id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
1,313
import os import copy import logging import torch import numpy as np import time from filelock import FileLock import json import itertools import random import transformers from src.processors import processors_mapping, num_labels_mapping, output_modes_mapping, compute_metrics_mapping, median_mapping from transformers.data.processors.utils import InputFeatures from transformers import DataProcessor, InputExample import dataclasses from dataclasses import dataclass from typing import List, Optional, Union from sentence_transformers import SentenceTransformer, util from copy import deepcopy import pandas as pd def input_example_to_string(example, sep_token): if example.text_b is None: return example.text_a else: # Warning: very simple hack here return example.text_a + ' ' + sep_token + ' ' + example.text_b
null
1,314
import os import copy import logging import torch import numpy as np import time from filelock import FileLock import json import itertools import random import transformers from src.processors import processors_mapping, num_labels_mapping, output_modes_mapping, compute_metrics_mapping, median_mapping from transformers.data.processors.utils import InputFeatures from transformers import DataProcessor, InputExample import dataclasses from dataclasses import dataclass from typing import List, Optional, Union from sentence_transformers import SentenceTransformer, util from copy import deepcopy import pandas as pd logger = logging.getLogger(__name__) def input_example_to_tuple(example): if example.text_b is None: if pd.isna(example.text_a) or example.text_a is None: return [''] logger.warn("Empty input") else: return [example.text_a] else: return [example.text_a, example.text_b]
null
1,315
import os import copy import logging import torch import numpy as np import time from filelock import FileLock import json import itertools import random import transformers from src.processors import processors_mapping, num_labels_mapping, output_modes_mapping, compute_metrics_mapping, median_mapping from transformers.data.processors.utils import InputFeatures from transformers import DataProcessor, InputExample import dataclasses from dataclasses import dataclass from typing import List, Optional, Union from sentence_transformers import SentenceTransformer, util from copy import deepcopy import pandas as pd logger = logging.getLogger(__name__) def tokenize_multipart_input( input_text_list, max_length, tokenizer, task_name=None, prompt=False, template=None, label_word_list=None, first_sent_limit=None, other_sent_limit=None, gpt3=False, truncate_head=False, support_labels=None, prompt_num=10, ): def enc(text): return tokenizer.encode(text, add_special_tokens=False) input_ids = [] attention_mask = [] token_type_ids = [] # Only for BERT mask_pos = None # Position of the mask token if prompt: """ Concatenate all sentences and prompts based on the provided template. Template example: '*cls*It was*mask*.*sent_0**<sep>*label_0:*sent_1**<sep>**label_1*:*sent_2**<sep>*' *xx* represent variables: *cls*: cls_token *mask*: mask_token *sep*: sep_token *sep+*: sep_token, also means +1 for segment id *sent_i*: sentence i (input_text_list[i]) *sent-_i*: same as above, but delete the last token *sentl_i*: same as above, but use lower case for the first word *sentl-_i*: same as above, but use lower case for the first word and delete the last token *+sent_i*: same as above, but add a space before the sentence *+sentl_i*: same as above, but add a space before the sentence and use lower case for the first word *label_i*: label_word_list[i] *label_x*: label depends on the example id (support_labels needed). this is only used in GPT-3's in-context learning Use "_" to replace space. PAY ATTENTION TO SPACE!! DO NOT leave space before variables, for this will lead to extra space token. """ assert template is not None special_token_mapping = { 'cls': tokenizer.cls_token_id, 'mask': tokenizer.mask_token_id, 'sep': tokenizer.sep_token_id, 'sep+': tokenizer.sep_token_id, 'prompt': [-(i+1) for i in range(prompt_num)] } template_list = template.split('*') # Get variable list in the template segment_id = 0 # Current segment id. Segment id +1 if encountering sep+. st_prompt = 0 # The start position of prompt for part_id, part in enumerate(template_list): new_tokens = [] segment_plus_1_flag = False if part in special_token_mapping: if part == 'cls' and 'T5' in type(tokenizer).__name__: # T5 does not have cls token continue if part != 'prompt': new_tokens.append(special_token_mapping[part]) else: new_tokens += special_token_mapping[part] st_prompt = len(input_ids) if part == 'sep+': segment_plus_1_flag = True elif part[:6] == 'label_': # Note that label_word_list already has extra space, so do not add more space ahead of it. label_id = int(part.split('_')[1]) label_word = label_word_list[label_id] new_tokens.append(label_word) elif part[:7] == 'labelx_': instance_id = int(part.split('_')[1]) label_id = support_labels[instance_id] label_word = label_word_list[label_id] new_tokens.append(label_word) elif part[:5] == 'sent_': sent_id = int(part.split('_')[1]) new_tokens += enc(input_text_list[sent_id]) elif part[:6] == '+sent_': # Add space sent_id = int(part.split('_')[1]) new_tokens += enc(' ' + input_text_list[sent_id]) elif part[:6] == 'sent-_': # Delete the last token sent_id = int(part.split('_')[1]) new_tokens += enc(input_text_list[sent_id][:-1]) elif part[:6] == 'sentl_': # Lower case the first token sent_id = int(part.split('_')[1]) text = input_text_list[sent_id] text = text[:1].lower() + text[1:] new_tokens += enc(text) elif part[:7] == '+sentl_': # Lower case the first token and add space sent_id = int(part.split('_')[1]) text = input_text_list[sent_id] text = text[:1].lower() + text[1:] new_tokens += enc(' ' + text) elif part[:7] == 'sentl-_': # Lower case the first token and discard the last token sent_id = int(part.split('_')[1]) text = input_text_list[sent_id] text = text[:1].lower() + text[1:] new_tokens += enc(text[:-1]) elif part[:6] == 'sentu_': # Upper case the first token sent_id = int(part.split('_')[1]) text = input_text_list[sent_id] text = text[:1].upper() + text[1:] new_tokens += enc(text) elif part[:7] == '+sentu_': # Upper case the first token and add space sent_id = int(part.split('_')[1]) text = input_text_list[sent_id] text = text[:1].upper() + text[1:] new_tokens += enc(' ' + text) else: # Just natural language prompt part = part.replace('_', ' ') # handle special case when T5 tokenizer might add an extra space if len(part) == 1: new_tokens.append(tokenizer._convert_token_to_id(part)) else: new_tokens += enc(part) if part[:4] == 'sent' or part[1:5] == 'sent': # If this part is the sentence, limit the sentence length sent_id = int(part.split('_')[1]) if sent_id == 0: if first_sent_limit is not None: new_tokens = new_tokens[:first_sent_limit] else: if other_sent_limit is not None: new_tokens = new_tokens[:other_sent_limit] input_ids += new_tokens attention_mask += [1 for i in range(len(new_tokens))] token_type_ids += [segment_id for i in range(len(new_tokens))] if segment_plus_1_flag: segment_id += 1 else: input_ids = [tokenizer.cls_token_id] attention_mask = [1] token_type_ids = [0] for sent_id, input_text in enumerate(input_text_list): if input_text is None: # Do not have text_b continue if pd.isna(input_text) or input_text is None: # Empty input input_text = '' input_tokens = enc(input_text) + [tokenizer.sep_token_id] input_ids += input_tokens attention_mask += [1 for i in range(len(input_tokens))] token_type_ids += [sent_id for i in range(len(input_tokens))] if 'T5' in type(tokenizer).__name__: # T5 does not have CLS token input_ids = input_ids[1:] attention_mask = attention_mask[1:] token_type_ids = token_type_ids[1:] # Padding if first_sent_limit is not None and len(input_ids) > max_length: # If using sentence limit, the total length still exceeds the maximum limit, report a warning logger.warn("Input exceeds max_length limit: {}".format(tokenizer.decode(input_ids))) while len(input_ids) < max_length: input_ids.append(tokenizer.pad_token_id) attention_mask.append(0) token_type_ids.append(0) # Truncate if len(input_ids) > max_length: if truncate_head: logger.info("Truncate Head!") input_ids = input_ids[-max_length:] attention_mask = attention_mask[-max_length:] token_type_ids = token_type_ids[-max_length:] else: logger.info("Truncate Tail!"+str(len(input_ids))) # Default is to truncate the tail if tokenizer.mask_token_id in input_ids[max_length:]: mask_pos = input_ids.index(tokenizer.mask_token_id) len_to_truncate = len(input_ids)-max_length l, r = mask_pos-1-len_to_truncate, mask_pos-1 input_ids = input_ids[:l]+input_ids[r:] attention_mask = attention_mask[:l]+attention_mask[r:] token_type_ids = token_type_ids[:l]+token_type_ids[r:] else: input_ids = input_ids[:max_length] attention_mask = attention_mask[:max_length] token_type_ids = token_type_ids[:max_length] # Find mask token if prompt: mask_pos = [input_ids.index(tokenizer.mask_token_id)] # Make sure that the masked position is inside the max_length if mask_pos[0] >= max_length: logger.info(input_ids) logger.info(len(input_ids)) logger.info(mask_pos) assert mask_pos[0] < max_length result = {'input_ids': input_ids, 'attention_mask': attention_mask} if 'BERT' in type(tokenizer).__name__: # Only provide token type ids for BERT result['token_type_ids'] = token_type_ids if prompt: result['mask_pos'] = mask_pos return result
null
1,316
import os import copy import logging import torch import numpy as np import time from filelock import FileLock import json import itertools import random import transformers from transformers.data.processors.utils import InputFeatures from transformers import DataProcessor, InputExample from transformers.data.processors.glue import * from transformers.data.metrics import glue_compute_metrics import dataclasses from dataclasses import dataclass, asdict from typing import List, Optional, Union from sentence_transformers import SentenceTransformer, util from copy import deepcopy import pandas as pd import logging def text_classification_metrics(task_name, preds, labels): return {"acc": (preds == labels).mean()}
null
1,317
import argparse import pandas as pd import json import numpy as np import torch import os from torch import device from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction, GlueDataset from transformers import GlueDataTrainingArguments, glue_compute_metrics from transformers.data.metrics import simple_accuracy from transformers.data.processors.glue import glue_processors def get_glue_label(task, line): if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]: line = line.strip().split('\t') if task == 'CoLA': return line[1] elif task == 'MNLI': return line[-1] elif task == 'MRPC': return line[0] elif task == 'QNLI': return line[-1] elif task == 'QQP': return line[-1] elif task == 'RTE': return line[-1] elif task == 'SNLI': return line[-1] elif task == 'SST-2': return line[-1] elif task == 'STS-B': return 0 if float(line[-1]) < 2.5 else 1 elif task == 'WNLI': return line[-1] else: raise NotImplementedError else: raise NotImplementedError def get_labels(data_dir, k, seed, task, print_name): if print_name in ['sst-5', 'mr', 'cr', 'mpqa', 'subj', 'trec']: data = pd.read_csv(os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test.csv'), header=None).values.tolist() labels = np.zeros((len(data)), dtype=np.uint8) for i, example in enumerate(data): labels[i] = example[0] elif print_name in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]: lines = [] file_name = os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test.tsv') if task == 'mnli': file_name = os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test_matched.tsv') elif task == 'mnli-mm': file_name = os.path.join(data_dir, print_name, '{}-{}'.format(k, seed), 'test_mismatched.tsv') for line in open(file_name): lines.append(line.strip()) if task != 'cola': lines = lines[1:] label_list = glue_processors[task]().get_labels() label_map = {k: i for i, k in enumerate(label_list)} if task == 'sts-b': label_map = {0: 0, 1: 1} label_ids = np.zeros((len(lines))) for line_id, line in enumerate(lines): label_ids[line_id] = label_map[get_glue_label(print_name, line)] return label_ids
null
1,318
import os import pandas as pd import numpy as np import os def merge(table1, table2, table3): t1 = pd.read_csv(table1, header=None, dtype=np.float64) t2 = pd.read_csv(table2, header=None, dtype=np.float64) for i in range(8): t1.at[8, i] = t1[i].to_numpy().mean() t2.at[8, i] = t2[i].to_numpy().mean() t1.to_csv(table1, index=False, header=False) t2.to_csv(table2, index=False, header=False) res = pd.DataFrame([['NaN' for i in range(8)] for j in range(9)], dtype='str') max_value = t1.max(axis=1) for i in range(9): for j in range(8): if t1.at[i, j] == max_value.at[i]: res.at[i, j] = f"\\textbf{{{round(t1.at[i, j]*100, 1)}}}$_{{{round(t2.at[i, j]*100, 1)}}}$" else: res.at[i, j] = f"{round(t1.at[i, j]*100, 1)}$_{{{round(t2.at[i, j]*100, 1)}}}$" res.to_csv(table3, index=False, header=False)
null
1,319
import argparse import os import numpy as np import pandas as pd from pandas import DataFrame def get_label(task, line): if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SST-2", "STS-B", "CoLA"]: # GLUE style line = line.strip().split('\t') if task == 'CoLA': return line[1] elif task == 'MNLI': return line[-1] elif task == 'MRPC': return line[0] elif task == 'QNLI': return line[-1] elif task == 'QQP': return line[-1] elif task == 'RTE': return line[-1] elif task == 'SST-2': return line[-1] elif task == 'STS-B': return 0 if float(line[-1]) < 2.5 else 1 else: raise NotImplementedError else: return line[0]
null
1,320
import argparse import os import numpy as np import pandas as pd from pandas import DataFrame def load_datasets(data_dir, tasks): datasets = {} for task in tasks: if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SST-2", "STS-B", "CoLA"]: # GLUE style (tsv) dataset = {} dirname = os.path.join(data_dir, task) if task == "MNLI": splits = ["train", "dev_matched", "dev_mismatched"] else: splits = ["train", "dev"] for split in splits: filename = os.path.join(dirname, f"{split}.tsv") with open(filename, "r") as f: lines = f.readlines() dataset[split] = lines datasets[task] = dataset else: # Other datasets (csv) dataset = {} dirname = os.path.join(data_dir, task) splits = ["train", "test"] for split in splits: filename = os.path.join(dirname, f"{split}.csv") dataset[split] = pd.read_csv(filename, header=None) datasets[task] = dataset return datasets
null
1,321
import argparse import os import numpy as np import pandas as pd from pandas import DataFrame The provided code snippet includes necessary dependencies for implementing the `split_header` function. Write a Python function `def split_header(task, lines)` to solve the following problem: Returns if the task file has a header or not. Only for GLUE tasks. Here is the function: def split_header(task, lines): """ Returns if the task file has a header or not. Only for GLUE tasks. """ if task in ["CoLA"]: return [], lines elif task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SST-2", "STS-B"]: return lines[0:1], lines[1:] else: raise ValueError("Unknown GLUE task.")
Returns if the task file has a header or not. Only for GLUE tasks.
