: Found applicable config definition build:linux in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --copt=-Wno-error=unused-but-set-variable --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes
INFO: Found applicable config definition build:dynamic_kernels in file /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS
INFO: Build options --copt and --linkopt have changed, discarding analysis cache.
INFO: Repository stablehlo instantiated at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: in <toplevel>
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:965:28: in workspace
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/tensorflow/workspace2.bzl:83:14: in _initialize_third_party
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/stablehlo/workspace.bzl:11:20: in repo
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:136:21: in tf_http_archive
Repository rule _tf_http_archive defined at:
/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl:89:35: in <toplevel>
INFO: Repository 'stablehlo' used the following cache hits instead of downloading the corresponding file.
* Hash '1295d499727ed77e34f8c3c82f7fc68d95ca6044da82579ac9d51b510c5b2cd7' for https://storage.googleapis.com/mirror.tensorflow.org/github.com/openxla/stablehlo/archive/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip
If the definition of 'stablehlo' was updated, verify that the hashes were also updated.
ERROR: An error occurred during the fetch of repository 'stablehlo':
Traceback (most recent call last):
File "/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl", line 73, column 33, in _tf_http_archive_impl
ctx.download_and_extract(
Error in download_and_extract: java.io.IOException: Error extracting /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip to /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916: /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)
ERROR: /home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/WORKSPACE:15:14: fetching _tf_http_archive rule //external:stablehlo: Traceback (most recent call last):
File "/home/uday/csa/courses/e0255/2023/e0255-asst-2/tensorflow/third_party/repo.bzl", line 73, column 33, in _tf_http_archive_impl
ctx.download_and_extract(
Error in download_and_extract: java.io.IOException: Error extracting /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916/ef7a111784a2a5574de0b1165e3bdfc5397dce5a.zip to /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/temp12753699981416543916: /home/uday/.cache/bazel/_bazel_uday/77f8878d03275bdd27457b5be533415a/external/stablehlo/stablehlo/testdata/vmap_dot_general_batch_dimensions_lhs_float32_8_4_3_3_4__rhs_float32_4_8_3_4_2__dimensionnumbers____4_3___3_2_____0_1___1_0_dynamic.mlir.0_9_0.bc (File name too long)
```
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60126/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60126/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60125 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60125/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60125/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60125/events | https://github.com/tensorflow/tensorflow/issues/60125 | 1,641,357,273 | I_kwDOArmXAs5h1R_Z | 60,125 | Questions about int4 quantization | {
"login": "0-chan-kor",
"id": 129029246,
"node_id": "U_kgDOB7DUfg",
"avatar_url": "https://avatars.githubusercontent.com/u/129029246?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/0-chan-kor",
"html_url": "https://github.com/0-chan-kor",
"followers_url": "https://api.github.com/users/0-chan-kor/followers",
"following_url": "https://api.github.com/users/0-chan-kor/following{/other_user}",
"gists_url": "https://api.github.com/users/0-chan-kor/gists{/gist_id}",
"starred_url": "https://api.github.com/users/0-chan-kor/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/0-chan-kor/subscriptions",
"organizations_url": "https://api.github.com/users/0-chan-kor/orgs",
"repos_url": "https://api.github.com/users/0-chan-kor/repos",
"events_url": "https://api.github.com/users/0-chan-kor/events{/privacy}",
"received_events_url": "https://api.github.com/users/0-chan-kor/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173272,
"node_id": "MDU6TGFiZWw0NzMxNzMyNzI=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:feature",
"name": "type:feature",
"color": "159b2e",
"default": false,
"description": "Feature requests"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 2671351731,
"node_id": "MDU6TGFiZWwyNjcxMzUxNzMx",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/ModelOptimizationToolkit",
"name": "ModelOptimizationToolkit",
"color": "BFD629",
"default": false,
"description": "TF Model Optimization Toolkit"
}
] | open | false | {
"login": "yishuangP",
"id": 6421220,
"node_id": "MDQ6VXNlcjY0MjEyMjA=",
"avatar_url": "https://avatars.githubusercontent.com/u/6421220?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yishuangP",
"html_url": "https://github.com/yishuangP",
"followers_url": "https://api.github.com/users/yishuangP/followers",
"following_url": "https://api.github.com/users/yishuangP/following{/other_user}",
"gists_url": "https://api.github.com/users/yishuangP/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yishuangP/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yishuangP/subscriptions",
"organizations_url": "https://api.github.com/users/yishuangP/orgs",
"repos_url": "https://api.github.com/users/yishuangP/repos",
"events_url": "https://api.github.com/users/yishuangP/events{/privacy}",
"received_events_url": "https://api.github.com/users/yishuangP/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "yishuangP",
"id": 6421220,
"node_id": "MDQ6VXNlcjY0MjEyMjA=",
"avatar_url": "https://avatars.githubusercontent.com/u/6421220?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yishuangP",
"html_url": "https://github.com/yishuangP",
"followers_url": "https://api.github.com/users/yishuangP/followers",
"following_url": "https://api.github.com/users/yishuangP/following{/other_user}",
"gists_url": "https://api.github.com/users/yishuangP/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yishuangP/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yishuangP/subscriptions",
"organizations_url": "https://api.github.com/users/yishuangP/orgs",
"repos_url": "https://api.github.com/users/yishuangP/repos",
"events_url": "https://api.github.com/users/yishuangP/events{/privacy}",
"received_events_url": "https://api.github.com/users/yishuangP/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @0-chan-kor \r\n\r\nCan you please elaborate about your feature and please specify the use cases for this feature. Also provide few samples where int4 is used in kernels.\r\n\r\nThanks!",
"@pjpratik Thank you for answer.\r\n\r\nIn order to speed up various vision models (detection, landmark, segmentation, etc.) on CPU (of course, with minimal loss of accuracy), we have deployed models by applying quantization to int8.\r\n\r\nIn the meantime, we analyzed the code after learning that int4-related commits were reflected in tflite git.\r\nAs mentioned above, we chcecked that int4 type filters (weights) are supported in conv2d, depthwise-conv2d, and fully-connected kernels.\r\nHowever, the tflite converter does not have a function to quantize the filter to int4, so I modified the tflite's flatbuffer and tested it.\r\nHowever, it was confirmed that there was no speed improvement. (Environment : Mac M1 Pro)\r\n\r\nthese are my footsteps.\r\n\r\nSo, to summarize my questions:\r\n1. Is there a plan to support the function of quantizing the weight to int4 in the tflite converter?\r\n2. For the three kernels above, int4 type input and output are not yet supported. Are there any plans to support them?\r\n\r\n\r\n",
"Oh, looking at the code below, isn't it actually performing int4 in the kernel?\r\n\r\n``` c++\r\n if (filter->type == kTfLiteInt4) {\r\n tflite::tensor_utils::UnpackDenseInt4IntoInt8(\r\n GetTensorData<int8_t>(filter), GetTensorShape(filter).FlatSize(),\r\n unpacked_filter_data.get());\r\n filter_data = unpacked_filter_data.get();\r\n } else {\r\n filter_data = GetTensorData<int8>(filter);\r\n }\r\n```\r\n\r\nThis is done simply by unpacking int4 to int8, eventually to int8?",
"@0-chan-kor Thanks for the information.\r\n\r\n@sachinprasadhs Could you please look at this feature request?\r\n\r\nThanks.",
"Hi @pjpratik , @sachinprasadhs \r\nAny updates on int4?\r\nThanks."
