Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
3,208
null
Attributing AUC-ROC to Analyze Binary Classifier Performance
Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is a popular evaluation metric for binary classifiers. In this paper, we discuss techniques to segment the AUC-ROC along human-interpretable dimensions. AUC-ROC is not an additive/linear function over the data samples, therefore such segmenting the overall AUC-ROC is different from tabulating the AUC-ROC of data segments. To segment the overall AUC-ROC, we must first solve an \emph{attribution} problem to identify credit for individual examples. We observe that AUC-ROC, though non-linear over examples, is linear over \emph{pairs} of examples. This observation leads to a simple, efficient attribution technique for examples (example attributions), and for pairs of examples (pair attributions). We automatically slice these attributions using decision trees by making the tree predict the attributions; we use the notion of honest estimates along with a t-test to mitigate false discovery. Our experiments with the method show that an inferior model can outperform a superior model (trained to optimize a different training objective) on the inferior model's own training objective, a manifestation of Goodhart's Law. In contrast, AUC attributions enable a reasonable comparison. Example attributions can be used to slice this comparison. Pair attributions are used to categorize pairs of items -- one positively labeled and one negatively -- that the model has trouble separating. These categories identify the decision boundary of the classifier and the headroom to improve AUC.
3,209
null
Wireless Ad Hoc Federated Learning: A Fully Distributed Cooperative Machine Learning
Federated learning has allowed training of a global model by aggregating local models trained on local nodes. However, it still takes client-server model, which can be further distributed, fully decentralized, or even partially connected, or totally opportunistic. In this paper, we propose a wireless ad hoc federated learning (WAFL) -- a fully distributed cooperative machine learning organized by the nodes physically nearby. Here, each node has a wireless interface and can communicate with each other when they are within the radio range. The nodes are expected to move with people, vehicles, or robots, producing opportunistic contacts with each other. In WAFL, each node trains a model individually with the local data it has. When a node encounter with others, they exchange their trained models, and generate new aggregated models, which are expected to be more general compared to the locally trained models on Non-IID data. For evaluation, we have prepared four static communication networks and two types of dynamic and opportunistic communication networks based on random waypoint mobility and community-structured environment, and then studied the training process of a fully connected neural network with 90% Non-IID MNIST dataset. The evaluation results indicate that WAFL allowed the convergence of model parameters among the nodes toward generalization, even with opportunistic node contact scenarios -- whereas in self-training (or lonely training) case, they have diverged. This WAFL's model generalization contributed to achieving higher accuracy 94.7-96.2% to the testing IID dataset compared to the self-training case 84.7%.
3,210
null
Constrained Monotonic Neural Networks
Deep neural networks are becoming increasingly popular in approximating arbitrary functions from noisy data. But wider adoption is being hindered by the need to explain such models and to impose additional constraints on them. Monotonicity constraint is one of the most requested properties in real-world scenarios and is the focus of this paper. One of the oldest ways to construct a monotonic fully connected neural network is to constrain its weights to be non-negative while employing a monotonic activation function. Unfortunately, this construction does not work with popular non-saturated activation functions such as ReLU, ELU, SELU etc, as it can only approximate convex functions. We show this shortcoming can be fixed by employing the original activation function for a part of the neurons in the layer, and employing its point reflection for the other part. Our experiments show this approach of building monotonic deep neural networks have matching or better accuracy when compared to other state-of-the-art methods such as deep lattice networks or monotonic networks obtained by heuristic regularization. This method is the simplest one in the sense of having the least number of parameters, not requiring any modifications to the learning procedure or steps post-learning steps.
3,211
null
Learning Context-Aware Service Representation for Service Recommendation in Workflow Composition
As increasingly more software services have been published onto the Internet, it remains a significant challenge to recommend suitable services to facilitate scientific workflow composition. This paper proposes a novel NLP-inspired approach to recommending services throughout a workflow development process, based on incrementally learning latent service representation from workflow provenance. A workflow composition process is formalized as a step-wise, context-aware service generation procedure, which is mapped to next-word prediction in a natural language sentence. Historical service dependencies are extracted from workflow provenance to build and enrich a knowledge graph. Each path in the knowledge graph reflects a scenario in a data analytics experiment, which is analogous to a sentence in a conversation. All paths are thus formalized as composable service sequences and are mined, using various patterns, from the established knowledge graph to construct a corpus. Service embeddings are then learned by applying deep learning model from the NLP field. Extensive experiments on the real-world dataset demonstrate the effectiveness and efficiency of the approach.
3,212
null
Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates. In contrast to prior work, our proposed protocols improve the dimension dependence and achieve a tight statistical rate in terms of all the parameters for strongly convex losses. We benchmark against competing protocols and show the empirical superiority of the proposed protocols. Finally, we remark that our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server. The code for evaluation is provided in https://github.com/wanglun1996/secure-robust-federated-learning.
3,213
null
Graph Neural Networks Intersect Probabilistic Graphical Models: A Survey
Graphs are a powerful data structure to represent relational data and are widely used to describe complex real-world data structures. Probabilistic Graphical Models (PGMs) have been well-developed in the past years to mathematically model real-world scenarios in compact graphical representations of distributions of variables. Graph Neural Networks (GNNs) are new inference methods developed in recent years and are attracting growing attention due to their effectiveness and flexibility in solving inference and learning problems over graph-structured data. These two powerful approaches have different advantages in capturing relations from observations and how they conduct message passing, and they can benefit each other in various tasks. In this survey, we broadly study the intersection of GNNs and PGMs. Specifically, we first discuss how GNNs can benefit from learning structured representations in PGMs, generate explainable predictions by PGMs, and how PGMs can infer object relationships. Then we discuss how GNNs are implemented in PGMs for more efficient inference and structure learning. In the end, we summarize the benchmark datasets used in recent studies and discuss promising future directions.
3,214
null
MOSPAT: AutoML based Model Selection and Parameter Tuning for Time Series Anomaly Detection
Organizations leverage anomaly and changepoint detection algorithms to detect changes in user behavior or service availability and performance. Many off-the-shelf detection algorithms, though effective, cannot readily be used in large organizations where thousands of users monitor millions of use cases and metrics with varied time series characteristics and anomaly patterns. The selection of algorithm and parameters needs to be precise for each use case: manual tuning does not scale, and automated tuning requires ground truth, which is rarely available. In this paper, we explore MOSPAT, an end-to-end automated machine learning based approach for model and parameter selection, combined with a generative model to produce labeled data. Our scalable end-to-end system allows individual users in large organizations to tailor time-series monitoring to their specific use case and data characteristics, without expert knowledge of anomaly detection algorithms or laborious manual labeling. Our extensive experiments on real and synthetic data demonstrate that this method consistently outperforms using any single algorithm.
3,215
null
BabyBear: Cheap inference triage for expensive language models
Transformer language models provide superior accuracy over previous models but they are computationally and environmentally expensive. Borrowing the concept of model cascading from computer vision, we introduce BabyBear, a framework for cascading models for natural language processing (NLP) tasks to minimize cost. The core strategy is inference triage, exiting early when the least expensive model in the cascade achieves a sufficiently high-confidence prediction. We test BabyBear on several open source data sets related to document classification and entity recognition. We find that for common NLP tasks a high proportion of the inference load can be accomplished with cheap, fast models that have learned by observing a deep learning model. This allows us to reduce the compute cost of large-scale classification jobs by more than 50% while retaining overall accuracy. For named entity recognition, we save 33% of the deep learning compute while maintaining an F1 score higher than 95% on the CoNLL benchmark.
3,216
null
Alleviating Robust Overfitting of Adversarial Training With Consistency Regularization
Adversarial training (AT) has proven to be one of the most effective ways to defend Deep Neural Networks (DNNs) against adversarial attacks. However, the phenomenon of robust overfitting, i.e., the robustness will drop sharply at a certain stage, always exists during AT. It is of great importance to decrease this robust generalization gap in order to obtain a robust model. In this paper, we present an in-depth study towards the robust overfitting from a new angle. We observe that consistency regularization, a popular technique in semi-supervised learning, has a similar goal as AT and can be used to alleviate robust overfitting. We empirically validate this observation, and find a majority of prior solutions have implicit connections to consistency regularization. Motivated by this, we introduce a new AT solution, which integrates the consistency regularization and Mean Teacher (MT) strategy into AT. Specifically, we introduce a teacher model, coming from the average weights of the student models over the training steps. Then we design a consistency loss function to make the prediction distribution of the student models over adversarial examples consistent with that of the teacher model over clean samples. Experiments show that our proposed method can effectively alleviate robust overfitting and improve the robustness of DNN models against common adversarial attacks.
3,217
null
Demand Response Method Considering Multiple Types of Flexible Loads in Industrial Parks
With the rapid development of the energy internet, the proportion of flexible loads in smart grid is getting much higher than before. It is highly important to model flexible loads based on demand response. Therefore, a new demand response method considering multiple flexible loads is proposed in this paper to character the integrated demand response (IDR) resources. Firstly, a physical process analytical deduction (PPAD) model is proposed to improve the classification of flexible loads in industrial parks. Scenario generation, data point augmentation, and smooth curves under various operating conditions are considered to enhance the applicability of the model. Secondly, in view of the strong volatility and poor modeling effect of Wasserstein-generative adversarial networks (WGAN), an improved WGAN-gradient penalty (IWGAN-GP) model is developed to get a faster convergence speed than traditional WGAN and generate a higher quality samples. Finally, the PPAD and IWGAN-GP models are jointly implemented to reveal the degree of correlation between flexible loads. Meanwhile, an intelligent offline database is built to deal with the impact of nonlinear factors in different response scenarios. Numerical examples have been performed with the results proving that the proposed method is significantly better than the existing technologies in reducing load modeling deviation and improving the responsiveness of park loads.
3,218
null
Towards a Defense against Backdoor Attacks in Continual Federated Learning
Backdoor attacks are a major concern in federated learning (FL) pipelines where training data is sourced from untrusted clients over long periods of time (i.e., continual learning). Preventing such attacks is difficult because defenders in FL do not have access to raw training data. Moreover, in a phenomenon we call backdoor leakage, models trained continuously eventually suffer from backdoors due to cumulative errors in backdoor defense mechanisms. We propose a novel framework for defending against backdoor attacks in the federated continual learning setting. Our framework trains two models in parallel: a backbone model and a shadow model. The backbone is trained without any defense mechanism to obtain good performance on the main task. The shadow model combines recent ideas from robust covariance estimation-based filters with early-stopping to control the attack success rate even as the data distribution changes. We provide theoretical motivation for this design and show experimentally that our framework significantly improves upon existing defenses against backdoor attacks.
3,219
null
Soft-SVM Regression For Binary Classification
The binomial deviance and the SVM hinge loss functions are two of the most widely used loss functions in machine learning. While there are many similarities between them, they also have their own strengths when dealing with different types of data. In this work, we introduce a new exponential family based on a convex relaxation of the hinge loss function using softness and class-separation parameters. This new family, denoted Soft-SVM, allows us to prescribe a generalized linear model that effectively bridges between logistic regression and SVM classification. This new model is interpretable and avoids data separability issues, attaining good fitting and predictive performance by automatically adjusting for data label separability via the softness parameter. These results are confirmed empirically through simulations and case studies as we compare regularized logistic, SVM, and Soft-SVM regressions and conclude that the proposed model performs well in terms of both classification and prediction errors.
3,220
null
ItemSage: Learning Product Embeddings for Shopping Recommendations at Pinterest
Learned embeddings for products are an important building block for web-scale e-commerce recommendation systems. At Pinterest, we build a single set of product embeddings called ItemSage to provide relevant recommendations in all shopping use cases including user, image and search based recommendations. This approach has led to significant improvements in engagement and conversion metrics, while reducing both infrastructure and maintenance cost. While most prior work focuses on building product embeddings from features coming from a single modality, we introduce a transformer-based architecture capable of aggregating information from both text and image modalities and show that it significantly outperforms single modality baselines. We also utilize multi-task learning to make ItemSage optimized for several engagement types, leading to a candidate generation system that is efficient for all of the engagement objectives of the end-to-end recommendation system. Extensive offline experiments are conducted to illustrate the effectiveness of our approach and results from online A/B experiments show substantial gains in key business metrics (up to +7% gross merchandise value/user and +11% click volume).
