Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
2,908
null
Discovering Policies with DOMiNO: Diversity Optimization Maintaining Near Optimality
Finding different solutions to the same problem is a key aspect of intelligence associated with creativity and adaptation to novel situations. In reinforcement learning, a set of diverse policies can be useful for exploration, transfer, hierarchy, and robustness. We propose DOMiNO, a method for Diversity Optimization Maintaining Near Optimality. We formalize the problem as a Constrained Markov Decision Process where the objective is to find diverse policies, measured by the distance between the state occupancies of the policies in the set, while remaining near-optimal with respect to the extrinsic reward. We demonstrate that the method can discover diverse and meaningful behaviors in various domains, such as different locomotion patterns in the DeepMind Control Suite. We perform extensive analysis of our approach, compare it with other multi-objective baselines, demonstrate that we can control both the quality and the diversity of the set via interpretable hyperparameters, and show that the discovered set is robust to perturbations.
2,909
null
Transfer learning driven design optimization for inertial confinement fusion
Transfer learning is a promising approach to creating predictive models that incorporate simulation and experimental data into a common framework. In this technique, a neural network is first trained on a large database of simulations, then partially retrained on sparse sets of experimental data to adjust predictions to be more consistent with reality. Previously, this technique has been used to create predictive models of Omega and NIF inertial confinement fusion (ICF) experiments that are more accurate than simulations alone. In this work, we conduct a transfer learning driven hypothetical ICF campaign in which the goal is to maximize experimental neutron yield via Bayesian optimization. The transfer learning model achieves yields within 5% of the maximum achievable yield in a modest-sized design space in fewer than 20 experiments. Furthermore, we demonstrate that this method is more efficient at optimizing designs than traditional model calibration techniques commonly employed in ICF design. Such an approach to ICF design could enable robust optimization of experimental performance under uncertainty.
2,910
null
Green Hierarchical Vision Transformer for Masked Image Modeling
We present an efficient approach for Masked Image Modeling (MIM) with hierarchical Vision Transformers (ViTs), e.g., Swin Transformer, allowing the hierarchical ViTs to discard masked patches and operate only on the visible ones. Our approach consists of two key components. First, for the window attention, we design a Group Window Attention scheme following the Divide-and-Conquer strategy. To mitigate the quadratic complexity of the self-attention w.r.t. the number of patches, group attention encourages a uniform partition that visible patches within each local window of arbitrary size can be grouped with equal size, where masked self-attention is then performed within each group. Second, we further improve the grouping strategy via the Dynamic Programming algorithm to minimize the overall computation cost of the attention on the grouped patches. As a result, MIM now can work on hierarchical ViTs in a green and efficient way. For example, we can train the hierarchical ViTs about 2.7$\times$ faster and reduce the GPU memory usage by 70%, while still enjoying competitive performance on ImageNet classification and the superiority on downstream COCO object detection benchmarks. Code and pre-trained models have been made publicly available at https://github.com/LayneH/GreenMIM.
2,911
null
Pick up the PACE: Fast and Simple Domain Adaptation via Ensemble Pseudo-Labeling
Domain Adaptation (DA) has received widespread attention from deep learning researchers in recent years because of its potential to improve test accuracy with out-of-distribution labeled data. Most state-of-the-art DA algorithms require an extensive amount of hyperparameter tuning and are computationally intensive due to the large batch sizes required. In this work, we propose a fast and simple DA method consisting of three stages: (1) domain alignment by covariance matching, (2) pseudo-labeling, and (3) ensembling. We call this method $\textbf{PACE}$, for $\textbf{P}$seudo-labels, $\textbf{A}$lignment of $\textbf{C}$ovariances, and $\textbf{E}$nsembles. PACE is trained on top of fixed features extracted from an ensemble of modern pretrained backbones. PACE exceeds previous state-of-the-art by $\textbf{5 - 10 \%}$ on most benchmark adaptation tasks without training a neural network. PACE reduces training time and hyperparameter tuning time by $82\%$ and $97\%$, respectively, when compared to state-of-the-art DA methods. Code is released here: https://github.com/Chris210634/PACE-Domain-Adaptation
2,912
null
A framework for overparameterized learning
An explanation for the success of deep neural networks is a central question in theoretical machine learning. According to classical statistical learning, the overparameterized nature of such models should imply a failure to generalize. Many argue that good empirical performance is due to the implicit regularization of first order optimization methods. In particular, the Polyak-{\L}ojasiewicz condition leads to gradient descent finding a global optimum that is close to initialization. In this work, we propose a framework consisting of a prototype learning problem, which is general enough to cover many popular problems and even the cases of infinitely wide neural networks and infinite data. We then perform an analysis from the perspective of the Polyak-{\L}ojasiewicz condition. We obtain theoretical results of independent interest, concerning gradient descent on a composition $(f \circ F): G \to \mathbb{R}$ of functions $F: G \to H$ and $f: H \to \mathbb{R}$ with $G, H$ being Hilbert spaces. Building on these results, we determine the properties that have to be satisfied by the components of the prototype problem for gradient descent to find a global optimum that is close to initialization. We then demonstrate that supervised learning, variational autoencoders and training with gradient penalty can be translated to the prototype problem. Finally, we lay out a number of directions for future research.
2,913
null
Are Transformers Effective for Time Series Forecasting?
Recently, there has been a surge of Transformer-based solutions for the time series forecasting (TSF) task, especially for the challenging long-term TSF problem. Transformer architecture relies on self-attention mechanisms to effectively extract the semantic correlations between paired elements in a long sequence, which is permutation-invariant and anti-ordering to some extent. However, in time series modeling, we are to extract the temporal relations among an ordering set of continuous points. Consequently, whether Transformer-based techniques are the right solutions for long-term time series forecasting is an interesting problem to investigate, despite the performance improvements shown in these studies. In this work, we question the validity of Transformer-based TSF solutions. In their experiments, the compared (non-Transformer) baselines are mainly autoregressive forecasting solutions, which usually have a poor long-term prediction capability due to inevitable error accumulation effects. In contrast, we use an embarrassingly simple architecture named DLinear that conducts direct multi-step (DMS) forecasting for comparison. DLinear decomposes the time series into a trend and a remainder series and employs two one-layer linear networks to model these two series for the forecasting task. Surprisingly, it outperforms existing complex Transformer-based models in most cases by a large margin. Therefore, we conclude that the relatively higher long-term forecasting accuracy of Transformer-based TSF solutions shown in existing works has little to do with the temporal relation extraction capabilities of the Transformer architecture. Instead, it is mainly due to the non-autoregressive DMS forecasting strategy used in them. We hope this study also advocates revisiting the validity of Transformer-based solutions for other time series analysis tasks (e.g., anomaly detection) in the future.
2,914
null
An Analytic Framework for Robust Training of Artificial Neural Networks
The reliability of a learning model is key to the successful deployment of machine learning in various industries. Creating a robust model, particularly one unaffected by adversarial attacks, requires a comprehensive understanding of the adversarial examples phenomenon. However, it is difficult to describe the phenomenon due to the complicated nature of the problems in machine learning. Consequently, many studies investigate the phenomenon by proposing a simplified model of how adversarial examples occur and validate it by predicting some aspect of the phenomenon. While these studies cover many different characteristics of the adversarial examples, they have not reached a holistic approach to the geometric and analytic modeling of the phenomenon. This paper propose a formal framework to study the phenomenon in learning theory and make use of complex analysis and holomorphicity to offer a robust learning rule for artificial neural networks. With the help of complex analysis, we can effortlessly move between geometric and analytic perspectives of the phenomenon and offer further insights on the phenomenon by revealing its connection with harmonic functions. Using our model, we can explain some of the most intriguing characteristics of adversarial examples, including transferability of adversarial examples, and pave the way for novel approaches to mitigate the effects of the phenomenon.
2,915
null
Censored Quantile Regression Neural Networks
This paper considers doing quantile regression on censored data using neural networks (NNs). This adds to the survival analysis toolkit by allowing direct prediction of the target variable, along with a distribution-free characterisation of uncertainty, using a flexible function approximator. We begin by showing how an algorithm popular in linear models can be applied to NNs. However, the resulting procedure is inefficient, requiring sequential optimisation of an individual NN at each desired quantile. Our major contribution is a novel algorithm that simultaneously optimises a grid of quantiles output by a single NN. To offer theoretical insight into our algorithm, we show firstly that it can be interpreted as a form of expectation-maximisation, and secondly that it exhibits a desirable `self-correcting' property. Experimentally, the algorithm produces quantiles that are better calibrated than existing methods on 10 out of 12 real datasets.
2,916
null
Mesoscopic modeling of hidden spiking neurons
Can we use spiking neural networks (SNN) as generative models of multi-neuronal recordings, while taking into account that most neurons are unobserved? Modeling the unobserved neurons with large pools of hidden spiking neurons leads to severely underconstrained problems that are hard to tackle with maximum likelihood estimation. In this work, we use coarse-graining and mean-field approximations to derive a bottom-up, neuronally-grounded latent variable model (neuLVM), where the activity of the unobserved neurons is reduced to a low-dimensional mesoscopic description. In contrast to previous latent variable models, neuLVM can be explicitly mapped to a recurrent, multi-population SNN, giving it a transparent biological interpretation. We show, on synthetic spike trains, that a few observed neurons are sufficient for neuLVM to perform efficient model inversion of large SNNs, in the sense that it can recover connectivity parameters, infer single-trial latent population activity, reproduce ongoing metastable dynamics, and generalize when subjected to perturbations mimicking photo-stimulation.
2,917
null
Sparse Graph Learning for Spatiotemporal Time Series
Outstanding achievements of graph neural networks for spatiotemporal time series prediction show that relational constraints introduce a positive inductive bias into neural forecasting architectures. Often, however, the relational information characterizing the underlying data generating process is unavailable; the practitioner is then left with the problem of inferring from data which relational graph to use in the subsequent processing stages. We propose novel, principled -- yet practical -- probabilistic methods that learn the relational dependencies by modeling distributions over graphs while maximizing, at the same time, end-to-end the forecasting accuracy. Our novel graph learning approach, based on consolidated variance reduction techniques for Monte Carlo score-based gradient estimation, is theoretically grounded and effective. We show that tailoring the gradient estimators to the graph learning problem allows us also for achieving state-of-the-art forecasting performance while controlling, at the same time, both the sparsity of the learned graph and the computational burden. We empirically assess the effectiveness of the proposed method on synthetic and real-world benchmarks, showing that the proposed solution can be used as a stand-alone graph identification procedure as well as a learned component of an end-to-end forecasting architecture.
2,918
null
SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation
Conventional point cloud semantic segmentation methods usually employ an encoder-decoder architecture, where mid-level features are locally aggregated to extract geometric information. However, the over-reliance on these class-agnostic local geometric representations may raise confusion between local parts from different categories that are similar in appearance or spatially adjacent. To address this issue, we argue that mid-level features can be further enhanced with semantic information, and propose semantic-affine transformation that transforms features of mid-level points belonging to different categories with class-specific affine parameters. Based on this technique, we propose SemAffiNet for point cloud semantic segmentation, which utilizes the attention mechanism in the Transformer module to implicitly and explicitly capture global structural knowledge within local parts for overall comprehension of each category. We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets, and evaluate semantic-affine transformation on various 3D point cloud and 2D image segmentation baselines, where both qualitative and quantitative results demonstrate the superiority and generalization ability of our proposed approach. Code is available at https://github.com/wangzy22/SemAffiNet.
