id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
902
from dataclasses import dataclass, field import string import random from typing import List, Callable SupportTickets = List[SupportTicket] def fifo_ordering(list: SupportTickets) -> SupportTickets: return list.copy()
null
903
from dataclasses import dataclass, field import string import random from typing import List, Callable SupportTickets = List[SupportTicket] def filo_ordering(list: SupportTickets) -> SupportTickets: list_copy = list.copy() list_copy.reverse() return list_copy
null
904
from dataclasses import dataclass, field import string import random from typing import List, Callable SupportTickets = List[SupportTicket] def random_ordering(list: SupportTickets) -> SupportTickets: list_copy = list.copy() random.shuffle(list_copy) return list_copy
null
905
from dataclasses import dataclass, field import string import random from typing import List, Callable SupportTickets = List[SupportTicket] def blackhole_ordering(_: SupportTickets) -> SupportTickets: return []
null
906
import string import random from typing import List from abc import ABC, abstractmethod def generate_id(length=8): # helper function for generating an id return ''.join(random.choices(string.ascii_uppercase, k=length))
null
907
import string import random from typing import List def generate_id(length=8): # helper function for generating an id return ''.join(random.choices(string.ascii_uppercase, k=length))
null
908
import tkinter as tk import uuid import string import random from abc import ABC, abstractmethod def generate_uuid1(): return uuid.uuid1()
null
909
import tkinter as tk import uuid import string import random from abc import ABC, abstractmethod def generate_uuid4(): return uuid.uuid4()
null
910
import tkinter as tk import uuid import string import random from abc import ABC, abstractmethod def generate_simple_id(): return ''.join(random.choices(string.ascii_lowercase, k=30))
null
911
from flask import Flask, jsonify, abort def hello_world(): return 'Hello, World!'
null
913
import sqlite3 def blog_lst_to_json(item): return { 'id': item[0], 'published': item[1], 'title': item[2], 'content': item[3], 'public': bool(item[4]) }
null
914
from flask import Flask, jsonify, abort from db import fetch_blogs, fetch_blog, NotFoundError, NotAuthorizedError def hello_world(): return 'Hello, World!'
null
915
from flask import Flask, jsonify, abort from db import fetch_blogs, fetch_blog, NotFoundError, NotAuthorizedError def fetch_blogs(): pass def all_blogs(): return jsonify(fetch_blogs())
null
916
from flask import Flask, jsonify, abort from db import fetch_blogs, fetch_blog, NotFoundError, NotAuthorizedError def fetch_blog(id: str): class NotFoundError(Exception): class NotAuthorizedError(Exception): def get_blog(id): try: return jsonify(fetch_blog(id)) except NotFoundError: abort(404, description="Resource not found") except NotAuthorizedError: abort(403, description="Access denied")
null
918
from flask import Flask, jsonify, abort from db import fetch_blogs, fetch_blog, NotFoundError, NotAuthorizedError def fetch_blogs(): def all_blogs(): return jsonify(fetch_blogs())
null
920
import logging from functools import wraps logger = create_logger() def create_logger(): # create a logger object logger = logging.getLogger('exc_logger') logger.setLevel(logging.INFO) # create a file to store all the # logged exceptions logfile = logging.FileHandler('exc_logger.log') fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' formatter = logging.Formatter(fmt) logfile.setFormatter(formatter) logger.addHandler(logfile) return logger
null
921
import logging from functools import wraps if __name__ == '__main__': divideByZero() def exception(logger): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except: issue = "exception in "+func.__name__+"\n" issue = issue+"=============\n" logger.exception(issue) raise return wrapper return decorator
null
922
import logging from functools import wraps def divideByZero(): return 12/0
null
923
import time import math from functools import wraps The provided code snippet includes necessary dependencies for implementing the `retry` function. Write a Python function `def retry(ExceptionToCheck, tries=4, delay=3, backoff=2, logger=None)` to solve the following problem: Retry calling the decorated function using an exponential backoff. http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/ original from: http://wiki.python.org/moin/PythonDecoratorLibrary#Retry :param ExceptionToCheck: the exception to check. may be a tuple of exceptions to check :type ExceptionToCheck: Exception or tuple :param tries: number of times to try (not retry) before giving up :type tries: int :param delay: initial delay between retries in seconds :type delay: int :param backoff: backoff multiplier e.g. value of 2 will double the delay each retry :type backoff: int :param logger: logger to use. If None, print :type logger: logging.Logger instance Here is the function: def retry(ExceptionToCheck, tries=4, delay=3, backoff=2, logger=None): """Retry calling the decorated function using an exponential backoff. http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/ original from: http://wiki.python.org/moin/PythonDecoratorLibrary#Retry :param ExceptionToCheck: the exception to check. may be a tuple of exceptions to check :type ExceptionToCheck: Exception or tuple :param tries: number of times to try (not retry) before giving up :type tries: int :param delay: initial delay between retries in seconds :type delay: int :param backoff: backoff multiplier e.g. value of 2 will double the delay each retry :type backoff: int :param logger: logger to use. If None, print :type logger: logging.Logger instance """ def deco_retry(f): @wraps(f) def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return f(*args, **kwargs) except ExceptionToCheck as e: msg = "%s, Retrying in %d seconds..." % (str(e), mdelay) if logger: logger.warning(msg) else: print(msg) time.sleep(mdelay) mtries -= 1 mdelay *= backoff return f(*args, **kwargs) return f_retry # true decorator return deco_retry
Retry calling the decorated function using an exponential backoff. http://www.saltycrane.com/blog/2009/11/trying-out-retry-decorator-python/ original from: http://wiki.python.org/moin/PythonDecoratorLibrary#Retry :param ExceptionToCheck: the exception to check. may be a tuple of exceptions to check :type ExceptionToCheck: Exception or tuple :param tries: number of times to try (not retry) before giving up :type tries: int :param delay: initial delay between retries in seconds :type delay: int :param backoff: backoff multiplier e.g. value of 2 will double the delay each retry :type backoff: int :param logger: logger to use. If None, print :type logger: logging.Logger instance
924
import time import math from functools import wraps def test_fail(text): raise Exception("Fail")
null
925
import sqlite3 from returns.result import Result, safe from returns.pipeline import flow from returns.pointfree import bind def fetch_blog_from_db(blog_id): """Fetches blog from SQLite3 database.""" with SQLite('application.db') as cur: cur.execute(f"SELECT * FROM blogs where id=?", [blog_id]) result = cur.fetchone() if result is None: raise NotFoundError(f'Unable to find blog with id {blog_id}.') return result def blog_to_dict(item) -> 'Blog': """Convert SQLite result to dictionary.""" return { 'id': item[0], 'published': item[1], 'title': item[2], 'content': item[3], 'public': bool(item[4]) } def verify_access(blog) -> 'Blog': """Check that blog is accessible.""" blog_id = blog['id'] blog_public = blog['public'] if not blog_public: raise NotAuthorizedError(f'You are not allowed to access blog with id {blog_id}.') return blog def fetch_blog(blog_id) -> Result['Blog', Exception]: return flow( blog_id, fetch_blog_from_db, bind(blog_to_dict), bind(verify_access) )
null
928
from flask import Flask, jsonify, abort from db import fetch_blogs, fetch_blog, NotFoundError, NotAuthorizedError def fetch_blog(id: str): pass class NotFoundError(Exception): pass class NotAuthorizedError(Exception): pass def get_blog(id): try: return jsonify(fetch_blog(id)) except NotFoundError: abort(404, description="Resource not found") except NotAuthorizedError: abort(403, description="Access denied")
null
932
import sqlite3 class SQLite(): def __init__(self, file='application.db'): self.file=file def __enter__(self): self.conn = sqlite3.connect(self.file) return self.conn.cursor() def __exit__(self, type, value, traceback): print("Closing the connection") self.conn.close() def blog_lst_to_json(item): return { 'id': item[0], 'published': item[1], 'title': item[2], 'content': item[3], 'public': bool(item[4]) } def fetch_blogs(): try: with SQLite('application.db') as cur: # execute the query cur.execute('SELECT * FROM blogs where public=1') # fetch the data and turn into a dict return list(map(blog_lst_to_json, cur.fetchall())) except Exception as e: print(e) return []
null
933
import sqlite3 class SQLite(): def __init__(self, file='application.db'): self.file=file def __enter__(self): self.conn = sqlite3.connect(self.file) return self.conn.cursor() def __exit__(self, type, value, traceback): print("Closing the connection") self.conn.close() class NotFoundError(Exception): pass class NotAuthorizedError(Exception): pass def blog_lst_to_json(item): return { 'id': item[0], 'published': item[1], 'title': item[2], 'content': item[3], 'public': bool(item[4]) } def fetch_blog(id: str): try: with SQLite('application.db') as cur: # execute the query and fetch the data cur.execute(f"SELECT * FROM blogs where id=?", [id]) result = cur.fetchone() # return the result or raise an error if result is None: raise NotFoundError(f'Unable to find blog with id {id}.') data = blog_lst_to_json(result) if not data['public']: raise NotAuthorizedError(f'You are not allowed to access blog with id {id}.') return data except sqlite3.OperationalError: raise NotFoundError(f'Unable to find blog with id {id}.')
null
934
from pydantic import ConfigDict from llmkira.extra.user import CostControl, UserCost from llmkira.middleware.llm_provider import GetAuthDriver from llmkira.sdk import resign_plugin_executor from llmkira.sdk.endpoint import openai from llmkira.sdk.func_calling import verify_openapi_version from loguru import logger from pydantic import BaseModel from llmkira.schema import RawMessage from llmkira.sdk.func_calling import BaseTool, PluginMetadata from llmkira.sdk.func_calling.schema import FuncPair from llmkira.sdk.schema import create_short_task, Function from llmkira.task import Task, TaskHeader from typing import TYPE_CHECKING def search_on_duckduckgo(search_sentence: str, key_words: str = None): logger.debug(f"Plugin --search_on_duckduckgo {search_sentence}") from duckduckgo_search import DDGS # 内存优化抛弃 NLP # from llmkira.sdk.filter import Sublimate sort_text = [] link_refer = {} with DDGS(timeout=20) as ddgs: search_result = ddgs.text(search_sentence) for r in search_result: _title = r.get("title") _href = r.get("href") _body = r.get("body") link_refer[_body] = _href sort_text.append((_body, _title, _href)) # must_key = [key_words] if key_words else None sorted_result = sort_text # sorted_result = Sublimate(sort_text).valuation(match_sentence=search_sentence, match_keywords=must_key) valuable_result = [item[0] for item in sorted_result[:4]] # 构建单条内容 clues = [] for key, item in enumerate(valuable_result): clues.append( f"\nPage #{key}\n🔍Contents:{item}\n" f"🔗Source:{link_refer.get(item, 'https://google.com/')}\n" ) content = "\n".join(clues) return ( "[🔍SearchPage]\n" + content + ( "\n[Page End]" "\n[ReplyFormat:`$summary_answer \n [$index]($source_link) * num` to mark links]" ) )
null
935
from pydantic import field_validator, ConfigDict import re from llmkira.sdk import resign_plugin_executor from llmkira.sdk.func_calling import verify_openapi_version from llmkira.sdk.schema import File, Function from io import BytesIO from math import floor from PIL import Image from loguru import logger from pydantic import BaseModel from llmkira.schema import RawMessage from llmkira.sdk.func_calling import BaseTool from llmkira.sdk.func_calling.schema import FuncPair, PluginMetadata from llmkira.task import Task, TaskHeader from typing import TYPE_CHECKING, Optional async def resize_image(photo): logger.debug(f"Plugin --resize_image") image = Image.open(photo) if (image.width and image.height) < 512: size1 = image.width size2 = image.height if image.width > image.height: scale = 512 / size1 size1new = 512 size2new = size2 * scale else: scale = 512 / size2 size1new = size1 * scale size2new = 512 size1new = floor(size1new) size2new = floor(size2new) size_new = (size1new, size2new) image = image.resize(size_new) else: maxsize = (512, 512) image.thumbnail(maxsize) return image
null
936
