id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
1,213
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def printProgressBar(prefix='', suffix='', decimals=1, length=100, fill='█'): def download_and_unzip(url, filename, model_storage_directory, verbose=True): zip_path = os.path.join(model_storage_directory, 'temp.zip') reporthook = printProgressBar(prefix='Progress:', suffix='Complete', length=50) if verbose else None urlretrieve(url, zip_path, reporthook=reporthook) with ZipFile(zip_path, 'r') as zipObj: zipObj.extract(filename, model_storage_directory) os.remove(zip_path)
null
1,214
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def calculate_md5(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest()
null
1,215
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def get_paragraph(raw_result, x_ths=1, y_ths=0.5, mode = 'ltr'): # create basic attributes box_group = [] for box in raw_result: all_x = [int(coord[0]) for coord in box[0]] all_y = [int(coord[1]) for coord in box[0]] min_x = min(all_x) max_x = max(all_x) min_y = min(all_y) max_y = max(all_y) height = max_y - min_y box_group.append([box[1], min_x, max_x, min_y, max_y, height, 0.5*(min_y+max_y), 0]) # last element indicates group # cluster boxes into paragraph current_group = 1 while len([box for box in box_group if box[7]==0]) > 0: box_group0 = [box for box in box_group if box[7]==0] # group0 = non-group # new group if len([box for box in box_group if box[7]==current_group]) == 0: box_group0[0][7] = current_group # assign first box to form new group # try to add group else: current_box_group = [box for box in box_group if box[7]==current_group] mean_height = np.mean([box[5] for box in current_box_group]) min_gx = min([box[1] for box in current_box_group]) - x_ths*mean_height max_gx = max([box[2] for box in current_box_group]) + x_ths*mean_height min_gy = min([box[3] for box in current_box_group]) - y_ths*mean_height max_gy = max([box[4] for box in current_box_group]) + y_ths*mean_height add_box = False for box in box_group0: same_horizontal_level = (min_gx<=box[1]<=max_gx) or (min_gx<=box[2]<=max_gx) same_vertical_level = (min_gy<=box[3]<=max_gy) or (min_gy<=box[4]<=max_gy) if same_horizontal_level and same_vertical_level: box[7] = current_group add_box = True break # cannot add more box, go to next group if add_box==False: current_group += 1 # arrage order in paragraph result = [] for i in set(box[7] for box in box_group): current_box_group = [box for box in box_group if box[7]==i] mean_height = np.mean([box[5] for box in current_box_group]) min_gx = min([box[1] for box in current_box_group]) max_gx = max([box[2] for box in current_box_group]) min_gy = min([box[3] for box in current_box_group]) max_gy = max([box[4] for box in current_box_group]) text = '' while len(current_box_group) > 0: highest = min([box[6] for box in current_box_group]) candidates = [box for box in current_box_group if box[6]<highest+0.4*mean_height] # get the far left if mode == 'ltr': most_left = min([box[1] for box in candidates]) for box in candidates: if box[1] == most_left: best_box = box elif mode == 'rtl': most_right = max([box[2] for box in candidates]) for box in candidates: if box[2] == most_right: best_box = box text += ' '+best_box[0] current_box_group.remove(best_box) result.append([ [[min_gx,min_gy],[max_gx,min_gy],[max_gx,max_gy],[min_gx,max_gy]], text[1:]]) return result
null
1,216
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def reformat_input(image): if type(image) == str: if image.startswith('http://') or image.startswith('https://'): tmp, _ = urlretrieve(image , reporthook=printProgressBar(prefix = 'Progress:', suffix = 'Complete', length = 50)) img_cv_grey = cv2.imread(tmp, cv2.IMREAD_GRAYSCALE) os.remove(tmp) else: img_cv_grey = cv2.imread(image, cv2.IMREAD_GRAYSCALE) image = os.path.expanduser(image) img = loadImage(image) # can accept URL elif type(image) == bytes: nparr = np.frombuffer(image, np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_cv_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) elif type(image) == np.ndarray: if len(image.shape) == 2: # grayscale img_cv_grey = image img = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) elif len(image.shape) == 3 and image.shape[2] == 1: img_cv_grey = np.squeeze(image) img = cv2.cvtColor(img_cv_grey, cv2.COLOR_GRAY2BGR) elif len(image.shape) == 3 and image.shape[2] == 3: # BGRscale img = image img_cv_grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) elif len(image.shape) == 3 and image.shape[2] == 4: # RGBAscale img = image[:,:,:3] img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) img_cv_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) elif type(image) == JpegImagePlugin.JpegImageFile: image_array = np.array(image) img = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR) img_cv_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: raise ValueError('Invalid input type. Supporting format = string(file path or url), bytes, numpy array') return img, img_cv_grey The provided code snippet includes necessary dependencies for implementing the `reformat_input_batched` function. Write a Python function `def reformat_input_batched(image, n_width=None, n_height=None)` to solve the following problem: reformats an image or list of images or a 4D numpy image array & returns a list of corresponding img, img_cv_grey nd.arrays image: [file path, numpy-array, byte stream object, list of file paths, list of numpy-array, 4D numpy array, list of byte stream objects] Here is the function: def reformat_input_batched(image, n_width=None, n_height=None): """ reformats an image or list of images or a 4D numpy image array & returns a list of corresponding img, img_cv_grey nd.arrays image: [file path, numpy-array, byte stream object, list of file paths, list of numpy-array, 4D numpy array, list of byte stream objects] """ if ((isinstance(image, np.ndarray) and len(image.shape) == 4) or isinstance(image, list)): # process image batches if image is list of image np arr, paths, bytes img, img_cv_grey = [], [] for single_img in image: clr, gry = reformat_input(single_img) if n_width is not None and n_height is not None: clr = cv2.resize(clr, (n_width, n_height)) gry = cv2.resize(gry, (n_width, n_height)) img.append(clr) img_cv_grey.append(gry) img, img_cv_grey = np.array(img), np.array(img_cv_grey) # ragged tensors created when all input imgs are not of the same size if len(img.shape) == 1 and len(img_cv_grey.shape) == 1: raise ValueError("The input image array contains images of different sizes. " + "Please resize all images to same shape or pass n_width, n_height to auto-resize") else: img, img_cv_grey = reformat_input(image) return img, img_cv_grey
reformats an image or list of images or a 4D numpy image array & returns a list of corresponding img, img_cv_grey nd.arrays image: [file path, numpy-array, byte stream object, list of file paths, list of numpy-array, 4D numpy array, list of byte stream objects]
1,217
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage def calculate_ratio(width,height): def make_rotated_img_list(rotationInfo, img_list): result_img_list = img_list[:] # add rotated images to original image_list max_ratio=1 for angle in rotationInfo: for img_info in img_list : rotated = ndimage.rotate(img_info[1], angle, reshape=True) height,width = rotated.shape ratio = calculate_ratio(width,height) max_ratio = max(max_ratio,ratio) result_img_list.append((img_info[0], rotated)) return result_img_list
null
1,218
from __future__ import print_function import torch import pickle import numpy as np import math import cv2 from PIL import Image, JpegImagePlugin from scipy import ndimage import hashlib import sys, os from zipfile import ZipFile from .imgproc import loadImage The provided code snippet includes necessary dependencies for implementing the `set_result_with_confidence` function. Write a Python function `def set_result_with_confidence(results)` to solve the following problem: Select highest confidence augmentation for TTA Given a list of lists of results (outer list has one list per augmentation, inner lists index the images being recognized), choose the best result according to confidence level. Each "result" is of the form (box coords, text, confidence) A final_result is returned which contains one result for each image Here is the function: def set_result_with_confidence(results): """ Select highest confidence augmentation for TTA Given a list of lists of results (outer list has one list per augmentation, inner lists index the images being recognized), choose the best result according to confidence level. Each "result" is of the form (box coords, text, confidence) A final_result is returned which contains one result for each image """ final_result = [] for col_ix in range(len(results[0])): # Take the row_ix associated with the max confidence best_row = max( [(row_ix, results[row_ix][col_ix][2]) for row_ix in range(len(results))], key=lambda x: x[1])[0] final_result.append(results[best_row][col_ix]) return final_result
Select highest confidence augmentation for TTA Given a list of lists of results (outer list has one list per augmentation, inner lists index the images being recognized), choose the best result according to confidence level. Each "result" is of the form (box coords, text, confidence) A final_result is returned which contains one result for each image
1,219
import torch import torch.backends.cudnn as cudnn from torch.autograd import Variable from PIL import Image from collections import OrderedDict import cv2 import numpy as np from .craft_utils import getDetBoxes, adjustResultCoordinates from .imgproc import resize_aspect_ratio, normalizeMeanVariance from .craft import CRAFT def copyStateDict(state_dict): class CRAFT(nn.Module): def __init__(self, pretrained=False, freeze=False): def forward(self, x): def get_detector(trained_model, device='cpu', quantize=True, cudnn_benchmark=False): net = CRAFT() if device == 'cpu': net.load_state_dict(copyStateDict(torch.load(trained_model, map_location=device))) if quantize: try: torch.quantization.quantize_dynamic(net, dtype=torch.qint8, inplace=True) except: pass else: net.load_state_dict(copyStateDict(torch.load(trained_model, map_location=device))) net = torch.nn.DataParallel(net).to(device) cudnn.benchmark = cudnn_benchmark net.eval() return net
null
1,220
import torch import torch.backends.cudnn as cudnn from torch.autograd import Variable from PIL import Image from collections import OrderedDict import cv2 import numpy as np from .craft_utils import getDetBoxes, adjustResultCoordinates from .imgproc import resize_aspect_ratio, normalizeMeanVariance from .craft import CRAFT def test_net(canvas_size, mag_ratio, net, image, text_threshold, link_threshold, low_text, poly, device, estimate_num_chars=False): if isinstance(image, np.ndarray) and len(image.shape) == 4: # image is batch of np arrays image_arrs = image else: # image is single numpy array image_arrs = [image] img_resized_list = [] # resize for img in image_arrs: img_resized, target_ratio, size_heatmap = resize_aspect_ratio(img, canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=mag_ratio) img_resized_list.append(img_resized) ratio_h = ratio_w = 1 / target_ratio # preprocessing x = [np.transpose(normalizeMeanVariance(n_img), (2, 0, 1)) for n_img in img_resized_list] x = torch.from_numpy(np.array(x)) x = x.to(device) # forward pass with torch.no_grad(): y, feature = net(x) boxes_list, polys_list = [], [] for out in y: # make score and link map score_text = out[:, :, 0].cpu().data.numpy() score_link = out[:, :, 1].cpu().data.numpy() # Post-processing boxes, polys, mapper = getDetBoxes( score_text, score_link, text_threshold, link_threshold, low_text, poly, estimate_num_chars) # coordinate adjustment boxes = adjustResultCoordinates(boxes, ratio_w, ratio_h) polys = adjustResultCoordinates(polys, ratio_w, ratio_h) if estimate_num_chars: boxes = list(boxes) polys = list(polys) for k in range(len(polys)): if estimate_num_chars: boxes[k] = (boxes[k], mapper[k]) if polys[k] is None: polys[k] = boxes[k] boxes_list.append(boxes) polys_list.append(polys) return boxes_list, polys_list def get_textbox(detector, image, canvas_size, mag_ratio, text_threshold, link_threshold, low_text, poly, device, optimal_num_chars=None, **kwargs): result = [] estimate_num_chars = optimal_num_chars is not None bboxes_list, polys_list = test_net(canvas_size, mag_ratio, detector, image, text_threshold, link_threshold, low_text, poly, device, estimate_num_chars) if estimate_num_chars: polys_list = [[p for p, _ in sorted(polys, key=lambda x: abs(optimal_num_chars - x[1]))] for polys in polys_list] for polys in polys_list: single_img_result = [] for i, box in enumerate(polys): poly = np.array(box).astype(np.int32).reshape((-1)) single_img_result.append(poly) result.append(single_img_result) return result
null
1,221
from PIL import Image import torch import torch.backends.cudnn as cudnn import torch.utils.data import torch.nn.functional as F import torchvision.transforms as transforms import numpy as np from collections import OrderedDict import importlib from .utils import CTCLabelConverter import math def contrast_grey(img): def adjust_contrast_grey(img, target = 0.4): contrast, high, low = contrast_grey(img) if contrast < target: img = img.astype(int) ratio = 200./np.maximum(10, high-low) img = (img - low + 25)*ratio img = np.maximum(np.full(img.shape, 0) ,np.minimum(np.full(img.shape, 255), img)).astype(np.uint8) return img
null
1,222
from PIL import Image import torch import torch.backends.cudnn as cudnn import torch.utils.data import torch.nn.functional as F import torchvision.transforms as transforms import numpy as np from collections import OrderedDict import importlib from .utils import CTCLabelConverter import math class CTCLabelConverter(object): """ Convert between text-label and text-index """ def __init__(self, character, separator_list = {}, dict_pathlist = {}): # character (str): set of the possible characters. dict_character = list(character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i + 1 self.character = ['[blank]'] + dict_character # dummy '[blank]' token for CTCLoss (index 0) self.separator_list = separator_list separator_char = [] for lang, sep in separator_list.items(): separator_char += sep self.ignore_idx = [0] + [i+1 for i,item in enumerate(separator_char)] ####### latin dict if len(separator_list) == 0: dict_list = [] for lang, dict_path in dict_pathlist.items(): try: with open(dict_path, "r", encoding = "utf-8-sig") as input_file: word_count = input_file.read().splitlines() dict_list += word_count except: pass else: dict_list = {} for lang, dict_path in dict_pathlist.items(): with open(dict_path, "r", encoding = "utf-8-sig") as input_file: word_count = input_file.read().splitlines() dict_list[lang] = word_count self.dict_list = dict_list def encode(self, text, batch_max_length=25): """convert text-label into text-index. input: text: text labels of each image. [batch_size] output: text: concatenated text index for CTCLoss. [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] length: length of each text. [batch_size] """ length = [len(s) for s in text] text = ''.join(text) text = [self.dict[char] for char in text] return (torch.IntTensor(text), torch.IntTensor(length)) def decode_greedy(self, text_index, length): """ convert text-index into text-label. """ texts = [] index = 0 for l in length: t = text_index[index:index + l] # Returns a boolean array where true is when the value is not repeated a = np.insert(~((t[1:]==t[:-1])),0,True) # Returns a boolean array where true is when the value is not in the ignore_idx list b = ~np.isin(t,np.array(self.ignore_idx)) # Combine the two boolean array c = a & b # Gets the corresponding character according to the saved indexes text = ''.join(np.array(self.character)[t[c.nonzero()]]) texts.append(text) index += l return texts def decode_beamsearch(self, mat, beamWidth=5): texts = [] for i in range(mat.shape[0]): t = ctcBeamSearch(mat[i], self.character, self.ignore_idx, None, beamWidth=beamWidth) texts.append(t) return texts def decode_wordbeamsearch(self, mat, beamWidth=5): texts = [] argmax = np.argmax(mat, axis = 2) for i in range(mat.shape[0]): string = '' # without separators - use space as separator if len(self.separator_list) == 0: space_idx = self.dict[' '] data = np.argwhere(argmax[i]!=space_idx).flatten() group = np.split(data, np.where(np.diff(data) != 1)[0]+1) group = [ list(item) for item in group if len(item)>0] for j, list_idx in enumerate(group): matrix = mat[i, list_idx,:] t = ctcBeamSearch(matrix, self.character, self.ignore_idx, None,\ beamWidth=beamWidth, dict_list=self.dict_list) if j == 0: string += t else: string += ' '+t # with separators else: words = word_segmentation(argmax[i]) for word in words: matrix = mat[i, word[1][0]:word[1][1]+1,:] if word[0] == '': dict_list = [] else: dict_list = self.dict_list[word[0]] t = ctcBeamSearch(matrix, self.character, self.ignore_idx, None, beamWidth=beamWidth, dict_list=dict_list) string += t texts.append(string) return texts def get_recognizer(recog_network, network_params, character,\ separator_list, dict_list, model_path,\ device = 'cpu', quantize = True): converter = CTCLabelConverter(character, separator_list, dict_list) num_class = len(converter.character) if recog_network == 'generation1': model_pkg = importlib.import_module("easyocr.model.model") elif recog_network == 'generation2': model_pkg = importlib.import_module("easyocr.model.vgg_model") else: model_pkg = importlib.import_module(recog_network) model = model_pkg.Model(num_class=num_class, **network_params) if device == 'cpu': state_dict = torch.load(model_path, map_location=device) new_state_dict = OrderedDict() for key, value in state_dict.items(): new_key = key[7:] new_state_dict[new_key] = value model.load_state_dict(new_state_dict) if quantize: try: torch.quantization.quantize_dynamic(model, dtype=torch.qint8, inplace=True) except: pass else: model = torch.nn.DataParallel(model).to(device) model.load_state_dict(torch.load(model_path, map_location=device)) return model, converter