2,919
null
DeepJoint: Robust Survival Modelling Under Clinical Presence Shift
Observational data in medicine arise as a result of the complex interaction between patients and the healthcare system. The sampling process is often highly irregular and itself constitutes an informative process. When using such data to develop prediction models, this phenomenon is often ignored, leading to sub-optimal performance and generalisability of models when practices evolve. We propose a multi-task recurrent neural network which models three clinical presence dimensions -- namely the longitudinal, the inter-observation and the missingness processes -- in parallel to the survival outcome. On a prediction task using MIMIC III laboratory tests, explicit modelling of these three processes showed improved performance in comparison to state-of-the-art predictive models (C-index at 1 day horizon: 0.878). More importantly, the proposed approach was more robust to change in the clinical presence setting, demonstrated by performance comparison between patients admitted on weekdays and weekends. This analysis demonstrates the importance of studying and leveraging clinical presence to improve performance and create more transportable clinical models.
2,920
null
Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations
Modeling multivariate time series as temporal signals over a (possibly dynamic) graph is an effective representational framework that allows for developing models for time series analysis. In fact, discrete sequences of graphs can be processed by autoregressive graph neural networks to recursively learn representations at each discrete point in time and space. Spatiotemporal graphs are often highly sparse, with time series characterized by multiple, concurrent, and even long sequences of missing data, e.g., due to the unreliable underlying sensor network. In this context, autoregressive models can be brittle and exhibit unstable learning dynamics. The objective of this paper is, then, to tackle the problem of learning effective models to reconstruct, i.e., impute, missing data points by conditioning the reconstruction only on the available observations. In particular, we propose a novel class of attention-based architectures that, given a set of highly sparse discrete observations, learn a representation for points in time and space by exploiting a spatiotemporal diffusion architecture aligned with the imputation task. Representations are trained end-to-end to reconstruct observations w.r.t. the corresponding sensor and its neighboring nodes. Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies. Empirical results on representative benchmarks show the effectiveness of the proposed method.
2,921
null
Embed to Control Partially Observed Systems: Representation Learning with Provable Sample Efficiency
Reinforcement learning in partially observed Markov decision processes (POMDPs) faces two challenges. (i) It often takes the full history to predict the future, which induces a sample complexity that scales exponentially with the horizon. (ii) The observation and state spaces are often continuous, which induces a sample complexity that scales exponentially with the extrinsic dimension. Addressing such challenges requires learning a minimal but sufficient representation of the observation and state histories by exploiting the structure of the POMDP. To this end, we propose a reinforcement learning algorithm named Embed to Control (ETC), which learns the representation at two levels while optimizing the policy.~(i) For each step, ETC learns to represent the state with a low-dimensional feature, which factorizes the transition kernel. (ii) Across multiple steps, ETC learns to represent the full history with a low-dimensional embedding, which assembles the per-step feature. We integrate (i) and (ii) in a unified framework that allows a variety of estimators (including maximum likelihood estimators and generative adversarial networks). For a class of POMDPs with a low-rank structure in the transition kernel, ETC attains an $O(1/\epsilon^2)$ sample complexity that scales polynomially with the horizon and the intrinsic dimension (that is, the rank). Here $\epsilon$ is the optimality gap. To our best knowledge, ETC is the first sample-efficient algorithm that bridges representation learning and policy optimization in POMDPs with infinite observation and state spaces.
2,922
null
FedAug: Reducing the Local Learning Bias Improves Federated Learning on Heterogeneous Data
Federated Learning (FL) is a machine learning paradigm that learns from data kept locally to safeguard the privacy of clients, whereas local SGD is typically employed on the clients' devices to improve communication efficiency. However, such a scheme is currently constrained by the slow and unstable convergence induced by clients' heterogeneous data. In this work, we identify three under-explored phenomena of the biased local learning that may explain these challenges caused by local updates in supervised FL. As a remedy, we propose FedAug, a novel unified algorithm that reduces the local learning bias on features and classifiers to tackle these challenges. FedAug consists of two components: AugMean and AugCA. AugMean alleviates the bias in the local classifiers by balancing the output distribution of models. AugCA learns client invariant features that are close to global features but considerably distinct from those learned from other input distributions. In a series of experiments, we show that FedAug consistently outperforms other SOTA FL and domain generalization (DG) baselines, in which both two components (i.e., AugMean and AugCA) have individual performance gains.
2,923
null
SigMaNet: One Laplacian to Rule Them All
This paper introduces SigMaNet, a generalized Graph Convolutional Network (GCN) capable of handling both undirected and directed graphs with weights not restricted in sign and magnitude. The cornerstone of SigMaNet is the introduction of a generalized Laplacian matrix: the Sign-Magnetic Laplacian ($L^\sigma$). The adoption of such a matrix allows us to bridge a gap in the current literature by extending the theory of spectral GCNs to directed graphs with both positive and negative weights. $L^{\sigma}$ exhibits several desirable properties not enjoyed by the traditional Laplacian matrices on which several state-of-the-art architectures are based. In particular, $L^\sigma$ is completely parameter-free, which is not the case of Laplacian operators such as the Magnetic Laplacian $L^{(q)}$, where the calibration of the parameter q is an essential yet problematic component of the operator. $L^\sigma$ simplifies the approach, while also allowing for a natural interpretation of the signs of the edges in terms of their directions. The versatility of the proposed approach is amply demonstrated experimentally; the proposed network SigMaNet turns out to be competitive in all the tasks we considered, regardless of the graph structure.
2,924
null
AutoTSG: Learning and Synthesis for Incident Troubleshooting
Incident management is a key aspect of operating large-scale cloud services. To aid with faster and efficient resolution of incidents, engineering teams document frequent troubleshooting steps in the form of Troubleshooting Guides (TSGs), to be used by on-call engineers (OCEs). However, TSGs are siloed, unstructured, and often incomplete, requiring developers to manually understand and execute necessary steps. This results in a plethora of issues such as on-call fatigue, reduced productivity, and human errors. In this work, we conduct a large-scale empirical study of over 4K+ TSGs mapped to 1000s of incidents and find that TSGs are widely used and help significantly reduce mitigation efforts. We then analyze feedback on TSGs provided by 400+ OCEs and propose a taxonomy of issues that highlights significant gaps in TSG quality. To alleviate these gaps, we investigate the automation of TSGs and propose AutoTSG -- a novel framework for automation of TSGs to executable workflows by combining machine learning and program synthesis. Our evaluation of AutoTSG on 50 TSGs shows the effectiveness in both identifying TSG statements (accuracy 0.89) and parsing them for execution (precision 0.94 and recall 0.91). Lastly, we survey ten Microsoft engineers and show the importance of TSG automation and the usefulness of AutoTSG.
2,925
null
Continual evaluation for lifelong learning: Identifying the stability gap
Introducing a time dependency on the data generating distribution has proven to be difficult for gradient-based training of neural networks, as the greedy updates result in catastrophic forgetting of previous timesteps. Continual learning aims to overcome the greedy optimization to enable continuous accumulation of knowledge over time. The data stream is typically divided into locally stationary distributions, called tasks, allowing task-based evaluation on held-out data from the training tasks. Contemporary evaluation protocols and metrics in continual learning are task-based and quantify the trade-off between stability and plasticity only at task transitions. However, our empirical evidence suggests that between task transitions significant, temporary forgetting can occur, remaining unidentified in task-based evaluation. Therefore, we propose a framework for continual evaluation that establishes per-iteration evaluation and define a new set of metrics that enables identifying the worst-case performance of the learner over its lifetime. Performing continual evaluation, we empirically identify that replay suffers from a stability gap: upon learning a new task, there is a substantial but transient decrease in performance on past tasks. Further conceptual and empirical analysis suggests not only replay-based, but also regularization-based continual learning methods are prone to the stability gap.
2,926
null
Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback
We consider regret minimization for Adversarial Markov Decision Processes (AMDPs), where the loss functions are changing over time and adversarially chosen, and the learner only observes the losses for the visited state-action pairs (i.e., bandit feedback). While there has been a surge of studies on this problem using Online-Mirror-Descent (OMD) methods, very little is known about the Follow-the-Perturbed-Leader (FTPL) methods, which are usually computationally more efficient and also easier to implement since it only requires solving an offline planning problem. Motivated by this, we take a closer look at FTPL for learning AMDPs, starting from the standard episodic finite-horizon setting. We find some unique and intriguing difficulties in the analysis and propose a workaround to eventually show that FTPL is also able to achieve near-optimal regret bounds in this case. More importantly, we then find two significant applications: First, the analysis of FTPL turns out to be readily generalizable to delayed bandit feedback with order-optimal regret, while OMD methods exhibit extra difficulties (Jin et al., 2022). Second, using FTPL, we also develop the first no-regret algorithm for learning communicating AMDPs in the infinite-horizon setting with bandit feedback and stochastic transitions. Our algorithm is efficient assuming access to an offline planning oracle, while even for the easier full-information setting, the only existing algorithm (Chandrasekaran and Tewari, 2021) is computationally inefficient.
2,927
null
Variance-Aware Sparse Linear Bandits
It is well-known that the worst-case minimax regret for sparse linear bandits is $\widetilde{\Theta}\left(\sqrt{dT}\right)$ where $d$ is the ambient dimension and $T$ is the number of time steps (ignoring the dependency on sparsity). On the other hand, in the benign setting where there is no noise and the action set is the unit sphere, one can use divide-and-conquer to achieve an $\widetilde{\mathcal O}(1)$ regret, which is (nearly) independent of $d$ and $T$. In this paper, we present the first variance-aware regret guarantee for sparse linear bandits: $\widetilde{\mathcal O}\left(\sqrt{d\sum_{t=1}^T \sigma_t^2} + 1\right)$, where $\sigma_t^2$ is the variance of the noise at the $t$-th time step. This bound naturally interpolates the regret bounds for the worst-case constant-variance regime ($\sigma_t = \Omega(1)$) and the benign deterministic regimes ($\sigma_t = 0$). To achieve this variance-aware regret guarantee, we develop a general framework that converts any variance-aware linear bandit algorithm to a variance-aware algorithm for sparse linear bandits in a ``black-box'' manner. Specifically, we take two recent algorithms as black boxes to illustrate that the claimed bounds indeed hold, where the first algorithm can handle unknown-variance cases and the second one is more efficient.
2,928
null
Opinion Spam Detection: A New Approach Using Machine Learning and Network-Based Algorithms
E-commerce is the fastest-growing segment of the economy. Online reviews play a crucial role in helping consumers evaluate and compare products and services. As a result, fake reviews (opinion spam) are becoming more prevalent and negatively impacting customers and service providers. There are many reasons why it is hard to identify opinion spammers automatically, including the absence of reliable labeled data. This limitation precludes an off-the-shelf application of a machine learning pipeline. We propose a new method for classifying reviewers as spammers or benign, combining machine learning with a message-passing algorithm that capitalizes on the users' graph structure to compensate for the possible scarcity of labeled data. We devise a new way of sampling the labels for the training step (active learning), replacing the typical uniform sampling. Experiments on three large real-world datasets from Yelp.com show that our method outperforms state-of-the-art active learning approaches and also machine learning methods that use a much larger set of labeled data for training.
