id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
1,112
import json import requests import openai import tiktoken import os import time from functools import wraps import threading def timeout_decorator(timeout): class TimeoutException(Exception): pass def decorator(func): @wraps(func) def wrapper(*args, **kwargs): result = [TimeoutException('Function call timed out')] # Nonlocal mutable variable def target(): try: result[0] = func(*args, **kwargs) except Exception as e: result[0] = e thread = threading.Thread(target=target) thread.start() thread.join(timeout) if thread.is_alive(): print(f"Function {func.__name__} timed out, retrying...") return wrapper(*args, **kwargs) if isinstance(result[0], Exception): raise result[0] return result[0] return wrapper return decorator
null
1,113
import json import requests import openai import tiktoken import os import time from functools import wraps import threading def send_chat_request(request): endpoint = 'http://10.15.82.10:8006/v1/chat/completions' model = 'gpt-3.5-turbo' # gpt4 gpt4-32k和gpt-3.5-turbo headers = { 'Content-Type': 'application/json', } temperature = 0.7 top_p = 0.95 frequency_penalty = 0 presence_penalty = 0 max_tokens = 8000 stream = False stop = None messages = [{"role": "user", "content": request}] data = { 'model': model, 'messages': messages, 'temperature': temperature, 'top_p': top_p, 'frequency_penalty': frequency_penalty, 'presence_penalty': presence_penalty, 'max_tokens': max_tokens, 'stream': stream, 'stop': stop, } response = requests.post(endpoint, headers=headers, data=json.dumps(data)) if response.status_code == 200: data = json.loads(response.text) data_res = data['choices'][0]['message'] return data_res else: raise Exception(f"Request failed with status code {response.status_code}: {response.text}")
null
1,114
import numpy as np import torch import torch.nn as nn from torch.autograd import Variable import torch.optim import torch.optim.lr_scheduler as lr_scheduler import time import os import glob import configs import backbone from data.datamgr import SimpleDataManager, SetDataManager from methods.baselinetrain import BaselineTrain from methods.baselinefinetune import BaselineFinetune from methods.protonet import ProtoNet from methods.matchingnet import MatchingNet from methods.relationnet import RelationNet from methods.maml import MAML from io_utils import model_dict, parse_args, get_resume_file def train(base_loader, val_loader, model, optimization, start_epoch, stop_epoch, params): if optimization == 'Adam': optimizer = torch.optim.Adam(model.parameters()) else: raise ValueError('Unknown optimization, please define by yourself') max_acc = 0 for epoch in range(start_epoch,stop_epoch): model.train() model.train_loop(epoch, base_loader, optimizer ) #model are called by reference, no need to return model.eval() if not os.path.isdir(params.checkpoint_dir): os.makedirs(params.checkpoint_dir) acc = model.test_loop( val_loader) if acc > max_acc : #for baseline and baseline++, we don't use validation in default and we let acc = -1, but we allow options to validate with DB index print("best model! save...") max_acc = acc outfile = os.path.join(params.checkpoint_dir, 'best_model.tar') torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile) if (epoch % params.save_freq==0) or (epoch==stop_epoch-1): outfile = os.path.join(params.checkpoint_dir, '{:d}.tar'.format(epoch)) torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile) return model
null
1,115
import torch import numpy as np def one_hot(y, num_class): return torch.zeros((len(y), num_class)).scatter_(1, y.unsqueeze(1), 1)
null
1,116
import torch import numpy as np def DBindex(cl_data_file): class_list = cl_data_file.keys() cl_num= len(class_list) cl_means = [] stds = [] DBs = [] for cl in class_list: cl_means.append( np.mean(cl_data_file[cl], axis = 0) ) stds.append( np.sqrt(np.mean( np.sum(np.square( cl_data_file[cl] - cl_means[-1]), axis = 1)))) mu_i = np.tile( np.expand_dims( np.array(cl_means), axis = 0), (len(class_list),1,1) ) mu_j = np.transpose(mu_i,(1,0,2)) mdists = np.sqrt(np.sum(np.square(mu_i - mu_j), axis = 2)) for i in range(cl_num): DBs.append( np.max([ (stds[i]+ stds[j])/mdists[i,j] for j in range(cl_num) if j != i ]) ) return np.mean(DBs)
null
1,117
import torch import numpy as np def sparsity(cl_data_file): class_list = cl_data_file.keys() cl_sparsity = [] for cl in class_list: cl_sparsity.append(np.mean([np.sum(x!=0) for x in cl_data_file[cl] ]) ) return np.mean(cl_sparsity)
null
1,118
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm def init_layer(L): # Initialization using fan-in if isinstance(L, nn.Conv2d): n = L.kernel_size[0]*L.kernel_size[1]*L.out_channels L.weight.data.normal_(0,math.sqrt(2.0/float(n))) elif isinstance(L, nn.BatchNorm2d): L.weight.data.fill_(1) L.bias.data.fill_(0)
null
1,119
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class ConvNet(nn.Module): def __init__(self, depth, flatten = True): def forward(self,x): def Conv4(): return ConvNet(4)
null
1,120
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class ConvNet(nn.Module): def __init__(self, depth, flatten = True): def forward(self,x): def Conv6(): return ConvNet(6)
null
1,121
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class ConvNetNopool(nn.Module): #Relation net use a 4 layer conv with pooling in only first two layers, else no pooling def __init__(self, depth): super(ConvNetNopool,self).__init__() trunk = [] for i in range(depth): indim = 3 if i == 0 else 64 outdim = 64 B = ConvBlock(indim, outdim, pool = ( i in [0,1] ), padding = 0 if i in[0,1] else 1 ) #only first two layer has pooling and no padding trunk.append(B) self.trunk = nn.Sequential(*trunk) self.final_feat_dim = [64,19,19] def forward(self,x): out = self.trunk(x) return out def Conv4NP(): return ConvNetNopool(4)
null
1,122
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class ConvNetNopool(nn.Module): #Relation net use a 4 layer conv with pooling in only first two layers, else no pooling def __init__(self, depth): super(ConvNetNopool,self).__init__() trunk = [] for i in range(depth): indim = 3 if i == 0 else 64 outdim = 64 B = ConvBlock(indim, outdim, pool = ( i in [0,1] ), padding = 0 if i in[0,1] else 1 ) #only first two layer has pooling and no padding trunk.append(B) self.trunk = nn.Sequential(*trunk) self.final_feat_dim = [64,19,19] def forward(self,x): out = self.trunk(x) return out def Conv6NP(): return ConvNetNopool(6)
null
1,123
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class ConvNetS(nn.Module): def __init__(self, depth, flatten = True): def forward(self,x): def Conv4S(): return ConvNetS(4)
null
1,124
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class ConvNetSNopool(nn.Module): def __init__(self, depth): def forward(self,x): def Conv4SNP(): return ConvNetSNopool(4)
null
1,125
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class SimpleBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, half_res): super(SimpleBlock, self).__init__() self.indim = indim self.outdim = outdim if self.maml: self.C1 = Conv2d_fw(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = BatchNorm2d_fw(outdim) self.C2 = Conv2d_fw(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = BatchNorm2d_fw(outdim) else: self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = nn.BatchNorm2d(outdim) self.C2 = nn.Conv2d(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = nn.BatchNorm2d(outdim) self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2] self.half_res = half_res # if the input number of channels is not equal to the output, then need a 1x1 convolution if indim!=outdim: if self.maml: self.shortcut = Conv2d_fw(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = BatchNorm2d_fw(outdim) else: self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = nn.BatchNorm2d(outdim) self.parametrized_layers.append(self.shortcut) self.parametrized_layers.append(self.BNshortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): out = self.C1(x) out = self.BN1(out) out = self.relu1(out) out = self.C2(out) out = self.BN2(out) short_out = x if self.shortcut_type == 'identity' else self.BNshortcut(self.shortcut(x)) out = out + short_out out = self.relu2(out) return out class ResNet(nn.Module): maml = False #Default def __init__(self,block,list_of_num_layers, list_of_out_dims, flatten = True): # list_of_num_layers specifies number of layers in each stage # list_of_out_dims specifies number of output channel for each stage super(ResNet,self).__init__() assert len(list_of_num_layers)==4, 'Can have only four stages' if self.maml: conv1 = Conv2d_fw(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = BatchNorm2d_fw(64) else: conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = nn.BatchNorm2d(64) relu = nn.ReLU() pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) init_layer(conv1) init_layer(bn1) trunk = [conv1, bn1, relu, pool1] indim = 64 for i in range(4): for j in range(list_of_num_layers[i]): half_res = (i>=1) and (j==0) B = block(indim, list_of_out_dims[i], half_res) trunk.append(B) indim = list_of_out_dims[i] if flatten: avgpool = nn.AvgPool2d(7) trunk.append(avgpool) trunk.append(Flatten()) self.final_feat_dim = indim else: self.final_feat_dim = [ indim, 7, 7] self.trunk = nn.Sequential(*trunk) def forward(self,x): out = self.trunk(x) return out def ResNet10( flatten = True): return ResNet(SimpleBlock, [1,1,1,1],[64,128,256,512], flatten)
null
1,126
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class SimpleBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, half_res): super(SimpleBlock, self).__init__() self.indim = indim self.outdim = outdim if self.maml: self.C1 = Conv2d_fw(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = BatchNorm2d_fw(outdim) self.C2 = Conv2d_fw(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = BatchNorm2d_fw(outdim) else: self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = nn.BatchNorm2d(outdim) self.C2 = nn.Conv2d(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = nn.BatchNorm2d(outdim) self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2] self.half_res = half_res # if the input number of channels is not equal to the output, then need a 1x1 convolution if indim!=outdim: if self.maml: self.shortcut = Conv2d_fw(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = BatchNorm2d_fw(outdim) else: self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = nn.BatchNorm2d(outdim) self.parametrized_layers.append(self.shortcut) self.parametrized_layers.append(self.BNshortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): out = self.C1(x) out = self.BN1(out) out = self.relu1(out) out = self.C2(out) out = self.BN2(out) short_out = x if self.shortcut_type == 'identity' else self.BNshortcut(self.shortcut(x)) out = out + short_out out = self.relu2(out) return out class ResNet(nn.Module): maml = False #Default def __init__(self,block,list_of_num_layers, list_of_out_dims, flatten = True): # list_of_num_layers specifies number of layers in each stage # list_of_out_dims specifies number of output channel for each stage super(ResNet,self).__init__() assert len(list_of_num_layers)==4, 'Can have only four stages' if self.maml: conv1 = Conv2d_fw(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = BatchNorm2d_fw(64) else: conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = nn.BatchNorm2d(64) relu = nn.ReLU() pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) init_layer(conv1) init_layer(bn1) trunk = [conv1, bn1, relu, pool1] indim = 64 for i in range(4): for j in range(list_of_num_layers[i]): half_res = (i>=1) and (j==0) B = block(indim, list_of_out_dims[i], half_res) trunk.append(B) indim = list_of_out_dims[i] if flatten: avgpool = nn.AvgPool2d(7) trunk.append(avgpool) trunk.append(Flatten()) self.final_feat_dim = indim else: self.final_feat_dim = [ indim, 7, 7] self.trunk = nn.Sequential(*trunk) def forward(self,x): out = self.trunk(x) return out def ResNet18( flatten = True): return ResNet(SimpleBlock, [2,2,2,2],[64,128,256,512], flatten)
null
1,127
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class SimpleBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, half_res): super(SimpleBlock, self).__init__() self.indim = indim self.outdim = outdim if self.maml: self.C1 = Conv2d_fw(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = BatchNorm2d_fw(outdim) self.C2 = Conv2d_fw(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = BatchNorm2d_fw(outdim) else: self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = nn.BatchNorm2d(outdim) self.C2 = nn.Conv2d(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = nn.BatchNorm2d(outdim) self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2] self.half_res = half_res # if the input number of channels is not equal to the output, then need a 1x1 convolution if indim!=outdim: if self.maml: self.shortcut = Conv2d_fw(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = BatchNorm2d_fw(outdim) else: self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = nn.BatchNorm2d(outdim) self.parametrized_layers.append(self.shortcut) self.parametrized_layers.append(self.BNshortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): out = self.C1(x) out = self.BN1(out) out = self.relu1(out) out = self.C2(out) out = self.BN2(out) short_out = x if self.shortcut_type == 'identity' else self.BNshortcut(self.shortcut(x)) out = out + short_out out = self.relu2(out) return out class ResNet(nn.Module): maml = False #Default def __init__(self,block,list_of_num_layers, list_of_out_dims, flatten = True): # list_of_num_layers specifies number of layers in each stage # list_of_out_dims specifies number of output channel for each stage super(ResNet,self).__init__() assert len(list_of_num_layers)==4, 'Can have only four stages' if self.maml: conv1 = Conv2d_fw(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = BatchNorm2d_fw(64) else: conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = nn.BatchNorm2d(64) relu = nn.ReLU() pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) init_layer(conv1) init_layer(bn1) trunk = [conv1, bn1, relu, pool1] indim = 64 for i in range(4): for j in range(list_of_num_layers[i]): half_res = (i>=1) and (j==0) B = block(indim, list_of_out_dims[i], half_res) trunk.append(B) indim = list_of_out_dims[i] if flatten: avgpool = nn.AvgPool2d(7) trunk.append(avgpool) trunk.append(Flatten()) self.final_feat_dim = indim else: self.final_feat_dim = [ indim, 7, 7] self.trunk = nn.Sequential(*trunk) def forward(self,x): out = self.trunk(x) return out def ResNet34( flatten = True): return ResNet(SimpleBlock, [3,4,6,3],[64,128,256,512], flatten)
null
1,128
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class BottleneckBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, half_res): super(BottleneckBlock, self).__init__() bottleneckdim = int(outdim/4) self.indim = indim self.outdim = outdim if self.maml: self.C1 = Conv2d_fw(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = BatchNorm2d_fw(bottleneckdim) self.C2 = Conv2d_fw(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1) self.BN2 = BatchNorm2d_fw(bottleneckdim) self.C3 = Conv2d_fw(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = BatchNorm2d_fw(outdim) else: self.C1 = nn.Conv2d(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = nn.BatchNorm2d(bottleneckdim) self.C2 = nn.Conv2d(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1) self.BN2 = nn.BatchNorm2d(bottleneckdim) self.C3 = nn.Conv2d(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = nn.BatchNorm2d(outdim) self.relu = nn.ReLU() self.parametrized_layers = [self.C1, self.BN1, self.C2, self.BN2, self.C3, self.BN3] self.half_res = half_res # if the input number of channels is not equal to the output, then need a 1x1 convolution if indim!=outdim: if self.maml: self.shortcut = Conv2d_fw(indim, outdim, 1, stride=2 if half_res else 1, bias=False) else: self.shortcut = nn.Conv2d(indim, outdim, 1, stride=2 if half_res else 1, bias=False) self.parametrized_layers.append(self.shortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): short_out = x if self.shortcut_type == 'identity' else self.shortcut(x) out = self.C1(x) out = self.BN1(out) out = self.relu(out) out = self.C2(out) out = self.BN2(out) out = self.relu(out) out = self.C3(out) out = self.BN3(out) out = out + short_out out = self.relu(out) return out class ResNet(nn.Module): maml = False #Default def __init__(self,block,list_of_num_layers, list_of_out_dims, flatten = True): # list_of_num_layers specifies number of layers in each stage # list_of_out_dims specifies number of output channel for each stage super(ResNet,self).__init__() assert len(list_of_num_layers)==4, 'Can have only four stages' if self.maml: conv1 = Conv2d_fw(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = BatchNorm2d_fw(64) else: conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = nn.BatchNorm2d(64) relu = nn.ReLU() pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) init_layer(conv1) init_layer(bn1) trunk = [conv1, bn1, relu, pool1] indim = 64 for i in range(4): for j in range(list_of_num_layers[i]): half_res = (i>=1) and (j==0) B = block(indim, list_of_out_dims[i], half_res) trunk.append(B) indim = list_of_out_dims[i] if flatten: avgpool = nn.AvgPool2d(7) trunk.append(avgpool) trunk.append(Flatten()) self.final_feat_dim = indim else: self.final_feat_dim = [ indim, 7, 7] self.trunk = nn.Sequential(*trunk) def forward(self,x): out = self.trunk(x) return out def ResNet50( flatten = True): return ResNet(BottleneckBlock, [3,4,6,3], [256,512,1024,2048], flatten)
null
1,129
import torch from torch.autograd import Variable import torch.nn as nn import math import numpy as np import torch.nn.functional as F from torch.nn.utils.weight_norm import WeightNorm class BottleneckBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, half_res): super(BottleneckBlock, self).__init__() bottleneckdim = int(outdim/4) self.indim = indim self.outdim = outdim if self.maml: self.C1 = Conv2d_fw(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = BatchNorm2d_fw(bottleneckdim) self.C2 = Conv2d_fw(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1) self.BN2 = BatchNorm2d_fw(bottleneckdim) self.C3 = Conv2d_fw(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = BatchNorm2d_fw(outdim) else: self.C1 = nn.Conv2d(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = nn.BatchNorm2d(bottleneckdim) self.C2 = nn.Conv2d(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1) self.BN2 = nn.BatchNorm2d(bottleneckdim) self.C3 = nn.Conv2d(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = nn.BatchNorm2d(outdim) self.relu = nn.ReLU() self.parametrized_layers = [self.C1, self.BN1, self.C2, self.BN2, self.C3, self.BN3] self.half_res = half_res # if the input number of channels is not equal to the output, then need a 1x1 convolution if indim!=outdim: if self.maml: self.shortcut = Conv2d_fw(indim, outdim, 1, stride=2 if half_res else 1, bias=False) else: self.shortcut = nn.Conv2d(indim, outdim, 1, stride=2 if half_res else 1, bias=False) self.parametrized_layers.append(self.shortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): short_out = x if self.shortcut_type == 'identity' else self.shortcut(x) out = self.C1(x) out = self.BN1(out) out = self.relu(out) out = self.C2(out) out = self.BN2(out) out = self.relu(out) out = self.C3(out) out = self.BN3(out) out = out + short_out out = self.relu(out) return out class ResNet(nn.Module): maml = False #Default def __init__(self,block,list_of_num_layers, list_of_out_dims, flatten = True): # list_of_num_layers specifies number of layers in each stage # list_of_out_dims specifies number of output channel for each stage super(ResNet,self).__init__() assert len(list_of_num_layers)==4, 'Can have only four stages' if self.maml: conv1 = Conv2d_fw(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = BatchNorm2d_fw(64) else: conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = nn.BatchNorm2d(64) relu = nn.ReLU() pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) init_layer(conv1) init_layer(bn1) trunk = [conv1, bn1, relu, pool1] indim = 64 for i in range(4): for j in range(list_of_num_layers[i]): half_res = (i>=1) and (j==0) B = block(indim, list_of_out_dims[i], half_res) trunk.append(B) indim = list_of_out_dims[i] if flatten: avgpool = nn.AvgPool2d(7) trunk.append(avgpool) trunk.append(Flatten()) self.final_feat_dim = indim else: self.final_feat_dim = [ indim, 7, 7] self.trunk = nn.Sequential(*trunk) def forward(self,x): out = self.trunk(x) return out def ResNet101( flatten = True): return ResNet(BottleneckBlock, [3,4,23,3],[256,512,1024,2048], flatten)
null
1,130
import numpy as np import os import glob import argparse import backbone def parse_args(script): parser = argparse.ArgumentParser(description= 'few-shot script %s' %(script)) parser.add_argument('--dataset' , default='CUB', help='CUB/miniImagenet/cross/omniglot/cross_char') parser.add_argument('--model' , default='Conv4', help='model: Conv{4|6} / ResNet{10|18|34|50|101}') # 50 and 101 are not used in the paper parser.add_argument('--method' , default='baseline', help='baseline/baseline++/protonet/matchingnet/relationnet{_softmax}/maml{_approx}') #relationnet_softmax replace L2 norm with softmax to expedite training, maml_approx use first-order approximation in the gradient for efficiency parser.add_argument('--train_n_way' , default=5, type=int, help='class num to classify for training') #baseline and baseline++ would ignore this parameter parser.add_argument('--test_n_way' , default=5, type=int, help='class num to classify for testing (validation) ') #baseline and baseline++ only use this parameter in finetuning parser.add_argument('--n_shot' , default=5, type=int, help='number of labeled data in each class, same as n_support') #baseline and baseline++ only use this parameter in finetuning parser.add_argument('--train_aug' , action='store_true', help='perform data augmentation or not during training ') #still required for save_features.py and test.py to find the model path correctly if script == 'train': parser.add_argument('--num_classes' , default=200, type=int, help='total number of classes in softmax, only used in baseline') #make it larger than the maximum label value in base class parser.add_argument('--save_freq' , default=50, type=int, help='Save frequency') parser.add_argument('--start_epoch' , default=0, type=int,help ='Starting epoch') parser.add_argument('--stop_epoch' , default=-1, type=int, help ='Stopping epoch') #for meta-learning methods, each epoch contains 100 episodes. The default epoch number is dataset dependent. See train.py parser.add_argument('--resume' , action='store_true', help='continue from previous trained model with largest epoch') parser.add_argument('--warmup' , action='store_true', help='continue from baseline, neglected if resume is true') #never used in the paper elif script == 'save_features': parser.add_argument('--split' , default='novel', help='base/val/novel') #default novel, but you can also test base/val class accuracy if you want parser.add_argument('--save_iter', default=-1, type=int,help ='save feature from the model trained in x epoch, use the best model if x is -1') elif script == 'test': parser.add_argument('--split' , default='novel', help='base/val/novel') #default novel, but you can also test base/val class accuracy if you want parser.add_argument('--save_iter', default=-1, type=int,help ='saved feature from the model trained in x epoch, use the best model if x is -1') parser.add_argument('--adaptation' , action='store_true', help='further adaptation in test time or not') else: raise ValueError('Unknown script') return parser.parse_args()
