id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
702
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def merge_quotes(t): return re.sub('(\s*"+\s*)+', ' " ', t)
null
703
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def remove_comma_numbers(t): def _f(t): return re.sub("(\d),(\d{3})", r"\1\2", t) return _f(_f(t))
null
704
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode temp_token = "xtokx" def pre_process_dot_numbers(t): return re.sub("(\w)\.(\w)", rf"\1{temp_token}dot{temp_token}\2", t)
null
705
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode temp_token = "xtokx" def post_process_dot_numbers(t): return re.sub(f"{temp_token}dot{temp_token}", ".", t)
null
706
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode temp_token = "xtokx" def pre_process_quotes(t): # allows quotes only for 's, 't, 'd, 'm, 'll, 're, 've return re.sub( r"'(?=([stdm]|(ll)|(re)|(ve)|(ll))\b)", rf"{temp_token}quote{temp_token}", t )
null
707
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode temp_token = "xtokx" def post_process_quotes(t): return re.sub(f"{temp_token}quote{temp_token}", "'", t)
null
708
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode temp_token = "xtokx" def pre_process_dates(t): return re.sub("(\d)/(\d)", rf"\1{temp_token}slash{temp_token}\2", t)
null
709
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode temp_token = "xtokx" def post_process_dates(t): return re.sub(f"{temp_token}slash{temp_token}", "/", t)
null
710
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def merge_commas(t): return re.sub("(\s*,+\s*)+", ", ", t)
null
711
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def add_space_after_commas(t): return re.sub(",", ", ", t)
null
712
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode The provided code snippet includes necessary dependencies for implementing the `handle_special_chars` function. Write a Python function `def handle_special_chars(t)` to solve the following problem: Handle special characters Here is the function: def handle_special_chars(t): "Handle special characters" # replace "-" with a space when between words without space t = re.sub("(\w)-(\w)", r"\1 \2", t) # always add space around some characters return re.sub("([%&\/$*])", r" \1 ", t)
Handle special characters
713
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode The provided code snippet includes necessary dependencies for implementing the `expand_hashtags` function. Write a Python function `def expand_hashtags(t, hashtag_processor)` to solve the following problem: Remove # and try to split words Here is the function: def expand_hashtags(t, hashtag_processor): "Remove # and try to split words" return re.sub("#(\w+)", lambda m: hashtag_processor(m.group(1)), t)
Remove # and try to split words
714
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode _re_ignore_chars = r"[_#\\]" The provided code snippet includes necessary dependencies for implementing the `ignore_chars` function. Write a Python function `def ignore_chars(t)` to solve the following problem: Ignore useless characters Here is the function: def ignore_chars(t): "Ignore useless characters" return re.sub(_re_ignore_chars, " ", t)
Ignore useless characters
715
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode The provided code snippet includes necessary dependencies for implementing the `remove_extra_spaces` function. Write a Python function `def remove_extra_spaces(t)` to solve the following problem: Remove extra spaces (including \t and \n) Here is the function: def remove_extra_spaces(t): "Remove extra spaces (including \t and \n)" return re.sub("\s+", " ", t)
Remove extra spaces (including \t and \n)
716
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode The provided code snippet includes necessary dependencies for implementing the `remove_repeating_chars` function. Write a Python function `def remove_repeating_chars(t)` to solve the following problem: If the same character is present 4+ times (not 3 because of roman 'VIII'), replace with single instance Here is the function: def remove_repeating_chars(t): "If the same character is present 4+ times (not 3 because of roman 'VIII'), replace with single instance" return re.sub(r"(\D)(\1{3,})", r"\1", t)
If the same character is present 4+ times (not 3 because of roman 'VIII'), replace with single instance
717
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def remove_urls(t): return re.sub(r"http\S+", "", t)
null
718
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def remove_html_tags(t): return re.sub("<[^<]+?>", " ", t)
null
719
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def remove_first_last_commas(t): t = t.strip() t = t[:-1] if t and t[-1] == "," else t t = t[1:] if t and t[0] == "," else t return t.strip()
null
720
import html import math import random import re from pathlib import Path import emoji import ftfy from huggingface_hub import hf_hub_download from unidecode import unidecode def remove_wiki_ref(t): t = re.sub(r"\A\s*\[\d+\]", "", t) return re.sub(r"\[\d+\]\s*\Z", "", t)
null
721
import math from functools import partial from typing import Any, Dict, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp from einops import rearrange from flax.core.frozen_dict import unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.linear import PrecisionLike from flax.traverse_util import flatten_dict, unflatten_dict from jax import custom_jvp, lax from jax.random import PRNGKey from transformers.modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, ) from transformers.modeling_flax_utils import ACT2FN from transformers.models.bart.modeling_flax_bart import ( FlaxBartAttention, FlaxBartForConditionalGeneration, FlaxBartForConditionalGenerationModule, FlaxBartModule, ) from transformers.utils import ModelOutput, logging from .configuration import DalleBartConfig from .utils import PretrainedFromWandbMixin The provided code snippet includes necessary dependencies for implementing the `smelu` function. Write a Python function `def smelu(beta: Any = 1.0)` to solve the following problem: Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" https://arxiv.org/abs/2202.06499 Here is the function: def smelu(beta: Any = 1.0): """ Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" https://arxiv.org/abs/2202.06499 """ @custom_jvp @jax.jit def _smelu(x: Any) -> Any: x = jnp.where(x <= -beta, 0.0, x) return jnp.where(x >= beta, x, jnp.square(x + beta) / (4 * beta)) _smelu.defjvps( lambda g, ans, x: lax.select( x == -beta, lax.full_like(g, 0), lax.select(x == beta, lax.full_like(g, 1), g), ) ) return _smelu
Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" https://arxiv.org/abs/2202.06499
722
import math from functools import partial from typing import Any, Dict, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp from einops import rearrange from flax.core.frozen_dict import unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.linear import PrecisionLike from flax.traverse_util import flatten_dict, unflatten_dict from jax import custom_jvp, lax from jax.random import PRNGKey from transformers.modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, ) from transformers.modeling_flax_utils import ACT2FN from transformers.models.bart.modeling_flax_bart import ( FlaxBartAttention, FlaxBartForConditionalGeneration, FlaxBartForConditionalGenerationModule, FlaxBartModule, ) from transformers.utils import ModelOutput, logging from .configuration import DalleBartConfig from .utils import PretrainedFromWandbMixin def deepnet_init(init_std, gain=1): init = jax.nn.initializers.normal(init_std) def _init(*args, **kwargs): return gain * init(*args, **kwargs) return _init
null
723
import math from functools import partial from typing import Any, Dict, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp from einops import rearrange from flax.core.frozen_dict import unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.linear import PrecisionLike from flax.traverse_util import flatten_dict, unflatten_dict from jax import custom_jvp, lax from jax.random import PRNGKey from transformers.modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, ) from transformers.modeling_flax_utils import ACT2FN from transformers.models.bart.modeling_flax_bart import ( FlaxBartAttention, FlaxBartForConditionalGeneration, FlaxBartForConditionalGenerationModule, FlaxBartModule, ) from transformers.utils import ModelOutput, logging from .configuration import DalleBartConfig from .utils import PretrainedFromWandbMixin class RMSNorm(nn.Module): """ From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 Adapted from flax.linen.LayerNorm """ epsilon: float = 1e-6 dtype: Any = jnp.float32 param_dtype: Any = jnp.float32 use_scale: bool = True scale_init: Any = jax.nn.initializers.ones def __call__(self, x): reduction_axes = (-1,) feature_axes = (-1,) rms_sq = self._compute_rms_sq(x, reduction_axes) return self._normalize( self, x, rms_sq, reduction_axes, feature_axes, self.dtype, self.param_dtype, self.epsilon, self.use_scale, self.scale_init, ) def _compute_rms_sq(self, x, axes): x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) rms_sq = jnp.mean(jax.lax.square(x), axes) return rms_sq def _normalize( self, mdl, x, rms_sq, reduction_axes, feature_axes, dtype, param_dtype, epsilon, use_scale, scale_init, ): reduction_axes = nn.normalization._canonicalize_axes(x.ndim, reduction_axes) feature_axes = nn.normalization._canonicalize_axes(x.ndim, feature_axes) stats_shape = list(x.shape) for axis in reduction_axes: stats_shape[axis] = 1 rms_sq = rms_sq.reshape(stats_shape) feature_shape = [1] * x.ndim reduced_feature_shape = [] for ax in feature_axes: feature_shape[ax] = x.shape[ax] reduced_feature_shape.append(x.shape[ax]) mul = lax.rsqrt(rms_sq + epsilon) if use_scale: scale = mdl.param( "scale", scale_init, reduced_feature_shape, param_dtype ).reshape(feature_shape) mul *= scale y = mul * x return jnp.asarray(y, dtype) def norm(type, *args, **kwargs): if type == "rmsnorm": return RMSNorm(*args, **kwargs) elif type == "layernorm": return nn.LayerNorm(*args, **kwargs) else: raise ValueError(f"Unknown norm type {type}")
null
724
import math from functools import partial from typing import Any, Dict, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp from einops import rearrange from flax.core.frozen_dict import unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.linear import PrecisionLike from flax.traverse_util import flatten_dict, unflatten_dict from jax import custom_jvp, lax from jax.random import PRNGKey from transformers.modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, ) from transformers.modeling_flax_utils import ACT2FN from transformers.models.bart.modeling_flax_bart import ( FlaxBartAttention, FlaxBartForConditionalGeneration, FlaxBartForConditionalGenerationModule, FlaxBartModule, ) from transformers.utils import ModelOutput, logging from .configuration import DalleBartConfig from .utils import PretrainedFromWandbMixin The provided code snippet includes necessary dependencies for implementing the `dot_product_attention_weights` function. Write a Python function `def dot_product_attention_weights( query: Any, key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, tau=None, )` to solve the following problem: Computes dot-product attention weights given query and key. mask is included into the bias. Adapted from flax.linen.attention.dot_product_attention_weights" Here is the function: def dot_product_attention_weights( query: Any, key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, tau=None, ): """ Computes dot-product attention weights given query and key. mask is included into the bias. Adapted from flax.linen.attention.dot_product_attention_weights" """ assert query.ndim == key.ndim, "q, k must have same rank." assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." assert query.shape[-1] == key.shape[-1], "q, k depths must match." # attn weight shape is (batch..., num_heads, q_length, kv_length) attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) # divide by tau (used in Swin v2) if tau is not None: attn_weights = attn_weights / tau else: depth = query.shape[-1] attn_weights = attn_weights / jnp.sqrt(depth).astype(dtype) # apply attention bias: masking, dropout, proximity bias, etc. if bias is not None: attn_weights = attn_weights + bias # add relative position if embed_pos is not None: attn_weights = attn_weights + embed_pos # normalize the attention weights if not is_encoder or sinkhorn_iters == 1: # sinkhorn does not work for causal (leaks info of future tokens into past) attn_weights = jax.nn.softmax(attn_weights).astype(dtype) else: # adapted from https://github.com/lucidrains/sinkhorn-transformer for i in range(sinkhorn_iters): # when causal, some attn_weights have been set to -inf through bias if i % 2 == 0: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) else: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) if mask is not None: attn_weights = jnp.where(mask, attn_weights, -jnp.inf) attn_weights = jnp.exp(attn_weights).astype(dtype) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
Computes dot-product attention weights given query and key. mask is included into the bias. Adapted from flax.linen.attention.dot_product_attention_weights"
725
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P _unmatched = object() def _replacement_rules(rules): def replace(key, val): for rule, replacement in rules: if _match(rule, key): return replacement return val return replace def _get_partition_rules(): return [ # embeddings (("embed_positions", "embedding"), P("mp", None)), (("embed_tokens", "embedding"), P("mp", None)), (("rel_bias", "embedding"), P(None, "mp")), # attention (("(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), (("out_proj", "kernel"), P("mp", None)), # FFN (("Dense_0", "kernel"), P(None, "mp")), (("GLU.*", "Dense_1", "kernel"), P(None, "mp")), (("GLU.*", "Dense_2", "kernel"), P("mp", None)), (("FFN.*", "Dense_1", "kernel"), P("mp", None)), # layer norms (("(bias|scale)",), None), (("lm_head", "kernel"), P(None, "mp")), # head scale and tau (("(head_scale|tau)",), None), ] def set_partitions(in_dict, use_scan): rules = _get_partition_rules() replace = _replacement_rules(rules) initd = {k: _unmatched for k in flatten_dict(in_dict)} result = {k: replace(k, v) for k, v in initd.items()} for k, v in result.items(): if v == _unmatched: print(f"Unmatched -> {k}") l = list(result.keys()) if use_scan: # add None dimension to layers result = { k: (P(*(None,) + v) if v is not None else None) if any(x in k for x in ["FlaxBartEncoderLayers", "FlaxBartDecoderLayers"]) else v for k, v in result.items() } assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(result))
null
726
import base64 from io import BytesIO import requests from PIL import Image class ServiceError(Exception): def __init__(self, status_code): def get_model_version(url): r = requests.get(url) if r.status_code == 200: version = r.json()["version"] return version else: raise ServiceError(r.status_code)
null
727
import os import gradio as gr from backend import get_images_from_backend backend_url = os.environ["BACKEND_SERVER"] + "/generate" def get_images_from_backend(prompt, backend_url): def infer(prompt): response = get_images_from_backend(prompt, backend_url) return response["images"]
null
728
import base64 from io import BytesIO import requests from PIL import Image class ServiceError(Exception): def __init__(self, status_code): self.status_code = status_code def get_images_from_backend(prompt, backend_url): r = requests.post(backend_url, json={"prompt": prompt}) if r.status_code == 200: json = r.json() images = json["images"] images = [Image.open(BytesIO(base64.b64decode(img))) for img in images] version = json.get("version", "unknown") return {"images": images, "version": version} else: raise ServiceError(r.status_code)
null
729
import base64 from io import BytesIO import requests from PIL import Image class ServiceError(Exception): def __init__(self, status_code): self.status_code = status_code def get_model_version(url): r = requests.get(url) if r.status_code == 200: version = r.json()["version"] return version else: raise ServiceError(r.status_code)
null
730
import io import logging import os import sys import tempfile import time from dataclasses import asdict, dataclass, field from functools import partial from pathlib import Path from typing import Any, Callable, NamedTuple, Optional import datasets import flax import jax import jax.numpy as jnp import jaxlib import numpy as np import optax import transformers import wandb from datasets import Dataset from flax import core, struct, traverse_util from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.serialization import from_bytes, to_bytes from flax.training.common_utils import onehot from jax.experimental import PartitionSpec, maps from jax.experimental.compilation_cache import compilation_cache as cc from jax.experimental.pjit import pjit, with_sharding_constraint from scalable_shampoo.distributed_shampoo import GraftingType, distributed_shampoo from tqdm import tqdm from transformers import HfArgumentParser import dalle_mini from dalle_mini.data import Dataset from dalle_mini.model import ( DalleBart, DalleBartConfig, DalleBartTokenizer, set_partitions, ) The provided code snippet includes necessary dependencies for implementing the `split_params` function. Write a Python function `def split_params(data)` to solve the following problem: Split params between scanned and non-scanned Here is the function: def split_params(data): """Split params between scanned and non-scanned""" flat = traverse_util.flatten_dict(unfreeze(data)) split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} for k, v in flat.items(): if "FlaxBartEncoderLayers" in k: split["scanned_encoder"][k] = v elif "FlaxBartDecoderLayers" in k: split["scanned_decoder"][k] = v else: split["standard"][k] = v # remove empty keys split = {k: v for k, v in split.items() if v} for k, v in split.items(): split[k] = freeze(traverse_util.unflatten_dict(v)) return split
Split params between scanned and non-scanned
731
import io import logging import os import sys import tempfile import time from dataclasses import asdict, dataclass, field from functools import partial from pathlib import Path from typing import Any, Callable, NamedTuple, Optional import datasets import flax import jax import jax.numpy as jnp import jaxlib import numpy as np import optax import transformers import wandb from datasets import Dataset from flax import core, struct, traverse_util from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.serialization import from_bytes, to_bytes from flax.training.common_utils import onehot from jax.experimental import PartitionSpec, maps from jax.experimental.compilation_cache import compilation_cache as cc from jax.experimental.pjit import pjit, with_sharding_constraint from scalable_shampoo.distributed_shampoo import GraftingType, distributed_shampoo from tqdm import tqdm from transformers import HfArgumentParser import dalle_mini from dalle_mini.data import Dataset from dalle_mini.model import ( DalleBart, DalleBartConfig, DalleBartTokenizer, set_partitions, ) def unsplit_params(data): flat = {} for k in ["standard", "scanned_encoder", "scanned_decoder"]: if k in data: flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) return freeze(traverse_util.unflatten_dict(flat))
null
732
import io import logging import os import sys import tempfile import time from dataclasses import asdict, dataclass, field from functools import partial from pathlib import Path from typing import Any, Callable, NamedTuple, Optional import datasets import flax import jax import jax.numpy as jnp import jaxlib import numpy as np import optax import transformers import wandb from datasets import Dataset from flax import core, struct, traverse_util from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.serialization import from_bytes, to_bytes from flax.training.common_utils import onehot from jax.experimental import PartitionSpec, maps from jax.experimental.compilation_cache import compilation_cache as cc from jax.experimental.pjit import pjit, with_sharding_constraint from scalable_shampoo.distributed_shampoo import GraftingType, distributed_shampoo from tqdm import tqdm from transformers import HfArgumentParser import dalle_mini from dalle_mini.data import Dataset from dalle_mini.model import ( DalleBart, DalleBartConfig, DalleBartTokenizer, set_partitions, ) The provided code snippet includes necessary dependencies for implementing the `trainable_params` function. Write a Python function `def trainable_params(data, embeddings_only)` to solve the following problem: Keep only trainable parameters Here is the function: def trainable_params(data, embeddings_only): """Keep only trainable parameters""" if not embeddings_only: return data data = unfreeze(data) trainable = { "lm_head": data["lm_head"], "model": { "decoder": { layer: data["model"]["decoder"][layer] for layer in [ "embed_positions", "embed_tokens", "final_ln", "layernorm_embedding", ] } }, } return freeze(trainable)
Keep only trainable parameters
733
import io import logging import os import sys import tempfile import time from dataclasses import asdict, dataclass, field from functools import partial from pathlib import Path from typing import Any, Callable, NamedTuple, Optional import datasets import flax import jax import jax.numpy as jnp import jaxlib import numpy as np import optax import transformers import wandb from datasets import Dataset from flax import core, struct, traverse_util from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.serialization import from_bytes, to_bytes from flax.training.common_utils import onehot from jax.experimental import PartitionSpec, maps from jax.experimental.compilation_cache import compilation_cache as cc from jax.experimental.pjit import pjit, with_sharding_constraint from scalable_shampoo.distributed_shampoo import GraftingType, distributed_shampoo from tqdm import tqdm from transformers import HfArgumentParser import dalle_mini from dalle_mini.data import Dataset from dalle_mini.model import ( DalleBart, DalleBartConfig, DalleBartTokenizer, set_partitions, ) The provided code snippet includes necessary dependencies for implementing the `init_embeddings` function. Write a Python function `def init_embeddings(model, params)` to solve the following problem: Reinitialize trainable embeddings Here is the function: def init_embeddings(model, params): """Reinitialize trainable embeddings""" # Must match params in trainable_params() above trainable_keypaths = [ "lm_head.kernel", "model.decoder.embed_positions.embedding", "model.decoder.embed_tokens.embedding", "model.decoder.final_ln.bias", "model.decoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.scale", ] # Note: using private _missing_keys init_keys = {tuple(k.split(".")) for k in trainable_keypaths} model._missing_keys = init_keys return model.init_weights(model.key, model.input_shape, params=params)
Reinitialize trainable embeddings
734
import functools from typing import Any, List, Optional, Sequence, Union import jax import jax.numpy as jnp import numpy as np from flax import struct from jax import lax def sliced_transposed_product( mat, block_size, axes=(-1,), precision=lax.Precision.DEFAULT, ): """Returns the blocked slices representing a symmetric contraction. Specifically, the output is a contraction of the input mat with itself, in the specified axes. Args: mat: The matrix for which we will compute a contraction with itself. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ rank = len(mat.shape) def _make_axis_positive(ax): assert -rank <= ax < rank return ax + rank if ax < 0 else ax positive_axes = [_make_axis_positive(ax) for ax in axes] assert len(positive_axes) == len(axes) remaining_axes = set(range(rank)) - set(positive_axes) assert len(remaining_axes) == 1 remaining_ax = remaining_axes.pop() num_rows = mat.shape[remaining_ax] if num_rows % block_size != 0: raise ValueError( "The row dimension must be divisible by block_size. " f"Instead got row dimension={num_rows} and block_size={block_size}." ) block_rows = [] for i in range(num_rows // block_size): start_indices = [0] * rank start_indices[remaining_ax] = i * block_size slice_sizes = list(mat.shape) slice_sizes[remaining_ax] = block_size slice_sizes_full = list(mat.shape) slice_sizes_full[remaining_ax] = (i + 1) * block_size block_rows.append( product_with_transpose( lax.dynamic_slice( mat, start_indices=start_indices, slice_sizes=slice_sizes ), lax.dynamic_slice( mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full ), axes=(axes, axes), precision=precision, ) ) return SlicedSymmetricMatrix(block_rows=block_rows) The provided code snippet includes necessary dependencies for implementing the `sliced_transposed_product_concat` function. Write a Python function `def sliced_transposed_product_concat( mat, block_size, axes=(-1,), precision=lax.Precision.DEFAULT, )` to solve the following problem: Returns the concatenated slices representing mat*mat^T. Args: mat: The matrix for which we will compute mat*mat^T. It does not need to be square, and may be batched. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. Here is the function: def sliced_transposed_product_concat( mat, block_size, axes=(-1,), precision=lax.Precision.DEFAULT, ): """Returns the concatenated slices representing mat*mat^T. Args: mat: The matrix for which we will compute mat*mat^T. It does not need to be square, and may be batched. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ sliced_symmetric_matrix = sliced_transposed_product( mat=mat, block_size=block_size, axes=axes, precision=precision ) return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
Returns the concatenated slices representing mat*mat^T. Args: mat: The matrix for which we will compute mat*mat^T. It does not need to be square, and may be batched. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat.
735
import functools from typing import Any, List, Optional, Sequence, Union import jax import jax.numpy as jnp import numpy as np from flax import struct from jax import lax class SlicedSymmetricMatrix: """A symmetric matrix represented by lower-triangular block row slices. For example, the symmetric matrix M = [[a, b^T], [b, c]] would be represented by the block rows a and [b, c]. The matrix may be batched, in which case each entry of block_rows may have dimension greater than 2. The last two dimensions represent the rows and cols. """ block_rows: List[jnp.ndarray] def sliced_transposed_product( mat, block_size, axes=(-1,), precision=lax.Precision.DEFAULT, ): """Returns the blocked slices representing a symmetric contraction. Specifically, the output is a contraction of the input mat with itself, in the specified axes. Args: mat: The matrix for which we will compute a contraction with itself. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ rank = len(mat.shape) def _make_axis_positive(ax): assert -rank <= ax < rank return ax + rank if ax < 0 else ax positive_axes = [_make_axis_positive(ax) for ax in axes] assert len(positive_axes) == len(axes) remaining_axes = set(range(rank)) - set(positive_axes) assert len(remaining_axes) == 1 remaining_ax = remaining_axes.pop() num_rows = mat.shape[remaining_ax] if num_rows % block_size != 0: raise ValueError( "The row dimension must be divisible by block_size. " f"Instead got row dimension={num_rows} and block_size={block_size}." ) block_rows = [] for i in range(num_rows // block_size): start_indices = [0] * rank start_indices[remaining_ax] = i * block_size slice_sizes = list(mat.shape) slice_sizes[remaining_ax] = block_size slice_sizes_full = list(mat.shape) slice_sizes_full[remaining_ax] = (i + 1) * block_size block_rows.append( product_with_transpose( lax.dynamic_slice( mat, start_indices=start_indices, slice_sizes=slice_sizes ), lax.dynamic_slice( mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full ), axes=(axes, axes), precision=precision, ) ) return SlicedSymmetricMatrix(block_rows=block_rows) The provided code snippet includes necessary dependencies for implementing the `update_sliced_rows` function. Write a Python function `def update_sliced_rows( symmetric_matrix, mat, alpha, beta, axes=(-1,), )` to solve the following problem: Implements the blocked equivalent of SYRK. Specifically, the symmetric matrix (represented using lower-triangular block rows) is updated using the sliced product of mat. Args: symmetric_matrix: The symmetric matrix to update. mat: The matrix to use for the update = mat * mat^T. The number of rows should match that of symmetric_matrix. alpha: The weight for the update. beta: The weight for the original symmetric matrix. axes: Axes to use for the contraction of the update. Returns: The updated rows of alpha * mat * mat^T + beta * symmetric_matrix. Here is the function: def update_sliced_rows( symmetric_matrix, mat, alpha, beta, axes=(-1,), ): """Implements the blocked equivalent of SYRK. Specifically, the symmetric matrix (represented using lower-triangular block rows) is updated using the sliced product of mat. Args: symmetric_matrix: The symmetric matrix to update. mat: The matrix to use for the update = mat * mat^T. The number of rows should match that of symmetric_matrix. alpha: The weight for the update. beta: The weight for the original symmetric matrix. axes: Axes to use for the contraction of the update. Returns: The updated rows of alpha * mat * mat^T + beta * symmetric_matrix. """ block_size = symmetric_matrix.block_rows[0].shape[-2] sym_prod = sliced_transposed_product(mat=mat, block_size=block_size, axes=axes) return SlicedSymmetricMatrix( block_rows=[ update * alpha + row * beta for update, row in zip(sym_prod.block_rows, symmetric_matrix.block_rows) ] )
Implements the blocked equivalent of SYRK. Specifically, the symmetric matrix (represented using lower-triangular block rows) is updated using the sliced product of mat. Args: symmetric_matrix: The symmetric matrix to update. mat: The matrix to use for the update = mat * mat^T. The number of rows should match that of symmetric_matrix. alpha: The weight for the update. beta: The weight for the original symmetric matrix. axes: Axes to use for the contraction of the update. Returns: The updated rows of alpha * mat * mat^T + beta * symmetric_matrix.