2,929
null
Machine Learning Models Are Not Necessarily Biased When Constructed Properly: Evidence from Neuroimaging Studies
Despite the great promise that machine learning has offered in many fields of medicine, it has also raised concerns about potential biases and poor generalization across genders, age distributions, races and ethnicities, hospitals, and data acquisition equipment and protocols. In the current study, and in the context of three brain diseases, we provide experimental data which support that when properly trained, machine learning models can generalize well across diverse conditions and do not suffer from biases. Specifically, by using multi-study magnetic resonance imaging consortia for diagnosing Alzheimer's disease, schizophrenia, and autism spectrum disorder, we find that, the accuracy of well-trained models is consistent across different subgroups pertaining to attributes such as gender, age, and racial groups, as also different clinical studies. We find that models that incorporate multi-source data from demographic, clinical, genetic factors and cognitive scores are also unbiased. These models have better predictive accuracy across subgroups than those trained only with structural measures in some cases but there are also situations when these additional features do not help.
2,930
null
Avoiding Barren Plateaus with Classical Deep Neural Networks
Variational quantum algorithms (VQAs) are among the most promising algorithms in the era of Noisy Intermediate Scale Quantum Devices. The VQAs are applied to a variety of tasks, such as in chemistry simulations, optimization problems, and quantum neural networks. Such algorithms are constructed using a parameterization U($\pmb{\theta}$) with a classical optimizer that updates the parameters $\pmb{\theta}$ in order to minimize a cost function $C$. For this task, in general the gradient descent method, or one of its variants, is used. This is a method where the circuit parameters are updated iteratively using the cost function gradient. However, several works in the literature have shown that this method suffers from a phenomenon known as the Barren Plateaus (BP). This phenomenon is characterized by the exponentially flattening of the cost function landscape, so that the number of times the function must be evaluated to perform the optimization grows exponentially as the number of qubits and parameterization depth increase. In this article, we report on how the use of a classical neural networks in the VQAs input parameters can alleviate the BP phenomenon.
2,931
null
A Fair Federated Learning Framework With Reinforcement Learning
Federated learning (FL) is a paradigm where many clients collaboratively train a model under the coordination of a central server, while keeping the training data locally stored. However, heterogeneous data distributions over different clients remain a challenge to mainstream FL algorithms, which may cause slow convergence, overall performance degradation and unfairness of performance across clients. To address these problems, in this study we propose a reinforcement learning framework, called PG-FFL, which automatically learns a policy to assign aggregation weights to clients. Additionally, we propose to utilize Gini coefficient as the measure of fairness for FL. More importantly, we apply the Gini coefficient and validation accuracy of clients in each communication round to construct a reward function for the reinforcement learning. Our PG-FFL is also compatible to many existing FL algorithms. We conduct extensive experiments over diverse datasets to verify the effectiveness of our framework. The experimental results show that our framework can outperform baseline methods in terms of overall performance, fairness and convergence speed.
2,932
null
Your Transformer May Not be as Powerful as You Expect
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding of the RPE-based Transformers is largely unexplored. In this work, we mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions. One may naturally assume the answer is in the affirmative -- RPE-based Transformers are universal function approximators. However, we present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is. One key reason lies in that most RPEs are placed in the softmax attention that always generates a right stochastic matrix. This restricts the network from capturing positional information in the RPEs and limits its capacity. To overcome the problem and make the model more powerful, we first present sufficient conditions for RPE-based Transformers to achieve universal function approximation. With the theoretical guidance, we develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the corresponding URPE-based Transformers become universal function approximators. Extensive experiments covering typical architectures and tasks demonstrate that our model is parameter-efficient and can achieve superior performance to strong baselines in a wide range of applications.
2,933
null
Looking for Out-of-Distribution Environments in Critical Care: A case study with the eICU Database
Generalizing to new populations and domains in machine learning is still an open problem which has seen increased interest recently. In particular, clinical models show a significant performance drop when tested in settings not seen during training, e.g., new hospitals or population demographics. Recently proposed models for domain generalisation promise to alleviate this problem by learning invariant characteristics across environments, however, there is still scepticism about whether they improve over traditional training. In this work, we take a principled approach to identifying Out of Distribution (OoD) environments, motivated by the problem of cross-hospital generalization in critical care. We propose model-based and heuristic approaches to identify OoD environments and systematically compare models with different levels of held-out information. In particular, based on the assumption that models with access to OoD data should outperform other models, we train models across a range of experimental setups that include leave-one-hospital-out training and cross-sectional feature splits. We find that access to OoD data does not translate to increased performance, pointing to inherent limitations in defining potential OoD environments in the eICU Database potentially due to data harmonisation and sampling. Echoing similar results with other popular clinical benchmarks in the literature, new approaches are required to evaluate robust models in critical care.
2,934
null
BppAttack: Stealthy and Efficient Trojan Attacks against Deep Neural Networks via Image Quantization and Contrastive Adversarial Learning
Deep neural networks are vulnerable to Trojan attacks. Existing attacks use visible patterns (e.g., a patch or image transformations) as triggers, which are vulnerable to human inspection. In this paper, we propose stealthy and efficient Trojan attacks, BppAttack. Based on existing biology literature on human visual systems, we propose to use image quantization and dithering as the Trojan trigger, making imperceptible changes. It is a stealthy and efficient attack without training auxiliary models. Due to the small changes made to images, it is hard to inject such triggers during training. To alleviate this problem, we propose a contrastive learning based approach that leverages adversarial attacks to generate negative sample pairs so that the learned trigger is precise and accurate. The proposed method achieves high attack success rates on four benchmark datasets, including MNIST, CIFAR-10, GTSRB, and CelebA. It also effectively bypasses existing Trojan defenses and human inspection. Our code can be found in https://github.com/RU-System-Software-and-Security/BppAttack.
2,935
null
Multi-fidelity power flow solver
We propose a multi-fidelity neural network (MFNN) tailored for rapid high-dimensional grid power flow simulations and contingency analysis with scarce high-fidelity contingency data. The proposed model comprises two networks -- the first one trained on DC approximation as low-fidelity data and coupled to a high-fidelity neural net trained on both low- and high-fidelity power flow data. Each network features a latent module which parametrizes the model by a discrete grid topology vector for generalization (e.g., $n$ power lines with $k$ disconnections or contingencies, if any), and the targeted high-fidelity output is a weighted sum of linear and nonlinear functions. We tested the model on 14- and 118-bus test cases and evaluated its performance based on the $n-k$ power flow prediction accuracy with respect to imbalanced contingency data and high-to-low-fidelity sample ratio. The results presented herein demonstrate MFNN's potential and its limits with up to two orders of magnitude faster and more accurate power flow solutions than DC approximation.
2,936
null
Feature Forgetting in Continual Representation Learning
In continual and lifelong learning, good representation learning can help increase performance and reduce sample complexity when learning new tasks. There is evidence that representations do not suffer from "catastrophic forgetting" even in plain continual learning, but little further fact is known about its characteristics. In this paper, we aim to gain more understanding about representation learning in continual learning, especially on the feature forgetting problem. We devise a protocol for evaluating representation in continual learning, and then use it to present an overview of the basic trends of continual representation learning, showing its consistent deficiency and potential issues. To study the feature forgetting problem, we create a synthetic dataset to identify and visualize the prevalence of feature forgetting in neural networks. Finally, we propose a simple technique using gating adapters to mitigate feature forgetting. We conclude by discussing that improving representation learning benefits both old and new tasks in continual learning.
2,937
null
Transfer and Share: Semi-Supervised Learning from Long-Tailed Data
Long-Tailed Semi-Supervised Learning (LTSSL) aims to learn from class-imbalanced data where only a few samples are annotated. Existing solutions typically require substantial cost to solve complex optimization problems, or class-balanced undersampling which can result in information loss. In this paper, we present the TRAS (TRAnsfer and Share) to effectively utilize long-tailed semi-supervised data. TRAS transforms the imbalanced pseudo-label distribution of a traditional SSL model via a delicate function to enhance the supervisory signals for minority classes. It then transfers the distribution to a target model such that the minority class will receive significant attention. Interestingly, TRAS shows that more balanced pseudo-label distribution can substantially benefit minority-class training, instead of seeking to generate accurate pseudo-labels as in previous works. To simplify the approach, TRAS merges the training of the traditional SSL model and the target model into a single procedure by sharing the feature extractor, where both classifiers help improve the representation learning. According to extensive experiments, TRAS delivers much higher accuracy than state-of-the-art methods in the entire set of classes as well as minority classes.
2,938
null
QUIC-FL: Quick Unbiased Compression for Federated Learning
Distributed Mean Estimation (DME) is a fundamental building block in communication efficient federated learning. In DME, clients communicate their lossily compressed gradients to the parameter server, which estimates the average and updates the model. State of the art DME techniques apply either unbiased quantization methods, resulting in large estimation errors, or biased quantization methods, where unbiasing the result requires that the server decodes each gradient individually, which markedly slows the aggregation time. In this paper, we propose QUIC-FL, a DME algorithm that achieves the best of all worlds. QUIC-FL is unbiased, offers fast aggregation time, and is competitive with the most accurate (slow aggregation) DME techniques. To achieve this, we formalize the problem in a novel way that allows us to use standard solvers to design near-optimal unbiased quantization schemes.
2,939
null
Deep Active Learning with Noise Stability
Uncertainty estimation for unlabeled data is crucial to active learning. With a deep neural network employed as the backbone model, the data selection process is highly challenging due to the potential over-confidence of the model inference. Existing methods resort to special learning fashions (e.g. adversarial) or auxiliary models to address this challenge. This tends to result in complex and inefficient pipelines, which would render the methods impractical. In this work, we propose a novel algorithm that leverages noise stability to estimate data uncertainty in a Single-Training Multi-Inference fashion. The key idea is to measure the output derivation from the original observation when the model parameters are randomly perturbed by noise. We provide theoretical analyses by leveraging the small Gaussian noise theory and demonstrate that our method favors a subset with large and diverse gradients. Despite its simplicity, our method outperforms the state-of-the-art active learning baselines in various tasks, including computer vision, natural language processing, and structural data analysis.
2,940
null
TransBoost: Improving the Best ImageNet Performance using Deep Transduction
This paper deals with deep transductive learning, and proposes TransBoost as a procedure for fine-tuning any deep neural model to improve its performance on any (unlabeled) test set provided at training time. TransBoost is inspired by a large margin principle and is efficient and simple to use. The ImageNet classification performance is consistently and significantly improved with TransBoost on many architectures such as ResNets, MobileNetV3-L, EfficientNetB0, ViT-S, and ConvNext-T. Additionally we show that TransBoost is effective on a wide variety of image classification datasets.
2,941
null
How Powerful are K-hop Message Passing Graph Neural Networks
The most popular design paradigm for Graph Neural Networks (GNNs) is 1-hop message passing -- aggregating features from 1-hop neighbors repeatedly. However, the expressive power of 1-hop message passing is bounded by the Weisfeiler-Lehman (1-WL) test. Recently, researchers extended 1-hop message passing to K-hop message passing by aggregating information from K-hop neighbors of nodes simultaneously. However, there is no work on analyzing the expressive power of K-hop message passing. In this work, we theoretically characterize the expressive power of K-hop message passing. Specifically, we first formally differentiate two kinds of kernels of K-hop message passing which are often misused in previous works. We then characterize the expressive power of K-hop message passing by showing that it is more powerful than 1-hop message passing. Despite the higher expressive power, we show that K-hop message passing still cannot distinguish some simple regular graphs. To further enhance its expressive power, we introduce a KP-GNN framework, which improves K-hop message passing by leveraging the peripheral subgraph information in each hop. We prove that KP-GNN can distinguish almost all regular graphs including some distance regular graphs which could not be distinguished by previous distance encoding methods. Experimental results verify the expressive power and effectiveness of KP-GNN. KP-GNN achieves competitive results across all benchmark datasets.