null
1,131
import numpy as np import os import glob import argparse import backbone def get_assigned_file(checkpoint_dir,num): assign_file = os.path.join(checkpoint_dir, '{:d}.tar'.format(num)) return assign_file
null
1,132
import numpy as np import os import glob import argparse import backbone def get_resume_file(checkpoint_dir): filelist = glob.glob(os.path.join(checkpoint_dir, '*.tar')) if len(filelist) == 0: return None filelist = [ x for x in filelist if os.path.basename(x) != 'best_model.tar' ] epochs = np.array([int(os.path.splitext(os.path.basename(x))[0]) for x in filelist]) max_epoch = np.max(epochs) resume_file = os.path.join(checkpoint_dir, '{:d}.tar'.format(max_epoch)) return resume_file def get_best_file(checkpoint_dir): best_file = os.path.join(checkpoint_dir, 'best_model.tar') if os.path.isfile(best_file): return best_file else: return get_resume_file(checkpoint_dir)
null
1,133
import numpy as np import torch from torch.autograd import Variable import os import glob import h5py import configs import backbone from data.datamgr import SimpleDataManager from methods.baselinetrain import BaselineTrain from methods.baselinefinetune import BaselineFinetune from methods.protonet import ProtoNet from methods.matchingnet import MatchingNet from methods.relationnet import RelationNet from methods.maml import MAML from io_utils import model_dict, parse_args, get_resume_file, get_best_file, get_assigned_file def save_features(model, data_loader, outfile ): f = h5py.File(outfile, 'w') max_count = len(data_loader)*data_loader.batch_size all_labels = f.create_dataset('all_labels',(max_count,), dtype='i') all_feats=None count=0 for i, (x,y) in enumerate(data_loader): if i%10 == 0: print('{:d}/{:d}'.format(i, len(data_loader))) x = x.cuda() x_var = Variable(x) feats = model(x_var) if all_feats is None: all_feats = f.create_dataset('all_feats', [max_count] + list( feats.size()[1:]) , dtype='f') all_feats[count:count+feats.size(0)] = feats.data.cpu().numpy() all_labels[count:count+feats.size(0)] = y.cpu().numpy() count = count + feats.size(0) count_var = f.create_dataset('count', (1,), dtype='i') count_var[0] = count f.close()
null
1,134
import torch import numpy as np import h5py class SimpleHDF5Dataset: def __init__(self, file_handle = None): if file_handle == None: self.f = '' self.all_feats_dset = [] self.all_labels = [] self.total = 0 else: self.f = file_handle self.all_feats_dset = self.f['all_feats'][...] self.all_labels = self.f['all_labels'][...] self.total = self.f['count'][0] # print('here') def __getitem__(self, i): return torch.Tensor(self.all_feats_dset[i,:]), int(self.all_labels[i]) def __len__(self): return self.total def init_loader(filename): with h5py.File(filename, 'r') as f: fileset = SimpleHDF5Dataset(f) #labels = [ l for l in fileset.all_labels if l != 0] feats = fileset.all_feats_dset labels = fileset.all_labels while np.sum(feats[-1]) == 0: feats = np.delete(feats,-1,axis = 0) labels = np.delete(labels,-1,axis = 0) class_list = np.unique(np.array(labels)).tolist() inds = range(len(labels)) cl_data_file = {} for cl in class_list: cl_data_file[cl] = [] for ind in inds: cl_data_file[labels[ind]].append( feats[ind]) return cl_data_file
null
1,135
import backbone import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import torch.nn.functional as F from methods.meta_template import MetaTemplate def euclidean_dist( x, y): # x: N x D # y: M x D n = x.size(0) m = y.size(0) d = x.size(1) assert d == y.size(1) x = x.unsqueeze(1).expand(n, m, d) y = y.unsqueeze(0).expand(n, m, d) return torch.pow(x - y, 2).sum(2)
null
1,136
import backbone import utils import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import torch.nn.functional as F def DBindex(cl_data_file): #For the definition Davis Bouldin index (DBindex), see https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index #DB index present the intra-class variation of the data #As baseline/baseline++ do not train few-shot classifier in training, this is an alternative metric to evaluate the validation set #Emperically, this only works for CUB dataset but not for miniImagenet dataset class_list = cl_data_file.keys() cl_num= len(class_list) cl_means = [] stds = [] DBs = [] for cl in class_list: cl_means.append( np.mean(cl_data_file[cl], axis = 0) ) stds.append( np.sqrt(np.mean( np.sum(np.square( cl_data_file[cl] - cl_means[-1]), axis = 1)))) mu_i = np.tile( np.expand_dims( np.array(cl_means), axis = 0), (len(class_list),1,1) ) mu_j = np.transpose(mu_i,(1,0,2)) mdists = np.sqrt(np.sum(np.square(mu_i - mu_j), axis = 2)) for i in range(cl_num): DBs.append( np.max([ (stds[i]+ stds[j])/mdists[i,j] for j in range(cl_num) if j != i ]) ) return np.mean(DBs)
null
1,137
import logging import os import time import numpy as np import numpy.ma as ma from tqdm import tqdm import torch import torch.nn as nn from torch.nn import functional as F from utils.utils import AverageMeter from utils.utils import get_confusion_matrix from utils.utils import adjust_learning_rate import utils.distributed as dist def reduce_tensor(inp): """ Reduce the loss from all processes so that process with rank 0 has the averaged results. """ world_size = dist.get_world_size() if world_size < 2: return inp with torch.no_grad(): reduced_inp = inp torch.distributed.reduce(reduced_inp, dst=0) return reduced_inp / world_size class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.initialized = False self.val = None self.avg = None self.sum = None self.count = None def initialize(self, val, weight): self.val = val self.avg = val self.sum = val * weight self.count = weight self.initialized = True def update(self, val, weight=1): if not self.initialized: self.initialize(val, weight) else: self.add(val, weight) def add(self, val, weight): self.val = val self.sum += val * weight self.count += weight self.avg = self.sum / self.count def value(self): return self.val def average(self): return self.avg def adjust_learning_rate(optimizer, base_lr, max_iters, cur_iters, power=0.9, nbb_mult=10): lr = base_lr*((1-float(cur_iters)/max_iters)**(power)) optimizer.param_groups[0]['lr'] = lr if len(optimizer.param_groups) == 2: optimizer.param_groups[1]['lr'] = lr * nbb_mult return lr def train(config, epoch, num_epoch, epoch_iters, base_lr, num_iters, trainloader, optimizer, model, writer_dict): # Training model.train() batch_time = AverageMeter() ave_loss = AverageMeter() tic = time.time() cur_iters = epoch*epoch_iters writer = writer_dict['writer'] global_steps = writer_dict['train_global_steps'] for i_iter, batch in enumerate(trainloader, 0): images, labels, _, _ = batch images = images.cuda() labels = labels.long().cuda() losses, _ = model(images, labels) loss = losses.mean() if dist.is_distributed(): reduced_loss = reduce_tensor(loss) else: reduced_loss = loss model.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - tic) tic = time.time() # update average loss ave_loss.update(reduced_loss.item()) lr = adjust_learning_rate(optimizer, base_lr, num_iters, i_iter+cur_iters) if i_iter % config.PRINT_FREQ == 0 and dist.get_rank() == 0: msg = 'Epoch: [{}/{}] Iter:[{}/{}], Time: {:.2f}, ' \ 'lr: {}, Loss: {:.6f}' .format( epoch, num_epoch, i_iter, epoch_iters, batch_time.average(), [x['lr'] for x in optimizer.param_groups], ave_loss.average()) logging.info(msg) writer.add_scalar('train_loss', ave_loss.average(), global_steps) writer_dict['train_global_steps'] = global_steps + 1
null
1,138
import logging import os import time import numpy as np import numpy.ma as ma from tqdm import tqdm import torch import torch.nn as nn from torch.nn import functional as F from utils.utils import AverageMeter from utils.utils import get_confusion_matrix from utils.utils import adjust_learning_rate import utils.distributed as dist def reduce_tensor(inp): class AverageMeter(object): def __init__(self): def initialize(self, val, weight): def update(self, val, weight=1): def add(self, val, weight): def value(self): def average(self): def get_confusion_matrix(label, pred, size, num_class, ignore=-1): def validate(config, testloader, model, writer_dict): model.eval() ave_loss = AverageMeter() nums = config.MODEL.NUM_OUTPUTS confusion_matrix = np.zeros( (config.DATASET.NUM_CLASSES, config.DATASET.NUM_CLASSES, nums)) with torch.no_grad(): for idx, batch in enumerate(testloader): image, label, _, _ = batch size = label.size() image = image.cuda() label = label.long().cuda() losses, pred = model(image, label) if not isinstance(pred, (list, tuple)): pred = [pred] for i, x in enumerate(pred): x = F.interpolate( input=x, size=size[-2:], mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS ) confusion_matrix[..., i] += get_confusion_matrix( label, x, size, config.DATASET.NUM_CLASSES, config.TRAIN.IGNORE_LABEL ) if idx % 10 == 0: print(idx) loss = losses.mean() if dist.is_distributed(): reduced_loss = reduce_tensor(loss) else: reduced_loss = loss ave_loss.update(reduced_loss.item()) if dist.is_distributed(): confusion_matrix = torch.from_numpy(confusion_matrix).cuda() reduced_confusion_matrix = reduce_tensor(confusion_matrix) confusion_matrix = reduced_confusion_matrix.cpu().numpy() for i in range(nums): pos = confusion_matrix[..., i].sum(1) res = confusion_matrix[..., i].sum(0) tp = np.diag(confusion_matrix[..., i]) IoU_array = (tp / np.maximum(1.0, pos + res - tp)) mean_IoU = IoU_array.mean() if dist.get_rank() <= 0: logging.info('{} {} {}'.format(i, IoU_array, mean_IoU)) writer = writer_dict['writer'] global_steps = writer_dict['valid_global_steps'] writer.add_scalar('valid_loss', ave_loss.average(), global_steps) writer.add_scalar('valid_mIoU', mean_IoU, global_steps) writer_dict['valid_global_steps'] = global_steps + 1 return ave_loss.average(), mean_IoU, IoU_array
null
1,139
import logging import os import time import numpy as np import numpy.ma as ma from tqdm import tqdm import torch import torch.nn as nn from torch.nn import functional as F from utils.utils import AverageMeter from utils.utils import get_confusion_matrix from utils.utils import adjust_learning_rate import utils.distributed as dist def get_confusion_matrix(label, pred, size, num_class, ignore=-1): """ Calcute the confusion matrix by given label and pred """ output = pred.cpu().numpy().transpose(0, 2, 3, 1) seg_pred = np.asarray(np.argmax(output, axis=3), dtype=np.uint8) seg_gt = np.asarray( label.cpu().numpy()[:, :size[-2], :size[-1]], dtype=np.int) ignore_index = seg_gt != ignore seg_gt = seg_gt[ignore_index] seg_pred = seg_pred[ignore_index] index = (seg_gt * num_class + seg_pred).astype('int32') label_count = np.bincount(index) confusion_matrix = np.zeros((num_class, num_class)) for i_label in range(num_class): for i_pred in range(num_class): cur_index = i_label * num_class + i_pred if cur_index < len(label_count): confusion_matrix[i_label, i_pred] = label_count[cur_index] return confusion_matrix def testval(config, test_dataset, testloader, model, sv_dir='', sv_pred=False): model.eval() confusion_matrix = np.zeros( (config.DATASET.NUM_CLASSES, config.DATASET.NUM_CLASSES)) with torch.no_grad(): for index, batch in enumerate(tqdm(testloader)): image, label, _, name, *border_padding = batch size = label.size() pred = test_dataset.multi_scale_inference( config, model, image, scales=config.TEST.SCALE_LIST, flip=config.TEST.FLIP_TEST) if len(border_padding) > 0: border_padding = border_padding[0] pred = pred[:, :, 0:pred.size(2) - border_padding[0], 0:pred.size(3) - border_padding[1]] if pred.size()[-2] != size[-2] or pred.size()[-1] != size[-1]: pred = F.interpolate( pred, size[-2:], mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS ) confusion_matrix += get_confusion_matrix( label, pred, size, config.DATASET.NUM_CLASSES, config.TRAIN.IGNORE_LABEL) if sv_pred: sv_path = os.path.join(sv_dir, 'test_results') if not os.path.exists(sv_path): os.mkdir(sv_path) test_dataset.save_pred(pred, sv_path, name) if index % 100 == 0: logging.info('processing: %d images' % index) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) IoU_array = (tp / np.maximum(1.0, pos + res - tp)) mean_IoU = IoU_array.mean() logging.info('mIoU: %.4f' % (mean_IoU)) pos = confusion_matrix.sum(1) res = confusion_matrix.sum(0) tp = np.diag(confusion_matrix) pixel_acc = tp.sum()/pos.sum() mean_acc = (tp/np.maximum(1.0, pos)).mean() IoU_array = (tp / np.maximum(1.0, pos + res - tp)) mean_IoU = IoU_array.mean() return mean_IoU, IoU_array, pixel_acc, mean_acc
null
1,140
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from yacs.config import CfgNode as CN def update_config(cfg, args): cfg.defrost() cfg.merge_from_file(args.cfg) cfg.merge_from_list(args.opts) cfg.freeze()
null
1,141
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import functools import numpy as np import torch import torch.nn as nn import torch._utils import torch.nn.functional as F from .bn_helper import BatchNorm2d, BatchNorm2d_class, relu_inplace The provided code snippet includes necessary dependencies for implementing the `conv3x3` function. Write a Python function `def conv3x3(in_planes, out_planes, stride=1)` to solve the following problem: 3x3 convolution with padding Here is the function: def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
3x3 convolution with padding
1,142
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import functools import numpy as np import torch import torch.nn as nn import torch._utils import torch.nn.functional as F from .bn_helper import BatchNorm2d, BatchNorm2d_class, relu_inplace class HighResolutionNet(nn.Module): def __init__(self, config, **kwargs): global ALIGN_CORNERS extra = config.MODEL.EXTRA super(HighResolutionNet, self).__init__() ALIGN_CORNERS = config.MODEL.ALIGN_CORNERS # stem net self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=relu_inplace) self.stage1_cfg = extra['STAGE1'] num_channels = self.stage1_cfg['NUM_CHANNELS'][0] block = blocks_dict[self.stage1_cfg['BLOCK']] num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) stage1_out_channel = block.expansion*num_channels self.stage2_cfg = extra['STAGE2'] num_channels = self.stage2_cfg['NUM_CHANNELS'] block = blocks_dict[self.stage2_cfg['BLOCK']] num_channels = [ num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition1 = self._make_transition_layer( [stage1_out_channel], num_channels) self.stage2, pre_stage_channels = self._make_stage( self.stage2_cfg, num_channels) self.stage3_cfg = extra['STAGE3'] num_channels = self.stage3_cfg['NUM_CHANNELS'] block = blocks_dict[self.stage3_cfg['BLOCK']] num_channels = [ num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition2 = self._make_transition_layer( pre_stage_channels, num_channels) self.stage3, pre_stage_channels = self._make_stage( self.stage3_cfg, num_channels) self.stage4_cfg = extra['STAGE4'] num_channels = self.stage4_cfg['NUM_CHANNELS'] block = blocks_dict[self.stage4_cfg['BLOCK']] num_channels = [ num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition3 = self._make_transition_layer( pre_stage_channels, num_channels) self.stage4, pre_stage_channels = self._make_stage( self.stage4_cfg, num_channels, multi_scale_output=True) last_inp_channels = np.int(np.sum(pre_stage_channels)) self.last_layer = nn.Sequential( nn.Conv2d( in_channels=last_inp_channels, out_channels=last_inp_channels, kernel_size=1, stride=1, padding=0), BatchNorm2d(last_inp_channels, momentum=BN_MOMENTUM), nn.ReLU(inplace=relu_inplace), nn.Conv2d( in_channels=last_inp_channels, out_channels=config.DATASET.NUM_CLASSES, kernel_size=extra.FINAL_CONV_KERNEL, stride=1, padding=1 if extra.FINAL_CONV_KERNEL == 3 else 0) ) def _make_transition_layer( self, num_channels_pre_layer, num_channels_cur_layer): num_branches_cur = len(num_channels_cur_layer) num_branches_pre = len(num_channels_pre_layer) transition_layers = [] for i in range(num_branches_cur): if i < num_branches_pre: if num_channels_cur_layer[i] != num_channels_pre_layer[i]: transition_layers.append(nn.Sequential( nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), BatchNorm2d( num_channels_cur_layer[i], momentum=BN_MOMENTUM), nn.ReLU(inplace=relu_inplace))) else: transition_layers.append(None) else: conv3x3s = [] for j in range(i+1-num_branches_pre): inchannels = num_channels_pre_layer[-1] outchannels = num_channels_cur_layer[i] \ if j == i-num_branches_pre else inchannels conv3x3s.append(nn.Sequential( nn.Conv2d( inchannels, outchannels, 3, 2, 1, bias=False), BatchNorm2d(outchannels, momentum=BN_MOMENTUM), nn.ReLU(inplace=relu_inplace))) transition_layers.append(nn.Sequential(*conv3x3s)) return nn.ModuleList(transition_layers) def _make_layer(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), ) layers = [] layers.append(block(inplanes, planes, stride, downsample)) inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(inplanes, planes)) return nn.Sequential(*layers) def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): num_modules = layer_config['NUM_MODULES'] num_branches = layer_config['NUM_BRANCHES'] num_blocks = layer_config['NUM_BLOCKS'] num_channels = layer_config['NUM_CHANNELS'] block = blocks_dict[layer_config['BLOCK']] fuse_method = layer_config['FUSE_METHOD'] modules = [] for i in range(num_modules): # multi_scale_output is only used last module if not multi_scale_output and i == num_modules - 1: reset_multi_scale_output = False else: reset_multi_scale_output = True modules.append( HighResolutionModule(num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method, reset_multi_scale_output) ) num_inchannels = modules[-1].get_num_inchannels() return nn.Sequential(*modules), num_inchannels def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(self.stage2_cfg['NUM_BRANCHES']): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) x_list = [] for i in range(self.stage3_cfg['NUM_BRANCHES']): if self.transition2[i] is not None: if i < self.stage2_cfg['NUM_BRANCHES']: x_list.append(self.transition2[i](y_list[i])) else: x_list.append(self.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage3(x_list) x_list = [] for i in range(self.stage4_cfg['NUM_BRANCHES']): if self.transition3[i] is not None: if i < self.stage3_cfg['NUM_BRANCHES']: x_list.append(self.transition3[i](y_list[i])) else: x_list.append(self.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) x = self.stage4(x_list) # Upsampling x0_h, x0_w = x[0].size(2), x[0].size(3) x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) x = torch.cat([x[0], x1, x2, x3], 1) x = self.last_layer(x) return x def init_weights(self, pretrained='',): logger.info('=> init weights from normal distribution') for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.001) elif isinstance(m, BatchNorm2d_class): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if os.path.isfile(pretrained): pretrained_dict = torch.load(pretrained) logger.info('=> loading pretrained model {}'.format(pretrained)) model_dict = self.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict.keys()} for k, _ in pretrained_dict.items(): logger.info( '=> loading {} pretrained model {}'.format(k, pretrained)) model_dict.update(pretrained_dict) self.load_state_dict(model_dict) def get_seg_model(cfg, **kwargs): model = HighResolutionNet(cfg, **kwargs) model.init_weights(cfg.MODEL.PRETRAINED) return model
null
1,144
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import functools import numpy as np import torch import torch.nn as nn import torch._utils import torch.nn.functional as F from .bn_helper import BatchNorm2d, BatchNorm2d_class, relu_inplace class HighResolutionNet(nn.Module): def __init__(self, config, **kwargs): global ALIGN_CORNERS extra = config.MODEL.EXTRA super(HighResolutionNet, self).__init__() ALIGN_CORNERS = config.MODEL.ALIGN_CORNERS # stem net self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=relu_inplace) self.stage1_cfg = extra['STAGE1'] num_channels = self.stage1_cfg['NUM_CHANNELS'][0] block = blocks_dict[self.stage1_cfg['BLOCK']] num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) stage1_out_channel = block.expansion*num_channels self.stage2_cfg = extra['STAGE2'] num_channels = self.stage2_cfg['NUM_CHANNELS'] block = blocks_dict[self.stage2_cfg['BLOCK']] num_channels = [ num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition1 = self._make_transition_layer( [stage1_out_channel], num_channels) self.stage2, pre_stage_channels = self._make_stage( self.stage2_cfg, num_channels) self.stage3_cfg = extra['STAGE3'] num_channels = self.stage3_cfg['NUM_CHANNELS'] block = blocks_dict[self.stage3_cfg['BLOCK']] num_channels = [ num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition2 = self._make_transition_layer( pre_stage_channels, num_channels) self.stage3, pre_stage_channels = self._make_stage( self.stage3_cfg, num_channels) self.stage4_cfg = extra['STAGE4'] num_channels = self.stage4_cfg['NUM_CHANNELS'] block = blocks_dict[self.stage4_cfg['BLOCK']] num_channels = [ num_channels[i] * block.expansion for i in range(len(num_channels))] self.transition3 = self._make_transition_layer( pre_stage_channels, num_channels) self.stage4, pre_stage_channels = self._make_stage( self.stage4_cfg, num_channels, multi_scale_output=True) last_inp_channels = np.int(np.sum(pre_stage_channels)) ocr_mid_channels = config.MODEL.OCR.MID_CHANNELS ocr_key_channels = config.MODEL.OCR.KEY_CHANNELS self.conv3x3_ocr = nn.Sequential( nn.Conv2d(last_inp_channels, ocr_mid_channels, kernel_size=3, stride=1, padding=1), BatchNorm2d(ocr_mid_channels), nn.ReLU(inplace=relu_inplace), ) self.ocr_gather_head = SpatialGather_Module(config.DATASET.NUM_CLASSES) self.ocr_distri_head = SpatialOCR_Module(in_channels=ocr_mid_channels, key_channels=ocr_key_channels, out_channels=ocr_mid_channels, scale=1, dropout=0.05, ) self.cls_head = nn.Conv2d( ocr_mid_channels, config.DATASET.NUM_CLASSES, kernel_size=1, stride=1, padding=0, bias=True) self.aux_head = nn.Sequential( nn.Conv2d(last_inp_channels, last_inp_channels, kernel_size=1, stride=1, padding=0), BatchNorm2d(last_inp_channels), nn.ReLU(inplace=relu_inplace), nn.Conv2d(last_inp_channels, config.DATASET.NUM_CLASSES, kernel_size=1, stride=1, padding=0, bias=True) ) def _make_transition_layer( self, num_channels_pre_layer, num_channels_cur_layer): num_branches_cur = len(num_channels_cur_layer) num_branches_pre = len(num_channels_pre_layer) transition_layers = [] for i in range(num_branches_cur): if i < num_branches_pre: if num_channels_cur_layer[i] != num_channels_pre_layer[i]: transition_layers.append(nn.Sequential( nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), BatchNorm2d( num_channels_cur_layer[i], momentum=BN_MOMENTUM), nn.ReLU(inplace=relu_inplace))) else: transition_layers.append(None) else: conv3x3s = [] for j in range(i+1-num_branches_pre): inchannels = num_channels_pre_layer[-1] outchannels = num_channels_cur_layer[i] \ if j == i-num_branches_pre else inchannels conv3x3s.append(nn.Sequential( nn.Conv2d( inchannels, outchannels, 3, 2, 1, bias=False), BatchNorm2d(outchannels, momentum=BN_MOMENTUM), nn.ReLU(inplace=relu_inplace))) transition_layers.append(nn.Sequential(*conv3x3s)) return nn.ModuleList(transition_layers) def _make_layer(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), ) layers = [] layers.append(block(inplanes, planes, stride, downsample)) inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(inplanes, planes)) return nn.Sequential(*layers) def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): num_modules = layer_config['NUM_MODULES'] num_branches = layer_config['NUM_BRANCHES'] num_blocks = layer_config['NUM_BLOCKS'] num_channels = layer_config['NUM_CHANNELS'] block = blocks_dict[layer_config['BLOCK']] fuse_method = layer_config['FUSE_METHOD'] modules = [] for i in range(num_modules): # multi_scale_output is only used last module if not multi_scale_output and i == num_modules - 1: reset_multi_scale_output = False else: reset_multi_scale_output = True modules.append( HighResolutionModule(num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method, reset_multi_scale_output) ) num_inchannels = modules[-1].get_num_inchannels() return nn.Sequential(*modules), num_inchannels def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(self.stage2_cfg['NUM_BRANCHES']): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) x_list = [] for i in range(self.stage3_cfg['NUM_BRANCHES']): if self.transition2[i] is not None: if i < self.stage2_cfg['NUM_BRANCHES']: x_list.append(self.transition2[i](y_list[i])) else: x_list.append(self.