3,221
null
On the Role of Bidirectionality in Language Model Pre-Training
Prior work on language model pre-training has explored different architectures and learning objectives, but differences in data, hyperparameters and evaluation make a principled comparison difficult. In this work, we focus on bidirectionality as a key factor that differentiates existing approaches, and present a comprehensive study of its role in next token prediction, text infilling, zero-shot priming and fine-tuning. We propose a new framework that generalizes prior approaches, including fully unidirectional models like GPT, fully bidirectional models like BERT, and hybrid models like CM3 and prefix LM. Our framework distinguishes between two notions of bidirectionality (bidirectional context and bidirectional attention) and allows us to control each of them separately. We find that the optimal configuration is largely application-dependent (e.g., bidirectional attention is beneficial for fine-tuning and infilling, but harmful for next token prediction and zero-shot priming). We train models with up to 6.7B parameters, and find differences to remain consistent at scale. While prior work on scaling has focused on left-to-right autoregressive models, our results suggest that this approach comes with some trade-offs, and it might be worthwhile to develop very large bidirectional models.
3,222
null
Embedding Neighborhoods Simultaneously t-SNE (ENS-t-SNE)
We propose an algorithm for visualizing a dataset by embedding it in 3-dimensional Euclidean space based on various given distances between the same pairs of datapoints. Its aim is to find an Embedding which preserves Neighborhoods Simultaneously for all given distances by generalizing the t-Stochastic Neighborhood Embedding approach (ENS-t-SNE). We illustrate the utility of ENS-t-SNE by demonstrating its use in three applications. First, to visualize different notions of clusters and groups within the same high-dimensional dataset with one 3-dimensional embedding, as opposed to providing different embeddings of the same data and trying to match the corresponding points. Second, to illustrate the effects of different hyper-parameters of the classical t-SNE. Third, by considering multiple different notions of clustering in data, ENS-t-SNE can generate an alternative embedding than the classic t-SNE. We provide an extensive quantitative evaluation with real-world and synthetic datasets of different sizes and using different numbers of projections.
3,223
null
Semi-Parametric Deep Neural Networks in Linear Time and Memory
Recent advances in deep learning have been driven by large-scale parametric models, which can be computationally expensive and lack interpretability. Semi-parametric methods query the training set at inference time and can be more compact, although they typically have quadratic computational complexity. Here, we introduce SPIN, a general-purpose semi-parametric neural architecture whose computational cost is linear in the size and dimensionality of the data. Our architecture is inspired by inducing point methods and relies on a novel application of cross-attention between datapoints. At inference time, its computational cost is constant in the training set size as the data gets distilled into a fixed number of inducing points. We find that our method reduces the computational requirements of existing semi-parametric models by up to an order of magnitude across a range of datasets and improves state-of-the-art performance on an important practical problem, genotype imputation.
3,224
null
Randomly Initialized One-Layer Neural Networks Make Data Linearly Separable
Recently, neural networks have been shown to perform exceptionally well in transforming two arbitrary sets into two linearly separable sets. Doing this with a randomly initialized neural network is of immense interest because the associated computation is cheaper than using fully trained networks. In this paper, we show that, with sufficient width, a randomly initialized one-layer neural network transforms two sets into two linearly separable sets with high probability. Furthermore, we provide explicit bounds on the required width of the neural network for this to occur. Our first bound is exponential in the input dimension and polynomial in all other parameters, while our second bound is independent of the input dimension, thereby overcoming the curse of dimensionality. We also perform an experimental study comparing the separation capacity of randomly initialized one-layer and two-layer neural networks. With correctly chosen biases, our study shows for low-dimensional data, the two-layer neural network outperforms the one-layer network. However, the opposite is observed for higher-dimensional data.
3,225
null
Functional Network: A Novel Framework for Interpretability of Deep Neural Networks
The layered structure of deep neural networks hinders the use of numerous analysis tools and thus the development of its interpretability. Inspired by the success of functional brain networks, we propose a novel framework for interpretability of deep neural networks, that is, the functional network. We construct the functional network of fully connected networks and explore its small-worldness. In our experiments, the mechanisms of regularization methods, namely, batch normalization and dropout, are revealed using graph theoretical analysis and topological data analysis. Our empirical analysis shows the following: (1) Batch normalization enhances model performance by increasing the global e ciency and the number of loops but reduces adversarial robustness by lowering the fault tolerance. (2) Dropout improves generalization and robustness of models by improving the functional specialization and fault tolerance. (3) The models with dierent regularizations can be clustered correctly according to their functional topological dierences, re ecting the great potential of the functional network and topological data analysis in interpretability.
3,226
null
RCC-GAN: Regularized Compound Conditional GAN for Large-Scale Tabular Data Synthesis
This paper introduces a novel generative adversarial network (GAN) for synthesizing large-scale tabular databases which contain various features such as continuous, discrete, and binary. Technically, our GAN belongs to the category of class-conditioned generative models with a predefined conditional vector. However, we propose a new formulation for deriving such a vector incorporating both binary and discrete features simultaneously. We refer to this noble definition as compound conditional vector and employ it for training the generator network. The core architecture of this network is a three-layered deep residual neural network with skip connections. For improving the stability of such complex architecture, we present a regularization scheme towards limiting unprecedented variations on its weight vectors during training. This regularization approach is quite compatible with the nature of adversarial training and it is not computationally prohibitive in runtime. Furthermore, we constantly monitor the variation of the weight vectors for identifying any potential instabilities or irregularities to measure the strength of our proposed regularizer. Toward this end, we also develop a new metric for tracking sudden perturbation on the weight vectors using the singular value decomposition theory. Finally, we evaluate the performance of our proposed synthesis approach on six benchmarking tabular databases, namely Adult, Census, HCDR, Cabs, News, and King. The achieved results corroborate that for the majority of the cases, our proposed RccGAN outperforms other conventional and modern generative models in terms of accuracy, stability, and reliability.
3,227
null
High-Order Pooling for Graph Neural Networks with Tensor Decomposition
Graph Neural Networks (GNNs) are attracting growing attention due to their effectiveness and flexibility in modeling a variety of graph-structured data. Exiting GNN architectures usually adopt simple pooling operations (e.g., sum, average, max) when aggregating messages from a local neighborhood for updating node representation or pooling node representations from the entire graph to compute the graph representation. Though simple and effective, these linear operations do not model high-order non-linear interactions among nodes. We propose the Tensorized Graph Neural Network (tGNN), a highly expressive GNN architecture relying on tensor decomposition to model high-order non-linear node interactions. tGNN leverages the symmetric CP decomposition to efficiently parameterize permutation-invariant multilinear maps for modeling node interactions. Theoretical and empirical analysis on both node and graph classification tasks show the superiority of tGNN over competitive baselines. In particular, tGNN achieves state-of-the-art results on two OGB node classification datasets and one OGB graph classification dataset.
3,228
null
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records
Burnout is a significant public health concern affecting nearly half of the healthcare workforce. This paper presents the first end-to-end deep learning framework for predicting physician burnout based on clinician activity logs, digital traces of their work activities, available in any electronic health record (EHR) system. In contrast to prior approaches that exclusively relied on surveys for burnout measurement, our framework directly learns deep workload representations from large-scale clinician activity logs to predict burnout. We propose the Hierarchical burnout Prediction based on Activity Logs (HiPAL), featuring a pre-trained time-dependent activity embedding mechanism tailored for activity logs and a hierarchical predictive model, which mirrors the natural hierarchical structure of clinician activity logs and captures physician's evolving workload patterns at both short-term and long-term levels. To utilize the large amount of unlabeled activity logs, we propose a semi-supervised framework that learns to transfer knowledge extracted from unlabeled clinician activities to the HiPAL-based prediction model. The experiment on over 15 million clinician activity logs collected from the EHR at a large academic medical center demonstrates the advantages of our proposed framework in predictive performance of physician burnout and training efficiency over state of the art approaches.
3,229
null
Compressing Deep Graph Neural Networks via Adversarial Knowledge Distillation
Deep graph neural networks (GNNs) have been shown to be expressive for modeling graph-structured data. Nevertheless, the over-stacked architecture of deep graph models makes it difficult to deploy and rapidly test on mobile or embedded systems. To compress over-stacked GNNs, knowledge distillation via a teacher-student architecture turns out to be an effective technique, where the key step is to measure the discrepancy between teacher and student networks with predefined distance functions. However, using the same distance for graphs of various structures may be unfit, and the optimal distance formulation is hard to determine. To tackle these problems, we propose a novel Adversarial Knowledge Distillation framework for graph models named GraphAKD, which adversarially trains a discriminator and a generator to adaptively detect and decrease the discrepancy. Specifically, noticing that the well-captured inter-node and inter-class correlations favor the success of deep GNNs, we propose to criticize the inherited knowledge from node-level and class-level views with a trainable discriminator. The discriminator distinguishes between teacher knowledge and what the student inherits, while the student GNN works as a generator and aims to fool the discriminator. To our best knowledge, GraphAKD is the first to introduce adversarial training to knowledge distillation in graph domains. Experiments on node-level and graph-level classification benchmarks demonstrate that GraphAKD improves the student performance by a large margin. The results imply that GraphAKD can precisely transfer knowledge from a complicated teacher GNN to a compact student GNN.
3,230
null
Semi-Supervised Clustering of Sparse Graphs: Crossing the Information-Theoretic Threshold
The stochastic block model is a canonical random graph model for clustering and community detection on network-structured data. Decades of extensive study on the problem have established many profound results, among which the phase transition at the Kesten-Stigum threshold is particularly interesting both from a mathematical and an applied standpoint. It states that no estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below certain threshold. Nevertheless, if we slightly extend the horizon to the ubiquitous semi-supervised setting, such a fundamental limitation will disappear completely. We prove that with arbitrary fraction of the labels revealed, the detection problem is feasible throughout the parameter domain. Moreover, we introduce two efficient algorithms, one combinatorial and one based on optimization, to integrate label information with graph structures. Our work brings a new perspective to stochastic model of networks and semidefinite program research.
3,231
null
Learning multi-scale functional representations of proteins from single-cell microscopy data
Protein function is inherently linked to its localization within the cell, and fluorescent microscopy data is an indispensable resource for learning representations of proteins. Despite major developments in molecular representation learning, extracting functional information from biological images remains a non-trivial computational task. Current state-of-the-art approaches use autoencoder models to learn high-quality features by reconstructing images. However, such methods are prone to capturing noise and imaging artifacts. In this work, we revisit deep learning models used for classifying major subcellular localizations, and evaluate representations extracted from their final layers. We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information, and significantly outperform autoencoder-based models. We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
3,232
null
PCA-Boosted Autoencoders for Nonlinear Dimensionality Reduction in Low Data Regimes
Autoencoders (AE) provide a useful method for nonlinear dimensionality reduction but are ill-suited for low data regimes. Conversely, Principal Component Analysis (PCA) is data-efficient but is limited to linear dimensionality reduction, posing a problem when data exhibits inherent nonlinearity. This presents a challenge in various scientific and engineering domains such as the nanophotonic component design, where data exhibits nonlinear features while being expensive to obtain due to costly real measurements or resource-consuming solutions of partial differential equations. To address this difficulty, we propose a technique that harnesses the best of both worlds: an autoencoder that leverages PCA to perform well on scarce nonlinear data. Specifically, we outline a numerically robust PCA-based initialization of AE, which, together with the parameterized ReLU activation function, allows the training process to start from an exact PCA solution and improve upon it. A synthetic example is presented first to study the effects of data nonlinearity and size on the performance of the proposed method. We then evaluate our method on several nanophotonic component design problems where obtaining useful data is expensive. To demonstrate universality, we also apply it to tasks in other scientific domains: a benchmark breast cancer dataset and a gene expression dataset. We show that our proposed approach is substantially better than both PCA and randomly initialized AE in the majority of low-data regime cases we consider, or at least is comparable to the best of either of the other two methods.