from dotenv import load_dotenv from loguru import logger async def aps_start(): logger.success("Receiver Runtime:APS Timer start") SCHEDULER.start() class FunctionReceiver(object): """ receive message from any platform """ def __init__(self): self.task = Task(queue=__receiver__) async def run_pending_task(task: TaskHeader, pending_task: TaskBatch): """ 如果执行异常,必须抛出异常,否则会导致任务无法结束 如果重发认证,不需要结束任务 :param task: 任务 :param pending_task: 待执行的函数 :return: None """ assert isinstance(pending_task, TaskBatch), "pending task type error" chain_func = ChainFunc() # Parse Function Call try: _arg = json.loads(pending_task.get_batch_args()) except json.JSONDecodeError as decode_error: logger.warning("Function Arguments is not json format") await chain_func.reply_user( platform=task.receiver.platform, receiver=task.receiver, task=task, text=f"🔭 Sorry function `{pending_task.get_batch_name()}` " f"arguments is not json format" f"\narguments {pending_task.get_batch_args()}", ) raise decode_error # Get Function Object _tool_cls = ToolRegister().get_tool(name=pending_task.get_batch_name()) if not _tool_cls: logger.warning(f"Not found function {pending_task.get_batch_name()}") await chain_func.reply_user( platform=task.receiver.platform, receiver=task.receiver, task=task, text=f"🔭 Sorry function `{pending_task.get_batch_name()}` executor not found", ) raise ModuleNotFoundError( f"Function {pending_task.get_batch_name()} not found" ) # Run Function _tool_obj = _tool_cls() if _tool_obj.require_auth: if task.task_meta.verify_uuid: # 是携带密钥的函数,是预先构建的可信任务头 task.task_meta.verify_uuid = None else: # 需要认证,预构建携带密钥的待发消息并回退 await chain_func.auth_chain(task=task, task_batch=pending_task) return logger.info( f"[Resign Auth] \n--auth-require {pending_task.get_batch_name()} require." ) # Get Env _env_dict = await EnvManager.from_uid(uid=task.receiver.uid).get_env_list( name_list=_tool_obj.env_list ) assert isinstance(_env_dict, dict), "unexpected env dict? it should be dict..." # Resign Chain if ( task.task_meta.resign_next_step or task.task_meta.is_complete(num_end=1) ) and not _tool_obj.repeatable: logger.debug(f"Function {pending_task.get_batch_name()} need resign chain") await chain_func.resign_chain( task=task, parent_func=pending_task.get_batch_name(), repeatable=_tool_obj.repeatable, deploy_child=_tool_obj.deploy_child, ) # 运行函数, 传递模型的信息,以及上一条的结果的openai raw信息 run_result = await _tool_obj.load( task=task, receiver=task.receiver, arg=_arg, env=_env_dict, pending_task=pending_task, refer_llm_result=task.task_meta.llm_result, ) # 更新任务状态 await task.task_meta.complete_task( task_batch=pending_task, run_result=run_result ) return run_result async def process_function_call(self, message: AbstractIncomingMessage): """ 定位,解析,运行函数。要求认证,或申请结束/继续指标。 :param message: message from queue :return: None """ # Parse Message if os.getenv("LLMBOT_STOP_REPLY") == "1": return None task: TaskHeader = TaskHeader.model_validate_json( json_data=message.body.decode("utf-8") ) # Get Function Call pending_task = await task.task_meta.work_pending_task( verify_uuid=task.task_meta.verify_uuid ) if not pending_task: logger.trace("No Function Call") return None pending_task: TaskBatch logger.debug("Received A Batch FunctionRequest") try: await self.run_pending_task(task=task, pending_task=pending_task) except Exception as e: await task.task_meta.complete_task(task_batch=pending_task, run_result=e) logger.error(f"Function Call Error {e}") raise e finally: logger.trace("Function Call Finished") async def on_message(self, message: AbstractIncomingMessage): """ 处理message :param message: message from queue :return: None """ try: await self.process_function_call(message=message) except Exception as e: logger.exception(f"Function Receiver Error {e}") await message.reject(requeue=False) raise e else: await message.ack(multiple=False) async def function(self): logger.success("Receiver Runtime:Function Fork Cpu start") await self.task.consuming_task(self.on_message) global_cache_runtime: RedisRuntime = RedisRuntime() global_mongodb_runtime: MongodbRuntime = MongodbRuntime() def get_entrypoint_plugins(group="llmkira.extra.plugin") -> Set[str]: import importlib_metadata hook = importlib_metadata.entry_points().select(group=group) plugins = [item.module for item in hook] return {*plugins} class StartSetting(BaseModel): """ 平台列表 """ discord: bool = Field(default=False) kook: bool = Field(default=False) slack: bool = Field(default=False) telegram: bool = Field(default=False) model_config = ConfigDict(from_attributes=True) def from_subdir(cls): _kwargs = {} if SlackSetting.available: _kwargs["slack"] = True if TelegramSetting.available: _kwargs["telegram"] = True if DiscordSetting.available: _kwargs["discord"] = True if KookSetting.available: _kwargs["kook"] = True return cls(**_kwargs) class TelegramReceiver(BaseReceiver): """ receive message from telegram """ async def telegram(self): self.set_core(sender=__sender__, task=Task(queue=__receiver__)) if not BotSetting.available: logger.warning("Receiver Runtime:TelegramBot Setting empty") return None logger.success("Receiver Runtime:TelegramBot start") await self.task.consuming_task(self.on_message) class DiscordReceiver(BaseReceiver): """ receive message from telegram """ async def discord(self): self.set_core(sender=__sender__, task=Task(queue=__receiver__)) if not BotSetting.available: logger.warning("Receiver Runtime:Discord Setting empty") return None await discord_rest.start() __sender__.acquire() try: logger.success("Receiver Runtime:Discord start") await self.task.consuming_task(self.on_message) except KeyboardInterrupt: logger.warning("Discord Receiver shutdown") except Exception as e: logger.exception(e) raise e finally: await discord_rest.close() """ 平台路由 """ class KookReceiver(BaseReceiver): """ receive message from telegram """ async def kook(self): self.set_core(sender=__sender__, task=Task(queue=__receiver__)) if not BotSetting.available: logger.warning("Receiver Runtime:Kook Setting empty") return None try: logger.success("Receiver Runtime:Kook start") await self.task.consuming_task(self.on_message) except KeyboardInterrupt: logger.warning("Kook Receiver shutdown") except Exception as e: logger.exception(e) raise e """ 平台路由 """ class SlackReceiver(BaseReceiver): """ receive message from telegram """ async def slack(self): self.set_core(sender=__sender__, task=Task(queue=__receiver__)) if not BotSetting.available: logger.warning("Receiver Runtime:Slack Setting empty") return None try: logger.success("Receiver Runtime:Slack start") await self.task.consuming_task(self.on_message) except KeyboardInterrupt: logger.warning("Slack Receiver shutdown") except Exception as e: logger.exception(e) raise e def run(): import asyncio from .aps import aps_start from .function import FunctionReceiver from llmkira.sdk.cache import global_cache_runtime, global_mongodb_runtime global_cache_runtime.init_cache(verbose=True) global_mongodb_runtime.init_mongodb(verbose=True) func = [ aps_start(), FunctionReceiver().function(), ] from llmkira.sdk.func_calling import load_plugins, load_from_entrypoint, get_entrypoint_plugins from llmkira.setting import StartSetting start_setting = StartSetting.from_subdir() if start_setting.telegram: from .telegram import TelegramReceiver func.append(TelegramReceiver().telegram()) if start_setting.discord: from .discord import DiscordReceiver func.append(DiscordReceiver().discord()) if start_setting.kook: from .kook import KookReceiver func.append(KookReceiver().kook()) if start_setting.slack: from .slack import SlackReceiver func.append(SlackReceiver().slack()) async def _main(_func): await asyncio.gather( *_func ) # 导入插件 load_plugins("llmkira/extra/plugins") load_from_entrypoint("llmkira.extra.plugin") loaded_message = "\n >>".join(get_entrypoint_plugins()) logger.success(f"\n===========Third Party Plugins Loaded==========\n >>{loaded_message}") loop = asyncio.get_event_loop() loop.run_until_complete(_main(func))
null
937
import re def replace_all(text, pattern, function): poslist = [0] strlist = [] originstr = [] poslist = find_all_index(text, pattern) for i in range(1, len(poslist[:-1]), 2): start, end = poslist[i:i + 2] strlist.append(function(text[start:end])) for i in range(0, len(poslist), 2): j, k = poslist[i:i + 2] originstr.append(text[j:k]) if len(strlist) < len(originstr): strlist.append('') else: originstr.append('') new_list = [item for pair in zip(originstr, strlist) for item in pair] return ''.join(new_list) def escapeshape(text): return '▎*' + text.split()[1] + '*' def escapeminus(text): return '\\' + text def escapebackquote(text): return r'\`\`' def escapeplus(text): return '\\' + text def escape(text, flag=0): # In all other places characters # _ * [ ] ( ) ~ ` > # + - = | { } . ! # must be escaped with the preceding character '\'. if flag: text = re.sub(r"\\\\", '@@@', text) text = re.sub(r"\\", r"\\\\", text) if flag: text = re.sub(r"\@{3}", r"\\\\", text) text = re.sub(r"_", '\_', text) text = re.sub(r"\*{2}(.*?)\*{2}", '@@@\\1@@@', text) text = re.sub(r"\n{1,2}\*\s", '\n\n• ', text) text = re.sub(r"\*", '\*', text) text = re.sub(r"\@{3}(.*?)\@{3}", '*\\1*', text) text = re.sub(r"\!?\[(.*?)\]\((.*?)\)", '@@@\\1@@@^^^\\2^^^', text) text = re.sub(r"\[", '\[', text) text = re.sub(r"\]", '\]', text) text = re.sub(r"\(", '\(', text) text = re.sub(r"\)", '\)', text) text = re.sub(r"\@{3}(.*?)\@{3}\^{3}(.*?)\^{3}", '[\\1](\\2)', text) text = re.sub(r"~", '\~', text) text = re.sub(r">", '\>', text) text = replace_all(text, r"(^#+\s.+?$)|```[\D\d\s]+?```", escapeshape) text = re.sub(r"#", '\#', text) text = replace_all(text, r"(\+)|\n[\s]*-\s|```[\D\d\s]+?```|`[\D\d\s]*?`", escapeplus) text = re.sub(r"\n{1,2}(\s*)-\s", '\n\n\\1• ', text) text = re.sub(r"\n{1,2}(\s*\d{1,2}\.\s)", '\n\n\\1', text) text = replace_all(text, r"(-)|\n[\s]*-\s|```[\D\d\s]+?```|`[\D\d\s]*?`", escapeminus) text = re.sub(r"```([\D\d\s]+?)```", '@@@\\1@@@', text) text = replace_all(text, r"(``)", escapebackquote) text = re.sub(r"\@{3}([\D\d\s]+?)\@{3}", '```\\1```', text) text = re.sub(r"=", '\=', text) text = re.sub(r"\|", '\|', text) text = re.sub(r"{", '\{', text) text = re.sub(r"}", '\}', text) text = re.sub(r"\.", '\.', text) text = re.sub(r"!", '\!', text) return text
null
938
import time from typing import TYPE_CHECKING, Dict, Any from typing import Tuple, List, Union, Optional import hikari import khl import orjson import shortuuid from loguru import logger from pydantic import model_validator, ConfigDict, Field, BaseModel from telebot import types from llmkira.schema import RawMessage from llmkira.sdk.endpoint.schema import LlmResult from llmkira.sdk.schema import File, Function, ToolMessage, FunctionMessage, TaskBatch def orjson_dumps(v, *, default): # orjson.dumps returns bytes, to match standard json.dumps we need to decode return orjson.dumps(v, default=default).decode()
null
939
from . import resign_trigger, Trigger The provided code snippet includes necessary dependencies for implementing the `on_chat_message` function. Write a Python function `async def on_chat_message(message: str, uid: str, **kwargs)` to solve the following problem: :param message: RawMessage :return: Here is the function: async def on_chat_message(message: str, uid: str, **kwargs): """ :param message: RawMessage :return: """ if "<deny>" in message: return True
:param message: RawMessage :return:
940
from abc import abstractmethod, ABC from typing import Any def singleton(cls): _instance = {} def _singleton(*args, **kargs): if cls not in _instance: _instance[cls] = cls(*args, **kargs) return _instance[cls] return _singleton
null
941
import asyncio import hashlib import tempfile from bisect import bisect_left from typing import Coroutine, Dict, List, Optional import aiohttp import ffmpeg import nest_asyncio import shortuuid from loguru import logger from telebot import formatting from telebot.formatting import escape_markdown def dict2message(data: Dict[str, str]) -> List[str]: _res = [] for key, value in data.items(): _res.append("".join([formatting.mitalic(key), escape_markdown("="), f"`{escape_markdown(value)}`"])) return _res
null
942
import asyncio import hashlib import tempfile from bisect import bisect_left from typing import Coroutine, Dict, List, Optional import aiohttp import ffmpeg import nest_asyncio import shortuuid from loguru import logger from telebot import formatting from telebot.formatting import escape_markdown def __ensure_event_loop(): try: asyncio.get_event_loop() except Exception: asyncio.set_event_loop(asyncio.new_event_loop()) The provided code snippet includes necessary dependencies for implementing the `sync` function. Write a Python function `def sync(coroutine: Coroutine)` to solve the following problem: 同步执行异步函数,使用可参考 [同步执行异步代码](https://nemo2011.github.io/bilibili-api/#/sync-executor) Args: coroutine (Coroutine): 异步函数 Returns: 该异步函数的返回值 Here is the function: def sync(coroutine: Coroutine): """ 同步执行异步函数,使用可参考 [同步执行异步代码](https://nemo2011.github.io/bilibili-api/#/sync-executor) Args: coroutine (Coroutine): 异步函数 Returns: 该异步函数的返回值 """ __ensure_event_loop() loop = asyncio.get_event_loop() return loop.run_until_complete(coroutine)
同步执行异步函数,使用可参考 [同步执行异步代码](https://nemo2011.github.io/bilibili-api/#/sync-executor) Args: coroutine (Coroutine): 异步函数 Returns: 该异步函数的返回值
943
import asyncio import hashlib import tempfile from bisect import bisect_left from typing import Coroutine, Dict, List, Optional import aiohttp import ffmpeg import nest_asyncio import shortuuid from loguru import logger from telebot import formatting from telebot.formatting import escape_markdown The provided code snippet includes necessary dependencies for implementing the `sha1_encrypt` function. Write a Python function `def sha1_encrypt(string)` to solve the following problem: sha1加密算法 Here is the function: def sha1_encrypt(string): """ sha1加密算法 """ sha = hashlib.sha1(string.encode('utf-8')) encrypts = sha.hexdigest() return encrypts[:8]
sha1加密算法
944
import asyncio import hashlib import tempfile from bisect import bisect_left from typing import Coroutine, Dict, List, Optional import aiohttp import ffmpeg import nest_asyncio import shortuuid from loguru import logger from telebot import formatting from telebot.formatting import escape_markdown def generate_uid(): return shortuuid.uuid()[0:8].upper()
null
945
import asyncio import hashlib import tempfile from bisect import bisect_left from typing import Coroutine, Dict, List, Optional import aiohttp import ffmpeg import nest_asyncio import shortuuid from loguru import logger from telebot import formatting from telebot.formatting import escape_markdown async def aiohttp_download_file(url, session: aiohttp.ClientSession = None, timeout=None, size_limit=None, headers=None, **kwargs): if not session: session = aiohttp.ClientSession() async with session as session: async with session.get(url, timeout=timeout, headers=headers, **kwargs ) as response: if response.status != 200: raise Exception("无法下载文件") content_length = response.content_length if size_limit and content_length and content_length > size_limit: raise Exception("文件大小超过限制") contents = await response.read() return contents
null
946
import asyncio import hashlib import tempfile from bisect import bisect_left from typing import Coroutine, Dict, List, Optional import aiohttp import ffmpeg import nest_asyncio import shortuuid from loguru import logger from telebot import formatting from telebot.formatting import escape_markdown The provided code snippet includes necessary dependencies for implementing the `prefix_search` function. Write a Python function `def prefix_search(wordlist, prefix)` to solve the following problem: 在有序列表中二分查找前缀 :param wordlist: 有序列表 :param prefix: 前缀 Here is the function: def prefix_search(wordlist, prefix): """ 在有序列表中二分查找前缀 :param wordlist: 有序列表 :param prefix: 前缀 """ try: index = bisect_left(wordlist, prefix) return wordlist[index].startswith(prefix) except IndexError: return False