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage3(x_list) x_list = [] for i in range(self.stage4_cfg['NUM_BRANCHES']): if self.transition3[i] is not None: if i < self.stage3_cfg['NUM_BRANCHES']: x_list.append(self.transition3[i](y_list[i])) else: x_list.append(self.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) x = self.stage4(x_list) # Upsampling x0_h, x0_w = x[0].size(2), x[0].size(3) x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) feats = torch.cat([x[0], x1, x2, x3], 1) out_aux_seg = [] # ocr out_aux = self.aux_head(feats) # compute contrast feature feats = self.conv3x3_ocr(feats) context = self.ocr_gather_head(feats, out_aux) feats = self.ocr_distri_head(feats, context) out = self.cls_head(feats) out_aux_seg.append(out_aux) out_aux_seg.append(out) return out_aux_seg def init_weights(self, pretrained='',): logger.info('=> init weights from normal distribution') for name, m in self.named_modules(): if any(part in name for part in {'cls', 'aux', 'ocr'}): # print('skipped', name) continue if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.001) elif isinstance(m, BatchNorm2d_class): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if os.path.isfile(pretrained): pretrained_dict = torch.load(pretrained, map_location={'cuda:0': 'cpu'}) logger.info('=> loading pretrained model {}'.format(pretrained)) model_dict = self.state_dict() pretrained_dict = {k.replace('last_layer', 'aux_head').replace('model.', ''): v for k, v in pretrained_dict.items()} print(set(model_dict) - set(pretrained_dict)) print(set(pretrained_dict) - set(model_dict)) pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict.keys()} # for k, _ in pretrained_dict.items(): # logger.info( # '=> loading {} pretrained model {}'.format(k, pretrained)) model_dict.update(pretrained_dict) self.load_state_dict(model_dict) elif pretrained: raise RuntimeError('No such file {}'.format(pretrained)) def get_seg_model(cfg, **kwargs): model = HighResolutionNet(cfg, **kwargs) model.init_weights(cfg.MODEL.PRETRAINED) return model
null
1,145
import os import logging import torch.nn as nn import torch.nn.functional as F from torchvision.models.utils import load_state_dict_from_url The provided code snippet includes necessary dependencies for implementing the `conv3x3` function. Write a Python function `def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1)` to solve the following problem: 3x3 convolution with padding Here is the function: def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)
3x3 convolution with padding
1,146
import os import logging import torch.nn as nn import torch.nn.functional as F from torchvision.models.utils import load_state_dict_from_url The provided code snippet includes necessary dependencies for implementing the `conv1x1` function. Write a Python function `def conv1x1(in_planes, out_planes, stride=1)` to solve the following problem: 1x1 convolution Here is the function: def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
1x1 convolution
1,147
import os import logging import torch.nn as nn import torch.nn.functional as F from torchvision.models.utils import load_state_dict_from_url def _hrnet(arch, pretrained, progress, **kwargs): try: from ..config.hrnet_config import MODEL_CONFIGS except ImportError: from segmentation.config.hrnet_config import MODEL_CONFIGS model = HighResolutionNet(MODEL_CONFIGS[arch], **kwargs) if pretrained: model_url = model_urls[arch] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict, strict=False) return model The provided code snippet includes necessary dependencies for implementing the `hrnet18` function. Write a Python function `def hrnet18(pretrained=True, progress=True, **kwargs)` to solve the following problem: r"""HRNet-18 model Here is the function: def hrnet18(pretrained=True, progress=True, **kwargs): r"""HRNet-18 model """ return _hrnet('hrnet18', pretrained, progress, **kwargs)
r"""HRNet-18 model
1,148
import os import logging import torch.nn as nn import torch.nn.functional as F from torchvision.models.utils import load_state_dict_from_url def _hrnet(arch, pretrained, progress, **kwargs): try: from ..config.hrnet_config import MODEL_CONFIGS except ImportError: from segmentation.config.hrnet_config import MODEL_CONFIGS model = HighResolutionNet(MODEL_CONFIGS[arch], **kwargs) if pretrained: model_url = model_urls[arch] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict, strict=False) return model The provided code snippet includes necessary dependencies for implementing the `hrnet32` function. Write a Python function `def hrnet32(pretrained=True, progress=True, **kwargs)` to solve the following problem: r"""HRNet-32 model Here is the function: def hrnet32(pretrained=True, progress=True, **kwargs): r"""HRNet-32 model """ return _hrnet('hrnet32', pretrained, progress, **kwargs)
r"""HRNet-32 model
1,149
import os import logging import torch.nn as nn import torch.nn.functional as F from torchvision.models.utils import load_state_dict_from_url def _hrnet(arch, pretrained, progress, **kwargs): try: from ..config.hrnet_config import MODEL_CONFIGS except ImportError: from segmentation.config.hrnet_config import MODEL_CONFIGS model = HighResolutionNet(MODEL_CONFIGS[arch], **kwargs) if pretrained: model_url = model_urls[arch] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict, strict=False) return model The provided code snippet includes necessary dependencies for implementing the `hrnet48` function. Write a Python function `def hrnet48(pretrained=True, progress=True, **kwargs)` to solve the following problem: r"""HRNet-48 model Here is the function: def hrnet48(pretrained=True, progress=True, **kwargs): r"""HRNet-48 model """ return _hrnet('hrnet48', pretrained, progress, **kwargs)
r"""HRNet-48 model
1,150
from os import path import torch.autograd as autograd import torch.cuda.comm as comm from torch.autograd.function import once_differentiable from torch.utils.cpp_extension import load def _check(fn, *args, **kwargs): success = fn(*args, **kwargs) if not success: raise RuntimeError("CUDA Error encountered in {}".format(fn))
null
1,151
from os import path import torch.autograd as autograd import torch.cuda.comm as comm from torch.autograd.function import once_differentiable from torch.utils.cpp_extension import load def _broadcast_shape(x): out_size = [] for i, s in enumerate(x.size()): if i != 1: out_size.append(1) else: out_size.append(s) return out_size
null
1,152
from os import path import torch.autograd as autograd import torch.cuda.comm as comm from torch.autograd.function import once_differentiable from torch.utils.cpp_extension import load def _reduce(x): if len(x.size()) == 2: return x.sum(dim=0) else: n, c = x.size()[0:2] return x.contiguous().view((n, c, -1)).sum(2).sum(0)
null
1,153
from os import path import torch.autograd as autograd import torch.cuda.comm as comm from torch.autograd.function import once_differentiable from torch.utils.cpp_extension import load def _count_samples(x): count = 1 for i, s in enumerate(x.size()): if i != 1: count *= s return count
null
1,154
from os import path import torch.autograd as autograd import torch.cuda.comm as comm from torch.autograd.function import once_differentiable from torch.utils.cpp_extension import load _backend = load(name="inplace_abn", extra_cflags=["-O3"], sources=[path.join(_src_path, f) for f in [ "inplace_abn.cpp", "inplace_abn_cpu.cpp", "inplace_abn_cuda.cu" ]], extra_cuda_cflags=["--expt-extended-lambda"]) ACT_LEAKY_RELU = "leaky_relu" ACT_ELU = "elu" ACT_NONE = "none" def _act_forward(ctx, x): if ctx.activation == ACT_LEAKY_RELU: _backend.leaky_relu_forward(x, ctx.slope) elif ctx.activation == ACT_ELU: _backend.elu_forward(x) elif ctx.activation == ACT_NONE: pass
null
1,155
from os import path import torch.autograd as autograd import torch.cuda.comm as comm from torch.autograd.function import once_differentiable from torch.utils.cpp_extension import load _backend = load(name="inplace_abn", extra_cflags=["-O3"], sources=[path.join(_src_path, f) for f in [ "inplace_abn.cpp", "inplace_abn_cpu.cpp", "inplace_abn_cuda.cu" ]], extra_cuda_cflags=["--expt-extended-lambda"]) ACT_LEAKY_RELU = "leaky_relu" ACT_ELU = "elu" ACT_NONE = "none" def _act_backward(ctx, x, dx): if ctx.activation == ACT_LEAKY_RELU: _backend.leaky_relu_backward(x, dx, ctx.slope) elif ctx.activation == ACT_ELU: _backend.elu_backward(x, dx) elif ctx.activation == ACT_NONE: pass
null
1,156
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import time from pathlib import Path import numpy as np import torch import torch.nn as nn def create_logger(cfg, cfg_name, phase='train'): root_output_dir = Path(cfg.OUTPUT_DIR) # set up logger if not root_output_dir.exists(): print('=> creating {}'.format(root_output_dir)) root_output_dir.mkdir() dataset = cfg.DATASET.DATASET model = cfg.MODEL.NAME cfg_name = os.path.basename(cfg_name).split('.')[0] final_output_dir = root_output_dir / dataset / cfg_name print('=> creating {}'.format(final_output_dir)) final_output_dir.mkdir(parents=True, exist_ok=True) time_str = time.strftime('%Y-%m-%d-%H-%M') log_file = '{}_{}_{}.log'.format(cfg_name, time_str, phase) final_log_file = final_output_dir / log_file head = '%(asctime)-15s %(message)s' logging.basicConfig(filename=str(final_log_file), format=head) logger = logging.getLogger() logger.setLevel(logging.INFO) console = logging.StreamHandler() logging.getLogger('').addHandler(console) tensorboard_log_dir = Path(cfg.LOG_DIR) / dataset / model / \ (cfg_name + '_' + time_str) print('=> creating {}'.format(tensorboard_log_dir)) tensorboard_log_dir.mkdir(parents=True, exist_ok=True) return logger, str(final_output_dir), str(tensorboard_log_dir)
null
1,157
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging from collections import namedtuple import torch import torch.nn as nn The provided code snippet includes necessary dependencies for implementing the `get_model_summary` function. Write a Python function `def get_model_summary(model, *input_tensors, item_length=26, verbose=False)` to solve the following problem: :param model: :param input_tensors: :param item_length: :return: Here is the function: def get_model_summary(model, *input_tensors, item_length=26, verbose=False): """ :param model: :param input_tensors: :param item_length: :return: """ summary = [] ModuleDetails = namedtuple( "Layer", ["name", "input_size", "output_size", "num_parameters", "multiply_adds"]) hooks = [] layer_instances = {} def add_hooks(module): def hook(module, input, output): class_name = str(module.__class__.__name__) instance_index = 1 if class_name not in layer_instances: layer_instances[class_name] = instance_index else: instance_index = layer_instances[class_name] + 1 layer_instances[class_name] = instance_index layer_name = class_name + "_" + str(instance_index) params = 0 if class_name.find("Conv") != -1 or class_name.find("BatchNorm") != -1 or \ class_name.find("Linear") != -1: for param_ in module.parameters(): params += param_.view(-1).size(0) flops = "Not Available" if class_name.find("Conv") != -1 and hasattr(module, "weight"): flops = ( torch.prod( torch.LongTensor(list(module.weight.data.size()))) * torch.prod( torch.LongTensor(list(output.size())[2:]))).item() elif isinstance(module, nn.Linear): flops = (torch.prod(torch.LongTensor(list(output.size()))) \ * input[0].size(1)).item() if isinstance(input[0], list): input = input[0] if isinstance(output, list): output = output[0] summary.append( ModuleDetails( name=layer_name, input_size=list(input[0].size()), output_size=list(output.size()), num_parameters=params, multiply_adds=flops) ) if not isinstance(module, nn.ModuleList) \ and not isinstance(module, nn.Sequential) \ and module != model: hooks.append(module.register_forward_hook(hook)) model.eval() model.apply(add_hooks) space_len = item_length model(*input_tensors) for hook in hooks: hook.remove() details = '' if verbose: details = "Model Summary" + \ os.linesep + \ "Name{}Input Size{}Output Size{}Parameters{}Multiply Adds (Flops){}".format( ' ' * (space_len - len("Name")), ' ' * (space_len - len("Input Size")), ' ' * (space_len - len("Output Size")), ' ' * (space_len - len("Parameters")), ' ' * (space_len - len("Multiply Adds (Flops)"))) \ + os.linesep + '-' * space_len * 5 + os.linesep params_sum = 0 flops_sum = 0 for layer in summary: params_sum += layer.num_parameters if layer.multiply_adds != "Not Available": flops_sum += layer.multiply_adds if verbose: details += "{}{}{}{}{}{}{}{}{}{}".format( layer.name, ' ' * (space_len - len(layer.name)), layer.input_size, ' ' * (space_len - len(str(layer.input_size))), layer.output_size, ' ' * (space_len - len(str(layer.output_size))), layer.num_parameters, ' ' * (space_len - len(str(layer.num_parameters))), layer.multiply_adds, ' ' * (space_len - len(str(layer.multiply_adds)))) \ + os.linesep + '-' * space_len * 5 + os.linesep details += os.linesep \ + "Total Parameters: {:,}".format(params_sum) \ + os.linesep + '-' * space_len * 5 + os.linesep details += "Total Multiply Adds (For Convolution and Linear Layers only): {:,} GFLOPs".format(flops_sum/(1024**3)) \ + os.linesep + '-' * space_len * 5 + os.linesep details += "Number of Layers" + os.linesep for layer in layer_instances: details += "{} : {} layers ".format(layer, layer_instances[layer]) return details
:param model: :param input_tensors: :param item_length: :return:
1,158
import torch from lib.models.seg_hrnet import get_seg_model state_dict_url = 'https://github.com/huawei-noah/ghostnet/raw/master/pytorch/models/state_dict_93.98.pth' The provided code snippet includes necessary dependencies for implementing the `hrnet_w48_cityscapes` function. Write a Python function `def hrnet_w48_cityscapes(pretrained=False, **kwargs)` to solve the following problem: # This docstring shows up in hub.help() HRNetW48 model pretrained on Cityscapes pretrained (bool): kwargs, load pretrained weights into the model Here is the function: def hrnet_w48_cityscapes(pretrained=False, **kwargs): """ # This docstring shows up in hub.help() HRNetW48 model pretrained on Cityscapes pretrained (bool): kwargs, load pretrained weights into the model """ model = ghostnet(num_classes=1000, width=1.0, dropout=0.2) if pretrained: state_dict = torch.hub.load_state_dict_from_url(state_dict_url, progress=True) model.load_state_dict(state_dict) return model
# This docstring shows up in hub.help() HRNetW48 model pretrained on Cityscapes pretrained (bool): kwargs, load pretrained weights into the model
1,159
import argparse import os import pprint import shutil import sys import logging import time import timeit from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim from tensorboardX import SummaryWriter import _init_paths import models import datasets from config import config from config import update_config from core.criterion import CrossEntropy, OhemCrossEntropy from core.function import train, validate from utils.modelsummary import get_model_summary from utils.utils import create_logger, FullModel def parse_args(): parser = argparse.ArgumentParser(description='Train segmentation network') parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) parser.add_argument('--seed', type=int, default=304) parser.add_argument("--local_rank", type=int, default=-1) parser.add_argument('opts', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() update_config(config, args) return args
null
1,160
import argparse import os import pprint import shutil import sys import logging import time import timeit from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim from tensorboardX import SummaryWriter import _init_paths import models import datasets from config import config from config import update_config from core.criterion import CrossEntropy, OhemCrossEntropy from core.function import train, validate from utils.modelsummary import get_model_summary from utils.utils import create_logger, FullModel def is_distributed(): def get_sampler(dataset): from utils.distributed import is_distributed if is_distributed(): from torch.utils.data.distributed import DistributedSampler return DistributedSampler(dataset) else: return None
null
1,161
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import sys def add_path(path): if path not in sys.path: sys.path.insert(0, path)
null
1,162
import os import platform import shlex from tempfile import NamedTemporaryFile from typing import Any, Callable import typer from click import BadParameter, UsageError from sgpt.__version__ import __version__ from sgpt.integration import bash_integration, zsh_integration The provided code snippet includes necessary dependencies for implementing the `get_edited_prompt` function. Write a Python function `def get_edited_prompt() -> str` to solve the following problem: Opens the user's default editor to let them input a prompt, and returns the edited text. :return: String prompt. Here is the function: def get_edited_prompt() -> str: """ Opens the user's default editor to let them input a prompt, and returns the edited text. :return: String prompt. """ with NamedTemporaryFile(suffix=".txt", delete=False) as file: # Create file and store path. file_path = file.name editor = os.environ.get("EDITOR", "vim") # This will write text to file using $EDITOR. os.system(f"{editor} {file_path}") # Read file when editor is closed. with open(file_path, "r", encoding="utf-8") as file: output = file.read() os.remove(file_path) if not output: raise BadParameter("Couldn't get valid PROMPT from $EDITOR") return output
Opens the user's default editor to let them input a prompt, and returns the edited text. :return: String prompt.
1,163
import os import platform import shlex from tempfile import NamedTemporaryFile from typing import Any, Callable import typer from click import BadParameter, UsageError from sgpt.__version__ import __version__ from sgpt.integration import bash_integration, zsh_integration The provided code snippet includes necessary dependencies for implementing the `run_command` function. Write a Python function `def run_command(command: str) -> None` to solve the following problem: Runs a command in the user's shell. It is aware of the current user's $SHELL. :param command: A shell command to run. Here is the function: def run_command(command: str) -> None: """ Runs a command in the user's shell. It is aware of the current user's $SHELL. :param command: A shell command to run. """ if platform.system() == "Windows": is_powershell = len(os.getenv("PSModulePath", "").split(os.pathsep)) >= 3 full_command = ( f'powershell.exe -Command "{command}"' if is_powershell else f'cmd.exe /c "{command}"' ) else: shell = os.environ.get("SHELL", "/bin/sh") full_command = f"{shell} -c {shlex.quote(command)}" os.system(full_command)
Runs a command in the user's shell. It is aware of the current user's $SHELL. :param command: A shell command to run.
1,164
import os import platform import shlex from tempfile import NamedTemporaryFile from typing import Any, Callable import typer from click import BadParameter, UsageError from sgpt.__version__ import __version__ from sgpt.integration import bash_integration, zsh_integration def option_callback(func: Callable) -> Callable: # type: ignore def wrapper(cls: Any, value: str) -> None: if not value: return func(cls, value) raise typer.Exit() return wrapper
null
1,165
import os import platform import shlex from tempfile import NamedTemporaryFile from typing import Any, Callable import typer from click import BadParameter, UsageError from sgpt.__version__ import __version__ from sgpt.integration import bash_integration, zsh_integration bash_integration = """ # Shell-GPT integration BASH v0.2 _sgpt_bash() { if [[ -n "$READLINE_LINE" ]]; then READLINE_LINE=$(sgpt --shell <<< "$READLINE_LINE" --no-interaction) READLINE_POINT=${#READLINE_LINE} fi } bind -x '"\\C-l": _sgpt_bash' # Shell-GPT integration BASH v0.2 """ zsh_integration = """ # Shell-GPT integration ZSH v0.2 _sgpt_zsh() { if [[ -n "$BUFFER" ]]; then _sgpt_prev_cmd=$BUFFER BUFFER+="⌛" zle -I && zle redisplay BUFFER=$(sgpt --shell <<< "$_sgpt_prev_cmd" --no-interaction) zle end-of-line fi } zle -N _sgpt_zsh bindkey ^l _sgpt_zsh # Shell-GPT integration ZSH v0.2 """ The provided code snippet includes necessary dependencies for implementing the `install_shell_integration` function. Write a Python function `def install_shell_integration(*_args: Any) -> None` to solve the following problem: Installs shell integration. Currently only supports ZSH and Bash. Allows user to get shell completions in terminal by using hotkey. Replaces current "buffer" of the shell with the completion. Here is the function: def install_shell_integration(*_args: Any) -> None: """ Installs shell integration. Currently only supports ZSH and Bash. Allows user to get shell completions in terminal by using hotkey. Replaces current "buffer" of the shell with the completion. """ # TODO: Add support for Windows. # TODO: Implement updates. shell = os.getenv("SHELL", "") if shell == "/bin/zsh": typer.echo("Installing ZSH integration...") with open(os.path.expanduser("~/.zshrc"), "a", encoding="utf-8") as file: file.write(zsh_integration) elif shell == "/bin/bash": typer.echo("Installing Bash integration...") with open(os.path.expanduser("~/.bashrc"), "a", encoding="utf-8") as file: file.write(bash_integration) else: raise UsageError("ShellGPT integrations only available for ZSH and Bash.") typer.echo("Done! Restart your shell to apply changes.")
Installs shell integration. Currently only supports ZSH and Bash. Allows user to get shell completions in terminal by using hotkey. Replaces current "buffer" of the shell with the completion.