3,233
null
Throwing Away Data Improves Worst-Class Error in Imbalanced Classification
Class imbalances pervade classification problems, yet their treatment differs in theory and practice. On the one hand, learning theory instructs us that \emph{more data is better}, as sample size relates inversely to the average test error over the entire data distribution. On the other hand, practitioners have long developed a plethora of tricks to improve the performance of learning machines over imbalanced data. These include data reweighting and subsampling, synthetic construction of additional samples from minority classes, ensembling expensive one-versus all architectures, and tweaking classification losses and thresholds. All of these are efforts to minimize the worst-class error, which is often associated to the minority group in the training data, and finds additional motivation in the robustness, fairness, and out-of-distribution literatures. Here we take on the challenge of developing learning theory able to describe the worst-class error of classifiers over linearly-separable data when fitted either on (i) the full training set, or (ii) a subset where the majority class is subsampled to match in size the minority class. We borrow tools from extreme value theory to show that, under distributions with certain tail properties, \emph{throwing away most data from the majority class leads to better worst-class error}.
3,234
null
Information Propagation by Composited Labels in Natural Language Processing
In natural language processing (NLP), labeling on regions of text, such as words, sentences and paragraphs, is a basic task. In this paper, label is defined as map between mention of entity in a region on text and context of entity in a broader region on text containing the mention. This definition naturally introduces linkage of entities induced from inclusion relation of regions, and connected entities form a graph representing information flow defined by map. It also enables calculation of information loss through map using entropy, and entropy lost is regarded as distance between two entities over a path on graph.
3,235
null
FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?
The existence of a plethora of language models makes the problem of selecting the best one for a custom task challenging. Most state-of-the-art methods leverage transformer-based models (e.g., BERT) or their variants. Training such models and exploring their hyperparameter space, however, is computationally expensive. Prior work proposes several neural architecture search (NAS) methods that employ performance predictors (e.g., surrogate models) to address this issue; however, analysis has been limited to homogeneous models that use fixed dimensionality throughout the network. This leads to sub-optimal architectures. To address this limitation, we propose a suite of heterogeneous and flexible models, namely FlexiBERT, that have varied encoder layers with a diverse set of possible operations and different hidden dimensions. For better-posed surrogate modeling in this expanded design space, we propose a new graph-similarity-based embedding scheme. We also propose a novel NAS policy, called BOSHNAS, that leverages this new scheme, Bayesian modeling, and second-order optimization, to quickly train and use a neural surrogate model to converge to the optimal architecture. A comprehensive set of experiments shows that the proposed policy, when applied to the FlexiBERT design space, pushes the performance frontier upwards compared to traditional models. FlexiBERT-Mini, one of our proposed models, has 3% fewer parameters than BERT-Mini and achieves 8.9% higher GLUE score. A FlexiBERT model with equivalent performance as the best homogeneous model achieves 2.6x smaller size. FlexiBERT-Large, another proposed model, achieves state-of-the-art results, outperforming the baseline models by at least 5.7% on the GLUE benchmark.
3,236
null
A Natural Language Processing Pipeline for Detecting Informal Data References in Academic Literature
Discovering authoritative links between publications and the datasets that they use can be a labor-intensive process. We introduce a natural language processing pipeline that retrieves and reviews publications for informal references to research datasets, which complements the work of data librarians. We first describe the components of the pipeline and then apply it to expand an authoritative bibliography linking thousands of social science studies to the data-related publications in which they are used. The pipeline increases recall for literature to review for inclusion in data-related collections of publications and makes it possible to detect informal data references at scale. We contribute (1) a novel Named Entity Recognition (NER) model that reliably detects informal data references and (2) a dataset connecting items from social science literature with datasets they reference. Together, these contributions enable future work on data reference, data citation networks, and data reuse.
3,237
null
Deep Representations for Time-varying Brain Datasets
Finding an appropriate representation of dynamic activities in the brain is crucial for many downstream applications. Due to its highly dynamic nature, temporally averaged fMRI (functional magnetic resonance imaging) can only provide a narrow view of underlying brain activities. Previous works lack the ability to learn and interpret the latent dynamics in brain architectures. This paper builds an efficient graph neural network model that incorporates both region-mapped fMRI sequences and structural connectivities obtained from DWI (diffusion-weighted imaging) as inputs. We find good representations of the latent brain dynamics through learning sample-level adaptive adjacency matrices and performing a novel multi-resolution inner cluster smoothing. We also attribute inputs with integrated gradients, which enables us to infer (1) highly involved brain connections and subnetworks for each task, (2) temporal keyframes of imaging sequences that characterize tasks, and (3) subnetworks that discriminate between individual subjects. This ability to identify critical subnetworks that characterize signal states across heterogeneous tasks and individuals is of great importance to neuroscience and other scientific domains. Extensive experiments and ablation studies demonstrate our proposed method's superiority and efficiency in spatial-temporal graph signal modeling with insightful interpretations of brain dynamics.
3,238
null
Machine Learning for Electricity Market Clearing
This paper seeks to design a machine learning twin of the optimal power flow (OPF) optimization, which is used in market-clearing procedures by wholesale electricity markets. The motivation for the proposed approach stems from the need to obtain the digital twin, which is much faster than the original, while also being sufficiently accurate and producing consistent generation dispatches and locational marginal prices (LMPs), which are primal and dual solutions of the OPF optimization, respectively. Availability of market-clearing tools based on this approach will enable computationally tractable evaluation of multiple dispatch scenarios under a given unit commitment. Rather than direct solution of OPF, the Karush-Kuhn-Tucker (KKT) conditions for the OPF problem in question may be written, and in parallel the LMPs of generators and loads may be expressed in terms of the OPF Lagrangian multipliers. Also, taking advantage of the practical fact that many of the Lagrangian multipliers associated with lines will be zero (thermal limits are not binding), we build and train an ML scheme which maps flexible resources (loads and renewables) to the binding lines, and supplement it with an efficient power-grid aware linear map to optimal dispatch and LMPs. The scheme is validated and illustrated on IEEE models. We also report a trade of analysis between quality of the reconstruction and number of samples needed to train the model.
3,239
null
Generalization Gap in Amortized Inference
The ability of likelihood-based probabilistic models to generalize to unseen data is central to many machine learning applications such as lossless compression. In this work, we study the generalizations of a popular class of probabilistic models - the Variational Auto-Encoder (VAE). We point out the two generalization gaps that can affect the generalization ability of VAEs and show that the over-fitting phenomenon is usually dominated by the amortized inference network. Based on this observation we propose a new training objective, inspired by the classic wake-sleep algorithm, to improve the generalizations properties of amortized inference. We also demonstrate how it can improve generalization performance in the context of image modeling and lossless compression.
3,240
null
DOGE-Train: Discrete Optimization on GPU with End-to-end Training
We present a fast, scalable, data-driven approach for solving linear relaxations of 0-1 integer linear programs using a graph neural network. Our solver is based on the Lagrange decomposition based algorithm FastDOG (Abbas et al. (2022)). We make the algorithm differentiable and perform backpropagation through the dual update scheme for end-to-end training of its algorithmic parameters. This allows to preserve the algorithm's theoretical properties including feasibility and guaranteed non-decrease in the lower bound. Since FastDOG can get stuck in suboptimal fixed points, we provide additional freedom to our graph neural network to predict non-parametric update steps for escaping such points while maintaining dual feasibility. For training of the graph neural network we use an unsupervised loss and perform experiments on large-scale real world datasets. We train on smaller problems and test on larger ones showing strong generalization performance with a graph neural network comprising only around 10k parameters. Our solver achieves significantly faster performance and better dual objectives than its non-learned version. In comparison to commercial solvers our learned solver achieves close to optimal objective values of LP relaxations and is faster by up to an order of magnitude on very large problems from structured prediction and on selected combinatorial optimization problems.
3,241
null
Forecasting of Non-Stationary Sales Time Series Using Deep Learning
The paper describes the deep learning approach for forecasting non-stationary time series with using time trend correction in a neural network model. Along with the layers for predicting sales values, the neural network model includes a subnetwork block for the prediction weight for a time trend term which is added to a predicted sales value. The time trend term is considered as a product of the predicted weight value and normalized time value. The results show that the forecasting accuracy can be essentially improved for non-stationary sales with time trends using the trend correction block in the deep learning model.
3,242
null
Identifying Patient-Specific Root Causes of Disease
Complex diseases are caused by a multitude of factors that may differ between patients. As a result, hypothesis tests comparing all patients to all healthy controls can detect many significant variables with inconsequential effect sizes. A few highly predictive root causes may nevertheless generate disease within each patient. In this paper, we define patient-specific root causes as variables subject to exogenous "shocks" which go on to perturb an otherwise healthy system and induce disease. In other words, the variables are associated with the exogenous errors of a structural equation model (SEM), and these errors predict a downstream diagnostic label. We quantify predictivity using sample-specific Shapley values. This derivation allows us to develop a fast algorithm called Root Causal Inference for identifying patient-specific root causes by extracting the error terms of a linear SEM and then computing the Shapley value associated with each error. Experiments highlight considerable improvements in accuracy because the method uncovers root causes that may have large effect sizes at the individual level but clinically insignificant effect sizes at the group level. An R implementation is available at github.com/ericstrobl/RCI.
3,243
null
Utilizing Language-Image Pretraining for Efficient and Robust Bilingual Word Alignment
Word translation without parallel corpora has become feasible, rivaling the performance of supervised methods. Recent findings have shown that the accuracy and robustness of unsupervised word translation (UWT) can be improved by making use of visual observations, which are universal representations across languages. In this work, we investigate the potential of using not only visual observations but also pretrained language-image models for enabling a more efficient and robust UWT. Specifically, we develop a novel UWT method dubbed Word Alignment using Language-Image Pretraining (WALIP), which leverages visual observations via the shared embedding space of images and texts provided by CLIP models (Radford et al., 2021). WALIP has a two-step procedure. First, we retrieve word pairs with high confidences of similarity, computed using our proposed image-based fingerprints, which define the initial pivot for the word alignment. Second, we apply our robust Procrustes algorithm to estimate the linear mapping between two embedding spaces, which iteratively corrects and refines the estimated alignment. Our extensive experiments show that WALIP improves upon the state-of-the-art performance of bilingual word alignment for a few language pairs across different word embeddings and displays great robustness to the dissimilarity of language pairs or training corpora for two word embeddings.
3,244
null
uGLAD: Sparse graph recovery by optimizing deep unrolled networks
Probabilistic Graphical Models (PGMs) are generative models of complex systems. They rely on conditional independence assumptions between variables to learn sparse representations which can be visualized in a form of a graph. Such models are used for domain exploration and structure discovery in poorly understood domains. This work introduces a novel technique to perform sparse graph recovery by optimizing deep unrolled networks. Assuming that the input data $X\in\mathbb{R}^{M\times D}$ comes from an underlying multivariate Gaussian distribution, we apply a deep model on $X$ that outputs the precision matrix $\Theta$, which can also be interpreted as the adjacency matrix. Our model, uGLAD, builds upon and extends the state-of-the-art model GLAD to the unsupervised setting. The key benefits of our model are (1) uGLAD automatically optimizes sparsity-related regularization parameters leading to better performance than existing algorithms. (2) We introduce multi-task learning based `consensus' strategy for robust handling of missing data in an unsupervised setting. We evaluate model results on synthetic Gaussian data, non-Gaussian data generated from Gene Regulatory Networks, and present a case study in anaerobic digestion.