在有序列表中二分查找前缀 :param wordlist: 有序列表 :param prefix: 前缀
947
from pathlib import Path from types import ModuleType from typing import Optional, Set, Iterable, Union from . import ( _managers, _current_plugin_chain, _module_name_to_plugin_name, path_to_module_name, _find_manager_by_name, get_plugin, ) from .model import PluginManager from .schema import Plugin def load_all_plugins(module_path: Iterable[str], plugin_dir: Iterable[str]) -> Set[Plugin]: """ 导入指定列表中的插件以及指定目录下多个插件,以 `_` 开头的插件不会被导入! :param module_path: 指定插件集合 :param plugin_dir: 指定文件夹路径集合 """ manager = PluginManager(module_path, plugin_dir) _managers.append(manager) return manager.load_all_plugins() class PluginManager: """插件管理器。 参数: plugins: 独立插件模块名集合。 search_path: 插件搜索路径(文件夹)。 """ def __init__( self, plugins: Optional[Iterable[str]] = None, search_path: Optional[Iterable[str]] = None, ): # simple plugin not in search path self.plugins: Set[str] = set(plugins or []) self.search_path: Set[str] = set(search_path or []) # cache plugins self._third_party_plugin_names: Dict[str, str] = {} self._searched_plugin_names: Dict[str, Path] = {} self.prepare_plugins() def __repr__(self) -> str: return f"PluginManager(plugins={self.plugins}, search_path={self.search_path})" def third_party_plugins(self) -> Set[str]: """返回所有独立插件名称。""" return set(self._third_party_plugin_names.keys()) def searched_plugins(self) -> Set[str]: """返回已搜索到的插件名称。""" return set(self._searched_plugin_names.keys()) def available_plugins(self) -> Set[str]: """返回当前插件管理器中可用的插件名称。""" return self.third_party_plugins | self.searched_plugins def _previous_plugins(self) -> Set[str]: _pre_managers: List[PluginManager] if self in _managers: _pre_managers = _managers[: _managers.index(self)] else: _pre_managers = _managers[:] return { *chain.from_iterable(manager.available_plugins for manager in _pre_managers) } def prepare_plugins(self) -> Set[str]: """搜索插件并缓存插件名称。""" # get all previous ready to load plugins previous_plugins = self._previous_plugins() searched_plugins: Dict[str, Path] = {} third_party_plugins: Dict[str, str] = {} # check third party plugins for plugin in self.plugins: name = _module_name_to_plugin_name(plugin) if name in third_party_plugins or name in previous_plugins: raise RuntimeError( f"Plugin already exists: {name}! Check your plugin name" ) third_party_plugins[name] = plugin self._third_party_plugin_names = third_party_plugins # check plugins in search path for module_info in pkgutil.iter_modules(self.search_path): # ignore if startswith "_" if module_info.name.startswith("_"): continue if ( module_info.name in searched_plugins or module_info.name in previous_plugins or module_info.name in third_party_plugins ): raise RuntimeError( f"Plugin already exists: {module_info.name}! Check your plugin name" ) # module_spec = module_info.module_finder.find_spec(module_info.name, None) if not module_spec: continue module_path = module_spec.origin if not module_path: continue searched_plugins[module_info.name] = Path(module_path).resolve() self._searched_plugin_names = searched_plugins return self.available_plugins def load_plugin(self, name: str) -> Optional[Plugin]: """加载指定插件。 对于独立插件,可以使用完整插件模块名或者插件名称。 参数: name: 插件名称。 """ try: if name in self.plugins: module = importlib.import_module(name) elif name in self._third_party_plugin_names: module = importlib.import_module(self._third_party_plugin_names[name]) elif name in self._searched_plugin_names: module = importlib.import_module( path_to_module_name(self._searched_plugin_names[name]) ) else: raise RuntimeError(f"Plugin not found: {name}! Check your plugin name") plugin = getattr(module, "__plugin__", None) if plugin is None or not isinstance(plugin, Plugin): raise RuntimeError( f"Module {module.__name__} is not loaded as a plugin! " "Make sure not to import it before loading." ) logger.opt(colors=True).info( f'✨ Succeeded to load plugin "<y>{escape_tag(plugin.name)}</y>"' + ( f' from "<m>{escape_tag(plugin.module_name)}</m>"' if plugin.module_name != plugin.name else "" ) ) return plugin except Exception as e: logger.opt(colors=True, exception=e).error( f'<r><bg #f5f2f2>Failed to import "{escape_tag(name)}"</bg #f5f2f2></r>' ) def load_all_plugins(self) -> Set[Plugin]: """加载所有可用插件。""" return set( filter(None, (self.load_plugin(name) for name in self.available_plugins)) ) def searched_plugin_names(self): return self._searched_plugin_names class Plugin: """ 机制用途,不由用户实例化 """ name: str """插件索引标识,Bot 使用 文件/文件夹 名称作为标识符""" module: ModuleType """插件模块对象""" module_name: str """点分割模块路径""" manager: "PluginManager" """导入该插件的插件管理器""" parent_plugin: Optional["Plugin"] = None """父插件""" sub_plugins: Set["Plugin"] = field(default_factory=set) """子插件集合""" metadata: Optional[PluginMetadata] = None """插件元信息""" The provided code snippet includes necessary dependencies for implementing the `load_plugins` function. Write a Python function `def load_plugins(*plugin_dir: str) -> Set[Plugin]` to solve the following problem: 导入文件夹下多个插件,以 `_` 开头的插件不会被导入! :param plugin_dir: 文件夹路径 :return: 插件集合 Here is the function: def load_plugins(*plugin_dir: str) -> Set[Plugin]: """ 导入文件夹下多个插件,以 `_` 开头的插件不会被导入! :param plugin_dir: 文件夹路径 :return: 插件集合 """ manager = PluginManager(search_path=plugin_dir) _managers.append(manager) return manager.load_all_plugins()
导入文件夹下多个插件,以 `_` 开头的插件不会被导入! :param plugin_dir: 文件夹路径 :return: 插件集合
948
from pathlib import Path from types import ModuleType from typing import Optional, Set, Iterable, Union from . import ( _managers, _current_plugin_chain, _module_name_to_plugin_name, path_to_module_name, _find_manager_by_name, get_plugin, ) from .model import PluginManager from .schema import Plugin def load_plugin(module_path: Union[str, Path]) -> Optional[Plugin]: """ 加载单个插件,可以是本地插件或是通过 `pip` 安装的插件。 :param module_path: 插件名称 `path.to.your.plugin` 或插件路径 `pathlib.Path(path/to/your/plugin)` :return: 插件 """ module_path = ( path_to_module_name(module_path) if isinstance(module_path, Path) else module_path ) manager = PluginManager([module_path]) _managers.append(manager) return manager.load_plugin(module_path) class Plugin: """ 机制用途,不由用户实例化 """ name: str """插件索引标识,Bot 使用 文件/文件夹 名称作为标识符""" module: ModuleType """插件模块对象""" module_name: str """点分割模块路径""" manager: "PluginManager" """导入该插件的插件管理器""" parent_plugin: Optional["Plugin"] = None """父插件""" sub_plugins: Set["Plugin"] = field(default_factory=set) """子插件集合""" metadata: Optional[PluginMetadata] = None """插件元信息""" The provided code snippet includes necessary dependencies for implementing the `load_builtin_plugin` function. Write a Python function `def load_builtin_plugin(name: str) -> Optional[Plugin]` to solve the following problem: 导入 Bot 内置插件。 :param name: 插件名称 :return: 插件 Here is the function: def load_builtin_plugin(name: str) -> Optional[Plugin]: """导入 Bot 内置插件。 :param name: 插件名称 :return: 插件 """ return load_plugin(f"extra.plugins.{name}")
导入 Bot 内置插件。 :param name: 插件名称 :return: 插件
949
from pathlib import Path from types import ModuleType from typing import Optional, Set, Iterable, Union from . import ( _managers, _current_plugin_chain, _module_name_to_plugin_name, path_to_module_name, _find_manager_by_name, get_plugin, ) from .model import PluginManager from .schema import Plugin def load_all_plugins(module_path: Iterable[str], plugin_dir: Iterable[str]) -> Set[Plugin]: """ 导入指定列表中的插件以及指定目录下多个插件,以 `_` 开头的插件不会被导入! :param module_path: 指定插件集合 :param plugin_dir: 指定文件夹路径集合 """ manager = PluginManager(module_path, plugin_dir) _managers.append(manager) return manager.load_all_plugins() class Plugin: """ 机制用途,不由用户实例化 """ name: str """插件索引标识,Bot 使用 文件/文件夹 名称作为标识符""" module: ModuleType """插件模块对象""" module_name: str """点分割模块路径""" manager: "PluginManager" """导入该插件的插件管理器""" parent_plugin: Optional["Plugin"] = None """父插件""" sub_plugins: Set["Plugin"] = field(default_factory=set) """子插件集合""" metadata: Optional[PluginMetadata] = None """插件元信息""" The provided code snippet includes necessary dependencies for implementing the `load_builtin_plugins` function. Write a Python function `def load_builtin_plugins(*plugins: str) -> Set[Plugin]` to solve the following problem: 导入多个 Bot 内置插件。 :param plugins: 插件名称集合 Here is the function: def load_builtin_plugins(*plugins: str) -> Set[Plugin]: """导入多个 Bot 内置插件。 :param plugins: 插件名称集合 """ return load_all_plugins([f"extra.plugins.{p}" for p in plugins], [])
导入多个 Bot 内置插件。 :param plugins: 插件名称集合
950
from pathlib import Path from types import ModuleType from typing import Optional, Set, Iterable, Union from . import ( _managers, _current_plugin_chain, _module_name_to_plugin_name, path_to_module_name, _find_manager_by_name, get_plugin, ) from .model import PluginManager from .schema import Plugin def load_all_plugins(module_path: Iterable[str], plugin_dir: Iterable[str]) -> Set[Plugin]: """ 导入指定列表中的插件以及指定目录下多个插件,以 `_` 开头的插件不会被导入! :param module_path: 指定插件集合 :param plugin_dir: 指定文件夹路径集合 """ manager = PluginManager(module_path, plugin_dir) _managers.append(manager) return manager.load_all_plugins() class Plugin: """ 机制用途,不由用户实例化 """ name: str """插件索引标识,Bot 使用 文件/文件夹 名称作为标识符""" module: ModuleType """插件模块对象""" module_name: str """点分割模块路径""" manager: "PluginManager" """导入该插件的插件管理器""" parent_plugin: Optional["Plugin"] = None """父插件""" sub_plugins: Set["Plugin"] = field(default_factory=set) """子插件集合""" metadata: Optional[PluginMetadata] = None """插件元信息""" def load_from_entrypoint(group="llmkira.extra.plugin") -> Set[Plugin]: import importlib_metadata hook = importlib_metadata.entry_points().select(group=group) plugins = [item.module for item in hook] return load_all_plugins(plugins, [])
null
951
from pathlib import Path from types import ModuleType from typing import Optional, Set, Iterable, Union from . import ( _managers, _current_plugin_chain, _module_name_to_plugin_name, path_to_module_name, _find_manager_by_name, get_plugin, ) from .model import PluginManager from .schema import Plugin def load_plugin(module_path: Union[str, Path]) -> Optional[Plugin]: """ 加载单个插件,可以是本地插件或是通过 `pip` 安装的插件。 :param module_path: 插件名称 `path.to.your.plugin` 或插件路径 `pathlib.Path(path/to/your/plugin)` :return: 插件 """ module_path = ( path_to_module_name(module_path) if isinstance(module_path, Path) else module_path ) manager = PluginManager([module_path]) _managers.append(manager) return manager.load_plugin(module_path) The provided code snippet includes necessary dependencies for implementing the `require` function. Write a Python function `def require(name: str) -> ModuleType` to solve the following problem: 获取一个插件的导出内容。 如果为 `load_plugins` 文件夹导入的插件,则为文件(夹)名。 :param name: 插件名称 即 {ref}`extra.plugin.model.Plugin.name`。 :exception RuntimeError: 插件无法加载 :return: 插件导出内容 Here is the function: def require(name: str) -> ModuleType: """ 获取一个插件的导出内容。 如果为 `load_plugins` 文件夹导入的插件,则为文件(夹)名。 :param name: 插件名称 即 {ref}`extra.plugin.model.Plugin.name`。 :exception RuntimeError: 插件无法加载 :return: 插件导出内容 """ plugin = get_plugin(_module_name_to_plugin_name(name)) # if plugin not loaded if not plugin: # plugin already declared manager = _find_manager_by_name(name) if manager: plugin = manager.load_plugin(name) # plugin not declared, try to declare and load it else: # clear current plugin chain, ensure plugin loaded in a new context _t = _current_plugin_chain.set(()) try: plugin = load_plugin(name) finally: _current_plugin_chain.reset(_t) if not plugin: raise RuntimeError(f'Cannot load plugin "{name}"!') return plugin.module
获取一个插件的导出内容。 如果为 `load_plugins` 文件夹导入的插件,则为文件(夹)名。 :param name: 插件名称 即 {ref}`extra.plugin.model.Plugin.name`。 :exception RuntimeError: 插件无法加载 :return: 插件导出内容
952
import re The provided code snippet includes necessary dependencies for implementing the `escape_tag` function. Write a Python function `def escape_tag(s: str) -> str` to solve the following problem: 用于记录带颜色日志时转义 `<tag>` 类型特殊标签 参考: [loguru color 标签](https://loguru.readthedocs.io/en/stable/api/logger.html#color) 参数: s: 需要转义的字符串 Here is the function: def escape_tag(s: str) -> str: """用于记录带颜色日志时转义 `<tag>` 类型特殊标签 参考: [loguru color 标签](https://loguru.readthedocs.io/en/stable/api/logger.html#color) 参数: s: 需要转义的字符串 """ return re.sub(r"</?((?:[fb]g\s)?[^<>\s]*)>", r"\\\g<0>", s)
用于记录带颜色日志时转义 `<tag>` 类型特殊标签 参考: [loguru color 标签](https://loguru.readthedocs.io/en/stable/api/logger.html#color) 参数: s: 需要转义的字符串
953