1,322
import transformers from transformers import T5ForConditionalGeneration, T5Tokenizer import argparse import torch import os from tqdm import tqdm import json import argparse import pandas as pd def generate(dataset, template, model, tokenizer, target_number, mapping, beam, label=None, length_limit=None, truncate=None): """ Generate templates based on given inputs label: Only use instances with this label (deprecated) length_limit: At least generate content as long as length_limit (deprecated) """ input_texts = [] input_tensors = [] max_length = 0 # Process the inputs for item in dataset: if label is None or item['label'] == label: input_text = get_text(template, item['text'], item['label'], tokenizer, mapping) if truncate is not None: if truncate == 'head': input_text = input_text[-256:] elif truncate == 'tail': input_text = input_text[:256] else: raise NotImplementedError input_ids = torch.tensor(input_text).long() max_length = max(max_length, input_ids.size(-1)) input_tensors.append(input_ids) # Concatenate inputs as a batch input_ids = torch.zeros((len(input_tensors), max_length)).long() attention_mask = torch.zeros((len(input_tensors), max_length)).long() for i in range(len(input_tensors)): input_ids[i, :input_tensors[i].size(-1)] = input_tensors[i] attention_mask[i, :input_tensors[i].size(-1)] = 1 # Print some examples print('####### example #######') print(tokenizer.decode(input_ids[0])) print(tokenizer.decode(input_ids[1])) print(tokenizer.decode(input_ids[2])) print('####### example #######\n') input_ids = input_ids.cuda() attention_mask = attention_mask.cuda() assert len(input_tensors) > 0 # Maximum generate content length max_length = 20 start_mask = tokenizer._convert_token_to_id('<extra_id_0>') ori_decoder_input_ids = torch.zeros((input_ids.size(0), max_length)).long() ori_decoder_input_ids[..., 0] = model.config.decoder_start_token_id # decoder_input_ids: decoder inputs for next regressive generation # ll: log likelihood # output_id: which part of generated contents we are at # output: generated content so far # last_length (deprecated): how long we have generated for this part current_output = [{'decoder_input_ids': ori_decoder_input_ids, 'll': 0, 'output_id': 1, 'output': [], 'last_length': -1}] for i in tqdm(range(max_length - 2)): new_current_output = [] for item in current_output: if item['output_id'] > target_number: # Enough contents new_current_output.append(item) continue decoder_input_ids = item['decoder_input_ids'] # Forward batch_size = 32 turn = input_ids.size(0) // batch_size if input_ids.size(0) % batch_size != 0: turn += 1 aggr_output = [] for t in range(turn): start = t * batch_size end = min((t + 1) * batch_size, input_ids.size(0)) with torch.no_grad(): aggr_output.append(model(input_ids[start:end], attention_mask=attention_mask[start:end], decoder_input_ids=decoder_input_ids.cuda()[start:end])[0]) aggr_output = torch.cat(aggr_output, 0) # Gather results across all input sentences, and sort generated tokens by log likelihood aggr_output = aggr_output.mean(0) log_denominator = torch.logsumexp(aggr_output[i], -1).item() ids = list(range(model.config.vocab_size)) ids.sort(key=lambda x: aggr_output[i][x].item(), reverse=True) ids = ids[:beam+3] for word_id in ids: output_id = item['output_id'] if word_id == start_mask - output_id or word_id == tokenizer._convert_token_to_id('</s>'): # Finish one part if length_limit is not None and item['last_length'] < length_limit[output_id - 1]: check = False else: check = True output_id += 1 last_length = 0 else: last_length = item['last_length'] + 1 check = True output_text = item['output'] + [word_id] ll = item['ll'] + aggr_output[i][word_id] - log_denominator new_decoder_input_ids = decoder_input_ids.new_zeros(decoder_input_ids.size()) new_decoder_input_ids[:] = decoder_input_ids new_decoder_input_ids[..., i + 1] = word_id # Forbid single space token, "....", and ".........." if word_id in [3, 19794, 22354]: check = False # Forbid continuous "." if len(output_text) > 1 and output_text[-2] == 5 and output_text[-1] == 5: check = False if check: # Add new results to beam search pool new_item = {'decoder_input_ids': new_decoder_input_ids, 'll': ll, 'output_id': output_id, 'output': output_text, 'last_length': last_length} new_current_output.append(new_item) if len(new_current_output) == 0: break new_current_output.sort(key=lambda x: x['ll'], reverse=True) new_current_output = new_current_output[:beam] current_output = new_current_output result = [] print("####### generated results #######") for item in current_output: generate_text = '' for token in item['output']: generate_text += tokenizer._convert_id_to_token(token) print('--------------') print('score:', item['ll'].item()) print('generated ids', item['output']) print('generated text', generate_text) result.append(generate_text) print("####### generated results #######\n") return result def load_dataset(task, data_dir): if task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI", "CoLA"]: lines = open(os.path.join(data_dir, 'train.tsv')).readlines() if task != 'CoLA': lines = lines[1:] dataset = [] for line in lines: line = line.strip().split('\t') if task == 'CoLA': dataset.append({'label': line[1], 'text': [line[-1]]}) elif task == 'MNLI': dataset.append({'label': line[-1], 'text': [line[8], line[9]]}) elif task == 'MRPC': dataset.append({'label': line[0], 'text': [line[-2], line[-1]]}) elif task == 'QNLI': dataset.append({'label': line[-1], 'text': [line[1], line[2]]}) elif task == 'QQP': dataset.append({'label': line[-1], 'text': [line[3], line[4]]}) elif task == 'RTE': dataset.append({'label': line[-1], 'text': [line[1], line[2]]}) elif task == 'SNLI': dataset.append({'label': line[-1], 'text': [line[7], line[8]]}) elif task == 'SST-2': dataset.append({'label': line[-1], 'text': [line[0]]}) elif task == 'STS-B': dataset.append({'label': '0' if float(line[-1]) < 2.5 else '1', 'text': [line[-3], line[-2]]}) elif task == 'WNLI': dataset.append({'label': line[-1], 'text': [line[1], line[2]]}) else: raise NotImplementedError else: lines = pd.read_csv(os.path.join(data_dir, 'train.csv')).values.tolist() dataset = [] for line in lines: dataset.append({'label': line[0], 'text': [line[1]]}) return dataset def search_template(model, tokenizer, task_name, k, seed, beam, output_dir, data_dir): print('#', task_name, k, seed, beam) dataset_path = os.path.join(data_dir, task_name, "{}-{}".format(k, seed)) dataset = load_dataset(task_name, dataset_path) print('|', 'dataset examples') print('|', dataset[0]) print('|', dataset[-1]) print() # Manual label word mappings map_of_mapping = { 'SST-2': {'0':'terrible','1':'great'}, 'sst-5': {0:'terrible',1:'bad',2:'okay',3:'good',4:'great'}, 'mr': {0:'terrible',1:'great'}, 'cr': {0:'terrible',1:'great'}, 'subj': {0:'subjective',1:'objective'}, 'trec': {0:'Description',1:'Entity',2:'Expression',3:'Human',4:'Location',5:'Number'}, 'mpqa': {0:'terrible',1:'great'}, 'CoLA': {'0':'incorrect','1':'correct'}, 'MRPC': {'0':'No','1':'Yes'}, 'QQP': {'0':'No','1':'Yes'}, 'STS-B': {'0':'No','1':'Yes'}, 'MNLI': {'contradiction':'No','entailment':'Yes','neutral':'Maybe'}, 'SNLI': {'contradiction':'No','entailment':'Yes','neutral':'Maybe'}, 'QNLI': {'not_entailment':'No','entailment':'Yes'}, 'RTE': {'not_entailment':'No','entailment':'Yes'} } mapping = map_of_mapping[task_name] print('|', 'mapping') print('|', mapping) os.makedirs(output_dir, exist_ok=True) os.makedirs(os.path.join(output_dir, task_name), exist_ok=True) f = open(os.path.join(output_dir, task_name, "{}-{}.txt".format(k, seed)), 'w') if task_name in ['SST-2', 'sst-5', 'mr', 'cr', 'subj', 'trec', 'CoLA', 'mpqa']: # Single sentence tasks # We take two kinds of templates: put [MASK] at the beginning or the end template = "*cls**sentu_0**<extra_id_0>**label**<extra_id_1>**sep+*" generate_text = generate(dataset, template, model, tokenizer, target_number=2, mapping=mapping, beam=beam, label=None, truncate='head')[:beam//2] print("####### generated templates #######") for text in generate_text: # Transform T5 outputs to our template format text = text.replace('<extra_id_0>', '*cls**sent_0*') text = text.replace('<extra_id_1>', '*mask*') text = text.replace('<extra_id_2>', '*sep+*') text = text.replace('</s>', '*sep+*') text = text.replace('▁', '_') print(text) f.write(text + '\n') print("####### generated templates #######\n") template = "*cls*.*<extra_id_0>**label**<extra_id_1>**+sentu_0**sep+*" generate_text = generate(dataset, template, model, tokenizer, target_number=2, mapping=mapping, beam=beam, label=None, truncate='tail')[:beam//2] print("####### generated templates #######") for text in generate_text: # Transform T5 outputs to our template format text = text.replace('<extra_id_0>', '*cls*') text = text.replace('<extra_id_1>', '*mask*') text = text.replace('<extra_id_2>', '*+sent_0**sep+*') text = text.replace('</s>', '*+sent_0**sep+*') text = text.replace('▁', '_') print(text) f.write(text + '\n') print("####### generated templates #######\n") elif task_name in ['MRPC', 'QQP', 'STS-B', 'MNLI', 'SNLI', 'QNLI', 'RTE']: # Sentence pair tasks # We always put [MASK] between the two sentences template = "*cls**sent-_0**<extra_id_0>**label**<extra_id_1>**+sentl_1**sep+*" generate_text = generate(dataset, template, model, tokenizer, target_number=2, mapping=mapping, beam=beam, label=None) print("####### generated templates #######") for text in generate_text: # Transform T5 outputs to our template format text = text.replace('<extra_id_0>', '*cls**sent-_0*') text = text.replace('<extra_id_1>', '*mask*') text = text.replace('<extra_id_2>', '*+sentl_1**sep+*') text = text.replace('</s>', '*+sentl_1**sep+*') text = text.replace('▁', '_') print(text) f.write(text + '\n') print("####### generated templates #######\n") else: raise NotImplementedError
null
1,323
from sentence_transformers import SentenceTransformer, util import argparse import os import numpy as np from tqdm import tqdm import pandas as pd def get_sentence(task, line): if task in ['mr', 'sst-5', 'subj', 'trec', 'cr', 'mpqa']: # Text classification tasks if line[1] is None or pd.isna(line[1]): return '' else: return line[1] else: # GLUE tasks line = line.strip().split('\t') if task == 'CoLA': return line[-1] elif task == 'MNLI': return line[8] + ' ' + line[9] elif task == 'MRPC': return line[-2] + ' ' + line[-1] elif task == 'QNLI': return line[1] + ' ' + line[2] elif task == 'QQP': return line[3] + ' ' + line[4] elif task == 'RTE': return line[1] + ' ' + line[2] elif task == 'SNLI': return line[7] + ' ' + line[8] elif task == 'SST-2': return line[0] elif task == 'STS-B': return line[-3] + ' ' + line[-2] elif task == 'WNLI': return line[1] + ' ' + line[2] else: raise NotImplementedError
null
1,324
from sentence_transformers import SentenceTransformer, util import argparse import os import numpy as np from tqdm import tqdm import pandas as pd def split_header(task, lines): """Returns if the task file has a header or not.""" if task in ["CoLA"]: return [], lines elif task in ["MNLI", "MRPC", "QNLI", "QQP", "RTE", "SNLI", "SST-2", "STS-B", "WNLI"]: return lines[0:1], lines[1:] else: raise ValueError("Unknown GLUE task.") def load_datasets(data_dir, task, do_test=False): dataset = {} if task == "MNLI": splits = ["train", "dev_matched"] if do_test: splits += ['test_matched', 'test_mismatched'] else: splits = ["train", "dev"] if do_test: splits.append('test') for split in splits: if task in ['mr', 'sst-5', 'subj', 'trec', 'cr', 'mpqa']: filename = os.path.join(data_dir, f"{split}.csv") dataset[split] = pd.read_csv(filename, header=None).values.tolist() else: filename = os.path.join(data_dir, f"{split}.tsv") with open(filename, "r") as f: lines = f.readlines() header, content = split_header(task, lines) dataset[split] = content return dataset
null
1,326
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics The provided code snippet includes necessary dependencies for implementing the `perplexity` function. Write a Python function `def perplexity(outputs, targets,ignore_index=-100)` to solve the following problem: Computes the perplexity accuracy. Here is the function: def perplexity(outputs, targets,ignore_index=-100): """Computes the perplexity accuracy.""" ce = -np.log(outputs).mean() # ce = F.cross_entropy(torch.Tensor(outputs).view(-1, outputs.shape[-1]), torch.Tensor(targets).view(-1).long(),ignore_index=ignore_index) return {"perplexity":float(np.exp(ce))}
Computes the perplexity accuracy.