3,245
null
Interpretable Feature Engineering for Time Series Predictors using Attention Networks
Regression problems with time-series predictors are common in banking and many other areas of application. In this paper, we use multi-head attention networks to develop interpretable features and use them to achieve good predictive performance. The customized attention layer explicitly uses multiplicative interactions and builds feature-engineering heads that capture temporal dynamics in a parsimonious manner. Convolutional layers are used to combine multivariate time series. We also discuss methods for handling static covariates in the modeling process. Visualization and explanation tools are used to interpret the results and explain the relationship between the inputs and the extracted features. Both simulation and real dataset are used to illustrate the usefulness of the methodology. Keyword: Attention heads, Deep neural networks, Interpretable feature engineering
3,246
null
PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning
Group fairness ensures that the outcome of machine learning (ML) based decision making systems are not biased towards a certain group of people defined by a sensitive attribute such as gender or ethnicity. Achieving group fairness in Federated Learning (FL) is challenging because mitigating bias inherently requires using the sensitive attribute values of all clients, while FL is aimed precisely at protecting privacy by not giving access to the clients' data. As we show in this paper, this conflict between fairness and privacy in FL can be resolved by combining FL with Secure Multiparty Computation (MPC) and Differential Privacy (DP). In doing so, we propose a method for training group-fair ML models in cross-device FL under complete and formal privacy guarantees, without requiring the clients to disclose their sensitive attribute values.
3,247
null
BolT: Fused Window Transformers for fMRI Time Series Analysis
Functional magnetic resonance imaging (fMRI) enables examination of inter-regional interactions in the brain via functional connectivity (FC) analyses that measure the synchrony between the temporal activations of separate regions. Given their exceptional sensitivity, deep-learning methods have received growing interest for FC analyses of high-dimensional fMRI data. In this domain, models that operate directly on raw time series as opposed to pre-computed FC features have the potential benefit of leveraging the full scale of information present in fMRI data. However, previous models are based on architectures suboptimal for temporal integration of representations across multiple time scales. Here, we present BolT, blood-oxygen-level-dependent transformer, for analyzing multi-variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused window attention mechanism. Transformer encoding is performed on temporally-overlapped time windows within the fMRI time series to capture short time-scale representations. To integrate information across windows, cross-window attention is computed between base tokens in each time window and fringe tokens from neighboring time windows. To transition from local to global representations, the extent of window overlap and thereby number of fringe tokens is progressively increased across the cascade. Finally, a novel cross-window regularization is enforced to align the high-level representations of global $CLS$ features across time windows. Comprehensive experiments on public fMRI datasets clearly illustrate the superior performance of BolT against state-of-the-art methods. Posthoc explanatory analyses to identify landmark time points and regions that contribute most significantly to model decisions corroborate prominent neuroscientific findings from recent fMRI studies.
3,248
null
Quasi Black-Box Variational Inference with Natural Gradients for Bayesian Learning
We develop an optimization algorithm suitable for Bayesian learning in complex models. Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations. It applies within the class of exponential-family variational posterior distributions, for which we extensively discuss the Gaussian case for which the updates have a rather simple form. Our Quasi Black-box Variational Inference (QBVI) framework is readily applicable to a wide class of Bayesian inference problems and is of simple implementation as the updates of the variational posterior do not involve gradients with respect to the model parameters, nor the prescription of the Fisher information matrix. We develop QBVI under different hypotheses for the posterior covariance matrix, discuss details about its robust and feasible implementation, and provide a number of real-world applications to demonstrate its effectiveness.
3,249
null
Identifying (anti-)skyrmions while they form
We use a Convolutional Neural Network (CNN) to identify the relevant features in the thermodynamical phases of a simulated three-dimensional spin-lattice system with ferromagnetic and Dzyaloshinskii-Moriya (DM) interactions. Such features include (anti-)skyrmions, merons, and helical and ferromagnetic states. We use a multi-label classification framework, which is flexible enough to accommodate states that mix different features and phases. We then train the CNN to predict the features of the final state from snapshots of intermediate states of the simulation. The trained model allows identifying the different phases reliably and early in the formation process. Thus, the CNN can significantly speed up the phase diagram calculations by predicting the final phase before the spin-lattice Monte Carlo sampling has converged. We show the prowess of this approach by generating phase diagrams with significantly shorter simulation times.
3,250
null
Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods
Self-Supervised Learning (SSL) surmises that inputs and pairwise positive relationships are enough to learn meaningful representations. Although SSL has recently reached a milestone: outperforming supervised methods in many modalities\dots the theoretical foundations are limited, method-specific, and fail to provide principled design guidelines to practitioners. In this paper, we propose a unifying framework under the helm of spectral manifold learning to address those limitations. Through the course of this study, we will rigorously demonstrate that VICReg, SimCLR, BarlowTwins et al. correspond to eponymous spectral methods such as Laplacian Eigenmaps, Multidimensional Scaling et al. This unification will then allow us to obtain (i) the closed-form optimal representation for each method, (ii) the closed-form optimal network parameters in the linear regime for each method, (iii) the impact of the pairwise relations used during training on each of those quantities and on downstream task performances, and most importantly, (iv) the first theoretical bridge between contrastive and non-contrastive methods towards global and local spectral embedding methods respectively, hinting at the benefits and limitations of each. For example, (i) if the pairwise relation is aligned with the downstream task, any SSL method can be employed successfully and will recover the supervised method, but in the low data regime, VICReg's invariance hyper-parameter should be high; (ii) if the pairwise relation is misaligned with the downstream task, VICReg with small invariance hyper-parameter should be preferred over SimCLR or BarlowTwins.
3,251
null
Computationally Efficient Horizon-Free Reinforcement Learning for Linear Mixture MDPs
Recent studies have shown that episodic reinforcement learning (RL) is not more difficult than contextual bandits, even with a long planning horizon and unknown state transitions. However, these results are limited to either tabular Markov decision processes (MDPs) or computationally inefficient algorithms for linear mixture MDPs. In this paper, we propose the first computationally efficient horizon-free algorithm for linear mixture MDPs, which achieves the optimal $\tilde O(d\sqrt{K} +d^2)$ regret up to logarithmic factors. Our algorithm adapts a weighted least square estimator for the unknown transitional dynamic, where the weight is both \emph{variance-aware} and \emph{uncertainty-aware}. When applying our weighted least square estimator to heterogeneous linear bandits, we can obtain an $\tilde O(d\sqrt{\sum_{k=1}^K \sigma_k^2} +d)$ regret in the first $K$ rounds, where $d$ is the dimension of the context and $\sigma_k^2$ is the variance of the reward in the $k$-th round. This also improves upon the best-known algorithms in this setting when $\sigma_k^2$'s are known.
3,252
null
Orchestra: Unsupervised Federated Learning via Globally Consistent Clustering
Federated learning is generally used in tasks where labels are readily available (e.g., next word prediction). Relaxing this constraint requires design of unsupervised learning techniques that can support desirable properties for federated training: robustness to statistical/systems heterogeneity, scalability with number of participants, and communication efficiency. Prior work on this topic has focused on directly extending centralized self-supervised learning techniques, which are not designed to have the properties listed above. To address this situation, we propose Orchestra, a novel unsupervised federated learning technique that exploits the federation's hierarchy to orchestrate a distributed clustering task and enforce a globally consistent partitioning of clients' data into discriminable clusters. We show the algorithmic pipeline in Orchestra guarantees good generalization performance under a linear probe, allowing it to outperform alternative techniques in a broad range of conditions, including variation in heterogeneity, number of clients, participation ratio, and local epochs.
3,253
null
What Makes Data-to-Text Generation Hard for Pretrained Language Models?
Expressing natural language descriptions of structured facts or relations -- data-to-text generation (D2T) -- increases the accessibility of structured knowledge repositories. Previous work shows that pre-trained language models(PLMs) perform remarkably well on this task after fine-tuning on a significant amount of task-specific training data. On the other hand, while auto-regressive PLMs can generalize from a few task examples, their efficacy at D2T is largely unexplored. Furthermore, we have an incomplete understanding of the limits of PLMs on D2T. In this work, we conduct an empirical study of both fine-tuned and auto-regressive PLMs on the DART multi-domain D2T dataset. We consider their performance as a function of the amount of task-specific data and how these data are incorporated into the models: zero and few-shot learning, and fine-tuning of model weights. In addition, we probe the limits of PLMs by measuring performance on subsets of the evaluation data: novel predicates and abstractive test examples. To improve the performance on these subsets, we investigate two techniques: providing predicate descriptions in the context and re-ranking generated candidates by information reflected in the source. Finally, we conduct a human evaluation of model errors and show that D2T generation tasks would benefit from datasets with more careful manual curation.
3,254
null
Domain Adaptation for Memory-Efficient Dense Retrieval
Dense retrievers encode documents into fixed dimensional embeddings. However, storing all the document embeddings within an index produces bulky indexes which are expensive to serve. Recently, BPR (Yamada et al., 2021) and JPQ (Zhan et al., 2021a) have been proposed which train the model to produce binary document vectors, which reduce the index 32x and more. The authors showed these binary embedding models significantly outperform more traditional index compression techniques like Product Quantization (PQ). Previous work evaluated these approaches just in-domain, i.e. the methods were evaluated on tasks for which training data is available. In practice, retrieval models are often used in an out-of-domain setting, where they have been trained on a publicly available dataset, like MS MARCO, but are then used for some custom dataset for which no training data is available. In this work, we show that binary embedding models like BPR and JPQ can perform significantly worse than baselines once there is a domain-shift involved. We propose a modification to the training procedure of BPR and JPQ and combine it with a corpus specific generative procedure which allow the adaptation of BPR and JPQ to any corpus without requiring labeled training data. Our domain-adapted strategy known as GPL is model agnostic, achieves an improvement by up-to 19.3 and 11.6 points in nDCG@10 across the BEIR benchmark in comparison to BPR and JPQ while maintaining its 32x memory efficiency. JPQ+GPL even outperforms our upper baseline: uncompressed TAS-B model on average by 2.0 points.
3,255
null
Flexible Diffusion Modeling of Long Videos
We present a framework for video modeling based on denoising diffusion probabilistic models that produces long-duration video completions in a variety of realistic environments. We introduce a generative model that can at test-time sample any arbitrary subset of video frames conditioned on any other subset and present an architecture adapted for this purpose. Doing so allows us to efficiently compare and optimize a variety of schedules for the order in which frames in a long video are sampled and use selective sparse and long-range conditioning on previously sampled frames. We demonstrate improved video modeling over prior work on a number of datasets and sample temporally coherent videos over 25 minutes in length. We additionally release a new video modeling dataset and semantically meaningful metrics based on videos generated in the CARLA self-driving car simulator.
3,256
null
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
We present Imagen, a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding. Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g. T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and image-text alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, and DALL-E 2, and find that human raters prefer Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text alignment. See https://imagen.research.google/ for an overview of the results.
3,257
null
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects given individual baseline covariates and can help personalize treatments. However, as CATE only reflects the (conditional) average, it can wash out potential risks and tail events, which are crucially relevant to treatment choice. In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE), such as differences in quantiles or tail expectations between treatment groups. Hypothetically, one can similarly fit covariate-conditional quantile regressions in each treatment group and take their difference, but this would not be robust to misspecification or provide agnostic best-in-class predictions. We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems that includes conditional quantile treatment effects, conditional super-quantile treatment effects, and conditional treatment effects on coherent risk measures given by $f$-divergences. Our method is based on constructing a special pseudo-outcome and regressing it on baseline covariates using any given regression learner. Our method is model-agnostic in the sense that it can provide the best projection of CDTE onto the regression model class. Our method is robust in the sense that even if we learn these nuisances nonparametrically at very slow rates, we can still learn CDTEs at rates that depend on the class complexity and even conduct inferences on linear projections of CDTEs. We investigate the performance of our proposal in simulation studies, and we demonstrate its use in a case study of 401(k) eligibility effects on wealth.