null
1,223
from PIL import Image import torch import torch.backends.cudnn as cudnn import torch.utils.data import torch.nn.functional as F import torchvision.transforms as transforms import numpy as np from collections import OrderedDict import importlib from .utils import CTCLabelConverter import math class ListDataset(torch.utils.data.Dataset): def __init__(self, image_list): def __len__(self): def __getitem__(self, index): class AlignCollate(object): def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, adjust_contrast = 0.): def __call__(self, batch): def recognizer_predict(model, converter, test_loader, batch_max_length,\ ignore_idx, char_group_idx, decoder = 'greedy', beamWidth= 5, device = 'cpu'): def get_text(character, imgH, imgW, recognizer, converter, image_list,\ ignore_char = '',decoder = 'greedy', beamWidth =5, batch_size=1, contrast_ths=0.1,\ adjust_contrast=0.5, filter_ths = 0.003, workers = 1, device = 'cpu'): batch_max_length = int(imgW/10) char_group_idx = {} ignore_idx = [] for char in ignore_char: try: ignore_idx.append(character.index(char)+1) except: pass coord = [item[0] for item in image_list] img_list = [item[1] for item in image_list] AlignCollate_normal = AlignCollate(imgH=imgH, imgW=imgW, keep_ratio_with_pad=True) test_data = ListDataset(img_list) test_loader = torch.utils.data.DataLoader( test_data, batch_size=batch_size, shuffle=False, num_workers=int(workers), collate_fn=AlignCollate_normal, pin_memory=True) # predict first round result1 = recognizer_predict(recognizer, converter, test_loader,batch_max_length,\ ignore_idx, char_group_idx, decoder, beamWidth, device = device) # predict second round low_confident_idx = [i for i,item in enumerate(result1) if (item[1] < contrast_ths)] if len(low_confident_idx) > 0: img_list2 = [img_list[i] for i in low_confident_idx] AlignCollate_contrast = AlignCollate(imgH=imgH, imgW=imgW, keep_ratio_with_pad=True, adjust_contrast=adjust_contrast) test_data = ListDataset(img_list2) test_loader = torch.utils.data.DataLoader( test_data, batch_size=batch_size, shuffle=False, num_workers=int(workers), collate_fn=AlignCollate_contrast, pin_memory=True) result2 = recognizer_predict(recognizer, converter, test_loader, batch_max_length,\ ignore_idx, char_group_idx, decoder, beamWidth, device = device) result = [] for i, zipped in enumerate(zip(coord, result1)): box, pred1 = zipped if i in low_confident_idx: pred2 = result2[low_confident_idx.index(i)] if pred1[1]>pred2[1]: result.append( (box, pred1[0], pred1[1]) ) else: result.append( (box, pred2[0], pred2[1]) ) else: result.append( (box, pred1[0], pred1[1]) ) return result
null
1,224
import os import glob from datetime import datetime import subprocess def print_error(errors, log_path): if not isinstance(errors, list): errors = [errors] errors = [error if isinstance(error, bytes) else error.encode('utf-8') for error in errors] url = "https://github.com/JaidedAI/EasyOCR/tree/master/easyocr/DBNet" print("Failed to compile dcn operator for DBNet.") with open(log_path, "wb") as fid: fid.write((datetime.now().strftime("%H:%M:%S - %d %b %Y") + "\n").encode('utf-8')) fid.write("Failed to compile dcn operator for DBNet with the following error.\n".encode('utf-8')) fid.write(("#"*42 + '\n').encode('utf-8')) [fid.write(error) for error in errors] print("Error message can be found in {}.".format(os.path.abspath(log_path))) print("#"*42) print("EasyOCR can still be used with CRAFT text detector (default).") print("To use DBNet text detector, please check {} for troubleshoot and compile dcn operator manually.".format(url))
null
1,225
import os import glob from datetime import datetime import subprocess def print_success(text, log_path): with open(log_path, "wb") as fid: fid.write((datetime.now().strftime("%H:%M:%S - %d %b %Y") + "\n").encode('utf-8')) fid.write((text + "\n").encode('utf-8')) print(text) def validate_compilation(parent_dir, log_path, cpu_or_cuda): dcn_dir = os.path.join(parent_dir, 'DBNet', 'assets', 'ops', 'dcn') #Just to be safe, check explicitly. if cpu_or_cuda == 'cpu': conv_cpu_exist = glob.glob(os.path.join(dcn_dir, 'deform_conv_cpu.*.so')) pool_cpu_exist = glob.glob(os.path.join(dcn_dir, 'deform_pool_cpu.*.so')) success_message = "DCN CPU operator is compiled successfully at {}.".format(os.path.abspath(os.path.join(parent_dir,'DBNet'))) print_success(success_message, log_path) return conv_cpu_exist and pool_cpu_exist elif cpu_or_cuda == 'cuda': conv_cuda_exist = glob.glob(os.path.join(dcn_dir, 'deform_conv_cuda.*.so')) pool_cuda_exist = glob.glob(os.path.join(dcn_dir, 'deform_pool_cuda.*.so')) success_message = "DCN CUDA operator is compiled successfully at {}.".format(os.path.abspath(os.path.join(parent_dir,'DBNet'))) print_success(success_message, log_path) return conv_cuda_exist and pool_cuda_exist else: raise ValueError("'cpu_or_cuda' must be either 'cpu' or 'cuda'")
null
1,226
import torch import torch.nn as nn import torch.nn.functional as F def conv_bn(inp, oup, stride, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU): return nn.Sequential( conv_layer(inp, oup, 3, stride, 1, bias=False), norm_layer(oup), nlin_layer(inplace=True) )
null
1,227
import torch import torch.nn as nn import torch.nn.functional as F def conv_1x1_bn(inp, oup, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU): return nn.Sequential( conv_layer(inp, oup, 1, 1, 0, bias=False), norm_layer(oup), nlin_layer(inplace=True) )
null
1,228
import torch import torch.nn as nn import torch.nn.functional as F def make_divisible(x, divisible_by=8): import numpy as np return int(np.ceil(x * 1. / divisible_by) * divisible_by)
null
1,229
import torch import torch.nn as nn import torch.nn.functional as F class MobileNetV3(nn.Module): def __init__(self, n_class=1000, input_size=224, dropout=0.8, mode='small', width_mult=1.0): super(MobileNetV3, self).__init__() input_channel = 16 last_channel = 1280 if mode == 'large': # refer to Table 1 in paper mobile_setting = [ # k, exp, c, se, nl, s, [3, 16, 16, False, 'RE', 1], [3, 64, 24, False, 'RE', 2], [3, 72, 24, False, 'RE', 1], # 3 [5, 72, 40, True, 'RE', 2], [5, 120, 40, True, 'RE', 1], [5, 120, 40, True, 'RE', 1], # 6 [3, 240, 80, False, 'HS', 2], [3, 200, 80, False, 'HS', 1], [3, 184, 80, False, 'HS', 1], [3, 184, 80, False, 'HS', 1], [3, 480, 112, True, 'HS', 1], [3, 672, 112, True, 'HS', 1], # 12 [5, 672, 160, True, 'HS', 2], [5, 960, 160, True, 'HS', 1], [5, 960, 160, True, 'HS', 1], ] elif mode == 'small': # refer to Table 2 in paper mobile_setting = [ # k, exp, c, se, nl, s, [3, 16, 16, True, 'RE', 2], [3, 72, 24, False, 'RE', 2], [3, 88, 24, False, 'RE', 1], [5, 96, 40, True, 'HS', 2], [5, 240, 40, True, 'HS', 1], [5, 240, 40, True, 'HS', 1], [5, 120, 48, True, 'HS', 1], [5, 144, 48, True, 'HS', 1], [5, 288, 96, True, 'HS', 2], [5, 576, 96, True, 'HS', 1], [5, 576, 96, True, 'HS', 1], ] else: raise NotImplementedError # building first layer assert input_size % 32 == 0 last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel self.features = nn.ModuleList([conv_bn(3, input_channel, 2, nlin_layer=Hswish)]) # start_idx = 0: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same self.classifier = [] # building mobile blocks for k, exp, c, se, nl, s in mobile_setting: output_channel = make_divisible(c * width_mult) exp_channel = make_divisible(exp * width_mult) self.features.append(MobileBottleneck(input_channel, output_channel, k, s, exp_channel, se, nl)) input_channel = output_channel # building last several layers if mode == 'large': last_conv = make_divisible(960 * width_mult) self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish)) # 16 self.features.append(nn.AdaptiveAvgPool2d(1)) self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0)) self.features.append(Hswish(inplace=True)) elif mode == 'small': last_conv = make_divisible(576 * width_mult) self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish)) # self.features.append(SEModule(last_conv)) # refer to paper Table2, but I think this is a mistake self.features.append(nn.AdaptiveAvgPool2d(1)) self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0)) self.features.append(Hswish(inplace=True)) else: raise NotImplementedError # make it nn.Sequential #self.features = nn.Sequential(*self.features) del for dbnet # building classifier self.classifier = nn.Sequential( nn.Dropout(p=dropout), # refer to paper section 6 nn.Linear(last_channel, n_class), ) self._initialize_weights() def forward(self, x): '''x = self.features(x) x = x.mean(3).mean(2) x = self.classifier(x) return x''' x2, x3, x4, x5 = None, None, None, None for stage in range(17): # https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/ppocr/modeling/backbones/det_mobilenet_v3.py x = self.features[stage](x) if stage == 3: # if s == 2 and start_idx > 3 x2 = x elif stage == 6: x3 = x elif stage == 12: x4 = x elif stage == 16: x5 = x return x2, x3, x4, x5 def _initialize_weights(self): # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) def mobilenet_v3_large(pretrained=False, **kwargs): model = MobileNetV3(mode='large', **kwargs) if pretrained: state_dict = torch.load('mobilenetv3_large.pth.tar') model.load_state_dict(state_dict, strict=True) # raise NotImplementedError return model
null
1,230
import torch import torch.nn as nn import torch.nn.functional as F class MobileNetV3(nn.Module): def __init__(self, n_class=1000, input_size=224, dropout=0.8, mode='small', width_mult=1.0): super(MobileNetV3, self).__init__() input_channel = 16 last_channel = 1280 if mode == 'large': # refer to Table 1 in paper mobile_setting = [ # k, exp, c, se, nl, s, [3, 16, 16, False, 'RE', 1], [3, 64, 24, False, 'RE', 2], [3, 72, 24, False, 'RE', 1], # 3 [5, 72, 40, True, 'RE', 2], [5, 120, 40, True, 'RE', 1], [5, 120, 40, True, 'RE', 1], # 6 [3, 240, 80, False, 'HS', 2], [3, 200, 80, False, 'HS', 1], [3, 184, 80, False, 'HS', 1], [3, 184, 80, False, 'HS', 1], [3, 480, 112, True, 'HS', 1], [3, 672, 112, True, 'HS', 1], # 12 [5, 672, 160, True, 'HS', 2], [5, 960, 160, True, 'HS', 1], [5, 960, 160, True, 'HS', 1], ] elif mode == 'small': # refer to Table 2 in paper mobile_setting = [ # k, exp, c, se, nl, s, [3, 16, 16, True, 'RE', 2], [3, 72, 24, False, 'RE', 2], [3, 88, 24, False, 'RE', 1], [5, 96, 40, True, 'HS', 2], [5, 240, 40, True, 'HS', 1], [5, 240, 40, True, 'HS', 1], [5, 120, 48, True, 'HS', 1], [5, 144, 48, True, 'HS', 1], [5, 288, 96, True, 'HS', 2], [5, 576, 96, True, 'HS', 1], [5, 576, 96, True, 'HS', 1], ] else: raise NotImplementedError # building first layer assert input_size % 32 == 0 last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel self.features = nn.ModuleList([conv_bn(3, input_channel, 2, nlin_layer=Hswish)]) # start_idx = 0: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same self.classifier = [] # building mobile blocks for k, exp, c, se, nl, s in mobile_setting: output_channel = make_divisible(c * width_mult) exp_channel = make_divisible(exp * width_mult) self.features.append(MobileBottleneck(input_channel, output_channel, k, s, exp_channel, se, nl)) input_channel = output_channel # building last several layers if mode == 'large': last_conv = make_divisible(960 * width_mult) self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish)) # 16 self.features.append(nn.AdaptiveAvgPool2d(1)) self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0)) self.features.append(Hswish(inplace=True)) elif mode == 'small': last_conv = make_divisible(576 * width_mult) self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish)) # self.features.append(SEModule(last_conv)) # refer to paper Table2, but I think this is a mistake self.features.append(nn.AdaptiveAvgPool2d(1)) self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0)) self.features.append(Hswish(inplace=True)) else: raise NotImplementedError # make it nn.Sequential #self.features = nn.Sequential(*self.features) del for dbnet # building classifier self.classifier = nn.Sequential( nn.Dropout(p=dropout), # refer to paper section 6 nn.Linear(last_channel, n_class), ) self._initialize_weights() def forward(self, x): '''x = self.features(x) x = x.mean(3).mean(2) x = self.classifier(x) return x''' x2, x3, x4, x5 = None, None, None, None for stage in range(17): # https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/ppocr/modeling/backbones/det_mobilenet_v3.py x = self.features[stage](x) if stage == 3: # if s == 2 and start_idx > 3 x2 = x elif stage == 6: x3 = x elif stage == 12: x4 = x elif stage == 16: x5 = x return x2, x3, x4, x5 def _initialize_weights(self): # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) def mobilenet_v3_small(pretrained=False, **kwargs): model = MobileNetV3(mode='small', **kwargs) if pretrained: state_dict = torch.load('mobilenetv3_small_67.4.pth.tar') model.load_state_dict(state_dict, strict=True) # raise NotImplementedError return model
null
1,231
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo def constant_init(module, constant, bias=0): nn.init.constant_(module.weight, constant) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias)
null
1,232
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo The provided code snippet includes necessary dependencies for implementing the `conv3x3` function. Write a Python function `def conv3x3(in_planes, out_planes, stride=1)` to solve the following problem: 3x3 convolution with padding Here is the function: def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
3x3 convolution with padding
1,233
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(BasicBlock, self).__init__() self.with_dcn = dcn is not None self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) # self.conv2 = conv3x3(planes, planes) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: #from assets.ops.dcn import DeformConv from ..assets.ops.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: #from assets.ops.dcn import ModulatedDeformConv from ..assets.ops.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 The provided code snippet includes necessary dependencies for implementing the `resnet18` function. Write a Python function `def resnet18(pretrained=True, **kwargs)` to solve the following problem: Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Here is the function: def resnet18(pretrained=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet18']), strict=False) return model
Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
1,234
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(BasicBlock, self).__init__() self.with_dcn = dcn is not None self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) # self.conv2 = conv3x3(planes, planes) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: #from assets.ops.dcn import DeformConv from ..assets.ops.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: #from assets.ops.dcn import ModulatedDeformConv from ..assets.ops.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 The provided code snippet includes necessary dependencies for implementing the `deformable_resnet18` function. Write a Python function `def deformable_resnet18(pretrained=True, **kwargs)` to solve the following problem: Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Here is the function: def deformable_resnet18(pretrained=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], dcn=dict(modulated=True, deformable_groups=1, fallback_on_stride=False), stage_with_dcn=[False, True, True, True], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet18']), strict=False) return model
Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
1,235
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(BasicBlock, self).__init__() self.with_dcn = dcn is not None self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) # self.conv2 = conv3x3(planes, planes) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: #from assets.ops.dcn import DeformConv from ..assets.ops.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: #from assets.ops.dcn import ModulatedDeformConv from ..assets.ops.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 The provided code snippet includes necessary dependencies for implementing the `resnet34` function. Write a Python function `def resnet34(pretrained=True, **kwargs)` to solve the following problem: Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Here is the function: def resnet34(pretrained=True, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet34']), strict=False) return model
Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
1,236