1,330
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics def transform_for_generation(predictions, targets): mapping = {k: i for i, k in enumerate(set(targets))} targets = np.asarray([mapping[k] for k in targets]) predictions = np.asarray([mapping[k] if k in mapping else (t+1)%len(mapping) for t, k in zip(targets, predictions)]) return predictions, targets
null
1,337
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForImageClassification, ) from transformers import Trainer as HfTrainer import torch.nn as nn def get_prompts(task, tokenizer, data_args, template_id="0", verbalizer_id="0"): # from openpromptu.prompts import ManualVerbalizer # from openpromptu.prompts import ManualTemplate # from openpromptu import TokenizerWrapper # template = ManualTemplate(text = task.templates_text[template_id]) # verbalizer = ManualVerbalizer(tokenizer=tokenizer, classes = task.labels_list, label_words=task.verbalizers[verbalizer_id]) # tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer, truncate_method="balanced", mask_token_func=mask_token_func) return None, None, None
null
1,338
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForImageClassification, ) from transformers import Trainer as HfTrainer import torch.nn as nn def preprocess_function(raw_example, **kwargs): # from IPython import embed; embed(header="Therefa") tokenizer = kwargs['tokenizer'] # print(np.array(raw_example['img']).shape) model_inputs = tokenizer(np.array(raw_example['image']), return_tensors='pt') model_inputs['pixel_values'] = model_inputs['pixel_values'].squeeze() model_inputs['labels'] = raw_example['label'] return model_inputs
null
1,339
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForImageClassification, ) from transformers import Trainer as HfTrainer import torch.nn as nn def compute_metrics(eval_preds, dataset_name, eval_metric): # from IPython import embed; embed(header="In compute metrics") preds, labels = eval_preds.predictions, eval_preds.label_ids preds = np.argmax(preds, axis=-1) result = {} average_metrics = [] for metric in eval_metric: metric_item = metric(preds, labels) metric_value = list(metric_item.values()) result.update(metric_item) average_metrics.extend(metric_value) print("average:",average_metrics) average_metric = sum(average_metrics)/len(average_metrics) result.update({"average_metrics":average_metric}) return result
null
1,340
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForImageClassification, ) from transformers import Trainer as HfTrainer import torch.nn as nn def mask_token_func(tokenizer, ith_mask=0): return tokenizer.mask_token
null
1,341
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForImageClassification, ) from transformers import Trainer as HfTrainer import torch.nn as nn def get_remove_columns(dataset_features): # dataset_features.pop("label") # print("remove_columns: {}".format(dataset_features)) return dataset_features
null
1,342
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForImageClassification, ) from transformers import Trainer as HfTrainer import torch.nn as nn def get_backbone(model_args, **kwargs): config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config.dropout_rate = 0.0 tokenizer = AutoFeatureExtractor.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config.num_labels = model_args.num_classes old_classifier = model.classifier model.classifier = nn.Linear(old_classifier.in_features, config.num_labels) return config, tokenizer, model
null
1,343
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def get_remove_columns(dataset_features): return dataset_features
null
1,344
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def preprocess_function(raw_example, **kwargs): # max_target_length += 1 tokenizer = kwargs['tokenizer'] data_args = kwargs['data_args'] template = kwargs['template'] verbalizer = kwargs['verbalizer'] tokenizer_wrapper = kwargs['tokenizer_wrapper'] split = kwargs['split'] example = InputExample(**raw_example) example = verbalizer.wrap_one_example(example) example, other = template.wrap_one_example(example) input_sentence = tokenizer_wrapper.merge_wrapped_example(example) model_inputs = tokenizer(input_sentence, max_length=256, padding="max_length", truncation=True) with tokenizer.as_target_tokenizer(): label = tokenizer(other['tgt_text']).input_ids model_inputs["labels"] = label return model_inputs
null
1,345
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def get_backbone(model_args, **kwargs): config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config.dropout_rate = 0.0 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) return config, tokenizer, model
null
1,346
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def mask_token_func(tokenizer, ith_mask): return tokenizer.additional_special_tokens[ith_mask] def get_prompts(task, tokenizer, data_args, template_id="0", verbalizer_id="0"): from openpromptu.prompts import GenerationVerbalizer from openpromptu.prompts import ManualTemplate from openpromptu import TokenizerWrapper template = ManualTemplate(text = task.templates_text[template_id]) verbalizer = GenerationVerbalizer(tokenizer=tokenizer, classes = task.labels_list, label_words=task.verbalizers[verbalizer_id]) tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer, truncate_method="balanced", mask_token_func=mask_token_func) return template, verbalizer, tokenizer_wrapper
null
1,347
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( CLIPConfig, CLIPProcessor, CLIPModel, ) from transformers import ViTFeatureExtractor from PIL import Image from transformers import Trainer as HfTrainer import torch.nn as nn def mask_token_func(tokenizer, ith_mask=0): return tokenizer.mask_token def get_prompts(task, tokenizer, data_args, template_id="clip", verbalizer_id="clip"): from openpromptu.prompts import GenerationVerbalizer from openpromptu.prompts import ManualTemplate from openpromptu import TokenizerWrapper template = ManualTemplate(text = task.templates_text[template_id]) verbalizer = GenerationVerbalizer(tokenizer=tokenizer, classes = task.labels_list, label_words=task.verbalizers[verbalizer_id]) tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer.tokenizer, truncate_method="balanced", mask_token_func=mask_token_func) return template, verbalizer, tokenizer_wrapper
null
1,348
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( CLIPConfig, CLIPProcessor, CLIPModel, ) from transformers import ViTFeatureExtractor from PIL import Image from transformers import Trainer as HfTrainer import torch.nn as nn def preprocess_function(raw_example, **kwargs): # from IPython import embed; embed(header="Therefa") tokenizer = kwargs['tokenizer'] # ["a photo of {}" for i in range()] data_args = kwargs['data_args'] template = kwargs['template'] verbalizer = kwargs['verbalizer'] tokenizer_wrapper = kwargs['tokenizer_wrapper'] example = InputExample(raw_example) texts = [] for candidate_label in range(verbalizer.num_classes): tgt_text = verbalizer.wrap_one_example(label=candidate_label) wrapped_example, other = template.wrap_one_example(example) input_sentence = tokenizer_wrapper.merge_wrapped_example(wrapped_example, tgt_texts=[tgt_text]) texts.append(input_sentence) # from IPython import embed; embed()/ image = Image.open(raw_example['image_file_path']) model_inputs = tokenizer(images=image, text=texts, max_length=16, padding="max_length", truncation=True, return_tensors='pt') # from IPython import embed; embed() model_inputs["pixel_values"] = model_inputs["pixel_values"].squeeze() model_inputs["label"] = example.label return model_inputs
null
1,349
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( CLIPConfig, CLIPProcessor, CLIPModel, ) from transformers import ViTFeatureExtractor from PIL import Image from transformers import Trainer as HfTrainer import torch.nn as nn def compute_metrics(eval_preds, dataset_name, eval_metric): # from IPython import embed; embed(header="In compute metrics") preds, labels = eval_preds.predictions, eval_preds.label_ids preds = np.argmax(preds, axis=-1) result = {} average_metrics = [] for metric in eval_metric: metric_item = metric(preds, labels) metric_value = list(metric_item.values()) result.update(metric_item) average_metrics.extend(metric_value) print("average:",average_metrics) average_metric = sum(average_metrics)/len(average_metrics) result.update({"average_metrics":average_metric}) return result
null
1,350
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( CLIPConfig, CLIPProcessor, CLIPModel, ) from transformers import ViTFeatureExtractor from PIL import Image from transformers import Trainer as HfTrainer import torch.nn as nn def get_remove_columns(dataset_features): # from IPython import embed; embed(header="in remoev") dataset_features.remove("labels") print("remove_columns: {}".format(dataset_features)) return dataset_features
null
1,351
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( CLIPConfig, CLIPProcessor, CLIPModel, ) from transformers import ViTFeatureExtractor from PIL import Image from transformers import Trainer as HfTrainer import torch.nn as nn def get_backbone(model_args, **kwargs): config = CLIPConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # config.dropout_rate = 0.0 tokenizer = CLIPProcessor.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = CLIPModel.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # config.num_labels = model_args.num_classes # old_classifier = model.classifier # model.classifier = nn.Linear(old_classifier.in_features, config.num_labels) return config, tokenizer, model
null
1,352
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoModelForMaskedLM, AutoTokenizer, ) from transformers import Trainer as HfTrainer def preprocess_function(raw_example, **kwargs): tokenizer = kwargs['tokenizer'] data_args = kwargs['data_args'] template = kwargs['template'] verbalizer = kwargs['verbalizer'] tokenizer_wrapper = kwargs['tokenizer_wrapper'] example = InputExample(**raw_example) example, other = template.wrap_one_example(example) input_sentence = tokenizer_wrapper.merge_wrapped_example(example) model_inputs = tokenizer(input_sentence, max_length=data_args.max_source_length, padding="max_length", truncation=True) return model_inputs
null
1,353
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoModelForMaskedLM, AutoTokenizer, ) from transformers import Trainer as HfTrainer def compute_metrics(eval_preds, dataset_name, eval_metric): # from IPython import embed; embed(header="In compute metrics") preds, labels = eval_preds.predictions, eval_preds.label_ids preds = np.argmax(preds, axis=-1) result = {} average_metrics = [] for metric in eval_metric: metric_item = metric(preds, labels) metric_value = list(metric_item.values()) result.update(metric_item) average_metrics.extend(metric_value) print("average:",average_metrics) average_metric = sum(average_metrics)/len(average_metrics) result.update({"average_metrics":average_metric}) return result
null
1,354
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoModelForMaskedLM, AutoTokenizer, ) from transformers import Trainer as HfTrainer def get_remove_columns(dataset_features): dataset_features.remove("label") return dataset_features
null
1,355
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoModelForMaskedLM, AutoTokenizer, ) from transformers import Trainer as HfTrainer def mask_token_func(tokenizer, ith_mask=0): return tokenizer.mask_token def get_prompts(task, tokenizer, data_args, template_id="0", verbalizer_id="0"): from openpromptu.prompts import ManualVerbalizer from openpromptu.prompts import ManualTemplate from openpromptu import TokenizerWrapper template = ManualTemplate(text = task.templates_text[template_id]) verbalizer = ManualVerbalizer(tokenizer=tokenizer, classes = task.labels_list, label_words=task.verbalizers[verbalizer_id]) tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer, truncate_method="balanced", mask_token_func=mask_token_func) # from IPython import embed; embed() return template, verbalizer, tokenizer_wrapper
null
1,356
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoModelForMaskedLM, AutoTokenizer, ) from transformers import Trainer as HfTrainer def get_backbone(model_args, **kwargs): config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config.dropout_rate = 0.0 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model.resize_token_embeddings(len(tokenizer)) return config, tokenizer, model
null
1,359
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin import numpy as np from transformers import ( AutoConfig, AutoModelForMaskedLM, AutoTokenizer, ) from transformers import Trainer as HfTrainer def get_remove_columns(dataset_features): # from IPython import embed; embed(header="get_remove_columns") dataset_features.remove("label") return dataset_features
null
1,362
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import numpy as np from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, ) from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer import copy from torch.nn import CrossEntropyLoss def preprocess_function(raw_example, **kwargs): tokenizer = kwargs['tokenizer'] data_args = kwargs['data_args'] template = kwargs['template'] verbalizer = kwargs['verbalizer'] tokenizer_wrapper = kwargs['tokenizer_wrapper'] example = InputExample(**raw_example) # example = verbalizer.wrap_one_example(example) example, other = template.wrap_one_example(example) input_sentence = tokenizer_wrapper.merge_wrapped_example(example) model_inputs = tokenizer(input_sentence, max_length=data_args.max_source_length, padding="max_length", truncation=True) return model_inputs
null
1,363
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import numpy as np from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, ) from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer import copy from torch.nn import CrossEntropyLoss def compute_metrics(eval_preds, dataset_name, eval_metric): pass
null
1,364
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import numpy as np from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, ) from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer import copy from torch.nn import CrossEntropyLoss def get_remove_columns(dataset_features): # dataset_features.remove("label") return dataset_features
null
1,365
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import numpy as np from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, ) from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer import copy from torch.nn import CrossEntropyLoss def mask_token_func(tokenizer, ith_mask=0): return tokenizer.pad_token def get_prompts(task, tokenizer, data_args, template_id="0", verbalizer_id="0"): from openpromptu.prompts import GenerationVerbalizer from openpromptu.prompts import ManualTemplate from openpromptu import TokenizerWrapper template = ManualTemplate(text = task.templates_text[template_id]) verbalizer = GenerationVerbalizer(tokenizer=tokenizer, classes = None, label_words=None) tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer, truncate_method="balanced", mask_token_func=mask_token_func) return template, verbalizer, tokenizer_wrapper
null
1,366
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import numpy as np from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, ) from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer import copy from torch.nn import CrossEntropyLoss def get_backbone(model_args, **kwargs): config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # config.dropout_rate = 0.0 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) return config, tokenizer, model
null
1,369
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def get_backbone(model_args, **kwargs): config = AutoConfig.from_pretrained( # model_args.config_name if model_args.config_name else model_args.model_name_or_path, model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config.dropout_rate = 0.0 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) return config, tokenizer, model
null
1,370
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def mask_token_func(tokenizer, ith_mask=0): def get_prompts(task, tokenizer, data_args, template_id="0", verbalizer_id="0"): from openpromptu.prompts import GenerationVerbalizer from openpromptu.prompts import ManualTemplate from openpromptu import TokenizerWrapper template = ManualTemplate(text = task.templates_text[template_id]) verbalizer = GenerationVerbalizer(tokenizer=tokenizer, classes = task.labels_list, label_words=task.verbalizers[verbalizer_id]) tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer, truncate_method="balanced", mask_token_func=mask_token_func) return template, verbalizer, tokenizer_wrapper
null
1,374
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import numpy as np from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, ) from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer import copy from torch.nn import CrossEntropyLoss def mask_token_func(tokenizer, ith_mask=0): return tokenizer.pad_token def get_prompts(task, tokenizer, data_args, template_id="0", verbalizer_id="0"): from openpromptu.prompts import GenerationVerbalizer from openpromptu.prompts import ManualTemplate from openpromptu import TokenizerWrapper template = ManualTemplate(text = task.templates_text[template_id]) verbalizer = GenerationVerbalizer(tokenizer=tokenizer, classes = None, label_words=None) tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer, truncate_method="tail", mask_token_func=mask_token_func) return template, verbalizer, tokenizer_wrapper
null
1,375
from openpromptu.data_utils import InputExample import torch from transformers.data.data_collator import torch_default_data_collator from transformers.data.data_collator import DataCollatorMixin as HfDataCollatorMixin from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import numpy as np from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, ) from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer import copy from torch.nn import CrossEntropyLoss def get_backbone(model_args, **kwargs): config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # config.dropout_rate = 0.0 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) if not hasattr(tokenizer,"pad_token") or (hasattr(tokenizer,"pad_token") and tokenizer.pad_token==None): tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) return config, tokenizer, model
null
1,376
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, BlenderbotForConditionalGeneration, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def get_remove_columns(dataset_features): return dataset_features
null
1,377
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, BlenderbotForConditionalGeneration, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def preprocess_function(raw_example, **kwargs): # max_target_length += 1 tokenizer = kwargs['tokenizer'] data_args = kwargs['data_args'] template = kwargs['template'] verbalizer = kwargs['verbalizer'] tokenizer_wrapper = kwargs['tokenizer_wrapper'] split = kwargs['split'] example = InputExample(**raw_example) example = verbalizer.wrap_one_example(example) example, other = template.wrap_one_example(example) input_sentence = tokenizer_wrapper.merge_wrapped_example(example) model_inputs = tokenizer(input_sentence, max_length=data_args.max_source_length, padding="max_length", truncation=True) with tokenizer.as_target_tokenizer(): label = tokenizer(other['tgt_text']).input_ids model_inputs["labels"] = label # from IPython import embed; embed() return model_inputs
null
1,378
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, BlenderbotForConditionalGeneration, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def get_backbone(model_args, **kwargs): config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config.dropout_rate = 0.0 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = BlenderbotForConditionalGeneration.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # from IPython import embed; embed() return config, tokenizer, model
null
1,379
from openpromptu.data_utils import InputExample from transformers import Seq2SeqTrainer as HfSeq2SeqTrainer from transformers import ( AutoConfig, BlenderbotForConditionalGeneration, AutoTokenizer, ) from transformers.data.data_collator import DataCollatorForSeq2Seq as DataCollator import torch def mask_token_func(tokenizer, ith_mask=0): return "" def get_prompts(task, tokenizer, data_args, template_id="blenderbot", verbalizer_id="blenderbot"): from openpromptu.prompts import GenerationVerbalizer from openpromptu.prompts import ManualTemplate from openpromptu import TokenizerWrapper template = ManualTemplate(text = task.templates_text[template_id]) verbalizer = GenerationVerbalizer(tokenizer=tokenizer, classes = task.labels_list, label_words=task.verbalizers[verbalizer_id]) tokenizer_wrapper = TokenizerWrapper(max_seq_length=data_args.max_source_length, tokenizer=tokenizer, truncate_method="balanced", mask_token_func=mask_token_func) return template, verbalizer, tokenizer_wrapper
null
1,380
import numpy as np import re The provided code snippet includes necessary dependencies for implementing the `round_stsb_target` function. Write a Python function `def round_stsb_target(label)` to solve the following problem: STSB maps two sentences to a floating point number between 1 and 5 representing their semantic similarity. Since we are treating all tasks as text-to-text tasks we need to convert this floating point number to a string. The vast majority of the similarity score labels in STSB are in the set [0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest entry in this set, and then we convert the result to a string (literally e.g. "3.4"). This converts STSB roughly into a 26-class classification dataset. Args: label: original label. Returns: A preprocessed label. Here is the function: def round_stsb_target(label): """STSB maps two sentences to a floating point number between 1 and 5 representing their semantic similarity. Since we are treating all tasks as text-to-text tasks we need to convert this floating point number to a string. The vast majority of the similarity score labels in STSB are in the set [0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest entry in this set, and then we convert the result to a string (literally e.g. "3.4"). This converts STSB roughly into a 26-class classification dataset. Args: label: original label. Returns: A preprocessed label. """ return np.round((label * 5) / 5, decimals=1)
STSB maps two sentences to a floating point number between 1 and 5 representing their semantic similarity. Since we are treating all tasks as text-to-text tasks we need to convert this floating point number to a string. The vast majority of the similarity score labels in STSB are in the set [0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest entry in this set, and then we convert the result to a string (literally e.g. "3.4"). This converts STSB roughly into a 26-class classification dataset. Args: label: original label. Returns: A preprocessed label.