3,258
null
Conditional Supervised Contrastive Learning for Fair Text Classification
Contrastive representation learning has gained much attention due to its superior performance in learning representations from both image and sequential data. However, the learned representations could potentially lead to performance disparities in downstream tasks, such as increased silencing of underrepresented groups in toxicity comment classification. In light of this challenge, in this work, we study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning. Specifically, we first theoretically analyze the connections between learning representations with fairness constraint and conditional supervised contrastive objectives. Inspired by our theoretical findings, we propose to use conditional supervised contrastive objectives to learn fair representations for text classification. We conduct experiments on two text datasets to demonstrate the effectiveness of our approaches in balancing the trade-offs between task performance and bias mitigation among existing baselines for text classification. Furthermore, we also show that the proposed methods are stable in different hyperparameter settings.
3,259
null
Learning differential equations from data
Differential equations are used to model problems that originate in disciplines such as physics, biology, chemistry, and engineering. In recent times, due to the abundance of data, there is an active search for data-driven methods to learn Differential equation models from data. However, many numerical methods often fall short. Advancements in neural networks and deep learning, have motivated a shift towards data-driven deep learning methods of learning differential equations from data. In this work, we propose a forward-Euler based neural network model and test its performance by learning ODEs such as the FitzHugh-Nagumo equations from data using different number of hidden layers and different neural network width.
3,260
null
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
Traditionally anomaly detection (AD) is treated as an unsupervised problem utilizing only normal samples due to the intractability of characterizing everything that looks unlike the normal data. However, it has recently been found that unsupervised image anomaly detection can be drastically improved through the utilization of huge corpora of random images to represent anomalousness; a technique which is known as Outlier Exposure. In this paper we show that specialized AD learning methods seem actually superfluous and huge corpora of data expendable. For a common AD benchmark on ImageNet, standard classifiers and semi-supervised one-class methods trained to discern between normal samples and just a few random natural images are able to outperform the current state of the art in deep AD, and only one useful outlier sample is sufficient to perform competitively. We investigate this phenomenon and reveal that one-class methods are more robust towards the particular choice of training outliers. Furthermore, we find that a simple classifier based on representations from CLIP, a recent foundation model, achieves state-of-the-art results on CIFAR-10 and also outperforms all previous AD methods on ImageNet without any training samples (i.e., in a zero-shot setting).
3,261
null
Rethinking Streaming Machine Learning Evaluation
While most work on evaluating machine learning (ML) models focuses on computing accuracy on batches of data, tracking accuracy alone in a streaming setting (i.e., unbounded, timestamp-ordered datasets) fails to appropriately identify when models are performing unexpectedly. In this position paper, we discuss how the nature of streaming ML problems introduces new real-world challenges (e.g., delayed arrival of labels) and recommend additional metrics to assess streaming ML performance.
3,262
null
Exploiting the Curvature of Feasible Sets for Faster Projection-Free Online Learning
In this paper, we develop new efficient projection-free algorithms for Online Convex Optimization (OCO). Online Gradient Descent (OGD) is an example of a classical OCO algorithm that guarantees the optimal $O(\sqrt{T})$ regret bound. However, OGD and other projection-based OCO algorithms need to perform a Euclidean projection onto the feasible set $\mathcal{C}\subset \mathbb{R}^d$ whenever their iterates step outside $\mathcal{C}$. For various sets of interests, this projection step can be computationally costly, especially when the ambient dimension is large. This has motivated the development of projection-free OCO algorithms that swap Euclidean projections for often much cheaper operations such as Linear Optimization (LO). However, state-of-the-art LO-based algorithms only achieve a suboptimal $O(T^{3/4})$ regret for general OCO. In this paper, we leverage recent results in parameter-free Online Learning, and develop an OCO algorithm that makes two calls to an LO Oracle per round and achieves the near-optimal $\widetilde{O}(\sqrt{T})$ regret whenever the feasible set is strongly convex. We also present an algorithm for general convex sets that makes $\widetilde O(d)$ expected number of calls to an LO Oracle per round and guarantees a $\widetilde O(T^{2/3})$ regret, improving on the previous best $O(T^{3/4})$. We achieve the latter by approximating any convex set $\mathcal{C}$ by a strongly convex one, where LO can be performed using $\widetilde {O}(d)$ expected number of calls to an LO Oracle for $\mathcal{C}$.
3,263
null
Advanced Transient Diagnostic with Ensemble Digital Twin Modeling
The use of machine learning (ML) model as digital-twins for reduced-order-modeling (ROM) in lieu of system codes has grown traction over the past few years. However, due to the complex and non-linear nature of nuclear reactor transients as well as the large range of tasks required, it is infeasible for a single ML model to generalize across all tasks. In this paper, we incorporate issue specific digital-twin ML models with ensembles to enhance the prediction outcome. The ensemble also utilizes an indirect probabilistic tracking method of surrogate state variables to produce accurate predictions of unobservable safety goals. The unique method named Ensemble Diagnostic Digital-twin Modeling (EDDM) can select not only the most appropriate predictions from the incorporated diagnostic digital-twin models but can also reduce generalization error associated with training as opposed to single models.
3,264
null
CELEST: Federated Learning for Globally Coordinated Threat Detection
The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.
3,265
null
What is Your Metric Telling You? Evaluating Classifier Calibration under Context-Specific Definitions of Reliability
Classifier calibration has received recent attention from the machine learning community due both to its practical utility in facilitating decision making, as well as the observation that modern neural network classifiers are poorly calibrated. Much of this focus has been towards the goal of learning classifiers such that their output with largest magnitude (the "predicted class") is calibrated. However, this narrow interpretation of classifier outputs does not adequately capture the variety of practical use cases in which classifiers can aid in decision making. In this work, we argue that more expressive metrics must be developed that accurately measure calibration error for the specific context in which a classifier will be deployed. To this end, we derive a number of different metrics using a generalization of Expected Calibration Error (ECE) that measure calibration error under different definitions of reliability. We then provide an extensive empirical evaluation of commonly used neural network architectures and calibration techniques with respect to these metrics. We find that: 1) definitions of ECE that focus solely on the predicted class fail to accurately measure calibration error under a selection of practically useful definitions of reliability and 2) many common calibration techniques fail to improve calibration performance uniformly across ECE metrics derived from these diverse definitions of reliability.
3,266
null
Data augmentation for efficient learning from parametric experts
We present a simple, yet powerful data-augmentation technique to enable data-efficient learning from parametric experts for reinforcement and imitation learning. We focus on what we call the policy cloning setting, in which we use online or offline queries of an expert or expert policy to inform the behavior of a student policy. This setting arises naturally in a number of problems, for instance as variants of behavior cloning, or as a component of other algorithms such as DAGGER, policy distillation or KL-regularized RL. Our approach, augmented policy cloning (APC), uses synthetic states to induce feedback-sensitivity in a region around sampled trajectories, thus dramatically reducing the environment interactions required for successful cloning of the expert. We achieve highly data-efficient transfer of behavior from an expert to a student policy for high-degrees-of-freedom control problems. We demonstrate the benefit of our method in the context of several existing and widely used algorithms that include policy cloning as a constituent part. Moreover, we highlight the benefits of our approach in two practically relevant settings (a) expert compression, i.e. transfer to a student with fewer parameters; and (b) transfer from privileged experts, i.e. where the expert has a different observation space than the student, usually including access to privileged information.
3,267
null
Overfitting in quantum machine learning and entangling dropout
The ultimate goal in machine learning is to construct a model function that has a generalization capability for unseen dataset, based on given training dataset. If the model function has too much expressibility power, then it may overfit to the training data and as a result lose the generalization capability. To avoid such overfitting issue, several techniques have been developed in the classical machine learning regime, and the dropout is one such effective method. This paper proposes a straightforward analogue of this technique in the quantum machine learning regime, the entangling dropout, meaning that some entangling gates in a given parametrized quantum circuit are randomly removed during the training process to reduce the expressibility of the circuit. Some simple case studies are given to show that this technique actually suppresses the overfitting.
3,268
null
Federated Distillation based Indoor Localization for IoT Networks
Federated distillation (FD) paradigm has been recently proposed as a promising alternative to federated learning (FL) especially in wireless sensor networks with limited communication resources. However, all state-of-the art FD algorithms are designed for only classification tasks and less attention has been given to regression tasks. In this work, we propose an FD framework that properly operates on regression learning problems. Afterwards, we present a use-case implementation by proposing an indoor localization system that shows a good trade-off communication load vs. accuracy compared to federated learning (FL) based indoor localization. With our proposed framework, we reduce the number of transmitted bits by up to 98%. Moreover, we show that the proposed framework is much more scalable than FL, thus more likely to cope with the expansion of wireless networks.
3,269
null
SiPRNet: End-to-End Learning for Single-Shot Phase Retrieval
Traditional optimization algorithms have been developed to deal with the phase retrieval problem. However, multiple measurements with different random or non-random masks are needed for giving a satisfactory performance. This brings a burden to the implementation of the algorithms in practical systems. Even worse, expensive optical devices are required to implement the optical masks. Recently, deep learning, especially convolutional neural networks (CNN), has played important roles in various image reconstruction tasks. However, traditional CNN structure fails to reconstruct the original images from their Fourier measurements because of tremendous domain discrepancy. In this paper, we design a novel CNN structure, named SiPRNet, to recover a signal from a single Fourier intensity measurement. To effectively utilize the spectral information of the measurements, we propose a new Multi-Layer Perception block embedded with the dropout layer to extract the global representations. Two Up-sampling and Reconstruction blocks with self-attention are utilized to recover the signals from the extracted features. Extensive evaluations of the proposed model are performed using different testing datasets on both simulation and optical experimentation platforms. The results demonstrate that the proposed approach consistently outperforms other CNN-based and traditional optimization-based methods in single-shot maskless phase retrieval. The source codes of the proposed method have been released on Github: https://github.com/Qiustander/SiPRNet.
3,270
null
Informed Pre-Training on Prior Knowledge
When training data is scarce, the incorporation of additional prior knowledge can assist the learning process. While it is common to initialize neural networks with weights that have been pre-trained on other large data sets, pre-training on more concise forms of knowledge has rather been overlooked. In this paper, we propose a novel informed machine learning approach and suggest to pre-train on prior knowledge. Formal knowledge representations, e.g. graphs or equations, are first transformed into a small and condensed data set of knowledge prototypes. We show that informed pre-training on such knowledge prototypes (i) speeds up the learning processes, (ii) improves generalization capabilities in the regime where not enough training data is available, and (iii) increases model robustness. Analyzing which parts of the model are affected most by the prototypes reveals that improvements come from deeper layers that typically represent high-level features. This confirms that informed pre-training can indeed transfer semantic knowledge. This is a novel effect, which shows that knowledge-based pre-training has additional and complementary strengths to existing approaches.
3,271
null
Logical Reasoning with Span Predictions: Span-level Logical Atoms for Interpretable and Robust NLI Models
Current Natural Language Inference (NLI) models achieve impressive results, sometimes outperforming humans when evaluating on in-distribution test sets. However, as these models are known to learn from annotation artefacts and dataset biases, it is unclear to what extent the models are learning the task of NLI instead of learning from shallow heuristics in their training data. We address this issue by introducing a logical reasoning framework for NLI, creating highly transparent model decisions that are based on logical rules. Unlike prior work, we show that the improved interpretability can be achieved without decreasing the predictive accuracy. We almost fully retain performance on SNLI while identifying the exact hypothesis spans that are responsible for each model prediction. Using the e-SNLI human explanations, we also verify that our model makes sensible decisions at a span level, despite not using any span-level labels during training. We can further improve model performance and the span-level decisions by using the e-SNLI explanations during training. Finally, our model outperforms its baseline in a reduced data setting. When training with only 100 examples, in-distribution performance improves by 18%, while out-of-distribution performance improves on SNLI-hard, MNLI-mismatched, MNLI-matched and SICK by 11%, 26%, 22%, and 21% respectively.