1,166
import os import platform import shlex from tempfile import NamedTemporaryFile from typing import Any, Callable import typer from click import BadParameter, UsageError from sgpt.__version__ import __version__ from sgpt.integration import bash_integration, zsh_integration __version__ = "1.4.0" The provided code snippet includes necessary dependencies for implementing the `get_sgpt_version` function. Write a Python function `def get_sgpt_version(*_args: Any) -> None` to solve the following problem: Displays the current installed version of ShellGPT Here is the function: def get_sgpt_version(*_args: Any) -> None: """ Displays the current installed version of ShellGPT """ typer.echo(f"ShellGPT {__version__}")
Displays the current installed version of ShellGPT
1,167
import os import platform import shutil from pathlib import Path from typing import Any from ..config import cfg from ..utils import option_callback FUNCTIONS_FOLDER = Path(cfg.get("OPENAI_FUNCTIONS_PATH")) def install_functions(*_args: Any) -> None: current_folder = os.path.dirname(os.path.abspath(__file__)) common_folder = Path(current_folder + "/common") common_files = [Path(path) for path in common_folder.glob("*.py")] print("Installing default functions...") for file in common_files: print(f"Installed {FUNCTIONS_FOLDER}/{file.name}") shutil.copy(file, FUNCTIONS_FOLDER, follow_symlinks=True) current_platform = platform.system() if current_platform == "Linux": print("Installing Linux functions...") if current_platform == "Windows": print("Installing Windows functions...") if current_platform == "Darwin": print("Installing Mac functions...") mac_folder = Path(current_folder + "/mac") mac_files = [Path(path) for path in mac_folder.glob("*.py")] for file in mac_files: print(f"Installed {FUNCTIONS_FOLDER}/{file.name}") shutil.copy(file, FUNCTIONS_FOLDER, follow_symlinks=True)
null
1,168
import os import readline import sys import typer from click import BadArgumentUsage from click.types import Choice from sgpt.config import cfg from sgpt.function import get_openai_schemas from sgpt.handlers.chat_handler import ChatHandler from sgpt.handlers.default_handler import DefaultHandler from sgpt.handlers.repl_handler import ReplHandler from sgpt.llm_functions.init_functions import install_functions as inst_funcs from sgpt.role import DefaultRoles, SystemRole from sgpt.utils import ( get_edited_prompt, get_sgpt_version, install_shell_integration, run_command, ) def main( prompt: str = typer.Argument( "", show_default=False, help="The prompt to generate completions for.", ), model: str = typer.Option( cfg.get("DEFAULT_MODEL"), help="Large language model to use.", ), temperature: float = typer.Option( 0.0, min=0.0, max=2.0, help="Randomness of generated output.", ), top_p: float = typer.Option( 1.0, min=0.0, max=1.0, help="Limits highest probable tokens (words).", ), md: bool = typer.Option( cfg.get("PRETTIFY_MARKDOWN") == "true", help="Prettify markdown output.", ), shell: bool = typer.Option( False, "--shell", "-s", help="Generate and execute shell commands.", rich_help_panel="Assistance Options", ), interaction: bool = typer.Option( True, help="Interactive mode for --shell option.", rich_help_panel="Assistance Options", ), describe_shell: bool = typer.Option( False, "--describe-shell", "-d", help="Describe a shell command.", rich_help_panel="Assistance Options", ), code: bool = typer.Option( False, "--code", "-c", help="Generate only code.", rich_help_panel="Assistance Options", ), functions: bool = typer.Option( cfg.get("OPENAI_USE_FUNCTIONS") == "true", help="Allow function calls.", rich_help_panel="Assistance Options", ), editor: bool = typer.Option( False, help="Open $EDITOR to provide a prompt.", ), cache: bool = typer.Option( True, help="Cache completion results.", ), version: bool = typer.Option( False, "--version", help="Show version.", callback=get_sgpt_version, ), chat: str = typer.Option( None, help="Follow conversation with id, " 'use "temp" for quick session.', rich_help_panel="Chat Options", ), repl: str = typer.Option( None, help="Start a REPL (Read–eval–print loop) session.", rich_help_panel="Chat Options", ), show_chat: str = typer.Option( None, help="Show all messages from provided chat id.", callback=ChatHandler.show_messages_callback, rich_help_panel="Chat Options", ), list_chats: bool = typer.Option( False, "--list-chats", "-lc", help="List all existing chat ids.", callback=ChatHandler.list_ids, rich_help_panel="Chat Options", ), role: str = typer.Option( None, help="System role for GPT model.", rich_help_panel="Role Options", ), create_role: str = typer.Option( None, help="Create role.", callback=SystemRole.create, rich_help_panel="Role Options", ), show_role: str = typer.Option( None, help="Show role.", callback=SystemRole.show, rich_help_panel="Role Options", ), list_roles: bool = typer.Option( False, "--list-roles", "-lr", help="List roles.", callback=SystemRole.list, rich_help_panel="Role Options", ), install_integration: bool = typer.Option( False, help="Install shell integration (ZSH and Bash only)", callback=install_shell_integration, hidden=True, # Hiding since should be used only once. ), install_functions: bool = typer.Option( False, help="Install default functions.", callback=inst_funcs, hidden=True, # Hiding since should be used only once. ), ) -> None: stdin_passed = not sys.stdin.isatty() if stdin_passed: stdin = "" # TODO: This is very hacky. # In some cases, we need to pass stdin along with inputs. # When we want part of stdin to be used as a init prompt, # but rest of the stdin to be used as a inputs. For example: # echo "hello\n__sgpt__eof__\nThis is input" | sgpt --repl temp # In this case, "hello" will be used as a init prompt, and # "This is input" will be used as "interactive" input to the REPL. # This is useful to test REPL with some initial context. for line in sys.stdin: if "__sgpt__eof__" in line: break stdin += line prompt = f"{stdin}\n\n{prompt}" if prompt else stdin try: # Switch to stdin for interactive input. if os.name == "posix": sys.stdin = open("/dev/tty", "r") elif os.name == "nt": sys.stdin = open("CON", "r") except OSError: # Non-interactive shell. pass if sum((shell, describe_shell, code)) > 1: raise BadArgumentUsage( "Only one of --shell, --describe-shell, and --code options can be used at a time." ) if chat and repl: raise BadArgumentUsage("--chat and --repl options cannot be used together.") if editor and stdin_passed: raise BadArgumentUsage("--editor option cannot be used with stdin input.") if editor: prompt = get_edited_prompt() role_class = ( DefaultRoles.check_get(shell, describe_shell, code) if not role else SystemRole.get(role) ) function_schemas = (get_openai_schemas() or None) if functions else None if repl: # Will be in infinite loop here until user exits with Ctrl+C. ReplHandler(repl, role_class, md).handle( init_prompt=prompt, model=model, temperature=temperature, top_p=top_p, caching=cache, functions=function_schemas, ) if chat: full_completion = ChatHandler(chat, role_class, md).handle( prompt=prompt, model=model, temperature=temperature, top_p=top_p, caching=cache, functions=function_schemas, ) else: full_completion = DefaultHandler(role_class, md).handle( prompt=prompt, model=model, temperature=temperature, top_p=top_p, caching=cache, functions=function_schemas, ) while shell and interaction: option = typer.prompt( text="[E]xecute, [D]escribe, [A]bort", type=Choice(("e", "d", "a", "y"), case_sensitive=False), default="e" if cfg.get("DEFAULT_EXECUTE_SHELL_CMD") == "true" else "a", show_choices=False, show_default=False, ) if option in ("e", "y"): # "y" option is for keeping compatibility with old version. run_command(full_completion) elif option == "d": DefaultHandler(DefaultRoles.DESCRIBE_SHELL.get_role(), md).handle( full_completion, model=model, temperature=temperature, top_p=top_p, caching=cache, functions=function_schemas, ) continue break def entry_point() -> None: typer.run(main)
null
1,169
import importlib.util import sys from abc import ABCMeta from pathlib import Path from typing import Any, Callable, Dict, List from .config import cfg functions = [Function(str(path)) for path in functions_folder.glob("*.py")] def get_function(name: str) -> Callable[..., Any]: for function in functions: if function.name == name: return function.execute raise ValueError(f"Function {name} not found")
null
1,170
import importlib.util import sys from abc import ABCMeta from pathlib import Path from typing import Any, Callable, Dict, List from .config import cfg functions = [Function(str(path)) for path in functions_folder.glob("*.py")] def get_openai_schemas() -> List[Dict[str, Any]]: return [function.openai_schema for function in functions]
null
1,171
from io import open from setuptools import setup with open('requirements.txt', encoding="utf-8-sig") as f: requirements = f.readlines() def readme(): with open('README.md', encoding="utf-8-sig") as f: README = f.read() return README
null
1,172
import os import sys import time import random import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.init as init import torch.optim as optim import torch.utils.data from torch.cuda.amp import autocast, GradScaler import numpy as np from utils import CTCLabelConverter, AttnLabelConverter, Averager from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset from model import Model from test import validation device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def count_parameters(model): print("Modules, Parameters") total_params = 0 for name, parameter in model.named_parameters(): if not parameter.requires_grad: continue param = parameter.numel() #table.add_row([name, param]) total_params+=param print(name, param) print(f"Total Trainable Params: {total_params}") return total_params class CTCLabelConverter(object): """ Convert between text-label and text-index """ #def __init__(self, character, separator = []): def __init__(self, character, separator_list = {}, dict_pathlist = {}): # character (str): set of the possible characters. dict_character = list(character) #special_character = ['\xa2', '\xa3', '\xa4','\xa5'] #self.separator_char = special_character[:len(separator)] self.dict = {} #for i, char in enumerate(self.separator_char + dict_character): for i, char in enumerate(dict_character): # NOTE: 0 is reserved for 'blank' token required by CTCLoss self.dict[char] = i + 1 self.character = ['[blank]'] + dict_character # dummy '[blank]' token for CTCLoss (index 0) #self.character = ['[blank]']+ self.separator_char + dict_character # dummy '[blank]' token for CTCLoss (index 0) self.separator_list = separator_list separator_char = [] for lang, sep in separator_list.items(): separator_char += sep self.ignore_idx = [0] + [i+1 for i,item in enumerate(separator_char)] dict_list = {} for lang, dict_path in dict_pathlist.items(): with open(dict_path, "rb") as input_file: word_count = pickle.load(input_file) dict_list[lang] = word_count self.dict_list = dict_list def encode(self, text, batch_max_length=25): """convert text-label into text-index. input: text: text labels of each image. [batch_size] output: text: concatenated text index for CTCLoss. [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] length: length of each text. [batch_size] """ length = [len(s) for s in text] text = ''.join(text) text = [self.dict[char] for char in text] return (torch.IntTensor(text), torch.IntTensor(length)) def decode_greedy(self, text_index, length): """ convert text-index into text-label. """ texts = [] index = 0 for l in length: t = text_index[index:index + l] char_list = [] for i in range(l): if t[i] not in self.ignore_idx and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank (and separator). #if (t[i] != 0) and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank (and separator). char_list.append(self.character[t[i]]) text = ''.join(char_list) texts.append(text) index += l return texts def decode_beamsearch(self, mat, beamWidth=5): texts = [] for i in range(mat.shape[0]): t = ctcBeamSearch(mat[i], self.character, self.ignore_idx, None, beamWidth=beamWidth) texts.append(t) return texts def decode_wordbeamsearch(self, mat, beamWidth=5): texts = [] argmax = np.argmax(mat, axis = 2) for i in range(mat.shape[0]): words = word_segmentation(argmax[i]) string = '' for word in words: matrix = mat[i, word[1][0]:word[1][1]+1,:] if word[0] == '': dict_list = [] else: dict_list = self.dict_list[word[0]] t = ctcBeamSearch(matrix, self.character, self.ignore_idx, None, beamWidth=beamWidth, dict_list=dict_list) string += t texts.append(string) return texts class AttnLabelConverter(object): """ Convert between text-label and text-index """ def __init__(self, character): # character (str): set of the possible characters. # [GO] for the start token of the attention decoder. [s] for end-of-sentence token. list_token = ['[GO]', '[s]'] # ['[s]','[UNK]','[PAD]','[GO]'] list_character = list(character) self.character = list_token + list_character self.dict = {} for i, char in enumerate(self.character): # print(i, char) self.dict[char] = i def encode(self, text, batch_max_length=25): """ convert text-label into text-index. input: text: text labels of each image. [batch_size] batch_max_length: max length of text label in the batch. 25 by default output: text : the input of attention decoder. [batch_size x (max_length+2)] +1 for [GO] token and +1 for [s] token. text[:, 0] is [GO] token and text is padded with [GO] token after [s] token. length : the length of output of attention decoder, which count [s] token also. [3, 7, ....] [batch_size] """ length = [len(s) + 1 for s in text] # +1 for [s] at end of sentence. # batch_max_length = max(length) # this is not allowed for multi-gpu setting batch_max_length += 1 # additional +1 for [GO] at first step. batch_text is padded with [GO] token after [s] token. batch_text = torch.LongTensor(len(text), batch_max_length + 1).fill_(0) for i, t in enumerate(text): text = list(t) text.append('[s]') text = [self.dict[char] for char in text] batch_text[i][1:1 + len(text)] = torch.LongTensor(text) # batch_text[:, 0] = [GO] token return (batch_text.to(device), torch.IntTensor(length).to(device)) def decode(self, text_index, length): """ convert text-index into text-label. """ texts = [] for index, l in enumerate(length): text = ''.join([self.character[i] for i in text_index[index, :]]) texts.append(text) return texts class Averager(object): """Compute average for torch.Tensor, used for loss average.""" def __init__(self): self.reset() def add(self, v): count = v.data.numel() v = v.data.sum() self.n_count += count self.sum += v def reset(self): self.n_count = 0 self.sum = 0 def val(self): res = 0 if self.n_count != 0: res = self.sum / float(self.n_count) return res class Batch_Balanced_Dataset(object): def __init__(self, opt): """ Modulate the data ratio in the batch. For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5", the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST. """ log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a') dashed_line = '-' * 80 print(dashed_line) log.write(dashed_line + '\n') print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}') log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n') assert len(opt.select_data) == len(opt.batch_ratio) _AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, contrast_adjust = opt.contrast_adjust) self.data_loader_list = [] self.dataloader_iter_list = [] batch_size_list = [] Total_batch_size = 0 for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio): _batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1) print(dashed_line) log.write(dashed_line + '\n') _dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, select_data=[selected_d]) total_number_dataset = len(_dataset) log.write(_dataset_log) """ The total number of data can be modified with opt.total_data_usage_ratio. ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage. See 4.2 section in our paper. """ number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio)) dataset_split = [number_dataset, total_number_dataset - number_dataset] indices = range(total_number_dataset) _dataset, _ = [Subset(_dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(dataset_split), dataset_split)] selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n' selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}' print(selected_d_log) log.write(selected_d_log + '\n') batch_size_list.append(str(_batch_size)) Total_batch_size += _batch_size _data_loader = torch.utils.data.DataLoader( _dataset, batch_size=_batch_size, shuffle=True, num_workers=int(opt.workers), #prefetch_factor=2,persistent_workers=True, collate_fn=_AlignCollate, pin_memory=True) self.data_loader_list.append(_data_loader) self.dataloader_iter_list.append(iter(_data_loader)) Total_batch_size_log = f'{dashed_line}\n' batch_size_sum = '+'.join(batch_size_list) Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n' Total_batch_size_log += f'{dashed_line}' opt.batch_size = Total_batch_size print(Total_batch_size_log) log.write(Total_batch_size_log + '\n') log.close() def get_batch(self): balanced_batch_images = [] balanced_batch_texts = [] for i, data_loader_iter in enumerate(self.dataloader_iter_list): try: image, text = data_loader_iter.next() balanced_batch_images.append(image) balanced_batch_texts += text except StopIteration: self.dataloader_iter_list[i] = iter(self.data_loader_list[i]) image, text = self.dataloader_iter_list[i].next() balanced_batch_images.append(image) balanced_batch_texts += text except ValueError: pass balanced_batch_images = torch.cat(balanced_batch_images, 0) return balanced_batch_images, balanced_batch_texts def hierarchical_dataset(root, opt, select_data='/'): """ select_data='/' contains all sub-directory of root directory """ dataset_list = [] dataset_log = f'dataset_root: {root}\t dataset: {select_data[0]}' print(dataset_log) dataset_log += '\n' for dirpath, dirnames, filenames in os.walk(root+'/'): if not dirnames: select_flag = False for selected_d in select_data: if selected_d in dirpath: select_flag = True break if select_flag: dataset = OCRDataset(dirpath, opt) sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}' print(sub_dataset_log) dataset_log += f'{sub_dataset_log}\n' dataset_list.append(dataset) concatenated_dataset = ConcatDataset(dataset_list) return concatenated_dataset, dataset_log class AlignCollate(object): def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, contrast_adjust = 0.): self.imgH = imgH self.imgW = imgW self.keep_ratio_with_pad = keep_ratio_with_pad self.contrast_adjust = contrast_adjust def __call__(self, batch): batch = filter(lambda x: x is not None, batch) images, labels = zip(*batch) if self.keep_ratio_with_pad: # same concept with 'Rosetta' paper resized_max_w = self.imgW input_channel = 3 if images[0].mode == 'RGB' else 1 transform = NormalizePAD((input_channel, self.imgH, resized_max_w)) resized_images = [] for image in images: w, h = image.size #### augmentation here - change contrast if self.contrast_adjust > 0: image = np.array(image.convert("L")) image = adjust_contrast_grey(image, target = self.contrast_adjust) image = Image.fromarray(image, 'L') ratio = w / float(h) if math.ceil(self.imgH * ratio) > self.imgW: resized_w = self.imgW else: resized_w = math.ceil(self.imgH * ratio) resized_image = image.resize((resized_w, self.imgH), Image.BICUBIC) resized_images.append(transform(resized_image)) # resized_image.save('./image_test/%d_test.jpg' % w) image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0) else: transform = ResizeNormalize((self.imgW, self.imgH)) image_tensors = [transform(image) for image in images] image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0) return image_tensors, labels class Model(nn.Module): def __init__(self, opt): super(Model, self).__init__() self.opt = opt self.stages = {'Trans': opt.Transformation, 'Feat': opt.FeatureExtraction, 'Seq': opt.SequenceModeling, 'Pred': opt.Prediction} """ Transformation """ if opt.Transformation == 'TPS': self.Transformation = TPS_SpatialTransformerNetwork( F=opt.num_fiducial, I_size=(opt.imgH, opt.imgW), I_r_size=(opt.imgH, opt.imgW), I_channel_num=opt.input_channel) else: print('No Transformation module specified') """ FeatureExtraction """ if opt.FeatureExtraction == 'VGG': self.FeatureExtraction = VGG_FeatureExtractor(opt.input_channel, opt.output_channel) elif opt.FeatureExtraction == 'RCNN': self.FeatureExtraction = RCNN_FeatureExtractor(opt.input_channel, opt.output_channel) elif opt.FeatureExtraction == 'ResNet': self.FeatureExtraction = ResNet_FeatureExtractor(opt.input_channel, opt.output_channel) else: raise Exception('No FeatureExtraction module specified') self.FeatureExtraction_output = opt.output_channel # int(imgH/16-1) * 512 self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) # Transform final (imgH/16-1) -> 1 """ Sequence modeling""" if opt.SequenceModeling == 'BiLSTM': self.SequenceModeling = nn.Sequential( BidirectionalLSTM(self.FeatureExtraction_output, opt.hidden_size, opt.hidden_size), BidirectionalLSTM(opt.hidden_size, opt.hidden_size, opt.hidden_size)) self.SequenceModeling_output = opt.hidden_size else: print('No SequenceModeling module specified') self.SequenceModeling_output = self.FeatureExtraction_output """ Prediction """ if opt.Prediction == 'CTC': self.Prediction = nn.Linear(self.SequenceModeling_output, opt.num_class) elif opt.Prediction == 'Attn': self.Prediction = Attention(self.SequenceModeling_output, opt.hidden_size, opt.num_class) else: raise Exception('Prediction is neither CTC or Attn') def forward(self, input, text, is_train=True): """ Transformation stage """ if not self.stages['Trans'] == "None": input = self.Transformation(input) """ Feature extraction stage """ visual_feature = self.FeatureExtraction(input) visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h] visual_feature = visual_feature.squeeze(3) """ Sequence modeling stage """ if self.stages['Seq'] == 'BiLSTM': contextual_feature = self.SequenceModeling(visual_feature) else: contextual_feature = visual_feature # for convenience. this is NOT contextually modeled by BiLSTM """ Prediction stage """ if self.stages['Pred'] == 'CTC': prediction = self.Prediction(contextual_feature.contiguous()) else: prediction = self.Prediction(contextual_feature.contiguous(), text, is_train, batch_max_length=self.opt.batch_max_length) return prediction def validation(model, criterion, evaluation_loader, converter, opt, device): """ validation or evaluation """ n_correct = 0 norm_ED = 0 length_of_data = 0 infer_time = 0 valid_loss_avg = Averager() for i, (image_tensors, labels) in enumerate(evaluation_loader): batch_size = image_tensors.size(0) length_of_data = length_of_data + batch_size image = image_tensors.to(device) # For max length prediction length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device) text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length) start_time = time.time() if 'CTC' in opt.Prediction: preds = model(image, text_for_pred) forward_time = time.time() - start_time # Calculate evaluation loss for CTC decoder. preds_size = torch.IntTensor([preds.size(1)] * batch_size) # permute 'preds' to use CTCloss format cost = criterion(preds.log_softmax(2).permute(1, 0, 2), text_for_loss, preds_size, length_for_loss) if opt.decode == 'greedy': # Select max probabilty (greedy decoding) then decode index to character _, preds_index = preds.max(2) preds_index = preds_index.view(-1) preds_str = converter.decode_greedy(preds_index.data, preds_size.data) elif opt.decode == 'beamsearch': preds_str = converter.decode_beamsearch(preds, beamWidth=2) else: preds = model(image, text_for_pred, is_train=False) forward_time = time.time() - start_time preds = preds[:, :text_for_loss.shape[1] - 1, :] target = text_for_loss[:, 1:] # without [GO] Symbol cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1)) # select max probabilty (greedy decoding) then decode index to character _, preds_index = preds.max(2) preds_str = converter.decode(preds_index, length_for_pred) labels = converter.decode(text_for_loss[:, 1:], length_for_loss) infer_time += forward_time valid_loss_avg.add(cost) # calculate accuracy & confidence score preds_prob = F.softmax(preds, dim=2) preds_max_prob, _ = preds_prob.max(dim=2) confidence_score_list = [] for gt, pred, pred_max_prob in zip(labels, preds_str, preds_max_prob): if 'Attn' in opt.Prediction: gt = gt[:gt.find('[s]')] pred_EOS = pred.find('[s]') pred = pred[:pred_EOS] # prune after "end of sentence" token ([s]) pred_max_prob = pred_max_prob[:pred_EOS] if pred == gt: n_correct += 1 ''' (old version) ICDAR2017 DOST Normalized Edit Distance https://rrc.cvc.uab.es/?ch=7&com=tasks "For each word we calculate the normalized edit distance to the length of the ground truth transcription." if len(gt) == 0: norm_ED += 1 else: norm_ED += edit_distance(pred, gt) / len(gt) ''' # ICDAR2019 Normalized Edit Distance if len(gt) == 0 or len(pred) ==0: norm_ED += 0 