736
import functools from typing import Any, List, Optional, Sequence, Union import jax import jax.numpy as jnp import numpy as np from flax import struct from jax import lax def slice_symmetric_matrix( mat, block_size, ): """Returns sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices. """ num_rows = mat.shape[-2] num_cols = mat.shape[-1] if num_rows != num_cols: raise ValueError("mat is not square.") if num_rows % block_size != 0: raise ValueError( f"block size does not evenly divide rows. num_rows={num_rows}, block_size={block_size}" ) return SlicedSymmetricMatrix( block_rows=[ mat[ Ellipsis, i * block_size : (i + 1) * block_size, 0 : (i + 1) * block_size, ] for i in range(num_rows // block_size) ] ) The provided code snippet includes necessary dependencies for implementing the `slice_symmetric_matrix_concat` function. Write a Python function `def slice_symmetric_matrix_concat( mat, block_size, )` to solve the following problem: Returns the concatenated sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices. Here is the function: def slice_symmetric_matrix_concat( mat, block_size, ): """Returns the concatenated sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices. """ sliced_symmetric_matrix = slice_symmetric_matrix(mat=mat, block_size=block_size) return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
Returns the concatenated sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices.
737
import functools from typing import Any, List, Optional, Sequence, Union import jax import jax.numpy as jnp import numpy as np from flax import struct from jax import lax def num_blocks_from_total_blocks(total_blocks): """Returns the number of blocks (i.e. block rows) from the total blocks. This is the inverse of the function x -> x*(x+1)/2. For example, the matrix M = [[A, B^T], [B, C]] may be represented using a total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2. Args: total_blocks: The total blocks used to represent the matrix. """ num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32) if (num_blocks * (num_blocks + 1)) / 2 != total_blocks: raise ValueError( f"total_blocks={total_blocks} does not correspond to " "a symmetric matrix. It must have the form total_blocks = x*(x+1)/2." ) return num_blocks The provided code snippet includes necessary dependencies for implementing the `sliced_matrix_diag` function. Write a Python function `def sliced_matrix_diag(mat)` to solve the following problem: Returns the diagonal of the symmetric matrix. Args: mat: The symmetric matrix represented in concatenated block form. Here is the function: def sliced_matrix_diag(mat): """Returns the diagonal of the symmetric matrix. Args: mat: The symmetric matrix represented in concatenated block form. """ rows, cols = mat.shape total_blocks = cols // rows num_blocks = num_blocks_from_total_blocks(total_blocks) diags = [] for i in range(num_blocks): last_index = rows * ((i + 2) * (i + 1)) // 2 first_index = last_index - rows diags.append(jnp.diag(mat[Ellipsis, first_index:last_index])) return jnp.concatenate(diags, axis=-1)
Returns the diagonal of the symmetric matrix. Args: mat: The symmetric matrix represented in concatenated block form.
738
import functools from typing import Any, List, Optional, Sequence, Union import jax import jax.numpy as jnp import numpy as np from flax import struct from jax import lax The provided code snippet includes necessary dependencies for implementing the `diag_as_concat` function. Write a Python function `def diag_as_concat(diag, block_size)` to solve the following problem: Returns the representation of a diagonal matrix in symmetric block form. Args: diag: The 1D array for the diagonals. block_size: The size of blocks to use. Must divide the length of diag. Here is the function: def diag_as_concat(diag, block_size): """Returns the representation of a diagonal matrix in symmetric block form. Args: diag: The 1D array for the diagonals. block_size: The size of blocks to use. Must divide the length of diag. """ assert len(diag.shape) == 1 # diag must be 1D. assert len(diag) % block_size == 0 num_diag_blocks = len(diag) // block_size blocks = [] for i in range(num_diag_blocks): blocks.append(jnp.zeros(shape=(block_size, block_size * i), dtype=diag.dtype)) blocks.append(jnp.diag(diag[i * block_size : (i + 1) * block_size])) return jnp.concatenate(blocks, axis=-1)
Returns the representation of a diagonal matrix in symmetric block form. Args: diag: The 1D array for the diagonals. block_size: The size of blocks to use. Must divide the length of diag.
739
import functools from typing import Any, List, Optional, Sequence, Union import jax import jax.numpy as jnp import numpy as np from flax import struct from jax import lax def num_blocks_from_total_blocks(total_blocks): """Returns the number of blocks (i.e. block rows) from the total blocks. This is the inverse of the function x -> x*(x+1)/2. For example, the matrix M = [[A, B^T], [B, C]] may be represented using a total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2. Args: total_blocks: The total blocks used to represent the matrix. """ num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32) if (num_blocks * (num_blocks + 1)) / 2 != total_blocks: raise ValueError( f"total_blocks={total_blocks} does not correspond to " "a symmetric matrix. It must have the form total_blocks = x*(x+1)/2." ) return num_blocks The provided code snippet includes necessary dependencies for implementing the `row_abs_maxes` function. Write a Python function `def row_abs_maxes(mat)` to solve the following problem: Returns the max of the absolute values of the rows of the full matrix. For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using mat = [1, 6, 2] with block_size = 1. In this case the function returns the aboslute row maxes of the original symmetric matrix, [6, 6]. Args: mat: The symmetric matrix represented as the concatenated blocks. Here is the function: def row_abs_maxes(mat): """Returns the max of the absolute values of the rows of the full matrix. For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using mat = [1, 6, 2] with block_size = 1. In this case the function returns the aboslute row maxes of the original symmetric matrix, [6, 6]. Args: mat: The symmetric matrix represented as the concatenated blocks. """ rows, cols = mat.shape # Find col and row max for each block. col_maxes = [] row_maxes = [] for i in range(cols // rows): block = jnp.abs(mat[Ellipsis, i * rows : (i + 1) * rows]) col_maxes.append(jnp.max(block, axis=1)) row_maxes.append(jnp.max(block, axis=0)) # global row max from block maxes. num_blocks = num_blocks_from_total_blocks(cols // rows) maxes = [] for i in range(num_blocks): maxes.append( jnp.concatenate( row_maxes[(i * (i + 1) // 2) : ((i + 2) * (i + 1) // 2)] + [ col_maxes[((j + 1) * (j + 2)) // 2 - (j - i + 1)] for j in range(i + 1, num_blocks) ], axis=-1, ) ) return jnp.max(jnp.stack(maxes), axis=0)
Returns the max of the absolute values of the rows of the full matrix. For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using mat = [1, 6, 2] with block_size = 1. In this case the function returns the aboslute row maxes of the original symmetric matrix, [6, 6]. Args: mat: The symmetric matrix represented as the concatenated blocks.
740
import functools from typing import Any, List, Optional, Sequence, Union import jax import jax.numpy as jnp import numpy as np from flax import struct from jax import lax def num_blocks_from_total_blocks(total_blocks): """Returns the number of blocks (i.e. block rows) from the total blocks. This is the inverse of the function x -> x*(x+1)/2. For example, the matrix M = [[A, B^T], [B, C]] may be represented using a total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2. Args: total_blocks: The total blocks used to represent the matrix. """ num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32) if (num_blocks * (num_blocks + 1)) / 2 != total_blocks: raise ValueError( f"total_blocks={total_blocks} does not correspond to " "a symmetric matrix. It must have the form total_blocks = x*(x+1)/2." ) return num_blocks The provided code snippet includes necessary dependencies for implementing the `times_vector` function. Write a Python function `def times_vector(mat, vec)` to solve the following problem: Returns the symmetric block-concatenated matrix multiplied by a vector. Specifically, each value in the vector is multiplied by a row of the full matrix. That is, the vector is broadcast and multiplied element-wise. Note this would be the transpose of full_mat * vec if full_mat represented the full symmetric matrix. Args: mat: The symmetric matrix represented as the concatenated blocks. vec: The vector, having the same dimension as the materialized matrix. Here is the function: def times_vector(mat, vec): """Returns the symmetric block-concatenated matrix multiplied by a vector. Specifically, each value in the vector is multiplied by a row of the full matrix. That is, the vector is broadcast and multiplied element-wise. Note this would be the transpose of full_mat * vec if full_mat represented the full symmetric matrix. Args: mat: The symmetric matrix represented as the concatenated blocks. vec: The vector, having the same dimension as the materialized matrix. """ rows, cols = mat.shape num_blocks = num_blocks_from_total_blocks(cols // rows) multiplied = [] for i in range(num_blocks): mat_block = mat[ Ellipsis, rows * ((i + 1) * i) // 2 : rows * ((i + 1) * (i + 2)) // 2 ] vec_block = vec[Ellipsis, rows * i : rows * (i + 1)] multiplied.append(jnp.einsum("...ij,...i->ij", mat_block, vec_block)) return jnp.concatenate(multiplied, axis=-1)
Returns the symmetric block-concatenated matrix multiplied by a vector. Specifically, each value in the vector is multiplied by a row of the full matrix. That is, the vector is broadcast and multiplied element-wise. Note this would be the transpose of full_mat * vec if full_mat represented the full symmetric matrix. Args: mat: The symmetric matrix represented as the concatenated blocks. vec: The vector, having the same dimension as the materialized matrix.
741
import functools from typing import Any, NamedTuple import chex import jax import jax.numpy as jnp import optax from .quantization_utils import QuantizedValue class SM3State(NamedTuple): count: chex.Array stats: Any class ParameterStats(NamedTuple): """State associated to each parameter of the model being trained.""" diagonal_statistics: chex.Array # Accumulator for diagonal preconditioner diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner class QuantizedValue: """State associated with quantized value.""" quantized: chex.Array diagonal: chex.Array # Diagonal (if extract_diagonal is set) bucket_size: chex.Array quantized_dtype: jnp.dtype = struct.field( pytree_node=False ) # Dtype for the quantized value. extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered. shape: Any = struct.field(pytree_node=False) # Shape of the tensor. def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): if isinstance(fvalue, list) and not fvalue: return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( fvalue, quantized_dtype, extract_diagonal ) return QuantizedValue( quantized, diagonal_fvalue, bucket_size, quantized_dtype, extract_diagonal, list(quantized.shape), ) # Quantization is from Lingvo JAX optimizers. # We extend it for int16 quantization of PSD matrices. def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False): """Returns quantized value and the bucket.""" if quantized_dtype == jnp.float32: return fvalue, [], [] elif quantized_dtype == jnp.bfloat16: return fvalue.astype(jnp.bfloat16), [], [] float_dtype = fvalue.dtype if quantized_dtype == jnp.int8: # value -128 is not used. num_buckets = jnp.array(127.0, dtype=float_dtype) elif quantized_dtype == jnp.int16: # value -32768 is not used. num_buckets = jnp.array(32767.0, dtype=float_dtype) else: raise ValueError(f"Quantized dtype {quantized_dtype} not supported.") # max value is mapped to num_buckets if extract_diagonal and fvalue.ndim != 2: raise ValueError( f"Input array {fvalue} must be 2D to work with extract_diagonal." ) diagonal_fvalue = [] if extract_diagonal: diagonal_fvalue = jnp.diag(fvalue) # Remove the diagonal entries. fvalue = fvalue - jnp.diag(diagonal_fvalue) # TODO(rohananil): Extend this by making use of information about the blocks # SM3 style which will be useful for diagonal statistics # We first decide the scale. if fvalue.ndim < 1: raise ValueError( f"Input array {fvalue} must have a strictly positive number of dimensions." ) max_abs = jnp.max(jnp.abs(fvalue), axis=0) bucket_size = max_abs / num_buckets bs_expanded = bucket_size[jnp.newaxis, Ellipsis] # To avoid divide by 0.0 bs_nonzero = jnp.where( bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded) ) ratio = fvalue / bs_nonzero # We use rounding to remove bias. quantized = jnp.round(ratio) return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size def to_float(self): """Returns the float value.""" if isinstance(self.quantized, list) and not self.quantized: return self.quantized if self.quantized_dtype == jnp.float32: return self.quantized if self.quantized_dtype == jnp.bfloat16: return self.quantized.astype(jnp.float32) float_dtype = self.bucket_size.dtype bucket_size = self.bucket_size[jnp.newaxis, Ellipsis] val = self.quantized.astype(float_dtype) * bucket_size if self.extract_diagonal: val += jnp.diag(self.diagonal) return val The provided code snippet includes necessary dependencies for implementing the `sm3` function. Write a Python function `def sm3( learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False )` to solve the following problem: SM3 optimizer. Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer https://arxiv.org/abs/1901.11150 Args: learning_rate: the step size used to update the parameters. beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for sm3 normalize_grads: Whether to normalize grads. Author finds it useful when grads are high variance. Returns: a GradientTransformation. Here is the function: def sm3( learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False ): """SM3 optimizer. Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer https://arxiv.org/abs/1901.11150 Args: learning_rate: the step size used to update the parameters. beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for sm3 normalize_grads: Whether to normalize grads. Author finds it useful when grads are high variance. Returns: a GradientTransformation. """ def _quantize_momentum(momentum_statistics): return QuantizedValue.from_float_value(momentum_statistics, jnp.int8) def init_fn(params): """Initialise the optimiser's state.""" def _init(param): accumulators = [jnp.zeros([s]) for s in param.shape] momentum = _quantize_momentum(jnp.zeros_like(param)) return ParameterStats(accumulators, momentum) return SM3State( count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params) ) def _get_expanded_shape(shape, i): rank = len(shape) # Replaces a `shape` of [M, N, K] with 1 in all dimensions except for i. # For eg: i = 1 returns [1, N, 1]. return [1] * i + [shape[i]] + [1] * (rank - i - 1) def _moving_averages(grad, accumulators): w = (1.0 - beta2) if beta2 != 1.0 else 1.0 if grad.ndim < 2: return beta2 * accumulators[0] + w * grad**2 else: min_accumulator = functools.reduce(jnp.minimum, accumulators) return beta2 * min_accumulator + w * grad**2 def _moving_averages_momentum(grad, momentum): w = (1.0 - beta1) if beta1 != 1.0 else 1.0 return beta1 * momentum.to_float() + w * grad def _sketch_diagonal_statistics(grad, updated_diagonal_statistics): all_diagonal_statistics = [] for i in range(grad.ndim): axes = list(range(i)) + list(range(i + 1, grad.ndim)) dim_diagonal_statistics = jnp.max(updated_diagonal_statistics, axis=axes) all_diagonal_statistics.append(dim_diagonal_statistics) if grad.ndim == 1: all_diagonal_statistics[0] = updated_diagonal_statistics return all_diagonal_statistics def update_fn(updates, state, params=None): del params stats = state.stats if normalize_grads: updates = jax.tree_map(lambda g: g / (jnp.linalg.norm(g) + 1e-16), updates) # Reshape all vectors into N-d tensors to compute min over them. # [n], [m] -> [n, 1], [1, m] expanded_diagonal_statistics = jax.tree_map( lambda grad, state: [ # pylint:disable=g-long-lambda jnp.reshape( state.diagonal_statistics[i], _get_expanded_shape(grad.shape, i) ) for i in range(grad.ndim) ], updates, stats, ) # Compute new diagonal statistics new_diagonal_statistics = jax.tree_map( _moving_averages, updates, expanded_diagonal_statistics ) # Compute preconditioners (1/sqrt(s)) where s is the statistics. new_preconditioners = jax.tree_map( lambda t: 1.0 / jnp.sqrt(t + diagonal_epsilon), new_diagonal_statistics ) preconditioned_grads = jax.tree_map( lambda g, p: g * p, updates, new_preconditioners ) # Compute updated momentum (also handle quantization) updated_momentum = jax.tree_map( lambda preconditioned_grad, state: _moving_averages_momentum( # pylint:disable=g-long-lambda preconditioned_grad, state.diagonal_momentum ), preconditioned_grads, stats, ) # Update diagonal statistics. updated_diagonal_statistics = jax.tree_map( _sketch_diagonal_statistics, updates, new_diagonal_statistics ) # Update momentum. new_sm3_stats = jax.tree_map( lambda momentum, diagonal_stats: ParameterStats( # pylint:disable=g-long-lambda diagonal_stats, _quantize_momentum(momentum) ), updated_momentum, updated_diagonal_statistics, ) lr = learning_rate if callable(learning_rate): lr = learning_rate(state.count) new_updates = jax.tree_map(lambda pg: -lr * pg, updated_momentum) return new_updates, SM3State(count=state.count + 1, stats=new_sm3_stats) return optax.GradientTransformation(init_fn, update_fn)
SM3 optimizer. Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer https://arxiv.org/abs/1901.11150 Args: learning_rate: the step size used to update the parameters. beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for sm3 normalize_grads: Whether to normalize grads. Author finds it useful when grads are high variance. Returns: a GradientTransformation.
742
import enum import functools import itertools from typing import Any, Callable, List, NamedTuple, Optional, Tuple, Union import chex import jax import jax.numpy as jnp import numpy as np import optax from absl import logging from flax import struct from jax import lax from jax.experimental import pjit from jax.experimental.sparse import linalg from .quantization_utils import QuantizedValue from .symmetric_matrices import symmetric_matrices The provided code snippet includes necessary dependencies for implementing the `merge_small_dims` function. Write a Python function `def merge_small_dims(shape_to_merge, max_dim)` to solve the following problem: Merge small dimensions. If there are some small dimensions, we collapse them: e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024 [1, 2, 768, 1, 2048] --> [2, 768, 2048] Args: shape_to_merge: Shape to merge small dimensions. max_dim: Maximal dimension of output shape used in merging. Returns: Merged shape. Here is the function: def merge_small_dims(shape_to_merge, max_dim): """Merge small dimensions. If there are some small dimensions, we collapse them: e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024 [1, 2, 768, 1, 2048] --> [2, 768, 2048] Args: shape_to_merge: Shape to merge small dimensions. max_dim: Maximal dimension of output shape used in merging. Returns: Merged shape. """ if shape_to_merge and np.all(np.array(shape_to_merge) == 1): return [1] resulting_shape = [] product = 1 for d in shape_to_merge: if product * d <= max_dim: product *= d else: if product > 1: resulting_shape.append(product) product = d if product > 1: resulting_shape.append(product) return resulting_shape
Merge small dimensions. If there are some small dimensions, we collapse them: e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024 [1, 2, 768, 1, 2048] --> [2, 768, 2048] Args: shape_to_merge: Shape to merge small dimensions. max_dim: Maximal dimension of output shape used in merging. Returns: Merged shape.
743
import enum import functools import itertools from typing import Any, Callable, List, NamedTuple, Optional, Tuple, Union import chex import jax import jax.numpy as jnp import numpy as np import optax from absl import logging from flax import struct from jax import lax from jax.experimental import pjit from jax.experimental.sparse import linalg from .quantization_utils import QuantizedValue from .symmetric_matrices import symmetric_matrices def pad_square_matrix(mat, max_size): """Pad a square matrix up to max_size. Args: mat: a matrix to pad. max_size: matrix size requested. Returns: Given M returns [[M, 0], [0, I]] """ rows, cols = mat.shape if rows != cols: raise ValueError( f"Must have rows == cols, instead got rows={rows}, cols={cols}" ) if cols > max_size: raise ValueError( f"Must have cols <= max_size. Instead got cols={cols}, max_size={max_size}." ) if rows == max_size: return mat pad_size = max_size - rows zs1 = jnp.zeros([rows, pad_size], dtype=mat.dtype) zs2 = jnp.zeros([pad_size, rows], dtype=mat.dtype) eye = jnp.eye(pad_size, dtype=mat.dtype) mat = jnp.concatenate([mat, zs1], 1) mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0) return mat def make_sliced_padding( symmetric_block_size, num_blocks, starting_block, dtype, ): """Returns padding for symmetric block matrix. Specifically, the padding is given concatenated rectangular matrices representing the lower-triangular rows below the starting block. For example, if we want to pad the symmetric matrix M = [[A, B^T] [B, C]], the desired output (in terms of the full matrix) with num_blocks = 4 is M_padded = [[A, B^T, 0, 0] [B, C, 0, 0] [0, 0, I, 0] 0, 0, 0, I]. We would represent M as the block matrix mat = [A, B, C]. In this form, the additional padding to provide has form [0, 0, I, 0, 0, 0, I] (only the lower triangular parts in the third and fourth rows). Args: symmetric_block_size: The size of each block. num_blocks: The total number of blocks. starting_block: The block where to start the padding. dtype: The type to use for the blocks. """ if starting_block == num_blocks: return jnp.zeros(shape=(symmetric_block_size, 0), dtype=dtype) blocks = [] for i in range(starting_block, num_blocks): blocks.append( jnp.zeros( shape=(symmetric_block_size, symmetric_block_size * i), dtype=dtype ) ) blocks.append(jnp.eye(symmetric_block_size, dtype=dtype)) return jnp.concatenate(blocks, axis=-1) The provided code snippet includes necessary dependencies for implementing the `pad_block_symmetric_matrix` function. Write a Python function `def pad_block_symmetric_matrix( mat, symmetric_block_size, max_num_blocks, )` to solve the following problem: Returns the padded blocked symmetric matrix. The size of the padded matrix will be: [symmetric_block_size, symmetric_block_size * max_num_blocks] The input matrix can either: - Be square with size less or equal to symmetric_block_size. In this case, mat will first be padded to a square matrix of size symmetric_block_size, and then be padded again up to the full size of the blocked matrix. - Be a rectangle with number of rows equal to block size. In this case, number of columns must be a multiple of number of rows, and the ratio must correspond to a block representation of a symmetric matrix. That is, the ratio must have form x * (x + 1) / 2. Here, x represents the number of block rows represented by the matrix. Args: mat: The input block matrix. symmetric_block_size: The size of blocks. max_num_blocks: The largest number of blocks to pad to. Here is the function: def pad_block_symmetric_matrix( mat, symmetric_block_size, max_num_blocks, ): """Returns the padded blocked symmetric matrix. The size of the padded matrix will be: [symmetric_block_size, symmetric_block_size * max_num_blocks] The input matrix can either: - Be square with size less or equal to symmetric_block_size. In this case, mat will first be padded to a square matrix of size symmetric_block_size, and then be padded again up to the full size of the blocked matrix. - Be a rectangle with number of rows equal to block size. In this case, number of columns must be a multiple of number of rows, and the ratio must correspond to a block representation of a symmetric matrix. That is, the ratio must have form x * (x + 1) / 2. Here, x represents the number of block rows represented by the matrix. Args: mat: The input block matrix. symmetric_block_size: The size of blocks. max_num_blocks: The largest number of blocks to pad to. """ rows, cols = mat.shape if rows > symmetric_block_size: raise ValueError( "Must have rows <= symmetric_block_size. Instead got " f"rows={rows}, symmetric_block_size={symmetric_block_size}." ) if rows > cols: raise ValueError( f"Must have rows <= cols, instead got rows={rows}, cols={cols}." ) if cols > symmetric_block_size * max_num_blocks: raise ValueError( "Must have cols <= symmetric_block_size * max_num_blocks " f"Instead got cols={cols}, " f"symmetric_block_size={symmetric_block_size}, " f"max_num_blocks={max_num_blocks}." ) if rows < symmetric_block_size: mat = pad_square_matrix(mat, max_size=symmetric_block_size) # Update rows and cols after possibly padding in pad_square_matrix. rows, cols = mat.shape assert rows == symmetric_block_size assert cols % rows == 0 filled_blocks = cols // rows padding_blocks = make_sliced_padding( symmetric_block_size=symmetric_block_size, num_blocks=symmetric_matrices.num_blocks_from_total_blocks(max_num_blocks), starting_block=symmetric_matrices.num_blocks_from_total_blocks(filled_blocks), dtype=mat.dtype, ) return jnp.concatenate([mat, padding_blocks], axis=-1)
Returns the padded blocked symmetric matrix. The size of the padded matrix will be: [symmetric_block_size, symmetric_block_size * max_num_blocks] The input matrix can either: - Be square with size less or equal to symmetric_block_size. In this case, mat will first be padded to a square matrix of size symmetric_block_size, and then be padded again up to the full size of the blocked matrix. - Be a rectangle with number of rows equal to block size. In this case, number of columns must be a multiple of number of rows, and the ratio must correspond to a block representation of a symmetric matrix. That is, the ratio must have form x * (x + 1) / 2. Here, x represents the number of block rows represented by the matrix. Args: mat: The input block matrix. symmetric_block_size: The size of blocks. max_num_blocks: The largest number of blocks to pad to.
744
import enum import functools import itertools from typing import Any, Callable, List, NamedTuple, Optional, Tuple, Union import chex import jax import jax.numpy as jnp import numpy as np import optax from absl import logging from flax import struct from jax import lax from jax.experimental import pjit from jax.experimental.sparse import linalg from .quantization_utils import QuantizedValue from .symmetric_matrices import symmetric_matrices The provided code snippet includes necessary dependencies for implementing the `gram_weighted_update` function. Write a Python function `def gram_weighted_update(old_stats, g, axis, w1, w2, precision=None)` to solve the following problem: Updated statistics via weighted average with new Gram matrix. Returns w₁ R + w₂ Gᵀ G where R is `old_stats` and G is the matrix whose columns are the flattened slices of the tensor `g` along the given `axis`. (So, `old_stats` and the returned matrix have dimensions n x n where n = `g.shape[axis]`). Args: old_stats: Old statistics. g: Gradient tensor. axis: Axis along which to slice `g`. w1: Scalar weight for old statistics. w2: Scalar weight for new Gram matrix. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: Weighted average of old and new statistics. Here is the function: def gram_weighted_update(old_stats, g, axis, w1, w2, precision=None): """Updated statistics via weighted average with new Gram matrix. Returns w₁ R + w₂ Gᵀ G where R is `old_stats` and G is the matrix whose columns are the flattened slices of the tensor `g` along the given `axis`. (So, `old_stats` and the returned matrix have dimensions n x n where n = `g.shape[axis]`). Args: old_stats: Old statistics. g: Gradient tensor. axis: Axis along which to slice `g`. w1: Scalar weight for old statistics. w2: Scalar weight for new Gram matrix. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: Weighted average of old and new statistics. """ axes = [i for i in range(g.ndim) if i != axis] gram_matrix = jnp.tensordot(g, g, axes=(axes, axes), precision=precision) return w1 * old_stats + w2 * gram_matrix
Updated statistics via weighted average with new Gram matrix. Returns w₁ R + w₂ Gᵀ G where R is `old_stats` and G is the matrix whose columns are the flattened slices of the tensor `g` along the given `axis`. (So, `old_stats` and the returned matrix have dimensions n x n where n = `g.shape[axis]`). Args: old_stats: Old statistics. g: Gradient tensor. axis: Axis along which to slice `g`. w1: Scalar weight for old statistics. w2: Scalar weight for new Gram matrix. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: Weighted average of old and new statistics.