] | 2023-03-27T04:39:12 | 2023-07-27T20:46:27 | null | NONE | null | null | null | Hi, all.
Since it is an inquiry rather than an issue, I will not write a template.
Looking at the kernel side code of tflite, I saw that int4 for filter is supported in several op kernels; conv2d, depthwise-conv2d, fully-connected.
Could you tell me if there are plans to support int4 quantization in the tflite converter or support int4 for each op's input as well as filter, and if so, what milestones do you have?
Thank you :) | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60125/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60125/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60124 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60124/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60124/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60124/events | https://github.com/tensorflow/tensorflow/issues/60124 | 1,641,300,545 | I_kwDOArmXAs5h1EJB | 60,124 | tf.raw_ops.QuantizeAndDequantizeV4 (and v3) crash (abort) | {
"login": "trickiwoo",
"id": 121965696,
"node_id": "U_kgDOB0UMgA",
"avatar_url": "https://avatars.githubusercontent.com/u/121965696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/trickiwoo",
"html_url": "https://github.com/trickiwoo",
"followers_url": "https://api.github.com/users/trickiwoo/followers",
"following_url": "https://api.github.com/users/trickiwoo/following{/other_user}",
"gists_url": "https://api.github.com/users/trickiwoo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/trickiwoo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/trickiwoo/subscriptions",
"organizations_url": "https://api.github.com/users/trickiwoo/orgs",
"repos_url": "https://api.github.com/users/trickiwoo/repos",
"events_url": "https://api.github.com/users/trickiwoo/events{/privacy}",
"received_events_url": "https://api.github.com/users/trickiwoo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Related: [#57714](https://github.com/tensorflow/tensorflow/issues/57714)",
"@SuryanarayanaY \r\nI was able to reproduce the issue on colab using TF2.12 and tf-nightly-2.13.0-dev20230328. Please find the gist of [2.12](https://colab.research.google.com/gist/tiruk007/0f943cabe45e4fefea259388f975107b/untitled172.ipynb) and [tf-nightly](https://colab.research.google.com/gist/tiruk007/79ba9fcb07487e91c1947bf526a56946/untitled173.ipynb) for reference.\r\n\r\nThank you!",
"The check fail is happening due to different ` input_min=-1`, `input_max=[-1,1]`. As per [API](https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizeAndDequantizeV4) both `input_min` and `input_max` should be of same type and size if `range_given=True`.\r\n\r\nPlease refer to attached [gist](https://colab.research.google.com/gist/SuryanarayanaY/f1ccb35630bfa6b9109bff3071da2815/untitled173.ipynb).",
"Checked in tf-nightly(2.15.0-dev20231004). Crash due to check fail.\r\n\r\n<img width=\"1505\" alt=\"Screenshot 2023-10-04 at 2 56 17 PM\" src=\"https://github.com/tensorflow/tensorflow/assets/116063290/876ed1f1-f2d6-41aa-9bc0-2fffce48915d\">\r\n",
"@trickiwoo,\r\nI tried to execute the mentioned code on tf-nightly and the code was executed with the error and also observed that the crash did not happen. And the same has been updated in the respective files. Kindly find the [gist](https://colab.research.google.com/gist/tilakrayal/942373beca9c416d031768af09f6f45f/untitled1698.ipynb) for the [reference](https://colab.research.google.com/gist/tilakrayal/4f96cf1a630f777a6075a0737b2567ce/untitled1699.ipynb).\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L22\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/resource_variable_ops.cc#L1120\r\n```python\r\n// Check data type of update and resource to scatter.\r\nconst DataType update_dtype = c->input(2).dtype();\r\nOP_REQUIRES(c, v->tensor()->dtype() == update_dtype,\r\nerrors::InvalidArgument(\r\n\"DType of scatter resource and updates does not match.\"));\r\n```\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60124\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60124\">No</a>\n"
] | 2023-03-27T03:25:37 | 2024-02-14T01:47:28 | 2024-02-14T01:47:25 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0-dev20230208
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
tf.raw_ops.QuantizeAndDequantizeV4 (and v3) crash (abort)
```
### Standalone code to reproduce the issue
```shell
import numpy as np
import tensorflow as tf
tf.raw_ops.QuantizeAndDequantizeV4(input=[np.ones((10))], input_min=-1, input_max=[-1, 1], range_given=True)
```
### Relevant log output
```shell
2023-03-26 22:24:03.910007: F tensorflow/core/framework/tensor.cc:778] Check failed: 1 == NumElements() (1 vs. 2)Must have a one element tensor
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60124/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60124/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60123 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60123/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60123/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60123/events | https://github.com/tensorflow/tensorflow/issues/60123 | 1,641,291,184 | I_kwDOArmXAs5h1B2w | 60,123 | tf.raw_ops.ResourceScatterDiv crash with abortion | {
"login": "trickiwoo",
"id": 121965696,
"node_id": "U_kgDOB0UMgA",
"avatar_url": "https://avatars.githubusercontent.com/u/121965696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/trickiwoo",
"html_url": "https://github.com/trickiwoo",
"followers_url": "https://api.github.com/users/trickiwoo/followers",
"following_url": "https://api.github.com/users/trickiwoo/following{/other_user}",
"gists_url": "https://api.github.com/users/trickiwoo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/trickiwoo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/trickiwoo/subscriptions",
"organizations_url": "https://api.github.com/users/trickiwoo/orgs",
"repos_url": "https://api.github.com/users/trickiwoo/repos",
"events_url": "https://api.github.com/users/trickiwoo/events{/privacy}",
"received_events_url": "https://api.github.com/users/trickiwoo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @trickiwoo\r\nThank you for reporting the issue! \r\nI was able to replicate the issue using the latest tf-nightly(2.13.0.dev20230327). Please find the screenshot below.\r\n\r\nWe are investigating this issue and will update here soon. Thank you!",
"@trickiwoo,\r\nThere was a PR that was raised internally and the developer is working on that issue. Once it is resolved we will update the result here. Thank you!",
"@trickiwoo,\r\nI tried to execute the mentioned code on tf-nightly and the code was executed with the error and also observed that the crash did not happen. And the same has been in the respective files. Kindly find the [gist](https://colab.research.google.com/gist/tilakrayal/4fd326ab31f4f78139c0671d44c838ff/untitled1683.ipynb) for the [reference](https://colab.research.google.com/gist/tilakrayal/a34b671e2e2178157d4339a683f1fd2e/untitled1684.ipynb).\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L22\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/resource_variable_ops.cc#L1120\r\n\r\n```\r\n// Check data type of update and resource to scatter.\r\nconst DataType update_dtype = c->input(2).dtype();\r\nOP_REQUIRES(c, v->tensor()->dtype() == update_dtype,\r\nerrors::InvalidArgument(\r\n\"DType of scatter resource and updates does not match.\"));\r\n```\r\n\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60123\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60123\">No</a>\n"
] | 2023-03-27T03:11:54 | 2024-02-10T01:46:15 | 2024-02-10T01:46:07 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0-dev20230208