import asyncio import atexit import json from typing import Any import httpx from loguru import logger from .error import RateLimitError, ServiceUnavailableError, AuthenticationError, CheckError def llm_error_handler(code, message: str): if code == 429: raise RateLimitError(message) elif code == 404 and not message: raise ServiceUnavailableError(f"invalid endpoint, {message}") elif code == 500 or code != 401: raise ServiceUnavailableError(message) else: raise AuthenticationError(message) def check_json_response(status_code: int, req_data: dict): """ 检查json响应 """ if req_data.get("object", None) == "error": raise CheckError( f"[CODE]{status_code}:{req_data.get('code', 404)}" ) # 错误消息 if req_data.get("error", None): _error = req_data.get("error", "your endpoint is not a valid endpoint, please check it") if status_code == 404: raise CheckError( f"[Invalid endpoint] {_error}, do you forget to add something like v1/chat/completions?" ) raise CheckError( f"{status_code}:{_error.get('type')}:{_error.get('message')}" ) # 错误消息 if isinstance(req_data.get("message"), str): raise CheckError( f"{status_code}:{req_data.get('message')}" ) if status_code == 404: raise CheckError( f"[Invalid endpoint] no error message return... do you forget to add something like v1/chat/completions?" ) def get_session(proxy: str = ""): global __session_pool loop = asyncio.get_event_loop() session = __session_pool.get(loop, None) if session is None: if proxy: proxies = {"all://": proxy} session = httpx.AsyncClient(timeout=300, proxies=proxies) else: session = httpx.AsyncClient(timeout=300) __session_pool[loop] = session return session class CheckError(Exception): """ Raised when the API is unavailable. """ pass The provided code snippet includes necessary dependencies for implementing the `request` function. Write a Python function `async def request( method: str, url: str, params: dict = None, data: Any = None, headers: dict = None, json_body: bool = False, proxy: str = "", call_func=None, timeout: int = 300, **kwargs, )` to solve the following problem: 请求 :param call_func: 错误回调函数 :param method: :param url: :param params: :param data: :param headers: :param json_body: :param proxy: :param timeout: :param kwargs: 参数 :return: Here is the function: async def request( method: str, url: str, params: dict = None, data: Any = None, headers: dict = None, json_body: bool = False, proxy: str = "", call_func=None, timeout: int = 300, **kwargs, ): """ 请求 :param call_func: 错误回调函数 :param method: :param url: :param params: :param data: :param headers: :param json_body: :param proxy: :param timeout: :param kwargs: 参数 :return: """ if headers is None: headers = {} if params is None: params = {} config = { "method": method.upper(), "url": url, "params": params, "data": data, "headers": headers, } # 更新 config.update(kwargs) if json_body: config["headers"]["Content-Type"] = "application/json" config["data"] = json.dumps(config["data"]).encode() # SSL # config["ssl"] = False # timeout config["timeout"] = timeout # 请求 session = get_session(proxy=proxy) resp = await session.request(**config) # 检查响应头 Content-Length content_length = resp.headers.get("content-length") if content_length and int(content_length) == 0: return None # 检查响应头 Content-Type content_type = resp.headers.get("content-type") if content_type.lower().find("application/json") == -1: logger.error(f"[105232]Server send a invalid response {resp.text}") raise Exception("Server send a invalid response with content-type:{}".format(content_type)) try: req_data: dict = json.loads(resp.text) except json.JSONDecodeError: if resp.status_code != 200: raise Exception(f"[Request {resp.status_code}] Request failed without any error message") raise Exception("Server send a invalid json response") try: check_json_response(resp.status_code, req_data) except CheckError as e: logger.error(e) # Message 格式校验失败 if call_func: call_func(req_data, headers) _status = req_data.get("status", None) llm_error_handler( code=_status, message=f"{resp.status_code}:{req_data.get('message')}" ) except Exception as e: raise e return req_data
请求 :param call_func: 错误回调函数 :param method: :param url: :param params: :param data: :param headers: :param json_body: :param proxy: :param timeout: :param kwargs: 参数 :return:
954
import asyncio import atexit import json from typing import Any import httpx from loguru import logger from .error import RateLimitError, ServiceUnavailableError, AuthenticationError, CheckError __session_pool = {} The provided code snippet includes necessary dependencies for implementing the `__clean` function. Write a Python function `def __clean()` to solve the following problem: 程序退出清理操作。 Here is the function: def __clean(): """ 程序退出清理操作。 """ try: loop = asyncio.get_event_loop() except RuntimeError: return async def __clean_task(): await __session_pool[loop].close() if loop.is_closed(): loop.run_until_complete(__clean_task()) else: loop.create_task(__clean_task())
程序退出清理操作。
955
from __future__ import annotations from typing import ( TYPE_CHECKING, Any, ) from urllib.parse import urlparse from redis import RedisCluster from loguru import logger def _redis_sentinel_client(redis_url: str, **kwargs: Any) -> RedisType: """helper method to parse an (un-official) redis+sentinel url and create a Sentinel connection to fetch the final redis client connection to a replica-master for read-write operations. If username and/or password for authentication is given the same credentials are used for the Redis Sentinel as well as Redis Server. With this implementation using a redis url only it is not possible to use different data for authentication on booth systems. """ import redis parsed_url = urlparse(redis_url) # sentinel needs list with (host, port) tuple, use default port if none available sentinel_list = [(parsed_url.hostname or "localhost", parsed_url.port or 26379)] if parsed_url.path: # "/mymaster/0" first part is service name, optional second part is db number path_parts = parsed_url.path.split("/") service_name = path_parts[1] or "mymaster" if len(path_parts) > 2: kwargs["db"] = path_parts[2] else: service_name = "mymaster" sentinel_args = {} if parsed_url.password: sentinel_args["password"] = parsed_url.password kwargs["password"] = parsed_url.password if parsed_url.username: sentinel_args["username"] = parsed_url.username kwargs["username"] = parsed_url.username # check for all SSL related properties and copy them into sentinel_kwargs too, # add client_name also for arg in kwargs: if arg.startswith("ssl") or arg == "client_name": sentinel_args[arg] = kwargs[arg] # sentinel user/pass is part of sentinel_kwargs, user/pass for redis server # connection as direct parameter in kwargs sentinel_client = redis.sentinel.Sentinel( sentinel_list, sentinel_kwargs=sentinel_args, **kwargs ) # redis server might have password but not sentinel - fetch this error and try # again without pass, everything else cannot be handled here -> user needed try: sentinel_client.execute_command("ping") except redis.exceptions.AuthenticationError as ae: if "no password is set" in ae.args[0]: logger.warning( "Redis sentinel connection configured with password but Sentinel \ answered NO PASSWORD NEEDED - Please check Sentinel configuration" ) sentinel_client = redis.sentinel.Sentinel(sentinel_list, **kwargs) else: raise ae return sentinel_client.master_for(service_name) def _check_for_cluster(redis_client: RedisType) -> bool: import redis try: cluster_info = redis_client.info("cluster") return cluster_info["cluster_enabled"] == 1 except redis.exceptions.RedisError: return False def _redis_cluster_client(redis_url: str, **kwargs: Any) -> RedisCluster: from redis.cluster import RedisCluster return RedisCluster.from_url(redis_url, **kwargs) The provided code snippet includes necessary dependencies for implementing the `get_client` function. Write a Python function `def get_client(redis_url: str, **kwargs: Any) -> RedisType` to solve the following problem: Get a redis client from the connection url given. This helper accepts urls for Redis server (TCP with/without TLS or UnixSocket) as well as Redis Sentinel connections. Redis Cluster is not supported. Before creating a connection the existence of the database driver is checked an and ValueError raised otherwise To use, you should have the ``redis`` python package installed. Example: .. code-block:: python from langchain.utilities.redis import get_client redis_client = get_client( redis_url="redis://username:password@localhost:6379" index_name="my-index", embedding_function=embeddings.embed_query, ) To use a redis replication setup with multiple redis server and redis sentinels set "redis_url" to "redis+sentinel://" scheme. With this url format a path is needed holding the name of the redis service within the sentinels to get the correct redis server connection. The default service name is "mymaster". The optional second part of the path is the redis db number to connect to. An optional username or password is used for booth connections to the rediserver and the sentinel, different passwords for server and sentinel are not supported. And as another constraint only one sentinel instance can be given: Example: .. code-block:: python from langchain.utilities.redis import get_client redis_client = get_client( redis_url="redis+sentinel://username:password@sentinelhost:26379/mymaster/0" index_name="my-index", embedding_function=embeddings.embed_query, ) Here is the function: def get_client(redis_url: str, **kwargs: Any) -> RedisType: """Get a redis client from the connection url given. This helper accepts urls for Redis server (TCP with/without TLS or UnixSocket) as well as Redis Sentinel connections. Redis Cluster is not supported. Before creating a connection the existence of the database driver is checked an and ValueError raised otherwise To use, you should have the ``redis`` python package installed. Example: .. code-block:: python from langchain.utilities.redis import get_client redis_client = get_client( redis_url="redis://username:password@localhost:6379" index_name="my-index", embedding_function=embeddings.embed_query, ) To use a redis replication setup with multiple redis server and redis sentinels set "redis_url" to "redis+sentinel://" scheme. With this url format a path is needed holding the name of the redis service within the sentinels to get the correct redis server connection. The default service name is "mymaster". The optional second part of the path is the redis db number to connect to. An optional username or password is used for booth connections to the rediserver and the sentinel, different passwords for server and sentinel are not supported. And as another constraint only one sentinel instance can be given: Example: .. code-block:: python from langchain.utilities.redis import get_client redis_client = get_client( redis_url="redis+sentinel://username:password@sentinelhost:26379/mymaster/0" index_name="my-index", embedding_function=embeddings.embed_query, ) """ # Initialize with necessary components. try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis>=4.1.0`." ) # check if normal redis:// or redis+sentinel:// url if redis_url.startswith("redis+sentinel"): redis_client = _redis_sentinel_client(redis_url, **kwargs) elif redis_url.startswith("rediss+sentinel"): # sentinel with TLS support enables kwargs["ssl"] = True if "ssl_cert_reqs" not in kwargs: kwargs["ssl_cert_reqs"] = "none" redis_client = _redis_sentinel_client(redis_url, **kwargs) else: # connect to redis server from url, reconnect with cluster client if needed redis_client = redis.from_url(redis_url, **kwargs) if _check_for_cluster(redis_client): redis_client.close() redis_client = _redis_cluster_client(redis_url, **kwargs) return redis_client
Get a redis client from the connection url given. This helper accepts urls for Redis server (TCP with/without TLS or UnixSocket) as well as Redis Sentinel connections. Redis Cluster is not supported. Before creating a connection the existence of the database driver is checked an and ValueError raised otherwise To use, you should have the ``redis`` python package installed. Example: .. code-block:: python from langchain.utilities.redis import get_client redis_client = get_client( redis_url="redis://username:password@localhost:6379" index_name="my-index", embedding_function=embeddings.embed_query, ) To use a redis replication setup with multiple redis server and redis sentinels set "redis_url" to "redis+sentinel://" scheme. With this url format a path is needed holding the name of the redis service within the sentinels to get the correct redis server connection. The default service name is "mymaster". The optional second part of the path is the redis db number to connect to. An optional username or password is used for booth connections to the rediserver and the sentinel, different passwords for server and sentinel are not supported. And as another constraint only one sentinel instance can be given: Example: .. code-block:: python from langchain.utilities.redis import get_client redis_client = get_client( redis_url="redis+sentinel://username:password@sentinelhost:26379/mymaster/0" index_name="my-index", embedding_function=embeddings.embed_query, )
956
import json from typing import TYPE_CHECKING from typing import Union, List, Type import tiktoken from loguru import logger from pydantic import BaseModel def _pydantic_type(_message): if isinstance(_message, BaseModel): return _message.model_dump() return _message
null
957
import json from typing import TYPE_CHECKING from typing import Union, List, Type import tiktoken from loguru import logger from pydantic import BaseModel class BaseTokenizer(object): def num_tokens_from_messages( self, messages: List[Union[dict, BaseModel, Type[BaseModel]]], model: str ) -> int: """Return the number of tokens used by a list of messages_box.""" raise NotImplementedError class OpenaiTokenizer(BaseTokenizer): def num_tokens_from_messages( self, messages: List[Union[dict, BaseModel, Type[BaseModel]]], model: str ) -> int: """Return the number of tokens used by a list of messages_box.""" if hasattr(messages, "request_final"): messages: "Message" messages = messages.request_final(schema_model=model) messages: List[dict] = [_pydantic_type(message) for message in messages] try: encoding = tiktoken.encoding_for_model(model) except KeyError: print("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model in { "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-4-0314", "gpt-4-32k-0314", "gpt-4-0613", "gpt-4-32k-0613", }: tokens_per_message = 3 tokens_per_name = 1 elif model == "gpt-3.5-turbo-0301": tokens_per_message = ( 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n ) tokens_per_name = -1 # if there's a name, the role is omitted elif "gpt-3.5-turbo" in model: print( "Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613." ) return self.num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613") elif "gpt-4" in model: print( "Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613." ) return self.num_tokens_from_messages(messages, model="gpt-4-0613") else: tokens_per_message = ( 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n ) tokens_per_name = 1 # if there's a name, the role is omitted logger.warning( f"""num_tokens_from_messages() is not implemented for model {model}.""" """:) If you use a no-openai model, """ """you can [one-api](https://github.com/songquanpeng/one-api) project handle token usage.""" """or issue https://github.com/LlmKira/Openaibot/issues to request support.""" ) num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): if isinstance(value, dict): value = json.dumps(value, ensure_ascii=False) if isinstance(value, list): value = json.dumps(value, ensure_ascii=False) if value is None: continue _tokens = len(encoding.encode(value)) num_tokens += _tokens if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens def get_tokenizer(model_name: str) -> BaseTokenizer: if model_name.startswith("gpt"): return OpenaiTokenizer() elif model_name.startswith("."): raise NotImplementedError( f"sdk.endpoint.get_tokenizer() is not implemented for model {model_name}." ) else: logger.warning( f"sdk.endpoint.get_tokenizer() is not implemented for model {model_name}.\n " f"Using default tokenizer.[cl100k]" ) return OpenaiTokenizer()
null
958