2,942
null
Learning the spatio-temporal relationship between wind and significant wave height using deep learning
Ocean wave climate has a significant impact on near-shore and off-shore human activities, and its characterisation can help in the design of ocean structures such as wave energy converters and sea dikes. Therefore, engineers need long time series of ocean wave parameters. Numerical models are a valuable source of ocean wave data; however, they are computationally expensive. Consequently, statistical and data-driven approaches have gained increasing interest in recent decades. This work investigates the spatio-temporal relationship between North Atlantic wind and significant wave height (Hs) at an off-shore location in the Bay of Biscay, using a two-stage deep learning model. The first step uses convolutional neural networks (CNNs) to extract the spatial features that contribute to Hs. Then, long short-term memory (LSTM) is used to learn the long-term temporal dependencies between wind and waves.
2,943
null
The Effect of Task Ordering in Continual Learning
We investigate the effect of task ordering on continual learning performance. We conduct an extensive series of empirical experiments on synthetic and naturalistic datasets and show that reordering tasks significantly affects the amount of catastrophic forgetting. Connecting to the field of curriculum learning, we show that the effect of task ordering can be exploited to modify continual learning performance, and present a simple approach for doing so. Our method computes the distance between all pairs of tasks, where distance is defined as the source task curvature of a gradient step toward the target task. Using statistically rigorous methods and sound experimental design, we show that task ordering is an important aspect of continual learning that can be modified for improved performance.
2,944
null
Towards Learning Universal Hyperparameter Optimizers with Transformers
Meta-learning hyperparameter optimization (HPO) algorithms from prior experiments is a promising approach to improve optimization efficiency over objective functions from a similar distribution. However, existing methods are restricted to learning from experiments sharing the same set of hyperparameters. In this paper, we introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction when trained on vast tuning data from the wild. Our extensive experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates. Compared to a Gaussian Process, the OptFormer also learns a robust prior distribution for hyperparameter response functions, and can thereby provide more accurate and better calibrated predictions. This work paves the path to future extensions for training a Transformer-based model as a general HPO optimizer.
2,945
null
Fair Representation Learning through Implicit Path Alignment
We consider a fair representation learning perspective, where optimal predictors, on top of the data representation, are ensured to be invariant with respect to different sub-groups. Specifically, we formulate this intuition as a bi-level optimization, where the representation is learned in the outer-loop, and invariant optimal group predictors are updated in the inner-loop. Moreover, the proposed bi-level objective is demonstrated to fulfill the sufficiency rule, which is desirable in various practical scenarios but was not commonly studied in the fair learning. Besides, to avoid the high computational and memory cost of differentiating in the inner-loop of bi-level objective, we propose an implicit path alignment algorithm, which only relies on the solution of inner optimization and the implicit differentiation rather than the exact optimization path. We further analyze the error gap of the implicit approach and empirically validate the proposed method in both classification and regression settings. Experimental results show the consistently better trade-off in prediction performance and fairness measurement.
2,946
null
SARS-CoV-2 Result Interpretation based on Image Analysis of Lateral Flow Devices
The widely used gene quantisation technique, Lateral Flow Device (LFD), is now commonly used to detect the presence of SARS-CoV-2. It is enabling the control and prevention of the spread of the virus. Depending on the viral load, LFD have different sensitivity and self-test for normal user present additional challenge to interpret the result. With the evolution of machine learning algorithms, image processing and analysis has seen unprecedented growth. In this interdisciplinary study, we employ novel image analysis methods of computer vision and machine learning field to study visual features of the control region of LFD. Here, we automatically derive results for any image containing LFD into positive, negative or inconclusive. This will reduce the burden of human involvement of health workers and perception bias.
2,947
null
Gaussian Universality of Linear Classifiers with Random Labels in High-Dimension
While classical in many theoretical settings, the assumption of Gaussian i.i.d. inputs is often perceived as a strong limitation in the analysis of high-dimensional learning. In this study, we redeem this line of work in the case of generalized linear classification with random labels. Our main contribution is a rigorous proof that data coming from a range of generative models in high-dimensions have the same minimum training loss as Gaussian data with corresponding data covariance. In particular, our theorem covers data created by an arbitrary mixture of homogeneous Gaussian clouds, as well as multi-modal generative neural networks. In the limit of vanishing regularization, we further demonstrate that the training loss is independent of the data covariance. Finally, we show that this universality property is observed in practice with real datasets and random labels.
2,948
null
Federated Non-negative Matrix Factorization for Short Texts Topic Modeling with Mutual Information
Non-negative matrix factorization (NMF) based topic modeling is widely used in natural language processing (NLP) to uncover hidden topics of short text documents. Usually, training a high-quality topic model requires large amount of textual data. In many real-world scenarios, customer textual data should be private and sensitive, precluding uploading to data centers. This paper proposes a Federated NMF (FedNMF) framework, which allows multiple clients to collaboratively train a high-quality NMF based topic model with locally stored data. However, standard federated learning will significantly undermine the performance of topic models in downstream tasks (e.g., text classification) when the data distribution over clients is heterogeneous. To alleviate this issue, we further propose FedNMF+MI, which simultaneously maximizes the mutual information (MI) between the count features of local texts and their topic weight vectors to mitigate the performance degradation. Experimental results show that our FedNMF+MI methods outperform Federated Latent Dirichlet Allocation (FedLDA) and the FedNMF without MI methods for short texts by a significant margin on both coherence score and classification F1 score.
2,949
null
Federated Split BERT for Heterogeneous Text Classification
Pre-trained BERT models have achieved impressive performance in many natural language processing (NLP) tasks. However, in many real-world situations, textual data are usually decentralized over many clients and unable to be uploaded to a central server due to privacy protection and regulations. Federated learning (FL) enables multiple clients collaboratively to train a global model while keeping the local data privacy. A few researches have investigated BERT in federated learning setting, but the problem of performance loss caused by heterogeneous (e.g., non-IID) data over clients remain under-explored. To address this issue, we propose a framework, FedSplitBERT, which handles heterogeneous data and decreases the communication cost by splitting the BERT encoder layers into local part and global part. The local part parameters are trained by the local client only while the global part parameters are trained by aggregating gradients of multiple clients. Due to the sheer size of BERT, we explore a quantization method to further reduce the communication cost with minimal performance loss. Our framework is ready-to-use and compatible to many existing federated learning algorithms, including FedAvg, FedProx and FedAdam. Our experiments verify the effectiveness of the proposed framework, which outperforms baseline methods by a significant margin, while FedSplitBERT with quantization can reduce the communication cost by $11.9\times$.
2,950
null
DeepTechnome: Mitigating Unknown Bias in Deep Learning Based Assessment of CT Images
Reliably detecting diseases using relevant biological information is crucial for real-world applicability of deep learning techniques in medical imaging. We debias deep learning models during training against unknown bias - without preprocessing/filtering the input beforehand or assuming specific knowledge about its distribution or precise nature in the dataset. We use control regions as surrogates that carry information regarding the bias, employ the classifier model to extract features, and suppress biased intermediate features with our custom, modular DecorreLayer. We evaluate our method on a dataset of 952 lung computed tomography scans by introducing simulated biases w.r.t. reconstruction kernel and noise level and propose including an adversarial test set in evaluations of bias reduction techniques. In a moderately sized model architecture, applying the proposed method to learn from data exhibiting a strong bias, it near-perfectly recovers the classification performance observed when training with corresponding unbiased data.
2,951
null
Embedding Principle in Depth for the Loss Landscape Analysis of Deep Neural Networks
Unraveling the general structure underlying the loss landscapes of deep neural networks (DNNs) is important for the theoretical study of deep learning. Inspired by the embedding principle of DNN loss landscape, we prove in this work an embedding principle in depth that loss landscape of an NN "contains" all critical points of the loss landscapes for shallower NNs. Specifically, we propose a critical lifting operator that any critical point of a shallower network can be lifted to a critical manifold of the target network while preserving the outputs. Through lifting, local minimum of an NN can become a strict saddle point of a deeper NN, which can be easily escaped by first-order methods. The embedding principle in depth reveals a large family of critical points in which layer linearization happens, i.e., computation of certain layers is effectively linear for the training inputs. We empirically demonstrate that, through suppressing layer linearization, batch normalization helps avoid the lifted critical manifolds, resulting in a faster decay of loss. We also demonstrate that increasing training data reduces the lifted critical manifold thus could accelerate the training. Overall, the embedding principle in depth well complements the embedding principle (in width), resulting in a complete characterization of the hierarchical structure of critical points/manifolds of a DNN loss landscape.
2,952
null
On the Eigenvalues of Global Covariance Pooling for Fine-grained Visual Recognition
The Fine-Grained Visual Categorization (FGVC) is challenging because the subtle inter-class variations are difficult to be captured. One notable research line uses the Global Covariance Pooling (GCP) layer to learn powerful representations with second-order statistics, which can effectively model inter-class differences. In our previous conference paper, we show that truncating small eigenvalues of the GCP covariance can attain smoother gradient and improve the performance on large-scale benchmarks. However, on fine-grained datasets, truncating the small eigenvalues would make the model fail to converge. This observation contradicts the common assumption that the small eigenvalues merely correspond to the noisy and unimportant information. Consequently, ignoring them should have little influence on the performance. To diagnose this peculiar behavior, we propose two attribution methods whose visualizations demonstrate that the seemingly unimportant small eigenvalues are crucial as they are in charge of extracting the discriminative class-specific features. Inspired by this observation, we propose a network branch dedicated to magnifying the importance of small eigenvalues. Without introducing any additional parameters, this branch simply amplifies the small eigenvalues and achieves state-of-the-art performances of GCP methods on three fine-grained benchmarks. Furthermore, the performance is also competitive against other FGVC approaches on larger datasets. Code is available at \href{https://github.com/KingJamesSong/DifferentiableSVD}{https://github.com/KingJamesSong/DifferentiableSVD}.
2,953
null
Triangular Contrastive Learning on Molecular Graphs
Recent contrastive learning methods have shown to be effective in various tasks, learning generalizable representations invariant to data augmentation thereby leading to state of the art performances. Regarding the multifaceted nature of large unlabeled data used in self-supervised learning while majority of real-word downstream tasks use single format of data, a multimodal framework that can train single modality to learn diverse perspectives from other modalities is an important challenge. In this paper, we propose TriCL (Triangular Contrastive Learning), a universal framework for trimodal contrastive learning. TriCL takes advantage of Triangular Area Loss, a novel intermodal contrastive loss that learns the angular geometry of the embedding space through simultaneously contrasting the area of positive and negative triplets. Systematic observation on embedding space in terms of alignment and uniformity showed that Triangular Area Loss can address the line-collapsing problem by discriminating modalities by angle. Our experimental results also demonstrate the outperformance of TriCL on downstream task of molecular property prediction which implies that the advantages of the embedding space indeed benefits the performance on downstream tasks.