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
8.2.4
### GPU model and memory
_No response_
### Current Behaviour?
```shell
2.13.0-dev20230208
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
from tensorflow.python.eager import context
input1 = tf.raw_ops.VarHandleOp(dtype=tf.int32, shape=[2, 3], shared_name=context.anonymous_name())
input2 = tf.constant([],dtype=tf.float32)
output = tf.raw_ops.ResourceScatterDiv(resource=input1, indices=[0], updates=input2)
```
### Relevant log output
```shell
2023-03-26 22:11:23.135344: F tensorflow/core/framework/tensor.cc:770] Check failed: dtype() == expected_dtype (3 vs. 1) float expected, got int32
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60123/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60123/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60122 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60122/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60122/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60122/events | https://github.com/tensorflow/tensorflow/issues/60122 | 1,641,277,511 | I_kwDOArmXAs5h0-hH | 60,122 | tf.raw_ops.AssignSubVariableOp crash with abortion | {
"login": "trickiwoo",
"id": 121965696,
"node_id": "U_kgDOB0UMgA",
"avatar_url": "https://avatars.githubusercontent.com/u/121965696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/trickiwoo",
"html_url": "https://github.com/trickiwoo",
"followers_url": "https://api.github.com/users/trickiwoo/followers",
"following_url": "https://api.github.com/users/trickiwoo/following{/other_user}",
"gists_url": "https://api.github.com/users/trickiwoo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/trickiwoo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/trickiwoo/subscriptions",
"organizations_url": "https://api.github.com/users/trickiwoo/orgs",
"repos_url": "https://api.github.com/users/trickiwoo/repos",
"events_url": "https://api.github.com/users/trickiwoo/events{/privacy}",
"received_events_url": "https://api.github.com/users/trickiwoo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 474725938,
"node_id": "MDU6TGFiZWw0NzQ3MjU5Mzg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stale",
"name": "stale",
"color": "d4c5f9",
"default": false,
"description": "This label marks the issue/pr stale - to be closed automatically if no activity"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
}
] | closed | false | {
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Related: #60121 ",
"@trickiwoo This issue is related to security vulnerabilities which need to be reported [here](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md#reporting-vulnerabilities). Could you please refer to this [comment](https://github.com/tensorflow/tensorflow/issues/60121#issuecomment-1485230826) as well?\r\nThank you!",
"This issue is stale because it has been open for 7 days with no activity. It will be closed if no further activity occurs. Thank you.",
"This issue was closed because it has been inactive for 7 days since being marked as stale. Please reopen if you'd like to work on this further.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60122\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60122\">No</a>\n"
] | 2023-03-27T03:00:03 | 2023-04-12T06:58:27 | 2023-04-12T01:53:29 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0-dev20230208
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
tf.raw_ops.AssignSubVariableOp crash with abortion
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
from tensorflow.python.eager import context
input1 = tf.raw_ops.VarHandleOp(dtype=tf.int32, shape=[2, 3], shared_name=context.anonymous_name())
input2 = tf.constant([],dtype=tf.float32)
tf.raw_ops.AssignSubVariableOp(resource=input1, value=input2)
```
### Relevant log output
```shell
2023-03-26 21:58:20.336369: F tensorflow/core/framework/tensor.cc:770] Check failed: dtype() == expected_dtype (3 vs. 1) float expected, got int32
Aborted (core dumped)
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60122/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60122/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60121 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60121/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60121/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60121/events | https://github.com/tensorflow/tensorflow/issues/60121 | 1,641,271,160 | I_kwDOArmXAs5h0894 | 60,121 | tf.raw_ops.AssignAddVariableOp crash with abortion | {
"login": "trickiwoo",
"id": 121965696,
"node_id": "U_kgDOB0UMgA",
"avatar_url": "https://avatars.githubusercontent.com/u/121965696?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/trickiwoo",
"html_url": "https://github.com/trickiwoo",
"followers_url": "https://api.github.com/users/trickiwoo/followers",
"following_url": "https://api.github.com/users/trickiwoo/following{/other_user}",
"gists_url": "https://api.github.com/users/trickiwoo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/trickiwoo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/trickiwoo/subscriptions",
"organizations_url": "https://api.github.com/users/trickiwoo/orgs",
"repos_url": "https://api.github.com/users/trickiwoo/repos",
"events_url": "https://api.github.com/users/trickiwoo/events{/privacy}",
"received_events_url": "https://api.github.com/users/trickiwoo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1097547147,
"node_id": "MDU6TGFiZWwxMDk3NTQ3MTQ3",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:ops",
"name": "comp:ops",
"color": "0052cc",
"default": false,
"description": "OPs related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | open | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md#reporting-vulnerabilities\r\n\r\n(if you want to be credited in advisories and Google VRP board)\r\n\r\nAlso, responsible disclosure.",
"@sachinprasadhs,\r\nI was able to reproduce the issue on tensorflow v2.11, v2.12 and tf-nightly. Kindly find the gist of it [here](https://colab.research.google.com/gist/tilakrayal/363047ca6136212ebfc5820ba7525242/untitled1055.ipynb).",
"@mihaimaruseac \r\nThank you for the great suggestion! I have reported this and other crash issues to the Google's Bug Hunting project.\r\n",
"@trickiwoo what fuzzer you used to find this issue and another crashes?"
