Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
3,008
null
Scalable and Low-Latency Federated Learning with Cooperative Mobile Edge Networking
Federated learning (FL) enables collaborative model training without centralizing data. However, the traditional FL framework is cloud-based and suffers from high communication latency. On the other hand, the edge-based FL framework that relies on an edge server co-located with access point for model aggregation has low communication latency but suffers from degraded model accuracy due to the limited coverage of edge server. In light of high-accuracy but high-latency cloud-based FL and low-latency but low-accuracy edge-based FL, this paper proposes a new FL framework based on cooperative mobile edge networking called cooperative federated edge learning (CFEL) to enable both high-accuracy and low-latency distributed intelligence at mobile edge networks. Considering the unique two-tier network architecture of CFEL, a novel federated optimization method dubbed cooperative edge-based federated averaging (CE-FedAvg) is further developed, wherein each edge server both coordinates collaborative model training among the devices within its own coverage and cooperates with other edge servers to learn a shared global model through decentralized consensus. Experimental results based on benchmark datasets show that CFEL can largely speed up the convergence speed and reduce the training time to achieve a target model accuracy compared with prior FL frameworks.
3,009
null
Online Deep Equilibrium Learning for Regularization by Denoising
Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely-used frameworks for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image priors. While traditional PnP/RED formulations have focused on priors specified using image denoisers, there is a growing interest in learning PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly differentiating through the fixed-point equations without storing intermediate activation values. However, the dependence of the computational/memory complexity of the measurement models in PnP/RED on the total number of measurements leaves DEQ impractical for many imaging applications. We propose ODER as a new strategy for improving the efficiency of DEQ through stochastic approximations of the measurement models. We theoretically analyze ODER giving insights into its convergence and ability to approximate the traditional DEQ approach. Our numerical results suggest the potential improvements in training/testing complexity due to ODER on three distinct imaging applications.
3,010
null
Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments
We initiate the study of dynamic regret minimization for goal-oriented reinforcement learning modeled by a non-stationary stochastic shortest path problem with changing cost and transition functions. We start by establishing a lower bound $\Omega((B_{\star} SAT_{\star}(\Delta_c + B_{\star}^2\Delta_P))^{1/3}K^{2/3})$, where $B_{\star}$ is the maximum expected cost of the optimal policy of any episode starting from any state, $T_{\star}$ is the maximum hitting time of the optimal policy of any episode starting from the initial state, $SA$ is the number of state-action pairs, $\Delta_c$ and $\Delta_P$ are the amount of changes of the cost and transition functions respectively, and $K$ is the number of episodes. The different roles of $\Delta_c$ and $\Delta_P$ in this lower bound inspire us to design algorithms that estimate costs and transitions separately. Specifically, assuming the knowledge of $\Delta_c$ and $\Delta_P$, we develop a simple but sub-optimal algorithm and another more involved minimax optimal algorithm (up to logarithmic terms). These algorithms combine the ideas of finite-horizon approximation [Chen et al., 2022a], special Bernstein-style bonuses of the MVP algorithm [Zhang et al., 2020], adaptive confidence widening [Wei and Luo, 2021], as well as some new techniques such as properly penalizing long-horizon policies. Finally, when $\Delta_c$ and $\Delta_P$ are unknown, we develop a variant of the MASTER algorithm [Wei and Luo, 2021] and integrate the aforementioned ideas into it to achieve $\widetilde{O}(\min\{B_{\star} S\sqrt{ALK}, (B_{\star}^2S^2AT_{\star}(\Delta_c+B_{\star}\Delta_P))^{1/3}K^{2/3}\})$ regret, where $L$ is the unknown number of changes of the environment.
3,011
null
Improving Subgraph Representation Learning via Multi-View Augmentation
Subgraph representation learning based on Graph Neural Network (GNN) has broad applications in chemistry and biology, such as molecule property prediction and gene collaborative function prediction. On the other hand, graph augmentation techniques have shown promising results in improving graph-based and node-based classification tasks but are rarely explored in the GNN-based subgraph representation learning literature. In this work, we developed a novel multiview augmentation mechanism to improve subgraph representation learning and thus the accuracy of downstream prediction tasks. The augmentation technique creates multiple variants of subgraphs and embeds these variants into the original graph to achieve both high training efficiency, scalability, and improved accuracy. Experiments on several real-world subgraph benchmarks demonstrate the superiority of our proposed multi-view augmentation techniques.
3,012
null
EvoVGM: A Deep Variational Generative Model for Evolutionary Parameter Estimation
Most evolutionary-oriented deep generative models do not explicitly consider the underlying evolutionary dynamics of biological sequences as it is performed within the Bayesian phylogenetic inference framework. In this study, we propose a method for a deep variational Bayesian generative model that jointly approximates the true posterior of local biological evolutionary parameters and generates sequence alignments. Moreover, it is instantiated and tuned for continuous-time Markov chain substitution models such as JC69 and GTR. We train the model via a low-variance variational objective function and a gradient ascent algorithm. Here, we show the consistency and effectiveness of the method on synthetic sequence alignments simulated with several evolutionary scenarios and on a real virus sequence alignment.
3,013
null
Topological Simplification of Signals for Inference and Approximate Reconstruction
As Internet of Things (IoT) devices become both cheaper and more powerful, researchers are increasingly finding solutions to their scientific curiosities both financially and computationally feasible. When operating with restricted power or communications budgets, however, devices can only send highly-compressed data. Such circumstances are common for devices placed away from electric grids that can only communicate via satellite, a situation particularly plausible for environmental sensor networks. These restrictions can be further complicated by potential variability in the communications budget, for example a solar-powered device needing to expend less energy when transmitting data on a cloudy day. We propose a novel, topology-based, lossy compression method well-equipped for these restrictive yet variable circumstances. This technique, Topological Signal Compression, allows sending compressed signals that utilize the entirety of a variable communications budget. To demonstrate our algorithm's capabilities, we perform entropy calculations as well as a classification exercise on increasingly topologically simplified signals from the Free-Spoken Digit Dataset and explore the stability of the resulting performance against common baselines.
3,014
null
Concurrent Neural Tree and Data Preprocessing AutoML for Image Classification
Deep Neural Networks (DNN's) are a widely-used solution for a variety of machine learning problems. However, it is often necessary to invest a significant amount of a data scientist's time to pre-process input data, test different neural network architectures, and tune hyper-parameters for optimal performance. Automated machine learning (autoML) methods automatically search the architecture and hyper-parameter space for optimal neural networks. However, current state-of-the-art (SOTA) methods do not include traditional methods for manipulating input data as part of the algorithmic search space. We adapt the Evolutionary Multi-objective Algorithm Design Engine (EMADE), a multi-objective evolutionary search framework for traditional machine learning methods, to perform neural architecture search. We also integrate EMADE's signal processing and image processing primitives. These primitives allow EMADE to manipulate input data before ingestion into the simultaneously evolved DNN. We show that including these methods as part of the search space shows potential to provide benefits to performance on the CIFAR-10 image classification benchmark dataset.
3,015
null
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem we are often faced with a choice among algorithms that are all guaranteed to return the right answer but that differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
3,016
null
Preference Dynamics Under Personalized Recommendations
Many projects (both practical and academic) have designed algorithms to match users to content they will enjoy under the assumption that user's preferences and opinions do not change with the content they see. Evidence suggests that individuals' preferences are directly shaped by what content they see -- radicalization, rabbit holes, polarization, and boredom are all example phenomena of preferences affected by content. Polarization in particular can occur even in ecosystems with "mass media," where no personalization takes place, as recently explored in a natural model of preference dynamics by~\citet{hkazla2019geometric} and~\citet{gaitonde2021polarization}. If all users' preferences are drawn towards content they already like, or are repelled from content they already dislike, uniform consumption of media leads to a population of heterogeneous preferences converging towards only two poles. In this work, we explore whether some phenomenon akin to polarization occurs when users receive \emph{personalized} content recommendations. We use a similar model of preference dynamics, where an individual's preferences move towards content the consume and enjoy, and away from content they consume and dislike. We show that standard user reward maximization is an almost trivial goal in such an environment (a large class of simple algorithms will achieve only constant regret). A more interesting objective, then, is to understand under what conditions a recommendation algorithm can ensure stationarity of user's preferences. We show how to design a content recommendations which can achieve approximate stationarity, under mild conditions on the set of available content, when a user's preferences are known, and how one can learn enough about a user's preferences to implement such a strategy even when user preferences are initially unknown.
3,017
null
People counting system for retail analytics using edge AI
Developments in IoT applications are playing an important role in our day-to-day life, starting from business predictions to self driving cars. One of the area, most influenced by the field of AI and IoT is retail analytics. In Retail Analytics, Conversion Rates - a metric which is most often used by retail stores to measure how many people have visited the store and how many purchases has happened. This retail conversion rate assess the marketing operations, increasing stock, store outlet and running promotions ..etc. Our project intends to build a cost-effective people counting system with AI at Edge, where it calculates Conversion rates using total number of people counted by the system and number of transactions for the day, which helps in providing analytical insights for retail store optimization with a very minimum hardware requirements.
3,018
null
BiT: Robustly Binarized Multi-distilled Transformer
Modern pre-trained transformers have rapidly advanced the state-of-the-art in machine learning, but have also grown in parameters and computational complexity, making them increasingly difficult to deploy in resource-constrained environments. Binarization of the weights and activations of the network can significantly alleviate these issues, however is technically challenging from an optimization perspective. In this work, we identify a series of improvements which enables binary transformers at a much higher accuracy than what was possible previously. These include a two-set binarization scheme, a novel elastic binary activation function with learned parameters, and a method to quantize a network to its limit by successively distilling higher precision models into lower precision students. These approaches allow for the first time, fully binarized transformer models that are at a practical level of accuracy, approaching a full-precision BERT baseline on the GLUE language understanding benchmark within as little as 5.9%.
3,019
null
TSEM: Temporally Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series
Deep learning has become a one-size-fits-all solution for technical and business domains thanks to its flexibility and adaptability. It is implemented using opaque models, which unfortunately undermines the outcome trustworthiness. In order to have a better understanding of the behavior of a system, particularly one driven by time series, a look inside a deep learning model so-called posthoc eXplainable Artificial Intelligence (XAI) approaches, is important. There are two major types of XAI for time series data, namely model-agnostic and model-specific. Model-specific approach is considered in this work. While other approaches employ either Class Activation Mapping (CAM) or Attention Mechanism, we merge the two strategies into a single system, simply called the Temporally Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series (TSEM). TSEM combines the capabilities of RNN and CNN models in such a way that RNN hidden units are employed as attention weights for the CNN feature maps temporal axis. The result shows that TSEM outperforms XCM. It is similar to STAM in terms of accuracy, while also satisfying a number of interpretability criteria, including causality, fidelity, and spatiotemporality.
3,020
null
QGNN: Value Function Factorisation with Graph Neural Networks
In multi-agent reinforcement learning, the use of a global objective is a powerful tool for incentivising cooperation. Unfortunately, it is not sample-efficient to train individual agents with a global reward, because it does not necessarily correlate with an agent's individual actions. This problem can be solved by factorising the global value function into local value functions. Early work in this domain performed factorisation by conditioning local value functions purely on local information. Recently, it has been shown that providing both local information and an encoding of the global state can promote cooperative behaviour. In this paper we propose QGNN, the first value factorisation method to use a graph neural network (GNN) based model. The multi-layer message passing architecture of QGNN provides more representational complexity than models in prior work, allowing it to produce a more effective factorisation. QGNN also introduces a permutation invariant mixer which is able to match the performance of other methods, even with significantly fewer parameters. We evaluate our method against several baselines, including QMIX-Att, GraphMIX, QMIX, VDN, and hybrid architectures. Our experiments include Starcraft, the standard benchmark for credit assignment; Estimate Game, a custom environment that explicitly models inter-agent dependencies; and Coalition Structure Generation, a foundational problem with real-world applications. The results show that QGNN outperforms state-of-the-art value factorisation baselines consistently.