2,954
null
Evaluating Multimodal Interactive Agents
Creating agents that can interact naturally with humans is a common goal in artificial intelligence (AI) research. However, evaluating these interactions is challenging: collecting online human-agent interactions is slow and expensive, yet faster proxy metrics often do not correlate well with interactive evaluation. In this paper, we assess the merits of these existing evaluation metrics and present a novel approach to evaluation called the Standardised Test Suite (STS). The STS uses behavioural scenarios mined from real human interaction data. Agents see replayed scenario context, receive an instruction, and are then given control to complete the interaction offline. These agent continuations are recorded and sent to human annotators to mark as success or failure, and agents are ranked according to the proportion of continuations in which they succeed. The resulting STS is fast, controlled, interpretable, and representative of naturalistic interactions. Altogether, the STS consolidates much of what is desirable across many of our standard evaluation metrics, allowing us to accelerate research progress towards producing agents that can interact naturally with humans. https://youtu.be/YR1TngGORGQ
2,955
null
Acute Lymphoblastic Leukemia Detection Using Hypercomplex-Valued Convolutional Neural Networks
This paper features convolutional neural networks defined on hypercomplex algebras applied to classify lymphocytes in blood smear digital microscopic images. Such classification is helpful for the diagnosis of acute lymphoblast leukemia (ALL), a type of blood cancer. We perform the classification task using eight hypercomplex-valued convolutional neural networks (HvCNNs) along with real-valued convolutional networks. Our results show that HvCNNs perform better than the real-valued model, showcasing higher accuracy with a much smaller number of parameters. Moreover, we found that HvCNNs based on Clifford algebras processing HSV-encoded images attained the highest observed accuracies. Precisely, our HvCNN yielded an average accuracy rate of 96.6% using the ALL-IDB2 dataset with a 50% train-test split, a value extremely close to the state-of-the-art models but using a much simpler architecture with significantly fewer parameters.
2,956
null
Privacy-Preserving Wavelet Neural Network with Fully Homomorphic Encryption
The main aim of Privacy-Preserving Machine Learning (PPML) is to protect the privacy and provide security to the data used in building Machine Learning models. There are various techniques in PPML such as Secure Multi-Party Computation, Differential Privacy, and Homomorphic Encryption (HE). The techniques are combined with various Machine Learning models and even Deep Learning Networks to protect the data privacy as well as the identity of the user. In this paper, we propose a fully homomorphic encrypted wavelet neural network to protect privacy and at the same time not compromise on the efficiency of the model. We tested the effectiveness of the proposed method on seven datasets taken from the finance and healthcare domains. The results show that our proposed model performs similarly to the unencrypted model.
2,957
null
Active Labeling: Streaming Stochastic Gradients
The workhorse of machine learning is stochastic gradient descent. To access stochastic gradients, it is common to consider iteratively input/output pairs of a training dataset. Interestingly, it appears that one does not need full supervision to access stochastic gradients, which is the main motivation of this paper. After formalizing the "active labeling" problem, which generalizes active learning based on partial supervision, we provide a streaming technique that provably minimizes the ratio of generalization error over number of samples. We illustrate our technique in depth for robust regression.
2,958
null
Denial-of-Service Attacks on Learned Image Compression
Deep learning techniques have shown promising results in image compression, with competitive bitrate and image reconstruction quality from compressed latent. However, while image compression has progressed towards higher peak signal-to-noise ratio (PSNR) and fewer bits per pixel (bpp), their robustness to corner-case images has never received deliberation. In this work, we, for the first time, investigate the robustness of image compression systems where imperceptible perturbation of input images can precipitate a significant increase in the bitrate of their compressed latent. To characterize the robustness of state-of-the-art learned image compression, we mount white and black-box attacks. Our results on several image compression models with various bitrate qualities show that they are surprisingly fragile, where the white-box attack achieves up to 56.326x and black-box 1.947x bpp change. To improve robustness, we propose a novel model which incorporates attention modules and a basic factorized entropy model, resulting in a promising trade-off between the PSNR/bpp ratio and robustness to adversarial attacks that surpasses existing learned image compressors.
2,959
null
DT-SV: A Transformer-based Time-domain Approach for Speaker Verification
Speaker verification (SV) aims to determine whether the speaker's identity of a test utterance is the same as the reference speech. In the past few years, extracting speaker embeddings using deep neural networks for SV systems has gone mainstream. Recently, different attention mechanisms and Transformer networks have been explored widely in SV fields. However, utilizing the original Transformer in SV directly may have frame-level information waste on output features, which could lead to restrictions on capacity and discrimination of speaker embeddings. Therefore, we propose an approach to derive utterance-level speaker embeddings via a Transformer architecture that uses a novel loss function named diffluence loss to integrate the feature information of different Transformer layers. Therein, the diffluence loss aims to aggregate frame-level features into an utterance-level representation, and it could be integrated into the Transformer expediently. Besides, we also introduce a learnable mel-fbank energy feature extractor named time-domain feature extractor that computes the mel-fbank features more precisely and efficiently than the standard mel-fbank extractor. Combining Diffluence loss and Time-domain feature extractor, we propose a novel Transformer-based time-domain SV model (DT-SV) with faster training speed and higher accuracy. Experiments indicate that our proposed model can achieve better performance in comparison with other models.
2,960
null
Constrained Reinforcement Learning for Short Video Recommendation
The wide popularity of short videos on social media poses new opportunities and challenges to optimize recommender systems on the video-sharing platforms. Users provide complex and multi-faceted responses towards recommendations, including watch time and various types of interactions with videos. As a result, established recommendation algorithms that concern a single objective are not adequate to meet this new demand of optimizing comprehensive user experiences. In this paper, we formulate the problem of short video recommendation as a constrained Markov Decision Process (MDP), where platforms want to optimize the main goal of user watch time in long term, with the constraint of accommodating the auxiliary responses of user interactions such as sharing/downloading videos. To solve the constrained MDP, we propose a two-stage reinforcement learning approach based on actor-critic framework. At stage one, we learn individual policies to optimize each auxiliary response. At stage two, we learn a policy to (i) optimize the main response and (ii) stay close to policies learned at the first stage, which effectively guarantees the performance of this main policy on the auxiliaries. Through extensive simulations, we demonstrate effectiveness of our approach over alternatives in both optimizing the main goal as well as balancing the others. We further show the advantage of our approach in live experiments of short video recommendations, where it significantly outperforms other baselines in terms of watch time and interactions from video views. Our approach has been fully launched in the production system to optimize user experiences on the platform.
2,961
null
DT+GNN: A Fully Explainable Graph Neural Network using Decision Trees
We propose the fully explainable Decision Tree Graph Neural Network (DT+GNN) architecture. In contrast to existing black-box GNNs and post-hoc explanation methods, the reasoning of DT+GNN can be inspected at every step. To achieve this, we first construct a differentiable GNN layer, which uses a categorical state space for nodes and messages. This allows us to convert the trained MLPs in the GNN into decision trees. These trees are pruned using our newly proposed method to ensure they are small and easy to interpret. We can also use the decision trees to compute traditional explanations. We demonstrate on both real-world datasets and synthetic GNN explainability benchmarks that this architecture works as well as traditional GNNs. Furthermore, we leverage the explainability of DT+GNNs to find interesting insights into many of these datasets, with some surprising results. We also provide an interactive web tool to inspect DT+GNN's decision making.
2,962
null
Collaborative Distillation Meta Learning for Simulation Intensive Hardware Design
This paper proposes a novel collaborative distillation meta learning (CDML) framework for simulation intensive hardware design problems. Deep reinforcement learning (DRL) has shown promising performance in various hardware design problems. However, previous works on DRL-based hardware design only dealt with problems with simplified objectives, which are not practical. In fact, the objective evaluation of real-world electrical performance through simulation is costly in terms of both time and computation, making DRL scheme involving extensive reward calculations not suitable. In this paper, we apply the CDML framework to decoupling capacitor placement problem (DPP), one of the significant simulation intensive hardware design problems. The CDML framework consists of a context-based meta learner and collaborative distillation scheme to produce a reusable solver. The context-based meta learner captures the location of probing port (i.e., target circuit block) and improves generalization capability. The collaborative distillation scheme with equivariant label transformation imposes the action-permutation (AP)-equivariant nature of placement problems, which not only improves sample efficiency but also improves generalization capability. Extensive experimental results verified that our CDML outperforms both neural baselines and iterative conventional design methods in terms of real-world objective, power integrity, with zero-shot transfer-ability.
2,963
null
Friends to Help: Saving Federated Learning from Client Dropout
Federated learning (FL) is an outstanding distributed machine learning framework due to its benefits on data privacy and communication efficiency. Since full client participation in many cases is infeasible due to constrained resources, partial participation FL algorithms have been investigated that proactively select/sample a subset of clients, aiming to achieve learning performance close to the full participation case. This paper studies a passive partial client participation scenario that is much less well understood, where partial participation is a result of external events, namely client dropout, rather than a decision of the FL algorithm. We cast FL with client dropout as a special case of a larger class of FL problems where clients can submit substitute (possibly inaccurate) local model updates. Based on our convergence analysis, we develop a new algorithm FL-FDMS that discovers friends of clients (i.e., clients whose data distributions are similar) on-the-fly and uses friends' local updates as substitutes for the dropout clients, thereby reducing the substitution error and improving the convergence performance. A complexity reduction mechanism is also incorporated into FL-FDMS, making it both theoretically sound and practically useful. Experiments on MNIST and CIFAR-10 confirmed the superior performance of FL-FDMS in handling client dropout in FL.
2,964
null
QSpeech: Low-Qubit Quantum Speech Application Toolkit
Quantum devices with low qubits are common in the Noisy Intermediate-Scale Quantum (NISQ) era. However, Quantum Neural Network (QNN) running on low-qubit quantum devices would be difficult since it is based on Variational Quantum Circuit (VQC), which requires many qubits. Therefore, it is critical to make QNN with VQC run on low-qubit quantum devices. In this study, we propose a novel VQC called the low-qubit VQC. VQC requires numerous qubits based on the input dimension; however, the low-qubit VQC with linear transformation can liberate this condition. Thus, it allows the QNN to run on low-qubit quantum devices for speech applications. Furthermore, as compared to the VQC, our proposed low-qubit VQC can stabilize the training process more. Based on the low-qubit VQC, we implement QSpeech, a library for quick prototyping of hybrid quantum-classical neural networks in the speech field. It has numerous quantum neural layers and QNN models for speech applications. Experiments on Speech Command Recognition and Text-to-Speech show that our proposed low-qubit VQC outperforms VQC and is more stable.
2,965
null
Penalizing Proposals using Classifiers for Semi-Supervised Object Detection
Obtaining gold standard annotated data for object detection is often costly, involving human-level effort. Semi-supervised object detection algorithms solve the problem with a small amount of gold-standard labels and a large unlabelled dataset used to generate silver-standard labels. But training on the silver standard labels does not produce good results, because they are machine-generated annotations. In this work, we design a modified loss function to train on large silver standard annotated sets generated by a weak annotator. We include a confidence metric associated with the annotation as an additional term in the loss function, signifying the quality of the annotation. We test the effectiveness of our approach on various test sets and use numerous variations to compare the results with some of the current approaches to object detection. In comparison with the baseline where no confidence metric is used, we achieved a 4% gain in mAP with 25% labeled data and 10% gain in mAP with 50% labeled data by using the proposed confidence metric.