] | 2023-03-27T02:53:54 | 2023-04-03T00:24:06 | null | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
2.13.0-dev20230208
### Custom Code
Yes
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
tf.raw_ops.AssignAddVariableOp crash with abortion
```
### Standalone code to reproduce the issue
```shell
import tensorflow as tf
from tensorflow.python.eager import context
input1 = tf.raw_ops.VarHandleOp(dtype=tf.int32, shape=[2, 3], shared_name=context.anonymous_name())
input2 = tf.constant([],dtype=tf.float32)
tf.raw_ops.AssignAddVariableOp(resource=input1, value=input2)
```
### Relevant log output
```shell
2023-03-26 18:39:30.729731: F tensorflow/core/framework/tensor.cc:770] Check failed: dtype() == expected_dtype (3 vs. 1) float expected, got int32
Aborted (core dumped
```
</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60121/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60121/timeline | null | null | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60120 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60120/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60120/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60120/events | https://github.com/tensorflow/tensorflow/issues/60120 | 1,641,239,553 | I_kwDOArmXAs5h01QB | 60,120 | Thread-safety for `tensorflow::Tensor` | {
"login": "p3achyjr",
"id": 8763808,
"node_id": "MDQ6VXNlcjg3NjM4MDg=",
"avatar_url": "https://avatars.githubusercontent.com/u/8763808?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/p3achyjr",
"html_url": "https://github.com/p3achyjr",
"followers_url": "https://api.github.com/users/p3achyjr/followers",
"following_url": "https://api.github.com/users/p3achyjr/following{/other_user}",
"gists_url": "https://api.github.com/users/p3achyjr/gists{/gist_id}",
"starred_url": "https://api.github.com/users/p3achyjr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/p3achyjr/subscriptions",
"organizations_url": "https://api.github.com/users/p3achyjr/orgs",
"repos_url": "https://api.github.com/users/p3achyjr/repos",
"events_url": "https://api.github.com/users/p3achyjr/events{/privacy}",
"received_events_url": "https://api.github.com/users/p3achyjr/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1097543484,
"node_id": "MDU6TGFiZWwxMDk3NTQzNDg0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:runtime",
"name": "comp:runtime",
"color": "0052cc",
"default": false,
"description": "c++ runtime, performance issues (cpu)"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"I'd like to help work on this issue.",
"Hi @p3achyjr ,\r\n\r\nPlease find the source code for TensorSlice below for reference.\r\n\r\nhttps://github.com/tensorflow/tensorflow/blob/877805a728950a5527ed40ea82ee15b17449e49c/tensorflow/core/framework/tensor.cc#L1023-L1043",
"It looks ok to me at first glance? It looks like we are reading/creating new objects. Would like someone to confirm though as I haven't dug into it further.",
"Short answer to your question, YES Tensors are thread safe.\r\n\r\nAll tensors are immutable like Python numbers and strings: you can never update the contents of a tensor, only create a new one.\r\n",
"Thank you!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60120\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60120\">No</a>\n"
] | 2023-03-27T02:11:19 | 2023-05-02T17:41:33 | 2023-05-02T17:41:30 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
No
### Source
source
### Tensorflow Version
2.11.0
### Custom Code
Yes
### OS Platform and Distribution
Debian GNU/Linux 10
### Mobile device
_No response_
### Python version
3.9
### Bazel version
6.1.0
### GCC/Compiler version
LLVM 12
### CUDA/cuDNN version
11.6
### GPU model and memory
T4
### Current Behaviour?
```shell
Are there any methods on `tensorflow::Tensor` objects that are thread-safe? Specifically, any of
SubSlice()
flat(), unaligned_flat(), shaped().
```
### Standalone code to reproduce the issue
```shell
std::vector<Tensor> output;
Mutex mu;
bool ready = false;
void Eval() {
output = {Tensor(DataType::DT_HALF, {2, 16}); // one entry per thread
nn_evaluator_.Infer(<some_input>, <some_names>, &output);
mu.Lock();
ready = true;
mu.Unlock();
}
void ReadResult(int thread_id) {
mu.Lock();
mu.Await(Condition(&ready));
mu.Unlock();
// can we read tensor result now?
auto res = output[0].SubSlice(thread_id).unaligned_flat<Eigen::half>();
return res(0);
}
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60120/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60120/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60119 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60119/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60119/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60119/events | https://github.com/tensorflow/tensorflow/issues/60119 | 1,640,921,053 | I_kwDOArmXAs5hznfd | 60,119 | How can I achive the hilbert transform by using tensorflow? | {
"login": "Evan-0715",
"id": 53610899,
"node_id": "MDQ6VXNlcjUzNjEwODk5",
"avatar_url": "https://avatars.githubusercontent.com/u/53610899?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Evan-0715",
"html_url": "https://github.com/Evan-0715",
"followers_url": "https://api.github.com/users/Evan-0715/followers",
"following_url": "https://api.github.com/users/Evan-0715/following{/other_user}",
"gists_url": "https://api.github.com/users/Evan-0715/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Evan-0715/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Evan-0715/subscriptions",
"organizations_url": "https://api.github.com/users/Evan-0715/orgs",
"repos_url": "https://api.github.com/users/Evan-0715/repos",
"events_url": "https://api.github.com/users/Evan-0715/events{/privacy}",
"received_events_url": "https://api.github.com/users/Evan-0715/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473184161,
"node_id": "MDU6TGFiZWw0NzMxODQxNjE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:support",
"name": "type:support",
"color": "159b2e",
"default": false,
"description": "Support issues"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
},
{
"id": 3797168204,
"node_id": "LA_kwDOArmXAs7iVDBM",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.8",
"name": "TF 2.8",
"color": "5DC9D0",
"default": false,
"description": ""