3,021
null
Inception Transformer
Recent studies show that Transformer has strong capability of building long-range dependencies, yet is incompetent in capturing high frequencies that predominantly convey local information. To tackle this issue, we present a novel and general-purpose Inception Transformer, or iFormer for short, that effectively learns comprehensive features with both high- and low-frequency information in visual data. Specifically, we design an Inception mixer to explicitly graft the advantages of convolution and max-pooling for capturing the high-frequency information to Transformers. Different from recent hybrid frameworks, the Inception mixer brings greater efficiency through a channel splitting mechanism to adopt parallel convolution/max-pooling path and self-attention path as high- and low-frequency mixers, while having the flexibility to model discriminative information scattered within a wide frequency range. Considering that bottom layers play more roles in capturing high-frequency details while top layers more in modeling low-frequency global information, we further introduce a frequency ramp structure, i.e. gradually decreasing the dimensions fed to the high-frequency mixer and increasing those to the low-frequency mixer, which can effectively trade-off high- and low-frequency components across different layers. We benchmark the iFormer on a series of vision tasks, and showcase that it achieves impressive performance on image classification, COCO detection and ADE20K segmentation. For example, our iFormer-S hits the top-1 accuracy of 83.4% on ImageNet-1K, much higher than DeiT-S by 3.6%, and even slightly better than much bigger model Swin-B (83.3%) with only 1/4 parameters and 1/3 FLOPs. Code and models will be released at https://github.com/sail-sg/iFormer.
3,022
null
Federated Adaptation of Reservoirs via Intrinsic Plasticity
We propose a novel algorithm for performing federated learning with Echo State Networks (ESNs) in a client-server scenario. In particular, our proposal focuses on the adaptation of reservoirs by combining Intrinsic Plasticity with Federated Averaging. The former is a gradient-based method for adapting the reservoir's non-linearity in a local and unsupervised manner, while the latter provides the framework for learning in the federated scenario. We evaluate our approach on real-world datasets from human monitoring, in comparison with the previous approach for federated ESNs existing in literature. Results show that adapting the reservoir with our algorithm provides a significant improvement on the performance of the global model.
3,023
null
Learning Mean Field Games: A Survey
Non-cooperative and cooperative games with a very large number of players have many applications but remain generally intractable when the number of players increases. Introduced by Lasry and Lions, and Huang, Caines and Malham\'e, Mean Field Games (MFGs) rely on a mean-field approximation to allow the number of players to grow to infinity. Traditional methods for solving these games generally rely on solving partial or stochastic differential equations with a full knowledge of the model. Recently, Reinforcement Learning (RL) has appeared promising to solve complex problems. By combining MFGs and RL, we hope to solve games at a very large scale both in terms of population size and environment complexity. In this survey, we review the quickly growing recent literature on RL methods to learn Nash equilibria in MFGs. We first identify the most common settings (static, stationary, and evolutive). We then present a general framework for classical iterative methods (based on best-response computation or policy evaluation) to solve MFGs in an exact way. Building on these algorithms and the connection with Markov Decision Processes, we explain how RL can be used to learn MFG solutions in a model-free way. Last, we present numerical illustrations on a benchmark problem, and conclude with some perspectives.
3,024
null
Conformal Prediction Intervals with Temporal Dependence
Cross-sectional prediction is common in many domains such as healthcare, including forecasting tasks using electronic health records, where different patients form a cross-section. We focus on the task of constructing valid prediction intervals (PIs) in time-series regression with a cross-section. A prediction interval is considered valid if it covers the true response with (a pre-specified) high probability. We first distinguish between two notions of validity in such a setting: cross-sectional and longitudinal. Cross-sectional validity is concerned with validity across the cross-section of the time series data, while longitudinal validity accounts for the temporal dimension. Coverage guarantees along both these dimensions are ideally desirable; however, we show that distribution-free longitudinal validity is theoretically impossible. Despite this limitation, we propose Conformal Prediction with Temporal Dependence (CPTD), a procedure which is able to maintain strict cross-sectional validity while improving longitudinal coverage. CPTD is post-hoc and light-weight, and can easily be used in conjunction with any prediction model as long as a calibration set is available. We focus on neural networks due to their ability to model complicated data such as diagnosis codes for time-series regression, and perform extensive experimental validation to verify the efficacy of our approach. We find that CPTD outperforms baselines on a variety of datasets by improving longitudinal coverage and often providing more efficient (narrower) PIs.
3,025
null
Predicting Corporate Risk by Jointly Modeling Company Networks and Dialogues in Earnings Conference Calls
More and more researchers focus on studying company risk prediction based on earnings conference calls because of their free form and rich information. However, existing research does not take speaker role information into account. Besides, current research does not fully consider the impact of inter-company relationships on company risk. The only study integrating company networks and earnings conference calls constructs companies in an undirected graph, which does not meet the requirement of no temporal information leakage for prediction tasks. To solve the above problems, we propose a new model -- Temporal Virtual Graph Neural Network (TVGNN), to incorporate earnings conference calls and company networks for company risk prediction. Our model incorporates the speaker's role information in the dialogue modeling for the first time. In addition, we design a new method to construct company networks that can ensure no temporal information leakage in the graph. The experimental results show that the proposed model exceeds all baselines. The case study shows that the prediction results of the model are interpretable.
3,026
null
Mitigating multiple descents: A model-agnostic framework for risk monotonization
Recent empirical and theoretical analyses of several commonly used prediction procedures reveal a peculiar risk behavior in high dimensions, referred to as double/multiple descent, in which the asymptotic risk is a non-monotonic function of the limiting aspect ratio of the number of features or parameters to the sample size. To mitigate this undesirable behavior, we develop a general framework for risk monotonization based on cross-validation that takes as input a generic prediction procedure and returns a modified procedure whose out-of-sample prediction risk is, asymptotically, monotonic in the limiting aspect ratio. As part of our framework, we propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and boosting, respectively, and show that, under very mild assumptions, they provably achieve monotonic asymptotic risk behavior. Our results are applicable to a broad variety of prediction procedures and loss functions, and do not require a well-specified (parametric) model. We exemplify our framework with concrete analyses of the minimum $\ell_2$, $\ell_1$-norm least squares prediction procedures. As one of the ingredients in our analysis, we also derive novel additive and multiplicative forms of oracle risk inequalities for split cross-validation that are of independent interest.
3,027
null
Amortized Inference for Causal Structure Learning
Learning causal structure poses a combinatorial search problem that typically involves evaluating structures using a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize the process of causal structure learning. Rather than searching over causal structures directly, we train a variational inference model to predict the causal structure from observational/interventional data. Our inference model acquires domain-specific inductive bias for causal discovery solely from data generated by a simulator. This allows us to bypass both the search over graphs and the hand-engineering of suitable score functions. Moreover, the architecture of our inference model is permutation invariant w.r.t. the data points and permutation equivariant w.r.t. the variables, facilitating generalization to significantly larger problem instances than seen during training. On synthetic data and semi-synthetic gene expression data, our models exhibit robust generalization capabilities under substantial distribution shift and significantly outperform existing algorithms, especially in the challenging genomics domain.
3,028
null
Analytics of Business Time Series Using Machine Learning and Bayesian Inference
In the survey we consider the case studies on sales time series forecasting, the deep learning approach for forecasting non-stationary time series using time trend correction, dynamic price and supply optimization using Q-learning, Bitcoin price modeling, COVID-19 spread impact on stock market, using social networks signals in analytics. The use of machine learning and Bayesian inference in predictive analytics has been analyzed.
3,029
null
A Neural Tangent Kernel Formula for Ensembles of Soft Trees with Arbitrary Architectures
A soft tree is an actively studied variant of a decision tree that updates splitting rules using the gradient method. Although it can have various tree architectures, the theoretical properties of their impact are not well known. In this paper, we formulate and analyze the Neural Tangent Kernel (NTK) induced by soft tree ensembles for arbitrary tree architectures. This kernel leads to the remarkable finding that only the number of leaves at each depth is relevant for the tree architecture in ensemble learning with infinitely many trees. In other words, if the number of leaves at each depth is fixed, the training behavior in function space and the generalization performance are exactly the same across different tree architectures, even if they are not isomorphic. We also show that the NTK of asymmetric trees like decision lists does not degenerate when they get infinitely deep. This is in contrast to the perfect binary trees, whose NTK is known to degenerate and leads to worse generalization performance for deeper trees.
3,030
null
RADNet: Ensemble Model for Robust Glaucoma Classification in Color Fundus Images
Glaucoma is one of the most severe eye diseases, characterized by rapid progression and leading to irreversible blindness. It is often the case that pathology diagnostics is carried out when the one's sight has already significantly degraded due to the lack of noticeable symptoms at early stage of the disease. Regular glaucoma screenings of the population shall improve early-stage detection, however the desirable frequency of etymological checkups is often not feasible due to excessive load imposed by manual diagnostics on limited number of specialists. Considering the basic methodology to detect glaucoma is to analyze fundus images for the \textit{optic-disc-to-optic-cup ratio}, Machine Learning domain can offer sophisticated tooling for image processing and classification. In our work, we propose an advanced image pre-processing technique combined with an ensemble of deep classification networks. Our \textit{Retinal Auto Detection (RADNet)} model has been successfully tested on Rotterdam EyePACS AIROGS train dataset with AUC of 0.92, and then additionally finetuned and tested on a fraction of RIM-ONE DL dataset with AUC of 0.91.
3,031
null
Differentially Private Data Generation Needs Better Features
Training even moderately-sized generative models with differentially-private stochastic gradient descent (DP-SGD) is difficult: the required level of noise for reasonable levels of privacy is simply too large. We advocate instead building off a good, relevant representation on public data, then using private data only for "transfer learning." In particular, we minimize the maximum mean discrepancy (MMD) between private target data and the generated distribution, using a kernel based on perceptual features from a public dataset. With the MMD, we can simply privatize the data-dependent term once and for all, rather than introducing noise at each step of optimization as in DP-SGD. Our algorithm allows us to generate CIFAR10-level images faithfully with $\varepsilon \approx 2$, far surpassing the current state of the art, which only models MNIST and FashionMNIST at $\varepsilon \approx 10$. Our work introduces simple yet powerful foundations for reducing the gap between private and non-private deep generative models.