elif len(gt) > len(pred): norm_ED += 1 - edit_distance(pred, gt) / len(gt) else: norm_ED += 1 - edit_distance(pred, gt) / len(pred) # calculate confidence score (= multiply of pred_max_prob) try: confidence_score = pred_max_prob.cumprod(dim=0)[-1] except: confidence_score = 0 # for empty pred case, when prune after "end of sentence" token ([s]) confidence_score_list.append(confidence_score) # print(pred, gt, pred==gt, confidence_score) accuracy = n_correct / float(length_of_data) * 100 norm_ED = norm_ED / float(length_of_data) # ICDAR2019 Normalized Edit Distance return valid_loss_avg.val(), accuracy, norm_ED, preds_str, confidence_score_list, labels, infer_time, length_of_data The provided code snippet includes necessary dependencies for implementing the `train` function. Write a Python function `def train(opt, show_number = 2, amp=False)` to solve the following problem: dataset preparation Here is the function: def train(opt, show_number = 2, amp=False): """ dataset preparation """ if not opt.data_filtering_off: print('Filtering the images containing characters which are not in opt.character') print('Filtering the images whose label is longer than opt.batch_max_length') opt.select_data = opt.select_data.split('-') opt.batch_ratio = opt.batch_ratio.split('-') train_dataset = Batch_Balanced_Dataset(opt) log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a', encoding="utf8") AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, contrast_adjust=opt.contrast_adjust) valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=min(32, opt.batch_size), shuffle=True, # 'True' to check training progress with validation function. num_workers=int(opt.workers), prefetch_factor=512, collate_fn=AlignCollate_valid, pin_memory=True) log.write(valid_dataset_log) print('-' * 80) log.write('-' * 80 + '\n') log.close() """ model configuration """ if 'CTC' in opt.Prediction: converter = CTCLabelConverter(opt.character) else: converter = AttnLabelConverter(opt.character) opt.num_class = len(converter.character) if opt.rgb: opt.input_channel = 3 model = Model(opt) print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction) if opt.saved_model != '': pretrained_dict = torch.load(opt.saved_model) if opt.new_prediction: model.Prediction = nn.Linear(model.SequenceModeling_output, len(pretrained_dict['module.Prediction.weight'])) model = torch.nn.DataParallel(model).to(device) print(f'loading pretrained model from {opt.saved_model}') if opt.FT: model.load_state_dict(pretrained_dict, strict=False) else: model.load_state_dict(pretrained_dict) if opt.new_prediction: model.module.Prediction = nn.Linear(model.module.SequenceModeling_output, opt.num_class) for name, param in model.module.Prediction.named_parameters(): if 'bias' in name: init.constant_(param, 0.0) elif 'weight' in name: init.kaiming_normal_(param) model = model.to(device) else: # weight initialization for name, param in model.named_parameters(): if 'localization_fc2' in name: print(f'Skip {name} as it is already initialized') continue try: if 'bias' in name: init.constant_(param, 0.0) elif 'weight' in name: init.kaiming_normal_(param) except Exception as e: # for batchnorm. if 'weight' in name: param.data.fill_(1) continue model = torch.nn.DataParallel(model).to(device) model.train() print("Model:") print(model) count_parameters(model) """ setup loss """ if 'CTC' in opt.Prediction: criterion = torch.nn.CTCLoss(zero_infinity=True).to(device) else: criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0 # loss averager loss_avg = Averager() # freeze some layers try: if opt.freeze_FeatureFxtraction: for param in model.module.FeatureExtraction.parameters(): param.requires_grad = False if opt.freeze_SequenceModeling: for param in model.module.SequenceModeling.parameters(): param.requires_grad = False except: pass # filter that only require gradient decent filtered_parameters = [] params_num = [] for p in filter(lambda p: p.requires_grad, model.parameters()): filtered_parameters.append(p) params_num.append(np.prod(p.size())) print('Trainable params num : ', sum(params_num)) # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())] # setup optimizer if opt.optim=='adam': #optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999)) optimizer = optim.Adam(filtered_parameters) else: optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps) print("Optimizer:") print(optimizer) """ final options """ # print(opt) with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a', encoding="utf8") as opt_file: opt_log = '------------ Options -------------\n' args = vars(opt) for k, v in args.items(): opt_log += f'{str(k)}: {str(v)}\n' opt_log += '---------------------------------------\n' print(opt_log) opt_file.write(opt_log) """ start training """ start_iter = 0 if opt.saved_model != '': try: start_iter = int(opt.saved_model.split('_')[-1].split('.')[0]) print(f'continue to train, start_iter: {start_iter}') except: pass start_time = time.time() best_accuracy = -1 best_norm_ED = -1 i = start_iter scaler = GradScaler() t1= time.time() while(True): # train part optimizer.zero_grad(set_to_none=True) if amp: with autocast(): image_tensors, labels = train_dataset.get_batch() image = image_tensors.to(device) text, length = converter.encode(labels, batch_max_length=opt.batch_max_length) batch_size = image.size(0) if 'CTC' in opt.Prediction: preds = model(image, text).log_softmax(2) preds_size = torch.IntTensor([preds.size(1)] * batch_size) preds = preds.permute(1, 0, 2) torch.backends.cudnn.enabled = False cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device)) torch.backends.cudnn.enabled = True else: preds = model(image, text[:, :-1]) # align with Attention.forward target = text[:, 1:] # without [GO] Symbol cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1)) scaler.scale(cost).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) scaler.step(optimizer) scaler.update() else: image_tensors, labels = train_dataset.get_batch() image = image_tensors.to(device) text, length = converter.encode(labels, batch_max_length=opt.batch_max_length) batch_size = image.size(0) if 'CTC' in opt.Prediction: preds = model(image, text).log_softmax(2) preds_size = torch.IntTensor([preds.size(1)] * batch_size) preds = preds.permute(1, 0, 2) torch.backends.cudnn.enabled = False cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device)) torch.backends.cudnn.enabled = True else: preds = model(image, text[:, :-1]) # align with Attention.forward target = text[:, 1:] # without [GO] Symbol cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1)) cost.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) optimizer.step() loss_avg.add(cost) # validation part if (i % opt.valInterval == 0) and (i!=0): print('training time: ', time.time()-t1) t1=time.time() elapsed_time = time.time() - start_time # for log with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a', encoding="utf8") as log: model.eval() with torch.no_grad(): valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels,\ infer_time, length_of_data = validation(model, criterion, valid_loader, converter, opt, device) model.train() # training loss and validation loss loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}' loss_avg.reset() current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.4f}' # keep best accuracy model (on valid dataset) if current_accuracy > best_accuracy: best_accuracy = current_accuracy torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth') if current_norm_ED > best_norm_ED: best_norm_ED = current_norm_ED torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth') best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.4f}' loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}' print(loss_model_log) log.write(loss_model_log + '\n') # show some predicted results dashed_line = '-' * 80 head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F' predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n' #show_number = min(show_number, len(labels)) start = random.randint(0,len(labels) - show_number ) for gt, pred, confidence in zip(labels[start:start+show_number], preds[start:start+show_number], confidence_score[start:start+show_number]): if 'Attn' in opt.Prediction: gt = gt[:gt.find('[s]')] pred = pred[:pred.find('[s]')] predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n' predicted_result_log += f'{dashed_line}' print(predicted_result_log) log.write(predicted_result_log + '\n') print('validation time: ', time.time()-t1) t1=time.time() # save model per 1e+4 iter. if (i + 1) % 1e+4 == 0: torch.save( model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth') if i == opt.num_iter: print('end the training') sys.exit() i += 1
dataset preparation
1,173
import torch import pickle import numpy as np The provided code snippet includes necessary dependencies for implementing the `applyLM` function. Write a Python function `def applyLM(parentBeam, childBeam, classes, lm)` to solve the following problem: calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars Here is the function: def applyLM(parentBeam, childBeam, classes, lm): "calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars" if lm and not childBeam.lmApplied: c1 = classes[parentBeam.labeling[-1] if parentBeam.labeling else classes.index(' ')] # first char c2 = classes[childBeam.labeling[-1]] # second char lmFactor = 0.01 # influence of language model bigramProb = lm.getCharBigram(c1, c2) ** lmFactor # probability of seeing first and second char next to each other childBeam.prText = parentBeam.prText * bigramProb # probability of char sequence childBeam.lmApplied = True # only apply LM once per beam entry
calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars
1,174
import torch import pickle import numpy as np class BeamEntry: "information about one single beam at specific time-step" def __init__(self): self.prTotal = 0 # blank and non-blank self.prNonBlank = 0 # non-blank self.prBlank = 0 # blank self.prText = 1 # LM score self.lmApplied = False # flag if LM was already applied to this beam self.labeling = () # beam-labeling class BeamState: "information about the beams at specific time-step" def __init__(self): self.entries = {} def norm(self): "length-normalise LM score" for (k, _) in self.entries.items(): labelingLen = len(self.entries[k].labeling) self.entries[k].prText = self.entries[k].prText ** (1.0 / (labelingLen if labelingLen else 1.0)) def sort(self): "return beam-labelings, sorted by probability" beams = [v for (_, v) in self.entries.items()] sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText) return [x.labeling for x in sortedBeams] def wordsearch(self, classes, ignore_idx, beamWidth, dict_list): beams = [v for (_, v) in self.entries.items()] sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText)[:beamWidth] for j, candidate in enumerate(sortedBeams): idx_list = candidate.labeling text = '' for i,l in enumerate(idx_list): if l not in ignore_idx and (not (i > 0 and idx_list[i - 1] == idx_list[i])): # removing repeated characters and blank. text += classes[l] if j == 0: best_text = text if text in dict_list: print('found text: ', text) best_text = text break else: print('not in dict: ', text) return best_text def addBeam(beamState, labeling): "add beam if it does not yet exist" if labeling not in beamState.entries: beamState.entries[labeling] = BeamEntry() The provided code snippet includes necessary dependencies for implementing the `ctcBeamSearch` function. Write a Python function `def ctcBeamSearch(mat, classes, ignore_idx, lm, beamWidth=25, dict_list = [])` to solve the following problem: beam search as described by the paper of Hwang et al. and the paper of Graves et al. Here is the function: def ctcBeamSearch(mat, classes, ignore_idx, lm, beamWidth=25, dict_list = []): "beam search as described by the paper of Hwang et al. and the paper of Graves et al." #blankIdx = len(classes) blankIdx = 0 maxT, maxC = mat.shape # initialise beam state last = BeamState() labeling = () last.entries[labeling] = BeamEntry() last.entries[labeling].prBlank = 1 last.entries[labeling].prTotal = 1 # go over all time-steps for t in range(maxT): curr = BeamState() # get beam-labelings of best beams bestLabelings = last.sort()[0:beamWidth] # go over best beams for labeling in bestLabelings: # probability of paths ending with a non-blank prNonBlank = 0 # in case of non-empty beam if labeling: # probability of paths with repeated last char at the end prNonBlank = last.entries[labeling].prNonBlank * mat[t, labeling[-1]] # probability of paths ending with a blank prBlank = (last.entries[labeling].prTotal) * mat[t, blankIdx] # add beam at current time-step if needed addBeam(curr, labeling) # fill in data curr.entries[labeling].labeling = labeling curr.entries[labeling].prNonBlank += prNonBlank curr.entries[labeling].prBlank += prBlank curr.entries[labeling].prTotal += prBlank + prNonBlank curr.entries[labeling].prText = last.entries[labeling].prText # beam-labeling not changed, therefore also LM score unchanged from curr.entries[labeling].lmApplied = True # LM already applied at previous time-step for this beam-labeling # extend current beam-labeling for c in range(maxC - 1): # add new char to current beam-labeling newLabeling = labeling + (c,) # if new labeling contains duplicate char at the end, only consider paths ending with a blank if labeling and labeling[-1] == c: prNonBlank = mat[t, c] * last.entries[labeling].prBlank else: prNonBlank = mat[t, c] * last.entries[labeling].prTotal # add beam at current time-step if needed addBeam(curr, newLabeling) # fill in data curr.entries[newLabeling].labeling = newLabeling curr.entries[newLabeling].prNonBlank += prNonBlank curr.entries[newLabeling].prTotal += prNonBlank # apply LM #applyLM(curr.entries[labeling], curr.entries[newLabeling], classes, lm) # set new beam state last = curr # normalise LM scores according to beam-labeling-length last.norm() # sort by probability #bestLabeling = last.sort()[0] # get most probable labeling # map labels to chars #res = '' #for idx,l in enumerate(bestLabeling): # if l not in ignore_idx and (not (idx > 0 and bestLabeling[idx - 1] == bestLabeling[idx])): # removing repeated characters and blank. # res += classes[l] if dict_list == []: bestLabeling = last.sort()[0] # get most probable labeling res = '' for i,l in enumerate(bestLabeling): if l not in ignore_idx and (not (i > 0 and bestLabeling[i - 1] == bestLabeling[i])): # removing repeated characters and blank. res += classes[l] else: res = last.wordsearch(classes, ignore_idx, beamWidth, dict_list) return res
beam search as described by the paper of Hwang et al. and the paper of Graves et al.
1,175
import torch import pickle import numpy as np def consecutive(data, mode ='first', stepsize=1): group = np.split(data, np.where(np.diff(data) != stepsize)[0]+1) group = [item for item in group if len(item)>0] if mode == 'first': result = [l[0] for l in group] elif mode == 'last': result = [l[-1] for l in group] return result def word_segmentation(mat, separator_idx = {'th': [1,2],'en': [3,4]}, separator_idx_list = [1,2,3,4]): result = [] sep_list = [] start_idx = 0 for sep_idx in separator_idx_list: if sep_idx % 2 == 0: mode ='first' else: mode ='last' a = consecutive( np.argwhere(mat == sep_idx).flatten(), mode) new_sep = [ [item, sep_idx] for item in a] sep_list += new_sep sep_list = sorted(sep_list, key=lambda x: x[0]) for sep in sep_list: for lang in separator_idx.keys(): if sep[1] == separator_idx[lang][0]: # start lang sep_lang = lang sep_start_idx = sep[0] elif sep[1] == separator_idx[lang][1]: # end lang if sep_lang == lang: # check if last entry if the same start lang new_sep_pair = [lang, [sep_start_idx+1, sep[0]-1]] if sep_start_idx > start_idx: result.append( ['', [start_idx, sep_start_idx-1] ] ) start_idx = sep[0]+1 result.append(new_sep_pair) else: # reset sep_lang = '' if start_idx <= len(mat)-1: result.append( ['', [start_idx, len(mat)-1] ] ) return result
null
1,176
import os import sys import re import six import math import torch import pandas as pd from natsort import natsorted from PIL import Image import numpy as np from torch.utils.data import Dataset, ConcatDataset, Subset from torch._utils import _accumulate import torchvision.transforms as transforms def contrast_grey(img): high = np.percentile(img, 90) low = np.percentile(img, 10) return (high-low)/(high+low), high, low def adjust_contrast_grey(img, target = 0.4): contrast, high, low = contrast_grey(img) if contrast < target: img = img.astype(int) ratio = 200./(high-low) img = (img - low + 25)*ratio img = np.maximum(np.full(img.shape, 0) ,np.minimum(np.full(img.shape, 255), img)).astype(np.uint8) return img
null
1,177
import os import sys import re import six import math import torch import pandas as pd from natsort import natsorted from PIL import Image import numpy as np from torch.utils.data import Dataset, ConcatDataset, Subset from torch._utils import _accumulate import torchvision.transforms as transforms def tensor2im(image_tensor, imtype=np.uint8): image_numpy = image_tensor.cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype)
null
1,178
import os import sys import re import six import math import torch import pandas as pd from natsort import natsorted from PIL import Image import numpy as np from torch.utils.data import Dataset, ConcatDataset, Subset from torch._utils import _accumulate import torchvision.transforms as transforms def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path)
null
1,179
import argparse import os import shutil import time import yaml import multiprocessing as mp import numpy as np import torch import torch.nn as nn import torch.optim as optim import wandb from config.load_config import load_yaml, DotDict from data.dataset import SynthTextDataSet from loss.mseloss import Maploss_v2, Maploss_v3 from model.craft import CRAFT from metrics.eval_det_iou import DetectionIoUEvaluator from eval import main_eval from utils.util import copyStateDict, save_parser class Trainer(object): def __init__(self, config, gpu): self.config = config self.gpu = gpu self.mode = None self.trn_loader, self.trn_sampler = self.get_trn_loader() self.net_param = self.get_load_param(gpu) def get_trn_loader(self): dataset = SynthTextDataSet( output_size=self.config.train.data.output_size, data_dir=self.config.data_dir.synthtext, saved_gt_dir=None, mean=self.config.train.data.mean, variance=self.config.train.data.variance, gauss_init_size=self.config.train.data.gauss_init_size, gauss_sigma=self.config.train.data.gauss_sigma, enlarge_region=self.config.train.data.enlarge_region, enlarge_affinity=self.config.train.data.enlarge_affinity, aug=self.config.train.data.syn_aug, vis_test_dir=self.config.vis_test_dir, vis_opt=self.config.train.data.vis_opt, sample=self.config.train.data.syn_sample, ) trn_sampler = torch.utils.data.distributed.DistributedSampler(dataset) trn_loader = torch.utils.data.DataLoader( dataset, batch_size=self.config.train.batch_size, shuffle=False, num_workers=self.config.train.num_workers, sampler=trn_sampler, drop_last=True, pin_memory=True, ) return trn_loader, trn_sampler def get_load_param(self, gpu): if self.config.train.ckpt_path is not None: map_location = {"cuda:%d" % 0: "cuda:%d" % gpu} param = torch.load(self.config.train.ckpt_path, map_location=map_location) else: param = None return param def adjust_learning_rate(self, optimizer, gamma, step, lr): lr = lr * (gamma ** step) for param_group in optimizer.param_groups: param_group["lr"] = lr return param_group["lr"] def get_loss(self): if self.config.train.loss == 2: criterion = Maploss_v2() elif self.config.train.loss == 3: criterion = Maploss_v3() else: raise Exception("Undefined loss") return criterion def iou_eval(self, dataset, train_step, save_param_path, buffer, model): test_config = DotDict(self.config.test[dataset]) val_result_dir = os.path.join( self.config.results_dir, "{}/{}".format(dataset + "_iou", str(train_step)) ) evaluator = DetectionIoUEvaluator() metrics = main_eval( save_param_path, self.config.train.backbone, test_config, evaluator, val_result_dir, buffer, model, self.mode, ) if self.gpu == 0 and self.config.wandb_opt: wandb.log( { "{} IoU Recall".format(dataset): np.round(metrics["recall"], 3), "{} IoU Precision".format(dataset): np.round( metrics["precision"], 3 ), "{} IoU F1-score".format(dataset): np.round(metrics["hmean"], 3), } ) def train(self, buffer_dict): torch.cuda.set_device(self.gpu) # DATASET -----------------------------------------------------------------------------------------------------# trn_loader = self.trn_loader # MODEL -------------------------------------------------------------------------------------------------------# if self.config.train.backbone == "vgg": craft = CRAFT(pretrained=True, amp=self.config.train.amp) else: raise Exception("Undefined architecture") if self.config.train.ckpt_path is not None: craft.load_state_dict(copyStateDict(self.net_param["craft"])) craft = nn.SyncBatchNorm.convert_sync_batchnorm(craft) craft = craft.cuda() craft = torch.nn.parallel.DistributedDataParallel(craft, device_ids=[self.gpu]) torch.backends.cudnn.benchmark = True # OPTIMIZER----------------------------------------------------------------------------------------------------# optimizer = optim.Adam( craft.parameters(), lr=self.config.train.lr, weight_decay=self.config.train.weight_decay, ) if self.config.train.ckpt_path is not None and self.config.train.st_iter != 0: optimizer.load_state_dict(copyStateDict(self.net_param["optimizer"])) self.config.train.st_iter = self.net_param["optimizer"]["state"][0]["step"] self.config.train.lr = self.net_param["optimizer"]["param_groups"][0]["lr"] # LOSS --------------------------------------------------------------------------------------------------------# # mixed precision if self.config.train.amp: scaler = torch.cuda.amp.GradScaler() # load model if ( self.config.train.ckpt_path is not None and self.config.train.st_iter != 0 ): scaler.load_state_dict(copyStateDict(self.net_param["scaler"])) else: scaler = None criterion = self.get_loss() # TRAIN -------------------------------------------------------------------------------------------------------# train_step = self.config.train.st_iter whole_training_step = self.config.train.end_iter update_lr_rate_step = 0 training_lr = self.config.train.lr loss_value = 0 batch_time = 0 epoch = 0 start_time = time.time() while train_step < whole_training_step: self.trn_sampler.set_epoch(train_step) for ( index, (image, region_image, affinity_image, confidence_mask,), ) in enumerate(trn_loader): craft.train() if train_step > 0 and train_step % self.config.train.lr_decay == 0: update_lr_rate_step += 1 training_lr = self.adjust_learning_rate( optimizer, self.config.train.gamma, update_lr_rate_step, self.config.train.lr, ) images = image.cuda(non_blocking=True) region_image_label = region_image.cuda(non_blocking=True) affinity_image_label = affinity_image.cuda(non_blocking=True) confidence_mask_label = confidence_mask.cuda(non_blocking=True) if self.config.train.amp: with torch.cuda.amp.autocast(): output, _ = craft(images) out1 = output[:, :, :, 0] out2 = output[:, :, :, 1] loss = criterion( region_image_label, affinity_image_label, out1, out2, confidence_mask_label, self.config.train.neg_rto, self.config.train.n_min_neg, ) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() else: output, _ = craft(images) out1 = output[:, :, :, 0] out2 = output[:, :, :, 1] loss = criterion( region_image_label, affinity_image_label, out1, out2, confidence_mask_label, self.config.train.neg_rto, ) optimizer.zero_grad() loss.backward() optimizer.step() end_time = time.time() loss_value += loss.item() batch_time += end_time - start_time if train_step > 0 and train_step % 5 == 0 and self.gpu == 0: mean_loss = loss_value / 5 loss_value = 0 avg_batch_time = batch_time / 5 batch_time = 0 print( "{}, training_step: {}|{}, learning rate: {:.8f}, " "training_loss: {:.5f}, avg_batch_time: {:.5f}".format( time.strftime( "%Y-%m-%d:%H:%M:%S", time.localtime(time.time()) ), train_step, whole_training_step, training_lr, mean_loss, avg_batch_time, ) ) if self.gpu == 0 and self.config.wandb_opt: wandb.log({"train_step": train_step, "mean_loss": mean_loss}) if ( train_step % self.config.train.eval_interval == 0 and train_step != 0 ): # initialize all buffer value with zero if self.gpu == 0: for buffer in buffer_dict.values(): for i in range(len(buffer)): buffer[i] = None print("Saving state, index:", train_step) save_param_dic = { "iter": train_step, "craft": craft.state_dict(), "optimizer": optimizer.state_dict(), } save_param_path = ( self.config.results_dir + "/CRAFT_clr_" + repr(train_step) + ".pth" ) if self.config.train.amp: save_param_dic["scaler"] = scaler.state_dict() save_param_path = ( self.config.results_dir + "/CRAFT_clr_amp_" + repr(train_step) + ".pth" ) if self.gpu == 0: torch.save(save_param_dic, save_param_path) # validation self.iou_eval( "icdar2013", train_step, save_param_path, buffer_dict["icdar2013"], craft, ) train_step += 1 if train_step >= whole_training_step: break epoch += 1 # save last model if self.gpu == 0: save_param_dic = { "iter": train_step, "craft": craft.state_dict(), "optimizer": optimizer.state_dict(), } save_param_path = ( self.config.results_dir + "/CRAFT_clr_" + repr(train_step) + ".pth" ) if self.config.train.amp: save_param_dic["scaler"] = scaler.state_dict() save_param_path = ( self.config.results_dir + "/CRAFT_clr_amp_" + repr(train_step) + ".pth" ) torch.save(save_param_dic, save_param_path) class DotDict(dict): def __getattr__(self, k): try: v = self[k] except: return super().__getattr__(k) if isinstance(v, dict): return DotDict(v) return v def __getitem__(self, k): if isinstance(k, str) and '.' in k: k = k.split('.') if isinstance(k, (list, tuple)): return reduce(lambda d, kk: d[kk], k, self) return super().__getitem__(k) def get(self, k, default=None): if isinstance(k, str) and '.' in k: try: return self[k] except KeyError: return default return super().get(k, default=default) def main_worker(gpu, port, ngpus_per_node, config, buffer_dict, exp_name): torch.distributed.init_process_group( backend="nccl", init_method="tcp://127.0.0.1:" + port, world_size=ngpus_per_node, rank=gpu, ) # Apply config to wandb if gpu == 0 and config["wandb_opt"]: wandb.init(project="craft-stage1", entity="gmuffiness", name=exp_name) wandb.config.update(config) batch_size = int(config["train"]["batch_size"] / ngpus_per_node) config["train"]["batch_size"] = batch_size config = DotDict(config) # Start train trainer = Trainer(config, gpu) trainer.train(buffer_dict) if gpu == 0 and config["wandb_opt"]: wandb.finish() torch.distributed.destroy_process_group()