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(Bottleneck, self).__init__() self.with_dcn = dcn is not None self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm2d(planes) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: #from assets.ops.dcn import DeformConv from ..assets.ops.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: #from assets.ops.dcn import ModulatedDeformConv from ..assets.ops.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, stride=stride, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dcn = dcn self.with_dcn = dcn is not None def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 The provided code snippet includes necessary dependencies for implementing the `resnet50` function. Write a Python function `def resnet50(pretrained=True, **kwargs)` to solve the following problem: Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Here is the function: def resnet50(pretrained=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet50']), strict=False) return model
Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
1,237
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(Bottleneck, self).__init__() self.with_dcn = dcn is not None self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm2d(planes) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: #from assets.ops.dcn import DeformConv from ..assets.ops.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: #from assets.ops.dcn import ModulatedDeformConv from ..assets.ops.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, stride=stride, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dcn = dcn self.with_dcn = dcn is not None def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 The provided code snippet includes necessary dependencies for implementing the `deformable_resnet50` function. Write a Python function `def deformable_resnet50(pretrained=True, **kwargs)` to solve the following problem: Constructs a ResNet-50 model with deformable conv. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Here is the function: def deformable_resnet50(pretrained=True, **kwargs): """Constructs a ResNet-50 model with deformable conv. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], dcn=dict(modulated=True, deformable_groups=1, fallback_on_stride=False), stage_with_dcn=[False, True, True, True], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet50']), strict=False) return model
Constructs a ResNet-50 model with deformable conv. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
1,238
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(Bottleneck, self).__init__() self.with_dcn = dcn is not None self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm2d(planes) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: #from assets.ops.dcn import DeformConv from ..assets.ops.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: #from assets.ops.dcn import ModulatedDeformConv from ..assets.ops.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, stride=stride, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dcn = dcn self.with_dcn = dcn is not None def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 The provided code snippet includes necessary dependencies for implementing the `resnet101` function. Write a Python function `def resnet101(pretrained=True, **kwargs)` to solve the following problem: Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Here is the function: def resnet101(pretrained=True, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet101']), strict=False) return model
Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
1,239
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(Bottleneck, self).__init__() self.with_dcn = dcn is not None self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm2d(planes) fallback_on_stride = False self.with_modulated_dcn = False if self.with_dcn: fallback_on_stride = dcn.get('fallback_on_stride', False) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_dcn or fallback_on_stride: self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) else: deformable_groups = dcn.get('deformable_groups', 1) if not self.with_modulated_dcn: #from assets.ops.dcn import DeformConv from ..assets.ops.dcn import DeformConv conv_op = DeformConv offset_channels = 18 else: #from assets.ops.dcn import ModulatedDeformConv from ..assets.ops.dcn import ModulatedDeformConv conv_op = ModulatedDeformConv offset_channels = 27 self.conv2_offset = nn.Conv2d( planes, deformable_groups * offset_channels, kernel_size=3, padding=1) self.conv2 = conv_op( planes, planes, kernel_size=3, padding=1, stride=stride, deformable_groups=deformable_groups, bias=False) self.bn2 = BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dcn = dcn self.with_dcn = dcn is not None def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) elif self.with_modulated_dcn: offset_mask = self.conv2_offset(out) offset = offset_mask[:, :18, :, :] mask = offset_mask[:, -9:, :, :].sigmoid() out = self.conv2(out, offset, mask) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, dcn=None, stage_with_dcn=(False, False, False, False)): self.dcn = dcn self.stage_with_dcn = stage_with_dcn self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dcn=dcn) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) self.smooth = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, 'conv2_offset'): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 The provided code snippet includes necessary dependencies for implementing the `resnet152` function. Write a Python function `def resnet152(pretrained=True, **kwargs)` to solve the following problem: Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Here is the function: def resnet152(pretrained=True, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url( model_urls['resnet152']), strict=False) return model
Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
1,240
import os import torch import warnings from torch.autograd import Function from torch.nn.modules.utils import _pair from torch.utils import cpp_extension def custom_formatwarning(msg, *args, **kwargs): # ignore everything except the message return str(msg) + '\n'
null
1,241
import os import warnings import torch from torch.autograd import Function from torch.utils import cpp_extension def custom_formatwarning(msg, *args, **kwargs): # ignore everything except the message return str(msg) + '\n'
null
1,242
import os import torch import torch.nn as nn import torch.nn.functional as F from .. import backbones from .. import decoders def parallelize(model, distributed, local_rank): if distributed: return nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=[local_rank], find_unused_parameters=True) else: return nn.DataParallel(model)
null
1,243
import torch import torch.nn as nn import torch.nn.init as init import torchvision from torchvision import models from collections import namedtuple from packaging import version def init_weights(modules): for m in modules: if isinstance(m, nn.Conv2d): init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_()
null
1,244
import os import numpy as np import torch import torch.backends.cudnn as cudnn from .DBNet.DBNet import DBNet class DBNet: def __init__(self, backbone = "resnet18", weight_dir = None, weight_name = 'pretrained', initialize_model = True, dynamic_import_relative_path = None, device = 'cuda', verbose = 0): ''' DBNet text detector class Parameters ---------- backbone : str, optional Backbone to use. Options are "resnet18" and "resnet50". The default is "resnet18". weight_dir : str, optional Path to directory that contains weight files. If set to None, the path will be set to "../weights/". The default is None. weight_name : str, optional Name of the weight to use as specified in DBNet_inference.yaml or a filename in weight_dir. The default is 'pretrained'. initialize_model : Boolean, optional If True, construct the model and load weight at class initialization. Otherwise, only initial the class without constructing the model. The default is True. dynamic_import_relative_path : str, optional Relative path to 'model/detector.py'. This option is for supporting integrating this module into other modules. For example, easyocr/DBNet This should be left as None when calling this module as a standalone. The default is None. device : str, optional Device to use. Options are "cuda" and "cpu". The default is 'cuda'. verbose : int, optional Verbosity level. The default is 0. Raises ------ ValueError Raised when backbone is invalid. FileNotFoundError Raised when weight file is not found. Returns ------- None. ''' self.device = device config_path = os.path.join(os.path.dirname(__file__), "configs", "DBNet_inference.yaml") with open(config_path, 'r') as fid: self.configs = yaml.safe_load(fid) if dynamic_import_relative_path is not None: self.configs = self.set_relative_import_path(self.configs, dynamic_import_relative_path) if backbone in self.configs.keys(): self.backbone = backbone else: raise ValueError("Invalid backbone. Current support backbone are {}.".format(",".join(self.configs.keys()))) if weight_dir is not None: self.weight_dir = weight_dir else: self.weight_dir = os.path.join(os.path.dirname(__file__), 'weights') if initialize_model: if weight_name in self.configs[backbone]['weight'].keys(): weight_path = os.path.join(self.weight_dir, self.configs[backbone]['weight'][weight_name]) error_message = "A weight with a name {} is found in DBNet_inference.yaml but cannot be find file: {}." else: weight_path = os.path.join(self.weight_dir, weight_name) error_message = "A weight with a name {} is not found in DBNet_inference.yaml and cannot be find file: {}." if not os.path.isfile(weight_path): raise FileNotFoundError(error_message.format(weight_name, weight_path)) self.initialize_model(self.configs[backbone]['model'], weight_path) else: self.model = None self.BGR_MEAN = np.array(self.configs['BGR_MEAN']) self.min_detection_size = self.configs['min_detection_size'] self.max_detection_size = self.configs['max_detection_size'] def set_relative_import_path(self, configs, dynamic_import_relative_path): ''' Create relative import paths for modules specified in class. This method is recursive. Parameters ---------- configs : dict Configuration dictionary from .yaml file. dynamic_import_relative_path : str, optional Relative path to 'model/detector/'. This option is for supporting integrating this module into other modules. For example, easyocr/DBNet This should be left as None when calling this module as a standalone. The default is None. Returns ------- configs : dict Configuration dictionary with correct relative path. ''' assert dynamic_import_relative_path is not None prefices = dynamic_import_relative_path.split(os.sep) for key,value in configs.items(): if key == 'class': configs.update({key: ".".join(prefices + value.split("."))}) else: if isinstance(value, dict): value = self.set_relative_import_path(value, dynamic_import_relative_path) else: pass return configs def load_weight(self, weight_path): ''' Load weight to model. Parameters ---------- weight_path : str Path to trained weight. Raises ------ RuntimeError Raised when the model has not yet been contructed. Returns ------- None. ''' if self.model is None: raise RuntimeError("model has not yet been constructed.") self.model.load_state_dict(torch.load(weight_path, map_location=self.device), strict=False) self.model.eval() def construct_model(self, config): ''' Contruct text detection model based on the configuration in .yaml file. Parameters ---------- config : dict Configuration dictionary. Returns ------- None. ''' self.model = Configurable.construct_class_from_config(config).structure.builder.build(self.device) def initialize_model(self, model_config, weight_path): ''' Wrapper to initialize text detection model. This model includes contructing and weight loading. Parameters ---------- model_config : dict Configuration dictionary. weight_path : str Path to trained weight. Returns ------- None. ''' self.construct_model(model_config) self.load_weight(weight_path) if isinstance(self.model.model, torch.nn.DataParallel) and self.device == 'cpu': self.model.model = self.model.model.module.to(self.device) def get_cv2_image(self, image): ''' Load or convert input to OpenCV BGR image numpy array. Parameters ---------- image : str, PIL.Image, or np.ndarray Image to load or convert. Raises ------ FileNotFoundError Raised when the input is a path to file (str), but the file is not found. TypeError Raised when the data type of the input is not supported. Returns ------- image : np.ndarray OpenCV BGR image. ''' if isinstance(image, str): if os.path.isfile(image): image = cv2.imread(image, cv2.IMREAD_COLOR).astype('float32') else: raise FileNotFoundError("Cannot find {}".format(image)) elif isinstance(image, np.ndarray): image = image.astype('float32') elif isinstance(image, PIL.Image.Image): image = np.asarray(image)[:, :, ::-1] else: raise TypeError("Unsupport image format. Only path-to-file, opencv BGR image, and PIL image are supported.") return image def resize_image(self, img, detection_size = None): ''' Resize image such that the shorter side of the image is equal to the closest multiple of 32 to the provided detection_size. If detection_size is not provided, it will be resized to the closest multiple of 32 each side. If the original size exceeds the min-/max-detection sizes (specified in configs.yaml), it will be resized to be within the min-/max-sizes. Parameters ---------- img : np.ndarray OpenCV BGR image. detection_size : int, optional Target detection size. The default is None. Returns ------- np.ndarray Resized OpenCV BGR image. The width and height of this image should be multiple of 32. ''' height, width, _ = img.shape if detection_size is None: detection_size = max(self.min_detection_size, min(height, width, self.max_detection_size)) if height < width: new_height = int(math.ceil(detection_size / 32) * 32) new_width = int(math.ceil(new_height / height * width / 32) * 32) else: new_width = int(math.ceil(detection_size / 32) * 32) new_height = int(math.ceil(new_width / width * height / 32) * 32) resized_img = cv2.resize(img, (new_width, new_height)) return resized_img, (height, width) def image_array2tensor(self, image): ''' Convert image array (assuming OpenCV BGR format) to image tensor. Parameters ---------- image : np.ndarray OpenCV BGR image. Returns ------- torch.tensor Tensor image with 4 dimension [batch, channel, width, height]. ''' return torch.from_numpy(image).permute(2, 0, 1).float().unsqueeze(0) def normalize_image(self, image): ''' Normalize image by substracting BGR mean and divided by 255 Parameters ---------- image : np.ndarray OpenCV BGR image. Returns ------- np.ndarray OpenCV BGR image. ''' return (image - self.BGR_MEAN)/255.0 def load_image(self, image_path, detection_size = 0): ''' Wrapper to load and convert an image to an image tensor Parameters ---------- image : path-to-file, PIL.Image, or np.ndarray Image to load or convert. detection_size : int, optional Target detection size. The default is None. Returns ------- img : torch.tensor Tensor image with 4 dimension [batch, channel, width, height].. original_shape : tuple A tuple (height, width) of the original input image before resizing. ''' img =self.get_cv2_image(image_path) img, original_shape = self.resize_image(img, detection_size = detection_size) img = self.normalize_image(img) img = self.image_array2tensor(img) return img, original_shape def load_images(self, images, detection_size = None): ''' Wrapper to load or convert list of multiple images to a single image tensor. Multiple images are concatenated together on the first dimension. Parameters ---------- images : a list of path-to-file, PIL.Image, or np.ndarray Image to load or convert. detection_size : int, optional Target detection size. The default is None. Returns ------- img : torch.tensor A single tensor image with 4 dimension [batch, channel, width, height]. original_shape : tuple A list of tuples (height, width) of the original input image before resizing. ''' images, original_shapes = zip(*[self.load_image(image, detection_size = detection_size) for image in images]) return torch.cat(images, dim = 0), original_shapes def hmap2bbox(self, image_tensor, original_shapes, hmap, text_threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0, as_polygon=False): ''' Translate probability heatmap tensor to text region boudning boxes. Parameters ---------- image_tensor : torch.tensor Image tensor. original_shapes : tuple Original size of the image (height, width) of the input image (before rounded to the closest multiple of 32). hmap : torch.tensor Probability heatmap tensor. text_threshold : float, optional Minimum probability for each pixel of heatmap tensor to be considered as a valid text pixel. The default is 0.2. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding box. Setting it to 0 implies no maximum. The default is 0. as_polygon : boolean, optional If True, return the bounding box as polygon (fine vertrices), otherwise return as rectangular. The default is False. Returns ------- boxes_batch : list of lists Bounding boxes of each text box. scores_batch : list of floats Confidence scores of each text box. ''' segmentation = self.binarize(hmap, threshold = text_threshold) boxes_batch = [] scores_batch = [] for batch_index in range(image_tensor.size(0)): height, width = original_shapes[batch_index] if as_polygon: boxes, scores = self.polygons_from_bitmap( hmap[batch_index], segmentation[batch_index], width, height, bbox_min_score = bbox_min_score, bbox_min_size = bbox_min_size, max_candidates = max_candidates) else: boxes, scores = self.boxes_from_bitmap( hmap[batch_index], segmentation[batch_index], width, height, bbox_min_score = bbox_min_score, bbox_min_size = bbox_min_size, max_candidates = max_candidates) boxes_batch.append(boxes) scores_batch.append(scores) boxes_batch, scores_batch = zip(*[zip(*[(box, score) for (box,score) in zip(boxes, scores) if score > 0] ) if any(scores > 0) else [(),()] for (boxes, scores) in zip(boxes_batch, scores_batch)] ) return boxes_batch, scores_batch def binarize(self, tensor, threshold): ''' Apply threshold to return boolean tensor. Parameters ---------- tensor : torch.tensor input tensor. threshold : float Threshold. Returns ------- torch.tensor Boolean tensor. ''' return tensor > threshold def polygons_from_bitmap(self, hmap, segmentation, dest_width, dest_height, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0): ''' Translate boolean tensor to fine polygon indicating text bounding boxes Parameters ---------- hmap : torch.tensor Probability heatmap tensor. segmentation : torch.tensor Segmentataion tensor. dest_width : TYPE target width of the output. dest_height : TYPE target width of the output. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding box. Setting it to 0 implies no maximum. The default is 0. Returns ------- boxes_batch : list of lists Polygon bounding boxes of each text box. scores_batch : list of floats Confidence scores of each text box. ''' assert segmentation.size(0) == 1 bitmap = segmentation.cpu().numpy()[0] # The first channel hmap = hmap.cpu().detach().numpy()[0] height, width = bitmap.shape boxes = [] scores = [] contours, _ = cv2.findContours( (bitmap*255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if max_candidates > 0: contours = contours[:max_candidates] for contour in contours: epsilon = 0.002 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) points = approx.reshape((-1, 2)) if points.shape[0] < 4: continue score = self.box_score_fast(hmap, points.reshape(-1, 2)) if score < bbox_min_score: continue if points.shape[0] > 2: box = self.unclip(points, unclip_ratio=2.0) if len(box) > 1: continue else: continue box = box.reshape(-1, 2) _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2))) if sside < bbox_min_size + 2: continue if not isinstance(dest_width, int): dest_width = dest_width.item() dest_height = dest_height.item() box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box.tolist()) scores.append(score) return boxes, scores def boxes_from_bitmap(self, hmap, segmentation, dest_width, dest_height, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0): ''' Translate boolean tensor to fine polygon indicating text bounding boxes Parameters ---------- hmap : torch.tensor Probability heatmap tensor. segmentation : torch.tensor Segmentataion tensor. dest_width : TYPE target width of the output. dest_height : TYPE target width of the output. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding box. Setting it to 0 implies no maximum. The default is 0. Returns ------- boxes_batch : list of lists Polygon bounding boxes of each text box. scores_batch : list of floats Confidence scores of each text box. ''' assert segmentation.size(0) == 1 bitmap = segmentation.cpu().numpy()[0] # The first channel hmap = hmap.cpu().detach().numpy()[0] height, width = bitmap.shape contours, _ = cv2.findContours( (bitmap*255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if max_candidates > 0: num_contours = min(len(contours), max_candidates) else: num_contours = len(contours) boxes = np.zeros((num_contours, 4, 2), dtype=np.int16) scores = np.zeros((num_contours,), dtype=np.float32) for index in range(num_contours): contour = contours[index] points, sside = self.get_mini_boxes(contour) if sside < bbox_min_size: continue points = np.array(points) score = self.box_score_fast(hmap, points.reshape(-1, 2)) if score < bbox_min_score: continue box = self.unclip(points).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < bbox_min_size + 2: continue box = np.array(box) if not isinstance(dest_width, int): dest_width = dest_width.item() dest_height = dest_height.item() box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes[index, :, :] = box.astype(np.int16) scores[index] = score return boxes.tolist(), scores def unclip(self, box, unclip_ratio=1.5): poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = np.array(offset.Execute(distance)) return expanded def get_mini_boxes(self, contour): bounding_box = cv2.minAreaRect(contour) points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) index_1, index_2, index_3, index_4 = 0, 1, 2, 3 if points[1][1] > points[0][1]: index_1 = 0 index_4 = 1 else: index_1 = 1 index_4 = 0 if points[3][1] > points[2][1]: index_2 = 2 index_3 = 3 else: index_2 = 3 index_3 = 2 box = [points[index_1], points[index_2], points[index_3], points[index_4]] return box, min(bounding_box[1]) def box_score_fast(self, hmap, box_): ''' Calculate total score of each bounding box Parameters ---------- hmap : torch.tensor Probability heatmap tensor. box_ : list Rectanguar bounding box. Returns ------- float Confidence score. ''' h, w = hmap.shape[:2] box = box_.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(hmap[ymin:ymax+1, xmin:xmax+1], mask)[0] def image2hmap(self, image_tensor): ''' Run the model to obtain a heatmap tensor from a image tensor. The heatmap tensor indicates the probability of each pixel being a part of text area. Parameters ---------- image_tensor : torch.tensor Image tensor. Returns ------- torch.tensor Probability heatmap tensor. ''' return self.model.forward(image_tensor, training=False) def inference(self, image, text_threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0, detection_size = None, as_polygon = False, return_scores = False): ''' Wrapper to run the model on an input image to get text bounding boxes. Parameters ---------- image : path-to-file, PIL.Image, or np.ndarray Image to load or convert. text_threshold : float, optional Minimum probability for each pixel of heatmap tensor to be considered as a valid text pixel. The default is 0.2. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding box. Setting it to 0 implies no maximum. The default is 0. detection_size : int, optional Target detection size. Please see docstring under method resize_image() for explanation. The default is None. as_polygon : boolean, optional If true, return the bounding boxes as find polygons, otherwise, return as rectagular. The default is False. return_scores : boolean, optional If true, return confidence score along with the text bounding boxes. The default is False. Returns ------- list of lists Text bounding boxes. If return_scores is set to true, another list of lists will also be returned. ''' if not isinstance(image, list): image = [image] image_tensor, original_shapes = self.load_images(image, detection_size = detection_size) with torch.no_grad(): hmap = self.image2hmap(image_tensor) batch_boxes, batch_scores = self.hmap2bbox(image_tensor, original_shapes, hmap, text_threshold = text_threshold, bbox_min_score = bbox_min_score, bbox_min_size = bbox_min_size, max_candidates = max_candidates, as_polygon=as_polygon) if return_scores: return batch_boxes, batch_scores else: return batch_boxes The provided code snippet includes necessary dependencies for implementing the `get_detector` function. Write a Python function `def get_detector(trained_model, backbone = 'resnet18', device='cpu', quantize=True, cudnn_benchmark=False)` to solve the following problem: A wrapper to initialize DBNet text detection model Parameters ---------- trained_model : str Path to trained weight to use. backbone : str Backbone to use. Options are 'resnet18' or 'resnet50'. The default is 'resnet18'. device : str, optional Device to use. Options are "cpu" and "cuda". The default is 'cpu'. quantize : boolean, optional If use, apply model quantization method to the model. The default is True. cudnn_benchmark : boolen, optional DESCRIPTION. The default is False. Returns ------- dbnet : obj DBNet text detection object. Here is the function: def get_detector(trained_model, backbone = 'resnet18', device='cpu', quantize=True, cudnn_benchmark=False): ''' A wrapper to initialize DBNet text detection model Parameters ---------- trained_model : str Path to trained weight to use. backbone : str Backbone to use. Options are 'resnet18' or 'resnet50'. The default is 'resnet18'. device : str, optional Device to use. Options are "cpu" and "cuda". The default is 'cpu'. quantize : boolean, optional If use, apply model quantization method to the model. The default is True. cudnn_benchmark : boolen, optional DESCRIPTION. The default is False. Returns ------- dbnet : obj DBNet text detection object. ''' dbnet = DBNet(initialize_model = False, dynamic_import_relative_path = os.path.join("easyocr", "DBNet"), device = device, verbose = 0) if backbone not in ['resnet18', 'resnet50']: raise ValueError("Invalid backbone. Options are 'resnet18' or 'resnet50'.") dbnet.initialize_model(dbnet.configs[backbone]['model'], trained_model) if torch.device(device).type == 'cpu': if quantize: try: torch.quantization.quantize_dynamic(dbnet, dtype=torch.qint8, inplace=True) except: pass else: dbnet.model = torch.nn.DataParallel(dbnet.model).to(device) cudnn.benchmark = cudnn_benchmark dbnet.model.eval() return dbnet
A wrapper to initialize DBNet text detection model Parameters ---------- trained_model : str Path to trained weight to use. backbone : str Backbone to use. Options are 'resnet18' or 'resnet50'. The default is 'resnet18'. device : str, optional Device to use. Options are "cpu" and "cuda". The default is 'cpu'. quantize : boolean, optional If use, apply model quantization method to the model. The default is True. cudnn_benchmark : boolen, optional DESCRIPTION. The default is False. Returns ------- dbnet : obj DBNet text detection object.
1,245
import os import numpy as np import torch import torch.backends.cudnn as cudnn from .DBNet.DBNet import DBNet def test_net(image, detector, threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0, canvas_size = None, poly = False, device = 'cpu' ): ''' A wrapper for DBNet inference routine. Parameters ---------- image : np.ndarray or list of np.ndarray OpenCV BGR image array or list of it. detector : obj DBNet text detection object. threshold : float, optional Minimum probability for each pixel of heatmap tensor to be considered as a valid text pixel. The default is 0.2. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding boxes. Setting to 0 implies no maximum. The default is 0. canvas_size : int, optional Target detection size. Input image will be resized such that it's shorter side is equal to the closest multiple of 32 to the provided canvas_size. If detection_size is not provided, it will be resized to the closest multiple of 32 each side. If the original size exceeds the min-/max-detection sizes (specified in DBNet_inference.yaml), it will be resized to be within the min-/max-sizes. The default is None. poly : boolean, optional If true, return the bounding boxes as find polygons, otherwise, return as rectagular. The default is False. device : str, optional Device to use. Options are "cpu" and "cuda". The default is 'cpu'. Returns ------- bboxes : list of lists List of text bounding boxes in format [left, right, top, bottom]. polys : list of lists List of polygon text bounding boxes. If argument poly is set to false, this output will also hold the value of output bboxes ''' if isinstance(image, np.ndarray) and len(image.shape) == 4: # image is batch of np arrays image_arrs = image else: # image is single numpy array image_arrs = [image] # resize images, original_shapes = zip(*[detector.resize_image(img, canvas_size) for img in image_arrs]) # preprocessing images = [np.transpose(detector.normalize_image(n_img), (2, 0, 1)) for n_img in images] image_tensor = torch.from_numpy(np.array(images)).to(device) # forward pass with torch.no_grad(): hmap = detector.image2hmap(image_tensor.to(device)) bboxes, _ = detector.hmap2bbox( image_tensor, original_shapes, hmap, text_threshold = threshold, bbox_min_score = bbox_min_score, bbox_min_size = bbox_min_size, max_candidates = max_candidates, as_polygon=False) if poly: polys, _ = detector.hmap2bbox( image_tensor, original_shapes, hmap, text_threshold = threshold, bbox_min_score = bbox_min_score, bbox_min_size = bbox_min_size, max_candidates = max_candidates, as_polygon=True) else: polys = bboxes return bboxes, polys The provided code snippet includes necessary dependencies for implementing the `get_textbox` function. Write a Python function `def get_textbox(detector, image, canvas_size = None, poly = False, threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0, device = 'cpu', **kwargs )` to solve the following problem: A compatibility wrapper to allow supporting calling this method while providing argument for other detector classes and reformat output accordingly. Parameters ---------- detector : obj DBNet text detection object. image : np.ndarray or list of np.ndarray OpenCV BGR image array or list of it. canvas_size : int, optional Target detection size. Please see docstring under method resize_image() for explanation. The default is None. poly : boolean, optional If true, return the bounding boxes as find polygons, otherwise, return as rectagular. The default is False. threshold : float, optional Minimum probability for each pixel of heatmap tensor to be considered as a valid text pixel. The default is 0.2. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding box. Setting it to 0 implies no maximum. The default is 0. device : str, optional Device to use. Options are "cpu" and "cuda". The default is 'cpu'. **kwargs : keyword arguments Unused. Added to support calling this method while providing argument for other detector class. Returns ------- result : list of lists List of text bounding boxes in format [left, right, top, bottom]. Here is the function: def get_textbox(detector, image, canvas_size = None, poly = False, threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0, device = 'cpu', **kwargs ): ''' A compatibility wrapper to allow supporting calling this method while providing argument for other detector classes and reformat output accordingly. Parameters ---------- detector : obj DBNet text detection object. image : np.ndarray or list of np.ndarray OpenCV BGR image array or list of it. canvas_size : int, optional Target detection size. Please see docstring under method resize_image() for explanation. The default is None. poly : boolean, optional If true, return the bounding boxes as find polygons, otherwise, return as rectagular. The default is False. threshold : float, optional Minimum probability for each pixel of heatmap tensor to be considered as a valid text pixel. The default is 0.2. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding box. Setting it to 0 implies no maximum. The default is 0. device : str, optional Device to use. Options are "cpu" and "cuda". The default is 'cpu'. **kwargs : keyword arguments Unused. Added to support calling this method while providing argument for other detector class. Returns ------- result : list of lists List of text bounding boxes in format [left, right, top, bottom]. ''' if torch.device(device).type != detector.device: raise RuntimeError(' '.join([ "DBNet detector is initialized with {} device, but detection routine", "is called with device = {}.", "To use this detector both have to be the same." ]).format(detector.device, device)) _, polys_list = test_net(image, detector, threshold = threshold, bbox_min_score = bbox_min_score, bbox_min_size = bbox_min_size, max_candidates =max_candidates, canvas_size = canvas_size, poly = poly, device = device ) result = [[np.array(box).astype(np.int32).reshape((-1)) for box in polys] for polys in polys_list] return result
A compatibility wrapper to allow supporting calling this method while providing argument for other detector classes and reformat output accordingly. Parameters ---------- detector : obj DBNet text detection object. image : np.ndarray or list of np.ndarray OpenCV BGR image array or list of it. canvas_size : int, optional Target detection size. Please see docstring under method resize_image() for explanation. The default is None. poly : boolean, optional If true, return the bounding boxes as find polygons, otherwise, return as rectagular. The default is False. threshold : float, optional Minimum probability for each pixel of heatmap tensor to be considered as a valid text pixel. The default is 0.2. bbox_min_score : float, optional Minimum score for each detected bounding box to be considered as a valid text bounding box. The default is 0.2. bbox_min_size : int, optional Minimum size for each detected bounding box to be considered as a valid text bounding box. The default is 3. max_candidates : int, optional Maximum number of detected bounding boxes to be considered as candidates for valid text bounding box. Setting it to 0 implies no maximum. The default is 0. device : str, optional Device to use. Options are "cpu" and "cuda". The default is 'cpu'. **kwargs : keyword arguments Unused. Added to support calling this method while providing argument for other detector class. Returns ------- result : list of lists List of text bounding boxes in format [left, right, top, bottom].