1,381
import numpy as np import re The provided code snippet includes necessary dependencies for implementing the `pad_punctuation` function. Write a Python function `def pad_punctuation(text)` to solve the following problem: Re-implementation of _pad_punctuation in t5. This function adds spaces around punctuation. While this pads punctuation as expected, it has the unexpected effected of padding certain unicode characters with accents, with spaces as well. For instance: "François" becomes "Fran ç ois Here is the function: def pad_punctuation(text): """Re-implementation of _pad_punctuation in t5. This function adds spaces around punctuation. While this pads punctuation as expected, it has the unexpected effected of padding certain unicode characters with accents, with spaces as well. For instance: "François" becomes "Fran ç ois""" # Pad everything except for: underscores (_), whitespace (\s), # numbers (\p{N}), letters (\p{L}) and accent characters (\p{M}). text = re.sub(r'([^_\s\p{N}\p{L}\p{M}])', r' \1 ', text) # Collapse consecutive whitespace into one space. text = re.sub(r'\s+', ' ', text) return text
Re-implementation of _pad_punctuation in t5. This function adds spaces around punctuation. While this pads punctuation as expected, it has the unexpected effected of padding certain unicode characters with accents, with spaces as well. For instance: "François" becomes "Fran ç ois
1,382
import os import argparse import random import json from examples_prompt.search_space import AllBackboneSearchSpace, AllDeltaSearchSpace, BaseSearchSpace, DatasetSearchSpace import optuna from functools import partial from optuna.samplers import TPESampler import shutil import time import subprocess def objective_singleseed(args, unicode, search_space_sample ): os.mkdir(f"{args.output_dir}/{unicode}") search_space_sample.update({"output_dir": f"{args.output_dir}/{unicode}"}) with open(f"{args.output_dir}/{unicode}/this_configs.json", 'w') as fout: json.dump(search_space_sample, fout, indent=4,sort_keys=True) command = "CUDA_VISIBLE_DEVICES={} ".format(args.cuda_id) command += f"{args.pythonpath} {args.main_file_name} " command += f"{args.output_dir}/{unicode}/this_configs.json" command += f" >> {args.output_dir}/{unicode}/output.log 2>&1" print("======"*5+"\n"+command) p = subprocess.Popen(command, cwd=f"{args.pathbase}", shell=True) print(f"wait for subprocess \"{command}\" to complete") p.wait() # if status_code != 0: # with open(f"{args.output_dir}/{args.cuda_id}.log",'r') as flog: # lastlines = " ".join(flog.readlines()[-100:]) # if "RuntimeError: CUDA out of memory." in lastlines: # time.sleep(600) # sleep ten minites and try again # shutil.rmtree(f"{args.output_dir}/{unicode}/") # return objective_singleseed(args, unicode, search_space_sample) # else: # raise RuntimeError("error in {}".format(unicode)) with open(f"{args.output_dir}/{unicode}/results.json", 'r') as fret: results =json.load(fret) for filename in os.listdir(f"{args.output_dir}/{unicode}/"): if not filename.endswith("this_configs.json"): full_file_name = f"{args.output_dir}/{unicode}/{filename}" if os.path.isdir(full_file_name): shutil.rmtree(f"{args.output_dir}/{unicode}/{filename}") else: os.remove(full_file_name) results_all_test_datasets = [] print("results:", results) for datasets in results['test']: results_all_test_datasets.append(results['test'][datasets]['test_average_metrics']) return sum(results_all_test_datasets)/len(results_all_test_datasets)#results['test']['average_metrics'] def objective(trial, args=None): search_space_sample = {} search_space_sample.update(BaseSearchSpace().get_config(trial, args)) search_space_sample.update(AllBackboneSearchSpace[args.model_name]().get_config(trial, args)) search_space_sample.update(DatasetSearchSpace(args.dataset).get_config(trial, args)) search_space_sample.update(AllDeltaSearchSpace[args.delta_type]().get_config(trial, args)) results = [] for seed in range(42, 42+args.repeat_time): search_space_sample.update({"seed": seed}) unicode = random.randint(0, 100000000) while os.path.exists(f"{args.output_dir}/{unicode}"): unicode = unicode+1 trial.set_user_attr("trial_dir", f"{args.output_dir}/{unicode}") res = objective_singleseed(args, unicode = unicode, search_space_sample=search_space_sample) results.append(res) ave_res = sum(results)/len(results) return -ave_res
null
1,383
import json import os import re The provided code snippet includes necessary dependencies for implementing the `create_dir` function. Write a Python function `def create_dir(output_dir)` to solve the following problem: Checks whether to the output_dir already exists and creates it if not. Args: output_dir: path to the output_dir Here is the function: def create_dir(output_dir): """ Checks whether to the output_dir already exists and creates it if not. Args: output_dir: path to the output_dir """ if not os.path.exists(output_dir): os.makedirs(output_dir)
Checks whether to the output_dir already exists and creates it if not. Args: output_dir: path to the output_dir
1,384
import json import os import re def get_last_checkpoint(output_dir): if os.path.exists(os.path.join(output_dir, 'pytorch_model.bin')): return output_dir return None
null
1,385
import json import os import re def save_json(filepath, dictionary): with open(filepath, "w") as outfile: json.dump(dictionary, outfile)
null
1,386
import json import os import re def read_json(filepath): f = open(filepath,) return json.load(f)
null
1,387
import time import os import torch import numpy as np from sklearn.metrics import accuracy_score, recall_score, f1_score import bmtrain as bmt from model_center.arguments import add_model_config_args, add_training_args, argparse from model_center.model import Bert from model_center.tokenizer import BertTokenizer from model_center.dataset.bertdataset import DATASET from model_center.utils import print_inspect from model_center.layer import Linear from model_center.dataset import DistributedDataLoader import opendelta as od from opendelta import LoraModel, AdapterModel, CompacterModel, LowRankAdapterModel, BitFitModel, ParallelAdapterModel from opendelta.utils.inspect import inspect_optimizer_statistics from bigmodelvis import Visualization def get_tokenizer(args): tokenizer = BertTokenizer.from_pretrained(args.model_config) return tokenizer def get_model(args): num_types = { "BoolQ" : 2, "CB" : 3, "COPA" : 1, "RTE" : 2, "WiC" : 2, } model = BertModel(args, num_types[args.dataset_name]) from bigmodelvis import Visualization Visualization(model).structure_graph() if args.delta_type == "lora": delta_model = LoraModel(backbone_model=model, modified_modules=['project_q', 'project_k'], backend='bmt') elif args.delta_type == "bitfit": delta_model = BitFitModel(backbone_model=model, modified_modules=['self_att', 'ffn', 'layernorm'], backend='bmt') elif args.delta_type == "adapter": delta_model = AdapterModel(backbone_model=model, modified_modules=['self_att', 'ffn'], backend='bmt') elif args.delta_type == "compacter": delta_model = CompacterModel(backbone_model=model, modified_modules=['self_att', 'ffn'], backend='bmt') elif args.delta_type == "low_rank_adapter": delta_model = LowRankAdapterModel(backbone_model=model, modified_modules=['self_att', 'ffn'], backend='bmt') elif args.delta_type == "parallel_adapter": delta_model = ParallelAdapterModel(backbone_model=model, modified_modules=['self_att', 'self_att', 'ffn.ffn', 'ffn.ffn'], backend='bmt') print("after modify") delta_model.log() # This will visualize the backbone after modification and other information. delta_model.freeze_module(exclude=["deltas"], set_state_dict=True) print("after freeze") delta_model.log() return model def get_optimizer(args, model): optimizer = bmt.optim.AdamOffloadOptimizer(model.parameters(), weight_decay=args.weight_decay) return optimizer def get_learning_rate_scheduler(args, optimizer): if args.lr_decay_iters is None: args.lr_decay_iters = args.train_iters * args.epochs if args.lr_decay_style == "noam": lr_scheduler = bmt.lr_scheduler.Noam(optimizer, start_lr = args.lr, warmup_iter = args.warmup_iters, end_iter = args.lr_decay_iters, num_iter = args.start_step) elif args.lr_decay_style == "constant": lr_scheduler = bmt.lr_scheduler.NoDecay(optimizer, start_lr = args.lr, warmup_iter = args.warmup_iters, end_iter = -1, num_iter = args.start_step) elif args.lr_decay_style == "linear": lr_scheduler = bmt.lr_scheduler.Linear(optimizer, start_lr = args.lr, warmup_iter = args.warmup_iters, end_iter = args.lr_decay_iters, num_iter = args.start_step) elif args.lr_decay_style == "exponential": lr_scheduler = bmt.lr_scheduler.Exponential(optimizer, start_lr = args.lr, warmup_iter = args.warmup_iters, end_iter = args.lr_decay_iters, num_iter = args.start_step) elif args.lr_decay_style == "cosine": lr_scheduler = bmt.lr_scheduler.Cosine(optimizer, start_lr = args.lr, warmup_iter = args.warmup_iters, end_iter = args.lr_decay_iters, num_iter = args.start_step) else: raise ValueError(f"lr_scheduler of type {args.lr_decay_style} is not supported yet.") return lr_scheduler def inspect_optimizer_statistics(optimizer, verbose=True): stats = {} for id, param_group in enumerate(optimizer.param_groups): stat = {} fine_grain_info = [(p.numel(), p.requires_grad) for p in param_group['params']] stat['total_parameters'] = sum(n for n, r in fine_grain_info) stat['trainable_parameters'] = sum(n for n, r in fine_grain_info if r) stat['trainable_ratio'] = "{:.6f}%".format(stat['trainable_parameters']/stat['total_parameters']*100) for key in param_group: if key != 'params': stat[key] = param_group[key] stats[f'param_group_{id}'] = stat if verbose: logger.info(f"optimizer info: {stats}") return stat def setup_model_and_optimizer(args): # get the tokenizer tokenizer = get_tokenizer(args) # get the model model = get_model(args) bmt.synchronize() # get the optimizer and lr_scheduler optimizer = get_optimizer(args, model) inspect_optimizer_statistics(optimizer) lr_scheduler = get_learning_rate_scheduler(args, optimizer) bmt.synchronize() # get the memory usage bmt.print_rank("Model mem\n", torch.cuda.memory_summary()) bmt.synchronize() return tokenizer, model, optimizer, lr_scheduler
null
1,388
import time import os import torch import numpy as np from sklearn.metrics import accuracy_score, recall_score, f1_score import bmtrain as bmt from model_center.arguments import add_model_config_args, add_training_args, argparse def get_args(): parser = argparse.ArgumentParser() parser = add_model_config_args(parser) parser = add_training_args(parser) group = parser.add_argument_group('delta', 'delta configurations') group.add_argument('--delta-type', '--delta_type', type=str, help='delta type') args = parser.parse_args() return args from model_center.model import Bert from model_center.tokenizer import BertTokenizer from model_center.dataset.bertdataset import DATASET from model_center.utils import print_inspect from model_center.layer import Linear from model_center.dataset import DistributedDataLoader import opendelta as od from opendelta import LoraModel, AdapterModel, CompacterModel, LowRankAdapterModel, BitFitModel, ParallelAdapterModel from opendelta.utils.inspect import inspect_optimizer_statistics from bigmodelvis import Visualization def initialize(): # get arguments args = get_args() # init bmt bmt.init_distributed(seed = args.seed) # init save folder if args.save != None: os.makedirs(args.save, exist_ok=True) return args
null
1,389
import time import os import torch import numpy as np from sklearn.metrics import accuracy_score, recall_score, f1_score import bmtrain as bmt from model_center.arguments import add_model_config_args, add_training_args, argparse from model_center.model import Bert from model_center.tokenizer import BertTokenizer from model_center.dataset.bertdataset import DATASET from model_center.utils import print_inspect from model_center.layer import Linear from model_center.dataset import DistributedDataLoader import opendelta as od from opendelta import LoraModel, AdapterModel, CompacterModel, LowRankAdapterModel, BitFitModel, ParallelAdapterModel from opendelta.utils.inspect import inspect_optimizer_statistics from bigmodelvis import Visualization def prepare_dataset(args, tokenizer, base_path, dataset_name, rank, world_size): splits = ['train', 'dev', 'test'] dataset = {} for split in splits: dataset[split] = DATASET[dataset_name](base_path, split, rank, world_size, tokenizer, args.max_encoder_length) return dataset
null
1,390
import time import os import torch import numpy as np from sklearn.metrics import accuracy_score, recall_score, f1_score import bmtrain as bmt from model_center.arguments import add_model_config_args, add_training_args, argparse from model_center.model import Bert from model_center.tokenizer import BertTokenizer from model_center.dataset.bertdataset import DATASET from model_center.utils import print_inspect from model_center.layer import Linear from model_center.dataset import DistributedDataLoader import opendelta as od from opendelta import LoraModel, AdapterModel, CompacterModel, LowRankAdapterModel, BitFitModel, ParallelAdapterModel from opendelta.utils.inspect import inspect_optimizer_statistics from bigmodelvis import Visualization def finetune(args, tokenizer, model, optimizer, lr_scheduler, dataset): loss_func = bmt.loss.FusedCrossEntropy(ignore_index=-100) optim_manager = bmt.optim.OptimManager(loss_scale=args.loss_scale) optim_manager.add_optimizer(optimizer, lr_scheduler) # print_inspect(model, '*') # too much output for epoch in range(12): dataloader = { "train": DistributedDataLoader(dataset['train'], batch_size=args.batch_size, shuffle=True), "dev": DistributedDataLoader(dataset['dev'], batch_size=args.batch_size, shuffle=False), } model.train() for it, data in enumerate(dataloader['train']): if args.dataset_name == 'COPA': input_ids0 = data["input_ids0"] attention_mask0 = data["attention_mask0"] token_type_ids0 = data["token_type_ids0"] input_ids1 = data["input_ids1"] attention_mask1 = data["attention_mask1"] token_type_ids1 = data["token_type_ids1"] labels = data["labels"] else: input_ids = data["input_ids"] attention_mask = data["attention_mask"] token_type_ids = data["token_type_ids"] labels = data["labels"] torch.cuda.synchronize() st_time = time.time() if args.dataset_name == 'COPA': logits = torch.cat([ model(input_ids0, attention_mask=attention_mask0, token_type_ids=token_type_ids0), model(input_ids1, attention_mask=attention_mask1, token_type_ids=token_type_ids1), ], dim=1) else: logits = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1)) global_loss = bmt.sum_loss(loss).item() optim_manager.zero_grad() optim_manager.backward(loss) grad_norm = optim_manager.clip_grad_norm(optimizer.param_groups, args.clip_grad, norm_type = 2) optim_manager.step() torch.cuda.synchronize() elapsed_time = time.time() - st_time # from IPython import embed; embed(header="25252") bmt.print_rank( "train | epoch {:3d} | Iter: {:6d}/{:6d} | loss: {:.4f} | lr: {:.4e}, scale: {:10.4f} | grad_norm: {:.4f} | time: {:.3f}".format( epoch, it, len(dataloader["train"]), global_loss, lr_scheduler.current_lr, int(optim_manager.loss_scale), grad_norm, elapsed_time, ) ) model.eval() with torch.no_grad(): for split in ['dev']: pd = [] gt = [] for it, data in enumerate(dataloader[split]): if args.dataset_name == 'COPA': input_ids0 = data["input_ids0"] attention_mask0 = data["attention_mask0"] token_type_ids0 = data["token_type_ids0"] input_ids1 = data["input_ids1"] attention_mask1 = data["attention_mask1"] token_type_ids1 = data["token_type_ids1"] labels = data["labels"] logits = torch.cat([ model(input_ids0, attention_mask=attention_mask0, token_type_ids=token_type_ids0), model(input_ids1, attention_mask=attention_mask1, token_type_ids=token_type_ids1), ], dim=1) else: input_ids = data["input_ids"] attention_mask = data["attention_mask"] token_type_ids = data["token_type_ids"] labels = data["labels"] logits = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1)) logits = logits.argmax(dim=-1) pd.extend(logits.cpu().tolist()) gt.extend(labels.cpu().tolist()) bmt.print_rank( "{} | epoch {:3d} | Iter: {:6d}/{:6d} | loss: {:.4f}".format( split, epoch, it, len(dataloader[split]), loss, ) ) pd = bmt.gather_result(torch.tensor(pd).int()).cpu().tolist() gt = bmt.gather_result(torch.tensor(gt).int()).cpu().tolist() bmt.print_rank(f"{split} epoch {epoch}:") if args.dataset_name in ["BoolQ", "CB", "COPA", "RTE", "WiC", "WSC"]: acc = accuracy_score(gt, pd) bmt.print_rank(f"accuracy: {acc*100:.2f}") if args.dataset_name in ["CB"]: rcl = f1_score(gt, pd, average="macro") f1 = recall_score(gt, pd, average="macro") bmt.print_rank(f"recall: {rcl*100:.2f}") bmt.print_rank(f"Average F1: {f1*100:.2f}")
null
1,391
def SetConsoleTextAttribute(stream_id, attrs): handle = _GetStdHandle(stream_id) return _SetConsoleTextAttribute(handle, attrs)
null
1,392
