id
int64 0
190k
| prompt
stringlengths 21
13.4M
| docstring
stringlengths 1
12k
⌀ |
---|---|---|
802 | from typing import Optional
import gradio
import facefusion.globals
import facefusion.choices
from facefusion import wording
EXECUTION_THREAD_COUNT_SLIDER : Optional[gradio.Slider] = None
def update_execution_thread_count(execution_thread_count : int = 1) -> None:
facefusion.globals.execution_thread_count = execution_thread_count
def listen() -> None:
EXECUTION_THREAD_COUNT_SLIDER.change(update_execution_thread_count, inputs = EXECUTION_THREAD_COUNT_SLIDER) | null |
803 | from typing import Any, Dict, List, Optional
from time import sleep
import cv2
import gradio
import facefusion.globals
from facefusion import wording, logger
from facefusion.audio import get_audio_frame
from facefusion.common_helper import get_first
from facefusion.core import conditional_append_reference_faces
from facefusion.face_analyser import get_average_face, clear_face_analyser
from facefusion.face_store import clear_static_faces, get_reference_faces, clear_reference_faces
from facefusion.typing import Face, FaceSet, AudioFrame, VisionFrame
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_resolution, read_static_image, read_static_images
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.content_analyser import analyse_frame
from facefusion.processors.frame.core import load_frame_processor_module
from facefusion.uis.typing import ComponentName
from facefusion.uis.core import get_ui_component, register_ui_component
PREVIEW_IMAGE : Optional[gradio.Image] = None
PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None
def process_preview_frame(reference_faces : FaceSet, source_face : Face, source_audio_frame : AudioFrame, target_vision_frame : VisionFrame) -> VisionFrame:
def get_audio_frame(audio_path : str, fps : Fps, frame_number : int = 0) -> Optional[AudioFrame]:
def get_first(__list__ : Any) -> Any:
def conditional_append_reference_faces() -> None:
def get_average_face(vision_frames : List[VisionFrame], position : int = 0) -> Optional[Face]:
def get_reference_faces() -> Optional[FaceSet]:
def get_video_frame(video_path : str, frame_number : int = 0) -> Optional[VisionFrame]:
def count_video_frame_total(video_path : str) -> int:
def normalize_frame_color(vision_frame : VisionFrame) -> VisionFrame:
def read_static_image(image_path : str) -> Optional[VisionFrame]:
def read_static_images(image_paths : List[str]) -> Optional[List[VisionFrame]]:
def is_image(image_path : str) -> bool:
def is_video(video_path : str) -> bool:
def filter_audio_paths(paths : List[str]) -> List[str]:
def register_ui_component(name : ComponentName, component: Component) -> None:
def render() -> None:
global PREVIEW_IMAGE
global PREVIEW_FRAME_SLIDER
preview_image_args: Dict[str, Any] =\
{
'label': wording.get('uis.preview_image'),
'interactive': False
}
preview_frame_slider_args: Dict[str, Any] =\
{
'label': wording.get('uis.preview_frame_slider'),
'step': 1,
'minimum': 0,
'maximum': 100,
'visible': False
}
conditional_append_reference_faces()
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_frames = read_static_images(facefusion.globals.source_paths)
source_face = get_average_face(source_frames)
source_audio_path = get_first(filter_audio_paths(facefusion.globals.source_paths))
if source_audio_path and facefusion.globals.output_video_fps:
source_audio_frame = get_audio_frame(source_audio_path, facefusion.globals.output_video_fps, facefusion.globals.reference_frame_number)
else:
source_audio_frame = None
if is_image(facefusion.globals.target_path):
target_vision_frame = read_static_image(facefusion.globals.target_path)
preview_vision_frame = process_preview_frame(reference_faces, source_face, source_audio_frame, target_vision_frame)
preview_image_args['value'] = normalize_frame_color(preview_vision_frame)
if is_video(facefusion.globals.target_path):
temp_vision_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
preview_vision_frame = process_preview_frame(reference_faces, source_face, source_audio_frame, temp_vision_frame)
preview_image_args['value'] = normalize_frame_color(preview_vision_frame)
preview_image_args['visible'] = True
preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number
preview_frame_slider_args['maximum'] = count_video_frame_total(facefusion.globals.target_path)
preview_frame_slider_args['visible'] = True
PREVIEW_IMAGE = gradio.Image(**preview_image_args)
PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args)
register_ui_component('preview_frame_slider', PREVIEW_FRAME_SLIDER) | null |
804 | from typing import Any, Dict, List, Optional
from time import sleep
import cv2
import gradio
import facefusion.globals
from facefusion import wording, logger
from facefusion.audio import get_audio_frame
from facefusion.common_helper import get_first
from facefusion.core import conditional_append_reference_faces
from facefusion.face_analyser import get_average_face, clear_face_analyser
from facefusion.face_store import clear_static_faces, get_reference_faces, clear_reference_faces
from facefusion.typing import Face, FaceSet, AudioFrame, VisionFrame
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_resolution, read_static_image, read_static_images
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.content_analyser import analyse_frame
from facefusion.processors.frame.core import load_frame_processor_module
from facefusion.uis.typing import ComponentName
from facefusion.uis.core import get_ui_component, register_ui_component
PREVIEW_IMAGE : Optional[gradio.Image] = None
PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None
def clear_and_update_preview_image(frame_number : int = 0) -> gradio.Image:
clear_face_analyser()
clear_reference_faces()
clear_static_faces()
sleep(0.5)
return update_preview_image(frame_number)
def update_preview_image(frame_number : int = 0) -> gradio.Image:
for frame_processor in facefusion.globals.frame_processors:
frame_processor_module = load_frame_processor_module(frame_processor)
while not frame_processor_module.post_check():
logger.disable()
sleep(0.5)
logger.enable()
conditional_append_reference_faces()
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_frames = read_static_images(facefusion.globals.source_paths)
source_face = get_average_face(source_frames)
source_audio_path = get_first(filter_audio_paths(facefusion.globals.source_paths))
if source_audio_path and facefusion.globals.output_video_fps:
source_audio_frame = get_audio_frame(source_audio_path, facefusion.globals.output_video_fps, facefusion.globals.reference_frame_number)
else:
source_audio_frame = None
if is_image(facefusion.globals.target_path):
target_vision_frame = read_static_image(facefusion.globals.target_path)
preview_vision_frame = process_preview_frame(reference_faces, source_face, source_audio_frame, target_vision_frame)
preview_vision_frame = normalize_frame_color(preview_vision_frame)
return gradio.Image(value = preview_vision_frame)
if is_video(facefusion.globals.target_path):
temp_vision_frame = get_video_frame(facefusion.globals.target_path, frame_number)
preview_vision_frame = process_preview_frame(reference_faces, source_face, source_audio_frame, temp_vision_frame)
preview_vision_frame = normalize_frame_color(preview_vision_frame)
return gradio.Image(value = preview_vision_frame)
return gradio.Image(value = None)
def update_preview_frame_slider() -> gradio.Slider:
if is_video(facefusion.globals.target_path):
video_frame_total = count_video_frame_total(facefusion.globals.target_path)
return gradio.Slider(maximum = video_frame_total, visible = True)
return gradio.Slider(value = None, maximum = None, visible = False)
ComponentName = Literal\
[
'source_audio',
'source_image',
'target_image',
'target_video',
'preview_frame_slider',
'face_selector_mode_dropdown',
'reference_face_position_gallery',
'reference_face_distance_slider',
'face_analyser_order_dropdown',
'face_analyser_age_dropdown',
'face_analyser_gender_dropdown',
'face_detector_model_dropdown',
'face_detector_size_dropdown',
'face_detector_score_slider',
'face_mask_types_checkbox_group',
'face_mask_blur_slider',
'face_mask_padding_top_slider',
'face_mask_padding_bottom_slider',
'face_mask_padding_left_slider',
'face_mask_padding_right_slider',
'face_mask_region_checkbox_group',
'frame_processors_checkbox_group',
'face_debugger_items_checkbox_group',
'face_enhancer_model_dropdown',
'face_enhancer_blend_slider',
'face_swapper_model_dropdown',
'frame_enhancer_model_dropdown',
'frame_enhancer_blend_slider',
'lip_syncer_model_dropdown',
'output_path_textbox',
'output_video_fps_slider',
'benchmark_runs_checkbox_group',
'benchmark_cycles_slider',
'webcam_mode_radio',
'webcam_resolution_dropdown',
'webcam_fps_slider'
]
def get_ui_component(name : ComponentName) -> Optional[Component]:
if name in UI_COMPONENTS:
return UI_COMPONENTS[name]
return None
def listen() -> None:
PREVIEW_FRAME_SLIDER.release(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
reference_face_position_gallery = get_ui_component('reference_face_position_gallery')
if reference_face_position_gallery:
reference_face_position_gallery.select(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
multi_one_component_names : List[ComponentName] =\
[
'source_audio',
'source_image',
'target_image',
'target_video'
]
for component_name in multi_one_component_names:
component = get_ui_component(component_name)
if component:
for method in [ 'upload', 'change', 'clear' ]:
getattr(component, method)(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
multi_two_component_names : List[ComponentName] =\
[
'target_image',
'target_video'
]
for component_name in multi_two_component_names:
component = get_ui_component(component_name)
if component:
for method in [ 'upload', 'change', 'clear' ]:
getattr(component, method)(update_preview_frame_slider, outputs = PREVIEW_FRAME_SLIDER)
change_one_component_names : List[ComponentName] =\
[
'face_debugger_items_checkbox_group',
'face_enhancer_blend_slider',
'frame_enhancer_blend_slider',
'face_selector_mode_dropdown',
'reference_face_distance_slider',
'face_mask_types_checkbox_group',
'face_mask_blur_slider',
'face_mask_padding_top_slider',
'face_mask_padding_bottom_slider',
'face_mask_padding_left_slider',
'face_mask_padding_right_slider',
'face_mask_region_checkbox_group',
'face_analyser_order_dropdown',
'face_analyser_age_dropdown',
'face_analyser_gender_dropdown',
'output_video_fps_slider'
]
for component_name in change_one_component_names:
component = get_ui_component(component_name)
if component:
component.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
change_two_component_names : List[ComponentName] =\
[
'frame_processors_checkbox_group',
'face_enhancer_model_dropdown',
'face_swapper_model_dropdown',
'frame_enhancer_model_dropdown',
'lip_syncer_model_dropdown',
'face_detector_model_dropdown',
'face_detector_size_dropdown',
'face_detector_score_slider'
]
for component_name in change_two_component_names:
component = get_ui_component(component_name)
if component:
component.change(clear_and_update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE) | null |
805 | from typing import List, Any
import numpy
def create_int_range(start : int, stop : int, step : int) -> List[int]:
return (numpy.arange(start, stop + step, step)).tolist() | null |
806 | from typing import List, Any
import numpy
def create_float_range(start : float, stop : float, step : float) -> List[float]:
return (numpy.around(numpy.arange(start, stop + step, step), decimals = 2)).tolist() | null |
807 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
OPTIONS : Optional[OptionsWithModel] = None
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value | null |
808 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def register_args(program : ArgumentParser) -> None:
program.add_argument('--lip-syncer-model', help = wording.get('help.lip_syncer_model'), default = config.get_str_value('frame_processors.lip_syncer_model', 'wav2lip_gan'), choices = frame_processors_choices.lip_syncer_models) | null |
809 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.lip_syncer_model = args.lip_syncer_model | null |
810 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.lip_syncer_model]
}
return OPTIONS.get(key)
def resolve_relative_path(path : str) -> str:
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
with ThreadPoolExecutor() as executor:
for url in urls:
executor.submit(get_download_size, url)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
initial = os.path.getsize(download_file_path) if is_file(download_file_path) else 0
total = get_download_size(url)
if initial < total:
with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
current = initial
while current < total:
if is_file(download_file_path):
current = os.path.getsize(download_file_path)
progress.update(current - progress.n)
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
conditional_download(download_directory_path, [ model_url ])
return True | null |
811 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
def get_options(key : Literal['model']) -> Any:
def is_file(file_path : str) -> bool:
def is_download_done(url : str, file_path : str) -> bool:
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
elif not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
812 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
ProcessMode = Literal['output', 'preview', 'stream']
def has_audio(audio_paths : List[str]) -> bool:
if audio_paths:
return any(is_audio(audio_path) for audio_path in audio_paths)
return False
def is_image(image_path : str) -> bool:
return is_file(image_path) and filetype.helpers.is_image(image_path)
def is_video(video_path : str) -> bool:
return is_file(video_path) and filetype.helpers.is_video(video_path)
def pre_process(mode : ProcessMode) -> bool:
if not has_audio(facefusion.globals.source_paths):
logger.error(wording.get('select_audio_source') + wording.get('exclamation_mark'), NAME)
return False
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not facefusion.globals.output_path:
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
813 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def clear_frame_processor() -> None:
def clear_face_analyser() -> Any:
def clear_face_occluder() -> None:
def clear_face_parser() -> None:
def clear_content_analyser() -> None:
def read_static_audio(audio_path : str, fps : Fps) -> Optional[List[AudioFrame]]:
def read_static_image(image_path : str) -> Optional[VisionFrame]:
def post_process() -> None:
read_static_image.cache_clear()
read_static_audio.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder()
clear_face_parser() | null |
814 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
Face = namedtuple('Face',
[
'bounding_box',
'landmark',
'score',
'embedding',
'normed_embedding',
'gender',
'age'
])
VisionFrame = numpy.ndarray[Any, Any]
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass | null |
815 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frame(inputs : LipSyncerInputs) -> VisionFrame:
def get_reference_faces() -> Optional[FaceSet]:
def get_audio_frame(audio_path : str, fps : Fps, frame_number : int = 0) -> Optional[AudioFrame]:
def filter_audio_paths(paths : List[str]) -> List[str]:
def get_first(__list__ : Any) -> Any:
def read_static_image(image_path : str) -> Optional[VisionFrame]:
def write_image(image_path : str, frame : VisionFrame) -> bool:
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_audio_path = get_first(filter_audio_paths(source_paths))
source_audio_frame = get_audio_frame(source_audio_path, 25)
target_vision_frame = read_static_image(target_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'source_audio_frame': source_audio_frame,
'target_vision_frame': target_vision_frame
})
write_image(output_path, result_frame) | null |
816 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_landmark
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : Update_Process) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_audio_path = get_first(filter_audio_paths(source_paths))
target_video_fps = facefusion.globals.output_video_fps
for queue_payload in queue_payloads:
frame_number = queue_payload['frame_number']
target_vision_path = queue_payload['frame_path']
source_audio_frame = get_audio_frame(source_audio_path, target_video_fps, frame_number)
target_vision_frame = read_image(target_vision_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'source_audio_frame': source_audio_frame,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, result_frame)
update_progress()
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames) | null |
817 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
OPTIONS : Optional[OptionsWithModel] = None
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value | null |
818 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def create_metavar(ranges : List[Any]) -> str:
return '[' + str(ranges[0]) + '-' + str(ranges[-1]) + ']'
def register_args(program : ArgumentParser) -> None:
program.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('frame_processors.face_enhancer_model', 'gfpgan_1.4'), choices = frame_processors_choices.face_enhancer_models)
program.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.face_enhancer_blend', '80'), choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range)) | null |
819 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.face_enhancer_model = args.face_enhancer_model
frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend | null |
820 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.face_enhancer_model]
}
return OPTIONS.get(key)
def resolve_relative_path(path : str) -> str:
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
with ThreadPoolExecutor() as executor:
for url in urls:
executor.submit(get_download_size, url)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
initial = os.path.getsize(download_file_path) if is_file(download_file_path) else 0
total = get_download_size(url)
if initial < total:
with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
current = initial
while current < total:
if is_file(download_file_path):
current = os.path.getsize(download_file_path)
progress.update(current - progress.n)
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
conditional_download(download_directory_path, [ model_url ])
return True | null |
821 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.face_enhancer_model]
}
return OPTIONS.get(key)
def is_file(file_path : str) -> bool:
return bool(file_path and os.path.isfile(file_path))
def is_download_done(url : str, file_path : str) -> bool:
if is_file(file_path):
return get_download_size(url) == os.path.getsize(file_path)
return False
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
elif not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
822 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
ProcessMode = Literal['output', 'preview', 'stream']
def is_image(image_path : str) -> bool:
return is_file(image_path) and filetype.helpers.is_image(image_path)
def is_video(video_path : str) -> bool:
return is_file(video_path) and filetype.helpers.is_video(video_path)
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not facefusion.globals.output_path:
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
823 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def clear_face_analyser() -> Any:
global FACE_ANALYSER
FACE_ANALYSER = None
def clear_face_occluder() -> None:
global FACE_OCCLUDER
FACE_OCCLUDER = None
def clear_content_analyser() -> None:
global CONTENT_ANALYSER
CONTENT_ANALYSER = None
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder() | null |
824 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def enhance_face(target_face: Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_options('model').get('template')
model_size = get_options('model').get('size')
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark['5/68'], model_template, model_size)
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0))
crop_mask_list =\
[
box_mask
]
if 'occlusion' in facefusion.globals.face_mask_types:
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_mask_list.append(occlusion_mask)
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
crop_vision_frame = apply_enhance(crop_vision_frame)
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame)
return temp_vision_frame
Face = namedtuple('Face',
[
'bounding_box',
'landmark',
'score',
'embedding',
'normed_embedding',
'gender',
'age'
])
VisionFrame = numpy.ndarray[Any, Any]
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return enhance_face(target_face, temp_vision_frame) | null |
825 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame:
reference_faces = inputs['reference_faces']
target_vision_frame = inputs['target_vision_frame']
if 'reference' in facefusion.globals.face_selector_mode:
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = enhance_face(similar_face, target_vision_frame)
if 'one' in facefusion.globals.face_selector_mode:
target_face = get_one_face(target_vision_frame)
if target_face:
target_vision_frame = enhance_face(target_face, target_vision_frame)
if 'many' in facefusion.globals.face_selector_mode:
many_faces = get_many_faces(target_vision_frame)
if many_faces:
for target_face in many_faces:
target_vision_frame = enhance_face(target_face, target_vision_frame)
return target_vision_frame
def get_reference_faces() -> Optional[FaceSet]:
if FACE_STORE['reference_faces']:
return FACE_STORE['reference_faces']
return None
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def write_image(image_path : str, frame : VisionFrame) -> bool:
if image_path:
return cv2.imwrite(image_path, frame)
return False
def process_image(source_path : str, target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
target_vision_frame = read_static_image(target_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(output_path, result_frame) | null |
826 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import cv2
import threading
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : Update_Process) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
for queue_payload in queue_payloads:
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, result_frame)
update_progress()
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames) | null |
827 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
OPTIONS : Optional[OptionsWithModel] = None
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value | null |
828 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def register_args(program : ArgumentParser) -> None:
if onnxruntime.__version__ == '1.17.0':
face_swapper_model_fallback = 'inswapper_128'
else:
face_swapper_model_fallback = 'inswapper_128_fp16'
program.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('frame_processors.face_swapper_model', face_swapper_model_fallback), choices = frame_processors_choices.face_swapper_models) | null |
829 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.face_swapper_model = args.face_swapper_model
if args.face_swapper_model == 'blendswap_256':
facefusion.globals.face_recognizer_model = 'arcface_blendswap'
if args.face_swapper_model == 'inswapper_128' or args.face_swapper_model == 'inswapper_128_fp16':
facefusion.globals.face_recognizer_model = 'arcface_inswapper'
if args.face_swapper_model == 'simswap_256' or args.face_swapper_model == 'simswap_512_unofficial':
facefusion.globals.face_recognizer_model = 'arcface_simswap'
if args.face_swapper_model == 'uniface_256':
facefusion.globals.face_recognizer_model = 'arcface_uniface' | null |
830 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.face_swapper_model]
}
return OPTIONS.get(key)
def resolve_relative_path(path : str) -> str:
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
with ThreadPoolExecutor() as executor:
for url in urls:
executor.submit(get_download_size, url)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
initial = os.path.getsize(download_file_path) if is_file(download_file_path) else 0
total = get_download_size(url)
if initial < total:
with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
current = initial
while current < total:
if is_file(download_file_path):
current = os.path.getsize(download_file_path)
progress.update(current - progress.n)
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
conditional_download(download_directory_path, [ model_url ])
return True | null |
831 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
def get_options(key : Literal['model']) -> Any:
def is_file(file_path : str) -> bool:
def is_download_done(url : str, file_path : str) -> bool:
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
elif not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
832 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
def get_one_face(vision_frame : VisionFrame, position : int = 0) -> Optional[Face]:
many_faces = get_many_faces(vision_frame)
if many_faces:
try:
return many_faces[position]
except IndexError:
return many_faces[-1]
return None
ProcessMode = Literal['output', 'preview', 'stream']
def is_image(image_path : str) -> bool:
return is_file(image_path) and filetype.helpers.is_image(image_path)
def has_image(image_paths: List[str]) -> bool:
if image_paths:
return any(is_image(image_path) for image_path in image_paths)
return False
def is_video(video_path : str) -> bool:
return is_file(video_path) and filetype.helpers.is_video(video_path)
def filter_image_paths(paths : List[str]) -> List[str]:
if paths:
return [ path for path in paths if is_image(path) ]
return []
def read_static_images(image_paths : List[str]) -> Optional[List[VisionFrame]]:
frames = []
if image_paths:
for image_path in image_paths:
frames.append(read_static_image(image_path))
return frames
def pre_process(mode : ProcessMode) -> bool:
if not has_image(facefusion.globals.source_paths):
logger.error(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
return False
source_image_paths = filter_image_paths(facefusion.globals.source_paths)
source_frames = read_static_images(source_image_paths)
for source_frame in source_frames:
if not get_one_face(source_frame):
logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
return False
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not facefusion.globals.output_path:
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
833 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def clear_model_matrix() -> None:
global MODEL_MATRIX
MODEL_MATRIX = None
def clear_face_analyser() -> Any:
global FACE_ANALYSER
FACE_ANALYSER = None
def clear_face_occluder() -> None:
global FACE_OCCLUDER
FACE_OCCLUDER = None
def clear_face_parser() -> None:
global FACE_PARSER
FACE_PARSER = None
def clear_content_analyser() -> None:
global CONTENT_ANALYSER
CONTENT_ANALYSER = None
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
clear_model_matrix()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder()
clear_face_parser() | null |
834 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def swap_face(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_options('model').get('template')
model_size = get_options('model').get('size')
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark['5/68'], model_template, model_size)
crop_mask_list = []
if 'box' in facefusion.globals.face_mask_types:
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding)
crop_mask_list.append(box_mask)
if 'occlusion' in facefusion.globals.face_mask_types:
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_mask_list.append(occlusion_mask)
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
crop_vision_frame = apply_swap(source_face, crop_vision_frame)
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
if 'region' in facefusion.globals.face_mask_types:
region_mask = create_region_mask(crop_vision_frame, facefusion.globals.face_mask_regions)
crop_mask_list.append(region_mask)
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
temp_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
return temp_vision_frame
Face = namedtuple('Face',
[
'bounding_box',
'landmark',
'score',
'embedding',
'normed_embedding',
'gender',
'age'
])
VisionFrame = numpy.ndarray[Any, Any]
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return swap_face(source_face, target_face, temp_vision_frame) | null |
835 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frame(inputs : FaceSwapperInputs) -> VisionFrame:
reference_faces = inputs['reference_faces']
source_face = inputs['source_face']
target_vision_frame = inputs['target_vision_frame']
if 'reference' in facefusion.globals.face_selector_mode:
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = swap_face(source_face, similar_face, target_vision_frame)
if 'one' in facefusion.globals.face_selector_mode:
target_face = get_one_face(target_vision_frame)
if target_face:
target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
if 'many' in facefusion.globals.face_selector_mode:
many_faces = get_many_faces(target_vision_frame)
if many_faces:
for target_face in many_faces:
target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
return target_vision_frame
def get_average_face(vision_frames : List[VisionFrame], position : int = 0) -> Optional[Face]:
average_face = None
faces = []
embedding_list = []
normed_embedding_list = []
for vision_frame in vision_frames:
face = get_one_face(vision_frame, position)
if face:
faces.append(face)
embedding_list.append(face.embedding)
normed_embedding_list.append(face.normed_embedding)
if faces:
first_face = get_first(faces)
average_face = Face(
bounding_box = first_face.bounding_box,
landmark = first_face.landmark,
score = first_face.score,
embedding = numpy.mean(embedding_list, axis = 0),
normed_embedding = numpy.mean(normed_embedding_list, axis = 0),
gender = first_face.gender,
age = first_face.age
)
return average_face
def get_reference_faces() -> Optional[FaceSet]:
if FACE_STORE['reference_faces']:
return FACE_STORE['reference_faces']
return None
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def read_static_images(image_paths : List[str]) -> Optional[List[VisionFrame]]:
frames = []
if image_paths:
for image_path in image_paths:
frames.append(read_static_image(image_path))
return frames
def write_image(image_path : str, frame : VisionFrame) -> bool:
if image_path:
return cv2.imwrite(image_path, frame)
return False
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_frames = read_static_images(source_paths)
source_face = get_average_face(source_frames)
target_vision_frame = read_static_image(target_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'source_face': source_face,
'target_vision_frame': target_vision_frame
})
write_image(output_path, result_frame) | null |
836 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, Embedding, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : Update_Process) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_frames = read_static_images(source_paths)
source_face = get_average_face(source_frames)
for queue_payload in queue_payloads:
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'source_face': source_face,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, result_frame)
update_progress()
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames) | null |
837 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
OPTIONS : Optional[OptionsWithModel] = None
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value | null |
838 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def create_metavar(ranges : List[Any]) -> str:
return '[' + str(ranges[0]) + '-' + str(ranges[-1]) + ']'
def register_args(program : ArgumentParser) -> None:
program.add_argument('--frame-enhancer-model', help = wording.get('help.frame_enhancer_model'), default = config.get_str_value('frame_processors.frame_enhancer_model', 'real_esrgan_x2plus'), choices = frame_processors_choices.frame_enhancer_models)
program.add_argument('--frame-enhancer-blend', help = wording.get('help.frame_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.frame_enhancer_blend', '80'), choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range)) | null |
839 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.frame_enhancer_model = args.frame_enhancer_model
frame_processors_globals.frame_enhancer_blend = args.frame_enhancer_blend | null |
840 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.frame_enhancer_model]
}
return OPTIONS.get(key)
def resolve_relative_path(path : str) -> str:
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
with ThreadPoolExecutor() as executor:
for url in urls:
executor.submit(get_download_size, url)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
initial = os.path.getsize(download_file_path) if is_file(download_file_path) else 0
total = get_download_size(url)
if initial < total:
with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
current = initial
while current < total:
if is_file(download_file_path):
current = os.path.getsize(download_file_path)
progress.update(current - progress.n)
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
conditional_download(download_directory_path, [ model_url ])
return True | null |
841 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.frame_enhancer_model]
}
return OPTIONS.get(key)
def is_file(file_path : str) -> bool:
return bool(file_path and os.path.isfile(file_path))
def is_download_done(url : str, file_path : str) -> bool:
if is_file(file_path):
return get_download_size(url) == os.path.getsize(file_path)
return False
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
elif not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
842 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
NAME = __name__.upper()
ProcessMode = Literal['output', 'preview', 'stream']
def pre_process(mode : ProcessMode) -> bool:
if mode == 'output' and not facefusion.globals.output_path:
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True | null |
843 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def clear_face_analyser() -> Any:
global FACE_ANALYSER
FACE_ANALYSER = None
def clear_content_analyser() -> None:
global CONTENT_ANALYSER
CONTENT_ANALYSER = None
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser() | null |
844 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
Face = namedtuple('Face',
[
'bounding_box',
'landmark',
'score',
'embedding',
'normed_embedding',
'gender',
'age'
])
VisionFrame = numpy.ndarray[Any, Any]
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass | null |
845 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frame(inputs : FrameEnhancerInputs) -> VisionFrame:
target_vision_frame = inputs['target_vision_frame']
return enhance_frame(target_vision_frame)
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def write_image(image_path : str, frame : VisionFrame) -> bool:
if image_path:
return cv2.imwrite(image_path, frame)
return False
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
target_vision_frame = read_static_image(target_path)
result_frame = process_frame(
{
'target_vision_frame': target_vision_frame
})
write_image(output_path, result_frame) | null |
846 | from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.execution_helper import map_torch_backend
from facefusion.filesystem import is_file, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : Update_Process) -> None:
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames) | null |
847 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def get_frame_processor() -> None:
pass | null |
848 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def get_options(key : Literal['model']) -> None:
pass | null |
849 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def set_options(key : Literal['model'], value : Any) -> None:
pass | null |
850 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def register_args(program : ArgumentParser) -> None:
program.add_argument('--face-debugger-items', help = wording.get('help.face_debugger_items').format(choices = ', '.join(frame_processors_choices.face_debugger_items)), default = config.get_str_list('frame_processors.face_debugger_items', 'landmark-5 face-mask'), choices = frame_processors_choices.face_debugger_items, nargs = '+', metavar = 'FACE_DEBUGGER_ITEMS') | null |
851 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.face_debugger_items = args.face_debugger_items | null |
852 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def pre_check() -> bool:
return True | null |
853 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def post_check() -> bool:
return True | null |
854 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
ProcessMode = Literal['output', 'preview', 'stream']
def pre_process(mode : ProcessMode) -> bool:
return True | null |
855 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def clear_frame_processor() -> None:
pass
def clear_face_analyser() -> Any:
global FACE_ANALYSER
FACE_ANALYSER = None
def clear_face_occluder() -> None:
global FACE_OCCLUDER
FACE_OCCLUDER = None
def clear_face_parser() -> None:
global FACE_PARSER
FACE_PARSER = None
def clear_content_analyser() -> None:
global CONTENT_ANALYSER
CONTENT_ANALYSER = None
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder()
clear_face_parser() | null |
856 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
Face = namedtuple('Face',
[
'bounding_box',
'landmark',
'score',
'embedding',
'normed_embedding',
'gender',
'age'
])
VisionFrame = numpy.ndarray[Any, Any]
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass | null |
857 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def process_frame(inputs : FaceDebuggerInputs) -> VisionFrame:
reference_faces = inputs['reference_faces']
target_vision_frame = inputs['target_vision_frame']
if 'reference' in facefusion.globals.face_selector_mode:
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = debug_face(similar_face, target_vision_frame)
if 'one' in facefusion.globals.face_selector_mode:
target_face = get_one_face(target_vision_frame)
if target_face:
target_vision_frame = debug_face(target_face, target_vision_frame)
if 'many' in facefusion.globals.face_selector_mode:
many_faces = get_many_faces(target_vision_frame)
if many_faces:
for target_face in many_faces:
target_vision_frame = debug_face(target_face, target_vision_frame)
return target_vision_frame
def get_reference_faces() -> Optional[FaceSet]:
if FACE_STORE['reference_faces']:
return FACE_STORE['reference_faces']
return None
def read_static_image(image_path : str) -> Optional[VisionFrame]:
return read_image(image_path)
def write_image(image_path : str, frame : VisionFrame) -> bool:
if image_path:
return cv2.imwrite(image_path, frame)
return False
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
target_vision_frame = read_static_image(target_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(output_path, result_frame) | null |
858 | from typing import Any, List, Literal
from argparse import ArgumentParser
import cv2
import numpy
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, wording
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, categorize_age, categorize_gender
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Face, VisionFrame, Update_Process, ProcessMode, QueuePayload
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceDebuggerInputs
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : Update_Process) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
for queue_payload in queue_payloads:
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
result_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, result_frame)
update_progress()
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames) | null |
859 | from typing import Dict, Tuple
import sys
import os
import platform
import tempfile
import subprocess
import inquirer
from argparse import ArgumentParser, HelpFormatter
from facefusion import metadata, wording
TORCH : Dict[str, str] =\
{
'default': 'default',
'cpu': 'cpu'
}
ONNXRUNTIMES : Dict[str, Tuple[str, str]] = {}
def run(program : ArgumentParser) -> None:
args = program.parse_args()
python_id = 'cp' + str(sys.version_info.major) + str(sys.version_info.minor)
if platform.system().lower() == 'darwin':
os.environ['SYSTEM_VERSION_COMPAT'] = '0'
if not args.skip_venv:
os.environ['PIP_REQUIRE_VIRTUALENV'] = '1'
if args.torch and args.onnxruntime:
answers =\
{
'torch': args.torch,
'onnxruntime': args.onnxruntime
}
else:
answers = inquirer.prompt(
[
inquirer.List('torch', message = wording.get('help.install_dependency').format(dependency = 'torch'), choices = list(TORCH.keys())),
inquirer.List('onnxruntime', message = wording.get('help.install_dependency').format(dependency = 'onnxruntime'), choices = list(ONNXRUNTIMES.keys()))
])
if answers:
torch = answers['torch']
torch_wheel = TORCH[torch]
onnxruntime = answers['onnxruntime']
onnxruntime_name, onnxruntime_version = ONNXRUNTIMES[onnxruntime]
subprocess.call([ 'pip', 'uninstall', 'torch', '-y', '-q' ])
if torch_wheel == 'default':
subprocess.call([ 'pip', 'install', '-r', 'requirements.txt', '--force-reinstall' ])
else:
subprocess.call([ 'pip', 'install', '-r', 'requirements.txt', '--extra-index-url', 'https://download.pytorch.org/whl/' + torch_wheel, '--force-reinstall' ])
if onnxruntime == 'rocm-5.4.2' or onnxruntime == 'rocm-5.6':
if python_id in [ 'cp39', 'cp310', 'cp311' ]:
rocm_version = onnxruntime.replace('-', '')
rocm_version = rocm_version.replace('.', '')
wheel_name = 'onnxruntime_training-' + onnxruntime_version + '+' + rocm_version + '-' + python_id + '-' + python_id + '-manylinux_2_17_x86_64.manylinux2014_x86_64.whl'
wheel_path = os.path.join(tempfile.gettempdir(), wheel_name)
wheel_url = 'https://download.onnxruntime.ai/' + wheel_name
subprocess.call([ 'curl', '--silent', '--location', '--continue-at', '-', '--output', wheel_path, wheel_url ])
subprocess.call([ 'pip', 'uninstall', wheel_path, '-y', '-q' ])
subprocess.call([ 'pip', 'install', wheel_path, '--force-reinstall' ])
os.remove(wheel_path)
else:
subprocess.call([ 'pip', 'uninstall', 'onnxruntime', onnxruntime_name, '-y', '-q' ])
if onnxruntime == 'cuda-12.1':
subprocess.call([ 'pip', 'install', onnxruntime_name + '==' + onnxruntime_version, '--extra-index-url', 'https://pkgs.dev.azure.com/onnxruntime/onnxruntime/_packaging/onnxruntime-cuda-12/pypi/simple', '--force-reinstall' ])
else:
subprocess.call([ 'pip', 'install', onnxruntime_name + '==' + onnxruntime_version, '--force-reinstall' ])
def cli() -> None:
program = ArgumentParser(formatter_class = lambda prog: HelpFormatter(prog, max_help_position = 130))
program.add_argument('--torch', help = wording.get('help.install_dependency').format(dependency = 'torch'), choices = TORCH.keys())
program.add_argument('--onnxruntime', help = wording.get('help.install_dependency').format(dependency = 'onnxruntime'), choices = ONNXRUNTIMES.keys())
program.add_argument('--skip-venv', help = wording.get('help.skip_venv'), action = 'store_true')
program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
run(program) | null |
860 | import logging
from typing import List
import click
from rich import print
from name_that_hash import check_hashes, hash_namer, hashes, prettifier
def print_help(ctx):
click.echo(ctx.get_help())
ctx.exit() | null |
861 | import logging
from typing import List
import click
from rich import print
from name_that_hash import check_hashes, hash_namer, hashes, prettifier
def banner():
text = r"""[bold blue]
_ _ _____ _ _ _ _ _
| \ | | |_ _| | | | | | | | | |
| \| | __ _ _ __ ___ ___ ______| | | |__ __ _| |_ ______| |_| | __ _ ___| |__
| . ` |/ _` | '_ ` _ \ / _ \______| | | '_ \ / _` | __|______| _ |/ _` / __| '_ \
| |\ | (_| | | | | | | __/ | | | | | | (_| | |_ | | | | (_| \__ \ | | |
\_| \_/\__,_|_| |_| |_|\___| \_/ |_| |_|\__,_|\__| \_| |_/\__,_|___/_| |_|
https://twitter.com/bee_sec_san
https://github.com/HashPals/Name-That-Hash [/bold blue]
"""
print(text) | null |
862 | import logging
from typing import List
import click
from rich import print
from name_that_hash import check_hashes, hash_namer, hashes, prettifier
def set_logging(kwargs):
if kwargs["verbose"]:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s - %(message)s",
datefmt="%d-%b-%y %H:%M:%S",
)
else:
logging.basicConfig(level=logging.CRITICAL) | null |
863 | import logging
from typing import List
import click
from rich import print
from name_that_hash import check_hashes, hash_namer, hashes, prettifier
def compute_hashes_for_api(chash: List, args: dict = {}):
# nth = the object which names the hash types
nth = hash_namer.Name_That_Hash(hashes.prototypes)
hashChecker = check_hashes.HashChecker(args, nth)
for i in chash:
hashChecker.single_hash(i)
return hashChecker.output
The provided code snippet includes necessary dependencies for implementing the `api_return_hashes_as_json` function. Write a Python function `def api_return_hashes_as_json(chash: List, args: dict = {"popular_only": False})` to solve the following problem:
Using name-that-hash as an API? Call this function! Given a list of hashes of strings return a list of json of all hashes in the same order as the input
Here is the function:
def api_return_hashes_as_json(chash: List, args: dict = {"popular_only": False}):
"""
Using name-that-hash as an API? Call this function!