1,246
import setuptools import os import os requires = """torch>=1.8.0 transformers>=4.10.0 datasets>=1.17.0 sentencepiece>=0.1.96 tqdm>=4.62.2 decorator rich web.py gitpython scipy # need? scikit-learn # need? delta_center_client==0.0.4 bigmodelvis """ def get_requirements(): ret = [x for x in requires.split("\n") if len(x)>0] print("requirements:", ret) return ret
null
1,247
import sys import datetime import sphinx_rtd_theme import doctest import opendelta rst_context = {'opendelta': opendelta} def skip(app, what, name, obj, skip, options): skip = include_only_tagged(app, what, name, obj, skip, options) or\ skip2(app, what, name, obj, skip, options) return skip def setup(app): def rst_jinja_render(app, docname, source): src = source[0] rendered = app.builder.templates.render_string(src, rst_context) source[0] = rendered app.connect('autodoc-skip-member', skip) app.connect("source-read", rst_jinja_render)
null
1,248
import torch import math def glorot_normal(tensor: torch.Tensor): return torch.nn.init.xavier_normal_(tensor, gain=math.sqrt(2))
null
1,249
import torch import math def glorot_uniform(tensor: torch.Tensor): return torch.nn.init.xavier_uniform_(tensor, gain=math.sqrt(2))
null
1,250
import torch import torch.nn as nn from typing import Union, Optional import torch.nn.functional as F import torch import math from opendelta.delta_models.layers.init import glorot_uniform, glorot_normal def kronecker_product(a, b): """ Kronecker product of matrices a and b with leading batch dimensions. Batch dimensions are broadcast. The number of them mush :type a: torch.Tensor :type b: torch.Tensor :rtype: torch.Tensor """ #return torch.stack([torch.kron(ai, bi) for ai, bi in zip(a,b)], dim=0) siz1 = torch.Size(torch.tensor(a.shape[-2:]) * torch.tensor(b.shape[-2:])) res = a.unsqueeze(-1).unsqueeze(-3) * b.unsqueeze(-2).unsqueeze(-4) siz0 = res.shape[:-4] out = res.reshape(siz0 + siz1) return out def kronecker_product_einsum_batched(A: torch.Tensor, B: torch.Tensor): """ Batched Version of Kronecker Products :param A: has shape (b, a, c) :param B: has shape (b, k, p) :return: (b, ak, cp) """ assert A.dim() == 3 and B.dim() == 3 res = torch.einsum('bac,bkp->bakcp', A, B).view(A.size(0), A.size(1)*B.size(1), A.size(2)*B.size(2)) return res The provided code snippet includes necessary dependencies for implementing the `matvec_product` function. Write a Python function `def matvec_product(W: torch.Tensor, x: torch.Tensor, bias: Optional[torch.Tensor], phm_rule, #: Union[torch.Tensor], kronecker_prod=False) -> torch.Tensor` to solve the following problem: Functional method to compute the generalized matrix-vector product based on the paper "Parameterization of Hypercomplex Multiplications (2020)" https://openreview.net/forum?id=rcQdycl0zyk y = Hx + b , where W is generated through the sum of kronecker products from the Parameterlist W, i.e. W is a an order-3 tensor of size (phm_dim, in_features, out_features) x has shape (batch_size, phm_dim*in_features) phm_rule is an order-3 tensor of shape (phm_dim, phm_dim, phm_dim) H = sum_{i=0}^{d} mul_rule \otimes W[i], where \otimes is the kronecker product Here is the function: def matvec_product(W: torch.Tensor, x: torch.Tensor, bias: Optional[torch.Tensor], phm_rule, #: Union[torch.Tensor], kronecker_prod=False) -> torch.Tensor: """ Functional method to compute the generalized matrix-vector product based on the paper "Parameterization of Hypercomplex Multiplications (2020)" https://openreview.net/forum?id=rcQdycl0zyk y = Hx + b , where W is generated through the sum of kronecker products from the Parameterlist W, i.e. W is a an order-3 tensor of size (phm_dim, in_features, out_features) x has shape (batch_size, phm_dim*in_features) phm_rule is an order-3 tensor of shape (phm_dim, phm_dim, phm_dim) H = sum_{i=0}^{d} mul_rule \otimes W[i], where \otimes is the kronecker product """ if kronecker_prod: H = kronecker_product(phm_rule, W).sum(0) else: H = kronecker_product_einsum_batched(phm_rule, W).sum(0) y = torch.matmul(input=x.to(H.dtype), other=H).to(x.dtype) if bias is not None: y += bias return y
Functional method to compute the generalized matrix-vector product based on the paper "Parameterization of Hypercomplex Multiplications (2020)" https://openreview.net/forum?id=rcQdycl0zyk y = Hx + b , where W is generated through the sum of kronecker products from the Parameterlist W, i.e. W is a an order-3 tensor of size (phm_dim, in_features, out_features) x has shape (batch_size, phm_dim*in_features) phm_rule is an order-3 tensor of shape (phm_dim, phm_dim, phm_dim) H = sum_{i=0}^{d} mul_rule \otimes W[i], where \otimes is the kronecker product
1,251
from collections import OrderedDict from multiprocessing.sharedctypes import Value import os from opendelta.delta_configs import BaseDeltaConfig from opendelta.utils.inspect import inspect_module_statistics from opendelta.utils.model_md5 import gen_model_hash from opendelta.utils.signature import get_arg_names, signature from typing import Optional, Union from opendelta.utils.cuda import get_device from opendelta.utils.name_based_addressing import * import torch.nn as nn import torch from functools import wraps from opendelta.utils.decorate import decorate from opendelta.utils.structure_mapping import transform from transformers.file_utils import PushToHubMixin from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled from opendelta import SaveLoadMixin from opendelta import logging from opendelta.utils.structure_mapping import CommonStructureMap from opendelta.utils.interactive.web import interactive from opendelta.utils.data_parallel import new_replicate_for_data_parallel from opendelta.utils.cuda import move_dict_to_cuda import sys from opendelta.utils.data_parallel import caller_map from opendelta.utils.backend import BackendMapping The provided code snippet includes necessary dependencies for implementing the `is_leaf_module` function. Write a Python function `def is_leaf_module(module)` to solve the following problem: r"""Whether the module is a leaf module Here is the function: def is_leaf_module(module): r"""Whether the module is a leaf module """ return len([n for n,_ in module.named_children()]) == 0
r"""Whether the module is a leaf module
1,252
from collections import OrderedDict from multiprocessing.sharedctypes import Value import os from opendelta.delta_configs import BaseDeltaConfig from opendelta.utils.inspect import inspect_module_statistics from opendelta.utils.model_md5 import gen_model_hash from opendelta.utils.signature import get_arg_names, signature from typing import Optional, Union from opendelta.utils.cuda import get_device from opendelta.utils.name_based_addressing import * import torch.nn as nn import torch from functools import wraps from opendelta.utils.decorate import decorate from opendelta.utils.structure_mapping import transform from transformers.file_utils import PushToHubMixin from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled from opendelta import SaveLoadMixin from opendelta import logging from opendelta.utils.structure_mapping import CommonStructureMap from opendelta.utils.interactive.web import interactive from opendelta.utils.data_parallel import new_replicate_for_data_parallel from opendelta.utils.cuda import move_dict_to_cuda import sys from opendelta.utils.data_parallel import caller_map from opendelta.utils.backend import BackendMapping def non_module_param(module: nn.Module): module_names = [n for n, _ in module.named_modules()] ret = [] for n, p in module.named_parameters(): if not is_child_key(n, module_names): ret.append((n,p)) return ret
null
1,253
The provided code snippet includes necessary dependencies for implementing the `create_hub_repo_name` function. Write a Python function `def create_hub_repo_name(root = "DeltaHub", dataset = None, delta_type = None, model_name_or_path = None, center_value_only_tags = None, center_key_value_tags = None )` to solve the following problem: r"""Currently, it's only a simple concatenation of the arguments. Here is the function: def create_hub_repo_name(root = "DeltaHub", dataset = None, delta_type = None, model_name_or_path = None, center_value_only_tags = None, center_key_value_tags = None ): r"""Currently, it's only a simple concatenation of the arguments. """ repo_name = [] repo_name.append(f"{delta_type}") model_name_or_path = model_name_or_path.split("/")[-1] repo_name.append(f"{model_name_or_path}") repo_name.append(f"{dataset}") repo_name.extend(list(center_value_only_tags) if center_value_only_tags else [None]) repo_name.extend([f"{k}-{v}" for k,v in center_key_value_tags.items()] if center_key_value_tags else [None]) repo_name = "_".join(repo_name) repo_name = root+"/"+repo_name return repo_name
r"""Currently, it's only a simple concatenation of the arguments.
1,254
from typing import List, Union import re The provided code snippet includes necessary dependencies for implementing the `superstring_in` function. Write a Python function `def superstring_in(str_a: str , list_b: List[str])` to solve the following problem: r"""check whether there is any string in list b containing str_a. Args: Returns: Here is the function: def superstring_in(str_a: str , list_b: List[str]): r"""check whether there is any string in list b containing str_a. Args: Returns: """ return any(str_a in str_b for str_b in list_b)
r"""check whether there is any string in list b containing str_a. Args: Returns:
1,255
from typing import List, Union import re The provided code snippet includes necessary dependencies for implementing the `is_child_key` function. Write a Python function `def is_child_key(str_a: str , list_b: List[str])` to solve the following problem: r"""check whether a string in ``list_b`` is the child key in ``str_a`` Args: Returns: Here is the function: def is_child_key(str_a: str , list_b: List[str]): r"""check whether a string in ``list_b`` is the child key in ``str_a`` Args: Returns: """ return any(str_b in str_a and (str_b==str_a or str_a[len(str_b)]==".") for str_b in list_b)
r"""check whether a string in ``list_b`` is the child key in ``str_a`` Args: Returns:
1,256
from typing import List, Union import re def endswith_in_normal(str_a: str , list_b: List[str]): r"""check whether ``str_a`` has a substring that is in list_b. Args: Returns: """ return any(str_a.endswith(str_b) and (str_a==str_b or str_a[-len(str_b)-1] == ".") for str_b in list_b) def endswith_in_regex(str_a: str , list_b: List[str]): r"""check whether ``str_a`` has a substring that is in list_b. Args: Returns: """ for str_b in list_b: ret = re.search(re.compile(str_b), str_a) if ret is not None: b = ret.group() if ret.span()[1] == len(str_a) and (b == str_a or (str_a==b or str_a[-len(b)-1] == ".")): # the latter is to judge whether it is a full sub key in the str_a, e.g. str_a=`attn.c_attn` and list_b=[`attn`] will given False return True return False def endswith_in(str_a: str, list_b: List[str]): return endswith_in_regex(str_a, [b[3:] for b in list_b if b.startswith("[r]")]) or \ endswith_in_normal(str_a, [b for b in list_b if not b.startswith("[r]")])
null
1,257
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None def _get_library_root_logger() -> logging.Logger: logging.Logger.warning_advice = warning_advice import logging from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING logging.Logger.warning_advice = warning_advice def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None
null
1,258
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } def get_log_levels_dict(): return log_levels
null
1,259
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False The provided code snippet includes necessary dependencies for implementing the `get_verbosity` function. Write a Python function `def get_verbosity() -> int` to solve the following problem: Return the current level for the 🤗 Transformers's root logger as an int. Returns: :obj:`int`: The logging level. <Tip> 🤗 Transformers has following logging levels: - 50: ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - 40: ``transformers.logging.ERROR`` - 30: ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - 20: ``transformers.logging.INFO`` - 10: ``transformers.logging.DEBUG`` </Tip> Here is the function: def get_verbosity() -> int: """ Return the current level for the 🤗 Transformers's root logger as an int. Returns: :obj:`int`: The logging level. <Tip> 🤗 Transformers has following logging levels: - 50: ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - 40: ``transformers.logging.ERROR`` - 30: ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - 20: ``transformers.logging.INFO`` - 10: ``transformers.logging.DEBUG`` </Tip>""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel()
Return the current level for the 🤗 Transformers's root logger as an int. Returns: :obj:`int`: The logging level. <Tip> 🤗 Transformers has following logging levels: - 50: ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - 40: ``transformers.logging.ERROR`` - 30: ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - 20: ``transformers.logging.INFO`` - 10: ``transformers.logging.DEBUG`` </Tip>
1,260
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Transformers's root logger. Args: verbosity (:obj:`int`): Logging level, e.g., one of: - ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - ``transformers.logging.ERROR`` - ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - ``transformers.logging.INFO`` - ``transformers.logging.DEBUG`` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) The provided code snippet includes necessary dependencies for implementing the `set_verbosity_info` function. Write a Python function `def set_verbosity_info()` to solve the following problem: Set the verbosity to the ``INFO`` level. Here is the function: def set_verbosity_info(): """Set the verbosity to the ``INFO`` level.""" return set_verbosity(INFO)
Set the verbosity to the ``INFO`` level.
1,261
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Transformers's root logger. Args: verbosity (:obj:`int`): Logging level, e.g., one of: - ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - ``transformers.logging.ERROR`` - ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - ``transformers.logging.INFO`` - ``transformers.logging.DEBUG`` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) The provided code snippet includes necessary dependencies for implementing the `set_verbosity_warning` function. Write a Python function `def set_verbosity_warning()` to solve the following problem: Set the verbosity to the ``WARNING`` level. Here is the function: def set_verbosity_warning(): """Set the verbosity to the ``WARNING`` level.""" return set_verbosity(WARNING)
Set the verbosity to the ``WARNING`` level.
1,262
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Transformers's root logger. Args: verbosity (:obj:`int`): Logging level, e.g., one of: - ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - ``transformers.logging.ERROR`` - ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - ``transformers.logging.INFO`` - ``transformers.logging.DEBUG`` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) The provided code snippet includes necessary dependencies for implementing the `set_verbosity_debug` function. Write a Python function `def set_verbosity_debug()` to solve the following problem: Set the verbosity to the ``DEBUG`` level. Here is the function: def set_verbosity_debug(): """Set the verbosity to the ``DEBUG`` level.""" return set_verbosity(DEBUG)
Set the verbosity to the ``DEBUG`` level.
1,263
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Transformers's root logger. Args: verbosity (:obj:`int`): Logging level, e.g., one of: - ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - ``transformers.logging.ERROR`` - ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - ``transformers.logging.INFO`` - ``transformers.logging.DEBUG`` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) The provided code snippet includes necessary dependencies for implementing the `set_verbosity_error` function. Write a Python function `def set_verbosity_error()` to solve the following problem: Set the verbosity to the ``ERROR`` level. Here is the function: def set_verbosity_error(): """Set the verbosity to the ``ERROR`` level.""" return set_verbosity(ERROR)
Set the verbosity to the ``ERROR`` level.
1,264
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional _default_handler: Optional[logging.Handler] = None def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False The provided code snippet includes necessary dependencies for implementing the `disable_default_handler` function. Write a Python function `def disable_default_handler() -> None` to solve the following problem: Disable the default handler of the HuggingFace Transformers's root logger. Here is the function: def disable_default_handler() -> None: """Disable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler)
Disable the default handler of the HuggingFace Transformers's root logger.
1,265
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional _default_handler: Optional[logging.Handler] = None def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False The provided code snippet includes necessary dependencies for implementing the `enable_default_handler` function. Write a Python function `def enable_default_handler() -> None` to solve the following problem: Enable the default handler of the HuggingFace Transformers's root logger. Here is the function: def enable_default_handler() -> None: """Enable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler)
Enable the default handler of the HuggingFace Transformers's root logger.
1,266
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False logging.Logger.warning_advice = warning_advice import logging from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING logging.Logger.warning_advice = warning_advice The provided code snippet includes necessary dependencies for implementing the `add_handler` function. Write a Python function `def add_handler(handler: logging.Handler) -> None` to solve the following problem: adds a handler to the HuggingFace Transformers's root logger. Here is the function: def add_handler(handler: logging.Handler) -> None: """adds a handler to the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(handler)
adds a handler to the HuggingFace Transformers's root logger.
1,267
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False logging.Logger.warning_advice = warning_advice import logging from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING logging.Logger.warning_advice = warning_advice The provided code snippet includes necessary dependencies for implementing the `remove_handler` function. Write a Python function `def remove_handler(handler: logging.Handler) -> None` to solve the following problem: removes given handler from the HuggingFace Transformers's root logger. Here is the function: def remove_handler(handler: logging.Handler) -> None: """removes given handler from the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(handler)
removes given handler from the HuggingFace Transformers's root logger.
1,268
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False The provided code snippet includes necessary dependencies for implementing the `disable_propagation` function. Write a Python function `def disable_propagation() -> None` to solve the following problem: Disable propagation of the library log outputs. Note that log propagation is disabled by default. Here is the function: def disable_propagation() -> None: """ Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _configure_library_root_logger() _get_library_root_logger().propagate = False
Disable propagation of the library log outputs. Note that log propagation is disabled by default.
1,269
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False The provided code snippet includes necessary dependencies for implementing the `enable_propagation` function. Write a Python function `def enable_propagation() -> None` to solve the following problem: Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to prevent double logging if the root logger has been configured. Here is the function: def enable_propagation() -> None: """ Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to prevent double logging if the root logger has been configured. """ _configure_library_root_logger() _get_library_root_logger().propagate = True
Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to prevent double logging if the root logger has been configured.