STDOUT = -11 try: import ctypes from ctypes import LibraryLoader windll = LibraryLoader(ctypes.WinDLL) from ctypes import wintypes except (AttributeError, ImportError): windll = None SetConsoleTextAttribute = lambda *_: None winapi_test = lambda *_: None else: from ctypes import byref, Structure, c_char, POINTER COORD = wintypes._COORD _GetStdHandle = windll.kernel32.GetStdHandle _GetStdHandle.argtypes = [ wintypes.DWORD, ] _GetStdHandle.restype = wintypes.HANDLE _GetConsoleScreenBufferInfo = windll.kernel32.GetConsoleScreenBufferInfo _GetConsoleScreenBufferInfo.argtypes = [ wintypes.HANDLE, POINTER(CONSOLE_SCREEN_BUFFER_INFO), ] _GetConsoleScreenBufferInfo.restype = wintypes.BOOL _SetConsoleTextAttribute = windll.kernel32.SetConsoleTextAttribute _SetConsoleTextAttribute.argtypes = [ wintypes.HANDLE, wintypes.WORD, ] _SetConsoleTextAttribute.restype = wintypes.BOOL _SetConsoleCursorPosition = windll.kernel32.SetConsoleCursorPosition _SetConsoleCursorPosition.argtypes = [ wintypes.HANDLE, COORD, ] _SetConsoleCursorPosition.restype = wintypes.BOOL _FillConsoleOutputCharacterA = windll.kernel32.FillConsoleOutputCharacterA _FillConsoleOutputCharacterA.argtypes = [ wintypes.HANDLE, c_char, wintypes.DWORD, COORD, POINTER(wintypes.DWORD), ] _FillConsoleOutputCharacterA.restype = wintypes.BOOL _FillConsoleOutputAttribute = windll.kernel32.FillConsoleOutputAttribute _FillConsoleOutputAttribute.argtypes = [ wintypes.HANDLE, wintypes.WORD, wintypes.DWORD, COORD, POINTER(wintypes.DWORD), ] _FillConsoleOutputAttribute.restype = wintypes.BOOL _SetConsoleTitleW = windll.kernel32.SetConsoleTitleW _SetConsoleTitleW.argtypes = [ wintypes.LPCWSTR ] _SetConsoleTitleW.restype = wintypes.BOOL _GetConsoleMode = windll.kernel32.GetConsoleMode _GetConsoleMode.argtypes = [ wintypes.HANDLE, POINTER(wintypes.DWORD) ] _GetConsoleMode.restype = wintypes.BOOL _SetConsoleMode = windll.kernel32.SetConsoleMode _SetConsoleMode.argtypes = [ wintypes.HANDLE, wintypes.DWORD ] _SetConsoleMode.restype = wintypes.BOOL def GetConsoleScreenBufferInfo(stream_id=STDOUT): def SetConsoleCursorPosition(stream_id, position, adjust=True): position = COORD(*position) # If the position is out of range, do nothing. if position.Y <= 0 or position.X <= 0: return # Adjust for Windows' SetConsoleCursorPosition: # 1. being 0-based, while ANSI is 1-based. # 2. expecting (x,y), while ANSI uses (y,x). adjusted_position = COORD(position.Y - 1, position.X - 1) if adjust: # Adjust for viewport's scroll position sr = GetConsoleScreenBufferInfo(STDOUT).srWindow adjusted_position.Y += sr.Top adjusted_position.X += sr.Left # Resume normal processing handle = _GetStdHandle(stream_id) return _SetConsoleCursorPosition(handle, adjusted_position)
null
1,393
def FillConsoleOutputCharacter(stream_id, char, length, start): handle = _GetStdHandle(stream_id) char = c_char(char.encode()) length = wintypes.DWORD(length) num_written = wintypes.DWORD(0) # Note that this is hard-coded for ANSI (vs wide) bytes. success = _FillConsoleOutputCharacterA( handle, char, length, start, byref(num_written)) return num_written.value
null
1,394
The provided code snippet includes necessary dependencies for implementing the `FillConsoleOutputAttribute` function. Write a Python function `def FillConsoleOutputAttribute(stream_id, attr, length, start)` to solve the following problem: FillConsoleOutputAttribute( hConsole, csbi.wAttributes, dwConSize, coordScreen, &cCharsWritten ) Here is the function: def FillConsoleOutputAttribute(stream_id, attr, length, start): ''' FillConsoleOutputAttribute( hConsole, csbi.wAttributes, dwConSize, coordScreen, &cCharsWritten )''' handle = _GetStdHandle(stream_id) attribute = wintypes.WORD(attr) length = wintypes.DWORD(length) num_written = wintypes.DWORD(0) # Note that this is hard-coded for ANSI (vs wide) bytes. return _FillConsoleOutputAttribute( handle, attribute, length, start, byref(num_written))
FillConsoleOutputAttribute( hConsole, csbi.wAttributes, dwConSize, coordScreen, &cCharsWritten )
1,395
def SetConsoleTitle(title): return _SetConsoleTitleW(title)
null
1,396
CSI = '\033[' def code_to_chars(code): return CSI + str(code) + 'm'
null
1,397
OSC = '\033]' BEL = '\a' def set_title(title): return OSC + '2;' + title + BEL
null
1,398
CSI = '\033[' def clear_screen(mode=2): return CSI + str(mode) + 'J'
null
1,399
CSI = '\033[' def clear_line(mode=2): return CSI + str(mode) + 'K'
null
1,400
import atexit import contextlib import sys from .ansitowin32 import AnsiToWin32 def reset_all(): if AnsiToWin32 is not None: # Issue #74: objects might become None at exit AnsiToWin32(orig_stdout).reset_all() def _wipe_internal_state_for_tests(): global orig_stdout, orig_stderr orig_stdout = None orig_stderr = None global wrapped_stdout, wrapped_stderr wrapped_stdout = None wrapped_stderr = None global atexit_done atexit_done = False global fixed_windows_console fixed_windows_console = False try: # no-op if it wasn't registered atexit.unregister(reset_all) except AttributeError: # python 2: no atexit.unregister. Oh well, we did our best. pass
null
1,401
import atexit import contextlib import sys from .ansitowin32 import AnsiToWin32 class AnsiToWin32(object): ''' Implements a 'write()' method which, on Windows, will strip ANSI character sequences from the text, and if outputting to a tty, will convert them into win32 function calls. ''' ANSI_CSI_RE = re.compile('\001?\033\\[((?:\\d|;)*)([a-zA-Z])\002?') # Control Sequence Introducer ANSI_OSC_RE = re.compile('\001?\033\\]([^\a]*)(\a)\002?') # Operating System Command def __init__(self, wrapped, convert=None, strip=None, autoreset=False): # The wrapped stream (normally sys.stdout or sys.stderr) self.wrapped = wrapped # should we reset colors to defaults after every .write() self.autoreset = autoreset # create the proxy wrapping our output stream self.stream = StreamWrapper(wrapped, self) on_windows = os.name == 'nt' # We test if the WinAPI works, because even if we are on Windows # we may be using a terminal that doesn't support the WinAPI # (e.g. Cygwin Terminal). In this case it's up to the terminal # to support the ANSI codes. conversion_supported = on_windows and winapi_test() try: fd = wrapped.fileno() except Exception: fd = -1 system_has_native_ansi = not on_windows or enable_vt_processing(fd) have_tty = not self.stream.closed and self.stream.isatty() need_conversion = conversion_supported and not system_has_native_ansi # should we strip ANSI sequences from our output? if strip is None: strip = need_conversion or not have_tty self.strip = strip # should we should convert ANSI sequences into win32 calls? if convert is None: convert = need_conversion and have_tty self.convert = convert # dict of ansi codes to win32 functions and parameters self.win32_calls = self.get_win32_calls() # are we wrapping stderr? self.on_stderr = self.wrapped is sys.stderr def should_wrap(self): ''' True if this class is actually needed. If false, then the output stream will not be affected, nor will win32 calls be issued, so wrapping stdout is not actually required. This will generally be False on non-Windows platforms, unless optional functionality like autoreset has been requested using kwargs to init() ''' return self.convert or self.strip or self.autoreset def get_win32_calls(self): if self.convert and winterm: return { AnsiStyle.RESET_ALL: (winterm.reset_all, ), AnsiStyle.BRIGHT: (winterm.style, WinStyle.BRIGHT), AnsiStyle.DIM: (winterm.style, WinStyle.NORMAL), AnsiStyle.NORMAL: (winterm.style, WinStyle.NORMAL), AnsiFore.BLACK: (winterm.fore, WinColor.BLACK), AnsiFore.RED: (winterm.fore, WinColor.RED), AnsiFore.GREEN: (winterm.fore, WinColor.GREEN), AnsiFore.YELLOW: (winterm.fore, WinColor.YELLOW), AnsiFore.BLUE: (winterm.fore, WinColor.BLUE), AnsiFore.MAGENTA: (winterm.fore, WinColor.MAGENTA), AnsiFore.CYAN: (winterm.fore, WinColor.CYAN), AnsiFore.WHITE: (winterm.fore, WinColor.GREY), AnsiFore.RESET: (winterm.fore, ), AnsiFore.LIGHTBLACK_EX: (winterm.fore, WinColor.BLACK, True), AnsiFore.LIGHTRED_EX: (winterm.fore, WinColor.RED, True), AnsiFore.LIGHTGREEN_EX: (winterm.fore, WinColor.GREEN, True), AnsiFore.LIGHTYELLOW_EX: (winterm.fore, WinColor.YELLOW, True), AnsiFore.LIGHTBLUE_EX: (winterm.fore, WinColor.BLUE, True), AnsiFore.LIGHTMAGENTA_EX: (winterm.fore, WinColor.MAGENTA, True), AnsiFore.LIGHTCYAN_EX: (winterm.fore, WinColor.CYAN, True), AnsiFore.LIGHTWHITE_EX: (winterm.fore, WinColor.GREY, True), AnsiBack.BLACK: (winterm.back, WinColor.BLACK), AnsiBack.RED: (winterm.back, WinColor.RED), AnsiBack.GREEN: (winterm.back, WinColor.GREEN), AnsiBack.YELLOW: (winterm.back, WinColor.YELLOW), AnsiBack.BLUE: (winterm.back, WinColor.BLUE), AnsiBack.MAGENTA: (winterm.back, WinColor.MAGENTA), AnsiBack.CYAN: (winterm.back, WinColor.CYAN), AnsiBack.WHITE: (winterm.back, WinColor.GREY), AnsiBack.RESET: (winterm.back, ), AnsiBack.LIGHTBLACK_EX: (winterm.back, WinColor.BLACK, True), AnsiBack.LIGHTRED_EX: (winterm.back, WinColor.RED, True), AnsiBack.LIGHTGREEN_EX: (winterm.back, WinColor.GREEN, True), AnsiBack.LIGHTYELLOW_EX: (winterm.back, WinColor.YELLOW, True), AnsiBack.LIGHTBLUE_EX: (winterm.back, WinColor.BLUE, True), AnsiBack.LIGHTMAGENTA_EX: (winterm.back, WinColor.MAGENTA, True), AnsiBack.LIGHTCYAN_EX: (winterm.back, WinColor.CYAN, True), AnsiBack.LIGHTWHITE_EX: (winterm.back, WinColor.GREY, True), } return dict() def write(self, text): if self.strip or self.convert: self.write_and_convert(text) else: self.wrapped.write(text) self.wrapped.flush() if self.autoreset: self.reset_all() def reset_all(self): if self.convert: self.call_win32('m', (0,)) elif not self.strip and not self.stream.closed: self.wrapped.write(Style.RESET_ALL) def write_and_convert(self, text): ''' Write the given text to our wrapped stream, stripping any ANSI sequences from the text, and optionally converting them into win32 calls. ''' cursor = 0 text = self.convert_osc(text) for match in self.ANSI_CSI_RE.finditer(text): start, end = match.span() self.write_plain_text(text, cursor, start) self.convert_ansi(*match.groups()) cursor = end self.write_plain_text(text, cursor, len(text)) def write_plain_text(self, text, start, end): if start < end: self.wrapped.write(text[start:end]) self.wrapped.flush() def convert_ansi(self, paramstring, command): if self.convert: params = self.extract_params(command, paramstring) self.call_win32(command, params) def extract_params(self, command, paramstring): if command in 'Hf': params = tuple(int(p) if len(p) != 0 else 1 for p in paramstring.split(';')) while len(params) < 2: # defaults: params = params + (1,) else: params = tuple(int(p) for p in paramstring.split(';') if len(p) != 0) if len(params) == 0: # defaults: if command in 'JKm': params = (0,) elif command in 'ABCD': params = (1,) return params def call_win32(self, command, params): if command == 'm': for param in params: if param in self.win32_calls: func_args = self.win32_calls[param] func = func_args[0] args = func_args[1:] kwargs = dict(on_stderr=self.on_stderr) func(*args, **kwargs) elif command in 'J': winterm.erase_screen(params[0], on_stderr=self.on_stderr) elif command in 'K': winterm.erase_line(params[0], on_stderr=self.on_stderr) elif command in 'Hf': # cursor position - absolute winterm.set_cursor_position(params, on_stderr=self.on_stderr) elif command in 'ABCD': # cursor position - relative n = params[0] # A - up, B - down, C - forward, D - back x, y = {'A': (0, -n), 'B': (0, n), 'C': (n, 0), 'D': (-n, 0)}[command] winterm.cursor_adjust(x, y, on_stderr=self.on_stderr) def convert_osc(self, text): for match in self.ANSI_OSC_RE.finditer(text): start, end = match.span() text = text[:start] + text[end:] paramstring, command = match.groups() if command == BEL: if paramstring.count(";") == 1: params = paramstring.split(";") # 0 - change title and icon (we will only change title) # 1 - change icon (we don't support this) # 2 - change title if params[0] in '02': winterm.set_title(params[1]) return text def flush(self): self.wrapped.flush() def just_fix_windows_console(): global fixed_windows_console if sys.platform != "win32": return if fixed_windows_console: return if wrapped_stdout is not None or wrapped_stderr is not None: # Someone already ran init() and it did stuff, so we won't second-guess them return # On newer versions of Windows, AnsiToWin32.__init__ will implicitly enable the # native ANSI support in the console as a side-effect. We only need to actually # replace sys.stdout/stderr if we're in the old-style conversion mode. new_stdout = AnsiToWin32(sys.stdout, convert=None, strip=None, autoreset=False) if new_stdout.convert: sys.stdout = new_stdout new_stderr = AnsiToWin32(sys.stderr, convert=None, strip=None, autoreset=False) if new_stderr.convert: sys.stderr = new_stderr fixed_windows_console = True
null
1,402
import atexit import contextlib import sys from .ansitowin32 import AnsiToWin32 def init(autoreset=False, convert=None, strip=None, wrap=True): if not wrap and any([autoreset, convert, strip]): raise ValueError('wrap=False conflicts with any other arg=True') global wrapped_stdout, wrapped_stderr global orig_stdout, orig_stderr orig_stdout = sys.stdout orig_stderr = sys.stderr if sys.stdout is None: wrapped_stdout = None else: sys.stdout = wrapped_stdout = \ wrap_stream(orig_stdout, convert, strip, autoreset, wrap) if sys.stderr is None: wrapped_stderr = None else: sys.stderr = wrapped_stderr = \ wrap_stream(orig_stderr, convert, strip, autoreset, wrap) global atexit_done if not atexit_done: atexit.register(reset_all) atexit_done = True def deinit(): if orig_stdout is not None: sys.stdout = orig_stdout if orig_stderr is not None: sys.stderr = orig_stderr def colorama_text(*args, **kwargs): init(*args, **kwargs) try: yield finally: deinit()
null
1,403
import atexit import contextlib import sys from .ansitowin32 import AnsiToWin32 def reinit(): if wrapped_stdout is not None: sys.stdout = wrapped_stdout if wrapped_stderr is not None: sys.stderr = wrapped_stderr
null
1,404
try: from msvcrt import get_osfhandle except ImportError: def get_osfhandle(_): from . import win32 def enable_vt_processing(fd): if win32.windll is None or not win32.winapi_test(): return False try: handle = get_osfhandle(fd) mode = win32.GetConsoleMode(handle) win32.SetConsoleMode( handle, mode | win32.ENABLE_VIRTUAL_TERMINAL_PROCESSING, ) mode = win32.GetConsoleMode(handle) if mode & win32.ENABLE_VIRTUAL_TERMINAL_PROCESSING: return True # Can get TypeError in testsuite where 'fd' is a Mock() except (OSError, TypeError): return False
null
1,405
import datetime import os import signal import sys import warnings from typing import Optional import requests import openai from openai.upload_progress import BufferReader from openai.validators import ( apply_necessary_remediation, apply_validators, get_validators, read_any_format, write_out_file, ) def organization_info(obj): organization = getattr(obj, "organization", None) if organization is not None: return "[organization={}] ".format(organization) else: return "" def display(obj): sys.stderr.write(organization_info(obj)) sys.stderr.flush() print(obj)
null
1,406
import datetime import os import signal import sys import warnings from typing import Optional import requests import openai from openai.upload_progress import BufferReader from openai.validators import ( apply_necessary_remediation, apply_validators, get_validators, read_any_format, write_out_file, ) class bcolors: HEADER = "\033[95m" OKBLUE = "\033[94m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" def organization_info(obj): organization = getattr(obj, "organization", None) if organization is not None: return "[organization={}] ".format(organization) else: return "" def display_error(e): extra = ( " (HTTP status code: {})".format(e.http_status) if e.http_status is not None else "" ) sys.stderr.write( "{}{}Error:{} {}{}\n".format( organization_info(e), bcolors.FAIL, bcolors.ENDC, e, extra ) )
null
1,407