Given a list of hashes of strings
return a list of json of all hashes in the same order as the input
"""
pretty_printer = prettifier.Prettifier(args, api=True)
return pretty_printer.greppable_output(compute_hashes_for_api(chash, args)) | Using name-that-hash as an API? Call this function! Given a list of hashes of strings return a list of json of all hashes in the same order as the input |
864 | import logging
from typing import List
import click
from rich import print
from name_that_hash import check_hashes, hash_namer, hashes, prettifier
def compute_hashes_for_api(chash: List, args: dict = {}):
# nth = the object which names the hash types
nth = hash_namer.Name_That_Hash(hashes.prototypes)
hashChecker = check_hashes.HashChecker(args, nth)
for i in chash:
hashChecker.single_hash(i)
return hashChecker.output
The provided code snippet includes necessary dependencies for implementing the `api_return_hashes_as_dict` function. Write a Python function `def api_return_hashes_as_dict(chash: List, args: dict = {"popular_only": False})` to solve the following problem:
Returns hashes as a Python dictionary
Here is the function:
def api_return_hashes_as_dict(chash: List, args: dict = {"popular_only": False}):
"""
Returns hashes as a Python dictionary
"""
pretty_printer = prettifier.Prettifier(args, api=True)
return pretty_printer.turn_hash_objs_into_dict(compute_hashes_for_api(chash, args)) | Returns hashes as a Python dictionary |
865 | from typing import Any
import nox
from nox.sessions import Session
locations = "name_that_hash/", "tests/", "docs/"
def black(session):
args = session.posargs or locations
session.install("black")
session.run("black", *args) | null |
866 | from typing import Any
import nox
from nox.sessions import Session
def install_with_constraints(session: Session, *args: str, **kwargs: Any) -> None:
"""Install packages constrained by Poetry's lock file.
This function is a wrapper for nox.sessions.Session.install. It
invokes pip to install packages inside of the session's virtualenv.
Additionally, pip is passed a constraints file generated from
Poetry's lock file, to ensure that the packages are pinned to the
versions specified in poetry.lock. This allows you to manage the
packages as Poetry development dependencies.
Arguments:
session: The Session object.
args: Command-line arguments for pip.
kwargs: Additional keyword arguments for Session.install.
"""
session.run(
"poetry",
"export",
"--dev",
"--format=requirements.txt",
"--output=requirements.txt",
external=True,
)
session.install("--constraint=requirements.txt", *args, **kwargs)
The provided code snippet includes necessary dependencies for implementing the `coverage` function. Write a Python function `def coverage(session: Session) -> None` to solve the following problem:
Upload coverage data.
Here is the function:
def coverage(session: Session) -> None:
"""Upload coverage data."""
install_with_constraints(session, "coverage[toml]", "codecov")
session.run("coverage", "xml", "--fail-under=0")
session.run("codecov", *session.posargs) | Upload coverage data. |
867 | from typing import Any
import nox
from nox.sessions import Session
def install_with_constraints(session: Session, *args: str, **kwargs: Any) -> None:
"""Install packages constrained by Poetry's lock file.
This function is a wrapper for nox.sessions.Session.install. It
invokes pip to install packages inside of the session's virtualenv.
Additionally, pip is passed a constraints file generated from
Poetry's lock file, to ensure that the packages are pinned to the
versions specified in poetry.lock. This allows you to manage the
packages as Poetry development dependencies.
Arguments:
session: The Session object.
args: Command-line arguments for pip.
kwargs: Additional keyword arguments for Session.install.
"""
session.run(
"poetry",
"export",
"--dev",
"--format=requirements.txt",
"--output=requirements.txt",
external=True,
)
session.install("--constraint=requirements.txt", *args, **kwargs)
The provided code snippet includes necessary dependencies for implementing the `docs` function. Write a Python function `def docs(session: Session) -> None` to solve the following problem:
Build the documentation.
Here is the function:
def docs(session: Session) -> None:
"""Build the documentation."""
install_with_constraints(session, "sphinx")
session.run("sphinx-build", "docs", "docs/_build") | Build the documentation. |
868 | from typing import Any
import nox
from nox.sessions import Session
def tests(session):
session.run("pip", "install", "click", external=True)
session.run("poetry", "install", external=True)
session.run("poetry", "run", "pytest") | null |
869 | import numpy as np
import torch
The provided code snippet includes necessary dependencies for implementing the `_format_observation` function. Write a Python function `def _format_observation(obs, device)` to solve the following problem:
A utility function to process observations and move them to CUDA.
Here is the function:
def _format_observation(obs, device):
"""
A utility function to process observations and
move them to CUDA.
"""
position = obs['position']
device = torch.device('cuda:'+str(device))
x_batch = torch.from_numpy(obs['x_batch']).to(device)
z_batch = torch.from_numpy(obs['z_batch']).to(device)
x_no_action = torch.from_numpy(obs['x_no_action'])
z = torch.from_numpy(obs['z'])
obs = {'x_batch': x_batch,
'z_batch': z_batch,
'legal_actions': obs['legal_actions'],
}
return position, obs, x_no_action, z | A utility function to process observations and move them to CUDA. |
870 | import copy
import datetime
import csv
import json
import logging
import os
import time
from typing import Dict
import git
def gather_metadata() -> Dict:
date_start = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
# gathering git metadata
try:
repo = git.Repo(search_parent_directories=True)
git_sha = repo.commit().hexsha
git_data = dict(
commit=git_sha,
branch=repo.active_branch.name,
is_dirty=repo.is_dirty(),
path=repo.git_dir,
)
except git.InvalidGitRepositoryError:
git_data = None
# gathering slurm metadata
if 'SLURM_JOB_ID' in os.environ:
slurm_env_keys = [k for k in os.environ if k.startswith('SLURM')]
slurm_data = {}
for k in slurm_env_keys:
d_key = k.replace('SLURM_', '').replace('SLURMD_', '').lower()
slurm_data[d_key] = os.environ[k]
else:
slurm_data = None
return dict(
date_start=date_start,
date_end=None,
successful=False,
git=git_data,
slurm=slurm_data,
env=os.environ.copy(),
) | null |
871 | import os
import threading
import time
import timeit
import pprint
from collections import deque
import torch
from torch import multiprocessing as mp
from torch import nn
from .file_writer import FileWriter
from .models import Model
from .utils import get_batch, log, create_env, create_buffers, create_optimizers, act
def learn(position,
actor_models,
model,
batch,
optimizer,
flags,
lock):
"""Performs a learning (optimization) step."""
device = torch.device('cuda:'+str(flags.training_device))
obs_x_no_action = batch['obs_x_no_action'].to(device)
obs_action = batch['obs_action'].to(device)
obs_x = torch.cat((obs_x_no_action, obs_action), dim=2).float()
obs_x = torch.flatten(obs_x, 0, 1)
obs_z = torch.flatten(batch['obs_z'].to(device), 0, 1).float()
target = torch.flatten(batch['target'].to(device), 0, 1)
episode_returns = batch['episode_return'][batch['done']]
mean_episode_return_buf[position].append(torch.mean(episode_returns).to(device))
with lock:
learner_outputs = model(obs_z, obs_x, return_value=True)
loss = compute_loss(learner_outputs['values'], target)
stats = {
'mean_episode_return_'+position: torch.mean(torch.stack([_r for _r in mean_episode_return_buf[position]])).item(),
'loss_'+position: loss.item(),
}
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), flags.max_grad_norm)
optimizer.step()
for actor_model in actor_models:
actor_model.get_model(position).load_state_dict(model.state_dict())
return stats
class FileWriter:
def __init__(self,
xpid: str = None,
xp_args: dict = None,
rootdir: str = '~/palaas'):
if not xpid:
# make unique id
xpid = '{proc}_{unixtime}'.format(
proc=os.getpid(), unixtime=int(time.time()))
self.xpid = xpid
self._tick = 0
# metadata gathering
if xp_args is None:
xp_args = {}
self.metadata = gather_metadata()
# we need to copy the args, otherwise when we close the file writer
# (and rewrite the args) we might have non-serializable objects (or
# other nasty stuff).
self.metadata['args'] = copy.deepcopy(xp_args)
self.metadata['xpid'] = self.xpid
formatter = logging.Formatter('%(message)s')
self._logger = logging.getLogger('palaas/out')
# to stdout handler
shandle = logging.StreamHandler()
shandle.setFormatter(formatter)
self._logger.addHandler(shandle)
self._logger.setLevel(logging.INFO)
rootdir = os.path.expandvars(os.path.expanduser(rootdir))
# to file handler
self.basepath = os.path.join(rootdir, self.xpid)
if not os.path.exists(self.basepath):
self._logger.info('Creating log directory: %s', self.basepath)
os.makedirs(self.basepath, exist_ok=True)
else:
self._logger.info('Found log directory: %s', self.basepath)
# NOTE: remove latest because it creates errors when running on slurm
# multiple jobs trying to write to latest but cannot find it
# Add 'latest' as symlink unless it exists and is no symlink.
# symlink = os.path.join(rootdir, 'latest')
# if os.path.islink(symlink):
# os.remove(symlink)
# if not os.path.exists(symlink):
# os.symlink(self.basepath, symlink)
# self._logger.info('Symlinked log directory: %s', symlink)
self.paths = dict(
msg='{base}/out.log'.format(base=self.basepath),
logs='{base}/logs.csv'.format(base=self.basepath),
fields='{base}/fields.csv'.format(base=self.basepath),
meta='{base}/meta.json'.format(base=self.basepath),
)
self._logger.info('Saving arguments to %s', self.paths['meta'])
if os.path.exists(self.paths['meta']):
self._logger.warning('Path to meta file already exists. '
'Not overriding meta.')
else:
self._save_metadata()
self._logger.info('Saving messages to %s', self.paths['msg'])
if os.path.exists(self.paths['msg']):
self._logger.warning('Path to message file already exists. '
'New data will be appended.')
fhandle = logging.FileHandler(self.paths['msg'])
fhandle.setFormatter(formatter)
self._logger.addHandler(fhandle)
self._logger.info('Saving logs data to %s', self.paths['logs'])
self._logger.info('Saving logs\' fields to %s', self.paths['fields'])
if os.path.exists(self.paths['logs']):
self._logger.warning('Path to log file already exists. '
'New data will be appended.')
with open(self.paths['fields'], 'r') as csvfile:
reader = csv.reader(csvfile)
self.fieldnames = list(reader)[0]
else:
self.fieldnames = ['_tick', '_time']
def log(self, to_log: Dict, tick: int = None,
verbose: bool = False) -> None:
if tick is not None:
raise NotImplementedError
else:
to_log['_tick'] = self._tick
self._tick += 1
to_log['_time'] = time.time()
old_len = len(self.fieldnames)
for k in to_log:
if k not in self.fieldnames:
self.fieldnames.append(k)
if old_len != len(self.fieldnames):
with open(self.paths['fields'], 'w') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(self.fieldnames)
self._logger.info('Updated log fields: %s', self.fieldnames)
if to_log['_tick'] == 0:
# print("\ncreating logs file ")
with open(self.paths['logs'], 'a') as f:
f.write('# %s\n' % ','.join(self.fieldnames))
if verbose:
self._logger.info('LOG | %s', ', '.join(
['{}: {}'.format(k, to_log[k]) for k in sorted(to_log)]))
with open(self.paths['logs'], 'a') as f:
writer = csv.DictWriter(f, fieldnames=self.fieldnames)
writer.writerow(to_log)
# print("\nadded to log file")
def close(self, successful: bool = True) -> None:
self.metadata['date_end'] = datetime.datetime.now().strftime(
'%Y-%m-%d %H:%M:%S.%f')
self.metadata['successful'] = successful
self._save_metadata()
def _save_metadata(self) -> None:
with open(self.paths['meta'], 'w') as jsonfile:
json.dump(self.metadata, jsonfile, indent=4, sort_keys=True)
class Model:
"""
The wrapper for the three models. We also wrap several
interfaces such as share_memory, eval, etc.
"""
def __init__(self, device=0):
self.models = {}
self.models['landlord'] = LandlordLstmModel().to(torch.device('cuda:'+str(device)))
self.models['landlord_up'] = FarmerLstmModel().to(torch.device('cuda:'+str(device)))
self.models['landlord_down'] = FarmerLstmModel().to(torch.device('cuda:'+str(device)))
def forward(self, position, z, x, training=False, flags=None):
model = self.models[position]
return model.forward(z, x, training, flags)
def share_memory(self):
self.models['landlord'].share_memory()
self.models['landlord_up'].share_memory()
self.models['landlord_down'].share_memory()
def eval(self):
self.models['landlord'].eval()
self.models['landlord_up'].eval()
self.models['landlord_down'].eval()
def parameters(self, position):
return self.models[position].parameters()
def get_model(self, position):
return self.models[position]
def get_models(self):
return self.models
log = logging.getLogger('doudzero')
log.propagate = False
log.addHandler(shandle)
log.setLevel(logging.INFO)
def get_batch(free_queue,
full_queue,
buffers,
flags,
lock):
"""
This function will sample a batch from the buffers based
on the indices received from the full queue. It will also
free the indices by sending it to full_queue.
"""
with lock:
indices = [full_queue.get() for _ in range(flags.batch_size)]
batch = {
key: torch.stack([buffers[key][m] for m in indices], dim=1)
for key in buffers
}
for m in indices:
free_queue.put(m)
return batch
def create_optimizers(flags, learner_model):
"""
Create three optimizers for the three positions
"""
positions = ['landlord', 'landlord_up', 'landlord_down']
optimizers = {}
for position in positions:
optimizer = torch.optim.RMSprop(
learner_model.parameters(position),
lr=flags.learning_rate,
momentum=flags.momentum,
eps=flags.epsilon,
alpha=flags.alpha)
optimizers[position] = optimizer
return optimizers
def create_buffers(flags):
"""
We create buffers for different positions as well as
for different devices (i.e., GPU). That is, each device
will have three buffers for the three positions.