1,270
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) logging.Logger.warning_advice = warning_advice import logging from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING logging.Logger.warning_advice = warning_advice The provided code snippet includes necessary dependencies for implementing the `enable_explicit_format` function. Write a Python function `def enable_explicit_format() -> None` to solve the following problem: Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method. Here is the function: def enable_explicit_format() -> None: """ Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(formatter)
Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method.
1,271
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) The provided code snippet includes necessary dependencies for implementing the `reset_format` function. Write a Python function `def reset_format() -> None` to solve the following problem: Resets the formatting for HuggingFace Transformers's loggers. All handlers currently bound to the root logger are affected by this method. Here is the function: def reset_format() -> None: """ Resets the formatting for HuggingFace Transformers's loggers. All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None)
Resets the formatting for HuggingFace Transformers's loggers. All handlers currently bound to the root logger are affected by this method.
1,272
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional The provided code snippet includes necessary dependencies for implementing the `warning_advice` function. Write a Python function `def warning_advice(self, *args, **kwargs)` to solve the following problem: This method is identical to ``logger.warning()``, but if env var TRANSFORMERS_NO_ADVISORY_WARNINGS=1 is set, this warning will not be printed Here is the function: def warning_advice(self, *args, **kwargs): """ This method is identical to ``logger.warning()``, but if env var TRANSFORMERS_NO_ADVISORY_WARNINGS=1 is set, this warning will not be printed """ no_advisory_warnings = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", False) if no_advisory_warnings: return self.warning(*args, **kwargs)
This method is identical to ``logger.warning()``, but if env var TRANSFORMERS_NO_ADVISORY_WARNINGS=1 is set, this warning will not be printed
1,273
import logging import os import sys import threading from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING from typing import Optional log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } def _get_library_name() -> str: return __name__.split(".")[0] def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush formatter = logging.Formatter( "[%(levelname)s|(OpenDelta)%(module)s:%(lineno)d]%(asctime)s >> %(message)s") _default_handler.setFormatter(formatter) # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False logging.Logger.warning_advice = warning_advice import logging from logging import CRITICAL from logging import DEBUG from logging import ERROR from logging import FATAL from logging import INFO from logging import NOTSET from logging import WARN from logging import WARNING logging.Logger.warning_advice = warning_advice The provided code snippet includes necessary dependencies for implementing the `get_logger` function. Write a Python function `def get_logger(name: Optional[str] = None, verbosity='info') -> logging.Logger` to solve the following problem: Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom transformers module. Here is the function: def get_logger(name: Optional[str] = None, verbosity='info') -> logging.Logger: """ Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom transformers module. """ if name is None: name = _get_library_name() _configure_library_root_logger() logger = logging.getLogger(name) logger.setLevel(log_levels[verbosity]) return logger
Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom transformers module.
1,274
from DeltaCenter import OssClient from .file_utils import default_cache_path default_cache_path = "{}/.cache/delta_center/".format(os.path.expanduser('~')) def download(finetuned_delta_path, cache_dir=None, force_download=False): if cache_dir is None: cache_dir = default_cache_path path_to_unzip_file = OssClient.download(finetuned_delta_path, dest=cache_dir, force_download=force_download) return path_to_unzip_file
null
1,275
from bigmodelvis import Visualization import web import re, os def dfs(o, depth, last, old_name): html = "" module_names = expand_part(o.module_name) if depth > 0: old_last_1 = last[-1] if len(module_names) > 1: module_names = [o.module_name] + module_names for ith, module_name in enumerate(module_names): if ith == 0: html += f'<div>' elif ith == 1: html += f'<div class="expandable-sibling">' for i in range(depth-1): html += prefix0 if last[i] else prefix1 if depth > 0: last[-1] = old_last_1 & (ith == 0 or ith == len(module_names)-1) html += prefix3 if last[-1] else prefix2 length = len(o.children) if length > 0: html += f'<button class="collapsible button_inline">[+]</button>' name = old_name + module_name if ith > 0: label = f'[red]{module_name}{o.label[o.label.index("[",1):]}' else: label = o.label html += f'<button class="selectable button_inline" id="{name}">{colorfy(label)}</button>' if len(module_names) > 1 and ith == 0: html += '<button class="expandable button_inline">[*]</button>' html += '<br/>' html += f'<div class="content">' for i, child in enumerate(o.children): last = last + [i == length-1] html += dfs(child, depth+1, last, name + ".") last.pop() html += "</div>" if ith == 0 or (ith > 1 and ith == len(module_names)-1): html += "</div>" return html app = PortApplication(urls, globals()) names = [] def interactive(model, port=8888): tree = Visualization(model).structure_graph(printTree=False) global html html = dfs(tree, 0, [], "") print() print("If on your machine, open the link below for interactive modification.\n " "If on remote host, you could use port mapping, " "or run in vscode terminal, which automatically do port mapping for you.") app.run(port) global names print("modified_modules:") print(names) return names
null
1,276
from typing import OrderedDict import copy import opendelta.utils.logging as logging from bigmodelvis import Visualization from opendelta.utils.common_structures import CoreMappings def transform(org_key, mapping, strict=True, warning=False, verbose=False): chain = org_key.split(".") query = "" node = mapping new_chain = [] virtual_key, virtual_chain, in_virtual_order = None, None, None for elem in chain: query += elem if query in node: node = node[query] new_elem = node["__name__"] if new_elem == "": if strict: if warning: print(f"'{org_key}' has no common mapping.") return else: new_chain.append(query) else: splited_new_elem = new_elem.split(".") splited_new_elem = [e+"@" for e in splited_new_elem] special_token = '.'.join(splited_new_elem) if '__virtual__' in node: virtual_chain = copy.deepcopy(new_chain) virtual_chain.append(".".join([e+'@' for e in node["__virtual__"].split(".")])) in_virtual_order = node['__order__'] new_chain.append(special_token) # special token for transformed key query = "" elif "$" in node: node = node["$"] new_chain.append(query) query = "" else: query += "." if query!="": if strict: if warning: print("A part of the orginial key hasn't been matched!") return else: new_chain.append(query.strip(".")) # tailing query new_key = ".".join(new_chain) if verbose: print(f"{org_key} => {new_key}") if virtual_chain is not None: virtual_key = ".".join(virtual_chain) return new_key, virtual_key, in_virtual_order
null
1,277
from opendelta.utils.decorate import decorate from collections import OrderedDict def sequential_caller(_org_func, org_module, delta_name, *args, **kwargs): args = args[1:] # the first argument here is ``self`` delta_module = getattr(org_module, delta_name) if hasattr(delta_module, "pre_forward"): args, kwargs = delta_module.pre_forward(*args, **kwargs) ret = _org_func(*args, **kwargs) if hasattr(delta_module, "post_forward"): ret = delta_module.post_forward(ret) return ret
null
1,278
from opendelta.utils.decorate import decorate from collections import OrderedDict def before_caller(_org_func, org_module, delta_name, *args, **kwargs): args = args[1:] # the first argument here is ``self`` delta_module = getattr(org_module, delta_name) if hasattr(delta_module, "pre_forward"): args, kwargs = delta_module.pre_forward(*args, **kwargs) ret = _org_func(*args, **kwargs) return ret
null
1,279
from opendelta.utils.decorate import decorate from collections import OrderedDict def after_caller(_org_func, org_module, delta_name, *args, **kwargs): args = args[1:] # the first argument here is ``self`` delta_module = getattr(org_module, delta_name) ret = _org_func(*args, **kwargs) if hasattr(delta_module, "post_forward"): ret = delta_module.post_forward(ret) return ret
null
1,280
from opendelta.utils.decorate import decorate from collections import OrderedDict def parallel_caller(_org_func, org_module, delta_name, *args, **kwargs): args = args[1:] # the first argument here is ``self`` delta_module = getattr(org_module, delta_name) ret_1 = _org_func(*args, **kwargs) ret_2 = delta_module.forward(*args, **kwargs) return ret_1 + ret_2
null
1,281
from opendelta.utils.decorate import decorate from collections import OrderedDict caller_map = { "sequential": sequential_caller, "parallel": parallel_caller, "before": before_caller, "after": after_caller, } def decorate(func, caller, extras=(), kwsyntax=False): """ Decorates a function/generator/coroutine using a caller. If kwsyntax is True calling the decorated functions with keyword syntax will pass the named arguments inside the ``kw`` dictionary, even if such argument are positional, similarly to what functools.wraps does. By default kwsyntax is False and the the arguments are untouched. **The difference between this function and decorator.decorate is that is support nested decorate. """ sig = inspect.signature(func) if iscoroutinefunction(caller): async def fun(*args, **kw): if not kwsyntax: args, kw = fix(args, kw, sig) return await caller(func, *(extras + args), **kw) elif isgeneratorfunction(caller): def fun(*args, **kw): if not kwsyntax: args, kw = fix(args, kw, sig) for res in caller(func, *(extras + args), **kw): yield res else: def fun(*args, **kw): if not kwsyntax: args, kw = fix(args, kw, sig) return caller(func, *(extras + args), **kw) fun.__name__ = func.__name__ fun.__doc__ = func.__doc__ __wrapped__ = func # support nested wrap fun.__signature__ = sig fun.__qualname__ = func.__qualname__ # builtin functions like defaultdict.__setitem__ lack many attributes try: fun.__defaults__ = func.__defaults__ except AttributeError: pass try: fun.__kwdefaults__ = func.__kwdefaults__ except AttributeError: pass try: fun.__annotations__ = func.__annotations__ except AttributeError: pass try: fun.__module__ = func.__module__ except AttributeError: pass try: fun.__dict__.update(func.__dict__) except AttributeError: pass fun.__wrapped__ = __wrapped__ # support nested wrap return fun The provided code snippet includes necessary dependencies for implementing the `new_replicate_for_data_parallel` function. Write a Python function `def new_replicate_for_data_parallel(self)` to solve the following problem: r""" self is the parent module. Here is the function: def new_replicate_for_data_parallel(self): r""" self is the parent module. """ # rewrite the replicate in DataParallel. replica = self.__new__(type(self)) org_forward = replica.forward replica.__dict__ = self.__dict__.copy() assert replica.forward != org_forward replica.__dict__['forward'] = org_forward for _delta_info in self._delta_infos: if _delta_info['state'] == 'on': if _delta_info['method'] in caller_map.keys(): caller = caller_map[_delta_info['method']] new_forward = decorate(replica.forward, caller, extras=(replica, _delta_info['delta_name']), kwsyntax=True) else: raise NotImplementedError(f"data_parallel for _delta_info['method']=='{_delta_info['method']}' is not supported") replica.__dict__['forward'] = new_forward.__get__(replica, type(replica)) # replicas do not have parameters themselves, the replicas reference the original # module. replica._parameters = OrderedDict() replica._buffers = replica._buffers.copy() replica._modules = replica._modules.copy() replica._is_replica = True return replica
r""" self is the parent module.
1,282
import inspect from collections import namedtuple def signature(f): r"""Get the function f 's input arguments. A useful gadget when some function slot might be instantiated into multiple functions. Args: f (:obj:`function`) : the function to get the input arguments. Returns: namedtuple : of args, default, varargs, keywords, respectively.s """ sig = inspect.signature(f) args = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD ] varargs = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_POSITIONAL ] varargs = varargs[0] if varargs else None keywords = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_KEYWORD ] keywords = keywords[0] if keywords else None defaults = [ p.default for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and p.default is not p.empty ] or None argspec = namedtuple('Signature', ['args', 'defaults', 'varargs', 'keywords']) return argspec(args, defaults, varargs, keywords) The provided code snippet includes necessary dependencies for implementing the `get_arg_names` function. Write a Python function `def get_arg_names(f)` to solve the following problem: r""" Get a functions argument name, remove the ``self`` argument Here is the function: def get_arg_names(f): r""" Get a functions argument name, remove the ``self`` argument """ args = signature(f).args if args[0] == "self": args = args[1:] return args
r""" Get a functions argument name, remove the ``self`` argument
1,283
import inspect from collections import namedtuple The provided code snippet includes necessary dependencies for implementing the `get_arg_names_inside_func` function. Write a Python function `def get_arg_names_inside_func(func)` to solve the following problem: r""" Get the functions argument name inside the function itself. Remove ``self`` argument. Here is the function: def get_arg_names_inside_func(func): r""" Get the functions argument name inside the function itself. Remove ``self`` argument. """ arg_names = func.__code__.co_varnames[: func.__code__.co_argcount] if arg_names[0] == "self": arg_names = arg_names[1:] return arg_names
r""" Get the functions argument name inside the function itself. Remove ``self`` argument.
1,284
import hashlib def gen_parameter_hash(generator, md5=None): r"""Get parameter hash. From https://zhuanlan.zhihu.com/p/392942816 """ if md5 is None: md5 = hashlib.md5() for arg in generator: x = arg.data if hasattr(x, "cpu"): md5.update(x.cpu().numpy().data.tobytes()) elif hasattr(x, "numpy"): md5.update(x.numpy().data.tobytes()) elif hasattr(x, "data"): md5.update(x.data.tobytes()) else: try: md5.update(x.encode("utf-8")) except: md5.update(str(x).encode("utf-8")) return md5 The provided code snippet includes necessary dependencies for implementing the `gen_model_hash` function. Write a Python function `def gen_model_hash(model, with_parameters=True)` to solve the following problem: r"""Get model hash (structure and parameter) Here is the function: def gen_model_hash(model, with_parameters=True): r"""Get model hash (structure and parameter) """ str_model_structure = str(model).replace("\n","").replace(" ","").replace("\t","").encode('utf-8') md5 = hashlib.md5(str_model_structure) if with_parameters: md5 = gen_parameter_hash(model.parameters(), md5=md5) md5_code = md5.hexdigest() return md5_code
r"""Get model hash (structure and parameter)
1,285
import torch import torch.nn as nn from typing import Optional import opendelta.utils.logging as logging logger = logging.get_logger(__name__) def num_trainable_parameters(module: Optional[nn.Module]=None): r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to compute the trainable rate. Args: module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters. Returns: :obj:`List[nn.Parameter]` """ pnum_tot = 0 for param in module.parameters(): if param.requires_grad: pnum_tot += param.numel() return pnum_tot def num_total_parameters(module: Optional[nn.Module]=None): r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to compute the trainable rate. Args: module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters. Returns: :obj:`List[nn.Parameter]` """ pnum_tot = 0 for param in module.parameters(): pnum_tot += param.numel() return pnum_tot def num_delta_parameters(module: Optional[nn.Module]=None): r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to compute the trainable rate. Args: module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters. Returns: :obj:`List[nn.Parameter]` """ pnum_tot = 0 for param in module.parameters(): if hasattr(param, "_is_delta"): pnum_tot += param.numel() return pnum_tot The provided code snippet includes necessary dependencies for implementing the `inspect_module_statistics` function. Write a Python function `def inspect_module_statistics(module: Optional[nn.Module]=None, verbose=True)` to solve the following problem: r"""Get the statistics of the parameters in the delta modules. Args: module (:obj:`nn.Module`, *optional*): The module to compute the statistics. Returns: :obj:`dict`: The statistics of the parameters in the delta modules. Here is the function: def inspect_module_statistics(module: Optional[nn.Module]=None, verbose=True): r"""Get the statistics of the parameters in the delta modules. Args: module (:obj:`nn.Module`, *optional*): The module to compute the statistics. Returns: :obj:`dict`: The statistics of the parameters in the delta modules. """ stat = {} n_trainable = num_trainable_parameters(module) n_total = num_total_parameters(module) stat['total_parameters'] = n_total stat['trainable_parameters'] = n_trainable stat['trainable_ratio'] = n_trainable/n_total n_delta = num_delta_parameters(module) n_total = num_total_parameters(module) stat['delta_parameters'] = n_delta stat['delta_ratio'] = n_delta/n_total cudamem = 0 maxcudamem = 0 for device_id in range(torch.cuda.device_count()): cudamem += torch.cuda.memory_allocated(f"cuda:{device_id}")/1024**3 maxcudamem += torch.cuda.max_memory_allocated(f"cuda:{device_id}")/1024**3 stat['cudamem'] = cudamem stat['maxcudamem'] = maxcudamem if verbose: logger.info(stat) return stat
r"""Get the statistics of the parameters in the delta modules. Args: module (:obj:`nn.Module`, *optional*): The module to compute the statistics. Returns: :obj:`dict`: The statistics of the parameters in the delta modules.