3,272
null
Spreading Factor and RSSI for Localization in LoRa Networks: A Deep Reinforcement Learning Approach
Recent advancements in Internet of Things (IoT) technologies have resulted in a tightening of requirements from various applications including localization in LoRa networks. To address the growing demand for LoRaWAN-powered IoT location-based services, accurate localization solutions are more crucial than ever. As such, in this work, we develop an accurate deep neural network based localization framework over a LoRa network by proposing a novel approach that builds the network radio map with the combination of RSSI recordings and the spreading factors (SF) used by LoRa devices during the transmissions. Then, we validate our framework using a publicly available experimental dataset recorded in an urban LoRa network. The performance evaluation shows the prominence of adding the spreading factor as an additional fingerprint, since we can achieve, by our approach, an improvement in localization accuracy by up to 6.67% compared to the state-of-the-art methods which employ uniquely the RSSI fingerprints. Additionally, we provide an analysis of the impact of the SF on the localization performance which reveals that the localization accuracy relies on the SF used for position request. Finally, we propose a deep reinforcement learning based localization system to capture the ever-growing complexity of LoRa networks environment and cope with the scalability issue in LoRa enabled massive IoT, and the results show an improvement of 63.3% in terms of accuracy.
3,273
null
Instance-Based Uncertainty Estimation for Gradient-Boosted Regression Trees
We propose Instance-Based Uncertainty estimation for Gradient-boosted regression trees~(IBUG), a simple method for extending any GBRT point predictor to produce probabilistic predictions. IBUG computes a non-parametric distribution around a prediction using the k-nearest training instances, where distance is measured with a tree-ensemble kernel. The runtime of IBUG depends on the number of training examples at each leaf in the ensemble, and can be improved by sampling trees or training instances. Empirically, we find that IBUG achieves similar or better performance than the previous state-of-the-art across 22 benchmark regression datasets. We also find that IBUG can achieve improved probabilistic performance by using different base GBRT models, and can more flexibly model the posterior distribution of a prediction than competing methods. We also find that previous methods suffer from poor probabilistic calibration on some datasets, which can be mitigated using a scalar factor tuned on the validation data.
3,274
null
Deep-learning-based prediction of nanoparticle phase transitions during in situ transmission electron microscopy
We develop the machine learning capability to predict a time sequence of in-situ transmission electron microscopy (TEM) video frames based on the combined long-short-term-memory (LSTM) algorithm and the features de-entanglement method. We train deep learning models to predict a sequence of future video frames based on the input of a sequence of previous frames. This unique capability provides insight into size dependent structural changes in Au nanoparticles under dynamic reaction condition using in-situ environmental TEM data, informing models of morphological evolution and catalytic properties. The model performance and achieved accuracy of predictions are desirable based on, for scientific data characteristic, based on limited size of training data sets. The model convergence and values for the loss function mean square error show dependence on the training strategy, and structural similarity measure between predicted structure images and ground truth reaches the value of about 0.7. This computed structural similarity is smaller than values obtained when the deep learning architecture is trained using much larger benchmark data sets, it is sufficient to show the structural transition of Au nanoparticles. While performance parameters of our model applied to scientific data fall short of those achieved for the non-scientific big data sets, we demonstrate model ability to predict the evolution, even including the particle structural phase transformation, of Au nano particles as catalyst for CO oxidation under the chemical reaction conditions. Using this approach, it may be possible to anticipate the next steps of a chemical reaction for emerging automated experimentation platforms.
3,275
null
Variable-Input Deep Operator Networks
Existing architectures for operator learning require that the number and locations of sensors (where the input functions are evaluated) remain the same across all training and test samples, significantly restricting the range of their applicability. We address this issue by proposing a novel operator learning framework, termed Variable-Input Deep Operator Network (VIDON), which allows for random sensors whose number and locations can vary across samples. VIDON is invariant to permutations of sensor locations and is proved to be universal in approximating a class of continuous operators. We also prove that VIDON can efficiently approximate operators arising in PDEs. Numerical experiments with a diverse set of PDEs are presented to illustrate the robust performance of VIDON in learning operators.
3,276
null
Causal Machine Learning for Healthcare and Precision Medicine
Causal machine learning (CML) has experienced increasing popularity in healthcare. Beyond the inherent capabilities of adding domain knowledge into learning systems, CML provides a complete toolset for investigating how a system would react to an intervention (e.g.\ outcome given a treatment). Quantifying effects of interventions allows actionable decisions to be made whilst maintaining robustness in the presence of confounders. Here, we explore how causal inference can be incorporated into different aspects of clinical decision support (CDS) systems by using recent advances in machine learning. Throughout this paper, we use Alzheimer's disease (AD) to create examples for illustrating how CML can be advantageous in clinical scenarios. Furthermore, we discuss important challenges present in healthcare applications such as processing high-dimensional and unstructured data, generalisation to out-of-distribution samples, and temporal relationships, that despite the great effort from the research community remain to be solved. Finally, we review lines of research within causal representation learning, causal discovery and causal reasoning which offer the potential towards addressing the aforementioned challenges.
3,277
null
Fine-Grained Counting with Crowd-Sourced Supervision
Crowd-sourcing is an increasingly popular tool for image analysis in animal ecology. Computer vision methods that can utilize crowd-sourced annotations can help scale up analysis further. In this work we study the potential to do so on the challenging task of fine-grained counting. As opposed to the standard crowd counting task, fine-grained counting also involves classifying attributes of individuals in dense crowds. We introduce a new dataset from animal ecology to enable this study that contains 1.7M crowd-sourced annotations of 8 fine-grained classes. It is the largest available dataset for fine-grained counting and the first to enable the study of the task with crowd-sourced annotations. We introduce methods for generating aggregate "ground truths" from the collected annotations, as well as a counting method that can utilize the aggregate information. Our method improves results by 8% over a comparable baseline, indicating the potential for algorithms to learn fine-grained counting using crowd-sourced supervision.
3,278
null
Generic bounds on the approximation error for physics-informed (and) operator learning
We propose a very general framework for deriving rigorous bounds on the approximation error for physics-informed neural networks (PINNs) and operator learning architectures such as DeepONets and FNOs as well as for physics-informed operator learning. These bounds guarantee that PINNs and (physics-informed) DeepONets or FNOs will efficiently approximate the underlying solution or solution operator of generic partial differential equations (PDEs). Our framework utilizes existing neural network approximation results to obtain bounds on more involved learning architectures for PDEs. We illustrate the general framework by deriving the first rigorous bounds on the approximation error of physics-informed operator learning and by showing that PINNs (and physics-informed DeepONets and FNOs) mitigate the curse of dimensionality in approximating nonlinear parabolic PDEs.
3,279
null
StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models
Knowledge and language understanding of models evaluated through question answering (QA) has been usually studied on static snapshots of knowledge, like Wikipedia. However, our world is dynamic, evolves over time, and our models' knowledge becomes outdated. To study how semi-parametric QA models and their underlying parametric language models (LMs) adapt to evolving knowledge, we construct a new large-scale dataset, StreamingQA, with human written and generated questions asked on a given date, to be answered from 14 years of time-stamped news articles. We evaluate our models quarterly as they read new articles not seen in pre-training. We show that parametric models can be updated without full retraining, while avoiding catastrophic forgetting. For semi-parametric models, adding new articles into the search space allows for rapid adaptation, however, models with an outdated underlying LM under-perform those with a retrained LM. For questions about higher-frequency named entities, parametric updates are particularly beneficial. In our dynamic world, the StreamingQA dataset enables a more realistic evaluation of QA models, and our experiments highlight several promising directions for future research.
3,280
null
Markedness in Visual Semantic AI
We evaluate the state-of-the-art multimodal "visual semantic" model CLIP ("Contrastive Language Image Pretraining") for biases related to the marking of age, gender, and race or ethnicity. Given the option to label an image as "a photo of a person" or to select a label denoting race or ethnicity, CLIP chooses the "person" label 47.9% of the time for White individuals, compared with 5.0% or less for individuals who are Black, East Asian, Southeast Asian, Indian, or Latino or Hispanic. The model is more likely to rank the unmarked "person" label higher than labels denoting gender for Male individuals (26.7% of the time) vs. Female individuals (15.2% of the time). Age affects whether an individual is marked by the model: Female individuals under the age of 20 are more likely than Male individuals to be marked with a gender label, but less likely to be marked with an age label, while Female individuals over the age of 40 are more likely to be marked based on age than Male individuals. We also examine the self-similarity (mean pairwise cosine similarity) for each social group, where higher self-similarity denotes greater attention directed by CLIP to the shared characteristics (age, race, or gender) of the social group. As age increases, the self-similarity of representations of Female individuals increases at a higher rate than for Male individuals, with the disparity most pronounced at the "more than 70" age range. All ten of the most self-similar social groups are individuals under the age of 10 or over the age of 70, and six of the ten are Female individuals. Existing biases of self-similarity and markedness between Male and Female gender groups are further exacerbated when the groups compared are individuals who are White and Male and individuals who are Black and Female. Results indicate that CLIP reflects the biases of the language and society which produced its training data.
3,281
null
Learned Digital Back-Propagation for Dual-Polarization Dispersion Managed Systems
Digital back-propagation (DBP) and learned DBP (LDBP) are proposed for nonlinearity mitigation in WDM dual-polarization dispersion-managed systems. LDBP achieves Q-factor improvement of 1.8 dB and 1.2 dB, respectively, over linear equalization and a variant of DBP adapted to DM systems.
3,282
null
Exploring the limits of multifunctionality across different reservoir computers
Multifunctional neural networks are capable of performing more than one task without changing any network connections. In this paper we explore the performance of a continuous-time, leaky-integrator, and next-generation `reservoir computer' (RC), when trained on tasks which test the limits of multifunctionality. In the first task we train each RC to reconstruct a coexistence of chaotic attractors from different dynamical systems. By moving the data describing these attractors closer together, we find that the extent to which each RC can reconstruct both attractors diminishes as they begin to overlap in state space. In order to provide a greater understanding of this inhibiting effect, in the second task we train each RC to reconstruct a coexistence of two circular orbits which differ only in the direction of rotation. We examine the critical effects that certain parameters can have in each RC to achieve multifunctionality in this extreme case of completely overlapping training data.
3,283
null
User Clustering for Rate Splitting using Machine Learning
Hierarchical Rate Splitting (HRS) schemes proposed in recent years have shown to provide significant improvements in exploiting spatial diversity in wireless networks and provide high throughput for all users while minimising interference among them. Hence, one of the major challenges for such HRS schemes is the necessity to know the optimal clustering of these users based only on their Channel State Information (CSI). This clustering problem is known to be NP hard and, to deal with the unmanageable complexity of finding an optimal solution, in this work a scalable and much lighter clustering mechanism based on Neural Network (NN) is proposed. The accuracy and performance metrics show that the NN is able to learn and cluster the users based on the noisy channel response and is able to achieve a rate comparable to other more complex clustering schemes from the literature.
3,284
null
Statistical inference as Green's functions
Statistical inference from data is foundational task in science. Recently, it receives growing attention for its central role in inference systems of primary interest in data science, artificial intelligence, or machine learning. However, the understanding of statistical inference itself is not that solid while regarded as a matter of subjective choice or implemented in obscure ways. We here show that statistical inference has rigorous scientific description for long sequence of exchangeable binary random variables, the prototypal stochasticity in theories and applications. A linear differential equation is derived from the exchangeability, and it turns out that statistical inference is given by the Green's functions. Our finding is the answer to the normative and foundational issue in science, and its significance will be far-reaching in all pure and applied fields.