import datetime import os import signal import sys import warnings from typing import Optional import requests import openai from openai.upload_progress import BufferReader from openai.validators import ( apply_necessary_remediation, apply_validators, get_validators, read_any_format, write_out_file, ) class FineTune: def list(cls, args): resp = openai.FineTune.list() print(resp) def _is_url(cls, file: str): return file.lower().startswith("http") def _download_file_from_public_url(cls, url: str) -> Optional[bytes]: resp = requests.get(url) if resp.status_code == 200: return resp.content else: return None def _maybe_upload_file( cls, file: Optional[str] = None, content: Optional[bytes] = None, user_provided_file: Optional[str] = None, check_if_file_exists: bool = True, ): # Exactly one of `file` or `content` must be provided if (file is None) == (content is None): raise ValueError("Exactly one of `file` or `content` must be provided") if content is None: assert file is not None with open(file, "rb") as f: content = f.read() if check_if_file_exists: bytes = len(content) matching_files = openai.File.find_matching_files( name=user_provided_file or f.name, bytes=bytes, purpose="fine-tune" ) if len(matching_files) > 0: file_ids = [f["id"] for f in matching_files] sys.stdout.write( "Found potentially duplicated files with name '{name}', purpose 'fine-tune' and size {size} bytes\n".format( name=os.path.basename(matching_files[0]["filename"]), size=matching_files[0]["bytes"] if "bytes" in matching_files[0] else matching_files[0]["size"], ) ) sys.stdout.write("\n".join(file_ids)) while True: sys.stdout.write( "\nEnter file ID to reuse an already uploaded file, or an empty string to upload this file anyway: " ) inp = sys.stdin.readline().strip() if inp in file_ids: sys.stdout.write( "Reusing already uploaded file: {id}\n".format(id=inp) ) return inp elif inp == "": break else: sys.stdout.write( "File id '{id}' is not among the IDs of the potentially duplicated files\n".format( id=inp ) ) buffer_reader = BufferReader(content, desc="Upload progress") resp = openai.File.create( file=buffer_reader, purpose="fine-tune", user_provided_filename=user_provided_file or file, ) sys.stdout.write( "Uploaded file from {file}: {id}\n".format( file=user_provided_file or file, id=resp["id"] ) ) return resp["id"] def _get_or_upload(cls, file, check_if_file_exists=True): try: # 1. If it's a valid file, use it openai.File.retrieve(file) return file except openai.error.InvalidRequestError: pass if os.path.isfile(file): # 2. If it's a file on the filesystem, upload it return cls._maybe_upload_file( file=file, check_if_file_exists=check_if_file_exists ) if cls._is_url(file): # 3. If it's a URL, download it temporarily content = cls._download_file_from_public_url(file) if content is not None: return cls._maybe_upload_file( content=content, check_if_file_exists=check_if_file_exists, user_provided_file=file, ) return file def create(cls, args): create_args = { "training_file": cls._get_or_upload( args.training_file, args.check_if_files_exist ), } if args.validation_file: create_args["validation_file"] = cls._get_or_upload( args.validation_file, args.check_if_files_exist ) for hparam in ( "model", "suffix", "n_epochs", "batch_size", "learning_rate_multiplier", "prompt_loss_weight", "compute_classification_metrics", "classification_n_classes", "classification_positive_class", "classification_betas", ): attr = getattr(args, hparam) if attr is not None: create_args[hparam] = attr resp = openai.FineTune.create(**create_args) if args.no_follow: print(resp) return sys.stdout.write( "Created fine-tune: {job_id}\n" "Streaming events until fine-tuning is complete...\n\n" "(Ctrl-C will interrupt the stream, but not cancel the fine-tune)\n".format( job_id=resp["id"] ) ) cls._stream_events(resp["id"]) def get(cls, args): resp = openai.FineTune.retrieve(id=args.id) print(resp) def results(cls, args): fine_tune = openai.FineTune.retrieve(id=args.id) if "result_files" not in fine_tune or len(fine_tune["result_files"]) == 0: raise openai.error.InvalidRequestError( f"No results file available for fine-tune {args.id}", "id" ) result_file = openai.FineTune.retrieve(id=args.id)["result_files"][0] resp = openai.File.download(id=result_file["id"]) print(resp.decode("utf-8")) def events(cls, args): if args.stream: raise openai.error.OpenAIError( message=( "The --stream parameter is deprecated, use fine_tunes.follow " "instead:\n\n" " openai api fine_tunes.follow -i {id}\n".format(id=args.id) ), ) resp = openai.FineTune.list_events(id=args.id) # type: ignore print(resp) def follow(cls, args): cls._stream_events(args.id) def _stream_events(cls, job_id): def signal_handler(sig, frame): status = openai.FineTune.retrieve(job_id).status sys.stdout.write( "\nStream interrupted. Job is still {status}.\n" "To resume the stream, run:\n\n" " openai api fine_tunes.follow -i {job_id}\n\n" "To cancel your job, run:\n\n" " openai api fine_tunes.cancel -i {job_id}\n\n".format( status=status, job_id=job_id ) ) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) events = openai.FineTune.stream_events(job_id) # TODO(rachel): Add a nifty spinner here. try: for event in events: sys.stdout.write( "[%s] %s" % ( datetime.datetime.fromtimestamp(event["created_at"]), event["message"], ) ) sys.stdout.write("\n") sys.stdout.flush() except Exception: sys.stdout.write( "\nStream interrupted (client disconnected).\n" "To resume the stream, run:\n\n" " openai api fine_tunes.follow -i {job_id}\n\n".format(job_id=job_id) ) return resp = openai.FineTune.retrieve(id=job_id) status = resp["status"] if status == "succeeded": sys.stdout.write("\nJob complete! Status: succeeded 🎉") sys.stdout.write( "\nTry out your fine-tuned model:\n\n" "openai api completions.create -m {model} -p <YOUR_PROMPT>".format( model=resp["fine_tuned_model"] ) ) elif status == "failed": sys.stdout.write( "\nJob failed. Please contact [email protected] if you need assistance." ) sys.stdout.write("\n") def cancel(cls, args): resp = openai.FineTune.cancel(id=args.id) print(resp) def delete(cls, args): resp = openai.FineTune.delete(sid=args.id) print(resp) def prepare_data(cls, args): sys.stdout.write("Analyzing...\n") fname = args.file auto_accept = args.quiet df, remediation = read_any_format(fname) apply_necessary_remediation(None, remediation) validators = get_validators() apply_validators( df, fname, remediation, validators, auto_accept, write_out_file_func=write_out_file, ) def tools_register(parser): subparsers = parser.add_subparsers( title="Tools", help="Convenience client side tools" ) def help(args): parser.print_help() parser.set_defaults(func=help) sub = subparsers.add_parser("fine_tunes.prepare_data") sub.add_argument( "-f", "--file", required=True, help="JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed." "This should be the local file path.", ) sub.add_argument( "-q", "--quiet", required=False, action="store_true", help="Auto accepts all suggestions, without asking for user input. To be used within scripts.", ) sub.set_defaults(func=FineTune.prepare_data)
null
1,408
import datetime import os import signal import sys import warnings from typing import Optional import requests import openai from openai.upload_progress import BufferReader from openai.validators import ( apply_necessary_remediation, apply_validators, get_validators, read_any_format, write_out_file, ) class Engine: def get(cls, args): engine = openai.Engine.retrieve(id=args.id) display(engine) def update(cls, args): engine = openai.Engine.modify(args.id, replicas=args.replicas) display(engine) def generate(cls, args): warnings.warn( "Engine.generate is deprecated, use Completion.create", DeprecationWarning ) if args.completions and args.completions > 1 and args.stream: raise ValueError("Can't stream multiple completions with openai CLI") kwargs = {} if args.model is not None: kwargs["model"] = args.model resp = openai.Engine(id=args.id).generate( completions=args.completions, context=args.context, length=args.length, stream=args.stream, temperature=args.temperature, top_p=args.top_p, logprobs=args.logprobs, stop=args.stop, **kwargs, ) if not args.stream: resp = [resp] for part in resp: completions = len(part["data"]) for c_idx, c in enumerate(part["data"]): if completions > 1: sys.stdout.write("===== Completion {} =====\n".format(c_idx)) sys.stdout.write("".join(c["text"])) if completions > 1: sys.stdout.write("\n") sys.stdout.flush() def list(cls, args): engines = openai.Engine.list() display(engines) class ChatCompletion: def create(cls, args): if args.n is not None and args.n > 1 and args.stream: raise ValueError( "Can't stream chat completions with n>1 with the current CLI" ) messages = [ {"role": role, "content": content} for role, content in args.message ] resp = openai.ChatCompletion.create( # Required model=args.model, messages=messages, # Optional n=args.n, max_tokens=100, temperature=args.temperature, top_p=args.top_p, stop=args.stop, stream=args.stream, ) if not args.stream: resp = [resp] for part in resp: choices = part["choices"] for c_idx, c in enumerate(sorted(choices, key=lambda s: s["index"])): if len(choices) > 1: sys.stdout.write("===== Chat Completion {} =====\n".format(c_idx)) sys.stdout.write(c["message"]["content"]) if len(choices) > 1: sys.stdout.write("\n") sys.stdout.flush() class Completion: def create(cls, args): if args.n is not None and args.n > 1 and args.stream: raise ValueError("Can't stream completions with n>1 with the current CLI") if args.engine and args.model: warnings.warn( "In most cases, you should not be specifying both engine and model." ) resp = openai.Completion.create( engine=args.engine, model=args.model, n=args.n, max_tokens=args.max_tokens, logprobs=args.logprobs, prompt=args.prompt, stream=args.stream, temperature=args.temperature, top_p=args.top_p, stop=args.stop, echo=True, ) if not args.stream: resp = [resp] for part in resp: choices = part["choices"] for c_idx, c in enumerate(sorted(choices, key=lambda s: s["index"])): if len(choices) > 1: sys.stdout.write("===== Completion {} =====\n".format(c_idx)) sys.stdout.write(c["text"]) if len(choices) > 1: sys.stdout.write("\n") sys.stdout.flush() class Deployment: def get(cls, args): resp = openai.Deployment.retrieve(id=args.id) print(resp) def delete(cls, args): model = openai.Deployment.delete(args.id) print(model) def list(cls, args): models = openai.Deployment.list() print(models) def create(cls, args): models = openai.Deployment.create(model=args.model, scale_settings={"scale_type": args.scale_type}) print(models) class Model: def get(cls, args): resp = openai.Model.retrieve(id=args.id) print(resp) def delete(cls, args): model = openai.Model.delete(args.id) print(model) def list(cls, args): models = openai.Model.list() print(models) class File: def create(cls, args): with open(args.file, "rb") as file_reader: buffer_reader = BufferReader(file_reader.read(), desc="Upload progress") resp = openai.File.create( file=buffer_reader, purpose=args.purpose, user_provided_filename=args.file, ) print(resp) def get(cls, args): resp = openai.File.retrieve(id=args.id) print(resp) def delete(cls, args): file = openai.File.delete(args.id) print(file) def list(cls, args): file = openai.File.list() print(file) class Image: def create(cls, args): resp = openai.Image.create( prompt=args.prompt, size=args.size, n=args.num_images, response_format=args.response_format, ) print(resp) def create_variation(cls, args): with open(args.image, "rb") as file_reader: buffer_reader = BufferReader(file_reader.read(), desc="Upload progress") resp = openai.Image.create_variation( image=buffer_reader, size=args.size, n=args.num_images, response_format=args.response_format, ) print(resp) def create_edit(cls, args): with open(args.image, "rb") as file_reader: image_reader = BufferReader(file_reader.read(), desc="Upload progress") mask_reader = None if args.mask is not None: with open(args.mask, "rb") as file_reader: mask_reader = BufferReader(file_reader.read(), desc="Upload progress") resp = openai.Image.create_edit( image=image_reader, mask=mask_reader, prompt=args.prompt, size=args.size, n=args.num_images, response_format=args.response_format, ) print(resp) class Audio: def transcribe(cls, args): with open(args.file, "rb") as r: file_reader = BufferReader(r.read(), desc="Upload progress") resp = openai.Audio.transcribe_raw( # Required model=args.model, file=file_reader, filename=args.file, # Optional response_format=args.response_format, language=args.language, temperature=args.temperature, prompt=args.prompt, ) print(resp) def translate(cls, args): with open(args.file, "rb") as r: file_reader = BufferReader(r.read(), desc="Upload progress") resp = openai.Audio.translate_raw( # Required model=args.model, file=file_reader, filename=args.file, # Optional response_format=args.response_format, language=args.language, temperature=args.temperature, prompt=args.prompt, ) print(resp) class FineTune: def list(cls, args): resp = openai.FineTune.list() print(resp) def _is_url(cls, file: str): return file.lower().startswith("http") def _download_file_from_public_url(cls, url: str) -> Optional[bytes]: resp = requests.get(url) if resp.status_code == 200: return resp.content else: return None def _maybe_upload_file( cls, file: Optional[str] = None, content: Optional[bytes] = None, user_provided_file: Optional[str] = None, check_if_file_exists: bool = True, ): # Exactly one of `file` or `content` must be provided if (file is None) == (content is None): raise ValueError("Exactly one of `file` or `content` must be provided") if content is None: assert file is not None with open(file, "rb") as f: content = f.read() if check_if_file_exists: bytes = len(content) matching_files = openai.File.find_matching_files( name=user_provided_file or f.name, bytes=bytes, purpose="fine-tune" ) if len(matching_files) > 0: file_ids = [f["id"] for f in matching_files] sys.stdout.write( "Found potentially duplicated files with name '{name}', purpose 'fine-tune' and size {size} bytes\n".format( name=os.path.basename(matching_files[0]["filename"]), size=matching_files[0]["bytes"] if "bytes" in matching_files[0] else matching_files[0]["size"], ) ) sys.stdout.write("\n".join(file_ids)) while True: sys.stdout.write( "\nEnter file ID to reuse an already uploaded file, or an empty string to upload this file anyway: " ) inp = sys.stdin.readline().strip() if inp in file_ids: sys.stdout.write( "Reusing already uploaded file: {id}\n".format(id=inp) ) return inp elif inp == "": break else: sys.stdout.write( "File id '{id}' is not among the IDs of the potentially duplicated files\n".format( id=inp ) ) buffer_reader = BufferReader(content, desc="Upload progress") resp = openai.File.create( file=buffer_reader, purpose="fine-tune", user_provided_filename=user_provided_file or file, ) sys.stdout.write( "Uploaded file from {file}: {id}\n".format( file=user_provided_file or file, id=resp["id"] ) ) return resp["id"] def _get_or_upload(cls, file, check_if_file_exists=True): try: # 1. If it's a valid file, use it openai.File.retrieve(file) return file except openai.error.InvalidRequestError: pass if os.path.isfile(file): # 2. If it's a file on the filesystem, upload it return cls._maybe_upload_file( file=file, check_if_file_exists=check_if_file_exists ) if cls._is_url(file): # 3. If it's a URL, download it temporarily content = cls._download_file_from_public_url(file) if content is not None: return cls._maybe_upload_file( content=content, check_if_file_exists=check_if_file_exists, user_provided_file=file, ) return file def create(cls, args): create_args = { "training_file": cls._get_or_upload( args.training_file, args.check_if_files_exist ), } if args.validation_file: create_args["validation_file"] = cls._get_or_upload( args.validation_file, args.check_if_files_exist ) for hparam in ( "model", "suffix", "n_epochs", "batch_size", "learning_rate_multiplier", "prompt_loss_weight", "compute_classification_metrics", "classification_n_classes", "classification_positive_class", "classification_betas", ): attr = getattr(args, hparam) if attr is not None: create_args[hparam] = attr resp = openai.FineTune.create(**create_args) if args.no_follow: print(resp) return sys.stdout.write( "Created fine-tune: {job_id}\n" "Streaming events until fine-tuning is complete...\n\n" "(Ctrl-C will interrupt the stream, but not cancel the fine-tune)\n".format( job_id=resp["id"] ) ) cls._stream_events(resp["id"]) def get(cls, args): resp = openai.FineTune.retrieve(id=args.id) print(resp) def results(cls, args): fine_tune = openai.FineTune.retrieve(id=args.id) if "result_files" not in fine_tune or len(fine_tune["result_files"]) == 0: raise openai.error.InvalidRequestError( f"No results file available for fine-tune {args.id}", "id" ) result_file = openai.FineTune.retrieve(id=args.id)["result_files"][0] resp = openai.File.download(id=result_file["id"]) print(resp.decode("utf-8")) def events(cls, args): if args.stream: raise openai.error.OpenAIError( message=( "The --stream parameter is deprecated, use fine_tunes.follow " "instead:\n\n" " openai api fine_tunes.follow -i {id}\n".format(id=args.id) ), ) resp = openai.FineTune.list_events(id=args.id) # type: ignore print(resp) def follow(cls, args): cls._stream_events(args.id) def _stream_events(cls, job_id): def signal_handler(sig, frame): status = openai.FineTune.retrieve(job_id).status sys.stdout.write( "\nStream interrupted. Job is still {status}.\n" "To resume the stream, run:\n\n" " openai api fine_tunes.follow -i {job_id}\n\n" "To cancel your job, run:\n\n" " openai api fine_tunes.cancel -i {job_id}\n\n".format( status=status, job_id=job_id ) ) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) events = openai.FineTune.stream_events(job_id) # TODO(rachel): Add a nifty spinner here. try: for event in events: sys.stdout.write( "[%s] %s" % ( datetime.datetime.fromtimestamp(event["created_at"]), event["message"], ) ) sys.stdout.write("\n") sys.stdout.flush() except Exception: sys.stdout.write( "\nStream interrupted (client disconnected).\n" "To resume the stream, run:\n\n" " openai api fine_tunes.follow -i {job_id}\n\n".format(job_id=job_id) ) return resp = openai.FineTune.retrieve(id=job_id) status = resp["status"] if status == "succeeded": sys.stdout.write("\nJob complete! Status: succeeded 🎉") sys.stdout.write( "\nTry out your fine-tuned model:\n\n" "openai api completions.create -m {model} -p <YOUR_PROMPT>".format( model=resp["fine_tuned_model"] ) ) elif status == "failed": sys.stdout.write( "\nJob failed. Please contact [email protected] if you need assistance." ) sys.stdout.write("\n") def cancel(cls, args): resp = openai.FineTune.cancel(id=args.id) print(resp) def delete(cls, args): resp = openai.FineTune.delete(sid=args.id) print(resp) def prepare_data(cls, args): sys.stdout.write("Analyzing...