1,286
from typing import Union import torch.nn as nn import torch def get_device(module : Union[nn.Module, nn.Parameter]): if not (isinstance(module, nn.Module) \ or isinstance(module, nn.Parameter)): raise RuntimeError("module is not a instance of torch.nn.Module") if hasattr(module, 'device'): return module.device else: params_devices = [p.device for p in module.parameters()] if len(params_devices) == 0: return None elif len(set(params_devices))==1: return params_devices[0] else: raise RuntimeError("The module is paralleled acrossed device, please get device in a inner module")
null
1,287
from typing import Union import torch.nn as nn import torch def get_dtype(module : Union[nn.Module, nn.Parameter]): if not (isinstance(module, nn.Module) \ or isinstance(module, nn.Parameter)): raise RuntimeError("module is not a instance of torch.nn.Module") if hasattr(module, 'dtype'): return module.dtype else: params_dtypes = [p.dtype for p in module.parameters()] if len(params_dtypes) == 0: return None elif len(set(params_dtypes))==1: return params_dtypes[0] else: raise RuntimeError("The module has multiple dtype, please get device in a inner module")
null
1,288
from typing import Union import torch.nn as nn import torch def move_dict_to_cuda(dict_of_tensor, device): for key in dict_of_tensor: if isinstance(dict_of_tensor[key], torch.Tensor): dict_of_tensor[key] = dict_of_tensor[key].to(device) return dict_of_tensor
null
1,289
from copy import deepcopy from typing import Any, Dict, OrderedDict from bigmodelvis import Visualization import torch.nn as nn from opendelta.utils.logging import get_logger import importlib from opendelta.delta_configs import BaseDeltaConfig from opendelta.basemodel import DeltaBase def get_values(model_mapping): result = [] for model in model_mapping.values(): if isinstance(model, (list, tuple)): result += list(model) else: result.append(model) return result
null
1,290
from copy import deepcopy from typing import Any, Dict, OrderedDict from bigmodelvis import Visualization import torch.nn as nn from opendelta.utils.logging import get_logger import importlib from opendelta.delta_configs import BaseDeltaConfig from opendelta.basemodel import DeltaBase def getattribute_from_module(module, attr): if attr is None: return None if isinstance(attr, tuple): return tuple(getattribute_from_module(module, a) for a in attr) if hasattr(module, attr): return getattr(module, attr) # Some of the mappings have entries model_type -> object of another model type. In that case we try to grab the # object at the top level. transformers_module = importlib.import_module("transformers") return getattribute_from_module(transformers_module, attr)
null
1,291
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef import datasets def simple_accuracy(preds, labels): return float((preds == labels).mean()) def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = float(f1_score(y_true=labels, y_pred=preds)) return { "accuracy": acc, "f1": f1, }
null
1,292
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef import datasets def pearson_and_spearman(preds, labels): pearson_corr = float(pearsonr(preds, labels)[0]) spearman_corr = float(spearmanr(preds, labels)[0]) return { "pearson": pearson_corr, "spearmanr": spearman_corr, }
null
1,293
import argparse import dataclasses import json import logging import os from pathlib import Path import random import re import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np from datasets import load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PretrainedConfig, # Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer import Trainer from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = RemainArgHfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. json_file=os.path.abspath(sys.argv[1]) model_args, data_args, training_args, delta_args = parser.parse_json_file(json_file, return_remaining_args=True) #args = arg_string, return_remaining_strings=True) #parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args, delta_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.task_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir) # if you encounter error here # download the dataset, save to disk and then load_from_disk # from datasets import load_from_disk # raw_datasets = load_from_disk(f"../../../../huggingface_datasets/saved_to_disk/glue.{data_args.task_name}") elif data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: train_extension = data_args.train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files raw_datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files raw_datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = raw_datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = raw_datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) if delta_args.delta_type.lower() != "none": from opendelta import AutoDeltaConfig from opendelta.auto_delta import AutoDeltaModel delta_config = AutoDeltaConfig.from_dict(vars(delta_args)) delta_model = AutoDeltaModel.from_config(delta_config, backbone_model=model) delta_model.freeze_module(set_state_dict = True) delta_model.log(delta_ratio=True, trainable_ratio=True, visualization=True) # Preprocessing the raw_datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if label_to_id is not None: model.config.label2id = label_to_id model.config.id2label = {id: label for label, id in config.label2id.items()} elif data_args.task_name is not None and not is_regression: model.config.label2id = {l: i for i, l in enumerate(label_list)} model.config.id2label = {id: label for label, id in config.label2id.items()} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]] return result with training_args.main_process_first(desc="dataset map pre-processing"): raw_datasets = raw_datasets.map( preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset", ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Get the metric function if data_args.task_name is not None: # metric = load_metric("glue", data_args.task_name) metric = load_metric("./metrics/glue.py", data_args.task_name) else: metric = load_metric("accuracy") # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) if data_args.task_name is not None: result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result elif is_regression: return {"mse": ((preds - p.label_ids) ** 2).mean().item()} else: return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() results = {} # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] eval_datasets = [eval_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") eval_datasets.append(raw_datasets["validation_mismatched"]) for eval_dataset, task in zip(eval_datasets, tasks): metrics = trainer.evaluate(eval_dataset=eval_dataset) max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) ) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) results['eval'] = metrics if training_args.do_predict: logger.info("*** Predict ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] predict_datasets = [predict_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") predict_datasets.append(raw_datasets["test_mismatched"]) for predict_dataset, task in zip(predict_datasets, tasks): # Removing the `label` columns because it contains -1 and Trainer won't like that. predict_dataset = predict_dataset.remove_columns("label") predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") if trainer.is_world_process_zero(): with open(output_predict_file, "w") as writer: logger.info(f"***** Predict results {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") # from IPython import embed; embed() # kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} # if data_args.task_name is not None: # kwargs["language"] = "en" # kwargs["dataset_tags"] = "glue" # kwargs["dataset_args"] = data_args.task_name # kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}" # kwargs["delta_type"] = delta_args.delta_type repo_name = create_hub_repo_name(root="DeltaHub", dataset=data_args.task_name, delta_type = delta_args.delta_type, model_name_or_path= model_args.model_name_or_path) if training_args.push_to_hub: # TODO add description here delta_model.save_finetuned(push_to_hub=True, save_directory=repo_name, use_auth_token=True) # trainer.push_to_hub(**kwargs) else: delta_model.save_finetuned(push_to_hub=False, save_directory=repo_name, use_auth_token=True) def _mp_fn(index): # For xla_spawn (TPUs) main()
null
1,294
import collections import string import regex as re import numpy as np def _normalize_answer(text, punc_chars, punc_repl): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(s): return re.sub(r"\b(a|an|the)\b", " ", s) def replace_punctuation(s): to_replace = set(punc_chars) return "".join(punc_repl if ch in to_replace else ch for ch in s) def white_space_fix(s): return " ".join(s.split()) text = text.lower() text = replace_punctuation(text) text = remove_articles(text) text = white_space_fix(text) return text The provided code snippet includes necessary dependencies for implementing the `normalize_trivia_qa` function. Write a Python function `def normalize_trivia_qa(answer)` to solve the following problem: Normalization used in official TriviaQA evaluation script. Here is the function: def normalize_trivia_qa(answer): """Normalization used in official TriviaQA evaluation script.""" return _normalize_answer( answer, punc_chars=string.punctuation + "‘’´`_", punc_repl=" ").strip()
Normalization used in official TriviaQA evaluation script.
1,295
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics The provided code snippet includes necessary dependencies for implementing the `accuracy` function. Write a Python function `def accuracy(predictions, targets) -> dict` to solve the following problem: Computes the average accuracy. Here is the function: def accuracy(predictions, targets) -> dict: """Computes the average accuracy.""" return {"accuracy": 100 * ((np.array(predictions) == np.array(targets)).mean())}
Computes the average accuracy.
1,296
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics def string_to_float(string, default=-1., **unused_kwargs): """Converts string to float, using default when conversion not possible.""" try: return float(string) except ValueError: return default The provided code snippet includes necessary dependencies for implementing the `pearson_corrcoef` function. Write a Python function `def pearson_corrcoef(predictions, targets) -> dict` to solve the following problem: Computes Pearson correlation coefficient. Here is the function: def pearson_corrcoef(predictions, targets) -> dict: """Computes Pearson correlation coefficient.""" from examples_seq2seq.data_processors.postprocessors import string_to_float targets = [string_to_float(target) for target in targets] predictions= [string_to_float(prediction) for prediction in predictions] pearson_corrcoef = 100 * scipy.stats.pearsonr(targets, predictions)[0] # Note that if all the predictions will be the same, spearman # correlation is nan, to gaurad against this, we check the output # and return 0 in this case. if math.isnan(pearson_corrcoef): pearson_corrcoef = 0 return {"pearson": pearson_corrcoef}
Computes Pearson correlation coefficient.
1,297
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics def string_to_float(string, default=-1., **unused_kwargs): """Converts string to float, using default when conversion not possible.""" try: return float(string) except ValueError: return default The provided code snippet includes necessary dependencies for implementing the `spearman_corrcoef` function. Write a Python function `def spearman_corrcoef(predictions, targets) -> dict` to solve the following problem: Computes Spearman correlation coefficient. Here is the function: def spearman_corrcoef(predictions, targets) -> dict: """Computes Spearman correlation coefficient.""" # TODO: we need to do postprocessors in a clean way for each dataset. from examples_seq2seq.data_processors.postprocessors import string_to_float targets = [string_to_float(target) for target in targets] predictions= [string_to_float(prediction) for prediction in predictions] spearman_corrcoef = 100 * scipy.stats.spearmanr(targets, predictions)[0] # Note that if all the predictions will be the same, spearman # correlation is nan, to gaurad against this, we check the output # and return 0 in this case. if math.isnan(spearman_corrcoef): spearman_corrcoef = 0 return {"spearmanr": spearman_corrcoef}
Computes Spearman correlation coefficient.
1,298
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics The provided code snippet includes necessary dependencies for implementing the `matthews_corrcoef` function. Write a Python function `def matthews_corrcoef(predictions, targets) -> dict` to solve the following problem: Computes the Matthews correlation coefficient. Here is the function: def matthews_corrcoef(predictions, targets) -> dict: """Computes the Matthews correlation coefficient.""" return {"matthews_correlation": 100 * sklearn.metrics.matthews_corrcoef(targets, predictions)}
Computes the Matthews correlation coefficient.
1,299
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics f normalize_squad(answer): """Normalization used in official SQuAD evaluation script.""" return _normalize_answer(answer, punc_chars=string.punctuation, punc_repl="") def qa_metrics(targets, predictions): """Computes exact match and f1 QA scores, expecting pre-normalized text.""" if len(targets) != len(predictions): raise ValueError("Number of targets and predictions must match.") em = np.mean([ _metric_max_over_ground_truths(_exact_match_score, t, p) for p, t in zip(predictions, targets) ]) f1 = np.mean([ _metric_max_over_ground_truths(_f1_score, t, p) for p, t in zip(predictions, targets) ]) em *= 100 f1 *= 100 return {"em": em, "f1": f1} The provided code snippet includes necessary dependencies for implementing the `squad` function. Write a Python function `def squad(predictions, targets)` to solve the following problem: Computes SQuAD metrics, maximizing over answers per question. Args: targets: list of lists of strings predictions: list of strings Returns: dict with score_key: squad score across all targets and predictions Here is the function: def squad(predictions, targets): """Computes SQuAD metrics, maximizing over answers per question. Args: targets: list of lists of strings predictions: list of strings Returns: dict with score_key: squad score across all targets and predictions """ targets = [[normalize_squad(t) for t in u] for u in targets] predictions = [normalize_squad(p) for p in predictions] return qa_metrics(targets, predictions)
Computes SQuAD metrics, maximizing over answers per question. Args: targets: list of lists of strings predictions: list of strings Returns: dict with score_key: squad score across all targets and predictions
1,300
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics The provided code snippet includes necessary dependencies for implementing the `exact_match` function. Write a Python function `def exact_match(predictions, targets)` to solve the following problem: Computes whether the targets match predictions exactly. Here is the function: def exact_match(predictions, targets): """Computes whether the targets match predictions exactly.""" return {"em": 100 * float(np.array_equal(targets, predictions))}
Computes whether the targets match predictions exactly.
1,301
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics def sklearn_metrics_wrapper(metric_str, metric_dict_str=None, metric_post_process_fn=None, **metric_fn_kwargs): """Wraps any sklearn.metric function and returns a t5 metric function. Args: metric_str: string, the function from `sklearn.metrics` to use. metric_dict_str: optional string, if not specified `metric_str` is used as the key in the returned dictionary. metric_post_process_fn: callable, if specified the final computed metric will be passed through this. **metric_fn_kwargs: kwargs, passed to the metric function we are calling. Returns: the function that calculates the metric in a dict. """ if not hasattr(sklearn.metrics, metric_str): raise ValueError("sklearn.metrics does not have: %s" % metric_str) def fn(predictions, targets): metric_fn = getattr(sklearn.metrics, metric_str) metric_val = metric_fn(targets, predictions, **metric_fn_kwargs) if metric_post_process_fn is not None: metric_val = metric_post_process_fn(metric_val) return {metric_dict_str or metric_str: metric_val} return fn The provided code snippet includes necessary dependencies for implementing the `mean_multiclass_f1` function. Write a Python function `def mean_multiclass_f1(num_classes, **metric_fn_kwargs)` to solve the following problem: Computes the unweighted average of the F1 per class. Here is the function: def mean_multiclass_f1(num_classes, **metric_fn_kwargs): """Computes the unweighted average of the F1 per class.""" return sklearn_metrics_wrapper( "fbeta_score", metric_dict_str="f1_multiclass", metric_post_process_fn=lambda x: 100 * x, beta=1, labels=range(num_classes), average="macro", **metric_fn_kwargs)
Computes the unweighted average of the F1 per class.
1,302
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics def f1_score_with_invalid(predictions, targets) -> dict: """Computes F1 score, with any prediction != 0 or 1 is counted as incorrect. Args: targets: list of targets, either 0 or 1 predictions: list of predictions, any integer value Returns: F1 score, where any prediction != 0 or 1 is counted as wrong. """ def binary_reverse(labels): return ['0' if label == '1' else '1' for label in labels] targets, predictions = np.asarray(targets), np.asarray(predictions) # Get indices of invalid predictions. invalid_idx_mask = np.logical_and(predictions != '0', predictions != '1') # For any prediction != 0 or 1, we set the prediction to the opposite of its corresponding target. predictions[invalid_idx_mask] = binary_reverse(targets[invalid_idx_mask]) targets = targets.astype(np.int32) predictions = predictions.astype(np.int32) return {"f1": 100 * sklearn.metrics.f1_score(targets, predictions)} The provided code snippet includes necessary dependencies for implementing the `multirc_f1_over_all_answers` function. Write a Python function `def multirc_f1_over_all_answers(targets, predictions)` to solve the following problem: Special metric for MultiRC which computes F1 score over all examples. This is necessary because the targets/predictions for MultiRC are dicts and the f1_score_with_invalid expects a list of True/False labels, not dicts. As a result we just need to key in the "value" for each of the example dicts before feeding into f1_score_with_invalid. Args: targets: list of dicts, where each dict has a "value" key. predictions: list of dicts, where each dict has a "value" key. Returns: F1 score over values, where any prediction != 0 or 1 is counted as wrong. Here is the function: def multirc_f1_over_all_answers(targets, predictions): """Special metric for MultiRC which computes F1 score over all examples. This is necessary because the targets/predictions for MultiRC are dicts and the f1_score_with_invalid expects a list of True/False labels, not dicts. As a result we just need to key in the "value" for each of the example dicts before feeding into f1_score_with_invalid. Args: targets: list of dicts, where each dict has a "value" key. predictions: list of dicts, where each dict has a "value" key. Returns: F1 score over values, where any prediction != 0 or 1 is counted as wrong. """ return f1_score_with_invalid( [t["value"] for t in targets], [p["value"] for p in predictions] )
Special metric for MultiRC which computes F1 score over all examples. This is necessary because the targets/predictions for MultiRC are dicts and the f1_score_with_invalid expects a list of True/False labels, not dicts. As a result we just need to key in the "value" for each of the example dicts before feeding into f1_score_with_invalid. Args: targets: list of dicts, where each dict has a "value" key. predictions: list of dicts, where each dict has a "value" key. Returns: F1 score over values, where any prediction != 0 or 1 is counted as wrong.