3,285
null
Graph-Based Methods for Discrete Choice
Choices made by individuals have widespread impacts--for instance, people choose between political candidates to vote for, between social media posts to share, and between brands to purchase--moreover, data on these choices are increasingly abundant. Discrete choice models are a key tool for learning individual preferences from such data. Additionally, social factors like conformity and contagion influence individual choice. Existing methods for incorporating these factors into choice models do not account for the entire social network and require hand-crafted features. To overcome these limitations, we use graph learning to study choice in networked contexts. We identify three ways in which graph learning techniques can be used for discrete choice: learning chooser representations, regularizing choice model parameters, and directly constructing predictions from a network. We design methods in each category and test them on real-world choice datasets, including county-level 2016 US election results and Android app installation and usage data. We show that incorporating social network structure can improve the predictions of the standard econometric choice model, the multinomial logit. We provide evidence that app installations are influenced by social context, but we find no such effect on app usage among the same participants, which instead is habit-driven. In the election data, we highlight the additional insights a discrete choice framework provides over classification or regression, the typical approaches. On synthetic data, we demonstrate the sample complexity benefit of using social information in choice models.
3,286
null
Chaotic Regularization and Heavy-Tailed Limits for Deterministic Gradient Descent
Recent studies have shown that gradient descent (GD) can achieve improved generalization when its dynamics exhibits a chaotic behavior. However, to obtain the desired effect, the step-size should be chosen sufficiently large, a task which is problem dependent and can be difficult in practice. In this study, we incorporate a chaotic component to GD in a controlled manner, and introduce multiscale perturbed GD (MPGD), a novel optimization framework where the GD recursion is augmented with chaotic perturbations that evolve via an independent dynamical system. We analyze MPGD from three different angles: (i) By building up on recent advances in rough paths theory, we show that, under appropriate assumptions, as the step-size decreases, the MPGD recursion converges weakly to a stochastic differential equation (SDE) driven by a heavy-tailed L\'evy-stable process. (ii) By making connections to recently developed generalization bounds for heavy-tailed processes, we derive a generalization bound for the limiting SDE and relate the worst-case generalization error over the trajectories of the process to the parameters of MPGD. (iii) We analyze the implicit regularization effect brought by the dynamical regularization and show that, in the weak perturbation regime, MPGD introduces terms that penalize the Hessian of the loss function. Empirical results are provided to demonstrate the advantages of MPGD.
3,287
null
Capacity Bounds for the DeepONet Method of Solving Differential Equations
In recent times machine learning methods have made significant advances in becoming a useful tool for analyzing physical systems. A particularly active area in this theme has been "physics informed machine learning" [1] which focuses on using neural nets for numerically solving differential equations. Among all the proposals for solving differential equations using deep-learning, in this paper we aim to advance the theory of generalization error for DeepONets - which is unique among all the available ideas because of its particularly intriguing structure of having an inner-product of two neural nets. Our key contribution is to give a bound on the Rademacher complexity for a large class of DeepONets. Our bound does not explicitly scale with the number of parameters of the nets involved and is thus a step towards explaining the efficacy of overparameterized DeepONets. Additionally, a capacity bound such as ours suggests a novel regularizer on the neural net weights that can help in training DeepONets - irrespective of the differential equation being solved. [1] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed machine learning. Nature Reviews Physics, 2021.
3,288
null
POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning
The goal of Unsupervised Reinforcement Learning (URL) is to find a reward-agnostic prior policy on a task domain, such that the sample-efficiency on supervised downstream tasks is improved. Although agents initialized with such a prior policy can achieve a significantly higher reward with fewer samples when finetuned on the downstream task, it is still an open question how an optimal pretrained prior policy can be achieved in practice. In this work, we present POLTER (Policy Trajectory Ensemble Regularization) - a general method to regularize the pretraining that can be applied to any URL algorithm and is especially useful on data- and knowledge-based URL algorithms. It utilizes an ensemble of policies that are discovered during pretraining and moves the policy of the URL algorithm closer to its optimal prior. Our method is theoretically justified, and we analyze its practical effects on a white-box benchmark, allowing us to study POLTER with full control. In our main experiments, we evaluate POLTER on the Unsupervised Reinforcement Learning Benchmark (URLB), which consists of 12 tasks in 3 domains. We demonstrate the generality of our approach by improving the performance of a diverse set of data- and knowledge-based URL algorithms by 19% on average and up to 40% in the best case. Under a fair comparison with tuned baselines and tuned POLTER, we establish a new the state-of-the-art on the URLB.
3,289
null
ScholarBERT: Bigger is Not Always Better
Transformer-based masked language models trained on general corpora, such as BERT and RoBERTa, have shown impressive performance on various downstream tasks. Increasingly, researchers are "finetuning" these models to improve performance on domain-specific tasks. Here, we report a broad study in which we applied 14 transformer-based models to 11 scientific tasks in order to evaluate how downstream performance is affected by changes along various dimensions (e.g., training data, model size, pretraining time, finetuning length). In this process, we created the largest and most diverse scientific language model to date, ScholarBERT, by training a 770M-parameter BERT model on an 221B token scientific literature dataset spanning many disciplines. Counterintuitively, our evaluation of the 14 BERT-based models (seven versions of ScholarBERT, five science-specific large language models from the literature, BERT-Base, and BERT-Large) reveals little difference in performance across the 11 science-focused tasks, despite major differences in model size and training data. We argue that our results establish an upper bound for the performance achievable with BERT-based architectures on tasks from the scientific domain.
3,290
null
FedSA: Accelerating Intrusion Detection in Collaborative Environments with Federated Simulated Annealing
Fast identification of new network attack patterns is crucial for improving network security. Nevertheless, identifying an ongoing attack in a heterogeneous network is a non-trivial task. Federated learning emerges as a solution to collaborative training for an Intrusion Detection System (IDS). The federated learning-based IDS trains a global model using local machine learning models provided by federated participants without sharing local data. However, optimization challenges are intrinsic to federated learning. This paper proposes the Federated Simulated Annealing (FedSA) metaheuristic to select the hyperparameters and a subset of participants for each aggregation round in federated learning. FedSA optimizes hyperparameters linked to the global model convergence. The proposal reduces aggregation rounds and speeds up convergence. Thus, FedSA accelerates learning extraction from local models, requiring fewer IDS updates. The proposal assessment shows that the FedSA global model converges in less than ten communication rounds. The proposal requires up to 50% fewer aggregation rounds to achieve approximately 97% accuracy in attack detection than the conventional aggregation approach.
3,291
null
ImGCL: Revisiting Graph Contrastive Learning on Imbalanced Node Classification
Graph contrastive learning (GCL) has attracted a surge of attention due to its superior performance for learning node/graph representations without labels. However, in practice, unlabeled nodes for the given graph usually follow an implicit imbalanced class distribution, where the majority of nodes belong to a small fraction of classes (a.k.a., head class) and the rest classes occupy only a few samples (a.k.a., tail classes). This highly imbalanced class distribution inevitably deteriorates the quality of learned node representations in GCL. Indeed, we empirically find that most state-of-the-art GCL methods exhibit poor performance on imbalanced node classification. Motivated by this observation, we propose a principled GCL framework on Imbalanced node classification (ImGCL), which automatically and adaptively balances the representation learned from GCL without knowing the labels. Our main inspiration is drawn from the recent progressively balanced sampling (PBS) method in the computer vision domain. We first introduce online clustering based PBS, which balances the training sets based on pseudo-labels obtained from learned representations. We then develop the node centrality based PBS method to better preserve the intrinsic structure of graphs, which highlight the important nodes of the given graph. Besides, we theoretically consolidate our method by proving that the classifier learned by balanced sampling without labels on an imbalanced dataset can converge to the optimal balanced classifier with a linear rate. Extensive experiments on multiple imbalanced graph datasets and imbalance settings verify the effectiveness of our proposed framework, which significantly improves the performance of the recent state-of-the-art GCL methods. Further experimental ablations and analysis show that the ImGCL framework remarkably improves the representations of nodes in tail classes.
3,292
null
Towards automatic detection of wildlife trade using machine vision models
Unsustainable trade in wildlife is one of the major threats affecting the global biodiversity crisis. An important part of the trade now occurs on the internet, especially on digital marketplaces and social media. Automated methods to identify trade posts are needed as resources for conservation are limited. Here, we developed machine vision models based on Deep Neural Networks with the aim to automatically identify images of exotic pet animals for sale. A new training dataset representing exotic pet animals advertised for sale on the web was generated for this purpose. We trained 24 neural-net models spanning a combination of five different architectures, three methods of training and two types of datasets. Specifically, model generalisation improved after setting a portion of the training images to represent negative features. Models were evaluated on both within and out of distribution data to test wider model applicability. The top performing models achieved an f-score of over 0.95 on within distribution evaluation and between 0.75 to 0.87 on the two out of distribution datasets. Notably, feature visualisation indicated that models performed well in detecting the surrounding context (e.g. a cage) in which an animal was located, therefore helping to automatically detect images of animals in non-natural environments. The proposed methods can help investigate the online wildlife trade, but can also be adapted to study other types of people-nature interactions from digital platforms. Future studies can use these findings to build robust machine learning models and new data collection pipelines for more taxonomic groups.
3,293
null
Learning heterophilious edge to drop: A general framework for boosting graph neural networks
Graph Neural Networks (GNNs) aim at integrating node contents with graph structure to learn nodes/graph representations. Nevertheless, it is found that most of existing GNNs do not work well on data with high heterophily level that accounts for a large proportion of edges between different class labels. Recently, many efforts to tackle this problem focus on optimizing the way of feature learning. From another angle, this work aims at mitigating the negative impacts of heterophily by optimizing graph structure for the first time. Specifically, on assumption that graph smoothing along heterophilious edges can hurt prediction performance, we propose a structure learning method called LHE to identify heterophilious edges to drop. A big advantage of this solution is that it can boost GNNs without careful modification of feature learning strategy. Extensive experiments demonstrate the remarkable performance improvement of GNNs with \emph{LHE} on multiple datasets across full spectrum of homophily level.
3,294
null
Active Learning Through a Covering Lens
Deep active learning aims to reduce the annotation cost for deep neural networks, which are notoriously data-hungry. Until recently, deep active learning methods struggled in the low-budget regime, where only a small amount of samples are annotated. The situation has been alleviated by recent advances in self-supervised representation learning methods, which impart the geometry of the data representation with rich information about the points. Taking advantage of this progress, we study the problem of subset selection for annotation through a "covering" lens, proposing ProbCover -- a new active learning algorithm for the low budget regime, which seeks to maximize Probability Coverage. We describe a dual way to view our formulation, from which one can derive strategies suitable for the high budget regime of active learning, related to existing methods like Coreset. We conclude with extensive experiments, evaluating ProbCover in the low budget regime. We show that our principled active learning strategy improves the state-of-the-art in the low-budget regime in several image recognition benchmarks. This method is especially beneficial in semi-supervised settings, allowing state-of-the-art semi-supervised methods to achieve high accuracy with only a few labels.
3,295
null
Privacy-preserving Data Filtering in Federated Learning Using Influence Approximation
Federated Learning by nature is susceptible to low-quality, corrupted, or even malicious data that can severely degrade the quality of the learned model. Traditional techniques for data valuation cannot be applied as the data is never revealed. We present a novel technique for filtering, and scoring data based on a practical influence approximation that can be implemented in a privacy-preserving manner. Each agent uses his own data to evaluate the influence of another agent's batch, and reports to the center an obfuscated score using differential privacy. Our technique allows for almost perfect ($>92\%$ recall) filtering of corrupted data in a variety of applications using real-data. Importantly, the accuracy does not degrade significantly, even under really strong privacy guarantees ($\varepsilon \leq 1$), especially under realistic percentages of mislabeled data (for $15\%$ mislabeled data we only lose $10\%$ in accuracy).