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"```\r\nfrom scipy.signal import hilbert\r\nimport tensorflow as tf\r\nimport numpy as np\r\n\r\ndef is_complex(x):\r\n return x.dtype == tf.complex64 or x.dtype == tf.complex128\r\n\r\ndef highpass_filter(x, N=None, axis=-1):\r\n x = tf.convert_to_tensor(x)\r\n if is_complex(x):\r\n raise ValueError(\"x must be real.\")\r\n if N is None:\r\n N = x.shape[axis]\r\n if N <= 0:\r\n raise ValueError(\"N must be positive.\")\r\n \r\n from tensorflow.signal import fft\r\n Xf = fft(x, N, axis=axis)\r\n h = tf.zeros(N)\r\n if N % 2 == 0:\r\n h = tf.tensor_scatter_nd_update(h, [[0], [N // 2]], [1, 1])\r\n h = tf.tensor_scatter_nd_update(h, tf.range(1, N // 2), tf.ones(N // 2 - 1) * 2)\r\n else:\r\n h = tf.tensor_scatter_nd_update(h, [0], [1])\r\n h = tf.tensor_scatter_nd_update(h, tf.range(1, (N + 1) // 2), tf.ones((N + 1) // 2 - 1) * 2)\r\n\r\n if x.ndim > 1:\r\n ind = [tf.newaxis] * x.ndim\r\n ind[axis] = slice(None)\r\n h = h[tuple(ind)]\r\n\r\n x = tf.signal.ifft(Xf * h, axis=axis)\r\n return x\r\n\r\nx = np.random.rand(1, 4096, 2)\r\nx_h = hilbert(np.squeeze(highpass_filter(x,axis=1)), axis=1)\r\n```\r\n\r\nRegarding your question about converting a **Tensor/KerasTensor** to a **NumPy** array, you can use the **numpy()** method of the tensor to convert it to a NumPy array. For example, if x is a **Tensor/KerasTensor**, you can convert it to a NumPy array as follows:\r\n```\r\nx_np = x.numpy()\r\n```\r\n\r\nTo implement the Hilbert transform on a **Tensor/KerasTensor**, you can use the hilbert function from **scipy.signal**\r\n```\r\n# generate a test signal\r\nx = np.random.rand(1, 4096, 2)\r\n\r\n# apply the Hilbert transform\r\nx_hilbert = hilbert(x, axis=1)\r\n```\r\nTo convert a **Tensor/KerasTensor** to a NumPy array, you can use the **numpy()** method of the tensor.\r\n```\r\n# generate a test tensor\r\nx = tf.constant(np.random.rand(1, 4096, 2))\r\n\r\n# convert the tensor to a NumPy array\r\nx_np = x.numpy()\r\n```",
"sorry, i tried the following methods to convert the data[Tensor/KerasTensor] to data[Numpy]\r\n1. data_np = data.numpy()\r\n2. data_np = keras.backend.get_val(data)\r\nbut neither works. It shows: AttributeError: 'Tensor' object has no attribute 'numpy'. So I can't use scipy.signal.hilbert to implement a Hilbert transform on data[Tensor/KerasTensor].",
"This may be due to the fact that my data is generated from:\r\ndef Net():\r\n input = keras.layers.Input(shape=(64, 64, 3), dtype=\"float32\")\r\n conv1 = keras.layers.Conv2D(filters=3, kernel_size=3, padding=\"same\")\r\n ……\r\n conv2 = keras.layers.Conv2D(filters=2, kernel_size=3, padding=\"same\") #shape(1,64,64,2)\r\n data = reshape(conv2, [1, 4096, 2])",
"Hi @Evan-0715, \r\nI tried replicating the issue, but I'm facing a different error. Please find the gist [here](https://colab.sandbox.google.com/gist/synandi/37cd6070a8f365994c9339af6593be98/60119.ipynb). \r\nKindly refer the error below.\r\n```\r\nAttributeError: 'DType' object has no attribute 'kind'\r\n```\r\nThank you!",
"I think this may be caused by the randomly generated numpy array dtype being in the wrong format, try replacing x = np.random.rand(1, 4096, 2) with x = [[[111,225],[225,445],[333,225],[445,445]]], it's just an artificial numpy array after all. I hope this helps.",
"If you can run this code without any problems, you should get the following error: \r\nTypeError: fft() got an unexpected keyword argument 'axis'.\r\nSo, using tf.signal.fft or tf.signal.ifft does not achieve the same effect as scipy.signal.hilbert. So it is probably better to convert data[tensor] to data[numpy]. I hope you can help me realise this idea, thanks!",
"Hi @Evan-0715, I was able to replicate the error in Colab, kindly find the gist [here](https://colab.sandbox.google.com/gist/synandi/897b8bfbf0c887b9920072edc36ddeb7/60119_1.ipynb). To overcome the error, please use `numpy.tff.tff()` instead of `tf.signal.tff` in order to use the `axis` argument. Kindly find the gist [here](https://colab.sandbox.google.com/gist/synandi/91a7d7047f7e5f6a969b6fd282f6c953/60119_2.ipynb) after using `numpy.tff.tff()`. The code you have shared is raising another error like below. \r\n```\r\nInvalidArgumentError: {{function_node __wrapped__TensorScatterUpdate_device_/job:localhost/replica:0/task:0/device:CPU:0}} Inner dimensions of output shape must match inner dimensions of updates shape. Output: [4096] updates: [2047] [Op:TensorScatterUpdate]\r\n```\r\n\r\nThank you!",
"This new error may be related to my own calculation process. And I reworked the tensorflow code for the Hilbert transform and now it runs smoothly on my computer. The code is as follows:\r\n```\r\nimport tensorflow as tf\r\nimport numpy as np\r\n\r\ndef highpass_filter(x, N=None, axis=-1):\r\n x = tf.convert_to_tensor(x)\r\n if x.dtype == tf.complex64 or x.dtype == tf.complex128:\r\n raise ValueError(\"x must be real.\")\r\n if N is None:\r\n N = x.shape[axis]\r\n if N <= 0:\r\n raise ValueError(\"N must be positive.\")\r\n Xf = np.fft.fft(x, N, axis=axis)\r\n h = np.zeros(N)\r\n if N % 2 == 0:\r\n h[0] = h[N // 2] = 1\r\n h[1:N // 2] = 2\r\n else:\r\n h[0] = 1\r\n h[1:(N + 1) // 2] = 2\r\n if x.ndim > 1:\r\n ind = [tf.newaxis] * x.ndim\r\n ind[axis] = slice(None)\r\n h = h[tuple(ind)]\r\n x = np.fft.ifft(Xf * h, axis=axis)\r\n x = tf.convert_to_tensor(x)\r\n return x\r\nx = np.random.rand(1, 4096, 2)\r\ny = highpass_filter(x, `axis=1)\r\n```\r\n All in all, thanks a lot! It will help me a lot in my experiments!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60119\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60119\">No</a>\n"
] | 2023-03-26T13:55:00 | 2023-03-29T14:29:25 | 2023-03-29T14:25:26 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Support
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf 2.8
### Custom Code
Yes
### OS Platform and Distribution
Windows 10
### Mobile device
_No response_
### Python version
3.9
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
When I discovered that tensorflow did not have a built-in API for implementing the Hilbert transform, I tried to pass the tensor to the scipy.signal.hilbert method in numpy, but keras does not allow the tensor to be processed directly using numpy maths methods, so I used the following method for data[ Tensor/KerasTensor(1,4096,2)] to convert:
1. data_np = data.numpy()
2. data_np = keras.backend.get_val(data)
Neither works. I then decided to build my own hilbert_transform function by referring to the scipy.signal.hilbert method in numpy, at which point another problem arose:
The tf.signal.fft method is inconsistent with the scipy.fft method. scipy.fft can take an axis argument, but tf.signal.fftz cannot.
Therefore, I would like your help in answering:
1. how do I implement the Hilbert transform on data[Tensor/KerasTensor(1,4096,2)]?
or
2. how do I convert data[Tensor/KerasTensor(1,4096,2)] into a numpys array?
Translated with www.DeepL.com/Translator (free version)
```
### Standalone code to reproduce the issue
```shell
from scipy.signal import hilbert
import tensorflow as tf
import numpy as np
def is_complex(x):
return x.dtype == tf.complex64 or x.dtype == tf.complex128
def highpass_filter(x, N=None, axis=-1):
x = tf.convert_to_tensor(x)
if is_complex(x):
raise ValueError("x must be real.")
if N is None:
N = x.shape[axis]
if N <= 0:
raise ValueError("N must be positive.")