3,032
null
Robust Reinforcement Learning on Graphs for Logistics optimization
Logistics optimization nowadays is becoming one of the hottest areas in the AI community. In the past year, significant advancements in the domain were achieved by representing the problem in a form of graph. Another promising area of research was to apply reinforcement learning algorithms to the above task. In our work, we made advantage of using both approaches and apply reinforcement learning on a graph. To do that, we have analyzed the most recent results in both fields and selected SOTA algorithms both from graph neural networks and reinforcement learning. Then, we combined selected models on the problem of AMOD systems optimization for the transportation network of New York city. Our team compared three algorithms - GAT, Pro-CNN and PTDNet - to bring to the fore the important nodes on a graph representation. Finally, we achieved SOTA results on AMOD systems optimization problem employing PTDNet with GNN and training them in reinforcement fashion. Keywords: Graph Neural Network (GNN), Logistics optimization, Reinforcement Learning
3,033
null
Trust-based Consensus in Multi-Agent Reinforcement Learning Systems
An often neglected issue in multi-agent reinforcement learning (MARL) is the potential presence of unreliable agents in the environment whose deviations from expected behavior can prevent a system from accomplishing its intended tasks. In particular, consensus is a fundamental underpinning problem of cooperative distributed multi-agent systems. Consensus requires different agents, situated in a decentralized communication network, to reach an agreement out of a set of initial proposals that they put forward. Learning-based agents should adopt a protocol that allows them to reach consensus despite having one or more unreliable agents in the system. This paper investigates the problem of unreliable agents in MARL, considering consensus as case study. Echoing established results in the distributed systems literature, our experiments show that even a moderate fraction of such agents can greatly impact the ability of reaching consensus in a networked environment. We propose Reinforcement Learning-based Trusted Consensus (RLTC), a decentralized trust mechanism, in which agents can independently decide which neighbors to communicate with. We empirically demonstrate that our trust mechanism is able to deal with unreliable agents effectively, as evidenced by higher consensus success rates.
3,034
null
Understanding Programmatic Weak Supervision via Source-aware Influence Function
Programmatic Weak Supervision (PWS) aggregates the source votes of multiple weak supervision sources into probabilistic training labels, which are in turn used to train an end model. With its increasing popularity, it is critical to have some tool for users to understand the influence of each component (e.g., the source vote or training data) in the pipeline and interpret the end model behavior. To achieve this, we build on Influence Function (IF) and propose source-aware IF, which leverages the generation process of the probabilistic labels to decompose the end model's training objective and then calculate the influence associated with each (data, source, class) tuple. These primitive influence score can then be used to estimate the influence of individual component of PWS, such as source vote, supervision source, and training data. On datasets of diverse domains, we demonstrate multiple use cases: (1) interpreting incorrect predictions from multiple angles that reveals insights for debugging the PWS pipeline, (2) identifying mislabeling of sources with a gain of 9%-37% over baselines, and (3) improving the end model's generalization performance by removing harmful components in the training objective (13%-24% better than ordinary IF).
3,035
null
Image Colorization using U-Net with Skip Connections and Fusion Layer on Landscape Images
We present a novel technique to automatically colorize grayscale images that combine the U-Net model and Fusion Layer features. This approach allows the model to learn the colorization of images from pre-trained U-Net. Moreover, the Fusion layer is applied to merge local information results dependent on small image patches with global priors of an entire image on each class, forming visually more compelling colorization results. Finally, we validate our approach with a user study evaluation and compare it against state-of-the-art, resulting in improvements.
3,036
null
Stochastic Second-Order Methods Provably Beat SGD For Gradient-Dominated Functions
We study the performance of Stochastic Cubic Regularized Newton (SCRN) on a class of functions satisfying gradient dominance property which holds in a wide range of applications in machine learning and signal processing. This condition ensures that any first-order stationary point is a global optimum. We prove that SCRN improves the best-known sample complexity of stochastic gradient descent in achieving $\epsilon$-global optimum by a factor of $\mathcal{O}(\epsilon^{-1/2})$. Even under a weak version of gradient dominance property, which is applicable to policy-based reinforcement learning (RL), SCRN achieves the same improvement over stochastic policy gradient methods. Additionally, we show that the sample complexity of SCRN can be improved by a factor of ${\mathcal{O}}(\epsilon^{-1/2})$ using a variance reduction method with time-varying batch sizes. Experimental results in various RL settings showcase the remarkable performance of SCRN compared to first-order methods.
3,037
null
A Universal Error Measure for Input Predictions Applied to Online Graph Problems
We introduce a novel measure for quantifying the error in input predictions. The error is based on a minimum-cost hyperedge cover in a suitably defined hypergraph and provides a general template which we apply to online graph problems. The measure captures errors due to absent predicted requests as well as unpredicted actual requests; hence, predicted and actual inputs can be of arbitrary size. We achieve refined performance guarantees for previously studied network design problems in the online-list model, such as Steiner tree and facility location. Further, we initiate the study of learning-augmented algorithms for online routing problems, such as the traveling salesperson problem and dial-a-ride problem, where (transportation) requests arrive over time (online-time model). We provide a general algorithmic framework and we give error-dependent performance bounds that improve upon known worst-case barriers, when given accurate predictions, at the cost of slightly increased worst-case bounds when given predictions of arbitrary quality.
3,038
null
Removing the fat from your posterior samples with margarine
Bayesian workflows often require the introduction of nuisance parameters, yet for core science modelling one needs access to a marginal posterior density. In this work we use masked autoregressive flows and kernel density estimators to encapsulate the marginal posterior, allowing us to compute marginal Kullback-Leibler divergences and marginal Bayesian model dimensionalities in addition to generating samples and computing marginal log probabilities. We demonstrate this in application to topical cosmological examples of the Dark Energy Survey, and global 21cm signal experiments. In addition to the computation of marginal Bayesian statistics, this work is important for further applications in Bayesian experimental design, complex prior modelling and likelihood emulation. This technique is made publicly available in the pip-installable code margarine.
3,039
null
Mirror Descent Maximizes Generalized Margin and Can Be Implemented Efficiently
Driven by the empirical success and wide use of deep neural networks, understanding the generalization performance of overparameterized models has become an increasingly popular question. To this end, there has been substantial effort to characterize the implicit bias of the optimization algorithms used, such as gradient descent (GD), and the structural properties of their preferred solutions. This paper answers an open question in this literature: For the classification setting, what solution does mirror descent (MD) converge to? Specifically, motivated by its efficient implementation, we consider the family of mirror descent algorithms with potential function chosen as the $p$-th power of the $\ell_p$-norm, which is an important generalization of GD. We call this algorithm $p$-$\textsf{GD}$. For this family, we characterize the solutions it obtains and show that it converges in direction to a generalized maximum-margin solution with respect to the $\ell_p$-norm for linearly separable classification. While the MD update rule is in general expensive to compute and perhaps not suitable for deep learning, $p$-$\textsf{GD}$ is fully parallelizable in the same manner as SGD and can be used to train deep neural networks with virtually no additional computational overhead. Using comprehensive experiments with both linear and deep neural network models, we demonstrate that $p$-$\textsf{GD}$ can noticeably affect the structure and the generalization performance of the learned models.
3,040
null
Gradient-based explanations for Gaussian Process regression and classification models
Gaussian Processes (GPs) have proven themselves as a reliable and effective method in probabilistic Machine Learning. Thanks to recent and current advances, modeling complex data with GPs is becoming more and more feasible. Thus, these types of models are, nowadays, an interesting alternative to Neural and Deep Learning methods, which are arguably the current state-of-the-art in Machine Learning. For the latter, we see an increasing interest in so-called explainable approaches - in essence methods that aim to make a Machine Learning model's decision process transparent to humans. Such methods are particularly needed when illogical or biased reasoning can lead to actual disadvantageous consequences for humans. Ideally, explainable Machine Learning should help detect such flaws in a model and aid a subsequent debugging process. One active line of research in Machine Learning explainability are gradient-based methods, which have been successfully applied to complex neural networks. Given that GPs are closed under differentiation, gradient-based explainability for GPs appears as a promising field of research. This paper is primarily focused on explaining GP classifiers via gradients where, contrary to GP regression, derivative GPs are not straightforward to obtain.
3,041
null
Towards Green AI with tensor networks -- Sustainability and innovation enabled by efficient algorithms
The current standard to compare the performance of AI algorithms is mainly based on one criterion: the model's accuracy. In this context, algorithms with a higher accuracy (or similar measures) are considered as better. To achieve new state-of-the-art results, algorithmic development is accompanied by an exponentially increasing amount of compute. While this has enabled AI research to achieve remarkable results, AI progress comes at a cost: it is unsustainable. In this paper, we present a promising tool for sustainable and thus Green AI: tensor networks (TNs). Being an established tool from multilinear algebra, TNs have the capability to improve efficiency without compromising accuracy. Since they can reduce compute significantly, we would like to highlight their potential for Green AI. We elaborate in both a kernel machine and deep learning setting how efficiency gains can be achieved with TNs. Furthermore, we argue that better algorithms should be evaluated in terms of both accuracy and efficiency. To that end, we discuss different efficiency criteria and analyze efficiency in an exemplifying experimental setting for kernel ridge regression. With this paper, we want to raise awareness about Green AI and showcase its positive impact on sustainability and AI research. Our key contribution is to demonstrate that TNs enable efficient algorithms and therefore contribute towards Green AI. In this sense, TNs pave the way for better algorithms in AI.
3,042
null
Impartial Games: A Challenge for Reinforcement Learning
The AlphaZero algorithm and its successor MuZero have revolutionised several competitive strategy games, including chess, Go, and shogi and video games like Atari, by learning to play these games better than any human and any specialised computer program. Aside from knowing the rules, AlphaZero had no prior knowledge of each game. This dramatically advanced progress on a long-standing AI challenge to create programs that can learn for themselves from first principles. Theoretically, there are well-known limits to the power of deep learning for strategy games like chess, Go, and shogi, as they are known to be NEXPTIME hard. Some papers have argued that the AlphaZero methodology has limitations and is unsuitable for general AI. However, none of these works has suggested any specific limits for any particular game. In this paper, we provide more powerful bottlenecks than previously suggested. We present the first concrete example of a game - namely the (children) game of nim - and other impartial games that seem to be a stumbling block for AlphaZero and similar reinforcement learning algorithms. We show experimentally that the bottlenecks apply to both the policy and value networks. Since solving nim can be done in linear time using logarithmic space i.e. has very low-complexity, our experimental results supersede known theoretical limits based on many games' PSPACE (and NEXPTIME) completeness. We show that nim can be learned on small boards, but when the board size increases, AlphaZero style algorithms rapidly fail to improve. We quantify the difficulties for various setups, parameter settings and computational resources. Our results might help expand the AlphaZero self-play paradigm by allowing it to use meta-actions during training and/or actual game play like applying abstract transformations, or reading and writing to an external memory.
3,043
null
TrustGNN: Graph Neural Network based Trust Evaluation via Learnable Propagative and Composable Nature
Trust evaluation is critical for many applications such as cyber security, social communication and recommender systems. Users and trust relationships among them can be seen as a graph. Graph neural networks (GNNs) show their powerful ability for analyzing graph-structural data. Very recently, existing work attempted to introduce the attributes and asymmetry of edges into GNNs for trust evaluation, while failed to capture some essential properties (e.g., the propagative and composable nature) of trust graphs. In this work, we propose a new GNN based trust evaluation method named TrustGNN, which integrates smartly the propagative and composable nature of trust graphs into a GNN framework for better trust evaluation. Specifically, TrustGNN designs specific propagative patterns for different propagative processes of trust, and distinguishes the contribution of different propagative processes to create new trust. Thus, TrustGNN can learn comprehensive node embeddings and predict trust relationships based on these embeddings. Experiments on some widely-used real-world datasets indicate that TrustGNN significantly outperforms the state-of-the-art methods. We further perform analytical experiments to demonstrate the effectiveness of the key designs in TrustGNN.