import hashlib import os from typing import Optional from typing import TYPE_CHECKING from pydantic import field_validator, Field from pydantic_settings import BaseSettings, SettingsConfigDict from ..error import ValidationError The provided code snippet includes necessary dependencies for implementing the `sha1_encrypt` function. Write a Python function `def sha1_encrypt(string)` to solve the following problem: sha1加密算法 Here is the function: def sha1_encrypt(string): """ sha1加密算法 """ sha = hashlib.sha1(string.encode('utf-8')) encrypts = sha.hexdigest() return encrypts[:8]
sha1加密算法
959
import base64 import hashlib import pickle import time from abc import abstractmethod, ABC from io import BytesIO from typing import Literal, Optional, List, Type, Union from typing import TYPE_CHECKING import aiohttp import shortuuid from docstring_parser import parse from loguru import logger from pydantic import model_validator, BaseModel, Field, ConfigDict from .cache import global_cache_runtime from .error import ValidationError, CheckError from .utils import sync, aiohttp_download_file def generate_uid(): return shortuuid.uuid()[0:8].upper()
null
960
import base64 import hashlib import pickle import time from abc import abstractmethod, ABC from io import BytesIO from typing import Literal, Optional, List, Type, Union from typing import TYPE_CHECKING import aiohttp import shortuuid from docstring_parser import parse from loguru import logger from pydantic import model_validator, BaseModel, Field, ConfigDict from .cache import global_cache_runtime from .error import ValidationError, CheckError from .utils import sync, aiohttp_download_file class SystemMessage(Message): role: str = Field(default="system") content: str name: Optional[str] = Field( default=None, description="speaker_name", pattern=r"^[a-zA-Z0-9_]+$" ) def request_final( self, *, schema_model: str, ) -> "Message": return self class UserMessage(Message): role: str = Field(default="user") content: Union[str, List["ContentParts"], List[dict]] name: Optional[str] = Field( default=None, description="speaker_name", pattern=r"^[a-zA-Z0-9_]+$" ) def fold(self) -> "Message": """ 折叠过长特殊类型消息。消息类型为程序自有属性 插件定义 fold_id 引诱查询 :return: Message """ metadata_str = ( f"""[FoldText](fold_id={self._meta.index_id}""" f"""\ntimestamp={self._meta.datatime}""" f"""\ndescription={self.content[:20] + "..."})""" ) return self.model_copy(update={"content": metadata_str}, deep=True) def request_final( self, *, schema_model: str, ) -> "Message": """ Openai 请求标准格式最终转换根据 message_class 元信息锁定字段 :param schema_model: 适配的模型 """ if "vision" in schema_model: _new_content: List[ContentParts] = [] if isinstance(self.content, str): _new_content.append( ContentParts.model_validate({"type": "text", "text": self.content}) ) if self.get_meta(): if self.get_meta().files: logger.debug(f"vision model: {self._meta.files}") for file in self.get_meta().files: file: File if file.file_url: _new_content.append( ContentParts( type="image_url", image_url=ContentParts.Image(url=file.file_url), ) ) elif file.file_id: if file.file_name.endswith( ("jpg", "png", "jpeg", "gif", "webp", "svg") ): data: File.Data = sync(file.raw_file()) base64_image = base64.b64encode( data.file_data ).decode("utf-8") _new_content.append( ContentParts( type="image_url", image_url=ContentParts.Image( url=f"data:image/png;base64,{base64_image}" ), ) ) else: pass self.content = _new_content return self The provided code snippet includes necessary dependencies for implementing the `create_short_task` function. Write a Python function `def create_short_task(task_desc, refer, role: str = None)` to solve the following problem: 创建单任务模板 Here is the function: def create_short_task(task_desc, refer, role: str = None): """ 创建单任务模板 """ if not role: role = ( "[RULE]" "Please complete the order according to the task description refer to given information, " "if can't complete, please reply 'give up'" ) return [ SystemMessage( role="system", content=role, ), UserMessage( role="user", content=f"{refer} <hint>{task_desc}<hint>", name="task" ), ]
创建单任务模板
961
import base64 import hashlib import pickle import time from abc import abstractmethod, ABC from io import BytesIO from typing import Literal, Optional, List, Type, Union from typing import TYPE_CHECKING import aiohttp import shortuuid from docstring_parser import parse from loguru import logger from pydantic import model_validator, BaseModel, Field, ConfigDict from .cache import global_cache_runtime from .error import ValidationError, CheckError from .utils import sync, aiohttp_download_file class SystemMessage(Message): role: str = Field(default="system") content: str name: Optional[str] = Field( default=None, description="speaker_name", pattern=r"^[a-zA-Z0-9_]+$" ) def request_final( self, *, schema_model: str, ) -> "Message": return self class UserMessage(Message): role: str = Field(default="user") content: Union[str, List["ContentParts"], List[dict]] name: Optional[str] = Field( default=None, description="speaker_name", pattern=r"^[a-zA-Z0-9_]+$" ) def fold(self) -> "Message": """ 折叠过长特殊类型消息。消息类型为程序自有属性 插件定义 fold_id 引诱查询 :return: Message """ metadata_str = ( f"""[FoldText](fold_id={self._meta.index_id}""" f"""\ntimestamp={self._meta.datatime}""" f"""\ndescription={self.content[:20] + "..."})""" ) return self.model_copy(update={"content": metadata_str}, deep=True) def request_final( self, *, schema_model: str, ) -> "Message": """ Openai 请求标准格式最终转换根据 message_class 元信息锁定字段 :param schema_model: 适配的模型 """ if "vision" in schema_model: _new_content: List[ContentParts] = [] if isinstance(self.content, str): _new_content.append( ContentParts.model_validate({"type": "text", "text": self.content}) ) if self.get_meta(): if self.get_meta().files: logger.debug(f"vision model: {self._meta.files}") for file in self.get_meta().files: file: File if file.file_url: _new_content.append( ContentParts( type="image_url", image_url=ContentParts.Image(url=file.file_url), ) ) elif file.file_id: if file.file_name.endswith( ("jpg", "png", "jpeg", "gif", "webp", "svg") ): data: File.Data = sync(file.raw_file()) base64_image = base64.b64encode( data.file_data ).decode("utf-8") _new_content.append( ContentParts( type="image_url", image_url=ContentParts.Image( url=f"data:image/png;base64,{base64_image}" ), ) ) else: pass self.content = _new_content return self class AssistantMessage(Message): role: str = Field(default="assistant") content: Union[None, str] = Field(default="", description="assistant content") name: Optional[str] = Field( default=None, description="speaker_name", pattern=r"^[a-zA-Z0-9_]+$" ) tool_calls: Optional[List[ToolCallCompletion]] = Field( default=None, description="tool calls" ) """a array of tools, for result""" function_call: Optional[FunctionCallCompletion] = Field( default=None, description="Deprecated" ) """Deprecated by openai ,for result""" def deprecate_validator(self): if self.tool_calls and self.function_call: raise ValidationError( "sdk param validator:tool_calls and function_call cannot both be provided" ) if self.function_call: logger.warning("sdk param validator:function_call is deprecated") if self.content is None: self.content = "" return self def get_executor_batch(self) -> List[TaskBatch]: """ 获取插件获取对应的无序函数列表,合并新旧标准 """ _calls = [] if self.function_call: _calls.append(TaskBatch.from_function_call(self.function_call)) _calls.extend([TaskBatch.from_tool_call(tools) for tools in self.tool_calls]) # 去None _calls = [_x for _x in _calls if _x] return _calls def sign_function(self) -> bool: """ 判断是否有函数需要执行 """ if self.function_call: return True if self.tool_calls: for tol in self.tool_calls: if tol.function: return True return False def request_final( self, *, schema_model: str, ) -> "Message": return self class ToolMessage(Message): role: str = Field(default="tool") content: str tool_call_id: str def request_final( self, *, schema_model: str, ) -> "Message": return self class FunctionMessage(Message): role: str = Field(default="function") content: str name: str def function_validator(self): logger.warning("Function Message is deprecated by openai") if self.role == "function" and not self.name: raise ValidationError( "sdk param validator:name must be specified when role is function" ) return self def request_final( self, *, schema_model: str, ) -> "Message": """ Openai 请求标准格式最终转换根据 message_class 元信息锁定字段 :param schema_model: 适配的模型 """ return self class CheckError(Exception): """ Raised when the API is unavailable. """ pass The provided code snippet includes necessary dependencies for implementing the `parse_message_dict` function. Write a Python function `def parse_message_dict(item: dict)` to solve the following problem: 将 dict 实例化,用错误hook覆盖 Here is the function: def parse_message_dict(item: dict): """ 将 dict 实例化,用错误hook覆盖 """ role = item.get("role", None) if not role: return None try: if role == "assistant": _message = AssistantMessage.model_validate(item) elif role == "user": _message = UserMessage.model_validate(item) elif role == "system": _message = SystemMessage.model_validate(item) elif role == "tool": _message = ToolMessage.model_validate(item) elif role == "function": _message = FunctionMessage.model_validate(item) else: raise CheckError(f"unknown message type {role}") except Exception as e: logger.exception( f"[ParseError]\nparse_message_dict:Unknown message type in redis data:\n{e}" ) return None else: return _message
将 dict 实例化,用错误hook覆盖
962
import base64 import hashlib import pickle import time from abc import abstractmethod, ABC from io import BytesIO from typing import Literal, Optional, List, Type, Union from typing import TYPE_CHECKING import aiohttp import shortuuid from docstring_parser import parse from loguru import logger from pydantic import model_validator, BaseModel, Field, ConfigDict from .cache import global_cache_runtime from .error import ValidationError, CheckError from .utils import sync, aiohttp_download_file class Message(BaseModel, ABC): """ 请求体 响应体 """ class Meta(BaseModel): # message_class: Literal[None, "system", "user", "assistant", "tool", "function"] = Field(default="user") index_id: str = Field(default_factory=generate_uid, description="消息ID") """消息ID""" datatime: str = Field( default=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), description="消息时间", ) timestamp: int = Field(default=int(time.time()), description="消息时间戳") """消息时间""" retrieval: bool = Field(default=False, description="是否可检索") """是否折叠(对抗过长消息,为小上下文模型设计),同时证明我们可以在消息嵌入重整策略""" extra: dict = Field(default_factory=dict, description="额外信息") """额外信息""" files: List["File"] = Field(default_factory=list, description="文件信息") """文件信息""" def default(cls, message_class): return cls(message_class=message_class) _meta: Optional["Meta"] = None """元数据""" role: str content: Union[str, List[ContentParts], List[dict]] def get_meta(self) -> Meta: return self._meta def update_meta(self, meta: "Meta") -> "Message": self._meta = meta return self def fold(self) -> "Message": return self def get_functions(self) -> List["TaskBatch"]: raise NotImplementedError def request_final( self, schema_model: str, ) -> "Message": """ Openai 请求标准格式最终转换根据 message_class 元信息锁定字段 :param schema_model: 适配的模型 """ raise NotImplementedError The provided code snippet includes necessary dependencies for implementing the `standardise_for_request` function. Write a Python function `def standardise_for_request(*, message: "Message", schema_model: str) -> "Message"` to solve the following problem: 标准化转换,供请求使用 Here is the function: def standardise_for_request(*, message: "Message", schema_model: str) -> "Message": """ 标准化转换,供请求使用 """ if isinstance(message, dict): message = Message.model_validate(message) if hasattr(message, "message"): return message.request_final(schema_model=schema_model) else: return message
标准化转换,供请求使用
963
import base64 import hashlib import pickle import time from abc import abstractmethod, ABC from io import BytesIO from typing import Literal, Optional, List, Type, Union from typing import TYPE_CHECKING import aiohttp import shortuuid from docstring_parser import parse from loguru import logger from pydantic import model_validator, BaseModel, Field, ConfigDict from .cache import global_cache_runtime from .error import ValidationError, CheckError from .utils import sync, aiohttp_download_file def generate_short_md5( data: Union[bytes, str, BytesIO], *, length: int = 8, upper: bool = True, ): assert 0 < length <= 32, "length must be less than 32" # 计算 MD5 哈希值 md5_hash = hashlib.md5() if isinstance(data, bytes) or isinstance(data, BytesIO): if isinstance(data, BytesIO): data = data.getvalue() with BytesIO(data) as file: for chunk in iter(lambda: file.read(4096), b""): md5_hash.update(chunk) if isinstance(data, str): md5_hash.update(data.encode("utf-8")) # 获取哈希值的 16 进制表示 hex_digest = md5_hash.hexdigest() # 生成唯一的短ID short_id = str(hex_digest[:length]) if upper: short_id = short_id.upper() return short_id
null
964
import cjieba The provided code snippet includes necessary dependencies for implementing the `cut_words_weights` function. Write a Python function `def cut_words_weights(content)` to solve the following problem: 根据jieba分词,提取关键词及其权重 :param content: :return: Here is the function: def cut_words_weights(content): """ 根据jieba分词,提取关键词及其权重 :param content: :return: """ # jieba提取关键词及其权重 # 设置停用词 # jieba.analyse.set_stop_words('path_of_stopwords') # tags = jieba.analyse.extract_tags(content, topK=20, withWeight=True) tags = cjieba.extract(text=content, top_k=20, with_weight=True) tags = [(keyword, int(weight * 10)) for keyword, weight in tags] return tags
根据jieba分词,提取关键词及其权重 :param content: :return:
965
import cjieba The provided code snippet includes necessary dependencies for implementing the `hash_keyword_add_weight` function. Write a Python function `def hash_keyword_add_weight(keyword_weight, len_hash=64)` to solve the following problem: 对关键词进行hash, 然后加权 :param keyword_weight: :param len_hash: :return: Here is the function: def hash_keyword_add_weight(keyword_weight, len_hash=64): """ 对关键词进行hash, 然后加权 :param keyword_weight: :param len_hash: :return: """ # 关键词hash keyword_weight = [(bin(hash(keyword)).replace("0b", "").replace("-", "").zfill(len_hash)[-1 * len_hash:], weight) for keyword, weight in keyword_weight] # 加权 add_weight = [0] * len_hash for keyword, weight in keyword_weight: for i in range(len_hash): if keyword[i] == "1": add_weight[i] += weight else: add_weight[i] += -1 * weight result = "" for _ in add_weight: if _ >= 0: result += "1" else: result += "0" return result