3,296
null
Training Efficient CNNS: Tweaking the Nuts and Bolts of Neural Networks for Lighter, Faster and Robust Models
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. Many techniques have evolved over the past decade that made models lighter, faster, and robust with better generalization. However, many deep learning practitioners persist with pre-trained models and architectures trained mostly on standard datasets such as Imagenet, MS-COCO, IMDB-Wiki Dataset, and Kinetics-700 and are either hesitant or unaware of redesigning the architecture from scratch that will lead to better performance. This scenario leads to inefficient models that are not suitable on various devices such as mobile, edge, and fog. In addition, these conventional training methods are of concern as they consume a lot of computing power. In this paper, we revisit various SOTA techniques that deal with architecture efficiency (Global Average Pooling, depth-wise convolutions & squeeze and excitation, Blurpool), learning rate (Cyclical Learning Rate), data augmentation (Mixup, Cutout), label manipulation (label smoothing), weight space manipulation (stochastic weight averaging), and optimizer (sharpness aware minimization). We demonstrate how an efficient deep convolution network can be built in a phased manner by sequentially reducing the number of training parameters and using the techniques mentioned above. We achieved a SOTA accuracy of 99.2% on MNIST data with just 1500 parameters and an accuracy of 86.01% with just over 140K parameters on the CIFAR-10 dataset.
3,297
null
SelfReformer: Self-Refined Network with Transformer for Salient Object Detection
The global and local contexts significantly contribute to the integrity of predictions in Salient Object Detection (SOD). Unfortunately, existing methods still struggle to generate complete predictions with fine details. There are two major problems in conventional approaches: first, for global context, high-level CNN-based encoder features cannot effectively catch long-range dependencies, resulting in incomplete predictions. Second, downsampling the ground truth to fit the size of predictions will introduce inaccuracy as the ground truth details are lost during interpolation or pooling. Thus, in this work, we developed a Transformer-based network and framed a supervised task for a branch to learn the global context information explicitly. Besides, we adopt Pixel Shuffle from Super-Resolution (SR) to reshape the predictions back to the size of ground truth instead of the reverse. Thus details in the ground truth are untouched. In addition, we developed a two-stage Context Refinement Module (CRM) to fuse global context and automatically locate and refine the local details in the predictions. The proposed network can guide and correct itself based on the global and local context generated, thus is named, Self-Refined Transformer (SelfReformer). Extensive experiments and evaluation results on five benchmark datasets demonstrate the outstanding performance of the network, and we achieved the state-of-the-art.
3,298
null
Neural Copula: A unified framework for estimating generic high-dimensional Copula functions
The Copula is widely used to describe the relationship between the marginal distribution and joint distribution of random variables. The estimation of high-dimensional Copula is difficult, and most existing solutions rely either on simplified assumptions or on complicating recursive decompositions. Therefore, people still hope to obtain a generic Copula estimation method with both universality and simplicity. To reach this goal, a novel neural network-based method (named Neural Copula) is proposed in this paper. In this method, a hierarchical unsupervised neural network is constructed to estimate the marginal distribution function and the Copula function by solving differential equations. In the training program, various constraints are imposed on both the neural network and its derivatives. The Copula estimated by the proposed method is smooth and has an analytic expression. The effectiveness of the proposed method is evaluated on both real-world datasets and complex numerical simulations. Experimental results show that Neural Copula's fitting quality for complex distributions is much better than classical methods. The relevant code for the experiments is available on GitHub. (We encourage the reader to run the program for a better understanding of the proposed method).
3,299
null
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction
How to accurately predict the properties of molecules is an essential problem in AI-driven drug discovery, which generally requires a large amount of annotation for training deep learning models. Annotating molecules, however, is quite costly because it requires lab experiments conducted by experts. To reduce annotation cost, deep Active Learning (AL) methods are developed to select only the most representative and informative data for annotating. However, existing best deep AL methods are mostly developed for a single type of learning task (e.g., single-label classification), and hence may not perform well in molecular property prediction that involves various task types. In this paper, we propose a Task-type-generic active learning framework (termed Tyger) that is able to handle different types of learning tasks in a unified manner. The key is to learn a chemically-meaningful embedding space and perform active selection fully based on the embeddings, instead of relying on task-type-specific heuristics (e.g., class-wise prediction probability) as done in existing works. Specifically, for learning the embedding space, we instantiate a querying module that learns to translate molecule graphs into corresponding SMILES strings. Furthermore, to ensure that samples selected from the space are both representative and informative, we propose to shape the embedding space by two learning objectives, one based on domain knowledge and the other leveraging feedback from the task learner (i.e., model that performs the learning task at hand). We conduct extensive experiments on benchmark datasets of different task types. Experimental results show that Tyger consistently achieves high AL performance on molecular property prediction, outperforming baselines by a large margin. We also perform ablative experiments to verify the effectiveness of each component in Tyger.
3,300
null
Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity
Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network architecture that is enriched by Hebbian synaptic plasticity. We show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. It improves their abilities for out-of-distribution generalization, one-shot learning, cross-modal generative association, language processing, and reward-based learning. As spiking neural networks are the basis for energy-efficient neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.
3,301
null
RL with KL penalties is better viewed as Bayesian inference
Reinforcement learning (RL) is frequently employed in fine-tuning large language models (LMs), such as GPT-3, to penalize them for undesirable features of generated sequences, such as offensiveness, social bias, harmfulness or falsehood. The RL formulation involves treating the LM as a policy and updating it to maximise the expected value of a reward function which captures human preferences, such as non-offensiveness. In this paper, we analyze challenges associated with treating a language model as an RL policy and show how avoiding those challenges requires moving beyond the RL paradigm. We start by observing that the standard RL approach is flawed as an objective for fine-tuning LMs because it leads to distribution collapse: turning the LM into a degenerate distribution. Then, we analyze KL-regularised RL, a widely used recipe for fine-tuning LMs, which additionally constrains the fine-tuned LM to stay close to its original distribution in terms of Kullback-Leibler (KL) divergence. We show that KL-regularised RL is equivalent to variational inference: approximating a Bayesian posterior which specifies how to update a prior LM to conform with evidence provided by the reward function. We argue that this Bayesian inference view of KL-regularised RL is more insightful than the typically employed RL perspective. The Bayesian inference view explains how KL-regularised RL avoids the distribution collapse problem and offers a first-principles derivation for its objective. While this objective happens to be equivalent to RL (with a particular choice of parametric reward), there exist other objectives for fine-tuning LMs which are no longer equivalent to RL. That observation leads to a more general point: RL is not an adequate formal framework for problems such as fine-tuning language models. These problems are best viewed as Bayesian inference: approximating a pre-defined target distribution.
3,302
null
Fed-DART and FACT: A solution for Federated Learning in a production environment
Federated Learning as a decentralized artificial intelligence (AI) solution solves a variety of problems in industrial applications. It enables a continuously self-improving AI, which can be deployed everywhere at the edge. However, bringing AI to production for generating a real business impact is a challenging task. Especially in the case of Federated Learning, expertise and resources from multiple domains are required to realize its full potential. Having this in mind we have developed an innovative Federated Learning framework FACT based on Fed-DART, enabling an easy and scalable deployment, helping the user to fully leverage the potential of their private and decentralized data.
3,303
null
What You See is What You Classify: Black Box Attributions
An important step towards explaining deep image classifiers lies in the identification of image regions that contribute to individual class scores in the model's output. However, doing this accurately is a difficult task due to the black-box nature of such networks. Most existing approaches find such attributions either using activations and gradients or by repeatedly perturbing the input. We instead address this challenge by training a second deep network, the Explainer, to predict attributions for a pre-trained black-box classifier, the Explanandum. These attributions are in the form of masks that only show the classifier-relevant parts of an image, masking out the rest. Our approach produces sharper and more boundary-precise masks when compared to the saliency maps generated by other methods. Moreover, unlike most existing approaches, ours is capable of directly generating very distinct class-specific masks. Finally, the proposed method is very efficient for inference since it only takes a single forward pass through the Explainer to generate all class-specific masks. We show that our attributions are superior to established methods both visually and quantitatively, by evaluating them on the PASCAL VOC-2007 and Microsoft COCO-2014 datasets.
3,304
null
Deep Image Retrieval is not Robust to Label Noise
Large-scale datasets are essential for the success of deep learning in image retrieval. However, manual assessment errors and semi-supervised annotation techniques can lead to label noise even in popular datasets. As previous works primarily studied annotation quality in image classification tasks, it is still unclear how label noise affects deep learning approaches to image retrieval. In this work, we show that image retrieval methods are less robust to label noise than image classification ones. Furthermore, we, for the first time, investigate different types of label noise specific to image retrieval tasks and study their effect on model performance.
3,305
null
An Evaluation Study of Intrinsic Motivation Techniques applied to Reinforcement Learning over Hard Exploration Environments
In the last few years, the research activity around reinforcement learning tasks formulated over environments with sparse rewards has been especially notable. Among the numerous approaches proposed to deal with these hard exploration problems, intrinsic motivation mechanisms are arguably among the most studied alternatives to date. Advances reported in this area over time have tackled the exploration issue by proposing new algorithmic ideas to generate alternative mechanisms to measure the novelty. However, most efforts in this direction have overlooked the influence of different design choices and parameter settings that have also been introduced to improve the effect of the generated intrinsic bonus, forgetting the application of those choices to other intrinsic motivation techniques that may also benefit of them. Furthermore, some of those intrinsic methods are applied with different base reinforcement algorithms (e.g. PPO, IMPALA) and neural network architectures, being hard to fairly compare the provided results and the actual progress provided by each solution. The goal of this work is to stress on this crucial matter in reinforcement learning over hard exploration environments, exposing the variability and susceptibility of avant-garde intrinsic motivation techniques to diverse design factors. Ultimately, our experiments herein reported underscore the importance of a careful selection of these design aspects coupled with the exploration requirements of the environment and the task in question under the same setup, so that fair comparisons can be guaranteed.
3,306
null
How Powerful are Spectral Graph Neural Networks
Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based on graph signal filters. Some models able to learn arbitrary spectral filters have emerged recently. However, few works analyze the expressive power of spectral GNNs. This paper studies spectral GNNs' expressive power theoretically. We first prove that even spectral GNNs without nonlinearity can produce arbitrary graph signals and give two conditions for reaching universality. They are: 1) no multiple eigenvalues of graph Laplacian, and 2) no missing frequency components in node features. We also establish a connection between the expressive power of spectral GNNs and Graph Isomorphism (GI) testing, the latter of which is often used to characterize spatial GNNs' expressive power. Moreover, we study the difference in empirical performance among different spectral GNNs with the same expressive power from an optimization perspective, and motivate the use of an orthogonal basis whose weight function corresponds to the graph signal density in the spectrum. Inspired by the analysis, we propose JacobiConv, which uses Jacobi basis due to its orthogonality and flexibility to adapt to a wide range of weight functions. JacobiConv deserts nonlinearity while outperforming all baselines on both synthetic and real-world datasets.
3,307
null
Logarithmic regret bounds for continuous-time average-reward Markov decision processes
We consider reinforcement learning for continuous-time Markov decision processes (MDPs) in the infinite-horizon, average-reward setting. In contrast to discrete-time MDPs, a continuous-time process moves to a state and stays there for a random holding time after an action is taken. With unknown transition probabilities and rates of exponential holding times, we derive instance-dependent regret lower bounds that are logarithmic in the time horizon. Moreover, we design a learning algorithm and establish a finite-time regret bound that achieves the logarithmic growth rate. Our analysis builds upon upper confidence reinforcement learning, a delicate estimation of the mean holding times, and stochastic comparison of point processes.