3,044
null
Ultra-compact Binary Neural Networks for Human Activity Recognition on RISC-V Processors
Human Activity Recognition (HAR) is a relevant inference task in many mobile applications. State-of-the-art HAR at the edge is typically achieved with lightweight machine learning models such as decision trees and Random Forests (RFs), whereas deep learning is less common due to its high computational complexity. In this work, we propose a novel implementation of HAR based on deep neural networks, and precisely on Binary Neural Networks (BNNs), targeting low-power general purpose processors with a RISC-V instruction set. BNNs yield very small memory footprints and low inference complexity, thanks to the replacement of arithmetic operations with bit-wise ones. However, existing BNN implementations on general purpose processors impose constraints tailored to complex computer vision tasks, which result in over-parametrized models for simpler problems like HAR. Therefore, we also introduce a new BNN inference library, which targets ultra-compact models explicitly. With experiments on a single-core RISC-V processor, we show that BNNs trained on two HAR datasets obtain higher classification accuracy compared to a state-of-the-art baseline based on RFs. Furthermore, our BNN reaches the same accuracy of a RF with either less memory (up to 91%) or more energy-efficiency (up to 70%), depending on the complexity of the features extracted by the RF.
3,045
null
Residual-Concatenate Neural Network with Deep Regularization Layers for Binary Classification
Many complex Deep Learning models are used with different variations for various prognostication tasks. The higher learning parameters not necessarily ensure great accuracy. This can be solved by considering changes in very deep models with many regularization based techniques. In this paper we train a deep neural network that uses many regularization layers with residual and concatenation process for best fit with Polycystic Ovary Syndrome Diagnosis prognostication. The network was built with improvements from every step of failure to meet the needs of the data and achieves an accuracy of 99.3% seamlessly.
3,046
null
An Experimental Comparison Between Temporal Difference and Residual Gradient with Neural Network Approximation
Gradient descent or its variants are popular in training neural networks. However, in deep Q-learning with neural network approximation, a type of reinforcement learning, gradient descent (also known as Residual Gradient (RG)) is barely used to solve Bellman residual minimization problem. On the contrary, Temporal Difference (TD), an incomplete gradient descent method prevails. In this work, we perform extensive experiments to show that TD outperforms RG, that is, when the training leads to a small Bellman residual error, the solution found by TD has a better policy and is more robust against the perturbation of neural network parameters. We further use experiments to reveal a key difference between reinforcement learning and supervised learning, that is, a small Bellman residual error can correspond to a bad policy in reinforcement learning while the test loss function in supervised learning is a standard index to indicate the performance. We also empirically examine that the missing term in TD is a key reason why RG performs badly. Our work shows that the performance of a deep Q-learning solution is closely related to the training dynamics and how an incomplete gradient descent method can find a good policy is interesting for future study.
3,047
null
Towards Symbolic Time Series Representation Improved by Kernel Density Estimators
This paper deals with symbolic time series representation. It builds up on the popular mapping technique Symbolic Aggregate approXimation algorithm (SAX), which is extensively utilized in sequence classification, pattern mining, anomaly detection, time series indexing and other data mining tasks. However, the disadvantage of this method is, that it works reliably only for time series with Gaussian-like distribution. In our previous work we have proposed an improvement of SAX, called dwSAX, which can deal with Gaussian as well as non-Gaussian data distribution. Recently we have made further progress in our solution - edwSAX. Our goal was to optimally cover the information space by means of sufficient alphabet utilization; and to satisfy lower bounding criterion as tight as possible. We describe here our approach, including evaluation on commonly employed tasks such as time series reconstruction error and Euclidean distance lower bounding with promising improvements over SAX.
3,048
null
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer, a key feature of human learning. Though, state of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks. Also, continual learning, that adds the temporal aspect to multitask, is often focused to the study of common pitfalls such as catastrophic forgetting instead of being studied at a large scale as a critical component to build the next generation artificial intelligence. We propose an evolutionary method that can generate a large scale multitask model, and can support the dynamic and continuous addition of new tasks. The generated multitask model is sparsely activated and integrates a task-based routing that guarantees bounded compute cost and fewer added parameters per task as the model expands. The proposed method relies on a knowledge compartmentalization technique to achieve immunity against catastrophic forgetting and other common pitfalls such as gradient interference and negative transfer. We empirically show that the proposed method can jointly solve and achieve competitive results on 69image classification tasks, for example achieving the best test accuracy reported fora model trained only on public data for competitive tasks such as cifar10: 99.43%.
3,049
null
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation
The performance of machine learning models under distribution shift has been the focus of the community in recent years. Most of current methods have been proposed to improve the robustness to distribution shift from the algorithmic perspective, i.e., designing better training algorithms to help the generalization in shifted test distributions. This paper studies the distribution shift problem from the perspective of pre-training and data augmentation, two important factors in the practice of deep learning that have not been systematically investigated by existing work. By evaluating seven pre-trained models, including ResNets and ViT's with self-supervision and supervision mode, on five important distribution-shift datasets, from WILDS and DomainBed benchmarks, with five different learning algorithms, we provide the first comprehensive empirical study focusing on pre-training and data augmentation. With our empirical result obtained from 1,330 models, we provide the following main observations: 1) ERM combined with data augmentation can achieve state-of-the-art performance if we choose a proper pre-trained model respecting the data property; 2) specialized algorithms further improve the robustness on top of ERM when handling a specific type of distribution shift, e.g., GroupDRO for spurious correlation and CORAL for large-scale out-of-distribution data; 3) Comparing different pre-training modes, architectures and data sizes, we provide novel observations about pre-training on distribution shift, which sheds light on designing or selecting pre-training strategy for different kinds of distribution shifts. In summary, our empirical study provides a comprehensive baseline for a wide range of pre-training models fine-tuned with data augmentation, which potentially inspires research exploiting the power of pre-training and data augmentation in the future of distribution shift study.
3,050
null
NECA: Network-Embedded Deep Representation Learning for Categorical Data
We propose NECA, a deep representation learning method for categorical data. Built upon the foundations of network embedding and deep unsupervised representation learning, NECA deeply embeds the intrinsic relationship among attribute values and explicitly expresses data objects with numeric vector representations. Designed specifically for categorical data, NECA can support important downstream data mining tasks, such as clustering. Extensive experimental analysis demonstrated the effectiveness of NECA.
3,051
null
Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization
We consider the problem of minimizing the sum of two convex functions. One of those functions has Lipschitz-continuous gradients, and can be accessed via stochastic oracles, whereas the other is "simple". We provide a Bregman-type algorithm with accelerated convergence in function values to a ball containing the minimum. The radius of this ball depends on problem-dependent constants, including the variance of the stochastic oracle. We further show that this algorithmic setup naturally leads to a variant of Frank-Wolfe achieving acceleration under parallelization. More precisely, when minimizing a smooth convex function on a bounded domain, we show that one can achieve an $\epsilon$ primal-dual gap (in expectation) in $\tilde{O}(1/ \sqrt{\epsilon})$ iterations, by only accessing gradients of the original function and a linear maximization oracle with $O(1/\sqrt{\epsilon})$ computing units in parallel. We illustrate this fast convergence on synthetic numerical experiments.
3,052
null
Machine learning method for return direction forecasting of Exchange Traded Funds using classification and regression models
This article aims to propose and apply a machine learning method to analyze the direction of returns from Exchange Traded Funds (ETFs) using the historical return data of its components, helping to make investment strategy decisions through a trading algorithm. In methodological terms, regression and classification models were applied, using standard datasets from Brazilian and American markets, in addition to algorithmic error metrics. In terms of research results, they were analyzed and compared to those of the Na\"ive forecast and the returns obtained by the buy & hold technique in the same period of time. In terms of risk and return, the models mostly performed better than the control metrics, with emphasis on the linear regression model and the classification models by logistic regression, support vector machine (using the LinearSVC model), Gaussian Naive Bayes and K-Nearest Neighbors, where in certain datasets the returns exceeded by two times and the Sharpe ratio by up to four times those of the buy & hold control model.
3,053
null
Deep interpretable ensembles
Ensembles improve prediction performance and allow uncertainty quantification by aggregating predictions from multiple models. In deep ensembling, the individual models are usually black box neural networks, or recently, partially interpretable semi-structured deep transformation models. However, interpretability of the ensemble members is generally lost upon aggregation. This is a crucial drawback of deep ensembles in high-stake decision fields, in which interpretable models are desired. We propose a novel transformation ensemble which aggregates probabilistic predictions with the guarantee to preserve interpretability and yield uniformly better predictions than the ensemble members on average. Transformation ensembles are tailored towards interpretable deep transformation models but are applicable to a wider range of probabilistic neural networks. In experiments on several publicly available data sets, we demonstrate that transformation ensembles perform on par with classical deep ensembles in terms of prediction performance, discrimination, and calibration. In addition, we demonstrate how transformation ensembles quantify both aleatoric and epistemic uncertainty, and produce minimax optimal predictions under certain conditions.
3,054
null
Service Discovery in Social Internet of Things using Graph Neural Networks
Internet-of-Things (IoT) networks intelligently connect thousands of physical entities to provide various services for the community. It is witnessing an exponential expansion, which is complicating the process of discovering IoT devices existing in the network and requesting corresponding services from them. As the highly dynamic nature of the IoT environment hinders the use of traditional solutions of service discovery, we aim, in this paper, to address this issue by proposing a scalable resource allocation neural model adequate for heterogeneous large-scale IoT networks. We devise a Graph Neural Network (GNN) approach that utilizes the social relationships formed between the devices in the IoT network to reduce the search space of any entity lookup and acquire a service from another device in the network. This proposed resource allocation approach surpasses standardization issues and embeds the structure and characteristics of the social IoT graph, by the means of GNNs, for eventual clustering analysis process. Simulation results applied on a real-world dataset illustrate the performance of this solution and its significant efficiency to operate on large-scale IoT networks.
3,055
null
VeriFi: Towards Verifiable Federated Unlearning
Federated learning (FL) is a collaborative learning paradigm where participants jointly train a powerful model without sharing their private data. One desirable property for FL is the implementation of the right to be forgotten (RTBF), i.e., a leaving participant has the right to request to delete its private data from the global model. However, unlearning itself may not be enough to implement RTBF unless the unlearning effect can be independently verified, an important aspect that has been overlooked in the current literature. In this paper, we prompt the concept of verifiable federated unlearning, and propose VeriFi, a unified framework integrating federated unlearning and verification that allows systematic analysis of the unlearning and quantification of its effect, with different combinations of multiple unlearning and verification methods. In VeriFi, the leaving participant is granted the right to verify (RTV), that is, the participant notifies the server before leaving, then actively verifies the unlearning effect in the next few communication rounds. The unlearning is done at the server side immediately after receiving the leaving notification, while the verification is done locally by the leaving participant via two steps: marking (injecting carefully-designed markers to fingerprint the leaver) and checking (examining the change of the global model's performance on the markers). Based on VeriFi, we conduct the first systematic and large-scale study for verifiable federated unlearning, considering 7 unlearning methods and 5 verification methods. Particularly, we propose a more efficient and FL-friendly unlearning method, and two more effective and robust non-invasive-verification methods. We extensively evaluate VeriFi on 7 datasets and 4 types of deep learning models. Our analysis establishes important empirical understandings for more trustworthy federated unlearning.
3,056
null
Scalable Online Change Detection for High-dimensional Data Streams
Detecting changes in data streams is a core objective in their analysis and has applications in, say, predictive maintenance, fraud detection, and medicine. A principled approach to detect changes is to compare distributions observed within the stream to each other. However, data streams often are high-dimensional, and changes can be complex, e.g., only manifest themselves in higher moments. The streaming setting also imposes heavy memory and computation restrictions. We propose an algorithm, Maximum Mean Discrepancy Adaptive Windowing (MMDAW), which leverages the well-known Maximum Mean Discrepancy (MMD) two-sample test, and facilitates its efficient online computation on windows whose size it flexibly adapts. As MMD is sensitive to any change in the underlying distribution, our algorithm is a general-purpose non-parametric change detector that fulfills the requirements imposed by the streaming setting. Our experiments show that MMDAW achieves better detection quality than state-of-the-art competitors.