对关键词进行hash, 然后加权 :param keyword_weight: :param len_hash: :return:
966
import cjieba The provided code snippet includes necessary dependencies for implementing the `cal_hamming_distance` function. Write a Python function `def cal_hamming_distance(hash_file1, hash_file2)` to solve the following problem: 计算两篇文章的海明距离 :param hash_file1: :param hash_file2: :return: Here is the function: def cal_hamming_distance(hash_file1, hash_file2): """ 计算两篇文章的海明距离 :param hash_file1: :param hash_file2: :return: """ hamming_dis = 0 for i in range(len(hash_file1)): if hash_file1[i] != hash_file2[i]: hamming_dis += 1 # print("海明距离:", hamming_dis) return hamming_dis
计算两篇文章的海明距离 :param hash_file1: :param hash_file2: :return:
967
def singleton(cls): _instance = {} def _singleton(*args, **kargs): if cls not in _instance: _instance[cls] = cls(*args, **kargs) return _instance[cls] return _singleton
null
968
import cjieba from ..solo import singleton from ..summarization import STOPWORDS The provided code snippet includes necessary dependencies for implementing the `load_stopwords` function. Write a Python function `def load_stopwords(stopwords_path)` to solve the following problem: 加载停用词词典 :param stopwords_path: :return: Here is the function: def load_stopwords(stopwords_path): """ 加载停用词词典 :param stopwords_path: :return: """ with open(stopwords_path, encoding='utf-8') as f: return [line.strip() for line in f]
加载停用词词典 :param stopwords_path: :return:
969
import cjieba from ..solo import singleton from ..summarization import STOPWORDS def split_doc(doc): separators = ['。', '!', '!', '?', '?'] for sep in separators: doc = doc.replace(sep, sep + '##') sentences = doc.split('##') return sentences[:-1]
null
970
import cjieba from ..solo import singleton from ..summarization import STOPWORDS def calculate_sentence_score(sentence, stopwords): # jieba_ret = jieba.analyse.extract_tags(sentence, topK=100, withWeight=True) # , allowPOS=('ns', 'n', 'vn', 'v')) jieba_ret = cjieba.extract(sentence, top_k=100, with_weight=True) sentence_score = 0 for word, score in jieba_ret: if word not in stopwords: sentence_score += score return sentence_score
null
971
import cjieba import numpy as np from nltk.cluster.util import cosine_distance from ..solo import singleton from ..summarization import STOPWORDS as STOPWORDS_PATH def load_stopwords(file_path): with open(file_path, encoding='utf-8') as f: return [line.strip() for line in f]
null
972
import cjieba import numpy as np from nltk.cluster.util import cosine_distance from ..solo import singleton from ..summarization import STOPWORDS as STOPWORDS_PATH MIN_SEQ_LEN = 0 def split_doc(doc, stopwords=None): if not stopwords: stopwords = [] sentences = [] cut_sentences = [] origin_sentences = [] while len(doc) > 0: for i in range(len(doc)): if doc[i] in ['。', '!', '?', '?']: sentences.append(doc[:i + 1]) doc = doc[i + 1:] break for sent in sentences: if len(sent) > MIN_SEQ_LEN: cut_sentences.append([word for word in cjieba.cut(sent) if word not in stopwords]) origin_sentences.append(sent) return origin_sentences, cut_sentences
null
973
import cjieba import numpy as np from nltk.cluster.util import cosine_distance from ..solo import singleton from ..summarization import STOPWORDS as STOPWORDS_PATH def sentence_similarity(sent1, sent2): """ 计算两个句子之间的相似性 :param sent1: :param sent2: :return: """ all_words = list(set(sent1 + sent2)) vector1 = [0] * len(all_words) vector2 = [0] * len(all_words) for word in sent1: vector1[all_words.index(word)] += 1 for word in sent2: vector2[all_words.index(word)] += 1 # cosine_distance 越大越不相似 return 1 - cosine_distance(vector1, vector2) The provided code snippet includes necessary dependencies for implementing the `build_similarity_matrix` function. Write a Python function `def build_similarity_matrix(sentences)` to solve the following problem: 构建相似矩阵 :param sentences: :return: Here is the function: def build_similarity_matrix(sentences): """ 构建相似矩阵 :param sentences: :return: """ S = np.zeros((len(sentences), len(sentences))) for idx1 in range(len(sentences)): for idx2 in range(len(sentences)): if idx1 == idx2: continue S[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2]) # 将矩阵正则化 for idx in range(len(S)): if S[idx].sum == 0: continue S[idx] /= S[idx].sum() return S
构建相似矩阵 :param sentences: :return:
974
import cjieba import numpy as np from nltk.cluster.util import cosine_distance from ..solo import singleton from ..summarization import STOPWORDS as STOPWORDS_PATH def pagerank(A, eps=0.0001, d=0.85): P = np.ones(len(A)) / len(A) while True: new_P = np.ones(len(A)) * (1 - d) / len(A) + d * A.T.dot(P) delta = abs(new_P - P).sum() if delta <= eps: return new_P P = new_P
null
975
import logging import os from typing import Dict, Union import fasttext import requests def get_or_load_model(low_memory=False): if low_memory: model = models.get("low_mem", None) if not model: check_model("lid.176.ftz") model_path = download_model("lid.176.ftz") model = fasttext.load_model(model_path) models["low_mem"] = model return model else: model = models.get("high_mem", None) if not model: check_model("lid.176.ftz") model_path = download_model("lid.176.bin") model = fasttext.load_model(model_path) models["high_mem"] = model return model def detect(text: str, low_memory=True) -> Dict[str, Union[str, float]]: model = get_or_load_model(low_memory) labels, scores = model.predict(text) label = labels[0].replace("__label__", '') score = min(float(scores[0]), 1.0) return { "lang": label, "score": score, }
null
976
import time from typing import TYPE_CHECKING, Literal, Type, Optional from typing import Union, List import nest_asyncio from pydantic import field_validator, ConfigDict, Field, BaseModel from .sdk.endpoint.tokenizer import get_tokenizer from .sdk.schema import File, generate_uid, UserMessage, Message def singleton(cls): _instance = {} def inner(): if cls not in _instance: _instance[cls] = cls() return _instance[cls] return inner
null
977
random class MappingDefault(dict): def __missing__(self, key): return key def get_request_error_message(error: str): _txt: str = random.choice(REQUEST_ERROR_MESSAGE_TEMPLATE) return _txt.format_map(MappingDefault(error=error))
null
978
random class MappingDefault(dict): def __missing__(self, key): return key def get_upload_error_message(filename: str, error: str): _txt: str = random.choice(REQUEST_ERROR_MESSAGE_TEMPLATE) return _txt.format_map(MappingDefault(filename=filename, error=error))
null
979
from typing import Literal, List, Union from pydantic import BaseModel, Field, field_validator SENDER = {} RECEIVER = {} def router_set(role: Literal["sender", "receiver"], name: str): if role == "sender": SENDER[name] = name elif role == "receiver": RECEIVER[name] = name else: raise ValueError(f"role must in sender or receiver, not {role}")
null
980
import pathlib from time import sleep import elara from rich.console import Console elara_client = elara.exe(path=pathlib.Path(__file__).parent / "elara.db", commitdb=True) tutorial = [ { "cn": "接下来进行一些说明,如果您不想看到这些说明,请使用 --no-tutorial 参数运行入口文件。", "en": "Next, some instructions will be given. " "If you don’t want to see these instructions, please run the entry file with the --no-tutorial flag." }, { "cn": "请您在 .env 文件中填写您的配置信息。" "如果您需要配置 provider,请使用 config_dir/provider_settings.toml 文件。" "您可以通过 `docker-compose up -f docker-compose.yml` 来测试服务。", "en": "Please fill in your configuration information in the .env file. " "If you need to configure the provider, please use the config_dir/provider_settings.toml file. " "You can test the service by `docker-compose up -f docker-compose.yml`." }, { "cn": "数据库 RabbitMQ 的默认端口为 5672,Redis 的默认端口为 6379,MongoDB 的默认端口为 27017。" "请您考虑是否需要添加防火墙配置。其中,RabbitMQ 和 MongoDB 均使用默认配置了密码。请查看 .env 文件进行修改。", "en": "The default port of the database RabbitMQ is 5672, " "the default port of Redis is 6379, and the default port of MongoDB is 27017." "Please consider whether to add firewall configuration. " "Among them, RabbitMQ and MongoDB use the default configuration password. " "Please check the .env file for modification." }, { "cn": "请当心您的 .env 文件,其中包含了您的敏感信息。请不要将 .env 文件上传到公共仓库。", "en": "Please be careful with your .env file, " "which contains your sensitive information. " "Please do not upload the .env file to the public repository." }, { "cn": "请当心您的 日志文件,其中包含了您的敏感信息。请不要将 日志文件上传到公共仓库。", "en": "Please be careful with your log file, which contains your sensitive information. " "Please do not upload the log file to the public repository." }, { "cn": "如果您在使用过程中遇到了问题,可以在 GitHub 上提出 issue 来完善测试。", "en": "If you encounter any problems during use, you can raise an issue on GitHub to improve the test." }, ] tutorial_len = len(tutorial) def show_tutorial(skip_existing: bool = False, pre_step_stop: int = 5, database_key: str = "55123"): global tutorial, elara_client, tutorial_len lens = elara_client.get(database_key) if skip_existing and str(lens) == str(len(tutorial)): return None # 截取未读的条目 tutorial = tutorial[lens:] if skip_existing else tutorial console = Console() print("\n") with console.status("[bold green]Working on tasks...[/bold green]") as status: index = 0 while tutorial: info = tutorial.pop(0) index += 1 console.print(info["cn"], style="bold cyan") console.print(info["en"], style="bold green", end="\n\n") for i in range(pre_step_stop): status.update( f"[bold green]({index}/{tutorial_len})Remaining {pre_step_stop - i} " f"seconds to next info... [/bold green] " ) sleep(1) # 更新进度 elara_client.set(database_key, tutorial_len) sleep(3)
null
981
from llmkira.setting.discord import BotSetting BotSetting = DiscordBot() def help_message(): return """ `{prefix}chat` - Chat with me :) `{prefix}task` - Ask me do things with `func_enable` **Slash Command** `/help` - **You just did it :)** `/tool` - Check all useful tools `/clear` - wipe memory of your chat `/auth` - activate a task (my power) `/bind` - bind third party platform `/unbind` - unbind platform `/set_endpoint` - <apikey>#<endpoint> `/clear_endpoint` - clear endpoint and key `/env` - set environment variable `/token` - bind your service provider token `/token_clear` - clear your service provider token `/func_ban` - ban function `/func_unban` - unban function **Please confirm that that bot instance is secure, some plugins may be dangerous on unsafe instance.** """.format(prefix=BotSetting.prefix)
null
982
from typing import Tuple, Optional from urllib.parse import urlparse from loguru import logger from ..middleware.chain_box import Chain, AuthReloader from ..task import Task The provided code snippet includes necessary dependencies for implementing the `parse_command` function. Write a Python function `def parse_command(command: str) -> Tuple[Optional[str], Optional[str]]` to solve the following problem: :param command like `/chat something` :return command_head,command_body Here is the function: def parse_command(command: str) -> Tuple[Optional[str], Optional[str]]: """ :param command like `/chat something` :return command_head,command_body """ assert isinstance(command, str), "Command Must Be Str" if not command: return None, None parts = command.split(" ", 1) if len(parts) > 1: return parts[0], parts[1] elif len(parts) == 1: return parts[0], None else: return None, None
:param command like `/chat something` :return command_head,command_body
983
from typing import Tuple, Optional from urllib.parse import urlparse from loguru import logger from ..middleware.chain_box import Chain, AuthReloader from ..task import Task The provided code snippet includes necessary dependencies for implementing the `is_valid_url` function. Write a Python function `def is_valid_url(url) -> bool` to solve the following problem: :param url url :return bool Here is the function: def is_valid_url(url) -> bool: """ :param url url :return bool """ try: result = urlparse(url) return all([result.scheme, result.netloc]) except ValueError: return False
:param url url :return bool
984
from typing import Tuple, Optional from urllib.parse import urlparse from loguru import logger from ..middleware.chain_box import Chain, AuthReloader from ..task import Task The provided code snippet includes necessary dependencies for implementing the `is_command` function. Write a Python function `def is_command( text: str, command: str, at_bot_username: str = None, check_empty=False ) -> bool` to solve the following problem: :param text: message text :param command: command :param at_bot_username: check /command@bot_username :param check_empty: check /command -> False :return: bool Here is the function: def is_command( text: str, command: str, at_bot_username: str = None, check_empty=False ) -> bool: """ :param text: message text :param command: command :param at_bot_username: check /command@bot_username :param check_empty: check /command -> False :return: bool """ assert text, "text is empty" if check_empty: if len(text.split(" ")) == 1: return False if text.startswith(f"{command} "): return True if at_bot_username: if text.startswith(f"{command}@{at_bot_username}"): return True if text == command: return True return False
:param text: message text :param command: command :param at_bot_username: check /command@bot_username :param check_empty: check /command -> False :return: bool
985
from typing import Tuple, Optional from urllib.parse import urlparse from loguru import logger from ..middleware.chain_box import Chain, AuthReloader from ..task import Task def is_empty_command(text: str) -> bool: assert text, "Command Input Must Be Str" if not text.startswith("/"): return False if len(text.split(" ")) == 1: return True return False
null
986