Xf = fft(x, N, axis=axis)
h = tf.zeros(N)
if N % 2 == 0:
h = tf.tensor_scatter_nd_update(h, [[0], [N // 2]], [1, 1])
h = tf.tensor_scatter_nd_update(h, tf.range(1, N // 2), tf.ones(N // 2 - 1) * 2)
else:
h = tf.tensor_scatter_nd_update(h, [0], [1])
h = tf.tensor_scatter_nd_update(h, tf.range(1, (N + 1) // 2), tf.ones((N + 1) // 2 - 1) * 2)
if x.ndim > 1:
ind = [tf.newaxis] * x.ndim
ind[axis] = slice(None)
h = h[tuple(ind)]
x = tensorflow.signal.ifft(Xf * h, axis=axis)
return x
x = np.random.rand(1, 4096, 2)
x_h = highpass_filter(x,axis=1)
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60119/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60119/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60118 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60118/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60118/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60118/events | https://github.com/tensorflow/tensorflow/issues/60118 | 1,640,901,173 | I_kwDOArmXAs5hzio1 | 60,118 | Support of protobuf 4.22 for tensorflow-macos | {
"login": "MuppetJack",
"id": 83703345,
"node_id": "MDQ6VXNlcjgzNzAzMzQ1",
"avatar_url": "https://avatars.githubusercontent.com/u/83703345?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/MuppetJack",
"html_url": "https://github.com/MuppetJack",
"followers_url": "https://api.github.com/users/MuppetJack/followers",
"following_url": "https://api.github.com/users/MuppetJack/following{/other_user}",
"gists_url": "https://api.github.com/users/MuppetJack/gists{/gist_id}",
"starred_url": "https://api.github.com/users/MuppetJack/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MuppetJack/subscriptions",
"organizations_url": "https://api.github.com/users/MuppetJack/orgs",
"repos_url": "https://api.github.com/users/MuppetJack/repos",
"events_url": "https://api.github.com/users/MuppetJack/events{/privacy}",
"received_events_url": "https://api.github.com/users/MuppetJack/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 1205765054,
"node_id": "MDU6TGFiZWwxMjA1NzY1MDU0",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/subtype:macOS",
"name": "subtype:macOS",
"color": "b619ea",
"default": false,
"description": "macOS Build/Installation issues"
}
] | closed | false | {
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "sushreebarsa",
"id": 84765720,
"node_id": "MDQ6VXNlcjg0NzY1NzIw",
"avatar_url": "https://avatars.githubusercontent.com/u/84765720?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sushreebarsa",
"html_url": "https://github.com/sushreebarsa",
"followers_url": "https://api.github.com/users/sushreebarsa/followers",
"following_url": "https://api.github.com/users/sushreebarsa/following{/other_user}",
"gists_url": "https://api.github.com/users/sushreebarsa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sushreebarsa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sushreebarsa/subscriptions",
"organizations_url": "https://api.github.com/users/sushreebarsa/orgs",
"repos_url": "https://api.github.com/users/sushreebarsa/repos",
"events_url": "https://api.github.com/users/sushreebarsa/events{/privacy}",
"received_events_url": "https://api.github.com/users/sushreebarsa/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"If you need to use a more recent version of protobuf than the one provided by tensorflow-macos, you can try installing it separately and then setting the **PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION** environment variable to **python** before importing tensorflow.",
"@MuppetJack Thank you for raising an issue!\r\nBefore using protocol buffers on your system, you need to set up the Protocol Buffers compiler or protoc. \r\nFor using the most recent version of protobuf, you may refer to this [link](https://github.com/protocolbuffers/protobuf/releases) and set up the compatible python version in you environment. \r\nThank you!",
"Hi,\r\nThank you for the tips, I will try and update the issue if solved.\r\n\r\nFYI, I separately solved my immediate problem with a branch of the other incompatible library... So no more urgency on that one for me.",
"@MuppetJack Thank you for the response!\r\nCould you please confirm if the issue has been resolved and close the issue?\r\nThank you!",
"Hi, \r\nI also need higher version of Protobuf for onnx package. But tensorflow-macos requires lower version of protobuf. \r\nHow to deal with such problem. I want to install tensorflow and onnx in same python environment.",
"Thank you @pat749! Your solution worked for me.\r\nAs I also solved the incompatibility issue with the other library, I close the issue.\r\n\r\n@gaurav00700, you should try the proposed solutions and reopen if not solved.",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60118\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60118\">No</a>\n"
] | 2023-03-26T13:01:51 | 2023-03-29T14:22:09 | 2023-03-29T14:22:06 | NONE | null | null | null | I am using tensorflow-macos and it is raising an issue with protobuf 4.22 compatibility. I need that more recent version of protobuf for other Python libraries.
| {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60118/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60118/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60117 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60117/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60117/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60117/events | https://github.com/tensorflow/tensorflow/pull/60117 | 1,640,775,074 | PR_kwDOArmXAs5M53lS | 60,117 | 2.11 tflite Android | {
"login": "MuhammadHammadShah",
"id": 115206912,
"node_id": "U_kgDOBt3rAA",
"avatar_url": "https://avatars.githubusercontent.com/u/115206912?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/MuhammadHammadShah",
"html_url": "https://github.com/MuhammadHammadShah",
"followers_url": "https://api.github.com/users/MuhammadHammadShah/followers",
"following_url": "https://api.github.com/users/MuhammadHammadShah/following{/other_user}",
"gists_url": "https://api.github.com/users/MuhammadHammadShah/gists{/gist_id}",
"starred_url": "https://api.github.com/users/MuhammadHammadShah/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MuhammadHammadShah/subscriptions",
"organizations_url": "https://api.github.com/users/MuhammadHammadShah/orgs",
"repos_url": "https://api.github.com/users/MuhammadHammadShah/repos",
"events_url": "https://api.github.com/users/MuhammadHammadShah/events{/privacy}",
"received_events_url": "https://api.github.com/users/MuhammadHammadShah/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1173072136,
"node_id": "MDU6TGFiZWwxMTczMDcyMTM2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/size:XL",
"name": "size:XL",
"color": "adafea",
"default": false,
"description": "CL Change Size:Extra Large"
},
{
"id": 1593512946,
"node_id": "MDU6TGFiZWwxNTkzNTEyOTQ2",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/invalid",
"name": "invalid",
"color": "db6f57",
"default": true,
"description": "Hacktoberfest spam PR"
}
] | closed | true | {
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "gbaned",
"id": 48215717,
"node_id": "MDQ6VXNlcjQ4MjE1NzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/48215717?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gbaned",
"html_url": "https://github.com/gbaned",
"followers_url": "https://api.github.com/users/gbaned/followers",
"following_url": "https://api.github.com/users/gbaned/following{/other_user}",
"gists_url": "https://api.github.com/users/gbaned/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gbaned/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gbaned/subscriptions",
"organizations_url": "https://api.github.com/users/gbaned/orgs",
"repos_url": "https://api.github.com/users/gbaned/repos",
"events_url": "https://api.github.com/users/gbaned/events{/privacy}",
"received_events_url": "https://api.github.com/users/gbaned/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for your pull request! It looks like this may be your first contribution to a Google open source project. Before we can look at your pull request, you'll need to sign a Contributor License Agreement (CLA).\n\nView this [failed invocation](https://github.com/tensorflow/tensorflow/pull/60117/checks?check_run_id=12280349183) of the CLA check for more information.\n\nFor the most up to date status, view the checks section at the bottom of the pull request."