3,057
null
Eliciting Transferability in Multi-task Learning with Task-level Mixture-of-Experts
Recent work suggests that transformer models are capable of multi-task learning on diverse NLP tasks. However, the potential of these models may be limited as they use the same set of parameters for all tasks. In contrast, humans tackle tasks in a more flexible way, by making proper presumptions on what skills and knowledge are relevant and executing only the necessary computations. Inspired by this, we propose to use task-level mixture-of-expert models, which has a collection of transformer layers (i.e., experts) and a router component to choose among these experts dynamically and flexibly. We show that the learned routing decisions and experts partially rediscover human categorization of NLP tasks -- certain experts are strongly associated with extractive tasks, some with classification tasks, and some with tasks requiring world knowledge.
3,058
null
Surprises in adversarially-trained linear regression
State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is one of the most effective approaches to defend against such examples. We show that for linear regression problems, adversarial training can be formulated as a convex problem. This fact is then used to show that $\ell_\infty$-adversarial training produces sparse solutions and has many similarities to the lasso method. Similarly, $\ell_2$-adversarial training has similarities with ridge regression. We use a robust regression framework to analyze and understand these similarities and also point to some differences. Finally, we show how adversarial training behaves differently from other regularization methods when estimating overparameterized models (i.e., models with more parameters than datapoints). It minimizes a sum of three terms which regularizes the solution, but unlike lasso and ridge regression, it can sharply transition into an interpolation mode. We show that for sufficiently many features or sufficiently small regularization parameters, the learned model perfectly interpolates the training data while still exhibiting good out-of-sample performance.
3,059
null
Train Flat, Then Compress: Sharpness-Aware Minimization Learns More Compressible Models
Model compression by way of parameter pruning, quantization, or distillation has recently gained popularity as an approach for reducing the computational requirements of modern deep neural network models for NLP. Pruning unnecessary parameters has emerged as a simple and effective method for compressing large models that is compatible with a wide variety of contemporary off-the-shelf hardware (unlike quantization), and that requires little additional training (unlike distillation). Pruning approaches typically take a large, accurate model as input, then attempt to discover a smaller subnetwork of that model capable of achieving end-task accuracy comparable to the full model. Inspired by previous work suggesting a connection between simpler, more generalizable models and those that lie within flat basins in the loss landscape, we propose to directly optimize for flat minima while performing task-specific pruning, which we hypothesize should lead to simpler parameterizations and thus more compressible models. In experiments combining sharpness-aware minimization with both iterative magnitude pruning and structured pruning approaches, we show that optimizing for flat minima consistently leads to greater compressibility of parameters compared to standard Adam optimization when fine-tuning BERT models, leading to higher rates of compression with little to no loss in accuracy on the GLUE classification benchmark.
3,060
null
Ground-Truth Labels Matter: A Deeper Look into Input-Label Demonstrations
Despite recent explosion in research interests, in-context learning and the precise impact of the quality of demonstrations remain elusive. While, based on current literature, it is expected that in-context learning shares a similar mechanism to supervised learning, Min et al. (2022) recently reported that, surprisingly, input-label correspondence is less important than other aspects of prompt demonstrations. Inspired by this counter-intuitive observation, we re-examine the importance of ground truth labels on in-context learning from diverse and statistical points of view. With the aid of the newly introduced metrics, i.e., Ground-truth Label Effect Ratio (GLER), demo-gain, and label sensitivity, we find that the impact of the correct input-label matching can vary according to different configurations. Expanding upon the previous key finding on the role of demonstrations, the complementary and contrastive results suggest that one might need to take more care when estimating the impact of each component in in-context learning demonstrations.
3,061
null
Rethinking Fano's Inequality in Ensemble Learning
We propose a fundamental theory on ensemble learning that evaluates a given ensemble system by a well-grounded set of metrics. Previous studies used a variant of Fano's inequality of information theory and derived a lower bound of the classification error rate on the basis of the accuracy and diversity of models. We revisit the original Fano's inequality and argue that the studies did not take into account the information lost when multiple model predictions are combined into a final prediction. To address this issue, we generalize the previous theory to incorporate the information loss. Further, we empirically validate and demonstrate the proposed theory through extensive experiments on actual systems. The theory reveals the strengths and weaknesses of systems on each metric, which will push the theoretical understanding of ensemble learning and give us insights into designing systems.
3,062
null
Training Language Models with Memory Augmentation
Recent work has improved language models remarkably by equipping them with a non-parametric memory component. However, most existing approaches only introduce memories at testing time, or represent them using a separately trained encoder -- resulting in sub-optimal training of the language model. In this work, we present TRIME, a novel yet simple training approach designed for training language models with memory augmentation. Our approach uses a training objective that directly takes in-batch examples as accessible memory. We also present new methods for memory construction and data batching, which are used for adapting to different sets of memories -- local, long-term, and external memory -- at testing time. We evaluate our approach on multiple language modeling and machine translation benchmarks. We find that simply replacing the vanilla language modeling objective by ours greatly reduces the perplexity, without modifying the model architecture or incorporating extra context (e.g., 18.70 $\to$ 17.76 on WikiText-103). We further augment language models with long-range contexts and external knowledge and demonstrate significant gains over previous memory-augmented approaches.
3,063
null
MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge
Deep neural network (DNN) latency characterization is a time-consuming process and adds significant cost to Neural Architecture Search (NAS) processes when searching for efficient convolutional neural networks for embedded vision applications. DNN Latency is a hardware dependent metric and requires direct measurement or inference on target hardware. A recently introduced latency estimation technique known as MAPLE predicts DNN execution time on previously unseen hardware devices by using hardware performance counters. Leveraging these hardware counters in the form of an implicit prior, MAPLE achieves state-of-the-art performance in latency prediction. Here, we propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency to better account for model stability and robustness. First, by identifying DNN architectures that exhibit a similar latency to each other, we can generate multiple virtual examples to significantly improve the accuracy over MAPLE. Secondly, the hardware specifications are used to determine the similarity between training and test hardware to emphasize training samples captured from comparable devices (domains) and encourages improved domain alignment. Experimental results using a convolution neural network NAS benchmark across different types of devices, including an Intel processor that is now used for embedded vision applications, demonstrate a 5% improvement over MAPLE and 9% over HELP. Furthermore, we include ablation studies to independently assess the benefits of virtual examples and hardware-based sample importance.
3,064
null
Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
We tackle real-world problems with complex structures beyond the pixel-based game or simulator. We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph that defines a set of subtasks and their dependencies that are unknown to the agent. Different from the previous meta-rl methods trying to directly infer the unstructured task embedding, our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks, and use it as a prior to improve the task inference in testing. Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks than various existing algorithms such as meta reinforcement learning, hierarchical reinforcement learning, and other heuristic agents.
3,065
null
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Most complex machine learning and modelling techniques are prone to over-fitting and may subsequently generalise poorly to future data. Artificial neural networks are no different in this regard and, despite having a level of implicit regularisation when trained with gradient descent, often require the aid of explicit regularisers. We introduce a new framework, Model Gradient Similarity (MGS), that (1) serves as a metric of regularisation, which can be used to monitor neural network training, (2) adds insight into how explicit regularisers, while derived from widely different principles, operate via the same mechanism underneath by increasing MGS, and (3) provides the basis for a new regularisation scheme which exhibits excellent performance, especially in challenging settings such as high levels of label noise or limited sample sizes.
3,066
null
Lifelong Learning Natural Language Processing Approach for Multilingual Data Classification
The abundance of information in digital media, which in today's world is the main source of knowledge about current events for the masses, makes it possible to spread disinformation on a larger scale than ever before. Consequently, there is a need to develop novel fake news detection approaches capable of adapting to changing factual contexts and generalizing previously or concurrently acquired knowledge. To deal with this problem, we propose a lifelong learning-inspired approach, which allows for fake news detection in multiple languages and the mutual transfer of knowledge acquired in each of them. Both classical feature extractors, such as Term frequency-inverse document frequency or Latent Dirichlet Allocation, and integrated deep NLP (Natural Language Processing) BERT (Bidirectional Encoder Representations from Transformers) models paired with MLP (Multilayer Perceptron) classifier, were employed. The results of experiments conducted on two datasets dedicated to the fake news classification task (in English and Spanish, respectively), supported by statistical analysis, confirmed that utilization of additional languages could improve performance for traditional methods. Also, in some cases supplementing the deep learning method with classical ones can positively impact obtained results. The ability of models to generalize the knowledge acquired between the analyzed languages was also observed.
3,067
null
Autoformalization with Large Language Models
Autoformalization is the process of automatically translating from natural language mathematics to formal specifications and proofs. A successful autoformalization system could advance the fields of formal verification, program synthesis, and artificial intelligence. While the long-term goal of autoformalization seemed elusive for a long time, we show large language models provide new prospects towards this goal. We make the surprising observation that LLMs can correctly translate a significant portion ($25.3\%$) of mathematical competition problems perfectly to formal specifications in Isabelle/HOL. We demonstrate the usefulness of this process by improving a previously introduced neural theorem prover via training on these autoformalized theorems. Our methodology results in a new state-of-the-art result on the MiniF2F theorem proving benchmark, improving the proof rate from $29.6\%$ to $35.2\%$.
3,068
null
Deep Aesthetic Assessment and Retrieval of Breast Cancer Treatment Outcomes
Treatments for breast cancer have continued to evolve and improve in recent years, resulting in a substantial increase in survival rates, with approximately 80\% of patients having a 10-year survival period. Given the serious impact that breast cancer treatments can have on a patient's body image, consequently affecting her self-confidence and sexual and intimate relationships, it is paramount to ensure that women receive the treatment that optimizes both survival and aesthetic outcomes. Currently, there is no gold standard for evaluating the aesthetic outcome of breast cancer treatment. In addition, there is no standard way to show patients the potential outcome of surgery. The presentation of similar cases from the past would be extremely important to manage women's expectations of the possible outcome. In this work, we propose a deep neural network to perform the aesthetic evaluation. As a proof-of-concept, we focus on a binary aesthetic evaluation. Besides its use for classification, this deep neural network can also be used to find the most similar past cases by searching for nearest neighbours in the highly semantic space before classification. We performed the experiments on a dataset consisting of 143 photos of women after conservative treatment for breast cancer. The results for accuracy and balanced accuracy showed the superior performance of our proposed model compared to the state of the art in aesthetic evaluation of breast cancer treatments. In addition, the model showed a good ability to retrieve similar previous cases, with the retrieved cases having the same or adjacent class (in the 4-class setting) and having similar types of asymmetry. Finally, a qualitative interpretability assessment was also performed to analyse the robustness and trustworthiness of the model.
3,069
null
Mutual Information Divergence: A Unified Metric for Multimodal Generative Models
Text-to-image generation and image captioning are recently emerged as a new experimental paradigm to assess machine intelligence. They predict continuous quantity accompanied by their sampling techniques in the generation, making evaluation complicated and intractable to get marginal distributions. Based on a recent trend that multimodal generative evaluations exploit a vison-and-language pre-trained model, we propose the negative Gaussian cross-mutual information using the CLIP features as a unified metric, coined by Mutual Information Divergence (MID). To validate, we extensively compare it with competing metrics using carefully-generated or human-annotated judgments in text-to-image generation and image captioning tasks. The proposed MID significantly outperforms the competitive methods by having consistency across benchmarks, sample parsimony, and robustness toward the exploited CLIP model. We look forward to seeing the underrepresented implications of the Gaussian cross-mutual information in multimodal representation learning and the future works based on this novel proposition.