from typing import Tuple, Optional from urllib.parse import urlparse from loguru import logger from ..middleware.chain_box import Chain, AuthReloader from ..task import Task class AuthReloader(object): """ 重放任务 """ def __init__(self, uid: str = None): self.uid = uid def _prefix(cls, uuid: str) -> str: """auth:{auth_schema_version}:uuid""" return f"auth:v2:{uuid}" def from_form(cls, platform: str, user_id: str): _c = cls() _c.uid = f"{platform}:{user_id}" return _c async def save_auth(self, chain: Chain, timeout: int = 60 * 60 * 24 ): cache = global_cache_runtime.get_redis() logger.debug("Resign Auth Point") assert chain.creator_uid == self.uid, "Cant Resign Uid Diff From `self`" _cache = await cache.set_data( key=self._prefix(uuid=chain.uuid), value=chain.model_dump_json(), timeout=timeout ) return chain.uuid async def read_auth(self, uuid: str) -> Optional[Chain]: cache = global_cache_runtime.get_redis() _cache = await cache.read_data(key=self._prefix(uuid=uuid)) if not _cache: return None logger.debug(f"Get Auth Data {_cache} {_cache}") chain = Chain.from_redis(_cache) if chain.is_expire: logger.debug(f"Auth Expire {chain.uuid}") return None if chain.creator_uid != self.uid: logger.debug(f"Not User {self.uid} Created Auth") return None return chain class Task(object): def __init__(self, *, queue: str, amqp_dsn: str = None ): """ :param queue: 队列名字 :param amqp_dsn: 队列数据库 """ self.queue_name = queue if amqp_dsn is None: from ..setting.rabbitmq import RabbitMQSetting amqp_dsn = RabbitMQSetting.amqp_dsn self._amqp_url = amqp_dsn async def send_task(self, task: TaskHeader): connection = await aio_pika.connect_robust(self._amqp_url) async with connection: channel = await connection.channel( publisher_confirms=True # 消息确认 ) # 通道超时 2s # await channel.initialize(timeout=2000) # Creating a message message = Message( body=task.model_dump_json().encode("utf-8"), delivery_mode=DeliveryMode.PERSISTENT, expiration=EXPIRATION_SECOND ) # Declaring queue try: await channel.declare_queue( self.queue_name, arguments=QUEUE_ARGUMENTS, durable=True # 持续化 ) except Exception as e: logger.error( f"[5941163]Rabbitmq Queue param validation error, try deleting the abnormal " f"queue manually and retrying. " f"\n--error {e}" f"\n--help |web: <database_ip>:15672/#/ |shell: `rabbitmqctl delete_queue {self.queue_name}`" ) raise e # Sending the message try: confirmation = await channel.default_exchange.publish( message, routing_key=self.queue_name, timeout=10 ) except DeliveryError as e: logger.error(f"[502231]Task Delivery failed with exception: {e.reason}") return False, "🔭 Sorry,failure to reach the control centre, possibly i reach design limit 🧯" except TimeoutError: logger.error(f"[528532]Task Delivery timeout") return False, "🔭 Sorry, failure to reach the control centre, ⏱ timeout" else: if not isinstance(confirmation, Basic.Ack): logger.error(f"[552123]Task Delivery failed with confirmation") return False, "🔭 Sorry, failure to reach the control centre, sender error" else: logger.info("[621132]Task sent success") return True, "Task sent success" async def consuming_task(self, func: callable): connection = await aio_pika.connect_robust(self._amqp_url) async with connection: # Creating a channel channel = await connection.channel() # 通道超时 1s # await channel.initialize(timeout=1000) await channel.set_qos(prefetch_count=CONSUMER_PREFETCH_COUNT) # 消息流控 # Declaring queue try: queue = await channel.declare_queue( self.queue_name, arguments=QUEUE_ARGUMENTS, durable=True # 持续化 ) except Exception as e: logger.error( f"[502231]Rabbitmq Queue parameter validation failed, try deleting the abnormal queue manually " f"and retrying." f"\n--error {e}" f"\n--help |web: <database_ip>:15672/#/ |shell: `rabbitmqctl delete_queue {self.queue_name}`" ) raise e await queue.consume(func) await asyncio.Future() # run forever async def create_and_send(cls, *, queue_name: str, task: TaskHeader ): sender = cls(queue=queue_name) await sender.send_task(task=task) return sender The provided code snippet includes necessary dependencies for implementing the `auth_reloader` function. Write a Python function `async def auth_reloader(uuid: str, platform: str, user_id: str) -> None` to solve the following problem: :param uuid: verify id :param platform: message channel :param user_id: raw user id :raise LookupError Not Found :return None Here is the function: async def auth_reloader(uuid: str, platform: str, user_id: str) -> None: """ :param uuid: verify id :param platform: message channel :param user_id: raw user id :raise LookupError Not Found :return None """ assert isinstance(uuid, str), "`uuid` Must Be Str" assert isinstance(platform, str), "`platform` Must Be Str" assert isinstance(user_id, str), "`user_id` Must Be Str" chain: Chain = await AuthReloader.from_form( platform=platform, user_id=user_id ).read_auth(uuid=uuid) if not chain: raise LookupError("Auth Task Not Found") logger.info(f"Auth Task Sent --task uuid {uuid} --user {user_id}") await Task(queue=chain.channel).send_task(task=chain.arg)
:param uuid: verify id :param platform: message channel :param user_id: raw user id :raise LookupError Not Found :return None
987
from dotenv import load_dotenv from loguru import logger class StartSetting(BaseModel): def from_subdir(cls): global_cache_runtime: RedisRuntime = RedisRuntime() global_mongodb_runtime: MongodbRuntime = MongodbRuntime() class TelegramBotRunner(Runner): def __init__(self): async def is_user_admin(self, message: types.Message): async def upload(self, file, uid: str): async def run(self): async def create_task(message: types.Message, funtion_enable: bool = False): async def listen_clear_endpoint_command(message: types.Message): async def listen_set_endpoint_command(message: types.Message): async def listen_func_ban_command(message: types.Message): async def listen_func_unban_command(message: types.Message): async def listen_token_command(message: types.Message): async def listen_token_clear_command(message: types.Message): async def listen_bind_command(message: types.Message): async def listen_unbind_command(message: types.Message): async def listen_env_command(message: types.Message): async def listen_clear_command(message: types.Message): async def listen_help_command(message: types.Message): async def listen_tool_command(message: types.Message): async def listen_auth_command(message: types.Message): async def handle_private_msg(message: types.Message): async def handle_group_msg(message: types.Message): class DiscordBotRunner(Runner): def __init__(self): async def upload(self, attachment: hikari.Attachment, uid: str): async def run(self): async def create_task(message: hikari.Message, funtion_enable: bool = False): async def endpoint_autocomplete( ctx: crescent.AutocompleteContext, option: hikari.AutocompleteInteractionOption ) -> List[Tuple[str, str]]: async def listen_token_clear_command(ctx: crescent.Context): async def listen_token_command( ctx: crescent.Context, token: str, ): async def listen_func_unban_command( ctx: crescent.Context, func_name: str ): async def listen_func_ban_command( ctx: crescent.Context, func_name: str, ): async def listen_clear_endpoint_command(ctx: crescent.Context): async def listen_endpoint_command( ctx: crescent.Context, endpoint: Annotated[str, crescent.Autocomplete[endpoint_autocomplete]], openai_key: str, model_name: str ): async def listen_bind_command(ctx: crescent.Context, token: str): async def listen_unbind_command(ctx: crescent.Context, token: str): async def listen_clear_command(ctx: crescent.Context): async def listen_help_command(ctx: crescent.Context): async def listen_auth_command(ctx: crescent.Context, uuid: str): async def listen_tool_command(ctx: crescent.Context): async def listen_env_command(ctx: crescent.Context, env_string: str): async def on_guild_create(event_: hikari.GuildMessageCreateEvent): async def on_dm_create(event_: hikari.DMMessageCreateEvent): class KookBotRunner(Runner): def __init__(self): async def upload(self, file_info: dict, uid: str ): async def run(self): async def create_task(_event: Message, funtion_enable: bool = False): async def listen_clear_endpoint_command(msg: Message): async def listen_endpoint_command( msg: Message, openai_endpoint: str, openai_key: str, model: str ): async def listen_token_clear_command(msg: Message): async def listen_token_command( msg: Message, token: str ): async def listen_func_ban_command( msg: Message, func_name: str ): async def listen_func_unban_command( msg: Message, func_name: str ): async def listen_bind_command(msg: Message, dsn: str): async def listen_unbind_command(msg: Message, dsn: str): async def listen_clear_command(msg: Message): async def listen_help_command(msg: Message): async def listen_tool_command(msg: Message): async def listen_auth_command(msg: Message, uuid: str): async def listen_env_command(msg: Message, env_string: str): async def on_guild_create(msg: PublicMessage): async def on_dm_create(msg: PrivateMessage): async def handle_message(event_: Message): class SlackBotRunner(Runner): def __init__(self): async def upload(self, file: SlackMessageEvent.SlackFile, uid: str): async def run(self): async def create_task(event_: SlackMessageEvent, funtion_enable: bool = False): async def listen_clear_endpoint_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_set_endpoint_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_func_ban_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_func_unban_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_token_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_unbind_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_bind_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_unbind_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_env_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_clear_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_help_command(ack: AsyncAck, respond: AsyncRespond, command): async def listen_tool_command(ack: AsyncAck, respond: AsyncRespond, command): async def auth_chain(uuid, user_id): async def listen_auth_command(ack: AsyncAck, respond: AsyncRespond, command): async def validate_join(event_: SlackMessageEvent): async def deal_group(event_: SlackMessageEvent): async def listen_im(_event, _logger): def run(): import asyncio from llmkira import load_plugins from llmkira.sdk import load_from_entrypoint, get_entrypoint_plugins from llmkira.setting import StartSetting from llmkira.sdk.cache import global_cache_runtime, global_mongodb_runtime global_cache_runtime.init_cache(verbose=True) global_mongodb_runtime.init_mongodb(verbose=True) from .rss import RssAppRunner start_setting = StartSetting.from_subdir() wait_list = [RssAppRunner().run(interval=60 * 60 * 1)] if start_setting.telegram: from .telegram import TelegramBotRunner wait_list.append(TelegramBotRunner().run()) if start_setting.discord: from .discord import DiscordBotRunner wait_list.append(DiscordBotRunner().run()) if start_setting.kook: from .kook import KookBotRunner wait_list.append(KookBotRunner().run()) if start_setting.slack: from .slack import SlackBotRunner wait_list.append(SlackBotRunner().run()) # 初始化插件系统 load_plugins("llmkira/extra/plugins") load_from_entrypoint("llmkira.extra.plugin") loaded_message = "\n >>".join(get_entrypoint_plugins()) logger.success(f"\n===========Third Party Plugins Loaded==========\n >>{loaded_message}") async def _main(wait_list_): await asyncio.gather( *wait_list_ ) loop = asyncio.get_event_loop() loop.run_until_complete(_main(wait_list_=wait_list))
null
988
from llmkira.setting.discord import BotSetting BotSetting = DiscordBot() def help_message(): return """ `{prefix}chat` - Chat with me :) `{prefix}task` - Ask me do things with `func_enable` **Slash Command** `/help` - **You just did it :)** `/tool` - Check all useful tools `/clear` - wipe memory of your chat `/auth` - activate a task (my power) `/bind` - bind third party platform `/unbind` - unbind platform `/set_endpoint` - set endpoint `/clear_endpoint` - clear endpoint and key `/env` - set environment variable `/token` - bind your service provider token `/token_clear` - clear your service provider token `/func_ban` - ban function `/func_unban` - unban function **Please confirm that that bot instance is secure, some plugins may be dangerous on unsafe instance.** """.format(prefix=BotSetting.prefix)
null
989
from pydantic import ConfigDict, BaseModel def help_message(): return """ *Command* !chat - chat with me in a serious way :( @<myname> - Chat with me in a simple way :) !task - chat with function_enable !ask - chat with function_disable !auth - Auth a task *Slash Command* `/help` - Help message `/tool` - Tool list `/clear` - forget...you `/auth` - activate a task (my power),but outside the thread `/bind` - RssUrl..... `/unbind` - RssUrl..... `/set_endpoint` - <apikey>#<endpoint> for your own backend `/clear_endpoint` - clear endpoint and key `/env` - set environment variable `/token` - bind your service provider token `/token_clear` - clear your service provider token `/func_ban` - ban function `/func_unban` - unban function Make sure you invite me before you call me in channel, wink~ *DONT SHARE YOUR TOKEN/ENDPOINT PUBLIC!* - Please confirm that that bot instance is secure, some plugins may be dangerous on unsafe instance. """
null
990
def help_message(): return """ /help - HELP YOURSELF /chat - Chat with me :) /task - Function enable /ask - Chat with func_disable, 禁止函数 /tool - 工具列表 /clear - 删除自己的记录 /auth - POWER Private Chat Only: /bind - RSS /unbind - RSS /set_endpoint - <apikey>#<endpoint> /clear_endpoint - Clear endpoint and key /env - 配置变量,use as shell /token - bind your token /token_clear - clear your token /func_ban - ban function /func_unban - unban function !Please confirm that that bot instance is secure, some plugins may be dangerous on unsafe instance. """
null
991
import socket import feedparser from inscriptis import get_text from loguru import logger from pydantic import BaseModel from telebot import formatting from telebot.formatting import escape_markdown from ..schema import Runner from ...sdk.cache import global_cache_runtime from ...task import Task, TaskHeader from ...middleware.router import RouterManager from ...middleware.router.schema import router_set def sha1(string: str): import hashlib _sha1 = hashlib.sha1() _sha1.update(string.encode('utf-8')) return _sha1.hexdigest()[:10]
null
992
import os import subprocess import time from setuptools import find_packages, setup The provided code snippet includes necessary dependencies for implementing the `readme` function. Write a Python function `def readme()` to solve the following problem: Get readme. Returns: str, readme content string. Here is the function: def readme(): """Get readme. Returns: str, readme content string. """ with open('README.md') as fid: content = fid.read() return content
Get readme. Returns: str, readme content string.