] | 2023-03-26T05:08:37 | 2023-06-15T10:49:54 | 2023-03-26T14:32:47 | NONE | spam | false | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/pulls/60117",
"html_url": "https://github.com/tensorflow/tensorflow/pull/60117",
"diff_url": "https://github.com/tensorflow/tensorflow/pull/60117.diff",
"patch_url": "https://github.com/tensorflow/tensorflow/pull/60117.patch",
"merged_at": null
} | spelling should have to be correct | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60117/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60117/timeline | null | null | true |
https://api.github.com/repos/tensorflow/tensorflow/issues/60116 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60116/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60116/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60116/events | https://github.com/tensorflow/tensorflow/issues/60116 | 1,640,762,468 | I_kwDOArmXAs5hzAxk | 60,116 | TensorFlow Lite Object Detection - Plot training and validation losses | {
"login": "HripsimeS",
"id": 42246765,
"node_id": "MDQ6VXNlcjQyMjQ2NzY1",
"avatar_url": "https://avatars.githubusercontent.com/u/42246765?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/HripsimeS",
"html_url": "https://github.com/HripsimeS",
"followers_url": "https://api.github.com/users/HripsimeS/followers",
"following_url": "https://api.github.com/users/HripsimeS/following{/other_user}",
"gists_url": "https://api.github.com/users/HripsimeS/gists{/gist_id}",
"starred_url": "https://api.github.com/users/HripsimeS/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/HripsimeS/subscriptions",
"organizations_url": "https://api.github.com/users/HripsimeS/orgs",
"repos_url": "https://api.github.com/users/HripsimeS/repos",
"events_url": "https://api.github.com/users/HripsimeS/events{/privacy}",
"received_events_url": "https://api.github.com/users/HripsimeS/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 386191887,
"node_id": "MDU6TGFiZWwzODYxOTE4ODc=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20response",
"name": "stat:awaiting response",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from author"
},
{
"id": 1661751498,
"node_id": "MDU6TGFiZWwxNjYxNzUxNDk4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TFLiteConverter",
"name": "TFLiteConverter",
"color": "bfdadc",
"default": false,
"description": "For issues related to TFLite converter"
}
] | closed | false | {
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "tilakrayal",
"id": 81610181,
"node_id": "MDQ6VXNlcjgxNjEwMTgx",
"avatar_url": "https://avatars.githubusercontent.com/u/81610181?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tilakrayal",
"html_url": "https://github.com/tilakrayal",
"followers_url": "https://api.github.com/users/tilakrayal/followers",
"following_url": "https://api.github.com/users/tilakrayal/following{/other_user}",
"gists_url": "https://api.github.com/users/tilakrayal/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tilakrayal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tilakrayal/subscriptions",
"organizations_url": "https://api.github.com/users/tilakrayal/orgs",
"repos_url": "https://api.github.com/users/tilakrayal/repos",
"events_url": "https://api.github.com/users/tilakrayal/events{/privacy}",
"received_events_url": "https://api.github.com/users/tilakrayal/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"@HripsimeS,\r\nLooks like this is a duplicate of the issue [#60087](https://github.com/tensorflow/tensorflow/issues/60087). Could you please close this issue, since it is already being tracked there? Thank you!\r\n\r\n"
] | 2023-03-26T04:06:41 | 2023-03-27T07:11:50 | 2023-03-27T07:11:50 | NONE | null | null | null | Hello. I am using the following notebook to train my dataset with efficientdet-lite0 model.
https://www.tensorflow.org/lite/models/modify/model_maker/object_detection
I see for each epoch we get the information of training loss "loss" and validation loss "val_loss". I would like to plot them on the same graph if possible, but as 'ObjectDetector' object has no attribute 'history' I can't do it in a classic way **model.history['loss']**
For TensorFlow Lite the model has been build and fit with **object_detector.create()**
Can you help me to figure out how to plot training and validation losses on the same graph in this case. Thanks in advance! | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60116/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60116/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60115 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60115/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60115/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60115/events | https://github.com/tensorflow/tensorflow/issues/60115 | 1,640,701,503 | I_kwDOArmXAs5hyx4_ | 60,115 | Publish Python 3.11 Wheels for `tflite-runtime` | {
"login": "johnthagen",
"id": 10340167,
"node_id": "MDQ6VXNlcjEwMzQwMTY3",
"avatar_url": "https://avatars.githubusercontent.com/u/10340167?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/johnthagen",
"html_url": "https://github.com/johnthagen",
"followers_url": "https://api.github.com/users/johnthagen/followers",
"following_url": "https://api.github.com/users/johnthagen/following{/other_user}",
"gists_url": "https://api.github.com/users/johnthagen/gists{/gist_id}",
"starred_url": "https://api.github.com/users/johnthagen/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/johnthagen/subscriptions",
"organizations_url": "https://api.github.com/users/johnthagen/orgs",
"repos_url": "https://api.github.com/users/johnthagen/repos",
"events_url": "https://api.github.com/users/johnthagen/events{/privacy}",
"received_events_url": "https://api.github.com/users/johnthagen/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 404586594,
"node_id": "MDU6TGFiZWw0MDQ1ODY1OTQ=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/stat:awaiting%20tensorflower",
"name": "stat:awaiting tensorflower",
"color": "f4b400",
"default": false,
"description": "Status - Awaiting response from tensorflower"
},
{
"id": 473173351,
"node_id": "MDU6TGFiZWw0NzMxNzMzNTE=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:build/install",
"name": "type:build/install",
"color": "159b2e",
"default": false,
"description": "Build and install issues"
},
{
"id": 750616506,
"node_id": "MDU6TGFiZWw3NTA2MTY1MDY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:lite",
"name": "comp:lite",
"color": "0052cc",
"default": false,
"description": "TF Lite related issues"
},
{
"id": 5206407904,
"node_id": "LA_kwDOArmXAs8AAAABNlN64A",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.12",
"name": "TF 2.12",
"color": "c5def5",
"default": false,
"description": "For issues related to Tensorflow 2.12"
}
] | closed | false | {
"login": "terryheo",
"id": 2908505,
"node_id": "MDQ6VXNlcjI5MDg1MDU=",
"avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/terryheo",
"html_url": "https://github.com/terryheo",
"followers_url": "https://api.github.com/users/terryheo/followers",
"following_url": "https://api.github.com/users/terryheo/following{/other_user}",
"gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/terryheo/subscriptions",
"organizations_url": "https://api.github.com/users/terryheo/orgs",
"repos_url": "https://api.github.com/users/terryheo/repos",
"events_url": "https://api.github.com/users/terryheo/events{/privacy}",
"received_events_url": "https://api.github.com/users/terryheo/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "terryheo",
"id": 2908505,
"node_id": "MDQ6VXNlcjI5MDg1MDU=",
"avatar_url": "https://avatars.githubusercontent.com/u/2908505?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/terryheo",
"html_url": "https://github.com/terryheo",
"followers_url": "https://api.github.com/users/terryheo/followers",
"following_url": "https://api.github.com/users/terryheo/following{/other_user}",
"gists_url": "https://api.github.com/users/terryheo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/terryheo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/terryheo/subscriptions",
"organizations_url": "https://api.github.com/users/terryheo/orgs",
"repos_url": "https://api.github.com/users/terryheo/repos",
"events_url": "https://api.github.com/users/terryheo/events{/privacy}",
"received_events_url": "https://api.github.com/users/terryheo/received_events",
"type": "User",
"site_admin": false
},
{
"login": "sachinprasadhs",
"id": 73069040,
"node_id": "MDQ6VXNlcjczMDY5MDQw",
"avatar_url": "https://avatars.githubusercontent.com/u/73069040?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sachinprasadhs",
"html_url": "https://github.com/sachinprasadhs",
"followers_url": "https://api.github.com/users/sachinprasadhs/followers",
"following_url": "https://api.github.com/users/sachinprasadhs/following{/other_user}",
"gists_url": "https://api.github.com/users/sachinprasadhs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sachinprasadhs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sachinprasadhs/subscriptions",
"organizations_url": "https://api.github.com/users/sachinprasadhs/orgs",
"repos_url": "https://api.github.com/users/sachinprasadhs/repos",
"events_url": "https://api.github.com/users/sachinprasadhs/events{/privacy}",
"received_events_url": "https://api.github.com/users/sachinprasadhs/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60115\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60115\">No</a>\n",
"`tflite-runtime-nightly` Python 3.11 wheels are available as of\r\n\r\n- [`2.14.0.dev20230612`](https://pypi.org/project/tflite-runtime-nightly/2.14.0.dev20230612/#files)",
"2.14 official version is just released.\r\n\r\nhttps://pypi.org/project/tflite-runtime/2.14.0/#files"
] | 2023-03-25T23:42:07 | 2023-10-03T21:32:23 | 2023-06-12T18:16:31 | NONE | null | null | null | ### System information
- **Have I written custom code (as opposed to using a stock example script
provided in TensorFlow)**: No
- **OS Platform and Distribution (e.g., Linux Ubuntu 16.04)**: Linux x86 & ARM
- **Mobile device (e.g. iPhone 8, Pixel 2, Samsung Galaxy) if the issue
happens on a mobile device**: N/A
- **TensorFlow installed from (source or binary)**: Binary
- **TensorFlow version (use command below)**: N/A
- **Python version**: N/A
- **Bazel version (if compiling from source)**: N/A
- **GCC/Compiler version (if compiling from source)**: N/A
- **CUDA/cuDNN version**: N/A
- **GPU model and memory**: N/A
- **Exact command to reproduce**: N/A
### Describe the problem
[`tensorflow 2.12.0` has published Python 3.11 wheels to PyPI](https://pypi.org/project/tensorflow/2.12.0/#files). The [latest `tflite-runtime-nightly`](https://pypi.org/project/tflite-runtime-nightly/2.13.0.dev20230324/#files) do not have 3.11 wheels.