"""
T = flags.unroll_length
positions = ['landlord', 'landlord_up', 'landlord_down']
buffers = []
for device in range(torch.cuda.device_count()):
buffers.append({})
for position in positions:
x_dim = 319 if position == 'landlord' else 430
specs = dict(
done=dict(size=(T,), dtype=torch.bool),
episode_return=dict(size=(T,), dtype=torch.float32),
target=dict(size=(T,), dtype=torch.float32),
obs_x_no_action=dict(size=(T, x_dim), dtype=torch.int8),
obs_action=dict(size=(T, 54), dtype=torch.int8),
obs_z=dict(size=(T, 5, 162), dtype=torch.int8),
)
_buffers: Buffers = {key: [] for key in specs}
for _ in range(flags.num_buffers):
for key in _buffers:
_buffer = torch.empty(**specs[key]).to(torch.device('cuda:'+str(device))).share_memory_()
_buffers[key].append(_buffer)
buffers[device][position] = _buffers
return buffers
def act(i, device, free_queue, full_queue, model, buffers, flags):
"""
This function will run forever until we stop it. It will generate
data from the environment and send the data to buffer. It uses
a free queue and full queue to syncup with the main process.
"""
positions = ['landlord', 'landlord_up', 'landlord_down']
try:
T = flags.unroll_length
log.info('Device %i Actor %i started.', device, i)
env = create_env(flags)
env = Environment(env, device)
done_buf = {p: [] for p in positions}
episode_return_buf = {p: [] for p in positions}
target_buf = {p: [] for p in positions}
obs_x_no_action_buf = {p: [] for p in positions}
obs_action_buf = {p: [] for p in positions}
obs_z_buf = {p: [] for p in positions}
size = {p: 0 for p in positions}
position, obs, env_output = env.initial()
while True:
while True:
obs_x_no_action_buf[position].append(env_output['obs_x_no_action'])
obs_z_buf[position].append(env_output['obs_z'])
with torch.no_grad():
agent_output = model.forward(position, obs['z_batch'], obs['x_batch'], flags=flags)
_action_idx = int(agent_output['action'].cpu().detach().numpy())
action = obs['legal_actions'][_action_idx]
obs_action_buf[position].append(_cards2tensor(action))
position, obs, env_output = env.step(action)
size[position] += 1
if env_output['done']:
for p in positions:
diff = size[p] - len(target_buf[p])
if diff > 0:
done_buf[p].extend([False for _ in range(diff-1)])
done_buf[p].append(True)
episode_return = env_output['episode_return'] if p == 'landlord' else -env_output['episode_return']
episode_return_buf[p].extend([0.0 for _ in range(diff-1)])
episode_return_buf[p].append(episode_return)
target_buf[p].extend([episode_return for _ in range(diff)])
break
for p in positions:
if size[p] > T:
index = free_queue[p].get()
if index is None:
break
for t in range(T):
buffers[p]['done'][index][t, ...] = done_buf[p][t]
buffers[p]['episode_return'][index][t, ...] = episode_return_buf[p][t]
buffers[p]['target'][index][t, ...] = target_buf[p][t]
buffers[p]['obs_x_no_action'][index][t, ...] = obs_x_no_action_buf[p][t]
buffers[p]['obs_action'][index][t, ...] = obs_action_buf[p][t]
buffers[p]['obs_z'][index][t, ...] = obs_z_buf[p][t]
full_queue[p].put(index)
done_buf[p] = done_buf[p][T:]
episode_return_buf[p] = episode_return_buf[p][T:]
target_buf[p] = target_buf[p][T:]
obs_x_no_action_buf[p] = obs_x_no_action_buf[p][T:]
obs_action_buf[p] = obs_action_buf[p][T:]
obs_z_buf[p] = obs_z_buf[p][T:]
size[p] -= T
except KeyboardInterrupt:
pass
except Exception as e:
log.error('Exception in worker process %i', i)
traceback.print_exc()
print()
raise e
The provided code snippet includes necessary dependencies for implementing the `train` function. Write a Python function `def train(flags)` to solve the following problem:
This is the main funtion for training. It will first initilize everything, such as buffers, optimizers, etc. Then it will start subprocesses as actors. Then, it will call learning function with multiple threads.
Here is the function:
def train(flags):
"""
This is the main funtion for training. It will first
initilize everything, such as buffers, optimizers, etc.
Then it will start subprocesses as actors. Then, it will call
learning function with multiple threads.
"""
plogger = FileWriter(
xpid=flags.xpid,
xp_args=flags.__dict__,
rootdir=flags.savedir,
)
checkpointpath = os.path.expandvars(
os.path.expanduser('%s/%s/%s' % (flags.savedir, flags.xpid, 'model.tar')))
T = flags.unroll_length
B = flags.batch_size
# Initialize actor models
models = []
assert flags.num_actor_devices <= len(flags.gpu_devices.split(',')), 'The number of actor devices can not exceed the number of available devices'
for device in range(flags.num_actor_devices):
model = Model(device=device)
model.share_memory()
model.eval()
models.append(model)
# Initialize buffers
buffers = create_buffers(flags)
# Initialize queues
actor_processes = []
ctx = mp.get_context('spawn')
free_queue = []
full_queue = []
for device in range(flags.num_actor_devices):
_free_queue = {'landlord': ctx.SimpleQueue(), 'landlord_up': ctx.SimpleQueue(), 'landlord_down': ctx.SimpleQueue()}
_full_queue = {'landlord': ctx.SimpleQueue(), 'landlord_up': ctx.SimpleQueue(), 'landlord_down': ctx.SimpleQueue()}
free_queue.append(_free_queue)
full_queue.append(_full_queue)
# Learner model for training
learner_model = Model(device=flags.training_device)
# Create optimizers
optimizers = create_optimizers(flags, learner_model)
# Stat Keys
stat_keys = [
'mean_episode_return_landlord',
'loss_landlord',
'mean_episode_return_landlord_up',
'loss_landlord_up',
'mean_episode_return_landlord_down',
'loss_landlord_down',
]
frames, stats = 0, {k: 0 for k in stat_keys}
position_frames = {'landlord':0, 'landlord_up':0, 'landlord_down':0}
# Load models if any
if flags.load_model and os.path.exists(checkpointpath):
checkpoint_states = torch.load(
checkpointpath, map_location="cuda:"+str(flags.training_device)
)
for k in ['landlord', 'landlord_up', 'landlord_down']:
learner_model.get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
optimizers[k].load_state_dict(checkpoint_states["optimizer_state_dict"][k])
for device in range(flags.num_actor_devices):
models[device].get_model(k).load_state_dict(learner_model.get_model(k).state_dict())
stats = checkpoint_states["stats"]
frames = checkpoint_states["frames"]
position_frames = checkpoint_states["position_frames"]
log.info(f"Resuming preempted job, current stats:\n{stats}")
# Starting actor processes
for device in range(flags.num_actor_devices):
num_actors = flags.num_actors
for i in range(flags.num_actors):
actor = ctx.Process(
target=act,
args=(i, device, free_queue[device], full_queue[device], models[device], buffers[device], flags))
actor.start()
actor_processes.append(actor)
def batch_and_learn(i, device, position, local_lock, position_lock, lock=threading.Lock()):
"""Thread target for the learning process."""
nonlocal frames, position_frames, stats
while frames < flags.total_frames:
batch = get_batch(free_queue[device][position], full_queue[device][position], buffers[device][position], flags, local_lock)
_stats = learn(position, models, learner_model.get_model(position), batch,
optimizers[position], flags, position_lock)
with lock:
for k in _stats:
stats[k] = _stats[k]
to_log = dict(frames=frames)
to_log.update({k: stats[k] for k in stat_keys})
plogger.log(to_log)
frames += T * B
position_frames[position] += T * B
for device in range(flags.num_actor_devices):
for m in range(flags.num_buffers):
free_queue[device]['landlord'].put(m)
free_queue[device]['landlord_up'].put(m)
free_queue[device]['landlord_down'].put(m)
threads = []
locks = [{'landlord': threading.Lock(), 'landlord_up': threading.Lock(), 'landlord_down': threading.Lock()} for _ in range(flags.num_actor_devices)]
position_locks = {'landlord': threading.Lock(), 'landlord_up': threading.Lock(), 'landlord_down': threading.Lock()}
for device in range(flags.num_actor_devices):
for i in range(flags.num_threads):
for position in ['landlord', 'landlord_up', 'landlord_down']:
thread = threading.Thread(
target=batch_and_learn, name='batch-and-learn-%d' % i, args=(i,device,position,locks[device][position],position_locks[position]))
thread.start()
threads.append(thread)
def checkpoint(frames):
if flags.disable_checkpoint:
return
log.info('Saving checkpoint to %s', checkpointpath)
_models = learner_model.get_models()
torch.save({
'model_state_dict': {k: _models[k].state_dict() for k in _models},
'optimizer_state_dict': {k: optimizers[k].state_dict() for k in optimizers},
"stats": stats,
'flags': vars(flags),
'frames': frames,
'position_frames': position_frames
}, checkpointpath)
# Save the weights for evaluation purpose
for position in ['landlord', 'landlord_up', 'landlord_down']:
model_weights_dir = os.path.expandvars(os.path.expanduser(
'%s/%s/%s' % (flags.savedir, flags.xpid, position+'_weights_'+str(frames)+'.ckpt')))
torch.save(learner_model.get_model(position).state_dict(), model_weights_dir)
timer = timeit.default_timer
try:
last_checkpoint_time = timer() - flags.save_interval * 60
while frames < flags.total_frames:
start_frames = frames
position_start_frames = {k: position_frames[k] for k in position_frames}
start_time = timer()
time.sleep(5)
if timer() - last_checkpoint_time > flags.save_interval * 60:
checkpoint(frames)
last_checkpoint_time = timer()
end_time = timer()
fps = (frames - start_frames) / (end_time - start_time)
position_fps = {k:(position_frames[k]-position_start_frames[k])/(end_time-start_time) for k in position_frames}
log.info('After %i (L:%i U:%i D:%i) frames: @ %.1f fps (L:%.1f U:%.1f D:%.1f) Stats:\n%s',
frames,
position_frames['landlord'],
position_frames['landlord_up'],
position_frames['landlord_down'],
fps,
position_fps['landlord'],
position_fps['landlord_up'],
position_fps['landlord_down'],
pprint.pformat(stats))
except KeyboardInterrupt:
return
else:
for thread in threads:
thread.join()
log.info('Learning finished after %d frames.', frames)
checkpoint(frames)
plogger.close() | This is the main funtion for training. It will first initilize everything, such as buffers, optimizers, etc. Then it will start subprocesses as actors. Then, it will call learning function with multiple threads. |
872 | import random
from rlcard.games.doudizhu.utils import CARD_TYPE
INDEX = {'3': 0, '4': 1, '5': 2, '6': 3, '7': 4,
'8': 5, '9': 6, 'T': 7, 'J': 8, 'Q': 9,
'K': 10, 'A': 11, '2': 12, 'B': 13, 'R': 14}
def card_str2list(hand):
hand_list = [0 for _ in range(15)]
for card in hand:
hand_list[INDEX[card]] += 1
return hand_list
def list2card_str(hand_list):
card_str = ''
cards = [card for card in INDEX]
for index, count in enumerate(hand_list):
card_str += cards[index] * count
return card_str
def pick_chain(hand_list, count):
chains = []
str_card = [card for card in INDEX]
hand_list = [str(card) for card in hand_list]
hand = ''.join(hand_list[:12])
chain_list = hand.split('0')
add = 0
for index, chain in enumerate(chain_list):
if len(chain) > 0:
if len(chain) >= 5:
start = index + add
min_count = int(min(chain)) // count
if min_count != 0:
str_chain = ''
for num in range(len(chain)):
str_chain += str_card[start+num]
hand_list[start+num] = int(hand_list[start+num]) - int(min(chain))
for _ in range(min_count):
chains.append(str_chain)
add += len(chain)
hand_list = [int(card) for card in hand_list]
return (chains, hand_list)
The provided code snippet includes necessary dependencies for implementing the `combine_cards` function. Write a Python function `def combine_cards(hand)` to solve the following problem:
Get optimal combinations of cards in hand
Here is the function:
def combine_cards(hand):
'''Get optimal combinations of cards in hand
'''
comb = {'rocket': [], 'bomb': [], 'trio': [], 'trio_chain': [],
'solo_chain': [], 'pair_chain': [], 'pair': [], 'solo': []}
# 1. pick rocket
if hand[-2:] == 'BR':
comb['rocket'].append('BR')
hand = hand[:-2]
# 2. pick bomb
hand_cp = hand
for index in range(len(hand_cp) - 3):
if hand_cp[index] == hand_cp[index+3]:
bomb = hand_cp[index: index+4]
comb['bomb'].append(bomb)
hand = hand.replace(bomb, '')
# 3. pick trio and trio_chain
hand_cp = hand
for index in range(len(hand_cp) - 2):
if hand_cp[index] == hand_cp[index+2]:
trio = hand_cp[index: index+3]
if len(comb['trio']) > 0 and INDEX[trio[-1]] < 12 and (INDEX[trio[-1]]-1) == INDEX[comb['trio'][-1][-1]]:
comb['trio'][-1] += trio
else:
comb['trio'].append(trio)
hand = hand.replace(trio, '')
only_trio = []
only_trio_chain = []
for trio in comb['trio']:
if len(trio) == 3:
only_trio.append(trio)
else:
only_trio_chain.append(trio)
comb['trio'] = only_trio
comb['trio_chain'] = only_trio_chain
# 4. pick solo chain
hand_list = card_str2list(hand)
chains, hand_list = pick_chain(hand_list, 1)
comb['solo_chain'] = chains
# 5. pick par_chain
chains, hand_list = pick_chain(hand_list, 2)
comb['pair_chain'] = chains
hand = list2card_str(hand_list)
# 6. pick pair and solo
index = 0
while index < len(hand) - 1:
if hand[index] == hand[index+1]:
comb['pair'].append(hand[index] + hand[index+1])
index += 2
else:
comb['solo'].append(hand[index])
index += 1
if index == (len(hand) - 1):
comb['solo'].append(hand[index])
return comb | Get optimal combinations of cards in hand |
873 | from douzero.env.game import GameEnv
from .deep_agent import DeepAgent
RealCard2EnvCard = {'3': 3, '4': 4, '5': 5, '6': 6, '7': 7,
'8': 8, '9': 9, 'T': 10, 'J': 11, 'Q': 12,
'K': 13, 'A': 14, '2': 17, 'X': 20, 'D': 30}
AllEnvCard = [3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12,
12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 17, 17, 17, 17, 20, 30]
class GameEnv(object):
def __init__(self, players):
self.card_play_action_seq = []
self.three_landlord_cards = None
self.game_over = False
self.acting_player_position = None
self.player_utility_dict = None
self.players = players
self.last_move_dict = {'landlord': [],
'landlord_up': [],
'landlord_down': []}
self.played_cards = {'landlord': [],
'landlord_up': [],
'landlord_down': []}
self.last_move = []
self.last_two_moves = []
self.num_wins = {'landlord': 0,
'farmer': 0}
self.num_scores = {'landlord': 0,
'farmer': 0}
self.info_sets = {'landlord': InfoSet('landlord'),
'landlord_up': InfoSet('landlord_up'),
'landlord_down': InfoSet('landlord_down')}
self.bomb_num = 0
self.last_pid = 'landlord'
self.winner = ""
def card_play_init(self, card_play_data):
self.info_sets['landlord'].player_hand_cards = \
card_play_data['landlord']
self.info_sets['landlord_up'].player_hand_cards = \
card_play_data['landlord_up']
self.info_sets['landlord_down'].player_hand_cards = \
card_play_data['landlord_down']
self.three_landlord_cards = card_play_data['three_landlord_cards']
self.get_acting_player_position()
self.game_infoset = self.get_infoset()
def game_done(self):
if len(self.info_sets['landlord'].player_hand_cards) == 0 or \
len(self.info_sets['landlord_up'].player_hand_cards) == 0 or \
len(self.info_sets['landlord_down'].player_hand_cards) == 0:
# if one of the three players discards his hand,
# then game is over.
self.compute_player_utility()
self.update_num_wins_scores()
self.game_over = True
def compute_player_utility(self):
if len(self.info_sets['landlord'].player_hand_cards) == 0:
self.player_utility_dict = {'landlord': 2,
'farmer': -1}
else:
self.player_utility_dict = {'landlord': -2,
'farmer': 1}
def update_num_wins_scores(self):
for pos, utility in self.player_utility_dict.items():
base_score = 2 if pos == 'landlord' else 1
if utility > 0:
self.num_wins[pos] += 1
self.winner = pos
self.num_scores[pos] += base_score * (2 ** self.bomb_num)
else:
self.num_scores[pos] -= base_score * (2 ** self.bomb_num)
def get_winner(self):
return self.winner
def get_bomb_num(self):
return self.bomb_num
def step(self, position, action=[]):
'''
# 是玩家角色就调用act函数通过智能体获取action,否则通过玩家输入获取action
if self.acting_player_position == self.players[0]:
action, actions_confidence = self.players[1].act(self.game_infoset)
# 计算胜率
win_rates = {}
win_rate = max(actions_confidence, -1)
win_rate = min(win_rate, 1)
win_rate = str(round(float((win_rate + 1) / 2), 4))
print("你出牌: " + str([EnvCard2RealCard[c] for c in action]) + ", 预计胜率" + str(
round(float(win_rate) * 100, 2)) + "%\n")
else:
try:
action = [RealCard2EnvCard[c] for c in list(input("地主{}出牌:".format(
"上家" if self.acting_player_position == "landlord_up" else
"下家" if self.acting_player_position == "landlord_down" else "")))]
print(action, end="\n\n")
# “要不起”,返回空列表
except ValueError as e:
action = []
'''
win_rate = 0
if self.acting_player_position == position:
action, actions_confidence = self.players[1].act(self.game_infoset)
# 计算胜率
win_rate = max(actions_confidence, -1)
win_rate = min(win_rate, 1)
win_rate = str(round(float((win_rate + 1) / 2), 4))
if len(action) > 0:
self.last_pid = self.acting_player_position
if action in bombs:
self.bomb_num += 1
self.last_move_dict[
self.acting_player_position] = action.copy()
self.card_play_action_seq.append(action)
self.update_acting_player_hand_cards(action)
self.played_cards[self.acting_player_position] += action
if self.acting_player_position == 'landlord' and \
len(action) > 0 and \
len(self.three_landlord_cards) > 0:
for card in action:
if len(self.three_landlord_cards) > 0:
if card in self.three_landlord_cards:
self.three_landlord_cards.remove(card)
else:
break
self.game_done()
if not self.game_over:
self.get_acting_player_position()
self.game_infoset = self.get_infoset()
# 返回动作和胜率,只有玩家角色会接受返回值
action_message = {"action": str(''.join([EnvCard2RealCard[c] for c in action])),
"win_rate": str(round(float(win_rate) * 100, 2)) + "%"}
return action_message
def get_last_move(self):
last_move = []
if len(self.card_play_action_seq) != 0:
if len(self.card_play_action_seq[-1]) == 0:
last_move = self.card_play_action_seq[-2]
else:
last_move = self.card_play_action_seq[-1]
return last_move
def get_last_two_moves(self):
last_two_moves = [[], []]
for card in self.card_play_action_seq[-2:]:
last_two_moves.insert(0, card)
last_two_moves = last_two_moves[:2]
return last_two_moves
def get_acting_player_position(self):
if self.acting_player_position is None:
self.acting_player_position = 'landlord'
else:
if self.acting_player_position == 'landlord':
self.acting_player_position = 'landlord_down'
elif self.acting_player_position == 'landlord_down':
self.acting_player_position = 'landlord_up'
else:
self.acting_player_position = 'landlord'
return self.acting_player_position
# 更新手牌
def update_acting_player_hand_cards(self, action):
if action != []:
# 更新玩家手牌,删除对应的牌
if self.acting_player_position == self.players[0]:
for card in action:
self.info_sets[self.acting_player_position].player_hand_cards.remove(card)
# 更新另外两个玩家手牌,删除相同数量的牌
else:
del self.info_sets[self.acting_player_position].player_hand_cards[0:len(action)]
self.info_sets[self.acting_player_position].player_hand_cards.sort()
def get_legal_card_play_actions(self):
mg = MovesGener(
self.info_sets[self.acting_player_position].player_hand_cards)
action_sequence = self.card_play_action_seq
rival_move = []
if len(action_sequence) != 0:
if len(action_sequence[-1]) == 0:
rival_move = action_sequence[-2]
else:
rival_move = action_sequence[-1]
rival_type = md.get_move_type(rival_move)
rival_move_type = rival_type['type']
rival_move_len = rival_type.get('len', 1)
moves = list()
if rival_move_type == md.TYPE_0_PASS:
moves = mg.gen_moves()
elif rival_move_type == md.TYPE_1_SINGLE:
all_moves = mg.gen_type_1_single()
moves = ms.filter_type_1_single(all_moves, rival_move)
elif rival_move_type == md.TYPE_2_PAIR:
all_moves = mg.gen_type_2_pair()
moves = ms.filter_type_2_pair(all_moves, rival_move)
elif rival_move_type == md.TYPE_3_TRIPLE:
all_moves = mg.gen_type_3_triple()
moves = ms.filter_type_3_triple(all_moves, rival_move)
elif rival_move_type == md.TYPE_4_BOMB:
all_moves = mg.gen_type_4_bomb() + mg.gen_type_5_king_bomb()
moves = ms.filter_type_4_bomb(all_moves, rival_move)
elif rival_move_type == md.TYPE_5_KING_BOMB:
moves = []
elif rival_move_type == md.TYPE_6_3_1:
all_moves = mg.gen_type_6_3_1()
moves = ms.filter_type_6_3_1(all_moves, rival_move)
elif rival_move_type == md.TYPE_7_3_2:
all_moves = mg.gen_type_7_3_2()
moves = ms.filter_type_7_3_2(all_moves, rival_move)
elif rival_move_type == md.TYPE_8_SERIAL_SINGLE:
all_moves = mg.gen_type_8_serial_single(repeat_num=rival_move_len)
moves = ms.filter_type_8_serial_single(all_moves, rival_move)
elif rival_move_type == md.TYPE_9_SERIAL_PAIR:
all_moves = mg.gen_type_9_serial_pair(repeat_num=rival_move_len)
moves = ms.filter_type_9_serial_pair(all_moves, rival_move)
elif rival_move_type == md.TYPE_10_SERIAL_TRIPLE:
all_moves = mg.gen_type_10_serial_triple(repeat_num=rival_move_len)
moves = ms.filter_type_10_serial_triple(all_moves, rival_move)
elif rival_move_type == md.TYPE_11_SERIAL_3_1:
all_moves = mg.gen_type_11_serial_3_1(repeat_num=rival_move_len)
moves = ms.filter_type_11_serial_3_1(all_moves, rival_move)
elif rival_move_type == md.TYPE_12_SERIAL_3_2:
all_moves = mg.gen_type_12_serial_3_2(repeat_num=rival_move_len)
moves = ms.filter_type_12_serial_3_2(all_moves, rival_move)
elif rival_move_type == md.TYPE_13_4_2:
all_moves = mg.gen_type_13_4_2()
moves = ms.filter_type_13_4_2(all_moves, rival_move)
elif rival_move_type == md.TYPE_14_4_22:
all_moves = mg.gen_type_14_4_22()
moves = ms.filter_type_14_4_22(all_moves, rival_move)
if rival_move_type not in [md.TYPE_0_PASS,
md.TYPE_4_BOMB, md.TYPE_5_KING_BOMB]:
moves = moves + mg.gen_type_4_bomb() + mg.gen_type_5_king_bomb()
if len(rival_move) != 0: # rival_move is not 'pass'
moves = moves + [[]]
for m in moves:
m.sort()
return moves
def reset(self):
self.card_play_action_seq = []
self.three_landlord_cards = None
self.game_over = False
self.acting_player_position = None
self.player_utility_dict = None
self.last_move_dict = {'landlord': [],
'landlord_up': [],
'landlord_down': []}
self.played_cards = {'landlord': [],
'landlord_up': [],
'landlord_down': []}
self.last_move = []
self.last_two_moves = []
self.info_sets = {'landlord': InfoSet('landlord'),
'landlord_up': InfoSet('landlord_up'),
'landlord_down': InfoSet('landlord_down')}
self.bomb_num = 0
self.last_pid = 'landlord'
def get_infoset(self):
self.info_sets[
self.acting_player_position].last_pid = self.last_pid
self.info_sets[
self.acting_player_position].legal_actions = \
self.get_legal_card_play_actions()
self.info_sets[
self.acting_player_position].bomb_num = self.bomb_num
self.info_sets[
self.acting_player_position].last_move = self.get_last_move()
self.info_sets[
self.acting_player_position].last_two_moves = self.get_last_two_moves()
self.info_sets[
self.acting_player_position].last_move_dict = self.last_move_dict
self.info_sets[self.acting_player_position].num_cards_left_dict = \
{pos: len(self.info_sets[pos].player_hand_cards)
for pos in ['landlord', 'landlord_up', 'landlord_down']}
self.info_sets[self.acting_player_position].other_hand_cards = []
'''
调整计算其他人手牌的方法,整副牌减去玩家手牌与出过的牌
for pos in ['landlord', 'landlord_up', 'landlord_down']:
if pos != self.acting_player_position:
self.info_sets[
self.acting_player_position].other_hand_cards += \
self.info_sets[pos].player_hand_cards
'''
# 把出过的牌中三个子列表合成一个列表
played_cards_tmp = []
for i in list(self.played_cards.values()):
played_cards_tmp.extend(i)
# 出过的牌和玩家手上的牌
played_and_hand_cards = played_cards_tmp + self.info_sets[self.acting_player_position].player_hand_cards
# 整副牌减去出过的牌和玩家手上的牌,就是其他人的手牌
for i in set(AllEnvCard):
self.info_sets[
self.acting_player_position].other_hand_cards.extend([i] * (AllEnvCard.count(i) - played_and_hand_cards.count(i)))
self.info_sets[self.acting_player_position].played_cards = \
self.played_cards
self.info_sets[self.acting_player_position].three_landlord_cards = \
self.three_landlord_cards
self.info_sets[self.acting_player_position].card_play_action_seq = \
self.card_play_action_seq
self.info_sets[
self.acting_player_position].all_handcards = \
{pos: self.info_sets[pos].player_hand_cards
for pos in ['landlord', 'landlord_up', 'landlord_down']}
return deepcopy(self.info_sets[self.acting_player_position])
class DeepAgent:
def __init__(self, position, model_path):
self.model = _load_model(position, model_path)
def act(self, infoset):
# 只有一个合法动作时直接返回,这样会得不到胜率信息
# if len(infoset.legal_actions) == 1:
# return infoset.legal_actions[0], 0
obs = get_obs(infoset)
z_batch = torch.from_numpy(obs['z_batch']).float()
x_batch = torch.from_numpy(obs['x_batch']).float()
if torch.cuda.is_available():
z_batch, x_batch = z_batch.cuda(), x_batch.cuda()
y_pred = self.model.forward(z_batch, x_batch, return_value=True)['values']
y_pred = y_pred.detach().cpu().numpy()
best_action_index = np.argmax(y_pred, axis=0)[0]
best_action = infoset.legal_actions[best_action_index]
best_action_confidence = y_pred[best_action_index]
# print(best_action, best_action_confidence, y_pred)
return best_action, best_action_confidence
def evaluate(landlord, landlord_up, landlord_down):
# 输入玩家的牌
user_hand_cards_real = input("请输入你的手牌, 例如 333456789TJQKA2XD:")
# user_hand_cards_real = "34666777899TJJKA22XD"
use_hand_cards_env = [RealCard2EnvCard[c] for c in list(user_hand_cards_real)]
# 输入玩家角色
user_position_code = int(input("请输入你的角色[0:地主上家, 1:地主, 2:地主下家]:"))
# user_position_code = 1
user_position = ['landlord_up', 'landlord', 'landlord_down'][user_position_code]
# 输入三张底牌
three_landlord_cards_real = input("请输入三张底牌, 例如 2XD:")
# three_landlord_cards_real = "2XD"
three_landlord_cards_env = [RealCard2EnvCard[c] for c in list(three_landlord_cards_real)]
# 整副牌减去玩家手上的牌,就是其他人的手牌,再分配给另外两个角色(如何分配对AI判断没有影响)
other_hand_cards = []
for i in set(AllEnvCard):
other_hand_cards.extend([i] * (AllEnvCard.count(i) - use_hand_cards_env.count(i)))
card_play_data_list = [{}]
card_play_data_list[0].update({
'three_landlord_cards': three_landlord_cards_env,
['landlord_up', 'landlord', 'landlord_down'][(user_position_code + 0) % 3]: use_hand_cards_env,
['landlord_up', 'landlord', 'landlord_down'][(user_position_code + 1) % 3]: other_hand_cards[0:17] if (user_position_code + 1) % 3 != 1 else other_hand_cards[17:],
['landlord_up', 'landlord', 'landlord_down'][(user_position_code + 2) % 3]: other_hand_cards[0:17] if (user_position_code + 1) % 3 == 1 else other_hand_cards[17:]
})
# 生成手牌结束,校验手牌数量
if len(card_play_data_list[0]["three_landlord_cards"]) != 3:
print("底牌必须是3张\n")
return
if len(card_play_data_list[0]["landlord_up"]) != 17 or \
len(card_play_data_list[0]["landlord_down"]) != 17 or \
len(card_play_data_list[0]["landlord"]) != 20:
print("初始手牌数目有误\n")
return
# print(card_play_data_list)
card_play_model_path_dict = {