null
1,180
import numpy as np import cv2 from skimage import io def loadImage(img_file): img = io.imread(img_file) # RGB order if img.shape[0] == 2: img = img[0] if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) if img.shape[2] == 4: img = img[:, :, :3] img = np.array(img) return img
null
1,181
import numpy as np import cv2 from skimage import io def denormalizeMeanVariance( in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225) ): # should be RGB order img = in_img.copy() img *= variance img += mean img *= 255.0 img = np.clip(img, 0, 255).astype(np.uint8) return img
null
1,182
import cv2 import numpy as np from skimage.segmentation import watershed def segment_region_score(watershed_param, region_score, word_image, pseudo_vis_opt): region_score = np.float32(region_score) / 255 fore = np.uint8(region_score > 0.75) back = np.uint8(region_score < 0.05) unknown = 1 - (fore + back) ret, markers = cv2.connectedComponents(fore) markers += 1 markers[unknown == 1] = 0 labels = watershed(-region_score, markers) boxes = [] for label in range(2, ret + 1): y, x = np.where(labels == label) x_max = x.max() y_max = y.max() x_min = x.min() y_min = y.min() box = [[x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max]] box = np.array(box) box *= 2 boxes.append(box) return np.array(boxes, dtype=np.float32) def exec_watershed_by_version( watershed_param, region_score, word_image, pseudo_vis_opt ): func_name_map_dict = { "skimage": segment_region_score, } try: return func_name_map_dict[watershed_param.version]( watershed_param, region_score, word_image, pseudo_vis_opt ) except: print( f"Watershed version {watershed_param.version} does not exist in func_name_map_dict." )
null
1,183
import random import cv2 import numpy as np from PIL import Image from torchvision.transforms.functional import resized_crop, crop from torchvision.transforms import RandomResizedCrop, RandomCrop from torchvision.transforms import InterpolationMode def rescale(img, bboxes, target_size=2240): h, w = img.shape[0:2] scale = target_size / max(h, w) img = cv2.resize(img, dsize=None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) bboxes = bboxes * scale return img, bboxes
null
1,184
import random import cv2 import numpy as np from PIL import Image from torchvision.transforms.functional import resized_crop, crop from torchvision.transforms import RandomResizedCrop, RandomCrop from torchvision.transforms import InterpolationMode def random_resize_crop_synth(augment_targets, size): image, region_score, affinity_score, confidence_mask = augment_targets image = Image.fromarray(image) region_score = Image.fromarray(region_score) affinity_score = Image.fromarray(affinity_score) confidence_mask = Image.fromarray(confidence_mask) short_side = min(image.size) i, j, h, w = RandomCrop.get_params(image, output_size=(short_side, short_side)) image = resized_crop( image, i, j, h, w, size=(size, size), interpolation=InterpolationMode.BICUBIC ) region_score = resized_crop( region_score, i, j, h, w, (size, size), interpolation=InterpolationMode.BICUBIC ) affinity_score = resized_crop( affinity_score, i, j, h, w, (size, size), interpolation=InterpolationMode.BICUBIC, ) confidence_mask = resized_crop( confidence_mask, i, j, h, w, (size, size), interpolation=InterpolationMode.NEAREST, ) image = np.array(image) region_score = np.array(region_score) affinity_score = np.array(affinity_score) confidence_mask = np.array(confidence_mask) augment_targets = [image, region_score, affinity_score, confidence_mask] return augment_targets
null
1,185
import random import cv2 import numpy as np from PIL import Image from torchvision.transforms.functional import resized_crop, crop from torchvision.transforms import RandomResizedCrop, RandomCrop from torchvision.transforms import InterpolationMode def random_resize_crop( augment_targets, scale, ratio, size, threshold, pre_crop_area=None ): image, region_score, affinity_score, confidence_mask = augment_targets image = Image.fromarray(image) region_score = Image.fromarray(region_score) affinity_score = Image.fromarray(affinity_score) confidence_mask = Image.fromarray(confidence_mask) if pre_crop_area != None: i, j, h, w = pre_crop_area else: if random.random() < threshold: i, j, h, w = RandomResizedCrop.get_params(image, scale=scale, ratio=ratio) else: i, j, h, w = RandomResizedCrop.get_params( image, scale=(1.0, 1.0), ratio=(1.0, 1.0) ) image = resized_crop( image, i, j, h, w, size=(size, size), interpolation=InterpolationMode.BICUBIC ) region_score = resized_crop( region_score, i, j, h, w, (size, size), interpolation=InterpolationMode.BICUBIC ) affinity_score = resized_crop( affinity_score, i, j, h, w, (size, size), interpolation=InterpolationMode.BICUBIC, ) confidence_mask = resized_crop( confidence_mask, i, j, h, w, (size, size), interpolation=InterpolationMode.NEAREST, ) image = np.array(image) region_score = np.array(region_score) affinity_score = np.array(affinity_score) confidence_mask = np.array(confidence_mask) augment_targets = [image, region_score, affinity_score, confidence_mask] return augment_targets
null
1,186
import random import cv2 import numpy as np from PIL import Image from torchvision.transforms.functional import resized_crop, crop from torchvision.transforms import RandomResizedCrop, RandomCrop from torchvision.transforms import InterpolationMode def random_crop(augment_targets, size): image, region_score, affinity_score, confidence_mask = augment_targets image = Image.fromarray(image) region_score = Image.fromarray(region_score) affinity_score = Image.fromarray(affinity_score) confidence_mask = Image.fromarray(confidence_mask) i, j, h, w = RandomCrop.get_params(image, output_size=(size, size)) image = crop(image, i, j, h, w) region_score = crop(region_score, i, j, h, w) affinity_score = crop(affinity_score, i, j, h, w) confidence_mask = crop(confidence_mask, i, j, h, w) image = np.array(image) region_score = np.array(region_score) affinity_score = np.array(affinity_score) confidence_mask = np.array(confidence_mask) augment_targets = [image, region_score, affinity_score, confidence_mask] return augment_targets
null
1,187
import random import cv2 import numpy as np from PIL import Image from torchvision.transforms.functional import resized_crop, crop from torchvision.transforms import RandomResizedCrop, RandomCrop from torchvision.transforms import InterpolationMode def random_horizontal_flip(imgs): if random.random() < 0.5: for i in range(len(imgs)): imgs[i] = np.flip(imgs[i], axis=1).copy() return imgs
null
1,188
import random import cv2 import numpy as np from PIL import Image from torchvision.transforms.functional import resized_crop, crop from torchvision.transforms import RandomResizedCrop, RandomCrop from torchvision.transforms import InterpolationMode def random_scale(images, word_level_char_bbox, scale_range): scale = random.sample(scale_range, 1)[0] for i in range(len(images)): images[i] = cv2.resize(images[i], dsize=None, fx=scale, fy=scale) for i in range(len(word_level_char_bbox)): word_level_char_bbox[i] *= scale return images
null
1,189
import random import cv2 import numpy as np from PIL import Image from torchvision.transforms.functional import resized_crop, crop from torchvision.transforms import RandomResizedCrop, RandomCrop from torchvision.transforms import InterpolationMode def random_rotate(images, max_angle): angle = random.random() * 2 * max_angle - max_angle for i in range(len(images)): img = images[i] w, h = img.shape[:2] rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1) if i == len(images) - 1: img_rotation = cv2.warpAffine( img, M=rotation_matrix, dsize=(h, w), flags=cv2.INTER_NEAREST ) else: img_rotation = cv2.warpAffine(img, rotation_matrix, (h, w)) images[i] = img_rotation return images
null
1,190
import math import numpy as np def getX(K, B, Ypoint): return int((Ypoint-B)/K)
null
1,191
import math import numpy as np def lineBiasAndK(Apoint, Bpoint): K = pointAngle(Apoint, Bpoint) B = Apoint[1] - K*Apoint[0] return K, B def sidePoint(Apoint, Bpoint, h, w, placehold, enlarge_size): K, B = lineBiasAndK(Apoint, Bpoint) angle = abs(math.atan(pointAngle(Apoint, Bpoint))) distance = pointDistance(Apoint, Bpoint) x_enlarge_size, y_enlarge_size = enlarge_size XaxisIncreaseDistance = abs(math.cos(angle) * x_enlarge_size * distance) YaxisIncreaseDistance = abs(math.sin(angle) * y_enlarge_size * distance) if placehold == 'leftTop': x1 = max(0, Apoint[0] - XaxisIncreaseDistance) y1 = max(0, Apoint[1] - YaxisIncreaseDistance) elif placehold == 'rightTop': x1 = min(w, Bpoint[0] + XaxisIncreaseDistance) y1 = max(0, Bpoint[1] - YaxisIncreaseDistance) elif placehold == 'rightBottom': x1 = min(w, Bpoint[0] + XaxisIncreaseDistance) y1 = min(h, Bpoint[1] + YaxisIncreaseDistance) elif placehold == 'leftBottom': x1 = max(0, Apoint[0] - XaxisIncreaseDistance) y1 = min(h, Apoint[1] + YaxisIncreaseDistance) return int(x1), int(y1) def enlargebox(box, h, w, enlarge_size, horizontal_text_bool): if not horizontal_text_bool: enlarge_size = (enlarge_size[1], enlarge_size[0]) box = np.roll(box, -np.argmin(box.sum(axis=1)), axis=0) Apoint, Bpoint, Cpoint, Dpoint = box K1, B1 = lineBiasAndK(box[0], box[2]) K2, B2 = lineBiasAndK(box[3], box[1]) X = (B2 - B1)/(K1 - K2) Y = K1 * X + B1 center = [X, Y] x1, y1 = sidePoint(Apoint, center, h, w, 'leftTop', enlarge_size) x2, y2 = sidePoint(center, Bpoint, h, w, 'rightTop', enlarge_size) x3, y3 = sidePoint(center, Cpoint, h, w, 'rightBottom', enlarge_size) x4, y4 = sidePoint(Dpoint, center, h, w, 'leftBottom', enlarge_size) newcharbox = np.array([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]) return newcharbox
null
1,192
import os import yaml from functools import reduce CONFIG_PATH = os.path.dirname(__file__) import os os.environ["LRU_CACHE_CAPACITY"] = "1" def load_yaml(config_name): with open(os.path.join(CONFIG_PATH, config_name)+ '.yaml') as file: config = yaml.safe_load(file) return config
null
1,193
import argparse import os import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn from tqdm import tqdm import wandb from config.load_config import load_yaml, DotDict from model.craft import CRAFT from metrics.eval_det_iou import DetectionIoUEvaluator from utils.inference_boxes import ( test_net, load_icdar2015_gt, load_icdar2013_gt, load_synthtext_gt, ) from utils.util import copyStateDict def main_eval(model_path, backbone, config, evaluator, result_dir, buffer, model, mode): if not os.path.exists(result_dir): os.makedirs(result_dir, exist_ok=True) total_imgs_bboxes_gt, total_imgs_path = load_test_dataset_iou("custom_data", config) if mode == "weak_supervision" and torch.cuda.device_count() != 1: gpu_count = torch.cuda.device_count() // 2 else: gpu_count = torch.cuda.device_count() gpu_idx = torch.cuda.current_device() torch.cuda.set_device(gpu_idx) # Only evaluation time if model is None: piece_imgs_path = total_imgs_path if backbone == "vgg": model = CRAFT() else: raise Exception("Undefined architecture") print("Loading weights from checkpoint (" + model_path + ")") net_param = torch.load(model_path, map_location=f"cuda:{gpu_idx}") model.load_state_dict(copyStateDict(net_param["craft"])) if config.cuda: model = model.cuda() cudnn.benchmark = False # Distributed evaluation in the middle of training time else: if buffer is not None: # check all buffer value is None for distributed evaluation assert all( v is None for v in buffer ), "Buffer already filled with another value." slice_idx = len(total_imgs_bboxes_gt) // gpu_count # last gpu if gpu_idx == gpu_count - 1: piece_imgs_path = total_imgs_path[gpu_idx * slice_idx :] # piece_imgs_bboxes_gt = total_imgs_bboxes_gt[gpu_idx * slice_idx:] else: piece_imgs_path = total_imgs_path[ gpu_idx * slice_idx : (gpu_idx + 1) * slice_idx ] # piece_imgs_bboxes_gt = total_imgs_bboxes_gt[gpu_idx * slice_idx: (gpu_idx + 1) * slice_idx] model.eval() # -----------------------------------------------------------------------------------------------------------------# total_imgs_bboxes_pre = [] for k, img_path in enumerate(tqdm(piece_imgs_path)): image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) single_img_bbox = [] bboxes, polys, score_text = test_net( model, image, config.text_threshold, config.link_threshold, config.low_text, config.cuda, config.poly, config.canvas_size, config.mag_ratio, ) for box in bboxes: box_info = {"points": box, "text": "###", "ignore": False} single_img_bbox.append(box_info) total_imgs_bboxes_pre.append(single_img_bbox) # Distributed evaluation -------------------------------------------------------------------------------------# if buffer is not None: buffer[gpu_idx * slice_idx + k] = single_img_bbox # print(sum([element is not None for element in buffer])) # -------------------------------------------------------------------------------------------------------------# if config.vis_opt: viz_test( image, score_text, pre_box=polys, gt_box=total_imgs_bboxes_gt[k], img_name=img_path, result_dir=result_dir, test_folder_name="custom_data", ) # When distributed evaluation mode, wait until buffer is full filled if buffer is not None: while None in buffer: continue assert all(v is not None for v in buffer), "Buffer not filled" total_imgs_bboxes_pre = buffer results = [] for i, (gt, pred) in enumerate(zip(total_imgs_bboxes_gt, total_imgs_bboxes_pre)): perSampleMetrics_dict = evaluator.evaluate_image(gt, pred) results.append(perSampleMetrics_dict) metrics = evaluator.combine_results(results) print(metrics) return metrics class DotDict(dict): def __getattr__(self, k): try: v = self[k] except: return super().__getattr__(k) if isinstance(v, dict): return DotDict(v) return v def __getitem__(self, k): if isinstance(k, str) and '.' in k: k = k.split('.') if isinstance(k, (list, tuple)): return reduce(lambda d, kk: d[kk], k, self) return super().__getitem__(k) def get(self, k, default=None): if isinstance(k, str) and '.' in k: try: return self[k] except KeyError: return default return super().get(k, default=default) class DetectionIoUEvaluator(object): def __init__(self, iou_constraint=0.5, area_precision_constraint=0.5): self.iou_constraint = iou_constraint self.area_precision_constraint = area_precision_constraint def evaluate_image(self, gt, pred): def get_union(pD, pG): return Polygon(pD).union(Polygon(pG)).area def get_intersection_over_union(pD, pG): return get_intersection(pD, pG) / get_union(pD, pG) def get_intersection(pD, pG): return Polygon(pD).intersection(Polygon(pG)).area def compute_ap(confList, matchList, numGtCare): correct = 0 AP = 0 if len(confList) > 0: confList = np.array(confList) matchList = np.array(matchList) sorted_ind = np.argsort(-confList) confList = confList[sorted_ind] matchList = matchList[sorted_ind] for n in range(len(confList)): match = matchList[n] if match: correct += 1 AP += float(correct) / (n + 1) if numGtCare > 0: AP /= numGtCare return AP perSampleMetrics = {} matchedSum = 0 Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax') numGlobalCareGt = 0 numGlobalCareDet = 0 arrGlobalConfidences = [] arrGlobalMatches = [] recall = 0 precision = 0 hmean = 0 detMatched = 0 iouMat = np.empty([1, 1]) gtPols = [] detPols = [] gtPolPoints = [] detPolPoints = [] # Array of Ground Truth Polygons' keys marked as don't Care gtDontCarePolsNum = [] # Array of Detected Polygons' matched with a don't Care GT detDontCarePolsNum = [] pairs = [] detMatchedNums = [] arrSampleConfidences = [] arrSampleMatch = [] evaluationLog = "" # print(len(gt)) for n in range(len(gt)): points = gt[n]['points'] # transcription = gt[n]['text'] dontCare = gt[n]['ignore'] # points = Polygon(points) # points = points.buffer(0) try: if not Polygon(points).is_valid or not Polygon(points).is_simple: continue except: import ipdb; ipdb.set_trace() #import ipdb;ipdb.set_trace() gtPol = points gtPols.append(gtPol) gtPolPoints.append(points) if dontCare: gtDontCarePolsNum.append(len(gtPols) - 1) evaluationLog += "GT polygons: " + str(len(gtPols)) + ( " (" + str(len(gtDontCarePolsNum)) + " don't care)\n" if len(gtDontCarePolsNum) > 0 else "\n") for n in range(len(pred)): points = pred[n]['points'] # points = Polygon(points) # points = points.buffer(0) if not Polygon(points).is_valid or not Polygon(points).is_simple: continue detPol = points detPols.append(detPol) detPolPoints.append(points) if len(gtDontCarePolsNum) > 0: for dontCarePol in gtDontCarePolsNum: dontCarePol = gtPols[dontCarePol] intersected_area = get_intersection(dontCarePol, detPol) pdDimensions = Polygon(detPol).area precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions if (precision > self.area_precision_constraint): detDontCarePolsNum.append(len(detPols) - 1) break evaluationLog += "DET polygons: " + str(len(detPols)) + ( " (" + str(len(detDontCarePolsNum)) + " don't care)\n" if len(detDontCarePolsNum) > 0 else "\n") if len(gtPols) > 0 and len(detPols) > 0: # Calculate IoU and precision matrices outputShape = [len(gtPols), len(detPols)] iouMat = np.empty(outputShape) gtRectMat = np.zeros(len(gtPols), np.int8) detRectMat = np.zeros(len(detPols), np.int8) for gtNum in range(len(gtPols)): for detNum in range(len(detPols)): pG = gtPols[gtNum] pD = detPols[detNum] iouMat[gtNum, detNum] = get_intersection_over_union(pD, pG) for gtNum in range(len(gtPols)): for detNum in range(len(detPols)): if gtRectMat[gtNum] == 0 and detRectMat[ detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum: if iouMat[gtNum, detNum] > self.iou_constraint: gtRectMat[gtNum] = 1 detRectMat[detNum] = 1 detMatched += 1 pairs.append({'gt': gtNum, 'det': detNum}) detMatchedNums.append(detNum) evaluationLog += "Match GT #" + \ str(gtNum) + " with Det #" + str(detNum) + "\n" numGtCare = (len(gtPols) - len(gtDontCarePolsNum)) numDetCare = (len(detPols) - len(detDontCarePolsNum)) if numGtCare == 0: recall = float(1) precision = float(0) if numDetCare > 0 else float(1) else: recall = float(detMatched) / numGtCare precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare hmean = 0 if (precision + recall) == 0 else 2.0 * \ precision * recall / (precision + recall) matchedSum += detMatched numGlobalCareGt += numGtCare numGlobalCareDet += numDetCare perSampleMetrics = { 'precision': precision, 'recall': recall, 'hmean': hmean, 'pairs': pairs, 'iouMat': [] if len(detPols) > 100 else iouMat.tolist(), 'gtPolPoints': gtPolPoints, 'detPolPoints': detPolPoints, 'gtCare': numGtCare, 'detCare': numDetCare, 'gtDontCare': gtDontCarePolsNum, 'detDontCare': detDontCarePolsNum, 'detMatched': detMatched, 'evaluationLog': evaluationLog } return perSampleMetrics def combine_results(self, results): numGlobalCareGt = 0 numGlobalCareDet = 0 matchedSum = 0 for result in results: numGlobalCareGt += result['gtCare'] numGlobalCareDet += result['detCare'] matchedSum += result['detMatched'] methodRecall = 0 if numGlobalCareGt == 0 else float( matchedSum) / numGlobalCareGt methodPrecision = 0 if numGlobalCareDet == 0 else float( matchedSum) / numGlobalCareDet methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \ methodRecall * methodPrecision / ( methodRecall + methodPrecision) # print(methodRecall, methodPrecision, methodHmean) # sys.exit(-1) methodMetrics = { 'precision': methodPrecision, 'recall': methodRecall, 'hmean': methodHmean } return methodMetrics def cal_eval(config, data, res_dir_name, opt, mode): evaluator = DetectionIoUEvaluator() test_config = DotDict(config.test[data]) res_dir = os.path.join(os.path.join("exp", args.yaml), "{}".format(res_dir_name)) if opt == "iou_eval": main_eval( config.test.trained_model, config.train.backbone, test_config, evaluator, res_dir, buffer=None, model=None, mode=mode, ) else: print("Undefined evaluation")
null
1,194