I request that 3.11 wheels be built and published to PyPI for `tflite-runtime`.
CC @terryheo
### Related Issues
- #58032
- #56137 | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60115/reactions",
"total_count": 3,
"+1": 3,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60115/timeline | null | completed | false |
https://api.github.com/repos/tensorflow/tensorflow/issues/60114 | https://api.github.com/repos/tensorflow/tensorflow | https://api.github.com/repos/tensorflow/tensorflow/issues/60114/labels{/name} | https://api.github.com/repos/tensorflow/tensorflow/issues/60114/comments | https://api.github.com/repos/tensorflow/tensorflow/issues/60114/events | https://github.com/tensorflow/tensorflow/issues/60114 | 1,640,604,324 | I_kwDOArmXAs5hyaKk | 60,114 | LSTMBlockCell validation error | {
"login": "zsoltszakaly",
"id": 61019600,
"node_id": "MDQ6VXNlcjYxMDE5NjAw",
"avatar_url": "https://avatars.githubusercontent.com/u/61019600?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/zsoltszakaly",
"html_url": "https://github.com/zsoltszakaly",
"followers_url": "https://api.github.com/users/zsoltszakaly/followers",
"following_url": "https://api.github.com/users/zsoltszakaly/following{/other_user}",
"gists_url": "https://api.github.com/users/zsoltszakaly/gists{/gist_id}",
"starred_url": "https://api.github.com/users/zsoltszakaly/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zsoltszakaly/subscriptions",
"organizations_url": "https://api.github.com/users/zsoltszakaly/orgs",
"repos_url": "https://api.github.com/users/zsoltszakaly/repos",
"events_url": "https://api.github.com/users/zsoltszakaly/events{/privacy}",
"received_events_url": "https://api.github.com/users/zsoltszakaly/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 284443156,
"node_id": "MDU6TGFiZWwyODQ0NDMxNTY=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:docs-bug",
"name": "type:docs-bug",
"color": "159b2e",
"default": false,
"description": "Document issues"
},
{
"id": 473172988,
"node_id": "MDU6TGFiZWw0NzMxNzI5ODg=",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/type:bug",
"name": "type:bug",
"color": "159b2e",
"default": false,
"description": "Bug"
},
{
"id": 1478826728,
"node_id": "MDU6TGFiZWwxNDc4ODI2NzI4",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/comp:core",
"name": "comp:core",
"color": "024391",
"default": false,
"description": "issues related to core part of tensorflow"
},
{
"id": 3911105852,
"node_id": "LA_kwDOArmXAs7pHr08",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/awaiting%20PR%20merge",
"name": "awaiting PR merge",
"color": "4080bf",
"default": false,
"description": "awaiting PR merge"
},
{
"id": 4829271983,
"node_id": "LA_kwDOArmXAs8AAAABH9jXrw",
"url": "https://api.github.com/repos/tensorflow/tensorflow/labels/TF%202.11",
"name": "TF 2.11",
"color": "46B4D7",
"default": false,
"description": "Issues related to TF 2.11"
}
] | closed | false | {
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "synandi",
"id": 98147397,
"node_id": "U_kgDOBdmcRQ",
"avatar_url": "https://avatars.githubusercontent.com/u/98147397?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/synandi",
"html_url": "https://github.com/synandi",
"followers_url": "https://api.github.com/users/synandi/followers",
"following_url": "https://api.github.com/users/synandi/following{/other_user}",
"gists_url": "https://api.github.com/users/synandi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/synandi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/synandi/subscriptions",
"organizations_url": "https://api.github.com/users/synandi/orgs",
"repos_url": "https://api.github.com/users/synandi/repos",
"events_url": "https://api.github.com/users/synandi/events{/privacy}",
"received_events_url": "https://api.github.com/users/synandi/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hey @zsoltszakaly , \r\n\r\nYep, this is clearly a typo. I have fixed it locally but don't seem to have push access to create a branch. \r\n@synandi @sushreebarsa How do I go about this\r\n",
"Hi @zsoltszakaly,\r\nThank you for reporting the issue! I have raised a PR. The issue will move to closed status once the https://github.com/tensorflow/tensorflow/pull/60138 is merged. \r\n\r\n@mayankagarwals Please refer to [this](https://www.tensorflow.org/community/contribute) on how to contribute to Tensorflow. Thank you!",
"Are you satisfied with the resolution of your issue?\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=Yes&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60114\">Yes</a>\n<a href=\"https://docs.google.com/forms/d/e/1FAIpQLSfaP12TRhd9xSxjXZjcZFNXPGk4kc1-qMdv3gc6bEP90vY1ew/viewform?entry.85265664=No&entry.2137816233=https://github.com/tensorflow/tensorflow/issues/60114\">No</a>\n"
] | 2023-03-25T17:57:46 | 2023-03-30T15:20:56 | 2023-03-30T15:20:53 | NONE | null | null | null | <details><summary>Click to expand!</summary>
### Issue Type
Bug
### Have you reproduced the bug with TF nightly?
Yes
### Source
source
### Tensorflow Version
tf2.11
### Custom Code
Yes
### OS Platform and Distribution
Linux Debian 10
### Mobile device
N/A
### Python version
N/A
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
In tensorflow/tensorflow/core/kernels/rnn/lstm_ops.cc line 441 the error message prints wci_tensor->dims(), but should print wcf_tensor->dims(). In current version a strange message can appear:
wcf_tensor must be rank 1 but is rank 1.
```
### Standalone code to reproduce the issue
```shell
It is clear from the source code, no need to reproduce.
```
### Relevant log output
_No response_</details> | {
"url": "https://api.github.com/repos/tensorflow/tensorflow/issues/60114/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/tensorflow/tensorflow/issues/60114/timeline | null | completed | false |
Subsets and Splits