745
import enum import functools import itertools from typing import Any, Callable, List, NamedTuple, Optional, Tuple, Union import chex import jax import jax.numpy as jnp import numpy as np import optax from absl import logging from flax import struct from jax import lax from jax.experimental import pjit from jax.experimental.sparse import linalg from .quantization_utils import QuantizedValue from .symmetric_matrices import symmetric_matrices class TrainingMetrics: inverse_pth_root_errors: chex.Array # Error for inverse-pth roots. # TODO(rohananil): Add more important metrics to track during training. class ParameterStats(NamedTuple): """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner statistics: List[Any] # Statistics (QuantizedValue, chex.Array) preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array) diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner training_metrics: TrainingMetrics # Metrics (optional for training). class GlobalShardedParameterStats: statistics: chex.Array # Statistics preconditioners: chex.Array # Preconditioners exponents: chex.Array # exponents class LocalShardedParameterStats: """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner training_metrics: TrainingMetrics # Metrics (optional for training). index_start: np.int32 = struct.field( pytree_node=False ) # Index into global statistics array sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics. def init_training_metrics(num_statistics): # Since the downstream apis expect a jnp.array - we create a dummy one if # num_statistics=0. if not num_statistics: return TrainingMetrics(jnp.array(0, jnp.float32)) else: return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32)) def init_training_metrics_shapes(num_statistics): # Since the downstream apis expect a jnp.array - we create a dummy one if # num_statistics=0. if not num_statistics: return TrainingMetrics([[], jnp.float32]) else: return TrainingMetrics([[num_statistics], jnp.float32]) def init_training_metrics_pspec(): return TrainingMetrics(pjit.PartitionSpec()) class ShardedShampooStats(NamedTuple): """Shampoo state in sharded mode.""" global_stats: Any local_stats: Any class ShampooState(NamedTuple): count: chex.Array stats: Any class InitFnState(NamedTuple): init_fn: Any pspec_fn: Any shape_and_dtype_fn: Any class GraftingType(enum.IntEnum): SGD = 1 ADAGRAD = 2 RMSPROP = 3 RMSPROP_NORMALIZED = 4 SQRT_N = 5 ADAGRAD_NORMALIZED = 6 class PreconditionerType(enum.IntEnum): # Default, computes preconditioner for each dim ALL = 1 # One sided Shampoo, in this cases only on input dim. # Assumes last dim is always the output dim and everything else input dim. INPUT = 2 def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, relative_matrix_epsilon=True, lobpcg_topk_precondition=0, lobpcg_max_iter=0, ): """Computes `matrix^(-1/p)`, where `p` is a positive integer. This function uses the Coupled newton iterations algorithm for the computation of a matrix's inverse pth root. References: [Functions of Matrices, Theory and Computation, Nicholas J Higham, Pg 184, Eq 7.18]( https://epubs.siam.org/doi/book/10.1137/1.9780898717778) Args: matrix: the symmetric PSD matrix whose power it to be computed p: exponent, for p a positive integer. num_iters: Maximum number of iterations. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. error_tolerance: Error indicator, useful for early termination. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Maximum iteration count for LOBPCG, defaults to `lobpcg_topk_precondition`. Returns: matrix^(-1/p) and the error """ # If the input is not square, materialize it from the concatenated form. if matrix.shape[0] != matrix.shape[1]: matrix = symmetric_matrices.materialize_matrix_from_concat(matrix) assert matrix.shape[0] == matrix.shape[1] # We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root. # Switch to f64 if you have hardware that supports it. Enable the jax flag # jax_enable_x64 for this to work. matrix_size = matrix.shape[0] orig_dtype = matrix.dtype matrix = matrix.astype(_MAT_INV_PTH_ROOT_DTYPE) alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE) identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE) original_matrix = matrix if lobpcg_topk_precondition > 0: # TODO(vladf): reuse previous top-k as the initial search directions pad_shape = (matrix_size - lobpcg_topk_precondition, lobpcg_topk_precondition) search_dirs = jnp.concatenate( (jnp.eye(lobpcg_topk_precondition), jnp.zeros(pad_shape)), axis=0 ) eigvals, eigvecs, actual_iters = linalg.lobpcg_standard( matrix, search_dirs, lobpcg_topk_precondition if lobpcg_max_iter == 0 else lobpcg_max_iter, ) del actual_iters # TODO(vladf): return diagnostics dictionary # The minimal eigenvalue among top-k becomes the maximal one in the whole # matrix after deflation. max_ev = jnp.min(eigvals) deflation = eigvals - max_ev scaled_vecs = eigvecs * jnp.sqrt(deflation) # Deflate out top eigenvectors to reduce matrix condition number. matrix -= scaled_vecs.dot(scaled_vecs.T, precision=jax.lax.Precision.HIGHEST) # Only use power iteration if lobpcg wasn't already used to derive the # top eigenvalue. elif relative_matrix_epsilon: _, max_ev = power_iteration( matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision ) eigvals, eigvecs = None, None # Unused but required by pytype. # Use absolute matrix epsilon scaling otherwise. else: max_ev = 1.0 eigvals, eigvecs = None, None # Unused but required by pytype. ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-6) def _iter_condition(state): (i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state error_above_threshold = jnp.logical_and(error > error_tolerance, run_step) return jnp.logical_and(i < num_iters, error_above_threshold) def _iter_body(state): (i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state mat_m_i = (1 - alpha) * identity + alpha * mat_m new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision) new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision) new_error = jnp.max(jnp.abs(new_mat_m - identity)) # sometimes error increases after an iteration before decreasing and # converging. 1.2 factor is used to bound the maximal allowed increase. return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error < error * 1.2) if matrix_size == 1: resultant_mat_h = (matrix + ridge_epsilon) ** alpha error = jnp.array(0, jnp.float32) else: damped_matrix = matrix + ridge_epsilon * identity z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix)) new_mat_m_0 = damped_matrix * z new_error = jnp.max(jnp.abs(new_mat_m_0 - identity)) new_mat_h_0 = identity * jnp.power(z, 1.0 / p) init_state = tuple([0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True]) _, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop( _iter_condition, _iter_body, init_state ) error = jnp.max(jnp.abs(mat_m - identity)).astype(jnp.float32) is_converged = jnp.asarray(convergence, old_mat_h.dtype) resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h resultant_mat_h = jnp.asarray(resultant_mat_h, orig_dtype) if lobpcg_topk_precondition > 0: # Since we deflated the top eigenvectors prior to p-th root inverse, # the resultant matrix has larger eigenvalues associated with those # same eigenvectors, which we need to now re-deflate. # # Note that _pth_root_difference returns positive values for this # particular argument ordering as min(eigvals) <= eigvals for the # jnp.sqrt below. pth_diff = _pth_root_difference(ridge_epsilon, jnp.min(eigvals), eigvals, p) scaled_vecs = eigvecs * jnp.sqrt(pth_diff) resultant_mat_h = ( resultant_mat_h.astype(scaled_vecs.dtype) - scaled_vecs.dot(scaled_vecs.T, precision=jax.lax.Precision.HIGHEST) ).astype(orig_dtype) mat_m = jnp.matmul( mat_power(resultant_mat_h, p), original_matrix, precision=jax.lax.Precision.HIGHEST, ) error = jnp.max(jnp.abs(mat_m - identity)).astype(jnp.float32) return resultant_mat_h, error def pad_square_matrix(mat, max_size): """Pad a square matrix up to max_size. Args: mat: a matrix to pad. max_size: matrix size requested. Returns: Given M returns [[M, 0], [0, I]] """ rows, cols = mat.shape if rows != cols: raise ValueError( f"Must have rows == cols, instead got rows={rows}, cols={cols}" ) if cols > max_size: raise ValueError( f"Must have cols <= max_size. Instead got cols={cols}, max_size={max_size}." ) if rows == max_size: return mat pad_size = max_size - rows zs1 = jnp.zeros([rows, pad_size], dtype=mat.dtype) zs2 = jnp.zeros([pad_size, rows], dtype=mat.dtype) eye = jnp.eye(pad_size, dtype=mat.dtype) mat = jnp.concatenate([mat, zs1], 1) mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0) return mat def pad_vector(vec, max_size): """Pad a vector to a max_size. Args: vec: a vector to pad. max_size: matrix size requested. Returns: Given V returns [V, 0] """ size = vec.shape[0] assert size <= max_size if size == max_size: return vec pad_size = max_size - size zs1 = jnp.zeros([pad_size], dtype=vec.dtype) return jnp.concatenate([vec, zs1], 0) def efficient_cond(predicate, compute_fn, init_state, *args, **kwargs): """Avoids wasteful buffer allocation with XLA.""" def _iter_body(unused_state): results = compute_fn(*args, **kwargs) return tuple([False] + list(results)) def _iter_condition(state): return state[0] results = jax.lax.while_loop( _iter_condition, _iter_body, tuple([predicate] + init_state) ) return tuple(results[1:]) class Preconditioner: """Compute statistics/shape from gradients for preconditioning.""" def __init__( self, param, block_size, merge_small_dims_block_size, best_effort_shape_interpretation, preconditioner_type=PreconditionerType.ALL, ): """Initializes the preconditioner. Args: param: parameter to precondition. block_size: Block size used to split param. merge_small_dims_block_size: Block size for merging dims. best_effort_shape_interpretation: Whether to collapse/merge dims together. preconditioner_type: Type of preconditioner to use. """ self._original_shape = param.shape self._transformed_shape = param.shape if best_effort_shape_interpretation: self._transformed_shape = merge_small_dims( self._original_shape, merge_small_dims_block_size ) reshaped_param = jnp.reshape(param, self._transformed_shape) self._partitioner = BlockPartitioner(reshaped_param, block_size) self._preconditioner_type = preconditioner_type def updated_statistics_from_grad( self, stats, grad, w1, w2, to_float=None, from_float=None, precision=None, ): """Update statistics from gradients. Args: stats: Old statistics or its Cholesky factor if `cholesky` is True. grad: Gradient to compute statistics from. w1: Weight for old statistics. w2: Weight for new statistics. to_float: Optional function for converting stats to floating point. from_float: Optional function for converting from floating point. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: A list of updated gradient statistics for each partition. """ to_float = to_float if to_float is not None else (lambda x: x) from_float = from_float if from_float is not None else (lambda x: x) update = functools.partial(gram_weighted_update, precision=precision) reshaped_grad = jnp.reshape(grad, self._transformed_shape) partitioned_grads = self._partitioner.partition(reshaped_grad) new_stats = [] index = 0 for g in partitioned_grads: should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) for axis in range(num_preconditioners): new_stat = update(to_float(stats[index]), g, axis, w1, w2) new_stats.append(from_float(new_stat)) index += 1 return new_stats def should_precondition_dims(self): """A vector containing indicator indicating if the dim is preconditioned.""" split_sizes = self._partitioner.split_sizes() rank = len(split_sizes) if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: return [True] * rank else: return [True] * (rank - 1) + [False] def shapes_for_preconditioners(self): """Returns shape from statistics.""" split_sizes = self._partitioner.split_sizes() rank = len(split_sizes) # We ignore preconditioner types if rank == 1 preconditioner_shapes = [] for t in itertools.product(*split_sizes): if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: preconditioner_shapes.extend([[d, d] for d in t]) else: preconditioner_shapes.extend([[d, d] for d in t[:-1]]) return preconditioner_shapes def exponent_for_preconditioner(self): """Returns exponent to use for inverse-pth root M^{-1/p}.""" should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) return 2 * num_preconditioners def preconditioned_grad(self, grad, preconditioners): """Precondition the gradient. Args: grad: A gradient tensor to precondition. preconditioners: A list of preconditioners to apply. Returns: A preconditioned gradient. """ reshaped_grad = jnp.reshape(grad, self._transformed_shape) partitioned_grads = self._partitioner.partition(reshaped_grad) preconditioned_partitioned_grads = [] for i, g in enumerate(partitioned_grads): should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) preconditioners_for_grad = preconditioners[ i * num_preconditioners : (i + 1) * num_preconditioners ] precond_g = g rank = len(g.shape) for j, precondition in enumerate(should_preconditioned_dims): if precondition: precond_g = jnp.tensordot( precond_g, preconditioners_for_grad[j], axes=[[0], [0]] ) else: precond_g = jnp.transpose(precond_g, axes=(*range(1, rank), 0)) preconditioned_partitioned_grads.append(precond_g) merged_grad = self._partitioner.merge_partitions( preconditioned_partitioned_grads ) return jnp.reshape(merged_grad, self._original_shape) def _convert_to_parameter_stats(global_stats, local_stat, convert_statistics=True): """Creates parameter stats from sharded stats.""" index_start = int(local_stat.index_start) index_end = int(len(local_stat.sizes)) + index_start statistics = global_stats.statistics[index_start:index_end, :, :] preconditioners = global_stats.preconditioners[index_start:index_end, :, :] new_statistics = [] new_preconditioners = [] for i, size in enumerate(local_stat.sizes): new_statistics.append(statistics[i][:size, :size]) new_preconditioners.append(preconditioners[i][:size, :size]) if not convert_statistics: new_statistics = None return ParameterStats( local_stat.diagonal_statistics, new_statistics, new_preconditioners, local_stat.diagonal_momentum, local_stat.momentum, local_stat.training_metrics, ) def _convert_from_parameter_stats(parameter_stats, local_stats): """Creates sharded stats from paramter stats.""" return LocalShardedParameterStats( parameter_stats.diagonal_statistics, parameter_stats.diagonal_momentum, parameter_stats.momentum, parameter_stats.training_metrics, local_stats.index_start, local_stats.sizes, ) def _add_error_into_local_stats(local_stats, errors, inverse_failure_threshold): """Adds errors back into local statistics.""" new_local_stats = [] for local_stat in local_stats: if local_stat.sizes: index_start = int(local_stat.index_start) index_end = int(len(local_stat.sizes)) + index_start per_stat_error = errors[index_start:index_end] else: per_stat_error = jnp.array(0, jnp.float32) if local_stat.sizes: per_stat_error = jnp.where( jnp.logical_and( per_stat_error > 0.0, per_stat_error != inverse_failure_threshold ), per_stat_error, local_stat.training_metrics.inverse_pth_root_errors, ) new_local_stats.append( LocalShardedParameterStats( local_stat.diagonal_statistics, local_stat.diagonal_momentum, local_stat.momentum, TrainingMetrics(per_stat_error), local_stat.index_start, local_stat.sizes, ) ) return new_local_stats def batch(x, num_devices): """Batch `x` so that so that leading axis is num_devices.""" n = len(x) b = int(n / num_devices) return jnp.stack([jnp.stack(x[idx : idx + b]) for idx in range(0, n, b)]) def unbatch(batched_values): """Unbatch values across leading axis and return a list of elements.""" b1, b2 = batched_values.shape[0], batched_values.shape[1] results = [] for v_array in jnp.split(batched_values, indices_or_sections=b1, axis=0): v_array = jnp.squeeze(v_array) # b2 = batches (number of preconditioner computation) per core. if b2 > 1: for v in jnp.split(v_array, indices_or_sections=b2, axis=0): results.append(jnp.squeeze(v)) else: results.append(v_array) return results class QuantizedValue: """State associated with quantized value.""" quantized: chex.Array diagonal: chex.Array # Diagonal (if extract_diagonal is set) bucket_size: chex.Array quantized_dtype: jnp.dtype = struct.field( pytree_node=False ) # Dtype for the quantized value. extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered. shape: Any = struct.field(pytree_node=False) # Shape of the tensor. def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): if isinstance(fvalue, list) and not fvalue: return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( fvalue, quantized_dtype, extract_diagonal ) return QuantizedValue( quantized, diagonal_fvalue, bucket_size, quantized_dtype, extract_diagonal, list(quantized.shape), ) # Quantization is from Lingvo JAX optimizers. # We extend it for int16 quantization of PSD matrices. def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False): """Returns quantized value and the bucket.""" if quantized_dtype == jnp.float32: return fvalue, [], [] elif quantized_dtype == jnp.bfloat16: return fvalue.astype(jnp.bfloat16), [], [] float_dtype = fvalue.dtype if quantized_dtype == jnp.int8: # value -128 is not used. num_buckets = jnp.array(127.0, dtype=float_dtype) elif quantized_dtype == jnp.int16: # value -32768 is not used. num_buckets = jnp.array(32767.0, dtype=float_dtype) else: raise ValueError(f"Quantized dtype {quantized_dtype} not supported.") # max value is mapped to num_buckets if extract_diagonal and fvalue.ndim != 2: raise ValueError( f"Input array {fvalue} must be 2D to work with extract_diagonal." ) diagonal_fvalue = [] if extract_diagonal: diagonal_fvalue = jnp.diag(fvalue) # Remove the diagonal entries. fvalue = fvalue - jnp.diag(diagonal_fvalue) # TODO(rohananil): Extend this by making use of information about the blocks # SM3 style which will be useful for diagonal statistics # We first decide the scale. if fvalue.ndim < 1: raise ValueError( f"Input array {fvalue} must have a strictly positive number of dimensions." ) max_abs = jnp.max(jnp.abs(fvalue), axis=0) bucket_size = max_abs / num_buckets bs_expanded = bucket_size[jnp.newaxis, Ellipsis] # To avoid divide by 0.0 bs_nonzero = jnp.where( bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded) ) ratio = fvalue / bs_nonzero # We use rounding to remove bias. quantized = jnp.round(ratio) return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size def to_float(self): """Returns the float value.""" if isinstance(self.quantized, list) and not self.quantized: return self.quantized if self.quantized_dtype == jnp.float32: return self.quantized if self.quantized_dtype == jnp.bfloat16: return self.quantized.astype(jnp.float32) float_dtype = self.bucket_size.dtype bucket_size = self.bucket_size[jnp.newaxis, Ellipsis] val = self.quantized.astype(float_dtype) * bucket_size if self.extract_diagonal: val += jnp.diag(self.diagonal) return val The provided code snippet includes necessary dependencies for implementing the `distributed_shampoo` function. Write a Python function `def distributed_shampoo( learning_rate, block_size, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, matrix_epsilon=1e-6, weight_decay=0.0, start_preconditioning_step=5, preconditioning_compute_steps=1, statistics_compute_steps=1, best_effort_shape_interpretation=True, graft_type=GraftingType.SGD, nesterov=True, exponent_override=0, # Pass pmap 'batch axis name' in pmap mode. batch_axis_name=None, ### Only set following 3 params in pjit/spmd mode. ### WARNING: Experimental statistics_partition_spec=None, preconditioner_partition_spec=None, num_devices_for_pjit=None, shard_optimizer_states=False, ### ### Experimental memory reduction mode best_effort_memory_usage_reduction=False, ### inverse_failure_threshold=0.1, moving_average_for_momentum=False, skip_preconditioning_dim_size_gt=4096, clip_by_scaled_gradient_norm=None, precision=lax.Precision.HIGHEST, tensordot_precision=None, relative_matrix_epsilon=True, merge_small_dims_block_size=4096, lobpcg_topk_precondition=0, lobpcg_max_iter=0, precondtioner_type=PreconditionerType.ALL, skip_preconditioning_rank_lt=1, decoupled_learning_rate=True, decoupled_weight_decay=False, )` to solve the following problem: Distributed Shampoo optimizer. Distributed Shampoo is a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that provides significant convergence and wall-clock time improvements compared to conventional first-order methods, and that has been shown to scale to large state-of-the-art deep learning models. References: Scalable Second Order Optimization for Deep Learning, Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer Preprint: https://arxiv.org/abs/2002.09018 Args: learning_rate: the step size used to update the parameters. block_size: Block size for large layers (if > 0). Preconditioning compute operation is cubic in the dimension of the tensor. Block size allows us to chunk the layers into sub-layers of maximal dimension dictated by this value. Use 128 as default (increase if you have compute budget). beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting to AdaGrad is enabled). matrix_epsilon: epsilon to add to statistics before computing inverse pth root. If you are running in f32 precision for inverse pth root (recommended today) this can go upto 1e-6. If you have latest hardware with native f64 precision, set this upto 1e-12. weight_decay: Weight decay for regularization. start_preconditioning_step: When to start Shampoo update before which diagonal update is used. This is because we dont have enough information to do stable inverse. preconditioning_compute_steps: How often to compute preconditioner. Performance tuning params for controlling memory and compute requirements. Ideally set this and statistics_compute_steps params to 1. statistics_compute_steps: How often to compute statistics. best_effort_shape_interpretation: If there are some small dimensions, collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048] graft_type: Grafting is a technique to fix the layerwise scale of Shampoo optimizer. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. nesterov: Nesterov momentum. exponent_override: Override the exponent used in matrix inverse. batch_axis_name: labeled axis over pmap for data-parallel training the optimizer used for. statistics_partition_spec: PartitionSpec to be used in sharded mode. preconditioner_partition_spec: PartitionSpec to be used in sharded mode. num_devices_for_pjit: Number of devices to parallelize over when using pjit. shard_optimizer_states: Shard optimizer states to save memory in model parallel training. best_effort_memory_usage_reduction: Best effort memory usage reduction. - diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 - statistics, preconditioners -> jnp.int16 + diagonals inverse_failure_threshold: numerics are hard and inverses fail sometimes; we determine that using this threshold. moving_average_for_momentum: Whether to use moving average for momentum instead of exponential moving average. skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is greater than this value. clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when using RMSProp Grafting). precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) tensordot_precision: Optional precision to use for the tensordot operation when computing statistics (e.g., G Gᵀ). Same options as `precision` above. relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. merge_small_dims_block_size: Used as the maximum block size to merge the shapes. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Number of LOBPCG iterations, if zero defaults to `lobpcg_topk_precondition`. precondtioner_type: Preconditioner type to select all, left only or right only preconditioners. skip_preconditioning_rank_lt: Skips preconditioning for parameters with rank less than this value. decoupled_learning_rate: If True, use decoupled learning rate, otherwise couple it with preconditioned gradient computation. (Default True) decoupled_weight_decay: If True, use decoupled weight decay, otherwise couple with weight decay. (Default False) Returns: a GradientTransformation. Here is the function: def distributed_shampoo( learning_rate, block_size, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, matrix_epsilon=1e-6, weight_decay=0.0, start_preconditioning_step=5, preconditioning_compute_steps=1, statistics_compute_steps=1, best_effort_shape_interpretation=True, graft_type=GraftingType.SGD, nesterov=True, exponent_override=0, # Pass pmap 'batch axis name' in pmap mode. batch_axis_name=None, ### Only set following 3 params in pjit/spmd mode. ### WARNING: Experimental statistics_partition_spec=None, preconditioner_partition_spec=None, num_devices_for_pjit=None, shard_optimizer_states=False, ### ### Experimental memory reduction mode best_effort_memory_usage_reduction=False, ### inverse_failure_threshold=0.1, moving_average_for_momentum=False, skip_preconditioning_dim_size_gt=4096, clip_by_scaled_gradient_norm=None, precision=lax.Precision.HIGHEST, tensordot_precision=None, relative_matrix_epsilon=True, merge_small_dims_block_size=4096, lobpcg_topk_precondition=0, lobpcg_max_iter=0, precondtioner_type=PreconditionerType.ALL, skip_preconditioning_rank_lt=1, decoupled_learning_rate=True, decoupled_weight_decay=False, ): """Distributed Shampoo optimizer. Distributed Shampoo is a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that provides significant convergence and wall-clock time improvements compared to conventional first-order methods, and that has been shown to scale to large state-of-the-art deep learning models. References: Scalable Second Order Optimization for Deep Learning, Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer Preprint: https://arxiv.org/abs/2002.09018 Args: learning_rate: the step size used to update the parameters. block_size: Block size for large layers (if > 0). Preconditioning compute operation is cubic in the dimension of the tensor. Block size allows us to chunk the layers into sub-layers of maximal dimension dictated by this value. Use 128 as default (increase if you have compute budget). beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting to AdaGrad is enabled). matrix_epsilon: epsilon to add to statistics before computing inverse pth root. If you are running in f32 precision for inverse pth root (recommended today) this can go upto 1e-6. If you have latest hardware with native f64 precision, set this upto 1e-12. weight_decay: Weight decay for regularization. start_preconditioning_step: When to start Shampoo update before which diagonal update is used. This is because we dont have enough information to do stable inverse. preconditioning_compute_steps: How often to compute preconditioner. Performance tuning params for controlling memory and compute requirements. Ideally set this and statistics_compute_steps params to 1. statistics_compute_steps: How often to compute statistics. best_effort_shape_interpretation: If there are some small dimensions, collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048] graft_type: Grafting is a technique to fix the layerwise scale of Shampoo optimizer. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. nesterov: Nesterov momentum. exponent_override: Override the exponent used in matrix inverse. batch_axis_name: labeled axis over pmap for data-parallel training the optimizer used for. statistics_partition_spec: PartitionSpec to be used in sharded mode. preconditioner_partition_spec: PartitionSpec to be used in sharded mode. num_devices_for_pjit: Number of devices to parallelize over when using pjit. shard_optimizer_states: Shard optimizer states to save memory in model parallel training. best_effort_memory_usage_reduction: Best effort memory usage reduction. - diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 - statistics, preconditioners -> jnp.int16 + diagonals inverse_failure_threshold: numerics are hard and inverses fail sometimes; we determine that using this threshold. moving_average_for_momentum: Whether to use moving average for momentum instead of exponential moving average. skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is greater than this value. clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when using RMSProp Grafting). precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) tensordot_precision: Optional precision to use for the tensordot operation when computing statistics (e.g., G Gᵀ). Same options as `precision` above. relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. merge_small_dims_block_size: Used as the maximum block size to merge the shapes. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Number of LOBPCG iterations, if zero defaults to `lobpcg_topk_precondition`. precondtioner_type: Preconditioner type to select all, left only or right only preconditioners. skip_preconditioning_rank_lt: Skips preconditioning for parameters with rank less than this value. decoupled_learning_rate: If True, use decoupled learning rate, otherwise couple it with preconditioned gradient computation. (Default True) decoupled_weight_decay: If True, use decoupled weight decay, otherwise couple with weight decay. (Default False) Returns: a GradientTransformation. """ def _graft_type_has_diagonal_statistics(): """Returns True if using diagonal firt order method for grafting.""" return graft_type != GraftingType.SGD and graft_type != GraftingType.SQRT_N def quantized_dtype_for_momentum_buffers(var): return ( jnp.int8 if best_effort_memory_usage_reduction and len(var.shape) > 1 else jnp.float32 ) # Preconditioner and statistics are both stores as int16 in this mode. # We take out the diagonal to make quantization easier. def quantized_dtype_for_second_moment_statistics_buffers(): return ( jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32 ) # Preconditioner and statistics are both stores as int16 in this mode. # We take out the diagonal to make quantization easier. def quantized_dtype_for_second_moment_preconditioner_buffers(): return ( jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32 ) def _to_float(maybe_quantized): if isinstance(maybe_quantized, QuantizedValue): return maybe_quantized.to_float() else: return maybe_quantized def _maybe_quantize_statistics(statistics_list): return _maybe_quantize_matrices_with_dtype( statistics_list, quantized_dtype_for_second_moment_statistics_buffers() ) def _maybe_quantize_preconditioners(statistics_list): return _maybe_quantize_matrices_with_dtype( statistics_list, quantized_dtype_for_second_moment_preconditioner_buffers() ) def _maybe_quantize_matrices_with_dtype(statistics_list, quantized_dtype): if quantized_dtype != jnp.float32: return [ QuantizedValue.from_float_value( s, quantized_dtype, extract_diagonal=True ) for s in statistics_list ] else: return statistics_list def _maybe_dequantize_preconditioners(preconditioner_list): return _maybe_dequantize_matrices_with_dtype( preconditioner_list, quantized_dtype_for_second_moment_preconditioner_buffers(), ) def _maybe_dequantize_matrices_with_dtype(statistics_list, quantized_dtype): if quantized_dtype != jnp.float32: return [s.to_float() for s in statistics_list] else: return statistics_list def _quantize_diagonal_statistics(diagonal_statistics): return QuantizedValue.from_float_value(diagonal_statistics, jnp.float32) def _quantize_momentum(momentum_statistics): return QuantizedValue.from_float_value( momentum_statistics, quantized_dtype_for_momentum_buffers(momentum_statistics), ) def preconditioner_from_params(param): """Returns a Preconditioner object for given param.""" return Preconditioner( param, block_size, merge_small_dims_block_size, best_effort_shape_interpretation, precondtioner_type, ) def sharded_init_fn(params): """Returns optimizer state (for PJIT mode). Args: params: the parameters that should be updated. """ params_flat, treedef = jax.tree_flatten(params) # Find max size to pad to. max_size = 0 for param in params_flat: preconditioner = preconditioner_from_params(param) if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() sizes = [s[0] for s in shapes] max_size = max(max(sizes), max_size) padded_statistics = [] padded_preconditioners = [] local_stats_flat = [] exponents = [] for param in params_flat: preconditioner = preconditioner_from_params(param) shapes = preconditioner.shapes_for_preconditioners() sizes = [] statistics = [] preconditioners = [] index_start = len(padded_statistics) if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(max_size, dtype=jnp.float32) for s in shapes ] preconditioners = [jnp.eye(max_size, dtype=jnp.float32) for s in shapes] padded_statistics.extend(statistics) padded_preconditioners.extend(preconditioners) exponent = ( preconditioner.exponent_for_preconditioner() if exponent_override == 0 else exponent_override ) exponents.extend([exponent] * len(shapes)) diagonal_statistics = _quantize_diagonal_statistics(jnp.zeros_like(param)) diagonal_momentum = _quantize_momentum(jnp.zeros_like(param)) momentum = _quantize_momentum(jnp.zeros_like(param)) local_stats_flat.append( LocalShardedParameterStats( diagonal_statistics, diagonal_momentum, momentum, init_training_metrics(len(sizes)), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) to_pad = -len(padded_statistics) % num_devices_for_pjit if max_size == 0: to_pad = num_devices_for_pjit max_size = block_size stat_dtype = jnp.float32 else: stat_dtype = padded_statistics[0].dtype # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) padded_preconditioners.