\n") fname = args.file auto_accept = args.quiet df, remediation = read_any_format(fname) apply_necessary_remediation(None, remediation) validators = get_validators() apply_validators( df, fname, remediation, validators, auto_accept, write_out_file_func=write_out_file, ) def api_register(parser): # Engine management subparsers = parser.add_subparsers(help="All API subcommands") def help(args): parser.print_help() parser.set_defaults(func=help) sub = subparsers.add_parser("engines.list") sub.set_defaults(func=Engine.list) sub = subparsers.add_parser("engines.get") sub.add_argument("-i", "--id", required=True) sub.set_defaults(func=Engine.get) sub = subparsers.add_parser("engines.update") sub.add_argument("-i", "--id", required=True) sub.add_argument("-r", "--replicas", type=int) sub.set_defaults(func=Engine.update) sub = subparsers.add_parser("engines.generate") sub.add_argument("-i", "--id", required=True) sub.add_argument( "--stream", help="Stream tokens as they're ready.", action="store_true" ) sub.add_argument("-c", "--context", help="An optional context to generate from") sub.add_argument("-l", "--length", help="How many tokens to generate", type=int) sub.add_argument( "-t", "--temperature", help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. Mutually exclusive with `top_p`.""", type=float, ) sub.add_argument( "-p", "--top_p", help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered. Mutually exclusive with `temperature`.""", type=float, ) sub.add_argument( "-n", "--completions", help="How many parallel completions to run on this context", type=int, ) sub.add_argument( "--logprobs", help="Include the log probabilites on the `logprobs` most likely tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is supplied, the API will always return the logprob of the generated token, so there may be up to `logprobs+1` elements in the response.", type=int, ) sub.add_argument( "--stop", help="A stop sequence at which to stop generating tokens." ) sub.add_argument( "-m", "--model", required=False, help="A model (most commonly a model ID) to generate from. Defaults to the engine's default model.", ) sub.set_defaults(func=Engine.generate) # Chat Completions sub = subparsers.add_parser("chat_completions.create") sub._action_groups.pop() req = sub.add_argument_group("required arguments") opt = sub.add_argument_group("optional arguments") req.add_argument( "-m", "--model", help="The model to use.", required=True, ) req.add_argument( "-g", "--message", action="append", nargs=2, metavar=("ROLE", "CONTENT"), help="A message in `{role} {content}` format. Use this argument multiple times to add multiple messages.", required=True, ) opt.add_argument( "-n", "--n", help="How many completions to generate for the conversation.", type=int, ) opt.add_argument( "-M", "--max-tokens", help="The maximum number of tokens to generate.", type=int ) opt.add_argument( "-t", "--temperature", help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. Mutually exclusive with `top_p`.""", type=float, ) opt.add_argument( "-P", "--top_p", help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered. Mutually exclusive with `temperature`.""", type=float, ) opt.add_argument( "--stop", help="A stop sequence at which to stop generating tokens for the message.", ) opt.add_argument( "--stream", help="Stream messages as they're ready.", action="store_true" ) sub.set_defaults(func=ChatCompletion.create) # Completions sub = subparsers.add_parser("completions.create") sub.add_argument( "-e", "--engine", help="The engine to use. See https://platform.openai.com/docs/engines for more about what engines are available.", ) sub.add_argument( "-m", "--model", help="The model to use. At most one of `engine` or `model` should be specified.", ) sub.add_argument( "--stream", help="Stream tokens as they're ready.", action="store_true" ) sub.add_argument("-p", "--prompt", help="An optional prompt to complete from") sub.add_argument( "-M", "--max-tokens", help="The maximum number of tokens to generate", type=int ) sub.add_argument( "-t", "--temperature", help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. Mutually exclusive with `top_p`.""", type=float, ) sub.add_argument( "-P", "--top_p", help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered. Mutually exclusive with `temperature`.""", type=float, ) sub.add_argument( "-n", "--n", help="How many sub-completions to generate for each prompt.", type=int, ) sub.add_argument( "--logprobs", help="Include the log probabilites on the `logprobs` most likely tokens, as well the chosen tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is 0, only the chosen tokens will have logprobs returned.", type=int, ) sub.add_argument( "--stop", help="A stop sequence at which to stop generating tokens." ) sub.set_defaults(func=Completion.create) # Deployments sub = subparsers.add_parser("deployments.list") sub.set_defaults(func=Deployment.list) sub = subparsers.add_parser("deployments.get") sub.add_argument("-i", "--id", required=True, help="The deployment ID") sub.set_defaults(func=Deployment.get) sub = subparsers.add_parser("deployments.delete") sub.add_argument("-i", "--id", required=True, help="The deployment ID") sub.set_defaults(func=Deployment.delete) sub = subparsers.add_parser("deployments.create") sub.add_argument("-m", "--model", required=True, help="The model ID") sub.add_argument("-s", "--scale_type", required=True, help="The scale type. Either 'manual' or 'standard'") sub.set_defaults(func=Deployment.create) # Models sub = subparsers.add_parser("models.list") sub.set_defaults(func=Model.list) sub = subparsers.add_parser("models.get") sub.add_argument("-i", "--id", required=True, help="The model ID") sub.set_defaults(func=Model.get) sub = subparsers.add_parser("models.delete") sub.add_argument("-i", "--id", required=True, help="The model ID") sub.set_defaults(func=Model.delete) # Files sub = subparsers.add_parser("files.create") sub.add_argument( "-f", "--file", required=True, help="File to upload", ) sub.add_argument( "-p", "--purpose", help="Why are you uploading this file? (see https://platform.openai.com/docs/api-reference/ for purposes)", required=True, ) sub.set_defaults(func=File.create) sub = subparsers.add_parser("files.get") sub.add_argument("-i", "--id", required=True, help="The files ID") sub.set_defaults(func=File.get) sub = subparsers.add_parser("files.delete") sub.add_argument("-i", "--id", required=True, help="The files ID") sub.set_defaults(func=File.delete) sub = subparsers.add_parser("files.list") sub.set_defaults(func=File.list) # Finetune sub = subparsers.add_parser("fine_tunes.list") sub.set_defaults(func=FineTune.list) sub = subparsers.add_parser("fine_tunes.create") sub.add_argument( "-t", "--training_file", required=True, help="JSONL file containing prompt-completion examples for training. This can " "be the ID of a file uploaded through the OpenAI API (e.g. file-abcde12345), " 'a local file path, or a URL that starts with "http".', ) sub.add_argument( "-v", "--validation_file", help="JSONL file containing prompt-completion examples for validation. This can " "be the ID of a file uploaded through the OpenAI API (e.g. file-abcde12345), " 'a local file path, or a URL that starts with "http".', ) sub.add_argument( "--no_check_if_files_exist", dest="check_if_files_exist", action="store_false", help="If this argument is set and training_file or validation_file are file paths, immediately upload them. If this argument is not set, check if they may be duplicates of already uploaded files before uploading, based on file name and file size.", ) sub.add_argument( "-m", "--model", help="The model to start fine-tuning from", ) sub.add_argument( "--suffix", help="If set, this argument can be used to customize the generated fine-tuned model name." "All punctuation and whitespace in `suffix` will be replaced with a " "single dash, and the string will be lower cased. The max " "length of `suffix` is 40 chars. " "The generated name will match the form `{base_model}:ft-{org-title}:{suffix}-{timestamp}`. " 'For example, `openai api fine_tunes.create -t test.jsonl -m ada --suffix "custom model name" ' "could generate a model with the name " "ada:ft-your-org:custom-model-name-2022-02-15-04-21-04", ) sub.add_argument( "--no_follow", action="store_true", help="If set, returns immediately after creating the job. Otherwise, streams events and waits for the job to complete.", ) sub.add_argument( "--n_epochs", type=int, help="The number of epochs to train the model for. An epoch refers to one " "full cycle through the training dataset.", ) sub.add_argument( "--batch_size", type=int, help="The batch size to use for training. The batch size is the number of " "training examples used to train a single forward and backward pass.", ) sub.add_argument( "--learning_rate_multiplier", type=float, help="The learning rate multiplier to use for training. The fine-tuning " "learning rate is determined by the original learning rate used for " "pretraining multiplied by this value.", ) sub.add_argument( "--prompt_loss_weight", type=float, help="The weight to use for the prompt loss. The optimum value here depends " "depends on your use case. This determines how much the model prioritizes " "learning from prompt tokens vs learning from completion tokens.", ) sub.add_argument( "--compute_classification_metrics", action="store_true", help="If set, we calculate classification-specific metrics such as accuracy " "and F-1 score using the validation set at the end of every epoch.", ) sub.set_defaults(compute_classification_metrics=None) sub.add_argument( "--classification_n_classes", type=int, help="The number of classes in a classification task. This parameter is " "required for multiclass classification.", ) sub.add_argument( "--classification_positive_class", help="The positive class in binary classification. This parameter is needed " "to generate precision, recall and F-1 metrics when doing binary " "classification.", ) sub.add_argument( "--classification_betas", type=float, nargs="+", help="If this is provided, we calculate F-beta scores at the specified beta " "values. The F-beta score is a generalization of F-1 score. This is only " "used for binary classification.", ) sub.set_defaults(func=FineTune.create) sub = subparsers.add_parser("fine_tunes.get") sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job") sub.set_defaults(func=FineTune.get) sub = subparsers.add_parser("fine_tunes.results") sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job") sub.set_defaults(func=FineTune.results) sub = subparsers.add_parser("fine_tunes.events") sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job") # TODO(rachel): Remove this in 1.0 sub.add_argument( "-s", "--stream", action="store_true", help="[DEPRECATED] If set, events will be streamed until the job is done. Otherwise, " "displays the event history to date.", ) sub.set_defaults(func=FineTune.events) sub = subparsers.add_parser("fine_tunes.follow") sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job") sub.set_defaults(func=FineTune.follow) sub = subparsers.add_parser("fine_tunes.cancel") sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job") sub.set_defaults(func=FineTune.cancel) sub = subparsers.add_parser("fine_tunes.delete") sub.add_argument("-i", "--id", required=True, help="The id of the fine-tune job") sub.set_defaults(func=FineTune.delete) # Image sub = subparsers.add_parser("image.create") sub.add_argument("-p", "--prompt", type=str, required=True) sub.add_argument("-n", "--num-images", type=int, default=1) sub.add_argument( "-s", "--size", type=str, default="1024x1024", help="Size of the output image" ) sub.add_argument("--response-format", type=str, default="url") sub.set_defaults(func=Image.create) sub = subparsers.add_parser("image.create_edit") sub.add_argument("-p", "--prompt", type=str, required=True) sub.add_argument("-n", "--num-images", type=int, default=1) sub.add_argument( "-I", "--image", type=str, required=True, help="Image to modify. Should be a local path and a PNG encoded image.", ) sub.add_argument( "-s", "--size", type=str, default="1024x1024", help="Size of the output image" ) sub.add_argument("--response-format", type=str, default="url") sub.add_argument( "-M", "--mask", type=str, required=False, help="Path to a mask image. It should be the same size as the image you're editing and a RGBA PNG image. The Alpha channel acts as the mask.", ) sub.set_defaults(func=Image.create_edit) sub = subparsers.add_parser("image.create_variation") sub.add_argument("-n", "--num-images", type=int, default=1) sub.add_argument( "-I", "--image", type=str, required=True, help="Image to modify. Should be a local path and a PNG encoded image.", ) sub.add_argument( "-s", "--size", type=str, default="1024x1024", help="Size of the output image" ) sub.add_argument("--response-format", type=str, default="url") sub.set_defaults(func=Image.create_variation) # Audio # transcriptions sub = subparsers.add_parser("audio.transcribe") # Required sub.add_argument("-m", "--model", type=str, default="whisper-1") sub.add_argument("-f", "--file", type=str, required=True) # Optional sub.add_argument("--response-format", type=str) sub.add_argument("--language", type=str) sub.add_argument("-t", "--temperature", type=float) sub.add_argument("--prompt", type=str) sub.set_defaults(func=Audio.transcribe) # translations sub = subparsers.add_parser("audio.translate") # Required sub.add_argument("-m", "--model", type=str, default="whisper-1") sub.add_argument("-f", "--file", type=str, required=True) # Optional sub.add_argument("--response-format", type=str) sub.add_argument("--language", type=str) sub.add_argument("-t", "--temperature", type=float) sub.add_argument("--prompt", type=str) sub.set_defaults(func=Audio.translate)
null
1,409
import datetime import os import signal import sys import warnings from typing import Optional import requests import openai from openai.upload_progress import BufferReader from openai.validators import ( apply_necessary_remediation, apply_validators, get_validators, read_any_format, write_out_file, ) class WandbLogger: def sync(cls, args): import openai.wandb_logger resp = openai.wandb_logger.WandbLogger.sync( id=args.id, n_fine_tunes=args.n_fine_tunes, project=args.project, entity=args.entity, force=args.force, ) print(resp) def wandb_register(parser): subparsers = parser.add_subparsers( title="wandb", help="Logging with Weights & Biases" ) def help(args): parser.print_help() parser.set_defaults(func=help) sub = subparsers.add_parser("sync") sub.add_argument("-i", "--id", help="The id of the fine-tune job (optional)") sub.add_argument( "-n", "--n_fine_tunes", type=int, default=None, help="Number of most recent fine-tunes to log when an id is not provided. By default, every fine-tune is synced.", ) sub.add_argument( "--project", default="GPT-3", help="""Name of the project where you're sending runs. By default, it is "GPT-3".""", ) sub.add_argument( "--entity", help="Username or team name where you're sending runs. By default, your default entity is used, which is usually your username.", ) sub.add_argument( "--force", action="store_true", help="Forces logging and overwrite existing wandb run of the same fine-tune.", ) sub.set_defaults(force=False) sub.set_defaults(func=WandbLogger.sync)
null
1,410
import logging import os import re import sys from enum import Enum from typing import Optional import openai logger = logging.getLogger("openai") def _console_log_level(): def logfmt(props): def log_debug(message, **params): msg = logfmt(dict(message=message, **params)) if _console_log_level() == "debug": print(msg, file=sys.stderr) logger.debug(msg)
null
1,411
import logging import os import re import sys from enum import Enum from typing import Optional import openai logger = logging.getLogger("openai") def _console_log_level(): if openai.log in ["debug", "info"]: return openai.log elif OPENAI_LOG in ["debug", "info"]: return OPENAI_LOG else: return None def logfmt(props): def fmt(key, val): # Handle case where val is a bytes or bytesarray if hasattr(val, "decode"): val = val.decode("utf-8") # Check if val is already a string to avoid re-encoding into ascii. if not isinstance(val, str): val = str(val) if re.search(r"\s", val): val = repr(val) # key should already be a string if re.search(r"\s", key): key = repr(key) return "{key}={val}".format(key=key, val=val) return " ".join([fmt(key, val) for key, val in sorted(props.items())]) def log_info(message, **params): msg = logfmt(dict(message=message, **params)) if _console_log_level() in ["debug", "info"]: print(msg, file=sys.stderr) logger.info(msg)
null
1,412
import logging import os import re import sys from enum import Enum from typing import Optional import openai logger = logging.getLogger("openai") def logfmt(props): def fmt(key, val): # Handle case where val is a bytes or bytesarray if hasattr(val, "decode"): val = val.decode("utf-8") # Check if val is already a string to avoid re-encoding into ascii. if not isinstance(val, str): val = str(val) if re.search(r"\s", val): val = repr(val) # key should already be a string if re.search(r"\s", key): key = repr(key) return "{key}={val}".format(key=key, val=val) return " ".join([fmt(key, val) for key, val in sorted(props.items())]) def log_warn(message, **params): msg = logfmt(dict(message=message, **params)) print(msg, file=sys.stderr) logger.warn(msg)
null
1,413
import logging import os import re import sys from enum import Enum from typing import Optional import openai The provided code snippet includes necessary dependencies for implementing the `convert_to_dict` function. Write a Python function `def convert_to_dict(obj)` to solve the following problem: Converts a OpenAIObject back to a regular dict. Nested OpenAIObjects are also converted back to regular dicts. :param obj: The OpenAIObject to convert. :returns: The OpenAIObject as a dict. Here is the function: def convert_to_dict(obj): """Converts a OpenAIObject back to a regular dict. Nested OpenAIObjects are also converted back to regular dicts. :param obj: The OpenAIObject to convert. :returns: The OpenAIObject as a dict. """ if isinstance(obj, list): return [convert_to_dict(i) for i in obj] # This works by virtue of the fact that OpenAIObjects _are_ dicts. The dict # comprehension returns a regular dict and recursively applies the # conversion to each value. elif isinstance(obj, dict): return {k: convert_to_dict(v) for k, v in obj.items()} else: return obj
Converts a OpenAIObject back to a regular dict. Nested OpenAIObjects are also converted back to regular dicts. :param obj: The OpenAIObject to convert. :returns: The OpenAIObject as a dict.