3,070
null
Learning Distributions by Generative Adversarial Networks: Approximation and Generalization
We study how well generative adversarial networks (GAN) learn probability distributions from finite samples by analyzing the convergence rates of these models. Our analysis is based on a new oracle inequality that decomposes the estimation error of GAN into the discriminator and generator approximation errors, generalization error and optimization error. To estimate the discriminator approximation error, we establish error bounds on approximating H\"older functions by ReLU neural networks, with explicit upper bounds on the Lipschitz constant of the network or norm constraint on the weights. For generator approximation error, we show that neural network can approximately transform a low-dimensional source distribution to a high-dimensional target distribution and bound such approximation error by the width and depth of neural network. Combining the approximation results with generalization bounds of neural networks from statistical learning theory, we establish the convergence rates of GANs in various settings, when the error is measured by a collection of integral probability metrics defined through H\"older classes, including the Wasserstein distance as a special case. In particular, for distributions concentrated around a low-dimensional set, we show that the convergence rates of GANs do not depend on the high ambient dimension, but on the lower intrinsic dimension.
3,071
null
ORCA: Interpreting Prompted Language Models via Locating Supporting Data Evidence in the Ocean of Pretraining Data
Large pretrained language models have been performing increasingly well in a variety of downstream tasks via prompting. However, it remains unclear from where the model learns the task-specific knowledge, especially in a zero-shot setup. In this work, we want to find evidence of the model's task-specific competence from pretraining and are specifically interested in locating a very small subset of pretraining data that directly supports the model in the task. We call such a subset supporting data evidence and propose a novel method ORCA to effectively identify it, by iteratively using gradient information related to the downstream task. This supporting data evidence offers interesting insights about the prompted language models: in the tasks of sentiment analysis and textual entailment, BERT shows a substantial reliance on BookCorpus, the smaller corpus of BERT's two pretraining corpora, as well as on pretraining examples that mask out synonyms to the task verbalizers.
3,072
null
RobustLR: Evaluating Robustness to Logical Perturbation in Deductive Reasoning
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in English natural language. While the progress is promising, it is currently unclear if these models indeed perform logical reasoning by understanding the underlying logical semantics in the language. To this end, we propose RobustLR, a suite of evaluation datasets that evaluate the robustness of these models to minimal logical edits in rulebases and some standard logical equivalence conditions. In our experiments with RoBERTa and T5, we find that the models trained in prior works do not perform consistently on the different perturbations in RobustLR, thus showing that the models are not robust to the proposed logical perturbations. Further, we find that the models find it especially hard to learn logical negation and disjunction operators. Overall, using our evaluation sets, we demonstrate some shortcomings of the deductive reasoning-based language models, which can eventually help towards designing better models for logical reasoning over natural language.
3,073
null
Heterogeneous Reservoir Computing Models for Persian Speech Recognition
Over the last decade, deep-learning methods have been gradually incorporated into conventional automatic speech recognition (ASR) frameworks to create acoustic, pronunciation, and language models. Although it led to significant improvements in ASRs' recognition accuracy, due to their hard constraints related to hardware requirements (e.g., computing power and memory usage), it is unclear if such approaches are the most computationally- and energy-efficient options for embedded ASR applications. Reservoir computing (RC) models (e.g., echo state networks (ESNs) and liquid state machines (LSMs)), on the other hand, have been proven inexpensive to train, have vastly fewer parameters, and are compatible with emergent hardware technologies. However, their performance in speech processing tasks is relatively inferior to that of the deep-learning-based models. To enhance the accuracy of the RC in ASR applications, we propose heterogeneous single and multi-layer ESNs to create non-linear transformations of the inputs that capture temporal context at different scales. To test our models, we performed a speech recognition task on the Farsdat Persian dataset. Since, to the best of our knowledge, standard RC has not yet been employed to conduct any Persian ASR tasks, we also trained conventional single-layer and deep ESNs to provide baselines for comparison. Besides, we compared the RC performance with a standard long-short-term memory (LSTM) model. Heterogeneous RC models (1) show improved performance to the standard RC models; (2) perform on par in terms of recognition accuracy with the LSTM, and (3) reduce the training time considerably.
3,074
null
Scalable Multi-Agent Model-Based Reinforcement Learning
Recent Multi-Agent Reinforcement Learning (MARL) literature has been largely focused on Centralized Training with Decentralized Execution (CTDE) paradigm. CTDE has been a dominant approach for both cooperative and mixed environments due to its capability to efficiently train decentralized policies. While in mixed environments full autonomy of the agents can be a desirable outcome, cooperative environments allow agents to share information to facilitate coordination. Approaches that leverage this technique are usually referred as communication methods, as full autonomy of agents is compromised for better performance. Although communication approaches have shown impressive results, they do not fully leverage this additional information during training phase. In this paper, we propose a new method called MAMBA which utilizes Model-Based Reinforcement Learning (MBRL) to further leverage centralized training in cooperative environments. We argue that communication between agents is enough to sustain a world model for each agent during execution phase while imaginary rollouts can be used for training, removing the necessity to interact with the environment. These properties yield sample efficient algorithm that can scale gracefully with the number of agents. We empirically confirm that MAMBA achieves good performance while reducing the number of interactions with the environment up to an orders of magnitude compared to Model-Free state-of-the-art approaches in challenging domains of SMAC and Flatland.
3,075
null
Towards a Fair Comparison and Realistic Design and Evaluation Framework of Android Malware Detectors
As in other cybersecurity areas, machine learning (ML) techniques have emerged as a promising solution to detect Android malware. In this sense, many proposals employing a variety of algorithms and feature sets have been presented to date, often reporting impresive detection performances. However, the lack of reproducibility and the absence of a standard evaluation framework make these proposals difficult to compare. In this paper, we perform an analysis of 10 influential research works on Android malware detection using a common evaluation framework. We have identified five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models and their performances. In particular, we analyze the effect of (1) the presence of duplicated samples, (2) label (goodware/greyware/malware) attribution, (3) class imbalance, (4) the presence of apps that use evasion techniques and, (5) the evolution of apps. Based on this extensive experimentation, we conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results. Our findings also highlight that it is imperative to generate realistic datasets, taking into account the factors mentioned above, to enable the design and evaluation of better solutions for Android malware detection.
3,076
null
Learning dynamics from partial observations with structured neural ODEs
Identifying dynamical systems from experimental data is a notably difficult task. Prior knowledge generally helps, but the extent of this knowledge varies with the application, and customized models are often needed. We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification, giving physical interpretability to the resulting latent space. This insight is either enforced through hard constraints in the optimization problem or added in its cost function. In order to link the partial and possibly noisy observations to the latent state, we rely on tools from nonlinear observer theory to build a recognition model. We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
3,077
null
Learning from time-dependent streaming data with online stochastic algorithms
We study stochastic algorithms in a streaming framework, trained on samples coming from a dependent data source. In this streaming framework, we analyze the convergence of Stochastic Gradient (SG) methods in a non-asymptotic manner; this includes various SG methods such as the well-known stochastic gradient descent (i.e., Robbins-Monro algorithm), mini-batch SG methods, together with their averaged estimates (i.e., Polyak-Ruppert averaged). Our results form a heuristic by linking the level of dependency and convexity to the rest of the model parameters. This heuristic provides new insights into choosing the optimal learning rate, which can help increase the stability of SGbased methods; these investigations suggest large streaming batches with slow decaying learning rates for highly dependent data sources.
3,078
null
RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning
Prompting has shown impressive success in enabling large pretrained language models (LMs) to perform diverse NLP tasks, especially when only few downstream data are available. Automatically finding the optimal prompt for each task, however, is challenging. Most existing work resorts to tuning soft prompt (e.g., embeddings) which falls short of interpretability, reusability across LMs, and applicability when gradients are not accessible. Discrete prompt, on the other hand, is difficult to optimize, and is often created by "enumeration (e.g., paraphrasing)-then-selection" heuristics that do not explore the prompt space systematically. This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL). RLPrompt formulates a parameter-efficient policy network that generates the desired discrete prompt after training with reward. To overcome the complexity and stochasticity of reward signals by the large LM environment, we incorporate effective reward stabilization that substantially enhances the training efficiency. RLPrompt is flexibly applicable to different types of LMs, such as masked (e.g., BERT) and left-to-right models (e.g., GPTs), for both classification and generation tasks. Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods. Interestingly, the resulting optimized prompts are often ungrammatical gibberish text; and surprisingly, those gibberish prompts are transferrable between different LMs to retain significant performance, indicating LM prompting may not follow human language patterns.
3,079
null
Misleading Deep-Fake Detection with GAN Fingerprints
Generative adversarial networks (GANs) have made remarkable progress in synthesizing realistic-looking images that effectively outsmart even humans. Although several detection methods can recognize these deep fakes by checking for image artifacts from the generation process, multiple counterattacks have demonstrated their limitations. These attacks, however, still require certain conditions to hold, such as interacting with the detection method or adjusting the GAN directly. In this paper, we introduce a novel class of simple counterattacks that overcomes these limitations. In particular, we show that an adversary can remove indicative artifacts, the GAN fingerprint, directly from the frequency spectrum of a generated image. We explore different realizations of this removal, ranging from filtering high frequencies to more nuanced frequency-peak cleansing. We evaluate the performance of our attack with different detection methods, GAN architectures, and datasets. Our results show that an adversary can often remove GAN fingerprints and thus evade the detection of generated images.
3,080
null
Is a Question Decomposition Unit All We Need?
Large Language Models (LMs) have achieved state-of-the-art performance on many Natural Language Processing (NLP) benchmarks. With the growing number of new benchmarks, we build bigger and more complex LMs. However, building new LMs may not be an ideal option owing to the cost, time and environmental impact associated with it. We explore an alternative route: can we modify data by expressing it in terms of the model's strengths, so that a question becomes easier for models to answer? We investigate if humans can decompose a hard question into a set of simpler questions that are relatively easier for models to solve. We analyze a range of datasets involving various forms of reasoning and find that it is indeed possible to significantly improve model performance (24% for GPT3 and 29% for RoBERTa-SQuAD along with a symbolic calculator) via decomposition. Our approach provides a viable option to involve people in NLP research in a meaningful way. Our findings indicate that Human-in-the-loop Question Decomposition (HQD) can potentially provide an alternate path to building large LMs.
3,081
null
A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning
We present a rotated hyperbolic wrapped normal distribution (RoWN), a simple yet effective alteration of a hyperbolic wrapped normal distribution (HWN). The HWN expands the domain of probabilistic modeling from Euclidean to hyperbolic space, where a tree can be embedded with arbitrary low distortion in theory. In this work, we analyze the geometric properties of the diagonal HWN, a standard choice of distribution in probabilistic modeling. The analysis shows that the distribution is inappropriate to represent the data points at the same hierarchy level through their angular distance with the same norm in the Poincar\'e disk model. We then empirically verify the presence of limitations of HWN, and show how RoWN, the newly proposed distribution, can alleviate the limitations on various hierarchical datasets, including noisy synthetic binary tree, WordNet, and Atari 2600 Breakout.