import argparse import os import shutil import time import multiprocessing as mp import yaml import numpy as np import torch import torch.nn as nn import torch.optim as optim import wandb from config.load_config import load_yaml, DotDict from data.dataset import SynthTextDataSet, CustomDataset from loss.mseloss import Maploss_v2, Maploss_v3 from model.craft import CRAFT from eval import main_eval from metrics.eval_det_iou import DetectionIoUEvaluator from utils.util import copyStateDict, save_parser class Trainer(object): def __init__(self, config, gpu, mode): self.config = config self.gpu = gpu self.mode = mode self.net_param = self.get_load_param(gpu) def get_synth_loader(self): dataset = SynthTextDataSet( output_size=self.config.train.data.output_size, data_dir=self.config.train.synth_data_dir, saved_gt_dir=None, mean=self.config.train.data.mean, variance=self.config.train.data.variance, gauss_init_size=self.config.train.data.gauss_init_size, gauss_sigma=self.config.train.data.gauss_sigma, enlarge_region=self.config.train.data.enlarge_region, enlarge_affinity=self.config.train.data.enlarge_affinity, aug=self.config.train.data.syn_aug, vis_test_dir=self.config.vis_test_dir, vis_opt=self.config.train.data.vis_opt, sample=self.config.train.data.syn_sample, ) syn_sampler = torch.utils.data.distributed.DistributedSampler(dataset) syn_loader = torch.utils.data.DataLoader( dataset, batch_size=self.config.train.batch_size // self.config.train.synth_ratio, shuffle=False, num_workers=self.config.train.num_workers, sampler=syn_sampler, drop_last=True, pin_memory=True, ) return syn_loader def get_custom_dataset(self): custom_dataset = CustomDataset( output_size=self.config.train.data.output_size, data_dir=self.config.data_root_dir, saved_gt_dir=None, mean=self.config.train.data.mean, variance=self.config.train.data.variance, gauss_init_size=self.config.train.data.gauss_init_size, gauss_sigma=self.config.train.data.gauss_sigma, enlarge_region=self.config.train.data.enlarge_region, enlarge_affinity=self.config.train.data.enlarge_affinity, watershed_param=self.config.train.data.watershed, aug=self.config.train.data.custom_aug, vis_test_dir=self.config.vis_test_dir, sample=self.config.train.data.custom_sample, vis_opt=self.config.train.data.vis_opt, pseudo_vis_opt=self.config.train.data.pseudo_vis_opt, do_not_care_label=self.config.train.data.do_not_care_label, ) return custom_dataset def get_load_param(self, gpu): if self.config.train.ckpt_path is not None: map_location = "cuda:%d" % gpu param = torch.load(self.config.train.ckpt_path, map_location=map_location) else: param = None return param def adjust_learning_rate(self, optimizer, gamma, step, lr): lr = lr * (gamma ** step) for param_group in optimizer.param_groups: param_group["lr"] = lr return param_group["lr"] def get_loss(self): if self.config.train.loss == 2: criterion = Maploss_v2() elif self.config.train.loss == 3: criterion = Maploss_v3() else: raise Exception("Undefined loss") return criterion def iou_eval(self, dataset, train_step, buffer, model): test_config = DotDict(self.config.test[dataset]) val_result_dir = os.path.join( self.config.results_dir, "{}/{}".format(dataset + "_iou", str(train_step)) ) evaluator = DetectionIoUEvaluator() metrics = main_eval( None, self.config.train.backbone, test_config, evaluator, val_result_dir, buffer, model, self.mode, ) if self.gpu == 0 and self.config.wandb_opt: wandb.log( { "{} iou Recall".format(dataset): np.round(metrics["recall"], 3), "{} iou Precision".format(dataset): np.round( metrics["precision"], 3 ), "{} iou F1-score".format(dataset): np.round(metrics["hmean"], 3), } ) def train(self, buffer_dict): torch.cuda.set_device(self.gpu) total_gpu_num = torch.cuda.device_count() # MODEL -------------------------------------------------------------------------------------------------------# # SUPERVISION model if self.config.mode == "weak_supervision": if self.config.train.backbone == "vgg": supervision_model = CRAFT(pretrained=False, amp=self.config.train.amp) else: raise Exception("Undefined architecture") # NOTE: only work on half GPU assign train / half GPU assign supervision setting supervision_device = total_gpu_num // 2 + self.gpu if self.config.train.ckpt_path is not None: supervision_param = self.get_load_param(supervision_device) supervision_model.load_state_dict( copyStateDict(supervision_param["craft"]) ) supervision_model = supervision_model.to(f"cuda:{supervision_device}") print(f"Supervision model loading on : gpu {supervision_device}") else: supervision_model, supervision_device = None, None # TRAIN model if self.config.train.backbone == "vgg": craft = CRAFT(pretrained=False, amp=self.config.train.amp) else: raise Exception("Undefined architecture") if self.config.train.ckpt_path is not None: craft.load_state_dict(copyStateDict(self.net_param["craft"])) craft = nn.SyncBatchNorm.convert_sync_batchnorm(craft) craft = craft.cuda() craft = torch.nn.parallel.DistributedDataParallel(craft, device_ids=[self.gpu]) torch.backends.cudnn.benchmark = True # DATASET -----------------------------------------------------------------------------------------------------# if self.config.train.use_synthtext: trn_syn_loader = self.get_synth_loader() batch_syn = iter(trn_syn_loader) if self.config.train.real_dataset == "custom": trn_real_dataset = self.get_custom_dataset() else: raise Exception("Undefined dataset") if self.config.mode == "weak_supervision": trn_real_dataset.update_model(supervision_model) trn_real_dataset.update_device(supervision_device) trn_real_sampler = torch.utils.data.distributed.DistributedSampler( trn_real_dataset ) trn_real_loader = torch.utils.data.DataLoader( trn_real_dataset, batch_size=self.config.train.batch_size, shuffle=False, num_workers=self.config.train.num_workers, sampler=trn_real_sampler, drop_last=False, pin_memory=True, ) # OPTIMIZER ---------------------------------------------------------------------------------------------------# optimizer = optim.Adam( craft.parameters(), lr=self.config.train.lr, weight_decay=self.config.train.weight_decay, ) if self.config.train.ckpt_path is not None and self.config.train.st_iter != 0: optimizer.load_state_dict(copyStateDict(self.net_param["optimizer"])) self.config.train.st_iter = self.net_param["optimizer"]["state"][0]["step"] self.config.train.lr = self.net_param["optimizer"]["param_groups"][0]["lr"] # LOSS --------------------------------------------------------------------------------------------------------# # mixed precision if self.config.train.amp: scaler = torch.cuda.amp.GradScaler() if ( self.config.train.ckpt_path is not None and self.config.train.st_iter != 0 ): scaler.load_state_dict(copyStateDict(self.net_param["scaler"])) else: scaler = None criterion = self.get_loss() # TRAIN -------------------------------------------------------------------------------------------------------# train_step = self.config.train.st_iter whole_training_step = self.config.train.end_iter update_lr_rate_step = 0 training_lr = self.config.train.lr loss_value = 0 batch_time = 0 start_time = time.time() print( "================================ Train start ================================" ) while train_step < whole_training_step: trn_real_sampler.set_epoch(train_step) for ( index, ( images, region_scores, affinity_scores, confidence_masks, ), ) in enumerate(trn_real_loader): craft.train() if train_step > 0 and train_step % self.config.train.lr_decay == 0: update_lr_rate_step += 1 training_lr = self.adjust_learning_rate( optimizer, self.config.train.gamma, update_lr_rate_step, self.config.train.lr, ) images = images.cuda(non_blocking=True) region_scores = region_scores.cuda(non_blocking=True) affinity_scores = affinity_scores.cuda(non_blocking=True) confidence_masks = confidence_masks.cuda(non_blocking=True) if self.config.train.use_synthtext: # Synth image load syn_image, syn_region_label, syn_affi_label, syn_confidence_mask = next( batch_syn ) syn_image = syn_image.cuda(non_blocking=True) syn_region_label = syn_region_label.cuda(non_blocking=True) syn_affi_label = syn_affi_label.cuda(non_blocking=True) syn_confidence_mask = syn_confidence_mask.cuda(non_blocking=True) # concat syn & custom image images = torch.cat((syn_image, images), 0) region_image_label = torch.cat( (syn_region_label, region_scores), 0 ) affinity_image_label = torch.cat((syn_affi_label, affinity_scores), 0) confidence_mask_label = torch.cat( (syn_confidence_mask, confidence_masks), 0 ) else: region_image_label = region_scores affinity_image_label = affinity_scores confidence_mask_label = confidence_masks if self.config.train.amp: with torch.cuda.amp.autocast(): output, _ = craft(images) out1 = output[:, :, :, 0] out2 = output[:, :, :, 1] loss = criterion( region_image_label, affinity_image_label, out1, out2, confidence_mask_label, self.config.train.neg_rto, self.config.train.n_min_neg, ) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() else: output, _ = craft(images) out1 = output[:, :, :, 0] out2 = output[:, :, :, 1] loss = criterion( region_image_label, affinity_image_label, out1, out2, confidence_mask_label, self.config.train.neg_rto, ) optimizer.zero_grad() loss.backward() optimizer.step() end_time = time.time() loss_value += loss.item() batch_time += end_time - start_time if train_step > 0 and train_step % 5 == 0 and self.gpu == 0: mean_loss = loss_value / 5 loss_value = 0 avg_batch_time = batch_time / 5 batch_time = 0 print( "{}, training_step: {}|{}, learning rate: {:.8f}, " "training_loss: {:.5f}, avg_batch_time: {:.5f}".format( time.strftime( "%Y-%m-%d:%H:%M:%S", time.localtime(time.time()) ), train_step, whole_training_step, training_lr, mean_loss, avg_batch_time, ) ) if self.gpu == 0 and self.config.wandb_opt: wandb.log({"train_step": train_step, "mean_loss": mean_loss}) if ( train_step % self.config.train.eval_interval == 0 and train_step != 0 ): craft.eval() # initialize all buffer value with zero if self.gpu == 0: for buffer in buffer_dict.values(): for i in range(len(buffer)): buffer[i] = None print("Saving state, index:", train_step) save_param_dic = { "iter": train_step, "craft": craft.state_dict(), "optimizer": optimizer.state_dict(), } save_param_path = ( self.config.results_dir + "/CRAFT_clr_" + repr(train_step) + ".pth" ) if self.config.train.amp: save_param_dic["scaler"] = scaler.state_dict() save_param_path = ( self.config.results_dir + "/CRAFT_clr_amp_" + repr(train_step) + ".pth" ) torch.save(save_param_dic, save_param_path) # validation self.iou_eval( "custom_data", train_step, buffer_dict["custom_data"], craft, ) train_step += 1 if train_step >= whole_training_step: break if self.config.mode == "weak_supervision": state_dict = craft.module.state_dict() supervision_model.load_state_dict(state_dict) trn_real_dataset.update_model(supervision_model) # save last model if self.gpu == 0: save_param_dic = { "iter": train_step, "craft": craft.state_dict(), "optimizer": optimizer.state_dict(), } save_param_path = ( self.config.results_dir + "/CRAFT_clr_" + repr(train_step) + ".pth" ) if self.config.train.amp: save_param_dic["scaler"] = scaler.state_dict() save_param_path = ( self.config.results_dir + "/CRAFT_clr_amp_" + repr(train_step) + ".pth" ) torch.save(save_param_dic, save_param_path) class DotDict(dict): def __getattr__(self, k): try: v = self[k] except: return super().__getattr__(k) if isinstance(v, dict): return DotDict(v) return v def __getitem__(self, k): if isinstance(k, str) and '.' in k: k = k.split('.') if isinstance(k, (list, tuple)): return reduce(lambda d, kk: d[kk], k, self) return super().__getitem__(k) def get(self, k, default=None): if isinstance(k, str) and '.' in k: try: return self[k] except KeyError: return default return super().get(k, default=default) def main_worker(gpu, port, ngpus_per_node, config, buffer_dict, exp_name, mode): torch.distributed.init_process_group( backend="nccl", init_method="tcp://127.0.0.1:" + port, world_size=ngpus_per_node, rank=gpu, ) # Apply config to wandb if gpu == 0 and config["wandb_opt"]: wandb.init(project="craft-stage2", entity="user_name", name=exp_name) wandb.config.update(config) batch_size = int(config["train"]["batch_size"] / ngpus_per_node) config["train"]["batch_size"] = batch_size config = DotDict(config) # Start train trainer = Trainer(config, gpu, mode) trainer.train(buffer_dict) if gpu == 0: if config["wandb_opt"]: wandb.finish() torch.distributed.barrier() torch.distributed.destroy_process_group()
null
1,195
import torch import torch.nn as nn import torch.nn.init as init import torchvision from torchvision import models from packaging import version def init_weights(modules): for m in modules: if isinstance(m, nn.Conv2d): init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_()
null
1,196
from collections import OrderedDict import os import cv2 import numpy as np from data import imgproc from utils import craft_utils def saveInput( imagename, vis_dir, image, region_scores, affinity_scores, confidence_mask ): image = np.uint8(image.copy()) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) boxes, polys = craft_utils.getDetBoxes( region_scores, affinity_scores, 0.85, 0.2, 0.5, False ) if image.shape[0] / region_scores.shape[0] >= 2: boxes = np.array(boxes, np.int32) * 2 else: boxes = np.array(boxes, np.int32) if len(boxes) > 0: np.clip(boxes[:, :, 0], 0, image.shape[1]) np.clip(boxes[:, :, 1], 0, image.shape[0]) for box in boxes: cv2.polylines(image, [np.reshape(box, (-1, 1, 2))], True, (0, 0, 255)) target_gaussian_heatmap_color = imgproc.cvt2HeatmapImg(region_scores) target_gaussian_affinity_heatmap_color = imgproc.cvt2HeatmapImg(affinity_scores) confidence_mask_gray = imgproc.cvt2HeatmapImg(confidence_mask) # overlay height, width, channel = image.shape overlay_region = cv2.resize(target_gaussian_heatmap_color, (width, height)) overlay_aff = cv2.resize(target_gaussian_affinity_heatmap_color, (width, height)) confidence_mask_gray = cv2.resize( confidence_mask_gray, (width, height), interpolation=cv2.INTER_NEAREST ) overlay_region = cv2.addWeighted(image, 0.4, overlay_region, 0.6, 5) overlay_aff = cv2.addWeighted(image, 0.4, overlay_aff, 0.7, 6) gt_scores = np.concatenate([overlay_region, overlay_aff], axis=1) output = np.concatenate([gt_scores, confidence_mask_gray], axis=1) output = np.hstack([image, output]) # synthtext if type(imagename) is not str: imagename = imagename[0].split("/")[-1][:-4] outpath = vis_dir + f"/{imagename}_input.jpg" if not os.path.exists(os.path.dirname(outpath)): os.makedirs(os.path.dirname(outpath), exist_ok=True) cv2.imwrite(outpath, output) # print(f'Logging train input into {outpath}')
null
1,197
from collections import OrderedDict import os import cv2 import numpy as np from data import imgproc from utils import craft_utils def saveImage( imagename, vis_dir, image, bboxes, affi_bboxes, region_scores, affinity_scores, confidence_mask, ): output_image = np.uint8(image.copy()) output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR) if len(bboxes) > 0: for i in range(len(bboxes)): _bboxes = np.int32(bboxes[i]) for j in range(_bboxes.shape[0]): cv2.polylines( output_image, [np.reshape(_bboxes[j], (-1, 1, 2))], True, (0, 0, 255), ) for i in range(len(affi_bboxes)): cv2.polylines( output_image, [np.reshape(affi_bboxes[i].astype(np.int32), (-1, 1, 2))], True, (255, 0, 0), ) target_gaussian_heatmap_color = imgproc.cvt2HeatmapImg(region_scores) target_gaussian_affinity_heatmap_color = imgproc.cvt2HeatmapImg(affinity_scores) confidence_mask_gray = imgproc.cvt2HeatmapImg(confidence_mask) # overlay height, width, channel = image.shape overlay_region = cv2.resize(target_gaussian_heatmap_color, (width, height)) overlay_aff = cv2.resize(target_gaussian_affinity_heatmap_color, (width, height)) overlay_region = cv2.addWeighted(image.copy(), 0.4, overlay_region, 0.6, 5) overlay_aff = cv2.addWeighted(image.copy(), 0.4, overlay_aff, 0.6, 5) heat_map = np.concatenate([overlay_region, overlay_aff], axis=1) # synthtext if type(imagename) is not str: imagename = imagename[0].split("/")[-1][:-4] output = np.concatenate([output_image, heat_map, confidence_mask_gray], axis=1) outpath = vis_dir + f"/{imagename}.jpg" if not os.path.exists(os.path.dirname(outpath)): os.makedirs(os.path.dirname(outpath), exist_ok=True) cv2.imwrite(outpath, output) # print(f'Logging original image into {outpath}')
null
1,198
from collections import OrderedDict import os import cv2 import numpy as np from data import imgproc from utils import craft_utils The provided code snippet includes necessary dependencies for implementing the `save_parser` function. Write a Python function `def save_parser(args)` to solve the following problem: final options Here is the function: def save_parser(args): """ final options """ with open(f"{args.results_dir}/opt.txt", "a", encoding="utf-8") as opt_file: opt_log = "------------ Options -------------\n" arg = vars(args) for k, v in arg.items(): opt_log += f"{str(k)}: {str(v)}\n" opt_log += "---------------------------------------\n" print(opt_log) opt_file.write(opt_log)
final options
1,199
import os import torch import cv2 import math import numpy as np from data import imgproc def save_outputs(image, region_scores, affinity_scores, text_threshold, link_threshold, low_text, outoput_path, confidence_mask = None): """save image, region_scores, and affinity_scores in a single image. region_scores and affinity_scores must be cpu numpy arrays. You can convert GPU Tensors to CPU numpy arrays like this: >>> array = tensor.cpu().data.numpy() When saving outputs of the network during training, make sure you convert ALL tensors (image, region_score, affinity_score) to numpy array first. :param image: numpy array :param region_scores: [] 2D numpy array with each element between 0~1. :param affinity_scores: same as region_scores :param text_threshold: 0 ~ 1. Closer to 0, characters with lower confidence will also be considered a word and be boxed :param link_threshold: 0 ~ 1. Closer to 0, links with lower confidence will also be considered a word and be boxed :param low_text: 0 ~ 1. Closer to 0, boxes will be more loosely drawn. :param outoput_path: :param confidence_mask: :return: """ assert region_scores.shape == affinity_scores.shape assert len(image.shape) - 1 == len(region_scores.shape) boxes, polys = getDetBoxes(region_scores, affinity_scores, text_threshold, link_threshold, low_text, False) boxes = np.array(boxes, np.int32) * 2 if len(boxes) > 0: np.clip(boxes[:, :, 0], 0, image.shape[1]) np.clip(boxes[:, :, 1], 0, image.shape[0]) for box in boxes: cv2.polylines(image, [np.reshape(box, (-1, 1, 2))], True, (0, 0, 255)) target_gaussian_heatmap_color = imgproc.cvt2HeatmapImg(region_scores) target_gaussian_affinity_heatmap_color = imgproc.cvt2HeatmapImg(affinity_scores) if confidence_mask is not None: confidence_mask_gray = imgproc.cvt2HeatmapImg(confidence_mask) gt_scores = np.hstack([target_gaussian_heatmap_color, target_gaussian_affinity_heatmap_color]) confidence_mask_gray = np.hstack([np.zeros_like(confidence_mask_gray), confidence_mask_gray]) output = np.concatenate([gt_scores, confidence_mask_gray], axis=0) output = np.hstack([image, output]) else: gt_scores = np.concatenate([target_gaussian_heatmap_color, target_gaussian_affinity_heatmap_color], axis=0) output = np.hstack([image, gt_scores]) cv2.imwrite(outoput_path, output) return output The provided code snippet includes necessary dependencies for implementing the `save_outputs_from_tensors` function. Write a Python function `def save_outputs_from_tensors(images, region_scores, affinity_scores, text_threshold, link_threshold, low_text, output_dir, image_names, confidence_mask = None)` to solve the following problem: takes images, region_scores, and affinity_scores as tensors (cab be GPU). :param images: 4D tensor :param region_scores: 3D tensor with values between 0 ~ 1 :param affinity_scores: 3D tensor with values between 0 ~ 1 :param text_threshold: :param link_threshold: :param low_text: :param output_dir: direcotry to save the output images. Will be joined with base names of image_names :param image_names: names of each image. Doesn't have to be the base name (image file names) :param confidence_mask: :return: Here is the function: def save_outputs_from_tensors(images, region_scores, affinity_scores, text_threshold, link_threshold, low_text, output_dir, image_names, confidence_mask = None): """takes images, region_scores, and affinity_scores as tensors (cab be GPU). :param images: 4D tensor :param region_scores: 3D tensor with values between 0 ~ 1 :param affinity_scores: 3D tensor with values between 0 ~ 1 :param text_threshold: :param link_threshold: :param low_text: :param output_dir: direcotry to save the output images. Will be joined with base names of image_names :param image_names: names of each image. Doesn't have to be the base name (image file names) :param confidence_mask: :return: """ #import ipdb;ipdb.set_trace() #images = images.cpu().permute(0, 2, 3, 1).contiguous().data.numpy() if type(images) == torch.Tensor: images = np.array(images) region_scores = region_scores.cpu().data.numpy() affinity_scores = affinity_scores.cpu().data.numpy() batch_size = images.shape[0] assert batch_size == region_scores.shape[0] and batch_size == affinity_scores.shape[0] and batch_size == len(image_names), \ "The first dimension (i.e. batch size) of images, region scores, and affinity scores must be equal" output_images = [] for i in range(batch_size): image = images[i] region_score = region_scores[i] affinity_score = affinity_scores[i] image_name = os.path.basename(image_names[i]) outoput_path = os.path.join(output_dir,image_name) output_image = save_outputs(image, region_score, affinity_score, text_threshold, link_threshold, low_text, outoput_path, confidence_mask=confidence_mask) output_images.append(output_image) return output_images
takes images, region_scores, and affinity_scores as tensors (cab be GPU). :param images: 4D tensor :param region_scores: 3D tensor with values between 0 ~ 1 :param affinity_scores: 3D tensor with values between 0 ~ 1 :param text_threshold: :param link_threshold: :param low_text: :param output_dir: direcotry to save the output images. Will be joined with base names of image_names :param image_names: names of each image. Doesn't have to be the base name (image file names) :param confidence_mask: :return:
1,200
import os import re import itertools import cv2 import time import numpy as np import torch from torch.autograd import Variable from utils.craft_utils import getDetBoxes, adjustResultCoordinates from data import imgproc from data.dataset import SynthTextDataSet import math import xml.etree.ElementTree as elemTree def xml_parsing(xml): tree = elemTree.parse(xml) annotations = [] # Initialize the list to store labels iter_element = tree.iter(tag="object") for element in iter_element: annotation = {} # Initialize the dict to store labels annotation['name'] = element.find("name").text # Save the name tag value box_coords = element.iter(tag="robndbox") for box_coord in box_coords: cx = float(box_coord.find("cx").text) cy = float(box_coord.find("cy").text) w = float(box_coord.find("w").text) h = float(box_coord.find("h").text) angle = float(box_coord.find("angle").text) convertcoodi = addRotatedShape(cx, cy, w, h, angle) annotation['box_coodi'] = convertcoodi annotations.append(annotation) box_coords = element.iter(tag="bndbox") for box_coord in box_coords: xmin = int(box_coord.find("xmin").text) ymin = int(box_coord.find("ymin").text) xmax = int(box_coord.find("xmax").text) ymax = int(box_coord.find("ymax").text) # annotation['bndbox'] = [xmin,ymin,xmax,ymax] annotation['box_coodi'] = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]] annotations.append(annotation) bounds = [] for i in range(len(annotations)): box_info_dict = {"points": None, "text": None, "ignore": None} box_info_dict["points"] = np.array(annotations[i]['box_coodi']) if annotations[i]['name'] == "dnc": box_info_dict["text"] = "###" box_info_dict["ignore"] = True else: box_info_dict["text"] = annotations[i]['name'] box_info_dict["ignore"] = False bounds.append(box_info_dict) return bounds def load_prescription_gt(dataFolder): total_img_path = [] total_imgs_bboxes = [] for (root, directories, files) in os.walk(dataFolder): for file in files: if '.jpg' in file: img_path = os.path.join(root, file) total_img_path.append(img_path) if '.xml' in file: gt_path = os.path.join(root, file) total_imgs_bboxes.append(gt_path) total_imgs_parsing_bboxes = [] for img_path, bbox in zip(sorted(total_img_path), sorted(total_imgs_bboxes)): # check file assert img_path.split(".jpg")[0] == bbox.split(".xml")[0] result_label = xml_parsing(bbox) total_imgs_parsing_bboxes.append(result_label) return total_imgs_parsing_bboxes, sorted(total_img_path)
null
1,201
import os import re import itertools import cv2 import time import numpy as np import torch from torch.autograd import Variable from utils.craft_utils import getDetBoxes, adjustResultCoordinates from data import imgproc from data.dataset import SynthTextDataSet import math import xml.etree.ElementTree as elemTree def load_prescription_cleval_gt(dataFolder): total_img_path = [] total_gt_path = [] for (root, directories, files) in os.walk(dataFolder): for file in files: if '.jpg' in file: img_path = os.path.join(root, file) total_img_path.append(img_path) if '_cl.txt' in file: gt_path = os.path.join(root, file) total_gt_path.append(gt_path) total_imgs_parsing_bboxes = [] for img_path, gt_path in zip(sorted(total_img_path), sorted(total_gt_path)): # check file assert img_path.split(".jpg")[0] == gt_path.split('_label_cl.txt')[0] lines = open(gt_path, encoding="utf-8").readlines() word_bboxes = [] for line in lines: box_info_dict = {"points": None, "text": None, "ignore": None} box_info = line.strip().encode("utf-8").decode("utf-8-sig").split(",") box_points = [int(box_info[i]) for i in range(8)] box_info_dict["points"] = np.array(box_points) word_bboxes.append(box_info_dict) total_imgs_parsing_bboxes.append(word_bboxes) return total_imgs_parsing_bboxes, sorted(total_img_path)
null
1,202
import argparse import onnx import torch import easyocr import numpy as np def export_detector(detector_onnx_save_path, in_shape=[1, 3, 608, 800], lang_list=["en"], model_storage_directory=None, user_network_directory=None, download_enabled=True, dynamic=True, device="cpu", quantize=True, detector=True, recognizer=True): if dynamic is False: print('WARNING: it is recommended to use -d dynamic flag when exporting onnx') ocr_reader = easyocr.Reader(lang_list, gpu=False if device == "cpu" else True, detector=detector, recognizer=detector, quantize=quantize, model_storage_directory=model_storage_directory, user_network_directory=user_network_directory, download_enabled=download_enabled) # exporting detector if selected if detector: dummy_input = torch.rand(in_shape) dummy_input = dummy_input.to(device) # forward pass with torch.no_grad(): y_torch_out, feature_torch_out = ocr_reader.detector(dummy_input) torch.onnx.export(ocr_reader.detector, dummy_input, detector_onnx_save_path, export_params=True, do_constant_folding=True, opset_version=12, # model's input names input_names=['input'], # model's output names, ignore the 2nd output output_names=['output'], # variable length axes dynamic_axes={'input': {0: 'batch_size', 2: "height", 3: "width"}, 'output': {0: 'batch_size', 1: "dim1", 2: "dim2"} } if dynamic else None, verbose=False) # verify exported onnx model detector_onnx = onnx.load(detector_onnx_save_path) onnx.checker.check_model(detector_onnx) print(f"Model Inputs:\n {detector_onnx.graph.input}\n{'*'*80}") print(f"Model Outputs:\n {detector_onnx.graph.output}\n{'*'*80}") # onnx inference validation import onnxruntime ort_session = onnxruntime.InferenceSession(detector_onnx_save_path) def to_numpy(tensor): if tensor.requires_grad: return tensor.detach().cpu().numpy() return tensor.cpu().numpy() # compute ONNX Runtime output prediction ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(dummy_input)} y_onnx_out, feature_onnx_out = ort_session.run(None, ort_inputs) print(f"torch outputs: y_torch_out.shape={y_torch_out.shape} feature_torch_out.shape={feature_torch_out.shape}") print(f"onnx outputs: y_onnx_out.shape={y_onnx_out.shape} feature_onnx_out.shape={feature_onnx_out.shape}") # compare ONNX Runtime and PyTorch results np.testing.assert_allclose( to_numpy(y_torch_out), y_onnx_out, rtol=1e-03, atol=1e-05) np.testing.assert_allclose( to_numpy(feature_torch_out), feature_onnx_out, rtol=1e-03, atol=1e-05) print(f"Model exported to {detector_onnx_save_path} and tested with ONNXRuntime, and the result looks good!")