2,966
null
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance.
2,967
null
Aggregating Gradients in Encoded Domain for Federated Learning
Malicious attackers and an honest-but-curious server can steal private client data from uploaded gradients in federated learning. Although current protection methods (e.g., additive homomorphic cryptosystem) can guarantee the security of the federated learning system, they bring additional computation and communication costs. To mitigate the cost, we propose the \texttt{FedAGE} framework, which enables the server to aggregate gradients in an encoded domain without accessing raw gradients of any single client. Thus, \texttt{FedAGE} can prevent the curious server from gradient stealing while maintaining the same prediction performance without additional communication costs. Furthermore, we theoretically prove that the proposed encoding-decoding framework is a Gaussian mechanism for differential privacy. Finally, we evaluate \texttt{FedAGE} under several federated settings, and the results have demonstrated the efficacy of the proposed framework.
2,968
null
SymNMF-Net for The Symmetric NMF Problem
Recently, many works have demonstrated that Symmetric Non-negative Matrix Factorization~(SymNMF) enjoys a great superiority for various clustering tasks. Although the state-of-the-art algorithms for SymNMF perform well on synthetic data, they cannot consistently obtain satisfactory results with desirable properties and may fail on real-world tasks like clustering. Considering the flexibility and strong representation ability of the neural network, in this paper, we propose a neural network called SymNMF-Net for the Symmetric NMF problem to overcome the shortcomings of traditional optimization algorithms. Each block of SymNMF-Net is a differentiable architecture with an inversion layer, a linear layer and ReLU, which are inspired by a traditional update scheme for SymNMF. We show that the inference of each block corresponds to a single iteration of the optimization. Furthermore, we analyze the constraints of the inversion layer to ensure the output stability of the network to a certain extent. Empirical results on real-world datasets demonstrate the superiority of our SymNMF-Net and confirm the sufficiency of our theoretical analysis.
2,969
null
Fast Vision Transformers with HiLo Attention
Vision Transformers (ViTs) have triggered the most recent and significant breakthroughs in computer vision. Their efficient designs are mostly guided by the indirect metric of computational complexity, i.e., FLOPs, which however has a clear gap with the direct metric such as throughput. Thus, we propose to use the direct speed evaluation on the target platform as the design principle for efficient ViTs. Particularly, we introduce LITv2, a simple and effective ViT which performs favourably against the existing state-of-the-art methods across a spectrum of different model sizes with faster speed. At the core of LITv2 is a novel self-attention mechanism, which we dub HiLo. HiLo is inspired by the insight that high frequencies in an image capture local fine details and low frequencies focus on global structures, whereas a multi-head self-attention layer neglects the characteristic of different frequencies. Therefore, we propose to disentangle the high/low frequency patterns in an attention layer by separating the heads into two groups, where one group encodes high frequencies via self-attention within each local window, and another group performs the attention to model the global relationship between the average-pooled low-frequency keys from each window and each query position in the input feature map. Benefit from the efficient design for both groups, we show that HiLo is superior to the existing attention mechanisms by comprehensively benchmarking on FLOPs, speed and memory consumption on GPUs. Powered by HiLo, LITv2 serves as a strong backbone for mainstream vision tasks including image classification, dense detection and segmentation. Code is available at https://github.com/zip-group/LITv2.
2,970
null
Sym-NCO: Leveraging Symmetricity for Neural Combinatorial Optimization
Deep reinforcement learning (DRL)-based combinatorial optimization (CO) methods (i.e., DRL-NCO) have shown significant merit over the conventional CO solvers as DRL-NCO is capable of learning CO solvers without supervised labels attained from the verified solver. This paper presents a novel training scheme, Sym-NCO, that achieves significant performance increments to existing DRL-NCO methods. Sym-NCO is a regularizer-based training scheme that leverages universal symmetricities in various CO problems and solutions. Imposing symmetricities such as rotational and reflectional invariance can greatly improve generalization capability of DRL-NCO as symmetricities are invariant features shared by certain CO tasks. Our experimental results verify that our Sym-NCO greatly improves the performance of DRL-NCO methods in four CO tasks, including traveling salesman problem (TSP), capacitated vehicle routing problem (CVRP), prize collecting TSP (PCTSP), and orienteering problem (OP), without employing problem-specific techniques. Remarkably, Sym-NCO outperformed not only the existing DRL-NCO methods but also a competitive conventional solver, the iterative local search (ILS), in PCTSP at 240 times faster speed.
2,971
null
$O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks
Fermionic neural network (FermiNet) is a recently proposed wavefunction Ansatz, which is used in variational Monte Carlo (VMC) methods to solve the many-electron Schr\"{o}dinger equation. FermiNet proposes permutation-equivariant architectures, on which a Slater determinant is applied to induce antisymmetry. FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function given sufficient parameters. However, the asymptotic computational bottleneck comes from the Slater determinant, which scales with $O(N^3)$ for $N$ electrons. In this paper, we substitute the Slater determinant with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N^2)$. We formally prove that the pairwise construction built upon permutation-equivariant architectures can universally represent any antisymmetric function. Besides, this universality can be achieved via continuous approximators when we aim to represent ground-state wavefunctions.
2,972
null
More Recent Advances in (Hyper)Graph Partitioning
In recent years, significant advances have been made in the design and evaluation of balanced (hyper)graph partitioning algorithms. We survey trends of the last decade in practical algorithms for balanced (hyper)graph partitioning together with future research directions. Our work serves as an update to a previous survey on the topic. In particular, the survey extends the previous survey by also covering hypergraph partitioning and streaming algorithms, and has an additional focus on parallel algorithms.
2,973
null
Orthogonal Stochastic Configuration Networks with Adaptive Construction Parameter for Data Analytics
As a randomized learner model, SCNs are remarkable that the random weights and biases are assigned employing a supervisory mechanism to ensure universal approximation and fast learning. However, the randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality, thereby resulting in non-compact network structure. In the light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization. This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction by incorporating Gram-Schmidt orthogonalization technology. The universal approximation property of OSCN and an adaptive setting for the key construction parameters have been presented in details. In addition, an incremental updating scheme is developed to dynamically determine the output weights, contributing to improved computational efficiency. Finally, experimental results on two numerical examples and several real-world regression and classification datasets substantiate the effectiveness and feasibility of the proposed approach.
2,974
null
AI for Porosity and Permeability Prediction from Geologic Core X-Ray Micro-Tomography
Geologic cores are rock samples that are extracted from deep under the ground during the well drilling process. They are used for petroleum reservoirs' performance characterization. Traditionally, physical studies of cores are carried out by the means of manual time-consuming experiments. With the development of deep learning, scientists actively started working on developing machine-learning-based approaches to identify physical properties without any manual experiments. Several previous works used machine learning to determine the porosity and permeability of the rocks, but either method was inaccurate or computationally expensive. We are proposing to use self-supervised pretraining of the very small CNN-transformer-based model to predict the physical properties of the rocks with high accuracy in a time-efficient manner. We show that this technique prevents overfitting even for extremely small datasets.
2,975
null
Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost
We study distributed contextual linear bandits with stochastic contexts, where $N$ agents act cooperatively to solve a linear bandit-optimization problem with $d$-dimensional features. For this problem, we propose a distributed batch elimination version of the LinUCB algorithm, DisBE-LUCB, where the agents share information among each other through a central server. We prove that over $T$ rounds ($NT$ actions in total) the communication cost of DisBE-LUCB is only $\tilde{\mathcal{O}}(dN)$ and its regret is at most $\tilde{\mathcal{O}}(\sqrt{dNT})$, which is of the same order as that incurred by an optimal single-agent algorithm for $NT$ rounds. Remarkably, we derive an information-theoretic lower bound on the communication cost of the distributed contextual linear bandit problem with stochastic contexts, and prove that our proposed algorithm is nearly minimax optimal in terms of \emph{both regret and communication cost}. Finally, we propose DecBE-LUCB, a fully decentralized version of DisBE-LUCB, which operates without a central server, where agents share information with their \emph{immediate neighbors} through a carefully designed consensus procedure.
2,976
null
On Learning Mixture of Linear Regressions in the Non-Realizable Setting
While mixture of linear regressions (MLR) is a well-studied topic, prior works usually do not analyze such models for prediction error. In fact, {\em prediction} and {\em loss} are not well-defined in the context of mixtures. In this paper, first we show that MLR can be used for prediction where instead of predicting a label, the model predicts a list of values (also known as {\em list-decoding}). The list size is equal to the number of components in the mixture, and the loss function is defined to be minimum among the losses resulted by all the component models. We show that with this definition, a solution of the empirical risk minimization (ERM) achieves small probability of prediction error. This begs for an algorithm to minimize the empirical risk for MLR, which is known to be computationally hard. Prior algorithmic works in MLR focus on the {\em realizable} setting, i.e., recovery of parameters when data is probabilistically generated by a mixed linear (noisy) model. In this paper we show that a version of the popular alternating minimization (AM) algorithm finds the best fit lines in a dataset even when a realizable model is not assumed, under some regularity conditions on the dataset and the initial points, and thereby provides a solution for the ERM. We further provide an algorithm that runs in polynomial time in the number of datapoints, and recovers a good approximation of the best fit lines. The two algorithms are experimentally compared.
2,977
null
Leveraging Dependency Grammar for Fine-Grained Offensive Language Detection using Graph Convolutional Networks
The last few years have witnessed an exponential rise in the propagation of offensive text on social media. Identification of this text with high precision is crucial for the well-being of society. Most of the existing approaches tend to give high toxicity scores to innocuous statements (e.g., "I am a gay man"). These false positives result from over-generalization on the training data where specific terms in the statement may have been used in a pejorative sense (e.g., "gay"). Emphasis on such words alone can lead to discrimination against the classes these systems are designed to protect. In this paper, we address the problem of offensive language detection on Twitter, while also detecting the type and the target of the offence. We propose a novel approach called SyLSTM, which integrates syntactic features in the form of the dependency parse tree of a sentence and semantic features in the form of word embeddings into a deep learning architecture using a Graph Convolutional Network. Results show that the proposed approach significantly outperforms the state-of-the-art BERT model with orders of magnitude fewer number of parameters.
2,978
null
Cost-efficient Gaussian Tensor Network Embeddings for Tensor-structured Inputs
This work discusses tensor network embeddings, which are random matrices ($S$) with tensor network structure. These embeddings have been used to perform dimensionality reduction of tensor network structured inputs $x$ and accelerate applications such as tensor decomposition and kernel regression. Existing works have designed embeddings for inputs $x$ with specific structures, such that the computational cost for calculating $Sx$ is efficient. We provide a systematic way to design tensor network embeddings consisting of Gaussian random tensors, such that for inputs with more general tensor network structures, both the sketch size (row size of $S$) and the sketching computational cost are low. We analyze general tensor network embeddings that can be reduced to a sequence of sketching matrices. We provide a sufficient condition to quantify the accuracy of such embeddings and derive sketching asymptotic cost lower bounds using embeddings that satisfy this condition and have a sketch size lower than any input dimension. We then provide an algorithm to efficiently sketch input data using such embeddings. The sketch size of the embedding used in the algorithm has a linear dependence on the number of sketching dimensions of the input. Assuming tensor contractions are performed with classical dense matrix multiplication algorithms, this algorithm achieves asymptotic cost within a factor of $O(\sqrt{m})$ of our cost lower bound, where $m$ is the sketch size. Further, when each tensor in the input has a dimension that needs to be sketched, this algorithm yields the optimal sketching asymptotic cost. We apply our sketching analysis to inexact tensor decomposition optimization algorithms. We provide a sketching algorithm for CP decomposition that is asymptotically faster than existing work in multiple regimes, and show optimality of an existing algorithm for tensor train rounding.