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) global_stats = GlobalShardedParameterStats( jnp.stack(padded_statistics), jnp.stack(padded_preconditioners), jnp.stack(exponents), ) return ShampooState( count=jnp.zeros([], jnp.int32), stats=ShardedShampooStats(global_stats, local_stats), ) def _max_statistics_size_from_params(params): max_size = 0 for param in params: param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() sizes = [s[0] for s in shapes] max_size = max(max(sizes), max_size) return max_size def _remove_leading_sharding_annotation(pspec): """Mapping from N-d to (N-1)-d, used for quantization, factoring etc.""" # None and PSpec(None) are valid PSpecs. if pspec and len(pspec) > 1: return pjit.PartitionSpec(*pspec[1:]) else: return [] def sharded_init_partition_spec_fn( params, params_partition_spec, partition_spec_for_statistics ): """Returns a parallel state tree with PartitionSpec associated with state. Args: params: A pytree with params. params_partition_spec: A pytree with PartitionSpec for params. partition_spec_for_statistics: PartitionSpec for the statistics. """ # Parallel lists of spec, and params. param_pspec_flat, _ = jax.tree_flatten( params_partition_spec, is_leaf=lambda x: x is None ) params_flat, treedef = jax.tree_flatten(params) assert param_pspec_flat assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param, param_pspec in zip(params_flat, param_pspec_flat): param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_pspec = param_pspec m2_pspec = param_pspec m1_scale_pspec = [] m2_scale_pspec = [] if qdtype != jnp.float32: m1_scale_pspec = _remove_leading_sharding_annotation(m1_pspec) m2_scale_pspec = _remove_leading_sharding_annotation(m2_pspec) local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( param_pspec, [], [], jnp.float32, False, list(param.shape) ), QuantizedValue( m1_pspec, [], m1_scale_pspec, qdtype, False, list(param.shape) ), QuantizedValue( m2_pspec, [], m2_scale_pspec, qdtype, False, list(param.shape) ), init_training_metrics_pspec(), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) global_stats = GlobalShardedParameterStats( partition_spec_for_statistics, partition_spec_for_statistics, pjit.PartitionSpec(), ) count_pspec = pjit.PartitionSpec() return ShampooState( count=count_pspec, stats=ShardedShampooStats(global_stats, local_stats) ) def sharded_init_shape_and_dtype_fn(params): """Returns a parallel state tree with shape, dtype associated with state. Args: params: A pytree with params. """ # Parallel lists of spec, and params. params_flat, treedef = jax.tree_flatten(params) assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param in params_flat: param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_shape_and_dtype = [list(param.shape), param.dtype] m2_shape_and_dtype = [list(param.shape), param.dtype] m1_scale_shape_and_dtype = [] m2_scale_shape_and_dtype = [] if qdtype != jnp.float32: m1_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] m2_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] diagonal_statistics_shape_and_dtype = [list(param.shape), param.dtype] local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( diagonal_statistics_shape_and_dtype, [], [], jnp.float32, False, list(param.shape), ), QuantizedValue( m1_shape_and_dtype, [], m1_scale_shape_and_dtype, qdtype, False, list(param.shape), ), QuantizedValue( m2_shape_and_dtype, [], m2_scale_shape_and_dtype, qdtype, False, list(param.shape), ), init_training_metrics_shapes(len(sizes)), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) max_statistics_size = _max_statistics_size_from_params(params_flat) to_pad = -num_statistics % num_devices_for_pjit num_statistics += to_pad if num_statistics == 0: num_statistics = num_devices_for_pjit max_statistics_size = block_size statistics_shape = [num_statistics, max_statistics_size, max_statistics_size] global_stats = GlobalShardedParameterStats( [statistics_shape, jnp.float32], [statistics_shape, jnp.float32], [[num_statistics], jnp.int32], ) return ShampooState( count=[[], jnp.float32], stats=ShardedShampooStats(global_stats, local_stats), ) def sharded_update_fn(grads, state, params): """Transform the input gradient and update all statistics in sharded mode. Args: grads: the gradient tensors for the parameters. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ params_flat, treedef = jax.tree_flatten(params) grads_flat = treedef.flatten_up_to(grads) global_stats = state.stats.global_stats local_stats_flat = treedef.flatten_up_to(state.stats.local_stats) stats_flat = [ _convert_to_parameter_stats(global_stats, local_stat) for local_stat in local_stats_flat ] new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat, stats_flat, params_flat, ) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat, ) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_unflatten(treedef, updates_flat) # Create new local_stats new_local_stats_flat = [ _convert_from_parameter_stats(new_stat, local_stat) for new_stat, local_stat in zip(new_stats_flat, local_stats_flat) ] max_size = global_stats.statistics.shape[1] new_padded_statistics = [] for stat in new_stats_flat: new_padded_statistics.extend( [pad_square_matrix(stat, max_size) for stat in stat.statistics] ) # Create global stats # TODO(rohananil): Preconditioner is not updated every step, so cost of # stack/pad can be obviated away. # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. to_pad = -len(new_padded_statistics) % num_devices_for_pjit if not new_padded_statistics: to_pad = num_devices_for_pjit stat_dtype = jnp.float32 else: stat_dtype = new_padded_statistics[0].dtype new_padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) new_stacked_padded_statistics = jnp.stack(new_padded_statistics) new_stacked_padded_statistics = pjit.with_sharding_constraint( new_stacked_padded_statistics, statistics_partition_spec ) def _internal_inverse_pth_root_all(): preconditioners, errors = _matrix_inverse_pth_root_pjit( new_stacked_padded_statistics, global_stats.exponents, statistics_partition_spec, ) return preconditioners, errors if preconditioning_compute_steps == 1: new_preconditioners, errors = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = new_stacked_padded_statistics n = new_stacked_padded_statistics.shape[0] errors_init = jnp.ones([n], jnp.float32) * inverse_failure_threshold init_state = [preconditioners_init, errors_init] perform_step = state.count % preconditioning_compute_steps == 0 new_preconditioners, errors = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) new_local_stats_flat = _add_error_into_local_stats( new_local_stats_flat, errors, inverse_failure_threshold ) new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat) errors = errors.reshape((-1, 1, 1)) predicate = jnp.logical_or( jnp.isnan(errors), errors >= inverse_failure_threshold ).astype(new_preconditioners.dtype) # TODO(rohananil): Check for numerical instabilities. new_conditional_preconditioners = ( predicate * global_stats.preconditioners + (1.0 - predicate) * new_preconditioners ) new_global_stats = GlobalShardedParameterStats( new_stacked_padded_statistics, new_conditional_preconditioners, global_stats.exponents, ) new_shampoo_state = ShampooState( count=state.count + 1, stats=ShardedShampooStats(new_global_stats, new_local_stats), ) return updates, new_shampoo_state def init_fn(params): """Initialise the optimiser's state.""" def _init(param): preconditioner = preconditioner_from_params(param) statistics = [] preconditioners = [] if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(s[0], dtype=jnp.float32) for s in shapes ] preconditioners = [jnp.eye(s[0], dtype=jnp.float32) for s in shapes] diagonal_statistics = [] if _graft_type_has_diagonal_statistics(): diagonal_statistics = jnp.zeros_like(param) diagonal_momentum = _quantize_momentum(jnp.zeros_like(param)) momentum = _quantize_momentum(jnp.zeros_like(param)) return ParameterStats( _quantize_diagonal_statistics(diagonal_statistics), _maybe_quantize_statistics(statistics), _maybe_quantize_preconditioners(preconditioners), diagonal_momentum, momentum, init_training_metrics(len(statistics)), ) return ShampooState( count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params) ) def _skip_preconditioning(param): return len(param.shape) < skip_preconditioning_rank_lt or any( [s > skip_preconditioning_dim_size_gt for s in param.shape] ) def _compute_stats(grad, state, param, step): """Compute per-parameter statistics.""" preconditioner = preconditioner_from_params(param) new_statistics = [[]] * len(state.statistics) w1 = beta2 w2 = beta2 if beta2 == 1.0 else (1.0 - beta2) if not _skip_preconditioning(param): def compute_updated_statistics(): return preconditioner.updated_statistics_from_grad( state.statistics, grad, w1=w1, w2=w2, to_float=_to_float, from_float=lambda x: _maybe_quantize_statistics([x])[0], precision=tensordot_precision, ) if statistics_compute_steps > 1: perform_step = step % statistics_compute_steps == 0 init_state = state.statistics new_statistics = list( efficient_cond(perform_step, compute_updated_statistics, init_state) ) else: new_statistics = compute_updated_statistics() return ParameterStats( state.diagonal_statistics, new_statistics, state.preconditioners, state.diagonal_momentum, state.momentum, state.training_metrics, ) mi_pth_root = functools.partial( matrix_inverse_pth_root, ridge_epsilon=matrix_epsilon, precision=precision, relative_matrix_epsilon=relative_matrix_epsilon, lobpcg_topk_precondition=lobpcg_topk_precondition, lobpcg_max_iter=lobpcg_max_iter, ) def _matrix_inverse_pth_root_vmap(xs, ps): return jax.vmap(mi_pth_root)(xs, ps) def _quantized_matrix_inverse_pth_root_vmap(qxs, qds, qbs, ps): def _quantized_to_float(qx, qd, qb): qv = QuantizedValue(qx, qd, qb, qx.dtype, True, list(qx.shape)) return qv.to_float() def matrix_inverse_pth_root_wrapper(qx, qd, qb, p): v = _quantized_to_float(qx, qd, qb) preconditioner, error = mi_pth_root(v, p) qp = QuantizedValue.from_float_value(preconditioner, qx.dtype, True) return qp.quantized, qp.diagonal, qp.bucket_size, error return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps) def _matrix_inverse_pth_root_pjit(xs, ps, statistics_partition_spec=None): # Partition the concatenated statistics matrix across all cores. pspec_for_partition = preconditioner_partition_spec partitioned_xs = pjit.with_sharding_constraint(xs, pspec_for_partition) if preconditioner_partition_spec: partitioned_ps_spec = pjit.PartitionSpec(preconditioner_partition_spec[0]) else: partitioned_ps_spec = None partitioned_ps = pjit.with_sharding_constraint(ps, partitioned_ps_spec) # Run matrix inverse pth root on each shard. partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap( partitioned_xs, partitioned_ps ) # Reshard output to have the same PSpec as input. This is required to avoid # vmap seeing the full set of statistics. partitioned_preconditioners = pjit.with_sharding_constraint( partitioned_preconditioners, pspec_for_partition ) # Recombine the outputs at each core. preconditioners = pjit.with_sharding_constraint( partitioned_preconditioners, statistics_partition_spec ) errors = pjit.with_sharding_constraint(partitioned_errors, pjit.PartitionSpec()) return preconditioners, errors def _pmap_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PMAP mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ if batch_axis_name: num_devices = lax.psum(1, batch_axis_name) else: num_devices = 1 num_statistics = len(statistics) # Pad statistics and exponents to next multiple of num_devices. packed_statistics = [pad_square_matrix(stat, max_size) for stat in statistics] to_pad = -num_statistics % num_devices packed_statistics.extend( [jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) if not packed_statistics: return states all_statistics = batch(packed_statistics, num_devices) all_exponents = batch(exponents, num_devices) def _internal_inverse_pth_root_all(): if batch_axis_name: current_replica = lax.axis_index(batch_axis_name) preconditioners, errors = _matrix_inverse_pth_root_vmap( all_statistics[current_replica], all_exponents[current_replica] ) preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name) errors = jax.lax.all_gather(errors, batch_axis_name) preconditioners_flat = unbatch(preconditioners) errors_flat = unbatch(errors) else: preconditioners, errors = _matrix_inverse_pth_root_vmap( all_statistics[0], all_exponents[0] ) preconditioners_flat = unbatch(jnp.stack([preconditioners])) errors_flat = unbatch(jnp.stack([errors])) return preconditioners_flat, errors_flat if preconditioning_compute_steps == 1: preconditioners_flat, errors_flat = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = packed_statistics errors_init = [inverse_failure_threshold] * len(packed_statistics) init_state = [preconditioners_init, errors_init] perform_step = step % preconditioning_compute_steps == 0 preconditioners_flat, errors_flat = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_preconditioners_flat = [] new_errors_flat = [] for p, shape, prev_p, error in zip( preconditioners_flat, original_shapes, prev_preconditioners, errors_flat ): new_preconditioners_flat.append( _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_preconditioners_flat) == num_statistics assert len(new_errors_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] idx = 0 errors_for_states = [] for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: preconditioners_for_state = new_preconditioners_flat[ idx : idx + num_statistics ] assert len(state.statistics) == len(preconditioners_for_state) preconditioners_for_states.append(preconditioners_for_state) errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(errors_for_state) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states def _pmap_quantized_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PMAP mode. For quantization, each statistic is represented by three values: quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots without ever recreating the original matrix in f32. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ num_devices = lax.psum(1, batch_axis_name) num_statistics = len(statistics) quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers() # Complexity here is around: shapes needing be statically shaped, # our custom quantization type requires a different type of packing. # Parallel tensors: # quantized [dxd] # diagonals [d] f32 # bucket_sizes [d] f32 packed_quantized_statistics = [ pad_square_matrix(stat.quantized, max_size) for stat in statistics ] packed_quantized_diagonals = [ pad_vector(stat.diagonal, max_size) for stat in statistics ] packed_quantized_bucket_sizes = [ pad_vector(stat.bucket_size, max_size) for stat in statistics ] to_pad = -num_statistics % num_devices padded_eye = jnp.eye(max_size, dtype=jnp.float32) quantized_eye = QuantizedValue.from_float_value( padded_eye, quantized_dtype, True ) packed_quantized_statistics.extend( [quantized_eye.quantized for _ in range(to_pad)] ) packed_quantized_diagonals.extend( [quantized_eye.diagonal for _ in range(to_pad)] ) packed_quantized_bucket_sizes.extend( [quantized_eye.bucket_size for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) if not packed_quantized_statistics: return states all_quantized_statistics = batch(packed_quantized_statistics, num_devices) all_quantized_diagonals = batch(packed_quantized_diagonals, num_devices) all_quantized_bucket_sizes = batch(packed_quantized_bucket_sizes, num_devices) all_exponents = batch(exponents, num_devices) def _internal_inverse_pth_root_all(): current_replica = lax.axis_index(batch_axis_name) ( quantized_preconditioners, quantized_diagonals, quantized_bucket_sizes, errors, ) = _quantized_matrix_inverse_pth_root_vmap( all_quantized_statistics[current_replica], all_quantized_diagonals[current_replica], all_quantized_bucket_sizes[current_replica], all_exponents[current_replica], ) quantized_preconditioners = jax.lax.all_gather( quantized_preconditioners, batch_axis_name ) quantized_diagonals = jax.lax.all_gather( quantized_diagonals, batch_axis_name ) quantized_bucket_sizes = jax.lax.all_gather( quantized_bucket_sizes, batch_axis_name ) errors = jax.lax.all_gather(errors, batch_axis_name) quantized_preconditioners_flat = unbatch(quantized_preconditioners) quantized_diagonals_flat = unbatch(quantized_diagonals) quantized_bucket_sizes_flat = unbatch(quantized_bucket_sizes) errors_flat = unbatch(errors) return ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) if preconditioning_compute_steps == 1: ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. quantized_preconditioners_init = packed_quantized_statistics quantized_diagonals_init = packed_quantized_diagonals quantized_bucket_sizes_init = packed_quantized_bucket_sizes errors_init = [inverse_failure_threshold] * len( quantized_preconditioners_init ) init_state = [ quantized_preconditioners_init, quantized_diagonals_init, quantized_bucket_sizes_init, errors_init, ] perform_step = step % preconditioning_compute_steps == 0 ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) = efficient_cond(perform_step, _internal_inverse_pth_root_all, init_state) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_quantized_preconditioners_flat = [] new_quantized_diagonals_flat = [] new_quantized_bucket_sizes_flat = [] new_errors_flat = [] for p, d, b, shape, prev_p, error in zip( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, original_shapes, prev_preconditioners, errors_flat, ): new_quantized_preconditioners_flat.append( _select_preconditioner( error, p[: shape[0], : shape[1]], prev_p.quantized ) ) new_quantized_diagonals_flat.append( _select_preconditioner(error, d[: shape[0]], prev_p.diagonal) ) new_quantized_bucket_sizes_flat.append( _select_preconditioner(error, b[: shape[0]], prev_p.bucket_size) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_quantized_preconditioners_flat) == num_statistics assert len(new_quantized_diagonals_flat) == num_statistics assert len(new_quantized_bucket_sizes_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] errors_for_states = [] idx = 0 for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: quantized_preconditioners_for_state = ( new_quantized_preconditioners_flat[idx : idx + num_statistics] ) quantized_diagonals_for_state = new_quantized_diagonals_flat[ idx : idx + num_statistics ] quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[ idx : idx + num_statistics ] errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(quantized_preconditioners_for_state) assert len(state.statistics) == len(quantized_diagonals_for_state) assert len(state.statistics) == len(quantized_bucket_sizes_for_state) assert len(state.statistics) == len(errors_for_state) quantized_preconditioners = [] for qv, qd, qb in zip( quantized_preconditioners_for_state, quantized_diagonals_for_state, quantized_bucket_sizes_for_state, ): quantized_preconditioners.append( QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape)) ) preconditioners_for_states.append(quantized_preconditioners) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states def _pjit_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PJIT mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ num_statistics = len(statistics) to_pad = -num_statistics % num_devices_for_pjit padded_statistics = [pad_square_matrix(stat, max_size) for stat in statistics] padded_statistics.extend( [jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) all_statistics = jnp.stack(padded_statistics) all_exponents = jnp.stack(exponents) def _internal_inverse_pth_root_all(): preconditioners, errors = _matrix_inverse_pth_root_pjit( all_statistics, all_exponents ) b1 = preconditioners.shape[0] def split(batched_values): return [ jnp.squeeze(v) for v in jnp.split(batched_values, indices_or_sections=b1, axis=0) ] return split(preconditioners), split(errors) if preconditioning_compute_steps == 1: preconditioners_flat, errors_flat = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = padded_statistics errors_init = [inverse_failure_threshold] * len(padded_statistics) init_state = [preconditioners_init, errors_init] perform_step = step % preconditioning_compute_steps == 0 preconditioners_flat, errors_flat = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_preconditioners_flat = [] new_errors_flat = [] for p, shape, prev_p, error in zip( preconditioners_flat, original_shapes, prev_preconditioners, errors_flat ): new_preconditioners_flat.append( _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_preconditioners_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] errors_for_states = [] idx = 0 for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: preconditioners_for_state = new_preconditioners_flat[ idx : idx + num_statistics ] assert len(state.statistics) == len(preconditioners_for_state) preconditioners_for_states.append(preconditioners_for_state) errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(errors_for_state) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states def _compute_preconditioners(states, params, step): """Computes preconditioners for given statistics in states. Args: states: A list of optimizer states. params: A list of params. step: Current step number Returns: New optimizer states after computing the preconditioner. """ statistics = [] num_statistics_per_state = [] original_shapes = [] exponents = [] max_size = 0 prev_preconditioners = [] for state, param in zip(states, params): num_statistics = len(state.statistics) num_statistics_per_state.append(num_statistics) original_shapes_for_state = [] if num_statistics > 0: preconditioner = preconditioner_from_params(param) for statistic in state.statistics: exponents.append( preconditioner.exponent_for_preconditioner() if exponent_override == 0 else exponent_override ) original_shapes_for_state.append(statistic.shape) max_size = max(max_size, statistic.shape[0]) statistics.extend(state.statistics) prev_preconditioners.extend(state.preconditioners) original_shapes.extend(original_shapes_for_state) if not shard_optimizer_states: # Quantization is only enabled if batch_axis_name is not set. quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers() if quantized_dtype == jnp.float32: return _pmap_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) else: return _pmap_quantized_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) else: return _pjit_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) def _transform_grad(grad, state, param, step): """Transform per-parameter gradients.""" preconditioner = preconditioner_from_params(param) sgd_update = grad new_diagonal_statistics = state.diagonal_statistics.to_float() if ( graft_type == GraftingType.ADAGRAD or graft_type == GraftingType.ADAGRAD_NORMALIZED ): scaled_grad = grad if graft_type == GraftingType.ADAGRAD_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16) new_diagonal_statistics = state.diagonal_statistics.to_float() + jnp.square( scaled_grad ) adagrad_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon ) grafting_update = adagrad_update elif ( graft_type == GraftingType.RMSPROP or graft_type == GraftingType.RMSPROP_NORMALIZED ): scaled_grad = grad if graft_type == GraftingType.RMSPROP_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16) w1 = beta2 w2 = beta2 if beta2 == 1.0 else (1.0 - beta2) new_diagonal_statistics = ( w1 * state.diagonal_statistics.to_float() + w2 * jnp.square(scaled_grad) ) rmsprop_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon ) if clip_by_scaled_gradient_norm: scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / ( jnp.sqrt(float(rmsprop_update.size)) ) clipping_denom = jnp.maximum( 1.0, scaled_grad_norm / clip_by_scaled_gradient_norm ) rmsprop_update /= clipping_denom grafting_update = rmsprop_update elif graft_type == GraftingType.SGD: grafting_update = sgd_update else: grafting_update = jnp.ones_like(sgd_update) * jnp.sign(sgd_update) lr = learning_rate if callable(learning_rate): lr = learning_rate(step) preconditioner_multiplier = lr if not decoupled_learning_rate else 1.0 grafting_update = grafting_update * preconditioner_multiplier precond_grad = grad if not _skip_preconditioning(param): precond_grad = preconditioner.preconditioned_grad( precond_grad, _maybe_dequantize_preconditioners(state.preconditioners) ) else: precond_grad = grafting_update grafting_update_norm = jnp.linalg.norm(grafting_update) precond_grad_norm = jnp.linalg.norm(precond_grad) multiplier = grafting_update_norm / (precond_grad_norm + 1e-16) shampoo_update = precond_grad * multiplier shampoo_update_with_wd = shampoo_update grafting_update_with_wd = grafting_update if weight_decay != 0 and not decoupled_weight_decay: shampoo_update_with_wd = shampoo_update + weight_decay * param grafting_update_with_wd = grafting_update + weight_decay * param w = (1.0 - beta1) if moving_average_for_momentum else 1.0 shampoo_update_with_wd_momentum = ( state.momentum.to_float() * beta1 + w * shampoo_update_with_wd ) grafting_update_with_wd_momentum = ( state.diagonal_momentum.to_float() * beta1 + w * grafting_update_with_wd ) run_shampoo = (step >= start_preconditioning_step).astype( grafting_update_with_wd_momentum.dtype ) momentum_update = ( run_shampoo * shampoo_update_with_wd_momentum + (1.0 - run_shampoo) * grafting_update_with_wd_momentum ) wd_update = ( run_shampoo * shampoo_update_with_wd + (1.0 - run_shampoo) * grafting_update_with_wd ) nesterov_momentum_update = momentum_update if nesterov: nesterov_momentum_update = w * wd_update + beta1 * momentum_update if weight_decay != 0 and decoupled_weight_decay: nesterov_momentum_update = ( nesterov_momentum_update + lr * weight_decay * param ) momentum_multiplier = lr if decoupled_learning_rate else 1.0 transformed_update = -1.0 * momentum_multiplier * nesterov_momentum_update new_diagonal_momentum = grafting_update_with_wd_momentum new_momentum = shampoo_update_with_wd_momentum param_stats = ParameterStats( _quantize_diagonal_statistics(new_diagonal_statistics), state.statistics, state.preconditioners, _quantize_momentum(new_diagonal_momentum), _quantize_momentum(new_momentum), state.training_metrics, ) return transformed_update, param_stats def update_fn(grads, state, params): """Transform the input gradient and update all statistics. Args: grads: the gradient tensors for the parameters and any custom gradients for preconditioners. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ params_flat, treedef = jax.tree_flatten(params) stats_flat = treedef.flatten_up_to(state.stats) grads_flat = treedef.flatten_up_to(grads) stats_grads = grads_flat new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), stats_grads, stats_flat, params_flat, ) new_stats_flat = _compute_preconditioners( new_stats_flat, params_flat, state.count ) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat, ) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_unflatten(treedef, updates_flat) new_stats = jax.tree_unflatten(treedef, new_stats_flat) new_state = ShampooState(count=state.count + 1, stats=new_stats) return updates, new_state if shard_optimizer_states: # Hijacks the init_fn signature so we can return an OptState with # appropriate init_fns. opt_init_fn = sharded_init_fn def _init_fns(unused_params): return InitFnState( init_fn=opt_init_fn, pspec_fn=sharded_init_partition_spec_fn, shape_and_dtype_fn=sharded_init_shape_and_dtype_fn, ) opt_update_fn = sharded_update_fn return optax.GradientTransformation(_init_fns, opt_update_fn) else: return optax.GradientTransformation(init_fn, update_fn)
Distributed Shampoo optimizer. Distributed Shampoo is a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that provides significant convergence and wall-clock time improvements compared to conventional first-order methods, and that has been shown to scale to large state-of-the-art deep learning models. References: Scalable Second Order Optimization for Deep Learning, Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer Preprint: https://arxiv.org/abs/2002.09018 Args: learning_rate: the step size used to update the parameters. block_size: Block size for large layers (if > 0). Preconditioning compute operation is cubic in the dimension of the tensor. Block size allows us to chunk the layers into sub-layers of maximal dimension dictated by this value. Use 128 as default (increase if you have compute budget). beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting to AdaGrad is enabled). matrix_epsilon: epsilon to add to statistics before computing inverse pth root. If you are running in f32 precision for inverse pth root (recommended today) this can go upto 1e-6. If you have latest hardware with native f64 precision, set this upto 1e-12. weight_decay: Weight decay for regularization. start_preconditioning_step: When to start Shampoo update before which diagonal update is used. This is because we dont have enough information to do stable inverse. preconditioning_compute_steps: How often to compute preconditioner. Performance tuning params for controlling memory and compute requirements. Ideally set this and statistics_compute_steps params to 1. statistics_compute_steps: How often to compute statistics. best_effort_shape_interpretation: If there are some small dimensions, collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048] graft_type: Grafting is a technique to fix the layerwise scale of Shampoo optimizer. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. nesterov: Nesterov momentum. exponent_override: Override the exponent used in matrix inverse. batch_axis_name: labeled axis over pmap for data-parallel training the optimizer used for. statistics_partition_spec: PartitionSpec to be used in sharded mode. preconditioner_partition_spec: PartitionSpec to be used in sharded mode. num_devices_for_pjit: Number of devices to parallelize over when using pjit. shard_optimizer_states: Shard optimizer states to save memory in model parallel training. best_effort_memory_usage_reduction: Best effort memory usage reduction. - diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 - statistics, preconditioners -> jnp.int16 + diagonals inverse_failure_threshold: numerics are hard and inverses fail sometimes; we determine that using this threshold. moving_average_for_momentum: Whether to use moving average for momentum instead of exponential moving average. skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is greater than this value. clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when using RMSProp Grafting). precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) tensordot_precision: Optional precision to use for the tensordot operation when computing statistics (e.g., G Gᵀ). Same options as `precision` above. relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. merge_small_dims_block_size: Used as the maximum block size to merge the shapes. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Number of LOBPCG iterations, if zero defaults to `lobpcg_topk_precondition`. precondtioner_type: Preconditioner type to select all, left only or right only preconditioners. skip_preconditioning_rank_lt: Skips preconditioning for parameters with rank less than this value. decoupled_learning_rate: If True, use decoupled learning rate, otherwise couple it with preconditioned gradient computation. (Default True) decoupled_weight_decay: If True, use decoupled weight decay, otherwise couple with weight decay. (Default False) Returns: a GradientTransformation.