null
1,203
import argparse import onnx import torch import easyocr import numpy as np def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-l', '--lang_list', nargs='+', type=str, default=["en"], help='-l en ch_sim ... (language lists for easyocr)') parser.add_argument('-s', '--detector_onnx_save_path', type=str, default="detector_craft.onnx", help="export detector onnx file path ending in .onnx" + "Do not pass in this flag to avoid exporting detector") parser.add_argument('-d', '--dynamic', action='store_true', help="Dynamic input output shapes for detector") parser.add_argument('-is', '--in_shape', nargs='+', type=int, default=[1, 3, 608, 800], help='-is 1 3 608 800 (bsize, channel, height, width)') parser.add_argument('-m', '--model_storage_directory', type=str, help="model storage directory for craft model") parser.add_argument('-u', '--user_network_directory', type=str, help="user model storage directory") args = parser.parse_args() dpath = args.detector_onnx_save_path args.detector_onnx_save_path = None if dpath == "None" else dpath if len(args.in_shape) != 4: raise ValueError( f"Input shape must have four values (bsize, channel, height, width) eg. 1 3 608 800") return args
null
1,204
import numpy as np from skimage import io import cv2 def denormalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)): # should be RGB order img = in_img.copy() img *= variance img += mean img *= 255.0 img = np.clip(img, 0, 255).astype(np.uint8) return img
null
1,205
import numpy as np from skimage import io import cv2 def cvt2HeatmapImg(img): img = (np.clip(img, 0, 1) * 255).astype(np.uint8) img = cv2.applyColorMap(img, cv2.COLORMAP_JET) return img
null
1,206
import argparse import easyocr def parse_args(): parser = argparse.ArgumentParser(description="Process EasyOCR.") parser.add_argument( "-l", "--lang", nargs='+', required=True, type=str, help="for languages", ) parser.add_argument( "--gpu", type=bool, choices=[True, False], default=True, help="Using GPU (default: True)", ) parser.add_argument( "--model_storage_directory", type=str, default=None, help="Directory for model (.pth) file", ) parser.add_argument( "--user_network_directory", type=str, default=None, help="Directory for custom network files", ) parser.add_argument( "--recog_network", type=str, default='standard', help="Recognition networks", ) parser.add_argument( "--download_enabled", type=bool, choices=[True, False], default=True, help="Enable Download", ) parser.add_argument( "--detector", type=bool, choices=[True, False], default=True, help="Initialize text detector module", ) parser.add_argument( "--recognizer", type=bool, choices=[True, False], default=True, help="Initialize text recognizer module", ) parser.add_argument( "--verbose", type=bool, choices=[True, False], default=True, help="Print detail/warning", ) parser.add_argument( "--quantize", type=bool, choices=[True, False], default=True, help="Use dynamic quantization", ) parser.add_argument( "-f", "--file", required=True, type=str, help="input file", ) parser.add_argument( "--decoder", type=str, choices=["greedy", 'beamsearch', 'wordbeamsearch'], default='greedy', help="decoder algorithm", ) parser.add_argument( "--beamWidth", type=int, default=5, help="size of beam search", ) parser.add_argument( "--batch_size", type=int, default=1, help="batch_size", ) parser.add_argument( "--workers", type=int, default=0, help="number of processing cpu cores", ) parser.add_argument( "--allowlist", type=str, default=None, help="Force EasyOCR to recognize only subset of characters", ) parser.add_argument( "--blocklist", type=str, default=None, help="Block subset of character. This argument will be ignored if allowlist is given.", ) parser.add_argument( "--detail", type=int, choices=[0, 1], default=1, help="simple output (default: 1)", ) parser.add_argument( "--rotation_info", type=list, default=None, help="Allow EasyOCR to rotate each text box and return the one with the best confident score. Eligible values are 90, 180 and 270. For example, try [90, 180 ,270] for all possible text orientations.", ) parser.add_argument( "--paragraph", type=bool, choices=[True, False], default=False, help="Combine result into paragraph", ) parser.add_argument( "--min_size", type=int, default=20, help="Filter text box smaller than minimum value in pixel", ) parser.add_argument( "--contrast_ths", type=float, default=0.1, help="Text box with contrast lower than this value will be passed into model 2 times. First is with original image and second with contrast adjusted to 'adjust_contrast' value. The one with more confident level will be returned as a result.", ) parser.add_argument( "--adjust_contrast", type=float, default=0.5, help="target contrast level for low contrast text box", ) parser.add_argument( "--text_threshold", type=float, default=0.7, help="Text confidence threshold", ) parser.add_argument( "--low_text", type=float, default=0.4, help="Text low-bound score", ) parser.add_argument( "--link_threshold", type=float, default=0.4, help="Link confidence threshold", ) parser.add_argument( "--canvas_size", type=int, default=2560, help="Maximum image size. Image bigger than this value will be resized down.", ) parser.add_argument( "--mag_ratio", type=float, default=1., help="Image magnification ratio", ) parser.add_argument( "--slope_ths", type=float, default=0.1, help="Maximum slope (delta y/delta x) to considered merging. Low value means tiled boxes will not be merged.", ) parser.add_argument( "--ycenter_ths", type=float, default=0.5, help="Maximum shift in y direction. Boxes with different level should not be merged.", ) parser.add_argument( "--height_ths", type=float, default=0.5, help="Maximum different in box height. Boxes with very different text size should not be merged. ", ) parser.add_argument( "--width_ths", type=float, default=0.5, help="Maximum horizontal distance to merge boxes.", ) parser.add_argument( "--y_ths", type=float, default=0.5, help="Maximum vertical distance to merge boxes (when paragraph = True).", ) parser.add_argument( "--x_ths", type=float, default=1.0, help="Maximum horizontal distance to merge boxes (when paragraph = True).", ) parser.add_argument( "--add_margin", type=float, default=0.1, help="Extend bounding boxes in all direction by certain value. This is important for language with complex script (E.g. Thai).", ) parser.add_argument( "--output_format", type=str, choices=["standard", 'dict', 'json'], default='standard', help="output format.", ) args = parser.parse_args() return args
null
1,207
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def consecutive(data, mode ='first', stepsize=1): group = np.split(data, np.where(np.diff(data) != stepsize)[0]+1) group = [item for item in group if len(item)>0] if mode == 'first': result = [l[0] for l in group] elif mode == 'last': result = [l[-1] for l in group] return result def word_segmentation(mat, separator_idx = {'th': [1,2],'en': [3,4]}, separator_idx_list = [1,2,3,4]): result = [] sep_list = [] start_idx = 0 sep_lang = '' for sep_idx in separator_idx_list: if sep_idx % 2 == 0: mode ='first' else: mode ='last' a = consecutive( np.argwhere(mat == sep_idx).flatten(), mode) new_sep = [ [item, sep_idx] for item in a] sep_list += new_sep sep_list = sorted(sep_list, key=lambda x: x[0]) for sep in sep_list: for lang in separator_idx.keys(): if sep[1] == separator_idx[lang][0]: # start lang sep_lang = lang sep_start_idx = sep[0] elif sep[1] == separator_idx[lang][1]: # end lang if sep_lang == lang: # check if last entry if the same start lang new_sep_pair = [lang, [sep_start_idx+1, sep[0]-1]] if sep_start_idx > start_idx: result.append( ['', [start_idx, sep_start_idx-1] ] ) start_idx = sep[0]+1 result.append(new_sep_pair) sep_lang = ''# reset if start_idx <= len(mat)-1: result.append( ['', [start_idx, len(mat)-1] ] ) return result
null
1,208
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage The provided code snippet includes necessary dependencies for implementing the `applyLM` function. Write a Python function `def applyLM(parentBeam, childBeam, classes, lm)` to solve the following problem: calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars Here is the function: def applyLM(parentBeam, childBeam, classes, lm): "calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars" if lm and not childBeam.lmApplied: c1 = classes[parentBeam.labeling[-1] if parentBeam.labeling else classes.index(' ')] # first char c2 = classes[childBeam.labeling[-1]] # second char lmFactor = 0.01 # influence of language model bigramProb = lm.getCharBigram(c1, c2) ** lmFactor # probability of seeing first and second char next to each other childBeam.prText = parentBeam.prText * bigramProb # probability of char sequence childBeam.lmApplied = True # only apply LM once per beam entry
calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars
1,209
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage class BeamEntry: "information about one single beam at specific time-step" def __init__(self): self.prTotal = 0 # blank and non-blank self.prNonBlank = 0 # non-blank self.prBlank = 0 # blank self.prText = 1 # LM score self.lmApplied = False # flag if LM was already applied to this beam self.labeling = () # beam-labeling self.simplified = True # To run simplyfiy label class BeamState: "information about the beams at specific time-step" def __init__(self): self.entries = {} def norm(self): "length-normalise LM score" for (k, _) in self.entries.items(): labelingLen = len(self.entries[k].labeling) self.entries[k].prText = self.entries[k].prText ** (1.0 / (labelingLen if labelingLen else 1.0)) def sort(self): "return beam-labelings, sorted by probability" beams = [v for (_, v) in self.entries.items()] sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText) return [x.labeling for x in sortedBeams] def wordsearch(self, classes, ignore_idx, maxCandidate, dict_list): beams = [v for (_, v) in self.entries.items()] sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText) if len(sortedBeams) > maxCandidate: sortedBeams = sortedBeams[:maxCandidate] for j, candidate in enumerate(sortedBeams): idx_list = candidate.labeling text = '' for i,l in enumerate(idx_list): if l not in ignore_idx and (not (i > 0 and idx_list[i - 1] == idx_list[i])): text += classes[l] if j == 0: best_text = text if text in dict_list: #print('found text: ', text) best_text = text break else: pass #print('not in dict: ', text) return best_text def simplify_label(labeling, blankIdx = 0): labeling = np.array(labeling) # collapse blank idx = np.where(~((np.roll(labeling,1) == labeling) & (labeling == blankIdx)))[0] labeling = labeling[idx] # get rid of blank between different characters idx = np.where( ~((np.roll(labeling,1) != np.roll(labeling,-1)) & (labeling == blankIdx)) )[0] if len(labeling) > 0: last_idx = len(labeling)-1 if last_idx not in idx: idx = np.append(idx, [last_idx]) labeling = labeling[idx] return tuple(labeling) def fast_simplify_label(labeling, c, blankIdx=0): # Adding BlankIDX after Non-Blank IDX if labeling and c == blankIdx and labeling[-1] != blankIdx: newLabeling = labeling + (c,) # Case when a nonBlankChar is added after BlankChar |len(char) - 1 elif labeling and c != blankIdx and labeling[-1] == blankIdx: # If Blank between same character do nothing | As done by Simplify label if labeling[-2] == c: newLabeling = labeling + (c,) # if blank between different character, remove it | As done by Simplify Label else: newLabeling = labeling[:-1] + (c,) # if consecutive blanks : Keep the original label elif labeling and c == blankIdx and labeling[-1] == blankIdx: newLabeling = labeling # if empty beam & first index is blank elif not labeling and c == blankIdx: newLabeling = labeling # if empty beam & first index is non-blank elif not labeling and c != blankIdx: newLabeling = labeling + (c,) elif labeling and c != blankIdx: newLabeling = labeling + (c,) # Cases that might still require simplyfying else: newLabeling = labeling + (c,) newLabeling = simplify_label(newLabeling, blankIdx) return newLabeling def addBeam(beamState, labeling): "add beam if it does not yet exist" if labeling not in beamState.entries: beamState.entries[labeling] = BeamEntry() def ctcBeamSearch(mat, classes, ignore_idx, lm, beamWidth=25, dict_list = []): blankIdx = 0 maxT, maxC = mat.shape # initialise beam state last = BeamState() labeling = () last.entries[labeling] = BeamEntry() last.entries[labeling].prBlank = 1 last.entries[labeling].prTotal = 1 # go over all time-steps for t in range(maxT): curr = BeamState() # get beam-labelings of best beams bestLabelings = last.sort()[0:beamWidth] # go over best beams for labeling in bestLabelings: # probability of paths ending with a non-blank prNonBlank = 0 # in case of non-empty beam if labeling: # probability of paths with repeated last char at the end prNonBlank = last.entries[labeling].prNonBlank * mat[t, labeling[-1]] # probability of paths ending with a blank prBlank = (last.entries[labeling].prTotal) * mat[t, blankIdx] # add beam at current time-step if needed prev_labeling = labeling if not last.entries[labeling].simplified: labeling = simplify_label(labeling, blankIdx) # labeling = simplify_label(labeling, blankIdx) addBeam(curr, labeling) # fill in data curr.entries[labeling].labeling = labeling curr.entries[labeling].prNonBlank += prNonBlank curr.entries[labeling].prBlank += prBlank curr.entries[labeling].prTotal += prBlank + prNonBlank curr.entries[labeling].prText = last.entries[prev_labeling].prText # beam-labeling not changed, therefore also LM score unchanged from #curr.entries[labeling].lmApplied = True # LM already applied at previous time-step for this beam-labeling # extend current beam-labeling # char_highscore = np.argpartition(mat[t, :], -5)[-5:] # run through 5 highest probability char_highscore = np.where(mat[t, :] >= 0.5/maxC)[0] # run through all probable characters for c in char_highscore: #for c in range(maxC - 1): # add new char to current beam-labeling # newLabeling = labeling + (c,) # newLabeling = simplify_label(newLabeling, blankIdx) newLabeling = fast_simplify_label(labeling, c, blankIdx) # if new labeling contains duplicate char at the end, only consider paths ending with a blank if labeling and labeling[-1] == c: prNonBlank = mat[t, c] * last.entries[prev_labeling].prBlank else: prNonBlank = mat[t, c] * last.entries[prev_labeling].prTotal # add beam at current time-step if needed addBeam(curr, newLabeling) # fill in data curr.entries[newLabeling].labeling = newLabeling curr.entries[newLabeling].prNonBlank += prNonBlank curr.entries[newLabeling].prTotal += prNonBlank # apply LM #applyLM(curr.entries[labeling], curr.entries[newLabeling], classes, lm) # set new beam state last = curr # normalise LM scores according to beam-labeling-length last.norm() if dict_list == []: bestLabeling = last.sort()[0] # get most probable labeling res = '' for i,l in enumerate(bestLabeling): # removing repeated characters and blank. if l not in ignore_idx and (not (i > 0 and bestLabeling[i - 1] == bestLabeling[i])): res += classes[l] else: res = last.wordsearch(classes, ignore_idx, 20, dict_list) return res
null
1,210
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def merge_to_free(merge_result, free_list): merge_result_buf, mr_buf = [], [] if not free_list: return merge_result free_list_buf = merge_result[-len(free_list):] merge_result = merge_result[:-len(free_list)] for idx, r in enumerate(merge_result): if idx == len(merge_result)-1: mr_buf.append(r) merge_result_buf.append(mr_buf) mr_buf=[] continue if (mr_buf == []) or (mr_buf[-1][0] < r[0]): mr_buf.append(r) else: merge_result_buf.append(mr_buf) mr_buf=[] mr_buf.append(r) for free_pos in free_list_buf: y_pos = len(merge_result_buf) x_pos = len(merge_result_buf[y_pos-1]) for i, result_pos in enumerate(merge_result_buf[1:]): if free_pos[0][0][1] < result_pos[0][0][0][1]: y_pos = i break for i, result_pos in enumerate(merge_result_buf[y_pos]): if free_pos[0][0][0] < result_pos[0][0][0]: x_pos = i break merge_result_buf[y_pos].insert(x_pos, free_pos) merge_result = [] [merge_result.extend(r) for r in merge_result_buf] return merge_result
null
1,211
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def group_text_box(polys, slope_ths = 0.1, ycenter_ths = 0.5, height_ths = 0.5, width_ths = 1.0, add_margin = 0.05, sort_output = True): # poly top-left, top-right, low-right, low-left horizontal_list, free_list,combined_list, merged_list = [],[],[],[] for poly in polys: slope_up = (poly[3]-poly[1])/np.maximum(10, (poly[2]-poly[0])) slope_down = (poly[5]-poly[7])/np.maximum(10, (poly[4]-poly[6])) if max(abs(slope_up), abs(slope_down)) < slope_ths: x_max = max([poly[0],poly[2],poly[4],poly[6]]) x_min = min([poly[0],poly[2],poly[4],poly[6]]) y_max = max([poly[1],poly[3],poly[5],poly[7]]) y_min = min([poly[1],poly[3],poly[5],poly[7]]) horizontal_list.append([x_min, x_max, y_min, y_max, 0.5*(y_min+y_max), y_max-y_min]) else: height = np.linalg.norm([poly[6]-poly[0],poly[7]-poly[1]]) width = np.linalg.norm([poly[2]-poly[0],poly[3]-poly[1]]) margin = int(1.44*add_margin*min(width, height)) theta13 = abs(np.arctan( (poly[1]-poly[5])/np.maximum(10, (poly[0]-poly[4])))) theta24 = abs(np.arctan( (poly[3]-poly[7])/np.maximum(10, (poly[2]-poly[6])))) # do I need to clip minimum, maximum value here? x1 = poly[0] - np.cos(theta13)*margin y1 = poly[1] - np.sin(theta13)*margin x2 = poly[2] + np.cos(theta24)*margin y2 = poly[3] - np.sin(theta24)*margin x3 = poly[4] + np.cos(theta13)*margin y3 = poly[5] + np.sin(theta13)*margin x4 = poly[6] - np.cos(theta24)*margin y4 = poly[7] + np.sin(theta24)*margin free_list.append([[x1,y1],[x2,y2],[x3,y3],[x4,y4]]) if sort_output: horizontal_list = sorted(horizontal_list, key=lambda item: item[4]) # combine box new_box = [] for poly in horizontal_list: if len(new_box) == 0: b_height = [poly[5]] b_ycenter = [poly[4]] new_box.append(poly) else: # comparable height and comparable y_center level up to ths*height if abs(np.mean(b_ycenter) - poly[4]) < ycenter_ths*np.mean(b_height): b_height.append(poly[5]) b_ycenter.append(poly[4]) new_box.append(poly) else: b_height = [poly[5]] b_ycenter = [poly[4]] combined_list.append(new_box) new_box = [poly] combined_list.append(new_box) # merge list use sort again for boxes in combined_list: if len(boxes) == 1: # one box per line box = boxes[0] margin = int(add_margin*min(box[1]-box[0],box[5])) merged_list.append([box[0]-margin,box[1]+margin,box[2]-margin,box[3]+margin]) else: # multiple boxes per line boxes = sorted(boxes, key=lambda item: item[0]) merged_box, new_box = [],[] for box in boxes: if len(new_box) == 0: b_height = [box[5]] x_max = box[1] new_box.append(box) else: if (abs(np.mean(b_height) - box[5]) < height_ths*np.mean(b_height)) and ((box[0]-x_max) < width_ths *(box[3]-box[2])): # merge boxes b_height.append(box[5]) x_max = box[1] new_box.append(box) else: b_height = [box[5]] x_max = box[1] merged_box.append(new_box) new_box = [box] if len(new_box) >0: merged_box.append(new_box) for mbox in merged_box: if len(mbox) != 1: # adjacent box in same line # do I need to add margin here? x_min = min(mbox, key=lambda x: x[0])[0] x_max = max(mbox, key=lambda x: x[1])[1] y_min = min(mbox, key=lambda x: x[2])[2] y_max = max(mbox, key=lambda x: x[3])[3] box_width = x_max - x_min box_height = y_max - y_min margin = int(add_margin * (min(box_width, box_height))) merged_list.append([x_min-margin, x_max+margin, y_min-margin, y_max+margin]) else: # non adjacent box in same line box = mbox[0] box_width = box[1] - box[0] box_height = box[3] - box[2] margin = int(add_margin * (min(box_width, box_height))) merged_list.append([box[0]-margin,box[1]+margin,box[2]-margin,box[3]+margin]) # may need to check if box is really in image return merged_list, free_list
null
1,212
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def four_point_transform(image, rect): (tl, tr, br, bl) = rect widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) return warped def calculate_ratio(width,height): ''' Calculate aspect ratio for normal use case (w>h) and vertical text (h>w) ''' ratio = width/height if ratio<1.0: ratio = 1./ratio return ratio def compute_ratio_and_resize(img,width,height,model_height): ''' Calculate ratio and resize correctly for both horizontal text and vertical case ''' ratio = width/height if ratio<1.0: ratio = calculate_ratio(width,height) img = cv2.resize(img,(model_height,int(model_height*ratio)), interpolation=Image.Resampling.LANCZOS) else: img = cv2.resize(img,(int(model_height*ratio),model_height),interpolation=Image.Resampling.LANCZOS) return img,ratio def get_image_list(horizontal_list, free_list, img, model_height = 64, sort_output = True): image_list = [] maximum_y,maximum_x = img.shape max_ratio_hori, max_ratio_free = 1,1 for box in free_list: rect = np.array(box, dtype = "float32") transformed_img = four_point_transform(img, rect) ratio = calculate_ratio(transformed_img.shape[1],transformed_img.shape[0]) new_width = int(model_height*ratio) if new_width == 0: pass else: crop_img,ratio = compute_ratio_and_resize(transformed_img,transformed_img.shape[1],transformed_img.shape[0],model_height) image_list.append( (box,crop_img) ) # box = [[x1,y1],[x2,y2],[x3,y3],[x4,y4]] max_ratio_free = max(ratio, max_ratio_free) max_ratio_free = math.ceil(max_ratio_free) for box in horizontal_list: x_min = max(0,box[0]) x_max = min(box[1],maximum_x) y_min = max(0,box[2]) y_max = min(box[3],maximum_y) crop_img = img[y_min : y_max, x_min:x_max] width = x_max - x_min height = y_max - y_min ratio = calculate_ratio(width,height) new_width = int(model_height*ratio) if new_width == 0: pass else: crop_img,ratio = compute_ratio_and_resize(crop_img,width,height,model_height) image_list.append( ( [[x_min,y_min],[x_max,y_min],[x_max,y_max],[x_min,y_max]] ,crop_img) ) max_ratio_hori = max(ratio, max_ratio_hori) max_ratio_hori = math.ceil(max_ratio_hori) max_ratio = max(max_ratio_hori, max_ratio_free) max_width = math.ceil(max_ratio)*model_height if sort_output: image_list = sorted(image_list, key=lambda item: item[0][0][1]) # sort by vertical position return image_list, max_width
null