2,979
null
Transferable Adversarial Attack based on Integrated Gradients
The vulnerability of deep neural networks to adversarial examples has drawn tremendous attention from the community. Three approaches, optimizing standard objective functions, exploiting attention maps, and smoothing decision surfaces, are commonly used to craft adversarial examples. By tightly integrating the three approaches, we propose a new and simple algorithm named Transferable Attack based on Integrated Gradients (TAIG) in this paper, which can find highly transferable adversarial examples for black-box attacks. Unlike previous methods using multiple computational terms or combining with other methods, TAIG integrates the three approaches into one single term. Two versions of TAIG that compute their integrated gradients on a straight-line path and a random piecewise linear path are studied. Both versions offer strong transferability and can seamlessly work together with the previous methods. Experimental results demonstrate that TAIG outperforms the state-of-the-art methods. The code will available at https://github.com/yihuang2016/TAIG
2,980
null
Grammar Detection for Sentiment Analysis through Improved Viterbi Algorithm
Grammar Detection, also referred to as Parts of Speech Tagging of raw text, is considered an underlying building block of the various Natural Language Processing pipelines like named entity recognition, question answering, and sentiment analysis. In short, forgiven a sentence, Parts of Speech tagging is the task of specifying and tagging each word of a sentence with nouns, verbs, adjectives, adverbs, and more. Sentiment Analysis may well be a procedure accustomed to determining if a given sentence's emotional tone is neutral, positive or negative. To assign polarity scores to the thesis or entities within phrase, in-text analysis and analytics, machine learning and natural language processing, approaches are incorporated. This Sentiment Analysis using POS tagger helps us urge a summary of the broader public over a specific topic. For this, we are using the Viterbi algorithm, Hidden Markov Model, Constraint based Viterbi algorithm for POS tagging. By comparing the accuracies, we select the foremost accurate result of the model for Sentiment Analysis for determining the character of the sentence.
2,981
null
Matryoshka Representations for Adaptive Deployment
Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.
2,982
null
Unsupervised Reinforcement Adaptation for Class-Imbalanced Text Classification
Class imbalance naturally exists when train and test models in different domains. Unsupervised domain adaptation (UDA) augments model performance with only accessible annotations from the source domain and unlabeled data from the target domain. However, existing state-of-the-art UDA models learn domain-invariant representations and evaluate primarily on class-balanced data across domains. In this work, we propose an unsupervised domain adaptation approach via reinforcement learning that jointly leverages feature variants and imbalanced labels across domains. We experiment with the text classification task for its easily accessible datasets and compare the proposed method with five baselines. Experiments on three datasets prove that our proposed method can effectively learn robust domain-invariant representations and successfully adapt text classifiers on imbalanced classes over domains. The code is available at https://github.com/woqingdoua/ImbalanceClass.
2,983
null
Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search
Nonlinear dynamics is ubiquitous in nature and commonly seen in various science and engineering disciplines. Distilling analytical expressions that govern nonlinear dynamics from limited data remains vital but challenging. To tackle this fundamental issue, we propose a novel Symbolic Physics Learner (SPL) machine to discover the mathematical structure of nonlinear dynamics. The key concept is to interpret mathematical operations and system state variables by computational rules and symbols, establish symbolic reasoning of mathematical formulas via expression trees, and employ a Monte Carlo tree search (MCTS) agent to explore optimal expression trees based on measurement data. The MCTS agent obtains an optimistic selection policy through the traversal of expression trees, featuring the one that maps to the arithmetic expression of underlying physics. Salient features of the proposed framework include search flexibility and enforcement of parsimony for discovered equations. The efficacy and superiority of the PSL machine are demonstrated by numerical examples, compared with state-of-the-art baselines.
2,984
null
On the Evolution of A.I. and Machine Learning: Towards Measuring and Understanding Impact, Influence, and Leadership at Premier A.I. Conferences
Artificial Intelligence is now recognized as a general-purpose technology with ample impact on human life. In this work, we aim to understand the evolution of AI and Machine learning over the years by analyzing researchers' impact, influence, and leadership over the last decades. This work also intends to shed new light on the history and evolution of AI by exploring the dynamics involved in the field's evolution through the lenses of the papers published on AI conferences since the first International Joint Conference on Artificial Intelligence (IJCAI) in 1969. AI development and evolution have led to increasing research output, reflected in the number of articles published over the last sixty years. We construct comprehensive citation-collaboration and paper-author datasets and compute corresponding centrality measures to carry out our analyses. These analyses allow a better understanding of how AI has reached its current state of affairs in research. Throughout the process, we correlate these datasets with the work of the ACM Turing Award winners and the so-called two AI winters the field has gone through. We also look at self-citation trends and new authors' behaviors. Finally, we present a novel way to infer the country of affiliation of a paper from its organization. Therefore, this work provides a deep analysis of Artificial Intelligence history from information gathered and analyzed from large technical venues datasets and suggests novel insights that can contribute to understanding and measuring AI's evolution.
2,985
null
RACE: A Reinforcement Learning Framework for Improved Adaptive Control of NoC Channel Buffers
Network-on-chip (NoC) architectures rely on buffers to store flits to cope with contention for router resources during packet switching. Recently, reversible multi-function channel (RMC) buffers have been proposed to simultaneously reduce power and enable adaptive NoC buffering between adjacent routers. While adaptive buffering can improve NoC performance by maximizing buffer utilization, controlling the RMC buffer allocations requires a congestion-aware, scalable, and proactive policy. In this work, we present RACE, a novel reinforcement learning (RL) framework that utilizes better awareness of network congestion and a new reward metric ("falsefulls") to help guide the RL agent towards better RMC buffer control decisions. We show that RACE reduces NoC latency by up to 48.9%, and energy consumption by up to 47.1% against state-of-the-art NoC buffer control policies.
2,986
null
Cali3F: Calibrated Fast Fair Federated Recommendation System
The increasingly stringent regulations on privacy protection have sparked interest in federated learning. As a distributed machine learning framework, it bridges isolated data islands by training a global model over devices while keeping data localized. Specific to recommendation systems, many federated recommendation algorithms have been proposed to realize the privacy-preserving collaborative recommendation. However, several constraints remain largely unexplored. One big concern is how to ensure fairness between participants of federated learning, that is, to maintain the uniformity of recommendation performance across devices. On the other hand, due to data heterogeneity and limited networks, additional challenges occur in the convergence speed. To address these problems, in this paper, we first propose a personalized federated recommendation system training algorithm to improve the recommendation performance fairness. Then we adopt a clustering-based aggregation method to accelerate the training process. Combining the two components, we proposed Cali3F, a calibrated fast and fair federated recommendation framework. Cali3F not only addresses the convergence problem by a within-cluster parameter sharing approach but also significantly boosts fairness by calibrating local models with the global model. We demonstrate the performance of Cali3F across standard benchmark datasets and explore the efficacy in comparison to traditional aggregation approaches.
2,987
null
Understanding Metrics for Paraphrasing
Paraphrase generation is a difficult problem. This is not only because of the limitations in text generation capabilities but also due that to the lack of a proper definition of what qualifies as a paraphrase and corresponding metrics to measure how good it is. Metrics for evaluation of paraphrasing quality is an on going research problem. Most of the existing metrics in use having been borrowed from other tasks do not capture the complete essence of a good paraphrase, and often fail at borderline-cases. In this work, we propose a novel metric $ROUGE_P$ to measure the quality of paraphrases along the dimensions of adequacy, novelty and fluency. We also provide empirical evidence to show that the current natural language generation metrics are insufficient to measure these desired properties of a good paraphrase. We look at paraphrase model fine-tuning and generation from the lens of metrics to gain a deeper understanding of what it takes to generate and evaluate a good paraphrase.
2,988
null
Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data
We propose a machine learning framework for the data-driven discovery of macroscopic chemotactic Partial Differential Equations (PDEs) -- and the closures that lead to them -- from high-fidelity, individual-based stochastic simulations of E.coli bacterial motility. The fine scale, detailed, hybrid (continuum - Monte Carlo) simulation model embodies the underlying biophysics, and its parameters are informed from experimental observations of individual cells. We exploit Automatic Relevance Determination (ARD) within a Gaussian Process framework for the identification of a parsimonious set of collective observables that parametrize the law of the effective PDEs. Using these observables, in a second step we learn effective, coarse-grained "Keller-Segel class" chemotactic PDEs using machine learning regressors: (a) (shallow) feedforward neural networks and (b) Gaussian Processes. The learned laws can be black-box (when no prior knowledge about the PDE law structure is assumed) or gray-box when parts of the equation (e.g. the pure diffusion part) is known and "hardwired" in the regression process. We also discuss data-driven corrections (both additive and functional) of analytically known, approximate closures.
2,989
null
GraphPMU: Event Clustering via Graph Representation Learning Using Locationally-Scarce Distribution-Level Fundamental and Harmonic PMU Measurements
This paper is concerned with the complex task of identifying the type and cause of the events that are captured by distribution-level phasor measurement units (D-PMUs) in order to enhance situational awareness in power distribution systems. Our goal is to address two fundamental challenges in this field: a) scarcity in measurement locations due to the high cost of purchasing, installing, and streaming data from D-PMUs; b) limited prior knowledge about the event signatures due to the fact that the events are diverse, infrequent, and inherently unscheduled. To tackle these challenges, we propose an unsupervised graph-representation learning method, called GraphPMU, to significantly improve the performance in event clustering under locationally-scarce data availability by proposing the following two new directions: 1) using the topological information about the relative location of the few available phasor measurement units on the graph of the power distribution network; 2) utilizing not only the commonly used fundamental phasor measurements, bus also the less explored harmonic phasor measurements in the process of analyzing the signatures of various events. Through a detailed analysis of several case studies, we show that GraphPMU can highly outperform the prevalent methods in the literature.