3,082
null
Structured Uncertainty in the Observation Space of Variational Autoencoders
Variational autoencoders (VAEs) are a popular class of deep generative models with many variants and a wide range of applications. Improvements upon the standard VAE mostly focus on the modelling of the posterior distribution over the latent space and the properties of the neural network decoder. In contrast, improving the model for the observational distribution is rarely considered and typically defaults to a pixel-wise independent categorical or normal distribution. In image synthesis, sampling from such distributions produces spatially-incoherent results with uncorrelated pixel noise, resulting in only the sample mean being somewhat useful as an output prediction. In this paper, we aim to stay true to VAE theory by improving the samples from the observational distribution. We propose an alternative model for the observation space, encoding spatial dependencies via a low-rank parameterisation. We demonstrate that this new observational distribution has the ability to capture relevant covariance between pixels, resulting in spatially-coherent samples. In contrast to pixel-wise independent distributions, our samples seem to contain semantically meaningful variations from the mean allowing the prediction of multiple plausible outputs with a single forward pass.
3,083
null
Skill Machines: Temporal Logic Composition in Reinforcement Learning
A major challenge in reinforcement learning is specifying tasks in a manner that is both interpretable and verifiable. One common approach is to specify tasks through reward machines -- finite state machines that encode the task to be solved. We introduce skill machines, a representation that can be learned directly from these reward machines that encode the solution to such tasks. We propose a framework where an agent first learns a set of base skills in a reward-free setting, and then combines these skills with the learned skill machine to produce composite behaviours specified by any regular language, such as linear temporal logics. This provides the agent with the ability to map from complex logical task specifications to near-optimal behaviours zero-shot. We demonstrate our approach in both a tabular and high-dimensional video game environment, where an agent is faced with several of these complex, long-horizon tasks. Our results indicate that the agent is capable of satisfying extremely complex task specifications, producing near optimal performance with no further learning. Finally, we demonstrate that the performance of skill machines can be improved with regular offline reinforcement learning algorithms when optimal behaviours are desired.
3,084
null
Toward Discovering Options that Achieve Faster Planning
We propose a new objective for option discovery that emphasizes the computational advantage of using options in planning. For a given set of episodic tasks and a given number of options, the objective prefers options that can be used to achieve a high return by composing few options. By composing few options, fast planning can be achieved. When faced with new tasks similar to the given ones, the discovered options are also expected to accelerate planning. Our objective extends the objective proposed by Harb et al. (2018) for the single-task setting to the multi-task setting. A closer look at Harb et al.'s objective shows that the best options discovered given one task are not likely to be useful for future unseen tasks and that the multi-task setting is indeed necessary for this purpose. In the same paper, Harb et al. also proposed an algorithm to optimize their objective, and the algorithm can be naturally extended to the multi-task setting. We empirically show that in the four-room domain the extension does not achieve a high objective value and propose a new algorithm that better optimizes the proposed objective. In the same four-room domain, we show that 1) a higher objective value is typically associated with options with which fewer planning iterations are needed to achieve near-optimal performance, 2) our new algorithm achieves a high objective value, which is close to the value achieved by a set of human-designed options, 3) the best number of planning iterations given the discovered options is much smaller and matches it obtained given human-designed options, and 4) the options produced by our algorithm also make intuitive sense because they move to and terminate at cells near hallways connecting two neighbor rooms.
3,085
null
Exact Phase Transitions in Deep Learning
This work reports deep-learning-unique first-order and second-order phase transitions, whose phenomenology closely follows that in statistical physics. In particular, we prove that the competition between prediction error and model complexity in the training loss leads to the second-order phase transition for nets with one hidden layer and the first-order phase transition for nets with more than one hidden layer. The proposed theory is directly relevant to the optimization of neural networks and points to an origin of the posterior collapse problem in Bayesian deep learning.
3,086
null
Memorization in NLP Fine-tuning Methods
Large language models are shown to present privacy risks through memorization of training data, and several recent works have studied such risks for the pre-training phase. Little attention, however, has been given to the fine-tuning phase and it is not well understood how different fine-tuning methods (such as fine-tuning the full model, the model head, and adapter) compare in terms of memorization risk. This presents increasing concern as the "pre-train and fine-tune" paradigm proliferates. In this paper, we empirically study memorization of fine-tuning methods using membership inference and extraction attacks, and show that their susceptibility to attacks is very different. We observe that fine-tuning the head of the model has the highest susceptibility to attacks, whereas fine-tuning smaller adapters appears to be less vulnerable to known extraction attacks.
3,087
null
The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training
Visual dialog (VisDial) is a task of answering a sequence of questions grounded in an image, using the dialog history as context. Prior work has trained the dialog agents solely on VisDial data via supervised learning or leveraged pre-training on related vision-and-language datasets. This paper presents a semi-supervised learning approach for visually-grounded dialog, called Generative Self-Training (GST), to leverage unlabeled images on the Web. Specifically, GST first retrieves in-domain images through out-of-distribution detection and generates synthetic dialogs regarding the images via multimodal conditional text generation. GST then trains a dialog agent on the synthetic and the original VisDial data. As a result, GST scales the amount of training data up to an order of magnitude that of VisDial (1.2M to 12.9M QA data). For robust training of the generated dialogs, we also propose perplexity-based data selection and multimodal consistency regularization. Evaluation on VisDial v1.0 and v0.9 datasets shows that GST achieves new state-of-the-art results on both datasets. We further observe strong performance gains in the low-data regime (up to 9.35 absolute points on NDCG).
3,088
null
Federated Self-supervised Learning for Heterogeneous Clients
Federated Learning has become an important learning paradigm due to its privacy and computational benefits. As the field advances, two key challenges that still remain to be addressed are: (1) system heterogeneity - variability in the compute and/or data resources present on each client, and (2) lack of labeled data in certain federated settings. Several recent developments have tried to overcome these challenges independently. In this work, we propose a unified and systematic framework, \emph{Heterogeneous Self-supervised Federated Learning} (Hetero-SSFL) for enabling self-supervised learning with federation on heterogeneous clients. The proposed framework allows collaborative representation learning across all the clients without imposing architectural constraints or requiring presence of labeled data. The key idea in Hetero-SSFL is to let each client train its unique self-supervised model and enable the joint learning across clients by aligning the lower dimensional representations on a common dataset. The entire training procedure could be viewed as self and peer-supervised as both the local training and the alignment procedures do not require presence of any labeled data. As in conventional self-supervised learning, the obtained client models are task independent and can be used for varied end-tasks. We provide a convergence guarantee of the proposed framework for non-convex objectives in heterogeneous settings and also empirically demonstrate that our proposed approach outperforms the state of the art methods by a significant margin.
3,089
null
SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction
Efficient and effective drug-target binding affinity (DTBA) prediction is a challenging task due to the limited computational resources in practical applications and is a crucial basis for drug screening. Inspired by the good representation ability of graph neural networks (GNNs), we propose a simple-structured GNN model named SS-GNN to accurately predict DTBA. By constructing a single undirected graph based on a distance threshold to represent protein-ligand interactions, the scale of the graph data is greatly reduced. Moreover, ignoring covalent bonds in the protein further reduces the computational cost of the model. The GNN-MLP module takes the latent feature extraction of atoms and edges in the graph as two mutually independent processes. We also develop an edge-based atom-pair feature aggregation method to represent complex interactions and a graph pooling-based method to predict the binding affinity of the complex. We achieve state-of-the-art prediction performance using a simple model (with only 0.6M parameters) without introducing complicated geometric feature descriptions. SS-GNN achieves Pearson's Rp=0.853 on the PDBbind v2016 core set, outperforming state-of-the-art GNN-based methods by 5.2%. Moreover, the simplified model structure and concise data processing procedure improve the prediction efficiency of the model. For a typical protein-ligand complex, affinity prediction takes only 0.2 ms. All codes are freely accessible at https://github.com/xianyuco/SS-GNN.
3,090
null
A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers
The Variational Quantum Eigensolver (VQE) is a promising candidate for quantum applications on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. Despite a lot of empirical studies and recent progress in theoretical understanding of VQE's optimization landscape, the convergence for optimizing VQE is far less understood. We provide the first rigorous analysis of the convergence of VQEs in the over-parameterization regime. By connecting the training dynamics with the Riemannian Gradient Flow on the unit-sphere, we establish a threshold on the sufficient number of parameters for efficient convergence, which depends polynomially on the system dimension and the spectral ratio, a property of the problem Hamiltonian, and could be resilient to gradient noise to some extent. We further illustrate that this overparameterization threshold could be vastly reduced for specific VQE instances by establishing an ansatz-dependent threshold paralleling our main result. We showcase that our ansatz-dependent threshold could serve as a proxy of the trainability of different VQE ansatzes without performing empirical experiments, which hence leads to a principled way of evaluating ansatz design. Finally, we conclude with a comprehensive empirical study that supports our theoretical findings.
3,091
null
FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models. In order to fully unleash the power of GNNs in network-based fMRI analysis, we develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation. In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks. Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks. Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions. Comprehensive experiments on two datasets, i.e., the recently released and currently largest publicly available fMRI dataset Adolescent Brain Cognitive Development (ABCD), and the widely-used fMRI dataset PNC, prove the superior effectiveness and interpretability of FBNETGEN. The implementation is available at https://github.com/Wayfear/FBNETGEN.
3,092
null
sat2pc: Estimating Point Cloud of Building Roofs from 2D Satellite Images
Three-dimensional (3D) urban models have gained interest because of their applications in many use-cases such as urban planning and virtual reality. However, generating these 3D representations requires LiDAR data, which are not always readily available. Thus, the applicability of automated 3D model generation algorithms is limited to a few locations. In this paper, we propose sat2pc, a deep learning architecture that predicts the point cloud of a building roof from a single 2D satellite image. Our architecture combines Chamfer distance and EMD loss, resulting in better 2D to 3D performance. We extensively evaluate our model and perform ablation studies on a building roof dataset. Our results show that sat2pc was able to outperform existing baselines by at least 18.6%. Further, we show that the predicted point cloud captures more detail and geometric characteristics than other baselines.
3,093
null
Augmentation-induced Consistency Regularization for Classification
Deep neural networks have become popular in many supervised learning tasks, but they may suffer from overfitting when the training dataset is limited. To mitigate this, many researchers use data augmentation, which is a widely used and effective method for increasing the variety of datasets. However, the randomness introduced by data augmentation causes inevitable inconsistency between training and inference, which leads to poor improvement. In this paper, we propose a consistency regularization framework based on data augmentation, called CR-Aug, which forces the output distributions of different sub models generated by data augmentation to be consistent with each other. Specifically, CR-Aug evaluates the discrepancy between the output distributions of two augmented versions of each sample, and it utilizes a stop-gradient operation to minimize the consistency loss. We implement CR-Aug to image and audio classification tasks and conduct extensive experiments to verify its effectiveness in improving the generalization ability of classifiers. Our CR-Aug framework is ready-to-use, it can be easily adapted to many state-of-the-art network architectures. Our empirical results show that CR-Aug outperforms baseline methods by a significant margin.
3,094
null
Linear Algorithms for Nonparametric Multiclass Probability Estimation
Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been developed to estimate class probabilities through ensemble learning for $K$-class problems (Wu, Zhang and Liu, 2010; Wang, Zhang and Wu, 2019), where $K$ is the number of classes. The estimators are robust and achieve high accuracy for probability estimation, but their learning is implemented through pairwise coupling, which demands polynomial time in $K$. In this paper, we propose two new learning schemes, the baseline learning and the One-vs-All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy. In particular, the baseline learning has optimal computational complexity in the sense that it is linear in $K$. Though not being most efficient in computation, the OVA offers the best estimation accuracy among all the procedures under comparison. The resulting estimators are distribution-free and shown to be consistent. We further conduct extensive numerical experiments to demonstrate finite sample performance.