'landlord': landlord,
'landlord_up': landlord_up,
'landlord_down': landlord_down}
print("创建代表玩家的AI...")
players = {}
players[user_position] = DeepAgent(user_position, card_play_model_path_dict[user_position])
env = GameEnv(players)
for idx, card_play_data in enumerate(card_play_data_list):
env.card_play_init(card_play_data)
print("开始出牌\n")
while not env.game_over:
env.step()
print("{}胜,本局结束!\n".format("农民" if env.winner == "farmer" else "地主"))
env.reset() | null |
874 | import torch
import numpy as np
from douzero.env.env import get_obs
model_dict = {}
model_dict['landlord'] = LandlordLstmModel
model_dict['landlord_up'] = FarmerLstmModel
model_dict['landlord_down'] = FarmerLstmModel
def _load_model(position, model_path):
from douzero.dmc.models import model_dict
model = model_dict[position]()
model_state_dict = model.state_dict()
if torch.cuda.is_available():
pretrained = torch.load(model_path, map_location='cuda:0')
else:
pretrained = torch.load(model_path, map_location='cpu')
pretrained = {k: v for k, v in pretrained.items() if k in model_state_dict}
model_state_dict.update(pretrained)
model.load_state_dict(model_state_dict)
if torch.cuda.is_available():
model.cuda()
model.eval()
return model | null |
875 | from douzero.env.utils import *
import collections
def is_continuous_seq(move):
i = 0
while i < len(move) - 1:
if move[i+1] - move[i] != 1:
return False
i += 1
return True
def get_move_type(move):
move_size = len(move)
move_dict = collections.Counter(move)
if move_size == 0:
return {'type': TYPE_0_PASS}
if move_size == 1:
return {'type': TYPE_1_SINGLE, 'rank': move[0]}
if move_size == 2:
if move[0] == move[1]:
return {'type': TYPE_2_PAIR, 'rank': move[0]}
elif move == [20, 30]: # Kings
return {'type': TYPE_5_KING_BOMB}
else:
return {'type': TYPE_15_WRONG}
if move_size == 3:
if len(move_dict) == 1:
return {'type': TYPE_3_TRIPLE, 'rank': move[0]}
else:
return {'type': TYPE_15_WRONG}
if move_size == 4:
if len(move_dict) == 1:
return {'type': TYPE_4_BOMB, 'rank': move[0]}
elif len(move_dict) == 2:
if move[0] == move[1] == move[2] or move[1] == move[2] == move[3]:
return {'type': TYPE_6_3_1, 'rank': move[1]}
else:
return {'type': TYPE_15_WRONG}
else:
return {'type': TYPE_15_WRONG}
if is_continuous_seq(move):
return {'type': TYPE_8_SERIAL_SINGLE, 'rank': move[0], 'len': len(move)}
if move_size == 5:
if len(move_dict) == 2:
return {'type': TYPE_7_3_2, 'rank': move[2]}
else:
return {'type': TYPE_15_WRONG}
count_dict = collections.defaultdict(int)
for c, n in move_dict.items():
count_dict[n] += 1
if move_size == 6:
if (len(move_dict) == 2 or len(move_dict) == 3) and count_dict.get(4) == 1 and \
(count_dict.get(2) == 1 or count_dict.get(1) == 2):
return {'type': TYPE_13_4_2, 'rank': move[2]}
if move_size == 8 and (((len(move_dict) == 3 or len(move_dict) == 2) and
(count_dict.get(4) == 1 and count_dict.get(2) == 2)) or count_dict.get(4) == 2):
return {'type': TYPE_14_4_22, 'rank': max([c for c, n in move_dict.items() if n == 4])}
mdkeys = sorted(move_dict.keys())
if len(move_dict) == count_dict.get(2) and is_continuous_seq(mdkeys):
return {'type': TYPE_9_SERIAL_PAIR, 'rank': mdkeys[0], 'len': len(mdkeys)}
if len(move_dict) == count_dict.get(3) and is_continuous_seq(mdkeys):
return {'type': TYPE_10_SERIAL_TRIPLE, 'rank': mdkeys[0], 'len': len(mdkeys)}
# Check Type 11 (serial 3+1) and Type 12 (serial 3+2)
if count_dict.get(3, 0) >= MIN_TRIPLES:
serial_3 = list()
single = list()
pair = list()
for k, v in move_dict.items():
if v == 3:
serial_3.append(k)
elif v == 1:
single.append(k)
elif v == 2:
pair.append(k)
else: # no other possibilities
return {'type': TYPE_15_WRONG}
serial_3.sort()
if is_continuous_seq(serial_3):
if len(serial_3) == len(single)+len(pair)*2:
return {'type': TYPE_11_SERIAL_3_1, 'rank': serial_3[0], 'len': len(serial_3)}
if len(serial_3) == len(pair) and len(move_dict) == len(serial_3) * 2:
return {'type': TYPE_12_SERIAL_3_2, 'rank': serial_3[0], 'len': len(serial_3)}
if len(serial_3) == 4:
if is_continuous_seq(serial_3[1:]):
return {'type': TYPE_11_SERIAL_3_1, 'rank': serial_3[1], 'len': len(serial_3) - 1}
if is_continuous_seq(serial_3[:-1]):
return {'type': TYPE_11_SERIAL_3_1, 'rank': serial_3[0], 'len': len(serial_3) - 1}
return {'type': TYPE_15_WRONG} | null |
876 | import itertools
def select(cards, num):
return [list(i) for i in itertools.combinations(cards, num)] | null |
877 | import collections
def common_handle(moves, rival_move):
new_moves = list()
for move in moves:
if move[0] > rival_move[0]:
new_moves.append(move)
return new_moves
def filter_type_1_single(moves, rival_move):
return common_handle(moves, rival_move) | null |
878 | import collections
def common_handle(moves, rival_move):
def filter_type_2_pair(moves, rival_move):
return common_handle(moves, rival_move) | null |
879 | import collections
def common_handle(moves, rival_move):
new_moves = list()
for move in moves:
if move[0] > rival_move[0]:
new_moves.append(move)
return new_moves
def filter_type_3_triple(moves, rival_move):
return common_handle(moves, rival_move) | null |
880 | import collections
def common_handle(moves, rival_move):
new_moves = list()
for move in moves:
if move[0] > rival_move[0]:
new_moves.append(move)
return new_moves
def filter_type_4_bomb(moves, rival_move):
return common_handle(moves, rival_move) | null |
881 | import collections
def filter_type_6_3_1(moves, rival_move):
rival_move.sort()
rival_rank = rival_move[1]
new_moves = list()
for move in moves:
move.sort()
my_rank = move[1]
if my_rank > rival_rank:
new_moves.append(move)
return new_moves | null |
882 | import collections
def filter_type_7_3_2(moves, rival_move):
rival_move.sort()
rival_rank = rival_move[2]
new_moves = list()
for move in moves:
move.sort()
my_rank = move[2]
if my_rank > rival_rank:
new_moves.append(move)
return new_moves | null |
883 | import collections
def common_handle(moves, rival_move):
new_moves = list()
for move in moves:
if move[0] > rival_move[0]:
new_moves.append(move)
return new_moves
def filter_type_8_serial_single(moves, rival_move):
return common_handle(moves, rival_move) | null |
884 | import collections
def common_handle(moves, rival_move):
def filter_type_9_serial_pair(moves, rival_move):
return common_handle(moves, rival_move) | null |
885 | import collections
def common_handle(moves, rival_move):
new_moves = list()
for move in moves:
if move[0] > rival_move[0]:
new_moves.append(move)
return new_moves
def filter_type_10_serial_triple(moves, rival_move):
return common_handle(moves, rival_move) | null |
886 | import collections
def filter_type_11_serial_3_1(moves, rival_move):
rival = collections.Counter(rival_move)
rival_rank = max([k for k, v in rival.items() if v == 3])
new_moves = list()
for move in moves:
mymove = collections.Counter(move)
my_rank = max([k for k, v in mymove.items() if v == 3])
if my_rank > rival_rank:
new_moves.append(move)
return new_moves | null |
887 | import collections
def filter_type_12_serial_3_2(moves, rival_move):
rival = collections.Counter(rival_move)
rival_rank = max([k for k, v in rival.items() if v == 3])
new_moves = list()
for move in moves:
mymove = collections.Counter(move)
my_rank = max([k for k, v in mymove.items() if v == 3])
if my_rank > rival_rank:
new_moves.append(move)
return new_moves | null |
888 | import collections
def filter_type_13_4_2(moves, rival_move):
rival_move.sort()
rival_rank = rival_move[2]
new_moves = list()
for move in moves:
move.sort()
my_rank = move[2]
if my_rank > rival_rank:
new_moves.append(move)
return new_moves | null |
889 | import collections
def filter_type_14_4_22(moves, rival_move):
rival = collections.Counter(rival_move)
rival_rank = my_rank = 0
for k, v in rival.items():
if v == 4:
rival_rank = k
new_moves = list()
for move in moves:
mymove = collections.Counter(move)
for k, v in mymove.items():
if v == 4:
my_rank = k
if my_rank > rival_rank:
new_moves.append(move)
return new_moves | null |
890 | from collections import Counter
import numpy as np
from douzero.env.game import GameEnv
def _get_obs_landlord(infoset):
"""
Obttain the landlord features. See Table 4 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
landlord_up_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_up'], 17)
landlord_up_num_cards_left_batch = np.repeat(
landlord_up_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 17)
landlord_down_num_cards_left_batch = np.repeat(
landlord_down_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_played_cards = _cards2array(
infoset.played_cards['landlord_up'])
landlord_up_played_cards_batch = np.repeat(
landlord_up_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
landlord_down_played_cards_batch = np.repeat(
landlord_down_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
last_action_batch,
landlord_up_played_cards_batch,
landlord_down_played_cards_batch,
landlord_up_num_cards_left_batch,
landlord_down_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
last_action,
landlord_up_played_cards,
landlord_down_played_cards,
landlord_up_num_cards_left,
landlord_down_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq))
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_landlord_up(infoset):
"""
Obttain the landlord_up features. See Table 5 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
last_landlord_action = _cards2array(
infoset.last_move_dict['landlord'])
last_landlord_action_batch = np.repeat(
last_landlord_action[np.newaxis, :],
num_legal_actions, axis=0)
landlord_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord'], 20)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_action = _cards2array(
infoset.last_move_dict['landlord_down'])
last_teammate_action_batch = np.repeat(
last_teammate_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 17)
teammate_num_cards_left_batch = np.repeat(
teammate_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
teammate_played_cards_batch = np.repeat(
teammate_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
landlord_played_cards_batch,
teammate_played_cards_batch,
last_action_batch,
last_landlord_action_batch,
last_teammate_action_batch,
landlord_num_cards_left_batch,
teammate_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
landlord_played_cards,
teammate_played_cards,
last_action,
last_landlord_action,
last_teammate_action,
landlord_num_cards_left,
teammate_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq))
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord_up',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_landlord_down(infoset):
"""
Obttain the landlord_down features. See Table 5 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
last_landlord_action = _cards2array(
infoset.last_move_dict['landlord'])
last_landlord_action_batch = np.repeat(
last_landlord_action[np.newaxis, :],
num_legal_actions, axis=0)
landlord_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord'], 20)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_action = _cards2array(
infoset.last_move_dict['landlord_up'])
last_teammate_action_batch = np.repeat(
last_teammate_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_up'], 17)
teammate_num_cards_left_batch = np.repeat(
teammate_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_played_cards = _cards2array(
infoset.played_cards['landlord_up'])
teammate_played_cards_batch = np.repeat(
teammate_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
landlord_played_cards_batch,
teammate_played_cards_batch,
last_action_batch,
last_landlord_action_batch,
last_teammate_action_batch,