746
import os import signal import sys import time import warnings import shutil import numpy import onnxruntime from time import sleep from argparse import ArgumentParser, HelpFormatter import facefusion.choices import facefusion.globals from facefusion.face_analyser import get_one_face, get_average_face from facefusion.face_store import get_reference_faces, append_reference_face from facefusion import face_analyser, face_masker, content_analyser, config, metadata, logger, wording from facefusion.content_analyser import analyse_image, analyse_video from facefusion.processors.frame.core import get_frame_processors_modules, load_frame_processor_module from facefusion.common_helper import create_metavar, get_first from facefusion.execution_helper import encode_execution_providers, decode_execution_providers from facefusion.normalizer import normalize_output_path, normalize_padding, normalize_fps from facefusion.memory import limit_system_memory from facefusion.filesystem import list_directory, get_temp_frame_paths, create_temp, move_temp, clear_temp, is_image, is_video, filter_audio_paths from facefusion.ffmpeg import extract_frames, compress_image, merge_video, restore_audio, replace_audio from facefusion.vision import get_video_frame, read_image, read_static_images, pack_resolution, detect_video_resolution, detect_video_fps, create_video_resolutions onnxruntime.set_default_logger_severity(3) def run(program : ArgumentParser) -> None: apply_args(program) logger.init(facefusion.globals.log_level) if facefusion.globals.system_memory_limit > 0: limit_system_memory(facefusion.globals.system_memory_limit) if not pre_check() or not content_analyser.pre_check() or not face_analyser.pre_check() or not face_masker.pre_check(): return for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors): if not frame_processor_module.pre_check(): return if facefusion.globals.headless: conditional_process() else: import facefusion.uis.core as ui for ui_layout in ui.get_ui_layouts_modules(facefusion.globals.ui_layouts): if not ui_layout.pre_check(): return ui.launch() def destroy() -> None: if facefusion.globals.target_path: clear_temp(facefusion.globals.target_path) sys.exit(0) def load_frame_processor_module(frame_processor : str) -> Any: try: frame_processor_module = importlib.import_module('facefusion.processors.frame.modules.' + frame_processor) for method_name in FRAME_PROCESSORS_METHODS: if not hasattr(frame_processor_module, method_name): raise NotImplementedError except ModuleNotFoundError as exception: logger.error(wording.get('frame_processor_not_loaded').format(frame_processor = frame_processor), __name__.upper()) logger.debug(exception.msg, __name__.upper()) sys.exit(1) except NotImplementedError: logger.error(wording.get('frame_processor_not_implemented').format(frame_processor = frame_processor), __name__.upper()) sys.exit(1) return frame_processor_module def create_metavar(ranges : List[Any]) -> str: return '[' + str(ranges[0]) + '-' + str(ranges[-1]) + ']' def encode_execution_providers(execution_providers : List[str]) -> List[str]: return [ execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers ] def list_directory(directory_path : str) -> Optional[List[str]]: if is_directory(directory_path): files = os.listdir(directory_path) return sorted([ Path(file).stem for file in files if not Path(file).stem.startswith(('.', '__')) ]) return None def cli() -> None: signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) program = ArgumentParser(formatter_class = lambda prog: HelpFormatter(prog, max_help_position = 130), add_help = False) # general program.add_argument('-s', '--source', help = wording.get('help.source'), action = 'append', dest = 'source_paths', default = config.get_str_list('general.source_paths')) program.add_argument('-t', '--target', help = wording.get('help.target'), dest = 'target_path', default = config.get_str_value('general.target_path')) program.add_argument('-o', '--output', help = wording.get('help.output'), dest = 'output_path', default = config.get_str_value('general.output_path')) program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version') # misc group_misc = program.add_argument_group('misc') group_misc.add_argument('--skip-download', help = wording.get('help.skip_download'), action = 'store_true', default = config.get_bool_value('misc.skip_download')) group_misc.add_argument('--headless', help = wording.get('help.headless'), action = 'store_true', default = config.get_bool_value('misc.headless')) group_misc.add_argument('--log-level', help = wording.get('help.log_level'), default = config.get_str_value('misc.log_level', 'info'), choices = logger.get_log_levels()) # execution execution_providers = encode_execution_providers(onnxruntime.get_available_providers()) group_execution = program.add_argument_group('execution') group_execution.add_argument('--execution-providers', help = wording.get('help.execution_providers').format(choices = ', '.join(execution_providers)), default = config.get_str_list('execution.execution_providers', 'cpu'), choices = execution_providers, nargs = '+', metavar = 'EXECUTION_PROVIDERS') group_execution.add_argument('--execution-thread-count', help = wording.get('help.execution_thread_count'), type = int, default = config.get_int_value('execution.execution_thread_count', '4'), choices = facefusion.choices.execution_thread_count_range, metavar = create_metavar(facefusion.choices.execution_thread_count_range)) group_execution.add_argument('--execution-queue-count', help = wording.get('help.execution_queue_count'), type = int, default = config.get_int_value('execution.execution_queue_count', '1'), choices = facefusion.choices.execution_queue_count_range, metavar = create_metavar(facefusion.choices.execution_queue_count_range)) # memory group_memory = program.add_argument_group('memory') group_memory.add_argument('--video-memory-strategy', help = wording.get('help.video_memory_strategy'), default = config.get_str_value('memory.video_memory_strategy', 'strict'), choices = facefusion.choices.video_memory_strategies) group_memory.add_argument('--system-memory-limit', help = wording.get('help.system_memory_limit'), type = int, default = config.get_int_value('memory.system_memory_limit', '0'), choices = facefusion.choices.system_memory_limit_range, metavar = create_metavar(facefusion.choices.system_memory_limit_range)) # face analyser group_face_analyser = program.add_argument_group('face analyser') group_face_analyser.add_argument('--face-analyser-order', help = wording.get('help.face_analyser_order'), default = config.get_str_value('face_analyser.face_analyser_order', 'left-right'), choices = facefusion.choices.face_analyser_orders) group_face_analyser.add_argument('--face-analyser-age', help = wording.get('help.face_analyser_age'), default = config.get_str_value('face_analyser.face_analyser_age'), choices = facefusion.choices.face_analyser_ages) group_face_analyser.add_argument('--face-analyser-gender', help = wording.get('help.face_analyser_gender'), default = config.get_str_value('face_analyser.face_analyser_gender'), choices = facefusion.choices.face_analyser_genders) group_face_analyser.add_argument('--face-detector-model', help = wording.get('help.face_detector_model'), default = config.get_str_value('face_analyser.face_detector_model', 'yoloface'), choices = facefusion.choices.face_detector_set.keys()) group_face_analyser.add_argument('--face-detector-size', help = wording.get('help.face_detector_size'), default = config.get_str_value('face_analyser.face_detector_size', '640x640')) group_face_analyser.add_argument('--face-detector-score', help = wording.get('help.face_detector_score'), type = float, default = config.get_float_value('face_analyser.face_detector_score', '0.5'), choices = facefusion.choices.face_detector_score_range, metavar = create_metavar(facefusion.choices.face_detector_score_range)) # face selector group_face_selector = program.add_argument_group('face selector') group_face_selector.add_argument('--face-selector-mode', help = wording.get('help.face_selector_mode'), default = config.get_str_value('face_selector.face_selector_mode', 'reference'), choices = facefusion.choices.face_selector_modes) group_face_selector.add_argument('--reference-face-position', help = wording.get('help.reference_face_position'), type = int, default = config.get_int_value('face_selector.reference_face_position', '0')) group_face_selector.add_argument('--reference-face-distance', help = wording.get('help.reference_face_distance'), type = float, default = config.get_float_value('face_selector.reference_face_distance', '0.6'), choices = facefusion.choices.reference_face_distance_range, metavar = create_metavar(facefusion.choices.reference_face_distance_range)) group_face_selector.add_argument('--reference-frame-number', help = wording.get('help.reference_frame_number'), type = int, default = config.get_int_value('face_selector.reference_frame_number', '0')) # face mask group_face_mask = program.add_argument_group('face mask') group_face_mask.add_argument('--face-mask-types', help = wording.get('help.face_mask_types').format(choices = ', '.join(facefusion.choices.face_mask_types)), default = config.get_str_list('face_mask.face_mask_types', 'box'), choices = facefusion.choices.face_mask_types, nargs = '+', metavar = 'FACE_MASK_TYPES') group_face_mask.add_argument('--face-mask-blur', help = wording.get('help.face_mask_blur'), type = float, default = config.get_float_value('face_mask.face_mask_blur', '0.3'), choices = facefusion.choices.face_mask_blur_range, metavar = create_metavar(facefusion.choices.face_mask_blur_range)) group_face_mask.add_argument('--face-mask-padding', help = wording.get('help.face_mask_padding'), type = int, default = config.get_int_list('face_mask.face_mask_padding', '0 0 0 0'), nargs = '+') group_face_mask.add_argument('--face-mask-regions', help = wording.get('help.face_mask_regions').format(choices = ', '.join(facefusion.choices.face_mask_regions)), default = config.get_str_list('face_mask.face_mask_regions', ' '.join(facefusion.choices.face_mask_regions)), choices = facefusion.choices.face_mask_regions, nargs = '+', metavar = 'FACE_MASK_REGIONS') # frame extraction group_frame_extraction = program.add_argument_group('frame extraction') group_frame_extraction.add_argument('--trim-frame-start', help = wording.get('help.trim_frame_start'), type = int, default = facefusion.config.get_int_value('frame_extraction.trim_frame_start')) group_frame_extraction.add_argument('--trim-frame-end', help = wording.get('help.trim_frame_end'), type = int, default = facefusion.config.get_int_value('frame_extraction.trim_frame_end')) group_frame_extraction.add_argument('--temp-frame-format', help = wording.get('help.temp_frame_format'), default = config.get_str_value('frame_extraction.temp_frame_format', 'jpg'), choices = facefusion.choices.temp_frame_formats) group_frame_extraction.add_argument('--temp-frame-quality', help = wording.get('help.temp_frame_quality'), type = int, default = config.get_int_value('frame_extraction.temp_frame_quality', '100'), choices = facefusion.choices.temp_frame_quality_range, metavar = create_metavar(facefusion.choices.temp_frame_quality_range)) group_frame_extraction.add_argument('--keep-temp', help = wording.get('help.keep_temp'), action = 'store_true', default = config.get_bool_value('frame_extraction.keep_temp')) # output creation group_output_creation = program.add_argument_group('output creation') group_output_creation.add_argument('--output-image-quality', help = wording.get('help.output_image_quality'), type = int, default = config.get_int_value('output_creation.output_image_quality', '80'), choices = facefusion.choices.output_image_quality_range, metavar = create_metavar(facefusion.choices.output_image_quality_range)) group_output_creation.add_argument('--output-video-encoder', help = wording.get('help.output_video_encoder'), default = config.get_str_value('output_creation.output_video_encoder', 'libx264'), choices = facefusion.choices.output_video_encoders) group_output_creation.add_argument('--output-video-preset', help = wording.get('help.output_video_preset'), default = config.get_str_value('output_creation.output_video_preset', 'veryfast'), choices = facefusion.choices.output_video_presets) group_output_creation.add_argument('--output-video-quality', help = wording.get('help.output_video_quality'), type = int, default = config.get_int_value('output_creation.output_video_quality', '80'), choices = facefusion.choices.output_video_quality_range, metavar = create_metavar(facefusion.choices.output_video_quality_range)) group_output_creation.add_argument('--output-video-resolution', help = wording.get('help.output_video_resolution'), default = config.get_str_value('output_creation.output_video_resolution')) group_output_creation.add_argument('--output-video-fps', help = wording.get('help.output_video_fps'), type = float) group_output_creation.add_argument('--skip-audio', help = wording.get('help.skip_audio'), action = 'store_true', default = config.get_bool_value('output_creation.skip_audio')) # frame processors available_frame_processors = list_directory('facefusion/processors/frame/modules') program = ArgumentParser(parents = [ program ], formatter_class = program.formatter_class, add_help = True) group_frame_processors = program.add_argument_group('frame processors') group_frame_processors.add_argument('--frame-processors', help = wording.get('help.frame_processors').format(choices = ', '.join(available_frame_processors)), default = config.get_str_list('frame_processors.frame_processors', 'face_swapper'), nargs = '+') for frame_processor in available_frame_processors: frame_processor_module = load_frame_processor_module(frame_processor) frame_processor_module.register_args(group_frame_processors) # uis available_ui_layouts = list_directory('facefusion/uis/layouts') group_uis = program.add_argument_group('uis') group_uis.add_argument('--ui-layouts', help = wording.get('help.ui_layouts').format(choices = ', '.join(available_ui_layouts)), default = config.get_str_list('uis.ui_layouts', 'default'), nargs = '+') run(program)
null
747
from configparser import ConfigParser from typing import Any, Optional, List from facefusion.filesystem import resolve_relative_path CONFIG = None def clear_config() -> None: global CONFIG CONFIG = None
null
748
from configparser import ConfigParser from typing import Any, Optional, List from facefusion.filesystem import resolve_relative_path def get_value_by_notation(key : str) -> Optional[Any]: config = get_config() if '.' in key: section, name = key.split('.') if section in config and name in config[section]: return config[section][name] if key in config: return config[key] return None def get_float_list(key : str, fallback : Optional[str] = None) -> Optional[List[float]]: value = get_value_by_notation(key) if value or fallback: return [ float(value) for value in (value or fallback).split(' ') ] return None
null
749
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, webcam_options, source, webcam def pre_check() -> bool: return True
null
750
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, webcam_options, source, webcam def pre_render() -> bool: return True
null
751
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, webcam_options, source, webcam def render() -> gradio.Blocks: with gradio.Blocks() as layout: with gradio.Row(): with gradio.Column(scale = 2): with gradio.Blocks(): about.render() with gradio.Blocks(): frame_processors.render() with gradio.Blocks(): frame_processors_options.render() with gradio.Blocks(): execution.render() execution_thread_count.render() with gradio.Blocks(): webcam_options.render() with gradio.Blocks(): source.render() with gradio.Column(scale = 5): with gradio.Blocks(): webcam.render() return layout
null
752
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, webcam_options, source, webcam def listen() -> None: frame_processors.listen() frame_processors_options.listen() execution.listen() execution_thread_count.listen() source.listen() webcam.listen()
null
753
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, webcam_options, source, webcam def run(ui : gradio.Blocks) -> None: ui.queue(concurrency_count = 2).launch(show_api = False, quiet = True)
null
754
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, temp_frame, output_options, common_options, source, target, output, preview, trim_frame, face_analyser, face_selector, face_masker def pre_check() -> bool: return True
null
755
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, temp_frame, output_options, common_options, source, target, output, preview, trim_frame, face_analyser, face_selector, face_masker def pre_render() -> bool: return True
null
756
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, temp_frame, output_options, common_options, source, target, output, preview, trim_frame, face_analyser, face_selector, face_masker def render() -> gradio.Blocks: with gradio.Blocks() as layout: with gradio.Row(): with gradio.Column(scale = 2): with gradio.Blocks(): about.render() with gradio.Blocks(): frame_processors.render() with gradio.Blocks(): frame_processors_options.render() with gradio.Blocks(): execution.render() execution_thread_count.render() execution_queue_count.render() with gradio.Blocks(): memory.render() with gradio.Blocks(): temp_frame.render() with gradio.Blocks(): output_options.render() with gradio.Column(scale = 2): with gradio.Blocks(): source.render() with gradio.Blocks(): target.render() with gradio.Blocks(): output.render() with gradio.Column(scale = 3): with gradio.Blocks(): preview.render() with gradio.Blocks(): trim_frame.render() with gradio.Blocks(): face_selector.render() with gradio.Blocks(): face_masker.render() with gradio.Blocks(): face_analyser.render() with gradio.Blocks(): common_options.render() return layout
null
757
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, temp_frame, output_options, common_options, source, target, output, preview, trim_frame, face_analyser, face_selector, face_masker def listen() -> None: frame_processors.listen() frame_processors_options.listen() execution.listen() execution_thread_count.listen() execution_queue_count.listen() memory.listen() temp_frame.listen() output_options.listen() source.listen() target.listen() output.listen() preview.listen() trim_frame.listen() face_selector.listen() face_masker.listen() face_analyser.listen() common_options.listen()
null
758
import gradio from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, temp_frame, output_options, common_options, source, target, output, preview, trim_frame, face_analyser, face_selector, face_masker def run(ui : gradio.Blocks) -> None: ui.launch(show_api = False, quiet = True)
null
759
import gradio import facefusion.globals from facefusion.download import conditional_download from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, benchmark_options, benchmark def conditional_download(download_directory_path : str, urls : List[str]) -> None: with ThreadPoolExecutor() as executor: for url in urls: executor.submit(get_download_size, url) for url in urls: download_file_path = os.path.join(download_directory_path, os.path.basename(url)) initial = os.path.getsize(download_file_path) if is_file(download_file_path) else 0 total = get_download_size(url) if initial < total: with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress: subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ]) current = initial while current < total: if is_file(download_file_path): current = os.path.getsize(download_file_path) progress.update(current - progress.n) def pre_check() -> bool: if not facefusion.globals.skip_download: conditional_download('.assets/examples', [ 'https://github.com/facefusion/facefusion-assets/releases/download/examples/source.jpg', 'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4', 'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-360p.mp4', 'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-540p.mp4', 'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-720p.mp4', 'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-1080p.mp4', 'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-1440p.mp4', 'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-2160p.mp4' ]) return True return False
null
760
import gradio import facefusion.globals from facefusion.download import conditional_download from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, benchmark_options, benchmark def pre_render() -> bool: return True
null
761
import gradio import facefusion.globals from facefusion.download import conditional_download from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, benchmark_options, benchmark def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]: process_times = [] total_fps = 0.0 for index in range(benchmark_cycles): facefusion.globals.target_path = target_path facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_paths, facefusion.globals.target_path, tempfile.gettempdir()) target_video_resolution = detect_video_resolution(facefusion.globals.target_path) facefusion.globals.output_video_resolution = pack_resolution(target_video_resolution) facefusion.globals.output_video_fps = detect_video_fps(facefusion.globals.target_path) video_frame_total = count_video_frame_total(facefusion.globals.target_path) start_time = time.perf_counter() conditional_process() end_time = time.perf_counter() process_time = end_time - start_time total_fps += video_frame_total / process_time process_times.append(process_time) average_run = round(statistics.mean(process_times), 2) fastest_run = round(min(process_times), 2) slowest_run = round(max(process_times), 2) relative_fps = round(total_fps / benchmark_cycles, 2) return\ [ facefusion.globals.target_path, benchmark_cycles, average_run, fastest_run, slowest_run, relative_fps ] def render() -> gradio.Blocks: with gradio.Blocks() as layout: with gradio.Row(): with gradio.Column(scale = 2): with gradio.Blocks(): about.render() with gradio.Blocks(): frame_processors.render() with gradio.Blocks(): frame_processors_options.render() with gradio.Blocks(): execution.render() execution_thread_count.render() execution_queue_count.render() with gradio.Blocks(): memory.render() with gradio.Blocks(): benchmark_options.render() with gradio.Column(scale = 5): with gradio.Blocks(): benchmark.render() return layout
null
762
import gradio import facefusion.globals from facefusion.download import conditional_download from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, benchmark_options, benchmark def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]: def listen() -> None: frame_processors.listen() frame_processors_options.listen() execution.listen() execution_thread_count.listen() execution_queue_count.listen() memory.listen() benchmark.listen()
null
763
import gradio import facefusion.globals from facefusion.download import conditional_download from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, memory, benchmark_options, benchmark def run(ui : gradio.Blocks) -> None: ui.queue(concurrency_count = 2).launch(show_api = False, quiet = True)
null
764
from typing import List, Optional import gradio import onnxruntime import facefusion.globals from facefusion import wording from facefusion.face_analyser import clear_face_analyser from facefusion.processors.frame.core import clear_frame_processors_modules from facefusion.execution_helper import encode_execution_providers, decode_execution_providers EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None def encode_execution_providers(execution_providers : List[str]) -> List[str]: return [ execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers ] def render() -> None: global EXECUTION_PROVIDERS_CHECKBOX_GROUP EXECUTION_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup( label = wording.get('uis.execution_providers_checkbox_group'), choices = encode_execution_providers(onnxruntime.get_available_providers()), value = encode_execution_providers(facefusion.globals.execution_providers) )
null
765