3,095
null
Investigating Information Inconsistency in Multilingual Open-Domain Question Answering
Retrieval based open-domain QA systems use retrieved documents and answer-span selection over retrieved documents to find best-answer candidates. We hypothesize that multilingual Question Answering (QA) systems are prone to information inconsistency when it comes to documents written in different languages, because these documents tend to provide a model with varying information about the same topic. To understand the effects of the biased availability of information and cultural influence, we analyze the behavior of multilingual open-domain question answering models with a focus on retrieval bias. We analyze if different retriever models present different passages given the same question in different languages on TyDi QA and XOR-TyDi QA, two multilingualQA datasets. We speculate that the content differences in documents across languages might reflect cultural divergences and/or social biases.
3,096
null
Recipe for a General, Powerful, Scalable Graph Transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being $\textit{local}$, $\textit{global}$ or $\textit{relative}$. Further, GTs remain constrained to small graphs with few hundred nodes, and we propose the first architecture with a complexity linear to the number of nodes and edges $O(N+E)$ by decoupling the local real-edge aggregation from the fully-connected Transformer. We argue that this decoupling does not negatively affect the expressivity, with our architecture being a universal function approximator for graphs. Our GPS recipe consists of choosing 3 main ingredients: (i) positional/structural encoding, (ii) local message-passing mechanism, and (iii) global attention mechanism. We build and open-source a modular framework $\textit{GraphGPS}$ that supports multiple types of encodings and that provides efficiency and scalability both in small and large graphs. We test our architecture on 11 benchmarks and show very competitive results on all of them, show-casing the empirical benefits gained by the modularity and the combination of different strategies.
3,097
null
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning
Many recent breakthroughs in multi-agent reinforcement learning (MARL) require the use of deep neural networks, which are challenging for human experts to interpret and understand. On the other hand, existing work on interpretable RL has shown promise in extracting more interpretable decision tree-based policies, but only in the single-agent setting. To fill this gap, we propose the first set of interpretable MARL algorithms that extract decision-tree policies from neural networks trained with MARL. The first algorithm, IVIPER, extends VIPER, a recent method for single-agent interpretable RL, to the multi-agent setting. We demonstrate that IVIPER can learn high-quality decision-tree policies for each agent. To better capture coordination between agents, we propose a novel centralized decision-tree training algorithm, MAVIPER. MAVIPER jointly grows the trees of each agent by predicting the behavior of the other agents using their anticipated trees, and uses resampling to focus on states that are critical for its interactions with other agents. We show that both algorithms generally outperform the baselines and that MAVIPER-trained agents achieve better-coordinated performance than IVIPER-trained agents on three different multi-agent particle-world environments.
3,098
null
Transportation-Inequalities, Lyapunov Stability and Sampling for Dynamical Systems on Continuous State Space
We study the concentration phenomenon for discrete-time random dynamical systems with an unbounded state space. We develop a heuristic approach towards obtaining exponential concentration inequalities for dynamical systems using an entirely functional analytic framework. We also show that existence of exponential-type Lyapunov function, compared to the purely deterministic setting, not only implies stability but also exponential concentration inequalities for sampling from the stationary distribution, via \emph{transport-entropy inequality} (T-E). These results have significant impact in \emph{reinforcement learning} (RL) and \emph{controls}, leading to exponential concentration inequalities even for unbounded observables, while neither assuming reversibility nor exact knowledge of random dynamical system (assumptions at heart of concentration inequalities in statistical mechanics and Markov diffusion processes).
3,099
null
FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech
We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on top of the machine translation FLoRes-101 benchmark, with approximately 12 hours of speech supervision per language. FLEURS can be used for a variety of speech tasks, including Automatic Speech Recognition (ASR), Speech Language Identification (Speech LangID), Translation and Retrieval. In this paper, we provide baselines for the tasks based on multilingual pre-trained models like mSLAM. The goal of FLEURS is to enable speech technology in more languages and catalyze research in low-resource speech understanding.
3,100
null
Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation
Future wireless systems are trending towards higher carrier frequencies that offer larger communication bandwidth but necessitate the use of large antenna arrays. Existing signal processing techniques for channel estimation do not scale well to this "high-dimensional" regime in terms of performance and pilot overhead. Meanwhile, training deep learning based approaches for channel estimation requires large labeled datasets mapping pilot measurements to clean channel realizations, which can only be generated offline using simulated channels. In this paper, we develop a novel unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model to output beamspace MIMO channel realizations. Our approach leverages Generative Adversarial Networks (GAN), while using a conditional input to distinguish between Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) channel realizations. We also present a federated implementation of the OTA algorithm that distributes the GAN training over multiple users and greatly reduces the user side computation. We then formulate channel estimation from a limited number of pilot measurements as an inverse problem and reconstruct the channel by optimizing the input vector of the trained generative model. Our proposed approach significantly outperforms Orthogonal Matching Pursuit on both LOS and NLOS channel models, and EM-GM-AMP -- an Approximate Message Passing algorithm -- on LOS channel models, while achieving comparable performance on NLOS channel models in terms of the normalized channel reconstruction error. More importantly, our proposed framework has the potential to be trained online using real noisy pilot measurements, is not restricted to a specific channel model and can even be utilized for a federated OTA design of a dataset generator from noisy data.
3,101
null
Generating Natural Language Proofs with Verifier-Guided Search
Deductive reasoning (drawing conclusions from assumptions) is a challenging problem in NLP. In this work, we focus on proof generation: given a hypothesis and a set of supporting facts in natural language, the model generates a proof tree indicating how to deduce the hypothesis from supporting facts. Instead of generating the entire proof in one shot, prior work has demonstrated the promise of stepwise generation but achieved limited success on real-world data. Existing stepwise methods struggle to generate proof steps that are both valid and relevant. In this paper, we present a novel stepwise method NLProofS (Natural Language Proof Search), which learns to generate relevant steps conditioning on the hypothesis. At the core of our approach, we train an independent verifier to check the validity of proof steps. Instead of generating steps greedily, we search for proofs maximizing a global proof score judged by the verifier. NLProofS achieves state-of-the-art performance on EntailmentBank and RuleTaker. For example, it improves the percentage of correctly predicted proofs from 20.9% to 33.3% in the distractor setting of EntailmentBank. This is the first time stepwise methods have led to better generation of challenging human-authored proofs.
3,102
null
Lyapunov function approach for approximation algorithm design and analysis: with applications in submodular maximization
We propose a two-phase systematical framework for approximation algorithm design and analysis via Lyapunov function. The first phase consists of using Lyapunov function as an input and outputs a continuous-time approximation algorithm with a provable approximation ratio. The second phase then converts this continuous-time algorithm to a discrete-time algorithm with almost the same approximation ratio along with provable time complexity. One distinctive feature of our framework is that we only need to know the parametric form of the Lyapunov function whose complete specification will not be decided until the end of the first phase by maximizing the approximation ratio of the continuous-time algorithm. Some immediate benefits of the Lyapunov function approach include: (i) unifying many existing algorithms; (ii) providing a guideline to design and analyze new algorithms; and (iii) offering new perspectives to potentially improve existing algorithms. We use various submodular maximization problems as running examples to illustrate our framework.
3,103
null
Additive Logistic Mechanism for Privacy-Preserving Self-Supervised Learning
We study the privacy risks that are associated with training a neural network's weights with self-supervised learning algorithms. Through empirical evidence, we show that the fine-tuning stage, in which the network weights are updated with an informative and often private dataset, is vulnerable to privacy attacks. To address the vulnerabilities, we design a post-training privacy-protection algorithm that adds noise to the fine-tuned weights and propose a novel differential privacy mechanism that samples noise from the logistic distribution. Compared to the two conventional additive noise mechanisms, namely the Laplace and the Gaussian mechanisms, the proposed mechanism uses a bell-shaped distribution that resembles the distribution of the Gaussian mechanism, and it satisfies pure $\epsilon$-differential privacy similar to the Laplace mechanism. We apply membership inference attacks on both unprotected and protected models to quantify the trade-off between the models' privacy and performance. We show that the proposed protection algorithm can effectively reduce the attack accuracy to roughly 50\%-equivalent to random guessing-while maintaining a performance loss below 5\%.
3,104
null
Towards Understanding Label Regularization for Fine-tuning Pre-trained Language Models
Knowledge Distillation (KD) is a prominent neural model compression technique which heavily relies on teacher network predictions to guide the training of a student model. Considering the ever-growing size of pre-trained language models (PLMs), KD is often adopted in many NLP tasks involving PLMs. However, it is evident that in KD, deploying the teacher network during training adds to the memory and computational requirements of training. In the computer vision literature, the necessity of the teacher network is put under scrutiny by showing that KD is a label regularization technique that can be replaced with lighter teacher-free variants such as the label-smoothing technique. However, to the best of our knowledge, this issue is not investigated in NLP. Therefore, this work concerns studying different label regularization techniques and whether we actually need the teacher labels to fine-tune smaller PLM student networks on downstream tasks. In this regard, we did a comprehensive set of experiments on different PLMs such as BERT, RoBERTa, and GPT with more than 600 distinct trials and ran each configuration five times. This investigation led to a surprising observation that KD and other label regularization techniques do not play any meaningful role over regular fine-tuning when the student model is pre-trained. We further explore this phenomenon in different settings of NLP and computer vision tasks and demonstrate that pre-training itself acts as a kind of regularization, and additional label regularization is unnecessary.
3,105
null
Non-stationary Bandits with Knapsacks
In this paper, we study the problem of bandits with knapsacks (BwK) in a non-stationary environment. The BwK problem generalizes the multi-arm bandit (MAB) problem to model the resource consumption associated with playing each arm. At each time, the decision maker/player chooses to play an arm, and s/he will receive a reward and consume certain amount of resource from each of the multiple resource types. The objective is to maximize the cumulative reward over a finite horizon subject to some knapsack constraints on the resources. Existing works study the BwK problem under either a stochastic or adversarial environment. Our paper considers a non-stationary environment which continuously interpolates between these two extremes. We first show that the traditional notion of variation budget is insufficient to characterize the non-stationarity of the BwK problem for a sublinear regret due to the presence of the constraints, and then we propose a new notion of global non-stationarity measure. We employ both non-stationarity measures to derive upper and lower bounds for the problem. Our results are based on a primal-dual analysis of the underlying linear programs and highlight the interplay between the constraints and the non-stationarity. Finally, we also extend the non-stationarity measure to the problem of online convex optimization with constraints and obtain new regret bounds accordingly.
3,106
null
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
In this paper, we propose a novel uniform generalization bound on the time and inverse temperature for stochastic gradient Langevin dynamics (SGLD) in a non-convex setting. While previous works derive their generalization bounds by uniform stability, we use Rademacher complexity to make our generalization bound independent of the time and inverse temperature. Using Rademacher complexity, we can reduce the problem to derive a generalization bound on the whole space to that on a bounded region and therefore can remove the effect of the time and inverse temperature from our generalization bound. As an application of our generalization bound, an evaluation on the effectiveness of the simulated annealing in a non-convex setting is also described. For the sample size $n$ and time $s$, we derive evaluations with orders $\sqrt{n^{-1} \log (n+1)}$ and $|(\log)^4(s)|^{-1}$, respectively. Here, $(\log)^4$ denotes the $4$ times composition of the logarithmic function.
3,107
null
VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
This paper presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.