landlord_num_cards_left_batch,
teammate_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
landlord_played_cards,
teammate_played_cards,
last_action,
last_landlord_action,
last_teammate_action,
landlord_num_cards_left,
teammate_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq))
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord_down',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
The provided code snippet includes necessary dependencies for implementing the `get_obs` function. Write a Python function `def get_obs(infoset)` to solve the following problem:
This function obtains observations with imperfect information from the infoset. It has three branches since we encode different features for different positions. This function will return dictionary named `obs`. It contains several fields. These fields will be used to train the model. One can play with those features to improve the performance. `position` is a string that can be landlord/landlord_down/landlord_up `x_batch` is a batch of features (excluding the hisorical moves). It also encodes the action feature `z_batch` is a batch of features with hisorical moves only. `legal_actions` is the legal moves `x_no_action`: the features (exluding the hitorical moves and the action features). It does not have the batch dim. `z`: same as z_batch but not a batch.
Here is the function:
def get_obs(infoset):
"""
This function obtains observations with imperfect information
from the infoset. It has three branches since we encode
different features for different positions.
This function will return dictionary named `obs`. It contains
several fields. These fields will be used to train the model.
One can play with those features to improve the performance.
`position` is a string that can be landlord/landlord_down/landlord_up
`x_batch` is a batch of features (excluding the hisorical moves).
It also encodes the action feature
`z_batch` is a batch of features with hisorical moves only.
`legal_actions` is the legal moves
`x_no_action`: the features (exluding the hitorical moves and
the action features). It does not have the batch dim.
`z`: same as z_batch but not a batch.
"""
if infoset.player_position == 'landlord':
return _get_obs_landlord(infoset)
elif infoset.player_position == 'landlord_up':
return _get_obs_landlord_up(infoset)
elif infoset.player_position == 'landlord_down':
return _get_obs_landlord_down(infoset)
else:
raise ValueError('') | This function obtains observations with imperfect information from the infoset. It has three branches since we encode different features for different positions. This function will return dictionary named `obs`. It contains several fields. These fields will be used to train the model. One can play with those features to improve the performance. `position` is a string that can be landlord/landlord_down/landlord_up `x_batch` is a batch of features (excluding the hisorical moves). It also encodes the action feature `z_batch` is a batch of features with hisorical moves only. `legal_actions` is the legal moves `x_no_action`: the features (exluding the hitorical moves and the action features). It does not have the batch dim. `z`: same as z_batch but not a batch. |
891 | from lib.email import send_email
from lib.db import create_user, find_user
from lib.log import log
from lib.slack import post_slack_message
def send_email(name: str, address: str, subject: str, body: str):
print(f"Sending email to {name} ({address})")
print("==========")
print(f"Subject: {subject}\n")
print(body)
def find_user(email: str):
for user in users:
if user.email == email:
return user
raise Exception(f"User with email address {email} not found.")
def log(msg: str):
print(f"{datetime.now()} - {msg}")
def post_slack_message(channel: str, msg: str):
print(f"[SlackBot - {channel}]: {msg}")
def upgrade_plan(email: str):
# find the user
user = find_user(email)
# upgrade the plan
user.plan = "paid"
# post a Slack message to sales department
post_slack_message("sales",
f"{user.name} has upgraded their plan.")
# send a thank you email
send_email(user.name, user.email,
"Thank you",
f"Thanks for upgrading, {user.name}! You're gonna love it. \nRegards, The DevNotes team")
# write server log
log(f"User with email address {user.email} has upgraded their plan") | null |
892 | from lib.email import send_email
from lib.db import create_user, find_user
from lib.log import log
from lib.slack import post_slack_message
from lib.stringtools import get_random_string
def send_email(name: str, address: str, subject: str, body: str):
print(f"Sending email to {name} ({address})")
print("==========")
print(f"Subject: {subject}\n")
print(body)
def create_user(name: str, password: str, email: str):
print(f"DB: creating user database entry for {name} ({email}).")
new_user = User(name, password, email)
users.append(new_user)
return new_user
def log(msg: str):
print(f"{datetime.now()} - {msg}")
def post_slack_message(channel: str, msg: str):
print(f"[SlackBot - {channel}]: {msg}")
def register_new_user(name: str, password: str, email: str):
# create an entry in the database
user = create_user(name, password, email)
# post a Slack message to sales department
post_slack_message("sales",
f"{user.name} has registered with email address {user.email}. Please spam this person incessantly.")
# send a welcome email
send_email(user.name, user.email,
"Welcome",
f"Thanks for registering, {user.name}!\nRegards, The DevNotes team")
# write server log
log(f"User registered with email address {user.email}") | null |
893 | from lib.email import send_email
from lib.db import create_user, find_user
from lib.log import log
from lib.slack import post_slack_message
from lib.stringtools import get_random_string
def send_email(name: str, address: str, subject: str, body: str):
print(f"Sending email to {name} ({address})")
print("==========")
print(f"Subject: {subject}\n")
print(body)
def find_user(email: str):
for user in users:
if user.email == email:
return user
raise Exception(f"User with email address {email} not found.")
def log(msg: str):
print(f"{datetime.now()} - {msg}")
def get_random_string(length):
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for i in range(length))
def password_forgotten(email: str):
# retrieve the user
user = find_user(email)
# generate a password reset code
user.reset_code = get_random_string(16)
# send a password reset message
send_email(user.name, user.email, "Reset your password",
f"To reset your password, use this very secure code: {user.reset_code}.\nRegards, The DevNotes team")
# write server log
log(f"User with email address {user.email} requested a password reset") | null |
894 | from lib.slack import post_slack_message
from .event import subscribe
def handle_user_registered_event(user):
post_slack_message("sales",
f"{user.name} has registered with email address {user.email}. Please spam this person incessantly.")
def handle_user_upgrade_plan_event(user):
post_slack_message("sales",
f"{user.name} has upgraded their plan.")
def subscribe(event_type: str, fn):
subscribers[event_type].append(fn)
def setup_slack_event_handlers():
subscribe("user_registered", handle_user_registered_event)
subscribe("user_upgrade_plan", handle_user_upgrade_plan_event) | null |
895 | from lib.db import create_user, find_user
from .event import post_event
def find_user(email: str):
for user in users:
if user.email == email:
return user
raise Exception(f"User with email address {email} not found.")
def post_event(event_type: str, data):
if not event_type in subscribers:
return
for fn in subscribers[event_type]:
fn(data)
def upgrade_plan(email: str):
# find the user
user = find_user(email)
# upgrade the plan
user.plan = "paid"
# post an event
post_event("user_upgrade_plan", user) | null |
896 | from lib.log import log
from .event import subscribe
def handle_user_registered_event(user):
log(f"User registered with email address {user.email}")
def handle_user_password_forgotten_event(user):
log(f"User with email address {user.email} requested a password reset")
def handle_user_upgrade_plan_event(user):
log(f"User with email address {user.email} has upgraded their plan")
def subscribe(event_type: str, fn):
subscribers[event_type].append(fn)
def setup_log_event_handlers():
subscribe("user_registered", handle_user_registered_event)
subscribe("user_password_forgotten", handle_user_password_forgotten_event)
subscribe("user_upgrade_plan", handle_user_upgrade_plan_event) | null |
897 | from lib.db import create_user, find_user
from lib.stringtools import get_random_string
from .event import post_event
def create_user(name: str, password: str, email: str):
print(f"DB: creating user database entry for {name} ({email}).")
new_user = User(name, password, email)
users.append(new_user)
return new_user
def post_event(event_type: str, data):
if not event_type in subscribers:
return
for fn in subscribers[event_type]:
fn(data)
def register_new_user(name: str, password: str, email: str):
# create an entry in the database
user = create_user(name, password, email)
# post an event
post_event("user_registered", user) | null |
898 | from lib.db import create_user, find_user
from lib.stringtools import get_random_string
from .event import post_event
def find_user(email: str):
for user in users:
if user.email == email:
return user
raise Exception(f"User with email address {email} not found.")
def get_random_string(length):
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for i in range(length))
def post_event(event_type: str, data):
if not event_type in subscribers:
return
for fn in subscribers[event_type]:
fn(data)
def password_forgotten(email: str):
# retrieve the user
user = find_user(email)
# generate a password reset code
user.reset_code = get_random_string(16)
# post an event
post_event("user_password_forgotten", user) | null |
899 | from lib.db import create_user, find_user
from lib.stringtools import get_random_string
from .event import post_event
def find_user(email: str):
for user in users:
if user.email == email:
return user
raise Exception(f"User with email address {email} not found.")
def reset_password(code: str, email: str, password: str):
# retrieve the user
user = find_user(email)
# reset the password
user.reset_password(code, password) | null |
900 | from lib.email import send_email
from .event import subscribe
def handle_user_registered_event(user):
# send a welcome email
send_email(user.name, user.email,
"Welcome",
f"Thanks for registering, {user.name}!\nRegards, The DevNotes team")
def handle_user_password_forgotten_event(user):
# send a password reset message
send_email(user.name, user.email, "Reset your password",
f"To reset your password, use this very secure code: {user.reset_code}.\nRegards, The DevNotes team")
def handle_user_upgrade_plan_event(user):
# send a thank you email
send_email(user.name, user.email,
"Thank you",
f"Thanks for upgrading, {user.name}! You're gonna love it. \nRegards, The DevNotes team")
def subscribe(event_type: str, fn):
subscribers[event_type].append(fn)
def setup_email_event_handlers():
subscribe("user_registered", handle_user_registered_event)
subscribe("user_password_forgotten", handle_user_password_forgotten_event)
subscribe("user_upgrade_plan", handle_user_upgrade_plan_event) | null |
901 | from dataclasses import dataclass, field
import string
import random
from typing import List, Callable
def generate_id(length: int = 8) -> str:
# helper function for generating an id
return ''.join(random.choices(string.ascii_uppercase, k=length)) | null |
Subsets and Splits