1,414
import logging import os import re import sys from enum import Enum from typing import Optional import openai def merge_dicts(x, y): z = x.copy() z.update(y) return z
null
1,415
import logging import os import re import sys from enum import Enum from typing import Optional import openai def default_api_key() -> str: if openai.api_key_path: with open(openai.api_key_path, "rt") as k: api_key = k.read().strip() if not api_key.startswith("sk-"): raise ValueError(f"Malformed API key in {openai.api_key_path}.") return api_key elif openai.api_key is not None: return openai.api_key else: raise openai.error.AuthenticationError( "No API key provided. You can set your API key in code using 'openai.api_key = <API-KEY>', or you can set the environment variable OPENAI_API_KEY=<API-KEY>). If your API key is stored in a file, you can point the openai module at it with 'openai.api_key_path = <PATH>'. You can generate API keys in the OpenAI web interface. See https://onboard.openai.com for details, or email [email protected] if you have any questions." )
null
1,416
import io def progress(total, desc): import tqdm # type: ignore meter = tqdm.tqdm(total=total, unit_scale=True, desc=desc) def incr(progress): meter.n = progress if progress == total: meter.close() else: meter.refresh() return incr
null
1,417
import io def MB(i): return int(i // 1024**2)
null
1,418
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd def get_embedding(text: str, engine="text-similarity-davinci-001") -> List[float]: # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return openai.Embedding.create(input=[text], engine=engine)["data"][0]["embedding"]
null
1,419
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd async def aget_embedding( text: str, engine="text-similarity-davinci-001" ) -> List[float]: # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return (await openai.Embedding.acreate(input=[text], engine=engine))["data"][0][ "embedding" ]
null
1,420
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd def get_embeddings( list_of_text: List[str], engine="text-similarity-babbage-001" ) -> List[List[float]]: assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048." # replace newlines, which can negatively affect performance. list_of_text = [text.replace("\n", " ") for text in list_of_text] data = openai.Embedding.create(input=list_of_text, engine=engine).data data = sorted(data, key=lambda x: x["index"]) # maintain the same order as input. return [d["embedding"] for d in data]
null
1,421
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd async def aget_embeddings( list_of_text: List[str], engine="text-similarity-babbage-001" ) -> List[List[float]]: assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048." # replace newlines, which can negatively affect performance. list_of_text = [text.replace("\n", " ") for text in list_of_text] data = (await openai.Embedding.acreate(input=list_of_text, engine=engine)).data data = sorted(data, key=lambda x: x["index"]) # maintain the same order as input. return [d["embedding"] for d in data]
null
1,422
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
null
1,423
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd The provided code snippet includes necessary dependencies for implementing the `plot_multiclass_precision_recall` function. Write a Python function `def plot_multiclass_precision_recall( y_score, y_true_untransformed, class_list, classifier_name )` to solve the following problem: Precision-Recall plotting for a multiclass problem. It plots average precision-recall, per class precision recall and reference f1 contours. Code slightly modified, but heavily based on https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html Here is the function: def plot_multiclass_precision_recall( y_score, y_true_untransformed, class_list, classifier_name ): """ Precision-Recall plotting for a multiclass problem. It plots average precision-recall, per class precision recall and reference f1 contours. Code slightly modified, but heavily based on https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html """ n_classes = len(class_list) y_true = pd.concat( [(y_true_untransformed == class_list[i]) for i in range(n_classes)], axis=1 ).values # For each class precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_true[:, i], y_score[:, i]) average_precision[i] = average_precision_score(y_true[:, i], y_score[:, i]) # A "micro-average": quantifying score on all classes jointly precision_micro, recall_micro, _ = precision_recall_curve( y_true.ravel(), y_score.ravel() ) average_precision_micro = average_precision_score(y_true, y_score, average="micro") print( str(classifier_name) + " - Average precision score over all classes: {0:0.2f}".format( average_precision_micro ) ) # setup plot details plt.figure(figsize=(9, 10)) f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) (l,) = plt.plot(x[y >= 0], y[y >= 0], color="gray", alpha=0.2) plt.annotate("f1={0:0.1f}".format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append("iso-f1 curves") (l,) = plt.plot(recall_micro, precision_micro, color="gold", lw=2) lines.append(l) labels.append( "average Precision-recall (auprc = {0:0.2f})" "".format(average_precision_micro) ) for i in range(n_classes): (l,) = plt.plot(recall[i], precision[i], lw=2) lines.append(l) labels.append( "Precision-recall for class `{0}` (auprc = {1:0.2f})" "".format(class_list[i], average_precision[i]) ) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("Recall") plt.ylabel("Precision") plt.title(f"{classifier_name}: Precision-Recall curve for each class") plt.legend(lines, labels)
Precision-Recall plotting for a multiclass problem. It plots average precision-recall, per class precision recall and reference f1 contours. Code slightly modified, but heavily based on https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
1,424
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd The provided code snippet includes necessary dependencies for implementing the `distances_from_embeddings` function. Write a Python function `def distances_from_embeddings( query_embedding: List[float], embeddings: List[List[float]], distance_metric="cosine", ) -> List[List]` to solve the following problem: Return the distances between a query embedding and a list of embeddings. Here is the function: def distances_from_embeddings( query_embedding: List[float], embeddings: List[List[float]], distance_metric="cosine", ) -> List[List]: """Return the distances between a query embedding and a list of embeddings.""" distance_metrics = { "cosine": spatial.distance.cosine, "L1": spatial.distance.cityblock, "L2": spatial.distance.euclidean, "Linf": spatial.distance.chebyshev, } distances = [ distance_metrics[distance_metric](query_embedding, embedding) for embedding in embeddings ] return distances
Return the distances between a query embedding and a list of embeddings.
1,425
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd The provided code snippet includes necessary dependencies for implementing the `indices_of_nearest_neighbors_from_distances` function. Write a Python function `def indices_of_nearest_neighbors_from_distances(distances) -> np.ndarray` to solve the following problem: Return a list of indices of nearest neighbors from a list of distances. Here is the function: def indices_of_nearest_neighbors_from_distances(distances) -> np.ndarray: """Return a list of indices of nearest neighbors from a list of distances.""" return np.argsort(distances)
Return a list of indices of nearest neighbors from a list of distances.
1,426
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd The provided code snippet includes necessary dependencies for implementing the `pca_components_from_embeddings` function. Write a Python function `def pca_components_from_embeddings( embeddings: List[List[float]], n_components=2 ) -> np.ndarray` to solve the following problem: Return the PCA components of a list of embeddings. Here is the function: def pca_components_from_embeddings( embeddings: List[List[float]], n_components=2 ) -> np.ndarray: """Return the PCA components of a list of embeddings.""" pca = PCA(n_components=n_components) array_of_embeddings = np.array(embeddings) return pca.fit_transform(array_of_embeddings)
Return the PCA components of a list of embeddings.
1,427
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd The provided code snippet includes necessary dependencies for implementing the `tsne_components_from_embeddings` function. Write a Python function `def tsne_components_from_embeddings( embeddings: List[List[float]], n_components=2, **kwargs ) -> np.ndarray` to solve the following problem: Returns t-SNE components of a list of embeddings. Here is the function: def tsne_components_from_embeddings( embeddings: List[List[float]], n_components=2, **kwargs ) -> np.ndarray: """Returns t-SNE components of a list of embeddings.""" # use better defaults if not specified if "init" not in kwargs.keys(): kwargs["init"] = "pca" if "learning_rate" not in kwargs.keys(): kwargs["learning_rate"] = "auto" tsne = TSNE(n_components=n_components, **kwargs) array_of_embeddings = np.array(embeddings) return tsne.fit_transform(array_of_embeddings)
Returns t-SNE components of a list of embeddings.
1,428
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd The provided code snippet includes necessary dependencies for implementing the `chart_from_components` function. Write a Python function `def chart_from_components( components: np.ndarray, labels: Optional[List[str]] = None, strings: Optional[List[str]] = None, x_title="Component 0", y_title="Component 1", mark_size=5, **kwargs, )` to solve the following problem: Return an interactive 2D chart of embedding components. Here is the function: def chart_from_components( components: np.ndarray, labels: Optional[List[str]] = None, strings: Optional[List[str]] = None, x_title="Component 0", y_title="Component 1", mark_size=5, **kwargs, ): """Return an interactive 2D chart of embedding components.""" empty_list = ["" for _ in components] data = pd.DataFrame( { x_title: components[:, 0], y_title: components[:, 1], "label": labels if labels else empty_list, "string": ["<br>".join(tr.wrap(string, width=30)) for string in strings] if strings else empty_list, } ) chart = px.scatter( data, x=x_title, y=y_title, color="label" if labels else None, symbol="label" if labels else None, hover_data=["string"] if strings else None, **kwargs, ).update_traces(marker=dict(size=mark_size)) return chart
Return an interactive 2D chart of embedding components.
1,429
import textwrap as tr from typing import List, Optional import matplotlib.pyplot as plt import plotly.express as px from scipy import spatial from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import average_precision_score, precision_recall_curve from tenacity import retry, stop_after_attempt, wait_random_exponential import openai from openai.datalib import numpy as np from openai.datalib import pandas as pd The provided code snippet includes necessary dependencies for implementing the `chart_from_components_3D` function. Write a Python function `def chart_from_components_3D( components: np.ndarray, labels: Optional[List[str]] = None, strings: Optional[List[str]] = None, x_title: str = "Component 0", y_title: str = "Component 1", z_title: str = "Compontent 2", mark_size: int = 5, **kwargs, )` to solve the following problem: Return an interactive 3D chart of embedding components. Here is the function: def chart_from_components_3D( components: np.ndarray, labels: Optional[List[str]] = None, strings: Optional[List[str]] = None, x_title: str = "Component 0", y_title: str = "Component 1", z_title: str = "Compontent 2", mark_size: int = 5, **kwargs, ): """Return an interactive 3D chart of embedding components.""" empty_list = ["" for _ in components] data = pd.DataFrame( { x_title: components[:, 0], y_title: components[:, 1], z_title: components[:, 2], "label": labels if labels else empty_list, "string": ["<br>".join(tr.wrap(string, width=30)) for string in strings] if strings else empty_list, } ) chart = px.scatter_3d( data, x=x_title, y=y_title, z=z_title, color="label" if labels else None, symbol="label" if labels else None, hover_data=["string"] if strings else None, **kwargs, ).update_traces(marker=dict(size=mark_size)) return chart
Return an interactive 3D chart of embedding components.
1,430
import asyncio import json import platform import sys import threading import warnings from contextlib import asynccontextmanager from json import JSONDecodeError from typing import ( AsyncGenerator, AsyncIterator, Dict, Iterator, Optional, Tuple, Union, overload, ) from urllib.parse import urlencode, urlsplit, urlunsplit import aiohttp import requests import openai from openai import error, util, version from openai.openai_response import OpenAIResponse from openai.util import ApiType def _build_api_url(url, query): scheme, netloc, path, base_query, fragment = urlsplit(url) if base_query: query = "%s&%s" % (base_query, query) return urlunsplit((scheme, netloc, path, query, fragment))
null
1,431
import asyncio import json import platform import sys import threading import warnings from contextlib import asynccontextmanager from json import JSONDecodeError from typing import ( AsyncGenerator, AsyncIterator, Dict, Iterator, Optional, Tuple, Union, overload, ) from urllib.parse import urlencode, urlsplit, urlunsplit import aiohttp import requests import openai from openai import error, util, version from openai.openai_response import OpenAIResponse from openai.util import ApiType The provided code snippet includes necessary dependencies for implementing the `_aiohttp_proxies_arg` function. Write a Python function `def _aiohttp_proxies_arg(proxy) -> Optional[str]` to solve the following problem: Returns a value suitable for the 'proxies' argument to 'aiohttp.ClientSession.request. Here is the function: def _aiohttp_proxies_arg(proxy) -> Optional[str]: """Returns a value suitable for the 'proxies' argument to 'aiohttp.ClientSession.request.""" if proxy is None: return None elif isinstance(proxy, str): return proxy elif isinstance(proxy, dict): return proxy["https"] if "https" in proxy else proxy["http"] else: raise ValueError( "'openai.proxy' must be specified as either a string URL or a dict with string URL under the https and/or http keys." )
Returns a value suitable for the 'proxies' argument to 'aiohttp.ClientSession.request.