from typing import List, Optional import gradio import onnxruntime import facefusion.globals from facefusion import wording from facefusion.face_analyser import clear_face_analyser from facefusion.processors.frame.core import clear_frame_processors_modules from facefusion.execution_helper import encode_execution_providers, decode_execution_providers EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None def update_execution_providers(execution_providers : List[str]) -> gradio.CheckboxGroup: def listen() -> None: EXECUTION_PROVIDERS_CHECKBOX_GROUP.change(update_execution_providers, inputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP, outputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP)
null
766
from typing import Optional, Generator, Deque, List import os import platform import subprocess import cv2 import gradio from time import sleep from concurrent.futures import ThreadPoolExecutor from collections import deque from tqdm import tqdm import facefusion.globals from facefusion import logger, wording from facefusion.content_analyser import analyse_stream from facefusion.typing import VisionFrame, Face, Fps from facefusion.face_analyser import get_average_face from facefusion.processors.frame.core import get_frame_processors_modules, load_frame_processor_module from facefusion.ffmpeg import open_ffmpeg from facefusion.vision import normalize_frame_color, read_static_images, unpack_resolution from facefusion.uis.typing import StreamMode, WebcamMode, ComponentName from facefusion.uis.core import get_ui_component WEBCAM_IMAGE : Optional[gradio.Image] = None WEBCAM_START_BUTTON : Optional[gradio.Button] = None WEBCAM_STOP_BUTTON : Optional[gradio.Button] = None def render() -> None: global WEBCAM_IMAGE global WEBCAM_START_BUTTON global WEBCAM_STOP_BUTTON WEBCAM_IMAGE = gradio.Image( label = wording.get('uis.webcam_image') ) WEBCAM_START_BUTTON = gradio.Button( value = wording.get('uis.start_button'), variant = 'primary', size = 'sm' ) WEBCAM_STOP_BUTTON = gradio.Button( value = wording.get('uis.stop_button'), size = 'sm' )
null
767
from typing import Optional, Generator, Deque, List import os import platform import subprocess import cv2 import gradio from time import sleep from concurrent.futures import ThreadPoolExecutor from collections import deque from tqdm import tqdm import facefusion.globals from facefusion import logger, wording from facefusion.content_analyser import analyse_stream from facefusion.typing import VisionFrame, Face, Fps from facefusion.face_analyser import get_average_face from facefusion.processors.frame.core import get_frame_processors_modules, load_frame_processor_module from facefusion.ffmpeg import open_ffmpeg from facefusion.vision import normalize_frame_color, read_static_images, unpack_resolution from facefusion.uis.typing import StreamMode, WebcamMode, ComponentName from facefusion.uis.core import get_ui_component WEBCAM_IMAGE : Optional[gradio.Image] = None WEBCAM_START_BUTTON : Optional[gradio.Button] = None WEBCAM_STOP_BUTTON : Optional[gradio.Button] = None def start(webcam_mode : WebcamMode, webcam_resolution : str, webcam_fps : Fps) -> Generator[VisionFrame, None, None]: facefusion.globals.face_selector_mode = 'one' facefusion.globals.face_analyser_order = 'large-small' source_frames = read_static_images(facefusion.globals.source_paths) source_face = get_average_face(source_frames) stream = None if webcam_mode in [ 'udp', 'v4l2' ]: stream = open_stream(webcam_mode, webcam_resolution, webcam_fps) # type: ignore[arg-type] webcam_width, webcam_height = unpack_resolution(webcam_resolution) webcam_capture = get_webcam_capture() if webcam_capture and webcam_capture.isOpened(): webcam_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) # type: ignore[attr-defined] webcam_capture.set(cv2.CAP_PROP_FRAME_WIDTH, webcam_width) webcam_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, webcam_height) webcam_capture.set(cv2.CAP_PROP_FPS, webcam_fps) for capture_frame in multi_process_capture(source_face, webcam_capture, webcam_fps): if webcam_mode == 'inline': yield normalize_frame_color(capture_frame) else: try: stream.stdin.write(capture_frame.tobytes()) except Exception: clear_webcam_capture() yield None def update() -> None: for frame_processor in facefusion.globals.frame_processors: frame_processor_module = load_frame_processor_module(frame_processor) while not frame_processor_module.post_check(): logger.disable() sleep(0.5) logger.enable() def stop() -> gradio.Image: clear_webcam_capture() return gradio.Image(value = None) ComponentName = Literal\ [ 'source_audio', 'source_image', 'target_image', 'target_video', 'preview_frame_slider', 'face_selector_mode_dropdown', 'reference_face_position_gallery', 'reference_face_distance_slider', 'face_analyser_order_dropdown', 'face_analyser_age_dropdown', 'face_analyser_gender_dropdown', 'face_detector_model_dropdown', 'face_detector_size_dropdown', 'face_detector_score_slider', 'face_mask_types_checkbox_group', 'face_mask_blur_slider', 'face_mask_padding_top_slider', 'face_mask_padding_bottom_slider', 'face_mask_padding_left_slider', 'face_mask_padding_right_slider', 'face_mask_region_checkbox_group', 'frame_processors_checkbox_group', 'face_debugger_items_checkbox_group', 'face_enhancer_model_dropdown', 'face_enhancer_blend_slider', 'face_swapper_model_dropdown', 'frame_enhancer_model_dropdown', 'frame_enhancer_blend_slider', 'lip_syncer_model_dropdown', 'output_path_textbox', 'output_video_fps_slider', 'benchmark_runs_checkbox_group', 'benchmark_cycles_slider', 'webcam_mode_radio', 'webcam_resolution_dropdown', 'webcam_fps_slider' ] def get_ui_component(name : ComponentName) -> Optional[Component]: if name in UI_COMPONENTS: return UI_COMPONENTS[name] return None def listen() -> None: start_event = None webcam_mode_radio = get_ui_component('webcam_mode_radio') webcam_resolution_dropdown = get_ui_component('webcam_resolution_dropdown') webcam_fps_slider = get_ui_component('webcam_fps_slider') if webcam_mode_radio and webcam_resolution_dropdown and webcam_fps_slider: start_event = WEBCAM_START_BUTTON.click(start, inputs = [ webcam_mode_radio, webcam_resolution_dropdown, webcam_fps_slider ], outputs = WEBCAM_IMAGE) WEBCAM_STOP_BUTTON.click(stop, cancels = start_event) change_two_component_names : List[ComponentName] =\ [ 'frame_processors_checkbox_group', 'face_swapper_model_dropdown', 'face_enhancer_model_dropdown', 'frame_enhancer_model_dropdown', 'lip_syncer_model_dropdown', 'source_image' ] for component_name in change_two_component_names: component = get_ui_component(component_name) if component: component.change(update, cancels = start_event)
null
768
from typing import Optional, Tuple, List import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import FaceMaskType, FaceMaskRegion from facefusion.uis.core import register_ui_component FACE_MASK_TYPES_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None FACE_MASK_BLUR_SLIDER : Optional[gradio.Slider] = None FACE_MASK_BOX_GROUP : Optional[gradio.Group] = None FACE_MASK_REGION_GROUP : Optional[gradio.Group] = None FACE_MASK_PADDING_TOP_SLIDER : Optional[gradio.Slider] = None FACE_MASK_PADDING_RIGHT_SLIDER : Optional[gradio.Slider] = None FACE_MASK_PADDING_BOTTOM_SLIDER : Optional[gradio.Slider] = None FACE_MASK_PADDING_LEFT_SLIDER : Optional[gradio.Slider] = None FACE_MASK_REGION_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global FACE_MASK_TYPES_CHECKBOX_GROUP global FACE_MASK_BLUR_SLIDER global FACE_MASK_BOX_GROUP global FACE_MASK_REGION_GROUP global FACE_MASK_PADDING_TOP_SLIDER global FACE_MASK_PADDING_RIGHT_SLIDER global FACE_MASK_PADDING_BOTTOM_SLIDER global FACE_MASK_PADDING_LEFT_SLIDER global FACE_MASK_REGION_CHECKBOX_GROUP has_box_mask = 'box' in facefusion.globals.face_mask_types has_region_mask = 'region' in facefusion.globals.face_mask_types FACE_MASK_TYPES_CHECKBOX_GROUP = gradio.CheckboxGroup( label = wording.get('uis.face_mask_types_checkbox_group'), choices = facefusion.choices.face_mask_types, value = facefusion.globals.face_mask_types ) with gradio.Group(visible = has_box_mask) as FACE_MASK_BOX_GROUP: FACE_MASK_BLUR_SLIDER = gradio.Slider( label = wording.get('uis.face_mask_blur_slider'), step = facefusion.choices.face_mask_blur_range[1] - facefusion.choices.face_mask_blur_range[0], minimum = facefusion.choices.face_mask_blur_range[0], maximum = facefusion.choices.face_mask_blur_range[-1], value = facefusion.globals.face_mask_blur ) with gradio.Row(): FACE_MASK_PADDING_TOP_SLIDER = gradio.Slider( label = wording.get('uis.face_mask_padding_top_slider'), step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0], minimum = facefusion.choices.face_mask_padding_range[0], maximum = facefusion.choices.face_mask_padding_range[-1], value = facefusion.globals.face_mask_padding[0] ) FACE_MASK_PADDING_RIGHT_SLIDER = gradio.Slider( label = wording.get('uis.face_mask_padding_right_slider'), step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0], minimum = facefusion.choices.face_mask_padding_range[0], maximum = facefusion.choices.face_mask_padding_range[-1], value = facefusion.globals.face_mask_padding[1] ) with gradio.Row(): FACE_MASK_PADDING_BOTTOM_SLIDER = gradio.Slider( label = wording.get('uis.face_mask_padding_bottom_slider'), step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0], minimum = facefusion.choices.face_mask_padding_range[0], maximum = facefusion.choices.face_mask_padding_range[-1], value = facefusion.globals.face_mask_padding[2] ) FACE_MASK_PADDING_LEFT_SLIDER = gradio.Slider( label = wording.get('uis.face_mask_padding_left_slider'), step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0], minimum = facefusion.choices.face_mask_padding_range[0], maximum = facefusion.choices.face_mask_padding_range[-1], value = facefusion.globals.face_mask_padding[3] ) with gradio.Row(): FACE_MASK_REGION_CHECKBOX_GROUP = gradio.CheckboxGroup( label = wording.get('uis.face_mask_region_checkbox_group'), choices = facefusion.choices.face_mask_regions, value = facefusion.globals.face_mask_regions, visible = has_region_mask ) register_ui_component('face_mask_types_checkbox_group', FACE_MASK_TYPES_CHECKBOX_GROUP) register_ui_component('face_mask_blur_slider', FACE_MASK_BLUR_SLIDER) register_ui_component('face_mask_padding_top_slider', FACE_MASK_PADDING_TOP_SLIDER) register_ui_component('face_mask_padding_right_slider', FACE_MASK_PADDING_RIGHT_SLIDER) register_ui_component('face_mask_padding_bottom_slider', FACE_MASK_PADDING_BOTTOM_SLIDER) register_ui_component('face_mask_padding_left_slider', FACE_MASK_PADDING_LEFT_SLIDER) register_ui_component('face_mask_region_checkbox_group', FACE_MASK_REGION_CHECKBOX_GROUP)
null
769
from typing import Optional, Tuple, List import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import FaceMaskType, FaceMaskRegion from facefusion.uis.core import register_ui_component FACE_MASK_TYPES_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None FACE_MASK_BLUR_SLIDER : Optional[gradio.Slider] = None FACE_MASK_BOX_GROUP : Optional[gradio.Group] = None FACE_MASK_PADDING_TOP_SLIDER : Optional[gradio.Slider] = None FACE_MASK_PADDING_RIGHT_SLIDER : Optional[gradio.Slider] = None FACE_MASK_PADDING_BOTTOM_SLIDER : Optional[gradio.Slider] = None FACE_MASK_PADDING_LEFT_SLIDER : Optional[gradio.Slider] = None FACE_MASK_REGION_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None def update_face_mask_type(face_mask_types : List[FaceMaskType]) -> Tuple[gradio.CheckboxGroup, gradio.Group, gradio.CheckboxGroup]: if not face_mask_types: face_mask_types = facefusion.choices.face_mask_types facefusion.globals.face_mask_types = face_mask_types has_box_mask = 'box' in face_mask_types has_region_mask = 'region' in face_mask_types return gradio.CheckboxGroup(value = face_mask_types), gradio.Group(visible = has_box_mask), gradio.CheckboxGroup(visible = has_region_mask) def update_face_mask_blur(face_mask_blur : float) -> None: facefusion.globals.face_mask_blur = face_mask_blur def update_face_mask_padding(face_mask_padding_top : int, face_mask_padding_right : int, face_mask_padding_bottom : int, face_mask_padding_left : int) -> None: facefusion.globals.face_mask_padding = (face_mask_padding_top, face_mask_padding_right, face_mask_padding_bottom, face_mask_padding_left) def update_face_mask_regions(face_mask_regions : List[FaceMaskRegion]) -> gradio.CheckboxGroup: if not face_mask_regions: face_mask_regions = facefusion.choices.face_mask_regions facefusion.globals.face_mask_regions = face_mask_regions return gradio.CheckboxGroup(value = face_mask_regions) def listen() -> None: FACE_MASK_TYPES_CHECKBOX_GROUP.change(update_face_mask_type, inputs = FACE_MASK_TYPES_CHECKBOX_GROUP, outputs = [ FACE_MASK_TYPES_CHECKBOX_GROUP, FACE_MASK_BOX_GROUP, FACE_MASK_REGION_CHECKBOX_GROUP ]) FACE_MASK_BLUR_SLIDER.change(update_face_mask_blur, inputs = FACE_MASK_BLUR_SLIDER) FACE_MASK_REGION_CHECKBOX_GROUP.change(update_face_mask_regions, inputs = FACE_MASK_REGION_CHECKBOX_GROUP, outputs = FACE_MASK_REGION_CHECKBOX_GROUP) face_mask_padding_sliders = [ FACE_MASK_PADDING_TOP_SLIDER, FACE_MASK_PADDING_RIGHT_SLIDER, FACE_MASK_PADDING_BOTTOM_SLIDER, FACE_MASK_PADDING_LEFT_SLIDER ] for face_mask_padding_slider in face_mask_padding_sliders: face_mask_padding_slider.change(update_face_mask_padding, inputs = face_mask_padding_sliders)
null
770
from typing import Optional import gradio from facefusion import wording from facefusion.uis.core import register_ui_component from facefusion.uis.components.benchmark import BENCHMARKS BENCHMARK_RUNS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None BENCHMARK_CYCLES_SLIDER : Optional[gradio.Button] = None def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component BENCHMARKS : Dict[str, str] =\ { '240p': '.assets/examples/target-240p.mp4', '360p': '.assets/examples/target-360p.mp4', '540p': '.assets/examples/target-540p.mp4', '720p': '.assets/examples/target-720p.mp4', '1080p': '.assets/examples/target-1080p.mp4', '1440p': '.assets/examples/target-1440p.mp4', '2160p': '.assets/examples/target-2160p.mp4' } def render() -> None: global BENCHMARK_RUNS_CHECKBOX_GROUP global BENCHMARK_CYCLES_SLIDER BENCHMARK_RUNS_CHECKBOX_GROUP = gradio.CheckboxGroup( label = wording.get('uis.benchmark_runs_checkbox_group'), value = list(BENCHMARKS.keys()), choices = list(BENCHMARKS.keys()) ) BENCHMARK_CYCLES_SLIDER = gradio.Slider( label = wording.get('uis.benchmark_cycles_slider'), value = 5, step = 1, minimum = 1, maximum = 10 ) register_ui_component('benchmark_runs_checkbox_group', BENCHMARK_RUNS_CHECKBOX_GROUP) register_ui_component('benchmark_cycles_slider', BENCHMARK_CYCLES_SLIDER)
null
771
from typing import Tuple, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.core import conditional_process from facefusion.memory import limit_system_memory from facefusion.uis.core import get_ui_component from facefusion.normalizer import normalize_output_path from facefusion.filesystem import clear_temp, is_image, is_video OUTPUT_IMAGE : Optional[gradio.Image] = None OUTPUT_VIDEO : Optional[gradio.Video] = None OUTPUT_START_BUTTON : Optional[gradio.Button] = None OUTPUT_CLEAR_BUTTON : Optional[gradio.Button] = None def render() -> None: global OUTPUT_IMAGE global OUTPUT_VIDEO global OUTPUT_START_BUTTON global OUTPUT_CLEAR_BUTTON OUTPUT_IMAGE = gradio.Image( label = wording.get('uis.output_image_or_video'), visible = False ) OUTPUT_VIDEO = gradio.Video( label = wording.get('uis.output_image_or_video') ) OUTPUT_START_BUTTON = gradio.Button( value = wording.get('uis.start_button'), variant = 'primary', size = 'sm' ) OUTPUT_CLEAR_BUTTON = gradio.Button( value = wording.get('uis.clear_button'), size = 'sm' )
null
772
from typing import Tuple, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.core import conditional_process from facefusion.memory import limit_system_memory from facefusion.uis.core import get_ui_component from facefusion.normalizer import normalize_output_path from facefusion.filesystem import clear_temp, is_image, is_video OUTPUT_IMAGE : Optional[gradio.Image] = None OUTPUT_VIDEO : Optional[gradio.Video] = None OUTPUT_START_BUTTON : Optional[gradio.Button] = None OUTPUT_CLEAR_BUTTON : Optional[gradio.Button] = None def start(output_path : str) -> Tuple[gradio.Image, gradio.Video]: def clear() -> Tuple[gradio.Image, gradio.Video]: def get_ui_component(name : ComponentName) -> Optional[Component]: def listen() -> None: output_path_textbox = get_ui_component('output_path_textbox') if output_path_textbox: OUTPUT_START_BUTTON.click(start, inputs = output_path_textbox, outputs = [ OUTPUT_IMAGE, OUTPUT_VIDEO ]) OUTPUT_CLEAR_BUTTON.click(clear, outputs = [ OUTPUT_IMAGE, OUTPUT_VIDEO ])
null
773
from typing import Optional, List import gradio import facefusion.globals from facefusion import wording from facefusion.uis import choices as uis_choices COMMON_OPTIONS_CHECKBOX_GROUP : Optional[gradio.Checkboxgroup] = None def render() -> None: global COMMON_OPTIONS_CHECKBOX_GROUP value = [] if facefusion.globals.keep_temp: value.append('keep-temp') if facefusion.globals.skip_audio: value.append('skip-audio') if facefusion.globals.skip_download: value.append('skip-download') COMMON_OPTIONS_CHECKBOX_GROUP = gradio.Checkboxgroup( label = wording.get('uis.common_options_checkbox_group'), choices = uis_choices.common_options, value = value )
null
774
from typing import Optional, List import gradio import facefusion.globals from facefusion import wording from facefusion.uis import choices as uis_choices COMMON_OPTIONS_CHECKBOX_GROUP : Optional[gradio.Checkboxgroup] = None def update(common_options : List[str]) -> None: def listen() -> None: COMMON_OPTIONS_CHECKBOX_GROUP.change(update, inputs = COMMON_OPTIONS_CHECKBOX_GROUP)
null
775
from typing import List, Optional, Tuple, Any, Dict import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.face_store import clear_static_faces, clear_reference_faces from facefusion.vision import get_video_frame, read_static_image, normalize_frame_color from facefusion.filesystem import is_image, is_video from facefusion.face_analyser import get_many_faces from facefusion.typing import VisionFrame, FaceSelectorMode from facefusion.uis.core import get_ui_component, register_ui_component from facefusion.uis.typing import ComponentName FACE_SELECTOR_MODE_DROPDOWN : Optional[gradio.Dropdown] = None REFERENCE_FACE_POSITION_GALLERY : Optional[gradio.Gallery] = None REFERENCE_FACE_DISTANCE_SLIDER : Optional[gradio.Slider] = None def extract_gallery_frames(temp_vision_frame : VisionFrame) -> List[VisionFrame]: gallery_vision_frames = [] faces = get_many_faces(temp_vision_frame) for face in faces: start_x, start_y, end_x, end_y = map(int, face.bounding_box) padding_x = int((end_x - start_x) * 0.25) padding_y = int((end_y - start_y) * 0.25) start_x = max(0, start_x - padding_x) start_y = max(0, start_y - padding_y) end_x = max(0, end_x + padding_x) end_y = max(0, end_y + padding_y) crop_vision_frame = temp_vision_frame[start_y:end_y, start_x:end_x] crop_vision_frame = normalize_frame_color(crop_vision_frame) gallery_vision_frames.append(crop_vision_frame) return gallery_vision_frames def get_video_frame(video_path : str, frame_number : int = 0) -> Optional[VisionFrame]: if is_video(video_path): video_capture = cv2.VideoCapture(video_path) if video_capture.isOpened(): frame_total = video_capture.get(cv2.CAP_PROP_FRAME_COUNT) video_capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1)) has_vision_frame, vision_frame = video_capture.read() video_capture.release() if has_vision_frame: return vision_frame return None def read_static_image(image_path : str) -> Optional[VisionFrame]: return read_image(image_path) def is_image(image_path : str) -> bool: return is_file(image_path) and filetype.helpers.is_image(image_path) def is_video(video_path : str) -> bool: return is_file(video_path) and filetype.helpers.is_video(video_path) def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global FACE_SELECTOR_MODE_DROPDOWN global REFERENCE_FACE_POSITION_GALLERY global REFERENCE_FACE_DISTANCE_SLIDER reference_face_gallery_args: Dict[str, Any] =\ { 'label': wording.get('uis.reference_face_gallery'), 'object_fit': 'cover', 'columns': 8, 'allow_preview': False, 'visible': 'reference' in facefusion.globals.face_selector_mode } if is_image(facefusion.globals.target_path): reference_frame = read_static_image(facefusion.globals.target_path) reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame) if is_video(facefusion.globals.target_path): reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number) reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame) FACE_SELECTOR_MODE_DROPDOWN = gradio.Dropdown( label = wording.get('uis.face_selector_mode_dropdown'), choices = facefusion.choices.face_selector_modes, value = facefusion.globals.face_selector_mode ) REFERENCE_FACE_POSITION_GALLERY = gradio.Gallery(**reference_face_gallery_args) REFERENCE_FACE_DISTANCE_SLIDER = gradio.Slider( label = wording.get('uis.reference_face_distance_slider'), value = facefusion.globals.reference_face_distance, step = facefusion.choices.reference_face_distance_range[1] - facefusion.choices.reference_face_distance_range[0], minimum = facefusion.choices.reference_face_distance_range[0], maximum = facefusion.choices.reference_face_distance_range[-1], visible = 'reference' in facefusion.globals.face_selector_mode ) register_ui_component('face_selector_mode_dropdown', FACE_SELECTOR_MODE_DROPDOWN) register_ui_component('reference_face_position_gallery', REFERENCE_FACE_POSITION_GALLERY) register_ui_component('reference_face_distance_slider', REFERENCE_FACE_DISTANCE_SLIDER)
null
776