993
import os import subprocess import time from setuptools import find_packages, setup SHORT_VERSION = '{}.{}.{}{}'.format(MAJOR, MINOR, PATCH, SUFFIX) VERSION_FILE = 'pyretri/version.py' def get_hash(): """Get hash value. Returns: str, hash value. """ if os.path.exists('.git'): sha = get_git_hash()[:7] elif os.path.exists(VERSION_FILE): try: from pyretri.version import __version__ sha = __version__.split('+')[-1] except ImportError: raise ImportError('Unable to get git version') else: sha = 'unknown' return sha The provided code snippet includes necessary dependencies for implementing the `write_version_py` function. Write a Python function `def write_version_py()` to solve the following problem: Write version.py. Here is the function: def write_version_py(): """Write version.py. """ content = """# GENERATED VERSION FILE # TIME: {} __version__ = '{}' short_version = '{}' """ sha = get_hash() version = SHORT_VERSION + '+' + sha with open(VERSION_FILE, 'w') as fid: fid.write(content.format(time.asctime(), version, SHORT_VERSION))
Write version.py.
994
import os import subprocess import time from setuptools import find_packages, setup VERSION_FILE = 'pyretri/version.py' The provided code snippet includes necessary dependencies for implementing the `get_version` function. Write a Python function `def get_version()` to solve the following problem: Get version. Returns: str, version string. Here is the function: def get_version(): """Get version. Returns: str, version string. """ with open(VERSION_FILE, 'r') as fid: exec (compile(fid.read(), VERSION_FILE, 'exec')) return locals()['__version__']
Get version. Returns: str, version string.
995
import os import subprocess import time from setuptools import find_packages, setup The provided code snippet includes necessary dependencies for implementing the `parse_requirements` function. Write a Python function `def parse_requirements(fname='requirements.txt', with_version=True)` to solve the following problem: Parse the package dependencies listed in a requirements file but strips specific versioning information. Args: fname (str): path to requirements file with_version (bool, default=False): if True include version specs Returns: List[str]: list of requirements items CommandLine: python -c "import setup; print(setup.parse_requirements())" Here is the function: def parse_requirements(fname='requirements.txt', with_version=True): """ Parse the package dependencies listed in a requirements file but strips specific versioning information. Args: fname (str): path to requirements file with_version (bool, default=False): if True include version specs Returns: List[str]: list of requirements items CommandLine: python -c "import setup; print(setup.parse_requirements())" """ import sys from os.path import exists import re require_fpath = fname def parse_line(line): """ Parse information from a line in a requirements text file """ if line.startswith('-r '): # Allow specifying requirements in other files target = line.split(' ')[1] for info in parse_require_file(target): yield info else: info = {'line': line} if line.startswith('-e '): info['package'] = line.split('#egg=')[1] else: # Remove versioning from the package pat = '(' + '|'.join(['>=', '==', '>']) + ')' parts = re.split(pat, line, maxsplit=1) parts = [p.strip() for p in parts] info['package'] = parts[0] if len(parts) > 1: op, rest = parts[1:] if ';' in rest: # Handle platform specific dependencies # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies version, platform_deps = map(str.strip, rest.split(';')) info['platform_deps'] = platform_deps else: version = rest # NOQA info['version'] = (op, version) yield info def parse_require_file(fpath): with open(fpath, 'r') as f: for line in f.readlines(): line = line.strip() if line and not line.startswith('#'): for info in parse_line(line): yield info def gen_packages_items(): if exists(require_fpath): for info in parse_require_file(require_fpath): parts = [info['package']] if with_version and 'version' in info: parts.extend(info['version']) if not sys.version.startswith('3.4'): # apparently package_deps are broken in 3.4 platform_deps = info.get('platform_deps') if platform_deps is not None: parts.append(';' + platform_deps) item = ''.join(parts) yield item packages = list(gen_packages_items()) return packages
Parse the package dependencies listed in a requirements file but strips specific versioning information. Args: fname (str): path to requirements file with_version (bool, default=False): if True include version specs Returns: List[str]: list of requirements items CommandLine: python -c "import setup; print(setup.parse_requirements())"
996
import os import argparse import importlib from pyretri.config import get_defaults_cfg from pyretri.datasets import build_folder, build_loader from pyretri.models import build_model from pyretri.extract import build_extract_helper def load_datasets(): data_json_dir = "/home/songrenjie/projects/RetrievalToolBox/new_data_jsons/" datasets = { "oxford_gallery": os.path.join(data_json_dir, "oxford_gallery.json"), "oxford_query": os.path.join(data_json_dir, "oxford_query.json"), "cub_gallery": os.path.join(data_json_dir, "cub_gallery.json"), "cub_query": os.path.join(data_json_dir, "cub_query.json"), "indoor_gallery": os.path.join(data_json_dir, "indoor_gallery.json"), "indoor_query": os.path.join(data_json_dir, "indoor_query.json"), "caltech_gallery": os.path.join(data_json_dir, "caltech_gallery.json"), "caltech_query": os.path.join(data_json_dir, "caltech_query.json"), "paris_all": os.path.join(data_json_dir, "paris.json"), } for data_path in datasets.values(): assert os.path.exists(data_path), "non-exist dataset path {}".format(data_path) return datasets
null
997
import os import argparse import importlib from pyretri.config import get_defaults_cfg from pyretri.datasets import build_folder, build_loader from pyretri.models import build_model from pyretri.extract import build_extract_helper def parse_args(): parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval') parser.add_argument('opts', default=None, nargs=argparse.REMAINDER) parser.add_argument('--save_path', '-sp', default=None, type=str, help="the save path for feature") parser.add_argument("--search_modules", "-sm", default="", type=str, help="name of search module's directory") args = parser.parse_args() return args
null
998
import json import importlib import os import argparse from utils.misc import check_result_exist, get_dir, get_default_result_dict from pyretri.config import get_defaults_cfg from pyretri.index import build_index_helper, feature_loader from pyretri.evaluate import build_evaluate_helper def load_datasets(): datasets = { "market_gallery": { "gallery": "market_gallery", "query": "market_query", "train": "market_gallery" }, "duke_gallery": { "gallery": "duke_gallery", "query": "duke_query", "train": "duke_gallery" }, } return datasets
null
999
import json import importlib import os import argparse from utils.misc import check_result_exist, get_dir, get_default_result_dict from pyretri.config import get_defaults_cfg from pyretri.index import build_index_helper, feature_loader from pyretri.evaluate import build_evaluate_helper def parse_args(): parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval') parser.add_argument('--fea_dir', '-fd', default=None, type=str, help="path of feature dirs", required=True) parser.add_argument("--search_modules", "-sm", default=None, type=str, help="name of search module's directory") parser.add_argument("--save_path", "-sp", default=None, type=str, help="path for saving results") args = parser.parse_args() return args
null
1,000
import json import importlib import os import argparse from utils.misc import check_result_exist, get_dir, get_default_result_dict from pyretri.config import get_defaults_cfg from pyretri.index import build_index_helper, feature_loader from pyretri.evaluate import build_evaluate_helper def load_datasets(): datasets = { "oxford_gallery": { "gallery": "oxford_gallery", "query": "oxford_query", "train": "paris_all" }, "cub_gallery": { "gallery": "cub_gallery", "query": "cub_query", "train": "cub_gallery" }, "indoor_gallery": { "gallery": "indoor_gallery", "query": "indoor_query", "train": "indoor_gallery" }, "caltech_gallery": { "gallery": "caltech_gallery", "query": "caltech_query", "train": "caltech_gallery" } } return datasets
null
1,001
import json import importlib import os import argparse from utils.misc import check_result_exist, get_dir, get_default_result_dict from pyretri.config import get_defaults_cfg from pyretri.index import build_index_helper, feature_loader from pyretri.evaluate import build_evaluate_helper def get_evaluate(fea_dir, evaluates): if "oxford" in fea_dir: evaluate = evaluates["oxford_overall"] else: evaluate = evaluates["overall"] return evaluate
null
1,002
import json import importlib import os import argparse from utils.misc import check_result_exist, get_dir, get_default_result_dict from pyretri.config import get_defaults_cfg from pyretri.index import build_index_helper, feature_loader from pyretri.evaluate import build_evaluate_helper vgg_fea = ["pool5_PWA"] res_fea = ["pool5_PWA"] def get_fea_names(fea_dir): if "vgg" in fea_dir: fea_names = vgg_fea else: fea_names = res_fea return fea_names
null
1,004
import os import torch import argparse import importlib from pyretri.config import get_defaults_cfg from pyretri.datasets import build_folder, build_loader from pyretri.models import build_model from pyretri.extract import build_extract_helper from pyretri.models.backbone import ft_net def load_datasets(): data_json_dir = "/home/songrenjie/projects/RetrievalToolBox/new_data_jsons/" datasets = { "market_gallery": os.path.join(data_json_dir, "market_gallery.json"), "market_query": os.path.join(data_json_dir, "market_query.json"), "duke_gallery": os.path.join(data_json_dir, "duke_gallery.json"), "duke_query": os.path.join(data_json_dir, "duke_query.json"), } for data_path in datasets.values(): assert os.path.exists(data_path), "non-exist dataset path {}".format(data_path) return datasets
null
1,005
import os import torch import argparse import importlib from pyretri.config import get_defaults_cfg from pyretri.datasets import build_folder, build_loader from pyretri.models import build_model from pyretri.extract import build_extract_helper from pyretri.models.backbone import ft_net def parse_args(): parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval') parser.add_argument('opts', default=None, nargs=argparse.REMAINDER) parser.add_argument('--save_path', '-sp', default=None, type=str, help="the save path for feature") parser.add_argument("--search_modules", "-sm", default="", type=str, help="name of search module's directory") args = parser.parse_args() return args
null
1,007
import os import argparse import importlib from pyretri.config import get_defaults_cfg from pyretri.datasets import build_folder, build_loader from pyretri.models import build_model from pyretri.extract import build_extract_helper def parse_args(): parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval') parser.add_argument('opts', default=None, nargs=argparse.REMAINDER) parser.add_argument('--save_path', '-sp', default=None, type=str, help="save path for feature") parser.add_argument("--search_modules", "-sm", default=None, type=str, help="name of search module's directory") args = parser.parse_args() return args
null
1,008
import os import argparse import json import codecs from utils.misc import save_to_csv, filter_by_keywords def parse_args(): parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval') parser.add_argument('opts', default=None, nargs=argparse.REMAINDER) parser.add_argument('--results_json_path', '-r', default=None, type=str, help="path of the result json") args = parser.parse_args() return args
null
1,009
import os import argparse import json import codecs from utils.misc import save_to_csv, filter_by_keywords def show_results(results): for i in range(len(results)): print(results[i])
null
1,010
import os from typing import Dict, List import csv The provided code snippet includes necessary dependencies for implementing the `check_result_exist` function. Write a Python function `def check_result_exist(now_res: Dict, exist_results: List) -> bool` to solve the following problem: Check if the config exists. Args: now_res (Dict): configuration to be checked. exist_results (List): a list of existing configurations. Returns: bool: if the config exists. Here is the function: def check_result_exist(now_res: Dict, exist_results: List) -> bool: """ Check if the config exists. Args: now_res (Dict): configuration to be checked. exist_results (List): a list of existing configurations. Returns: bool: if the config exists. """ for e_r in exist_results: totoal_equal = True for key in now_res: if now_res[key] != e_r[key]: totoal_equal = False break if totoal_equal: return True return False
Check if the config exists. Args: now_res (Dict): configuration to be checked. exist_results (List): a list of existing configurations. Returns: bool: if the config exists.
1,011
import os from typing import Dict, List import csv The provided code snippet includes necessary dependencies for implementing the `get_dir` function. Write a Python function `def get_dir(root_path: str, dir: str, dataset: Dict) -> (str, str, str)` to solve the following problem: Get the feature directory path of gallery set, query set and feature set for training PCA/SVD. Args: root_path (str): the root path of all extracted features. dir (str): the path of one single extracted feature directory. dataset (Dict): a dict containing the information of gallery set, query set and training set. Returns: tuple(str, str, str): path of gallery set, query set and feature set for training PCA/SVD. Here is the function: def get_dir(root_path: str, dir: str, dataset: Dict) -> (str, str, str): """ Get the feature directory path of gallery set, query set and feature set for training PCA/SVD. Args: root_path (str): the root path of all extracted features. dir (str): the path of one single extracted feature directory. dataset (Dict): a dict containing the information of gallery set, query set and training set. Returns: tuple(str, str, str): path of gallery set, query set and feature set for training PCA/SVD. """ template_dir = os.path.join(root_path, dir) target = dir.split('_')[0] + '_' + dir.split('_')[1] gallery_fea_dir = template_dir.replace(target, dataset["gallery"]) query_fea_dir = template_dir.replace(target, dataset["query"]) train_fea_dir = template_dir.replace(target, dataset["train"]) return gallery_fea_dir, query_fea_dir, train_fea_dir
Get the feature directory path of gallery set, query set and feature set for training PCA/SVD. Args: root_path (str): the root path of all extracted features. dir (str): the path of one single extracted feature directory. dataset (Dict): a dict containing the information of gallery set, query set and training set. Returns: tuple(str, str, str): path of gallery set, query set and feature set for training PCA/SVD.