1,303
import numpy as np import scipy import math import sklearn import collections from logging import getLogger from .qa_utils import normalize_squad, qa_metrics import sklearn.metrics The provided code snippet includes necessary dependencies for implementing the `mean_group_metric` function. Write a Python function `def mean_group_metric(metric_fn, group_key="group", value_key="value")` to solve the following problem: Returns a metric that averages `metric_fn` on sub-groups of results. The sub-groups are defined by aggregating results (targets and predictions) by accessing the feature specified by `group_key` in the target dicts. **WARNING**: Using this function can produce unreliable results if you do not pass in full groups. For example, if you evaluate over a random subsample of a validation set and do not retain all of the examples in each group, you may get results which aren't directly comparable to using the full validation set. Args: metric_fn: function, the metric to compute on the subgroups. group_key: string, the key for the grouping value in the target dictionary. value_key: string, the key for the value in the dictionaries. Here is the function: def mean_group_metric(metric_fn, group_key="group", value_key="value"): """Returns a metric that averages `metric_fn` on sub-groups of results. The sub-groups are defined by aggregating results (targets and predictions) by accessing the feature specified by `group_key` in the target dicts. **WARNING**: Using this function can produce unreliable results if you do not pass in full groups. For example, if you evaluate over a random subsample of a validation set and do not retain all of the examples in each group, you may get results which aren't directly comparable to using the full validation set. Args: metric_fn: function, the metric to compute on the subgroups. group_key: string, the key for the grouping value in the target dictionary. value_key: string, the key for the value in the dictionaries. """ def my_metric(targets, predictions): """Computes mean of `metric_fn` over subgroups of results.""" grouped_values = collections.defaultdict(lambda: ([], [])) for targ, pred in zip(targets, predictions): g = targ[group_key] grouped_values[g][0].append(targ[value_key]) grouped_values[g][1].append(pred[value_key]) group_scores = collections.defaultdict(list) for (targets, predictions) in grouped_values.values(): for metric, score in metric_fn(targets, predictions).items(): group_scores[metric].append(score) return {metric: np.mean(scores) for metric, scores in group_scores.items()} return my_metric
Returns a metric that averages `metric_fn` on sub-groups of results. The sub-groups are defined by aggregating results (targets and predictions) by accessing the feature specified by `group_key` in the target dicts. **WARNING**: Using this function can produce unreliable results if you do not pass in full groups. For example, if you evaluate over a random subsample of a validation set and do not retain all of the examples in each group, you may get results which aren't directly comparable to using the full validation set. Args: metric_fn: function, the metric to compute on the subgroups. group_key: string, the key for the grouping value in the target dictionary. value_key: string, the key for the value in the dictionaries.
1,304
import functools import logging import torch import os import sys import subprocess from typing import Optional, List from datasets import load_dataset, load_metric, concatenate_datasets import transformers from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, default_data_collator, set_seed, ) from transformers.trainer_utils import is_main_process, get_last_checkpoint from examples_seq2seq.data_processors import AutoTask, TaskDataCollatorForSeq2Seq, AutoPostProcessor from examples_seq2seq.seq2seq_trainer import Seq2SeqTrainer from examples_seq2seq.trainers.trainer_utils import save_training_config from dataclasses import dataclass, field from transformers.models.t5.modeling_t5 import T5Config, T5ForConditionalGeneration from examples_seq2seq.trainers.model_args import ModelArguments from examples_seq2seq.trainers.trainer_args import TrainingArguments, DataTrainingArguments import tensorboardX def run_command(command): output = subprocess.getoutput(command) return output
null
1,305
import numpy as np from typing import Union, NamedTuple, Tuple, Dict, Any import os import regex as re import logging from dataclasses import fields import torch.nn as nn import json The provided code snippet includes necessary dependencies for implementing the `create_dir` function. Write a Python function `def create_dir(output_dir)` to solve the following problem: Checks whether to the output_dir already exists and creates it if not. Args: output_dir: path to the output_dir Here is the function: def create_dir(output_dir): """ Checks whether to the output_dir already exists and creates it if not. Args: output_dir: path to the output_dir """ if not os.path.exists(output_dir): os.makedirs(output_dir)
Checks whether to the output_dir already exists and creates it if not. Args: output_dir: path to the output_dir
1,306
import numpy as np from typing import Union, NamedTuple, Tuple, Dict, Any import os import regex as re import logging from dataclasses import fields import torch.nn as nn import json def get_last_checkpoint(output_dir): if os.path.exists(os.path.join(output_dir, 'pytorch_model.bin')): return output_dir return None
null
1,307
import numpy as np from typing import Union, NamedTuple, Tuple, Dict, Any import os import regex as re import logging from dataclasses import fields import torch.nn as nn import json The provided code snippet includes necessary dependencies for implementing the `pad_punctuation` function. Write a Python function `def pad_punctuation(text)` to solve the following problem: Re-implementation of _pad_punctuation in t5. This function adds spaces around punctuation. While this pads punctuation as expected, it has the unexpected effected of padding certain unicode characters with accents, with spaces as well. For instance: "François" becomes "Fran ç ois Here is the function: def pad_punctuation(text): """Re-implementation of _pad_punctuation in t5. This function adds spaces around punctuation. While this pads punctuation as expected, it has the unexpected effected of padding certain unicode characters with accents, with spaces as well. For instance: "François" becomes "Fran ç ois""" # Pad everything except for: underscores (_), whitespace (\s), # numbers (\p{N}), letters (\p{L}) and accent characters (\p{M}). text = re.sub(r'([^_\s\p{N}\p{L}\p{M}])', r' \1 ', text) # Collapse consecutive whitespace into one space. text = re.sub(r'\s+', ' ', text) return text
Re-implementation of _pad_punctuation in t5. This function adds spaces around punctuation. While this pads punctuation as expected, it has the unexpected effected of padding certain unicode characters with accents, with spaces as well. For instance: "François" becomes "Fran ç ois
1,308
import numpy as np from typing import Union, NamedTuple, Tuple, Dict, Any import os import regex as re import logging from dataclasses import fields import torch.nn as nn import json def save_json(filepath, dictionary): with open(filepath, "w") as outfile: json.dump(dictionary, outfile) def read_json(filepath): f = open(filepath,) return json.load(f) def save_training_config(config_file, output_dir): json_data = read_json(config_file) save_json(os.path.join(output_dir, "training_config.json"), json_data)
null
1,309
import numpy as np The provided code snippet includes necessary dependencies for implementing the `round_stsb_target` function. Write a Python function `def round_stsb_target(label)` to solve the following problem: STSB maps two sentences to a floating point number between 1 and 5 representing their semantic similarity. Since we are treating all tasks as text-to-text tasks we need to convert this floating point number to a string. The vast majority of the similarity score labels in STSB are in the set [0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest entry in this set, and then we convert the result to a string (literally e.g. "3.4"). This converts STSB roughly into a 26-class classification dataset. Args: label: original label. Returns: A preprocessed label. Here is the function: def round_stsb_target(label): """STSB maps two sentences to a floating point number between 1 and 5 representing their semantic similarity. Since we are treating all tasks as text-to-text tasks we need to convert this floating point number to a string. The vast majority of the similarity score labels in STSB are in the set [0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest entry in this set, and then we convert the result to a string (literally e.g. "3.4"). This converts STSB roughly into a 26-class classification dataset. Args: label: original label. Returns: A preprocessed label. """ return np.round((label * 5) / 5, decimals=1)
STSB maps two sentences to a floating point number between 1 and 5 representing their semantic similarity. Since we are treating all tasks as text-to-text tasks we need to convert this floating point number to a string. The vast majority of the similarity score labels in STSB are in the set [0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest entry in this set, and then we convert the result to a string (literally e.g. "3.4"). This converts STSB roughly into a 26-class classification dataset. Args: label: original label. Returns: A preprocessed label.
1,310
import os import setuptools from torch.utils.cpp_extension import BuildExtension, CUDAExtension def setup_package(): long_description = "examples_seq2seq" setuptools.setup( name='examples_seq2seq', version='0.0.1', description='seq2seq example', long_description=long_description, long_description_content_type='text/markdown', author='Shengding Hu', license='MIT License', packages=setuptools.find_packages( exclude=['docs', 'tests', 'scripts']), dependency_links=[ 'https://download.pytorch.org/whl/torch_stable.html', ], classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7.10', ], keywords='text nlp machinelearning', cmdclass={"build_ext": BuildExtension}, install_requires=[ "pyarrow==7.0.0", "datasets==1.17.0" ], )
null
1,311
import itertools import torch import tqdm import multiprocessing import numpy as np import scipy.spatial as spatial import scipy.special as special import scipy.stats as stats import logging logger = logging.getLogger(__name__) def select_likely_words(train_logits, train_labels, k_likely=1000, vocab=None, is_regression=False): """Pre-select likely words based on conditional likelihood.""" indices = [] if is_regression: median = np.median(train_labels) train_labels = (train_labels > median).astype(np.int) num_labels = np.max(train_labels) + 1 for idx in range(num_labels): label_logits = train_logits[train_labels == idx] scores = label_logits.mean(axis=0) kept = [] for i in np.argsort(-scores): text = vocab[i] if not text.startswith("Ġ"): continue kept.append(i) indices.append(kept[:k_likely]) return indices def select_neighbors(distances, k_neighbors, valid): """Select k nearest neighbors based on distance (filtered to be within the 'valid' set).""" indices = np.argsort(distances) neighbors = [] for i in indices: if i not in valid: continue neighbors.append(i) if k_neighbors > 0: return neighbors[:k_neighbors] return neighbors def init(train_logits, train_labels): global logits, labels logits = train_logits labels = train_labels def eval_pairing_acc(pairing): global logits, labels label_logits = np.take(logits, pairing, axis=-1) preds = np.argmax(label_logits, axis=-1) correct = np.sum(preds == labels) return correct / len(labels) def eval_pairing_corr(pairing): global logits, labels if pairing[0] == pairing[1]: return -1 label_logits = np.take(logits, pairing, axis=-1) label_probs = special.softmax(label_logits, axis=-1)[:, 1] pearson_corr = stats.pearsonr(label_probs, labels)[0] return pearson_corr def find_labels( model, train_logits, train_labels, seed_labels=None, k_likely=1000, k_neighbors=None, top_n=-1, vocab=None, is_regression=False, ): # Get top indices based on conditional likelihood using the LM. likely_indices = select_likely_words( train_logits=train_logits, train_labels=train_labels, k_likely=k_likely, vocab=vocab, is_regression=is_regression) logger.info("Top labels (conditional) per class:") for i, inds in enumerate(likely_indices): logger.info("\t| Label %d: %s", i, ", ".join([vocab[i] for i in inds[:10]])) # Convert to sets. valid_indices = [set(inds) for inds in likely_indices] # If specified, further re-rank according to nearest neighbors of seed labels. # Otherwise, keep ranking as is (based on conditional likelihood only). if seed_labels: assert(vocab is not None) seed_ids = [vocab.index(l) for l in seed_labels] vocab_vecs = model.lm_head.decoder.weight.detach().cpu().numpy() seed_vecs = np.take(vocab_vecs, seed_ids, axis=0) # [num_labels, vocab_size] label_distances = spatial.distance.cdist(seed_vecs, vocab_vecs, metric="cosine") # Establish label candidates (as k nearest neighbors). label_candidates = [] logger.info("Re-ranked by nearest neighbors:") for i, distances in enumerate(label_distances): label_candidates.append(select_neighbors(distances, k_neighbors, valid_indices[i])) logger.info("\t| Label: %s", seed_labels[i]) logger.info("\t| Neighbors: %s", " ".join([vocab[idx] for idx in label_candidates[i]])) else: label_candidates = likely_indices # Brute-force search all valid pairings. pairings = list(itertools.product(*label_candidates)) if is_regression: eval_pairing = eval_pairing_corr metric = "corr" else: eval_pairing = eval_pairing_acc metric = "acc" # Score each pairing. pairing_scores = [] with multiprocessing.Pool(initializer=init, initargs=(train_logits, train_labels)) as workers: with tqdm.tqdm(total=len(pairings)) as pbar: chunksize = max(10, int(len(pairings) / 1000)) for score in workers.imap(eval_pairing, pairings, chunksize=chunksize): pairing_scores.append(score) pbar.update() # Take top-n. best_idx = np.argsort(-np.array(pairing_scores))[:top_n] best_scores = [pairing_scores[i] for i in best_idx] best_pairings = [pairings[i] for i in best_idx] logger.info("Automatically searched pairings:") for i, indices in enumerate(best_pairings): logger.info("\t| %s (%s = %2.2f)", " ".join([vocab[j] for j in indices]), metric, best_scores[i]) return best_pairings
null
1,312
import collections import inspect import math import os import re import shutil import warnings from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from packaging import version from torch import nn from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import RandomSampler, SequentialSampler import transformers from transformers import EvaluationStrategy from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator from transformers.file_utils import WEIGHTS_NAME, is_datasets_available, is_in_notebook, is_torch_tpu_available from transformers.integrations import ( default_hp_search_backend, is_comet_available, is_optuna_available, is_ray_available, is_tensorboard_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, ) from transformers.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from transformers.modeling_utils import PreTrainedModel from transformers.optimization import AdamW, get_linear_schedule_with_warmup from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_callback import ( CallbackHandler, DefaultFlowCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from transformers.trainer_pt_utils import ( DistributedTensorGatherer, SequentialDistributedSampler, distributed_broadcast_scalars, distributed_concat, get_tpu_sampler, nested_concat, nested_detach, nested_numpify, nested_xla_mesh_reduce, reissue_pt_warnings, ) from transformers.trainer_utils import ( PREFIX_CHECKPOINT_DIR, BestRun, EvalPrediction, HPSearchBackend, PredictionOutput, TrainOutput, default_compute_objective, default_hp_space, set_seed, ) from transformers.training_args import TrainingArguments from transformers.utils import logging from tqdm import tqdm, trange The provided code snippet includes necessary dependencies for implementing the `default_dev_objective` function. Write a Python function `def default_dev_objective(metrics)` to solve the following problem: Objective used for picking the best model on development sets Here is the function: def default_dev_objective(metrics): """ Objective used for picking the best model on development sets """ if "eval_mnli/acc" in metrics: return metrics["eval_mnli/acc"] elif "eval_mnli-mm/acc" in metrics: return metrics["eval_mnli-mm/acc"] elif "eval_f1" in metrics: return metrics["eval_f1"] elif "eval_mcc" in metrics: return metrics["eval_mcc"] elif "eval_pearson" in metrics: return metrics["eval_pearson"] elif "eval_acc" in metrics: return metrics["eval_acc"] raise Exception("No metric founded for {}".format(metrics))
Objective used for picking the best model on development sets