from typing import List, Optional, Tuple, Any, Dict import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.face_store import clear_static_faces, clear_reference_faces from facefusion.vision import get_video_frame, read_static_image, normalize_frame_color from facefusion.filesystem import is_image, is_video from facefusion.face_analyser import get_many_faces from facefusion.typing import VisionFrame, FaceSelectorMode from facefusion.uis.core import get_ui_component, register_ui_component from facefusion.uis.typing import ComponentName FACE_SELECTOR_MODE_DROPDOWN : Optional[gradio.Dropdown] = None REFERENCE_FACE_POSITION_GALLERY : Optional[gradio.Gallery] = None REFERENCE_FACE_DISTANCE_SLIDER : Optional[gradio.Slider] = None def update_face_selector_mode(face_selector_mode : FaceSelectorMode) -> Tuple[gradio.Gallery, gradio.Slider]: if face_selector_mode == 'reference': facefusion.globals.face_selector_mode = face_selector_mode return gradio.Gallery(visible = True), gradio.Slider(visible = True) if face_selector_mode == 'one': facefusion.globals.face_selector_mode = face_selector_mode return gradio.Gallery(visible = False), gradio.Slider(visible = False) if face_selector_mode == 'many': facefusion.globals.face_selector_mode = face_selector_mode return gradio.Gallery(visible = False), gradio.Slider(visible = False) def clear_and_update_reference_face_position(event : gradio.SelectData) -> gradio.Gallery: clear_reference_faces() clear_static_faces() update_reference_face_position(event.index) return update_reference_position_gallery() def update_reference_face_position(reference_face_position : int = 0) -> None: facefusion.globals.reference_face_position = reference_face_position def update_reference_face_distance(reference_face_distance : float) -> None: facefusion.globals.reference_face_distance = reference_face_distance def update_reference_frame_number(reference_frame_number : int) -> None: facefusion.globals.reference_frame_number = reference_frame_number def clear_and_update_reference_position_gallery() -> gradio.Gallery: clear_reference_faces() clear_static_faces() return update_reference_position_gallery() def update_reference_position_gallery() -> gradio.Gallery: gallery_vision_frames = [] if is_image(facefusion.globals.target_path): temp_vision_frame = read_static_image(facefusion.globals.target_path) gallery_vision_frames = extract_gallery_frames(temp_vision_frame) if is_video(facefusion.globals.target_path): temp_vision_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number) gallery_vision_frames = extract_gallery_frames(temp_vision_frame) if gallery_vision_frames: return gradio.Gallery(value = gallery_vision_frames) return gradio.Gallery(value = None) def get_ui_component(name : ComponentName) -> Optional[Component]: if name in UI_COMPONENTS: return UI_COMPONENTS[name] return None ComponentName = Literal\ [ 'source_audio', 'source_image', 'target_image', 'target_video', 'preview_frame_slider', 'face_selector_mode_dropdown', 'reference_face_position_gallery', 'reference_face_distance_slider', 'face_analyser_order_dropdown', 'face_analyser_age_dropdown', 'face_analyser_gender_dropdown', 'face_detector_model_dropdown', 'face_detector_size_dropdown', 'face_detector_score_slider', 'face_mask_types_checkbox_group', 'face_mask_blur_slider', 'face_mask_padding_top_slider', 'face_mask_padding_bottom_slider', 'face_mask_padding_left_slider', 'face_mask_padding_right_slider', 'face_mask_region_checkbox_group', 'frame_processors_checkbox_group', 'face_debugger_items_checkbox_group', 'face_enhancer_model_dropdown', 'face_enhancer_blend_slider', 'face_swapper_model_dropdown', 'frame_enhancer_model_dropdown', 'frame_enhancer_blend_slider', 'lip_syncer_model_dropdown', 'output_path_textbox', 'output_video_fps_slider', 'benchmark_runs_checkbox_group', 'benchmark_cycles_slider', 'webcam_mode_radio', 'webcam_resolution_dropdown', 'webcam_fps_slider' ] def listen() -> None: FACE_SELECTOR_MODE_DROPDOWN.change(update_face_selector_mode, inputs = FACE_SELECTOR_MODE_DROPDOWN, outputs = [ REFERENCE_FACE_POSITION_GALLERY, REFERENCE_FACE_DISTANCE_SLIDER ]) REFERENCE_FACE_POSITION_GALLERY.select(clear_and_update_reference_face_position) REFERENCE_FACE_DISTANCE_SLIDER.change(update_reference_face_distance, inputs = REFERENCE_FACE_DISTANCE_SLIDER) multi_component_names : List[ComponentName] =\ [ 'target_image', 'target_video' ] for component_name in multi_component_names: component = get_ui_component(component_name) if component: for method in [ 'upload', 'change', 'clear' ]: getattr(component, method)(update_reference_face_position) getattr(component, method)(update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY) change_one_component_names : List[ComponentName] =\ [ 'face_analyser_order_dropdown', 'face_analyser_age_dropdown', 'face_analyser_gender_dropdown' ] for component_name in change_one_component_names: component = get_ui_component(component_name) if component: component.change(update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY) change_two_component_names : List[ComponentName] =\ [ 'face_detector_model_dropdown', 'face_detector_size_dropdown', 'face_detector_score_slider' ] for component_name in change_two_component_names: component = get_ui_component(component_name) if component: component.change(clear_and_update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY) preview_frame_slider = get_ui_component('preview_frame_slider') if preview_frame_slider: preview_frame_slider.change(update_reference_frame_number, inputs = preview_frame_slider) preview_frame_slider.release(update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY)
null
777
from typing import Optional import gradio from facefusion import wording from facefusion.uis import choices as uis_choices from facefusion.uis.core import register_ui_component WEBCAM_MODE_RADIO : Optional[gradio.Radio] = None WEBCAM_RESOLUTION_DROPDOWN : Optional[gradio.Dropdown] = None WEBCAM_FPS_SLIDER : Optional[gradio.Slider] = None def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global WEBCAM_MODE_RADIO global WEBCAM_RESOLUTION_DROPDOWN global WEBCAM_FPS_SLIDER WEBCAM_MODE_RADIO = gradio.Radio( label = wording.get('uis.webcam_mode_radio'), choices = uis_choices.webcam_modes, value = 'inline' ) WEBCAM_RESOLUTION_DROPDOWN = gradio.Dropdown( label = wording.get('uis.webcam_resolution_dropdown'), choices = uis_choices.webcam_resolutions, value = uis_choices.webcam_resolutions[0] ) WEBCAM_FPS_SLIDER = gradio.Slider( label = wording.get('uis.webcam_fps_slider'), value = 25, step = 1, minimum = 1, maximum = 60 ) register_ui_component('webcam_mode_radio', WEBCAM_MODE_RADIO) register_ui_component('webcam_resolution_dropdown', WEBCAM_RESOLUTION_DROPDOWN) register_ui_component('webcam_fps_slider', WEBCAM_FPS_SLIDER)
null
778
from typing import Optional, Dict, Any import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, FaceDetectorModel from facefusion.uis.core import register_ui_component FACE_ANALYSER_ORDER_DROPDOWN : Optional[gradio.Dropdown] = None FACE_ANALYSER_AGE_DROPDOWN : Optional[gradio.Dropdown] = None FACE_ANALYSER_GENDER_DROPDOWN : Optional[gradio.Dropdown] = None FACE_DETECTOR_SIZE_DROPDOWN : Optional[gradio.Dropdown] = None FACE_DETECTOR_SCORE_SLIDER : Optional[gradio.Slider] = None FACE_DETECTOR_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global FACE_ANALYSER_ORDER_DROPDOWN global FACE_ANALYSER_AGE_DROPDOWN global FACE_ANALYSER_GENDER_DROPDOWN global FACE_DETECTOR_SIZE_DROPDOWN global FACE_DETECTOR_SCORE_SLIDER global FACE_DETECTOR_MODEL_DROPDOWN face_detector_size_dropdown_args : Dict[str, Any] =\ { 'label': wording.get('uis.face_detector_size_dropdown'), 'value': facefusion.globals.face_detector_size } if facefusion.globals.face_detector_size in facefusion.choices.face_detector_set[facefusion.globals.face_detector_model]: face_detector_size_dropdown_args['choices'] = facefusion.choices.face_detector_set[facefusion.globals.face_detector_model] with gradio.Row(): FACE_ANALYSER_ORDER_DROPDOWN = gradio.Dropdown( label = wording.get('uis.face_analyser_order_dropdown'), choices = facefusion.choices.face_analyser_orders, value = facefusion.globals.face_analyser_order ) FACE_ANALYSER_AGE_DROPDOWN = gradio.Dropdown( label = wording.get('uis.face_analyser_age_dropdown'), choices = [ 'none' ] + facefusion.choices.face_analyser_ages, value = facefusion.globals.face_analyser_age or 'none' ) FACE_ANALYSER_GENDER_DROPDOWN = gradio.Dropdown( label = wording.get('uis.face_analyser_gender_dropdown'), choices = [ 'none' ] + facefusion.choices.face_analyser_genders, value = facefusion.globals.face_analyser_gender or 'none' ) FACE_DETECTOR_MODEL_DROPDOWN = gradio.Dropdown( label = wording.get('uis.face_detector_model_dropdown'), choices = facefusion.choices.face_detector_set.keys(), value = facefusion.globals.face_detector_model ) FACE_DETECTOR_SIZE_DROPDOWN = gradio.Dropdown(**face_detector_size_dropdown_args) FACE_DETECTOR_SCORE_SLIDER = gradio.Slider( label = wording.get('uis.face_detector_score_slider'), value = facefusion.globals.face_detector_score, step = facefusion.choices.face_detector_score_range[1] - facefusion.choices.face_detector_score_range[0], minimum = facefusion.choices.face_detector_score_range[0], maximum = facefusion.choices.face_detector_score_range[-1] ) register_ui_component('face_analyser_order_dropdown', FACE_ANALYSER_ORDER_DROPDOWN) register_ui_component('face_analyser_age_dropdown', FACE_ANALYSER_AGE_DROPDOWN) register_ui_component('face_analyser_gender_dropdown', FACE_ANALYSER_GENDER_DROPDOWN) register_ui_component('face_detector_model_dropdown', FACE_DETECTOR_MODEL_DROPDOWN) register_ui_component('face_detector_size_dropdown', FACE_DETECTOR_SIZE_DROPDOWN) register_ui_component('face_detector_score_slider', FACE_DETECTOR_SCORE_SLIDER)
null
779
from typing import Optional, Dict, Any import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, FaceDetectorModel from facefusion.uis.core import register_ui_component FACE_ANALYSER_ORDER_DROPDOWN : Optional[gradio.Dropdown] = None FACE_ANALYSER_AGE_DROPDOWN : Optional[gradio.Dropdown] = None FACE_ANALYSER_GENDER_DROPDOWN : Optional[gradio.Dropdown] = None FACE_DETECTOR_SIZE_DROPDOWN : Optional[gradio.Dropdown] = None FACE_DETECTOR_SCORE_SLIDER : Optional[gradio.Slider] = None FACE_DETECTOR_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None def update_face_analyser_order(face_analyser_order : FaceAnalyserOrder) -> None: def update_face_analyser_age(face_analyser_age : FaceAnalyserAge) -> None: def update_face_analyser_gender(face_analyser_gender : FaceAnalyserGender) -> None: def update_face_detector_model(face_detector_model : FaceDetectorModel) -> gradio.Dropdown: def update_face_detector_size(face_detector_size : str) -> None: def update_face_detector_score(face_detector_score : float) -> None: def listen() -> None: FACE_ANALYSER_ORDER_DROPDOWN.change(update_face_analyser_order, inputs = FACE_ANALYSER_ORDER_DROPDOWN) FACE_ANALYSER_AGE_DROPDOWN.change(update_face_analyser_age, inputs = FACE_ANALYSER_AGE_DROPDOWN) FACE_ANALYSER_GENDER_DROPDOWN.change(update_face_analyser_gender, inputs = FACE_ANALYSER_GENDER_DROPDOWN) FACE_DETECTOR_MODEL_DROPDOWN.change(update_face_detector_model, inputs = FACE_DETECTOR_MODEL_DROPDOWN, outputs = FACE_DETECTOR_SIZE_DROPDOWN) FACE_DETECTOR_SIZE_DROPDOWN.change(update_face_detector_size, inputs = FACE_DETECTOR_SIZE_DROPDOWN) FACE_DETECTOR_SCORE_SLIDER.change(update_face_detector_score, inputs = FACE_DETECTOR_SCORE_SLIDER)
null
780
from typing import Optional import gradio import facefusion.globals import facefusion.choices from facefusion import wording EXECUTION_QUEUE_COUNT_SLIDER : Optional[gradio.Slider] = None def render() -> None: global EXECUTION_QUEUE_COUNT_SLIDER EXECUTION_QUEUE_COUNT_SLIDER = gradio.Slider( label = wording.get('uis.execution_queue_count_slider'), value = facefusion.globals.execution_queue_count, step = facefusion.choices.execution_queue_count_range[1] - facefusion.choices.execution_queue_count_range[0], minimum = facefusion.choices.execution_queue_count_range[0], maximum = facefusion.choices.execution_queue_count_range[-1] )
null
781
from typing import Optional import gradio import facefusion.globals import facefusion.choices from facefusion import wording EXECUTION_QUEUE_COUNT_SLIDER : Optional[gradio.Slider] = None def update_execution_queue_count(execution_queue_count : int = 1) -> None: facefusion.globals.execution_queue_count = execution_queue_count def listen() -> None: EXECUTION_QUEUE_COUNT_SLIDER.change(update_execution_queue_count, inputs = EXECUTION_QUEUE_COUNT_SLIDER)
null
782
from typing import List, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.processors.frame.core import load_frame_processor_module, clear_frame_processors_modules from facefusion.filesystem import list_directory from facefusion.uis.core import register_ui_component FRAME_PROCESSORS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None def sort_frame_processors(frame_processors : List[str]) -> list[str]: available_frame_processors = list_directory('facefusion/processors/frame/modules') return sorted(available_frame_processors, key = lambda frame_processor : frame_processors.index(frame_processor) if frame_processor in frame_processors else len(frame_processors)) def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global FRAME_PROCESSORS_CHECKBOX_GROUP FRAME_PROCESSORS_CHECKBOX_GROUP = gradio.CheckboxGroup( label = wording.get('uis.frame_processors_checkbox_group'), choices = sort_frame_processors(facefusion.globals.frame_processors), value = facefusion.globals.frame_processors ) register_ui_component('frame_processors_checkbox_group', FRAME_PROCESSORS_CHECKBOX_GROUP)
null
783
from typing import List, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.processors.frame.core import load_frame_processor_module, clear_frame_processors_modules from facefusion.filesystem import list_directory from facefusion.uis.core import register_ui_component FRAME_PROCESSORS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None def update_frame_processors(frame_processors : List[str]) -> gradio.CheckboxGroup: def listen() -> None: FRAME_PROCESSORS_CHECKBOX_GROUP.change(update_frame_processors, inputs = FRAME_PROCESSORS_CHECKBOX_GROUP, outputs = FRAME_PROCESSORS_CHECKBOX_GROUP)
null
784
from typing import List, Optional, Tuple import gradio import facefusion.globals from facefusion import wording from facefusion.processors.frame.core import load_frame_processor_module from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices from facefusion.processors.frame.typings import FaceDebuggerItem, FaceEnhancerModel, FaceSwapperModel, FrameEnhancerModel, LipSyncerModel from facefusion.uis.core import get_ui_component, register_ui_component FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None FACE_ENHANCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None FACE_ENHANCER_BLEND_SLIDER : Optional[gradio.Slider] = None FACE_SWAPPER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None FRAME_ENHANCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None FRAME_ENHANCER_BLEND_SLIDER : Optional[gradio.Slider] = None LIP_SYNCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP global FACE_ENHANCER_MODEL_DROPDOWN global FACE_ENHANCER_BLEND_SLIDER global FACE_SWAPPER_MODEL_DROPDOWN global FRAME_ENHANCER_MODEL_DROPDOWN global FRAME_ENHANCER_BLEND_SLIDER global LIP_SYNCER_MODEL_DROPDOWN FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP = gradio.CheckboxGroup( label = wording.get('uis.face_debugger_items_checkbox_group'), choices = frame_processors_choices.face_debugger_items, value = frame_processors_globals.face_debugger_items, visible = 'face_debugger' in facefusion.globals.frame_processors ) FACE_ENHANCER_MODEL_DROPDOWN = gradio.Dropdown( label = wording.get('uis.face_enhancer_model_dropdown'), choices = frame_processors_choices.face_enhancer_models, value = frame_processors_globals.face_enhancer_model, visible = 'face_enhancer' in facefusion.globals.frame_processors ) FACE_ENHANCER_BLEND_SLIDER = gradio.Slider( label = wording.get('uis.face_enhancer_blend_slider'), value = frame_processors_globals.face_enhancer_blend, step = frame_processors_choices.face_enhancer_blend_range[1] - frame_processors_choices.face_enhancer_blend_range[0], minimum = frame_processors_choices.face_enhancer_blend_range[0], maximum = frame_processors_choices.face_enhancer_blend_range[-1], visible = 'face_enhancer' in facefusion.globals.frame_processors ) FACE_SWAPPER_MODEL_DROPDOWN = gradio.Dropdown( label = wording.get('uis.face_swapper_model_dropdown'), choices = frame_processors_choices.face_swapper_models, value = frame_processors_globals.face_swapper_model, visible = 'face_swapper' in facefusion.globals.frame_processors ) FRAME_ENHANCER_MODEL_DROPDOWN = gradio.Dropdown( label = wording.get('uis.frame_enhancer_model_dropdown'), choices = frame_processors_choices.frame_enhancer_models, value = frame_processors_globals.frame_enhancer_model, visible = 'frame_enhancer' in facefusion.globals.frame_processors ) FRAME_ENHANCER_BLEND_SLIDER = gradio.Slider( label = wording.get('uis.frame_enhancer_blend_slider'), value = frame_processors_globals.frame_enhancer_blend, step = frame_processors_choices.frame_enhancer_blend_range[1] - frame_processors_choices.frame_enhancer_blend_range[0], minimum = frame_processors_choices.frame_enhancer_blend_range[0], maximum = frame_processors_choices.frame_enhancer_blend_range[-1], visible = 'frame_enhancer' in facefusion.globals.frame_processors ) LIP_SYNCER_MODEL_DROPDOWN = gradio.Dropdown( label = wording.get('uis.lip_syncer_model_dropdown'), choices = frame_processors_choices.lip_syncer_models, value = frame_processors_globals.lip_syncer_model, visible = 'lip_syncer' in facefusion.globals.frame_processors ) register_ui_component('face_debugger_items_checkbox_group', FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP) register_ui_component('face_enhancer_model_dropdown', FACE_ENHANCER_MODEL_DROPDOWN) register_ui_component('face_enhancer_blend_slider', FACE_ENHANCER_BLEND_SLIDER) register_ui_component('face_swapper_model_dropdown', FACE_SWAPPER_MODEL_DROPDOWN) register_ui_component('frame_enhancer_model_dropdown', FRAME_ENHANCER_MODEL_DROPDOWN) register_ui_component('frame_enhancer_blend_slider', FRAME_ENHANCER_BLEND_SLIDER) register_ui_component('lip_syncer_model_dropdown', LIP_SYNCER_MODEL_DROPDOWN)
null
785
from typing import List, Optional, Tuple import gradio import facefusion.globals from facefusion import wording from facefusion.processors.frame.core import load_frame_processor_module from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices from facefusion.processors.frame.typings import FaceDebuggerItem, FaceEnhancerModel, FaceSwapperModel, FrameEnhancerModel, LipSyncerModel from facefusion.uis.core import get_ui_component, register_ui_component FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None FACE_ENHANCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None FACE_ENHANCER_BLEND_SLIDER : Optional[gradio.Slider] = None FACE_SWAPPER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None FRAME_ENHANCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None FRAME_ENHANCER_BLEND_SLIDER : Optional[gradio.Slider] = None LIP_SYNCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None def update_frame_processors(frame_processors : List[str]) -> Tuple[gradio.CheckboxGroup, gradio.Dropdown, gradio.Slider, gradio.Dropdown, gradio.Dropdown, gradio.Slider, gradio.Dropdown]: has_face_debugger = 'face_debugger' in frame_processors has_face_enhancer = 'face_enhancer' in frame_processors has_face_swapper = 'face_swapper' in frame_processors has_frame_enhancer = 'frame_enhancer' in frame_processors has_lip_syncer = 'lip_syncer' in frame_processors return gradio.CheckboxGroup(visible = has_face_debugger), gradio.Dropdown(visible = has_face_enhancer), gradio.Slider(visible = has_face_enhancer), gradio.Dropdown(visible = has_face_swapper), gradio.Dropdown(visible = has_frame_enhancer), gradio.Slider(visible = has_frame_enhancer), gradio.Dropdown(visible = has_lip_syncer) def update_face_debugger_items(face_debugger_items : List[FaceDebuggerItem]) -> None: frame_processors_globals.face_debugger_items = face_debugger_items def update_face_enhancer_model(face_enhancer_model : FaceEnhancerModel) -> gradio.Dropdown: frame_processors_globals.face_enhancer_model = face_enhancer_model face_enhancer_module = load_frame_processor_module('face_enhancer') face_enhancer_module.clear_frame_processor() face_enhancer_module.set_options('model', face_enhancer_module.MODELS[face_enhancer_model]) if face_enhancer_module.pre_check(): return gradio.Dropdown(value = face_enhancer_model) return gradio.Dropdown() def update_face_enhancer_blend(face_enhancer_blend : int) -> None: frame_processors_globals.face_enhancer_blend = face_enhancer_blend def update_face_swapper_model(face_swapper_model : FaceSwapperModel) -> gradio.Dropdown: frame_processors_globals.face_swapper_model = face_swapper_model if face_swapper_model == 'blendswap_256': facefusion.globals.face_recognizer_model = 'arcface_blendswap' if face_swapper_model == 'inswapper_128' or face_swapper_model == 'inswapper_128_fp16': facefusion.globals.face_recognizer_model = 'arcface_inswapper' if face_swapper_model == 'simswap_256' or face_swapper_model == 'simswap_512_unofficial': facefusion.globals.face_recognizer_model = 'arcface_simswap' if face_swapper_model == 'uniface_256': facefusion.globals.face_recognizer_model = 'arcface_uniface' face_swapper_module = load_frame_processor_module('face_swapper') face_swapper_module.clear_frame_processor() face_swapper_module.set_options('model', face_swapper_module.MODELS[face_swapper_model]) if face_swapper_module.pre_check(): return gradio.Dropdown(value = face_swapper_model) return gradio.Dropdown() def update_frame_enhancer_model(frame_enhancer_model : FrameEnhancerModel) -> gradio.Dropdown: frame_processors_globals.frame_enhancer_model = frame_enhancer_model frame_enhancer_module = load_frame_processor_module('frame_enhancer') frame_enhancer_module.clear_frame_processor() frame_enhancer_module.set_options('model', frame_enhancer_module.MODELS[frame_enhancer_model]) if frame_enhancer_module.pre_check(): return gradio.Dropdown(value = frame_enhancer_model) return gradio.Dropdown() def update_frame_enhancer_blend(frame_enhancer_blend : int) -> None: frame_processors_globals.frame_enhancer_blend = frame_enhancer_blend def update_lip_syncer_model(lip_syncer_model : LipSyncerModel) -> gradio.Dropdown: frame_processors_globals.lip_syncer_model = lip_syncer_model lip_syncer_module = load_frame_processor_module('lip_syncer') lip_syncer_module.clear_frame_processor() lip_syncer_module.set_options('model', lip_syncer_module.MODELS[lip_syncer_model]) if lip_syncer_module.pre_check(): return gradio.Dropdown(value = lip_syncer_model) return gradio.Dropdown() def get_ui_component(name : ComponentName) -> Optional[Component]: if name in UI_COMPONENTS: return UI_COMPONENTS[name] return None def listen() -> None: FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP.change(update_face_debugger_items, inputs = FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP) FACE_ENHANCER_MODEL_DROPDOWN.change(update_face_enhancer_model, inputs = FACE_ENHANCER_MODEL_DROPDOWN, outputs = FACE_ENHANCER_MODEL_DROPDOWN) FACE_ENHANCER_BLEND_SLIDER.change(update_face_enhancer_blend, inputs = FACE_ENHANCER_BLEND_SLIDER) FACE_SWAPPER_MODEL_DROPDOWN.change(update_face_swapper_model, inputs = FACE_SWAPPER_MODEL_DROPDOWN, outputs = FACE_SWAPPER_MODEL_DROPDOWN) FRAME_ENHANCER_MODEL_DROPDOWN.change(update_frame_enhancer_model, inputs = FRAME_ENHANCER_MODEL_DROPDOWN, outputs = FRAME_ENHANCER_MODEL_DROPDOWN) FRAME_ENHANCER_BLEND_SLIDER.change(update_frame_enhancer_blend, inputs = FRAME_ENHANCER_BLEND_SLIDER) LIP_SYNCER_MODEL_DROPDOWN.change(update_lip_syncer_model, inputs = LIP_SYNCER_MODEL_DROPDOWN, outputs = LIP_SYNCER_MODEL_DROPDOWN) frame_processors_checkbox_group = get_ui_component('frame_processors_checkbox_group') if frame_processors_checkbox_group: frame_processors_checkbox_group.change(update_frame_processors, inputs = frame_processors_checkbox_group, outputs = [ FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP, FACE_ENHANCER_MODEL_DROPDOWN, FACE_ENHANCER_BLEND_SLIDER, FACE_SWAPPER_MODEL_DROPDOWN, FRAME_ENHANCER_MODEL_DROPDOWN, FRAME_ENHANCER_BLEND_SLIDER, LIP_SYNCER_MODEL_DROPDOWN ])
null
786
from typing import Optional import gradio from facefusion import metadata, wording ABOUT_BUTTON : Optional[gradio.HTML] = None DONATE_BUTTON : Optional[gradio.HTML] = None def render() -> None: global ABOUT_BUTTON global DONATE_BUTTON ABOUT_BUTTON = gradio.Button( value = metadata.get('name') + ' ' + metadata.get('version'), variant = 'primary', link = metadata.get('url') ) DONATE_BUTTON = gradio.Button( value = wording.get('uis.donate_button'), link = 'https://donate.facefusion.io', size = 'sm' )
null
787
from typing import Optional, List, Tuple import gradio import facefusion.globals from facefusion import wording from facefusion.uis.typing import File from facefusion.common_helper import get_first from facefusion.filesystem import has_audio, has_image, filter_audio_paths, filter_image_paths from facefusion.uis.core import register_ui_component SOURCE_FILE : Optional[gradio.File] = None SOURCE_AUDIO : Optional[gradio.Audio] = None SOURCE_IMAGE : Optional[gradio.Image] = None File = IO[Any] def get_first(__list__ : Any) -> Any: return next(iter(__list__), None) def has_audio(audio_paths : List[str]) -> bool: if audio_paths: return any(is_audio(audio_path) for audio_path in audio_paths) return False def has_image(image_paths: List[str]) -> bool: if image_paths: return any(is_image(image_path) for image_path in image_paths) return False def filter_audio_paths(paths : List[str]) -> List[str]: if paths: return [ path for path in paths if is_audio(path) ] return [] def filter_image_paths(paths : List[str]) -> List[str]: if paths: return [ path for path in paths if is_image(path) ] return [] def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global SOURCE_FILE global SOURCE_AUDIO global SOURCE_IMAGE has_source_audio = has_audio(facefusion.globals.source_paths) has_source_image = has_image(facefusion.globals.source_paths) SOURCE_FILE = gradio.File( file_count = 'multiple', file_types = [ '.mp3', '.wav', '.png', '.jpg', '.webp' ], label = wording.get('uis.source_file'), value = facefusion.globals.source_paths if has_source_audio or has_source_image else None ) source_file_names = [ source_file_value['name'] for source_file_value in SOURCE_FILE.value ] if SOURCE_FILE.value else None source_audio_path = get_first(filter_audio_paths(source_file_names)) source_image_path = get_first(filter_image_paths(source_file_names)) SOURCE_AUDIO = gradio.Audio( value = source_audio_path if has_source_audio else None, visible = has_source_audio, show_label = False ) SOURCE_IMAGE = gradio.Image( value = source_image_path if has_source_image else None, visible = has_source_image, show_label = False ) register_ui_component('source_audio', SOURCE_AUDIO) register_ui_component('source_image', SOURCE_IMAGE)
null
788
from typing import Optional, List, Tuple import gradio import facefusion.globals from facefusion import wording from facefusion.uis.typing import File from facefusion.common_helper import get_first from facefusion.filesystem import has_audio, has_image, filter_audio_paths, filter_image_paths from facefusion.uis.core import register_ui_component SOURCE_FILE : Optional[gradio.File] = None SOURCE_AUDIO : Optional[gradio.Audio] = None SOURCE_IMAGE : Optional[gradio.Image] = None def update(files : List[File]) -> Tuple[gradio.Audio, gradio.Image]: file_names = [ file.name for file in files ] if files else None has_source_audio = has_audio(file_names) has_source_image = has_image(file_names) if has_source_audio or has_source_image: source_audio_path = get_first(filter_audio_paths(file_names)) source_image_path = get_first(filter_image_paths(file_names)) facefusion.globals.source_paths = file_names return gradio.Audio(value = source_audio_path, visible = has_source_audio), gradio.Image(value = source_image_path, visible = has_source_image) facefusion.globals.source_paths = None return gradio.Audio(value = None, visible = False), gradio.Image(value = None, visible = False) def listen() -> None: SOURCE_FILE.change(update, inputs = SOURCE_FILE, outputs = [ SOURCE_AUDIO, SOURCE_IMAGE ])
null
789
from typing import Any, Optional, List, Dict, Generator import time import tempfile import statistics import gradio import facefusion.globals from facefusion import wording from facefusion.face_store import clear_static_faces from facefusion.processors.frame.core import get_frame_processors_modules from facefusion.vision import count_video_frame_total, detect_video_resolution, detect_video_fps, pack_resolution from facefusion.core import conditional_process from facefusion.memory import limit_system_memory from facefusion.normalizer import normalize_output_path from facefusion.filesystem import clear_temp from facefusion.uis.core import get_ui_component BENCHMARK_RESULTS_DATAFRAME : Optional[gradio.Dataframe] = None BENCHMARK_START_BUTTON : Optional[gradio.Button] = None BENCHMARK_CLEAR_BUTTON : Optional[gradio.Button] = None def render() -> None: global BENCHMARK_RESULTS_DATAFRAME global BENCHMARK_START_BUTTON global BENCHMARK_CLEAR_BUTTON BENCHMARK_RESULTS_DATAFRAME = gradio.Dataframe( label = wording.get('uis.benchmark_results_dataframe'), headers = [ 'target_path', 'benchmark_cycles', 'average_run', 'fastest_run', 'slowest_run', 'relative_fps' ], datatype = [ 'str', 'number', 'number', 'number', 'number', 'number' ] ) BENCHMARK_START_BUTTON = gradio.Button( value = wording.get('uis.start_button'), variant = 'primary', size = 'sm' ) BENCHMARK_CLEAR_BUTTON = gradio.Button( value = wording.get('uis.clear_button'), size = 'sm' )
null
790
from typing import Any, Optional, List, Dict, Generator import time import tempfile import statistics import gradio import facefusion.globals from facefusion import wording from facefusion.face_store import clear_static_faces from facefusion.processors.frame.core import get_frame_processors_modules from facefusion.vision import count_video_frame_total, detect_video_resolution, detect_video_fps, pack_resolution from facefusion.core import conditional_process from facefusion.memory import limit_system_memory from facefusion.normalizer import normalize_output_path from facefusion.filesystem import clear_temp from facefusion.uis.core import get_ui_component BENCHMARK_RESULTS_DATAFRAME : Optional[gradio.Dataframe] = None BENCHMARK_START_BUTTON : Optional[gradio.Button] = None BENCHMARK_CLEAR_BUTTON : Optional[gradio.Button] = None def start(benchmark_runs : List[str], benchmark_cycles : int) -> Generator[List[Any], None, None]: def clear() -> gradio.Dataframe: def get_ui_component(name : ComponentName) -> Optional[Component]: def listen() -> None: benchmark_runs_checkbox_group = get_ui_component('benchmark_runs_checkbox_group') benchmark_cycles_slider = get_ui_component('benchmark_cycles_slider') if benchmark_runs_checkbox_group and benchmark_cycles_slider: BENCHMARK_START_BUTTON.click(start, inputs = [ benchmark_runs_checkbox_group, benchmark_cycles_slider ], outputs = BENCHMARK_RESULTS_DATAFRAME) BENCHMARK_CLEAR_BUTTON.click(clear, outputs = BENCHMARK_RESULTS_DATAFRAME)
null
791
from typing import Optional, Tuple, List import tempfile import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import OutputVideoEncoder, OutputVideoPreset, Fps from facefusion.filesystem import is_image, is_video from facefusion.uis.typing import ComponentName from facefusion.uis.core import get_ui_component, register_ui_component from facefusion.vision import detect_video_fps, create_video_resolutions, detect_video_resolution, pack_resolution OUTPUT_PATH_TEXTBOX : Optional[gradio.Textbox] = None OUTPUT_IMAGE_QUALITY_SLIDER : Optional[gradio.Slider] = None OUTPUT_VIDEO_ENCODER_DROPDOWN : Optional[gradio.Dropdown] = None OUTPUT_VIDEO_PRESET_DROPDOWN : Optional[gradio.Dropdown] = None OUTPUT_VIDEO_RESOLUTION_DROPDOWN : Optional[gradio.Dropdown] = None OUTPUT_VIDEO_QUALITY_SLIDER : Optional[gradio.Slider] = None OUTPUT_VIDEO_FPS_SLIDER : Optional[gradio.Slider] = None def is_image(image_path : str) -> bool: return is_file(image_path) and filetype.helpers.is_image(image_path) def is_video(video_path : str) -> bool: return is_file(video_path) and filetype.helpers.is_video(video_path) def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def create_video_resolutions(video_path : str) -> Optional[List[str]]: temp_resolutions = [] video_resolutions = [] video_resolution = detect_video_resolution(video_path) if video_resolution: width, height = video_resolution temp_resolutions.append(normalize_resolution(video_resolution)) for template_size in video_template_sizes: if width > height: temp_resolutions.append(normalize_resolution((template_size * width / height, template_size))) else: temp_resolutions.append(normalize_resolution((template_size, template_size * height / width))) temp_resolutions = sorted(set(temp_resolutions)) for temp in temp_resolutions: video_resolutions.append(pack_resolution(temp)) return video_resolutions return None def render() -> None: global OUTPUT_PATH_TEXTBOX global OUTPUT_IMAGE_QUALITY_SLIDER global OUTPUT_VIDEO_ENCODER_DROPDOWN global OUTPUT_VIDEO_PRESET_DROPDOWN global OUTPUT_VIDEO_RESOLUTION_DROPDOWN global OUTPUT_VIDEO_QUALITY_SLIDER global OUTPUT_VIDEO_FPS_SLIDER OUTPUT_PATH_TEXTBOX = gradio.Textbox( label = wording.get('uis.output_path_textbox'), value = facefusion.globals.output_path or tempfile.gettempdir(), max_lines = 1 ) OUTPUT_IMAGE_QUALITY_SLIDER = gradio.Slider( label = wording.get('uis.output_image_quality_slider'), value = facefusion.globals.output_image_quality, step = facefusion.choices.output_image_quality_range[1] - facefusion.choices.output_image_quality_range[0], minimum = facefusion.choices.output_image_quality_range[0], maximum = facefusion.choices.output_image_quality_range[-1], visible = is_image(facefusion.globals.target_path) ) OUTPUT_VIDEO_ENCODER_DROPDOWN = gradio.Dropdown( label = wording.get('uis.output_video_encoder_dropdown'), choices = facefusion.choices.output_video_encoders, value = facefusion.globals.output_video_encoder, visible = is_video(facefusion.globals.target_path) ) OUTPUT_VIDEO_PRESET_DROPDOWN = gradio.Dropdown( label = wording.get('uis.output_video_preset_dropdown'), choices = facefusion.choices.output_video_presets, value = facefusion.globals.output_video_preset, visible = is_video(facefusion.globals.target_path) ) OUTPUT_VIDEO_QUALITY_SLIDER = gradio.Slider( label = wording.get('uis.output_video_quality_slider'), value = facefusion.globals.output_video_quality, step = facefusion.choices.output_video_quality_range[1] - facefusion.choices.output_video_quality_range[0], minimum = facefusion.choices.output_video_quality_range[0], maximum = facefusion.choices.output_video_quality_range[-1], visible = is_video(facefusion.globals.target_path) ) OUTPUT_VIDEO_RESOLUTION_DROPDOWN = gradio.Dropdown( label = wording.get('uis.output_video_resolution_dropdown'), choices = create_video_resolutions(facefusion.globals.target_path), value = facefusion.globals.output_video_resolution, visible = is_video(facefusion.globals.target_path) ) OUTPUT_VIDEO_FPS_SLIDER = gradio.Slider( label = wording.get('uis.output_video_fps_slider'), value = facefusion.globals.output_video_fps, step = 0.01, minimum = 1, maximum = 60, visible = is_video(facefusion.globals.target_path) ) register_ui_component('output_path_textbox', OUTPUT_PATH_TEXTBOX) register_ui_component('output_video_fps_slider', OUTPUT_VIDEO_FPS_SLIDER)
null
792
from typing import Optional, Tuple, List import tempfile import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import OutputVideoEncoder, OutputVideoPreset, Fps from facefusion.filesystem import is_image, is_video from facefusion.uis.typing import ComponentName from facefusion.uis.core import get_ui_component, register_ui_component from facefusion.vision import detect_video_fps, create_video_resolutions, detect_video_resolution, pack_resolution OUTPUT_PATH_TEXTBOX : Optional[gradio.Textbox] = None OUTPUT_IMAGE_QUALITY_SLIDER : Optional[gradio.Slider] = None OUTPUT_VIDEO_ENCODER_DROPDOWN : Optional[gradio.Dropdown] = None OUTPUT_VIDEO_PRESET_DROPDOWN : Optional[gradio.Dropdown] = None OUTPUT_VIDEO_RESOLUTION_DROPDOWN : Optional[gradio.Dropdown] = None OUTPUT_VIDEO_QUALITY_SLIDER : Optional[gradio.Slider] = None OUTPUT_VIDEO_FPS_SLIDER : Optional[gradio.Slider] = None def remote_update() -> Tuple[gradio.Slider, gradio.Dropdown, gradio.Dropdown, gradio.Slider, gradio.Dropdown, gradio.Slider]: def update_output_path(output_path : str) -> None: def update_output_image_quality(output_image_quality : int) -> None: def update_output_video_encoder(output_video_encoder: OutputVideoEncoder) -> None: def update_output_video_preset(output_video_preset : OutputVideoPreset) -> None: def update_output_video_quality(output_video_quality : int) -> None: def update_output_video_resolution(output_video_resolution : str) -> None: def update_output_video_fps(output_video_fps : Fps) -> None: ComponentName = Literal\ [ 'source_audio', 'source_image', 'target_image', 'target_video', 'preview_frame_slider', 'face_selector_mode_dropdown', 'reference_face_position_gallery', 'reference_face_distance_slider', 'face_analyser_order_dropdown', 'face_analyser_age_dropdown', 'face_analyser_gender_dropdown', 'face_detector_model_dropdown', 'face_detector_size_dropdown', 'face_detector_score_slider', 'face_mask_types_checkbox_group', 'face_mask_blur_slider', 'face_mask_padding_top_slider', 'face_mask_padding_bottom_slider', 'face_mask_padding_left_slider', 'face_mask_padding_right_slider', 'face_mask_region_checkbox_group', 'frame_processors_checkbox_group', 'face_debugger_items_checkbox_group', 'face_enhancer_model_dropdown', 'face_enhancer_blend_slider', 'face_swapper_model_dropdown', 'frame_enhancer_model_dropdown', 'frame_enhancer_blend_slider', 'lip_syncer_model_dropdown', 'output_path_textbox', 'output_video_fps_slider', 'benchmark_runs_checkbox_group', 'benchmark_cycles_slider', 'webcam_mode_radio', 'webcam_resolution_dropdown', 'webcam_fps_slider' ] def get_ui_component(name : ComponentName) -> Optional[Component]: def listen() -> None: OUTPUT_PATH_TEXTBOX.change(update_output_path, inputs = OUTPUT_PATH_TEXTBOX) OUTPUT_IMAGE_QUALITY_SLIDER.change(update_output_image_quality, inputs = OUTPUT_IMAGE_QUALITY_SLIDER) OUTPUT_VIDEO_ENCODER_DROPDOWN.change(update_output_video_encoder, inputs = OUTPUT_VIDEO_ENCODER_DROPDOWN) OUTPUT_VIDEO_PRESET_DROPDOWN.change(update_output_video_preset, inputs = OUTPUT_VIDEO_PRESET_DROPDOWN) OUTPUT_VIDEO_QUALITY_SLIDER.change(update_output_video_quality, inputs = OUTPUT_VIDEO_QUALITY_SLIDER) OUTPUT_VIDEO_RESOLUTION_DROPDOWN.change(update_output_video_resolution, inputs = OUTPUT_VIDEO_RESOLUTION_DROPDOWN) OUTPUT_VIDEO_FPS_SLIDER.change(update_output_video_fps, inputs = OUTPUT_VIDEO_FPS_SLIDER) multi_component_names : List[ComponentName] =\ [ 'target_image', 'target_video' ] for component_name in multi_component_names: component = get_ui_component(component_name) if component: for method in [ 'upload', 'change', 'clear' ]: getattr(component, method)(remote_update, outputs = [ OUTPUT_IMAGE_QUALITY_SLIDER, OUTPUT_VIDEO_ENCODER_DROPDOWN, OUTPUT_VIDEO_PRESET_DROPDOWN, OUTPUT_VIDEO_QUALITY_SLIDER, OUTPUT_VIDEO_RESOLUTION_DROPDOWN, OUTPUT_VIDEO_FPS_SLIDER ])
null
793
from typing import Optional, Tuple import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import TempFrameFormat from facefusion.filesystem import is_video from facefusion.uis.core import get_ui_component TEMP_FRAME_FORMAT_DROPDOWN : Optional[gradio.Dropdown] = None TEMP_FRAME_QUALITY_SLIDER : Optional[gradio.Slider] = None def is_video(video_path : str) -> bool: def render() -> None: global TEMP_FRAME_FORMAT_DROPDOWN global TEMP_FRAME_QUALITY_SLIDER TEMP_FRAME_FORMAT_DROPDOWN = gradio.Dropdown( label = wording.get('uis.temp_frame_format_dropdown'), choices = facefusion.choices.temp_frame_formats, value = facefusion.globals.temp_frame_format, visible = is_video(facefusion.globals.target_path) ) TEMP_FRAME_QUALITY_SLIDER = gradio.Slider( label = wording.get('uis.temp_frame_quality_slider'), value = facefusion.globals.temp_frame_quality, step = facefusion.choices.temp_frame_quality_range[1] - facefusion.choices.temp_frame_quality_range[0], minimum = facefusion.choices.temp_frame_quality_range[0], maximum = facefusion.choices.temp_frame_quality_range[-1], visible = is_video(facefusion.globals.target_path) )
null
794
from typing import Optional, Tuple import gradio import facefusion.globals import facefusion.choices from facefusion import wording from facefusion.typing import TempFrameFormat from facefusion.filesystem import is_video from facefusion.uis.core import get_ui_component TEMP_FRAME_FORMAT_DROPDOWN : Optional[gradio.Dropdown] = None TEMP_FRAME_QUALITY_SLIDER : Optional[gradio.Slider] = None def remote_update() -> Tuple[gradio.Dropdown, gradio.Slider]: if is_video(facefusion.globals.target_path): return gradio.Dropdown(visible = True), gradio.Slider(visible = True) return gradio.Dropdown(visible = False), gradio.Slider(visible = False) def update_temp_frame_format(temp_frame_format : TempFrameFormat) -> None: facefusion.globals.temp_frame_format = temp_frame_format def update_temp_frame_quality(temp_frame_quality : int) -> None: facefusion.globals.temp_frame_quality = temp_frame_quality def get_ui_component(name : ComponentName) -> Optional[Component]: if name in UI_COMPONENTS: return UI_COMPONENTS[name] return None def listen() -> None: TEMP_FRAME_FORMAT_DROPDOWN.change(update_temp_frame_format, inputs = TEMP_FRAME_FORMAT_DROPDOWN) TEMP_FRAME_QUALITY_SLIDER.change(update_temp_frame_quality, inputs = TEMP_FRAME_QUALITY_SLIDER) target_video = get_ui_component('target_video') if target_video: for method in [ 'upload', 'change', 'clear' ]: getattr(target_video, method)(remote_update, outputs = [ TEMP_FRAME_FORMAT_DROPDOWN, TEMP_FRAME_QUALITY_SLIDER ])
null
795
from typing import Any, Dict, Tuple, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.vision import count_video_frame_total from facefusion.filesystem import is_video from facefusion.uis.core import get_ui_component TRIM_FRAME_START_SLIDER : Optional[gradio.Slider] = None TRIM_FRAME_END_SLIDER : Optional[gradio.Slider] = None def count_video_frame_total(video_path : str) -> int: if is_video(video_path): video_capture = cv2.VideoCapture(video_path) if video_capture.isOpened(): video_frame_total = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) video_capture.release() return video_frame_total return 0 def is_video(video_path : str) -> bool: return is_file(video_path) and filetype.helpers.is_video(video_path) def render() -> None: global TRIM_FRAME_START_SLIDER global TRIM_FRAME_END_SLIDER trim_frame_start_slider_args : Dict[str, Any] =\ { 'label': wording.get('uis.trim_frame_start_slider'), 'step': 1, 'minimum': 0, 'maximum': 100, 'visible': False } trim_frame_end_slider_args : Dict[str, Any] =\ { 'label': wording.get('uis.trim_frame_end_slider'), 'step': 1, 'minimum': 0, 'maximum': 100, 'visible': False } if is_video(facefusion.globals.target_path): video_frame_total = count_video_frame_total(facefusion.globals.target_path) trim_frame_start_slider_args['value'] = facefusion.globals.trim_frame_start or 0 trim_frame_start_slider_args['maximum'] = video_frame_total trim_frame_start_slider_args['visible'] = True trim_frame_end_slider_args['value'] = facefusion.globals.trim_frame_end or video_frame_total trim_frame_end_slider_args['maximum'] = video_frame_total trim_frame_end_slider_args['visible'] = True with gradio.Row(): TRIM_FRAME_START_SLIDER = gradio.Slider(**trim_frame_start_slider_args) TRIM_FRAME_END_SLIDER = gradio.Slider(**trim_frame_end_slider_args)
null
796
from typing import Any, Dict, Tuple, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.vision import count_video_frame_total from facefusion.filesystem import is_video from facefusion.uis.core import get_ui_component TRIM_FRAME_START_SLIDER : Optional[gradio.Slider] = None TRIM_FRAME_END_SLIDER : Optional[gradio.Slider] = None def remote_update() -> Tuple[gradio.Slider, gradio.Slider]: if is_video(facefusion.globals.target_path): video_frame_total = count_video_frame_total(facefusion.globals.target_path) facefusion.globals.trim_frame_start = None facefusion.globals.trim_frame_end = None return gradio.Slider(value = 0, maximum = video_frame_total, visible = True), gradio.Slider(value = video_frame_total, maximum = video_frame_total, visible = True) return gradio.Slider(value = None, maximum = None, visible = False), gradio.Slider(value = None, maximum = None, visible = False) def update_trim_frame_start(trim_frame_start : int) -> None: facefusion.globals.trim_frame_start = trim_frame_start if trim_frame_start > 0 else None def update_trim_frame_end(trim_frame_end : int) -> None: video_frame_total = count_video_frame_total(facefusion.globals.target_path) facefusion.globals.trim_frame_end = trim_frame_end if trim_frame_end < video_frame_total else None def get_ui_component(name : ComponentName) -> Optional[Component]: if name in UI_COMPONENTS: return UI_COMPONENTS[name] return None def listen() -> None: TRIM_FRAME_START_SLIDER.change(update_trim_frame_start, inputs = TRIM_FRAME_START_SLIDER) TRIM_FRAME_END_SLIDER.change(update_trim_frame_end, inputs = TRIM_FRAME_END_SLIDER) target_video = get_ui_component('target_video') if target_video: for method in [ 'upload', 'change', 'clear' ]: getattr(target_video, method)(remote_update, outputs = [ TRIM_FRAME_START_SLIDER, TRIM_FRAME_END_SLIDER ])
null
797
from typing import Optional import gradio import facefusion.globals import facefusion.choices from facefusion.typing import VideoMemoryStrategy from facefusion import wording VIDEO_MEMORY_STRATEGY : Optional[gradio.Dropdown] = None SYSTEM_MEMORY_LIMIT_SLIDER : Optional[gradio.Slider] = None def render() -> None: global VIDEO_MEMORY_STRATEGY global SYSTEM_MEMORY_LIMIT_SLIDER VIDEO_MEMORY_STRATEGY = gradio.Dropdown( label = wording.get('uis.video_memory_strategy_dropdown'), choices = facefusion.choices.video_memory_strategies, value = facefusion.globals.video_memory_strategy ) SYSTEM_MEMORY_LIMIT_SLIDER = gradio.Slider( label = wording.get('uis.system_memory_limit_slider'), step =facefusion.choices.system_memory_limit_range[1] - facefusion.choices.system_memory_limit_range[0], minimum = facefusion.choices.system_memory_limit_range[0], maximum = facefusion.choices.system_memory_limit_range[-1], value = facefusion.globals.system_memory_limit )
null
798
from typing import Optional import gradio import facefusion.globals import facefusion.choices from facefusion.typing import VideoMemoryStrategy from facefusion import wording VIDEO_MEMORY_STRATEGY : Optional[gradio.Dropdown] = None SYSTEM_MEMORY_LIMIT_SLIDER : Optional[gradio.Slider] = None def update_video_memory_strategy(video_memory_strategy : VideoMemoryStrategy) -> None: facefusion.globals.video_memory_strategy = video_memory_strategy def update_system_memory_limit(system_memory_limit : int) -> None: facefusion.globals.system_memory_limit = system_memory_limit def listen() -> None: VIDEO_MEMORY_STRATEGY.change(update_video_memory_strategy, inputs = VIDEO_MEMORY_STRATEGY) SYSTEM_MEMORY_LIMIT_SLIDER.change(update_system_memory_limit, inputs = SYSTEM_MEMORY_LIMIT_SLIDER)
null
799
from typing import Tuple, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.face_store import clear_static_faces, clear_reference_faces from facefusion.uis.typing import File from facefusion.filesystem import is_image, is_video from facefusion.uis.core import register_ui_component TARGET_FILE : Optional[gradio.File] = None TARGET_IMAGE : Optional[gradio.Image] = None TARGET_VIDEO : Optional[gradio.Video] = None File = IO[Any] def is_image(image_path : str) -> bool: return is_file(image_path) and filetype.helpers.is_image(image_path) def is_video(video_path : str) -> bool: return is_file(video_path) and filetype.helpers.is_video(video_path) def register_ui_component(name : ComponentName, component: Component) -> None: UI_COMPONENTS[name] = component def render() -> None: global TARGET_FILE global TARGET_IMAGE global TARGET_VIDEO is_target_image = is_image(facefusion.globals.target_path) is_target_video = is_video(facefusion.globals.target_path) TARGET_FILE = gradio.File( label = wording.get('uis.target_file'), file_count = 'single', file_types = [ '.png', '.jpg', '.webp', '.mp4' ], value = facefusion.globals.target_path if is_target_image or is_target_video else None ) TARGET_IMAGE = gradio.Image( value = TARGET_FILE.value['name'] if is_target_image else None, visible = is_target_image, show_label = False ) TARGET_VIDEO = gradio.Video( value = TARGET_FILE.value['name'] if is_target_video else None, visible = is_target_video, show_label = False ) register_ui_component('target_image', TARGET_IMAGE) register_ui_component('target_video', TARGET_VIDEO)
null
800
from typing import Tuple, Optional import gradio import facefusion.globals from facefusion import wording from facefusion.face_store import clear_static_faces, clear_reference_faces from facefusion.uis.typing import File from facefusion.filesystem import is_image, is_video from facefusion.uis.core import register_ui_component TARGET_FILE : Optional[gradio.File] = None TARGET_IMAGE : Optional[gradio.Image] = None TARGET_VIDEO : Optional[gradio.Video] = None def update(file : File) -> Tuple[gradio.Image, gradio.Video]: clear_reference_faces() clear_static_faces() if file and is_image(file.name): facefusion.globals.target_path = file.name return gradio.Image(value = file.name, visible = True), gradio.Video(value = None, visible = False) if file and is_video(file.name): facefusion.globals.target_path = file.name return gradio.Image(value = None, visible = False), gradio.Video(value = file.name, visible = True) facefusion.globals.target_path = None return gradio.Image(value = None, visible = False), gradio.Video(value = None, visible = False) def listen() -> None: TARGET_FILE.change(update, inputs = TARGET_FILE, outputs = [ TARGET_IMAGE, TARGET_VIDEO ])
null
801
from typing import Optional import gradio import facefusion.globals import facefusion.choices from facefusion import wording EXECUTION_THREAD_COUNT_SLIDER : Optional[gradio.Slider] = None def render() -> None: global EXECUTION_THREAD_COUNT_SLIDER EXECUTION_THREAD_COUNT_SLIDER = gradio.Slider( label = wording.get('uis.execution_thread_count_slider'), value = facefusion.globals.execution_thread_count, step = facefusion.choices.execution_thread_count_range[1] - facefusion.choices.execution_thread_count_range[0], minimum = facefusion.choices.execution_thread_count_range[0], maximum = facefusion.choices.execution_thread_count_range[-1] )
null