2,990
null
Contextual Pandora's Box
Pandora's Box is a fundamental stochastic optimization problem, where the decision-maker must find a good alternative while minimizing the search cost of exploring the value of each alternative. In the original formulation, it is assumed that accurate priors are given for the values of all the alternatives, while recent work studies the online variant of Pandora's Box where priors are originally unknown. In this work, we extend Pandora's Box to the online setting, while incorporating context. At every round, we are presented with a number of alternatives each having a context, an exploration cost and an unknown value drawn from an unknown prior distribution that may change at every round. Our main result is a no-regret algorithm that performs comparably well to the optimal algorithm which knows all prior distributions exactly. Our algorithm works even in the bandit setting where the algorithm never learns the values of the alternatives that were not explored. The key technique that enables our result is novel a modification of the realizability condition in contextual bandits that connects a context to the reservation value of the corresponding distribution rather than its mean
2,991
null
Learning to segment with limited annotations: Self-supervised pretraining with regression and contrastive loss in MRI
Obtaining manual annotations for large datasets for supervised training of deep learning (DL) models is challenging. The availability of large unlabeled datasets compared to labeled ones motivate the use of self-supervised pretraining to initialize DL models for subsequent segmentation tasks. In this work, we consider two pre-training approaches for driving a DL model to learn different representations using: a) regression loss that exploits spatial dependencies within an image and b) contrastive loss that exploits semantic similarity between pairs of images. The effect of pretraining techniques is evaluated in two downstream segmentation applications using Magnetic Resonance (MR) images: a) liver segmentation in abdominal T2-weighted MR images and b) prostate segmentation in T2-weighted MR images of the prostate. We observed that DL models pretrained using self-supervision can be finetuned for comparable performance with fewer labeled datasets. Additionally, we also observed that initializing the DL model using contrastive loss based pretraining performed better than the regression loss.
2,992
null
Trainable Weight Averaging for Fast Convergence and Better Generalization
Stochastic gradient descent (SGD) and its variants are commonly considered as the de-facto methods to train deep neural networks (DNNs). While recent improvements to SGD mainly focus on the descent algorithm itself, few works pay attention to utilizing the historical solutions -- as an iterative method, SGD has actually gone through substantial explorations before its final convergence. Recently, an interesting attempt is stochastic weight averaging (SWA), which significantly improves the generalization by simply averaging the solutions at the tail stage of training. In this paper, we propose to optimize the averaging coefficients, leading to our Trainable Weight Averaging (TWA), essentially a novel training method in a reduced subspace spanned by historical solutions. TWA is quite efficient and has good generalization capability as the degree of freedom for training is small. It largely reduces the estimation error from SWA, making it not only further improve the SWA solutions but also take full advantage of the solutions generated in the head of training where SWA fails. In the extensive numerical experiments, (i) TWA achieves consistent improvements over SWA with less sensitivity to learning rate; (ii) applying TWA in the head stage of training largely speeds up the convergence, resulting in over 40% time saving on CIFAR and 30% on ImageNet with improved generalization compared with regular training. The code is released at https://github.com/nblt/TWA.
2,993
null
Deep-XFCT: Deep learning 3D-mineral liberation analysis with micro X-ray fluorescence and computed tomography
The rapid development of X-ray micro-computed tomography (micro-CT) opens new opportunities for 3D analysis of particle and grain-size characterisation, determination of particle densities and shape factors, estimation of mineral associations and liberation and locking. Current practices in mineral liberation analysis are based on 2D representations leading to systematic errors in the extrapolation to volumetric properties. New quantitative methods based on tomographic data are therefore urgently required for characterisation of mineral deposits, mineral processing, characterisation of tailings, rock typing, stratigraphic refinement, reservoir characterisation for applications in the resource industry, environmental and material sciences. To date, no simple non-destructive method exists for 3D mineral liberation analysis. We present a new development based on combining micro-CT with micro-X-ray fluorescence (micro-XRF) using deep learning. We demonstrate successful semi-automated multi-modal analysis of a crystalline magmatic rock where the new technique overcomes the difficult task of differentiating feldspar from quartz in micro-CT data set. The approach is universal and can be extended to any multi-modal and multi-instrument analysis for further refinement. We conclude that the combination of micro-CT and micro-XRF already provides a new opportunity for robust 3D mineral liberation analysis in both field and laboratory applications.
2,994
null
Optimal Neural Network Approximation of Wasserstein Gradient Direction via Convex Optimization
The computation of Wasserstein gradient direction is essential for posterior sampling problems and scientific computing. The approximation of the Wasserstein gradient with finite samples requires solving a variational problem. We study the variational problem in the family of two-layer networks with squared-ReLU activations, towards which we derive a semi-definite programming (SDP) relaxation. This SDP can be viewed as an approximation of the Wasserstein gradient in a broader function family including two-layer networks. By solving the convex SDP, we obtain the optimal approximation of the Wasserstein gradient direction in this class of functions. Numerical experiments including PDE-constrained Bayesian inference and parameter estimation in COVID-19 modeling demonstrate the effectiveness of the proposed method.
2,995
null
Undersampling is a Minimax Optimal Robustness Intervention in Nonparametric Classification
While a broad range of techniques have been proposed to tackle distribution shift, the simple baseline of training on an $\textit{undersampled}$ dataset often achieves close to state-of-the-art-accuracy across several popular benchmarks. This is rather surprising, since undersampling algorithms discard excess majority group data. To understand this phenomenon, we ask if learning is fundamentally constrained by a lack of minority group samples. We prove that this is indeed the case in the setting of nonparametric binary classification. Our results show that in the worst case, an algorithm cannot outperform undersampling unless there is a high degree of overlap between the train and test distributions (which is unlikely to be the case in real-world datasets), or if the algorithm leverages additional structure about the distribution shift. In particular, in the case of label shift we show that there is always an undersampling algorithm that is minimax optimal. While in the case of group-covariate shift we show that there is an undersampling algorithm that is minimax optimal when the overlap between the group distributions is small. We also perform an experimental case study on a label shift dataset and find that in line with our theory the test accuracy of robust neural network classifiers is constrained by the number of minority samples.
2,996
null
Identifying Patient-Specific Root Causes with the Heteroscedastic Noise Model
Complex diseases are caused by a multitude of factors that may differ between patients even within the same diagnostic category. A few underlying root causes may nevertheless initiate the development of disease within each patient. We therefore focus on identifying patient-specific root causes of disease, which we equate to the sample-specific predictivity of the exogenous error terms in a structural equation model. We generalize from the linear setting to the heteroscedastic noise model where $Y = m(X) + \varepsilon\sigma(X)$ with non-linear functions $m(X)$ and $\sigma(X)$ representing the conditional mean and mean absolute deviation, respectively. This model preserves identifiability but introduces non-trivial challenges that require a customized algorithm called Generalized Root Causal Inference (GRCI) to extract the error terms correctly. GRCI recovers patient-specific root causes more accurately than existing alternatives.
2,997
null
BRIGHT -- Graph Neural Networks in Real-Time Fraud Detection
Detecting fraudulent transactions is an essential component to control risk in e-commerce marketplaces. Apart from rule-based and machine learning filters that are already deployed in production, we want to enable efficient real-time inference with graph neural networks (GNNs), which is useful to catch multihop risk propagation in a transaction graph. However, two challenges arise in the implementation of GNNs in production. First, future information in a dynamic graph should not be considered in message passing to predict the past. Second, the latency of graph query and GNN model inference is usually up to hundreds of milliseconds, which is costly for some critical online services. To tackle these challenges, we propose a Batch and Real-time Inception GrapH Topology (BRIGHT) framework to conduct an end-to-end GNN learning that allows efficient online real-time inference. BRIGHT framework consists of a graph transformation module (Two-Stage Directed Graph) and a corresponding GNN architecture (Lambda Neural Network). The Two-Stage Directed Graph guarantees that the information passed through neighbors is only from the historical payment transactions. It consists of two subgraphs representing historical relationships and real-time links, respectively. The Lambda Neural Network decouples inference into two stages: batch inference of entity embeddings and real-time inference of transaction prediction. Our experiments show that BRIGHT outperforms the baseline models by >2\% in average w.r.t.~precision. Furthermore, BRIGHT is computationally efficient for real-time fraud detection. Regarding end-to-end performance (including neighbor query and inference), BRIGHT can reduce the P99 latency by >75\%. For the inference stage, our speedup is on average 7.8$\times$ compared to the traditional GNN.
2,998
null
Factorized Structured Regression for Large-Scale Varying Coefficient Models
Recommender Systems (RS) pervade many aspects of our everyday digital life. Proposed to work at scale, state-of-the-art RS allow the modeling of thousands of interactions and facilitate highly individualized recommendations. Conceptually, many RS can be viewed as instances of statistical regression models that incorporate complex feature effects and potentially non-Gaussian outcomes. Such structured regression models, including time-aware varying coefficients models, are, however, limited in their applicability to categorical effects and inclusion of a large number of interactions. Here, we propose Factorized Structured Regression (FaStR) for scalable varying coefficient models. FaStR overcomes limitations of general regression models for large-scale data by combining structured additive regression and factorization approaches in a neural network-based model implementation. This fusion provides a scalable framework for the estimation of statistical models in previously infeasible data settings. Empirical results confirm that the estimation of varying coefficients of our approach is on par with state-of-the-art regression techniques, while scaling notably better and also being competitive with other time-aware RS in terms of prediction performance. We illustrate FaStR's performance and interpretability on a large-scale behavioral study with smartphone user data.
2,999
null
Learning to Query Internet Text for Informing Reinforcement Learning Agents
Generalization to out of distribution tasks in reinforcement learning is a challenging problem. One successful approach improves generalization by conditioning policies on task or environment descriptions that provide information about the current transition or reward functions. Previously, these descriptions were often expressed as generated or crowd sourced text. In this work, we begin to tackle the problem of extracting useful information from natural language found in the wild (e.g. internet forums, documentation, and wikis). These natural, pre-existing sources are especially challenging, noisy, and large and present novel challenges compared to previous approaches. We propose to address these challenges by training reinforcement learning agents to learn to query these sources as a human would, and we experiment with how and when an agent should query. To address the \textit{how}, we demonstrate that pretrained QA models perform well at executing zero-shot queries in our target domain. Using information retrieved by a QA model, we train an agent to learn \textit{when} it should execute queries. We show that our method correctly learns to execute queries to maximize reward in a reinforcement learning setting.
3,000
null
Entropy Maximization with Depth: A Variational Principle for Random Neural Networks
To understand the essential role of depth in neural networks, we investigate a variational principle for depth: Does increasing depth perform an implicit optimization for the representations in neural networks? We prove that random neural networks equipped with batch normalization maximize the differential entropy of representations with depth up to constant factors, assuming that the representations are contractive. Thus, representations inherently obey the \textit{principle of maximum entropy} at initialization, in the absence of information about the learning task. Our variational formulation for neural representations characterizes the interplay between representation entropy and architectural components, including depth, width, and non-linear activations, thereby potentially inspiring the design of neural architectures.
3,001
null
Tight Lower Bounds on Worst-Case Guarantees for Zero-Shot Learning with Attributes
We develop a rigorous mathematical analysis of zero-shot learning with attributes. In this setting, the goal is to label novel classes with no training data, only detectors for attributes and a description of how those attributes are correlated with the target classes, called the class-attribute matrix. We develop the first non-trivial lower bound on the worst-case error of the best map from attributes to classes for this setting, even with perfect attribute detectors. The lower bound characterizes the theoretical intrinsic difficulty of the zero-shot problem based on the available information -- the class-attribute matrix -- and the bound is practically computable from it. Our lower bound is tight, as we show that we can always find a randomized map from attributes to classes whose expected error is upper bounded by the value of the lower bound. We show that our analysis can be predictive of how standard zero-shot methods behave in practice, including which classes will likely be confused with others.
3,002
null
Forecasting Patient Demand at Urgent Care Clinics using Machine Learning
Urgent care clinics and emergency departments around the world periodically suffer from extended wait times beyond patient expectations due to inadequate staffing levels. These delays have been linked with adverse clinical outcomes. Previous research into forecasting demand this domain has mostly used a collection of statistical techniques, with machine learning approaches only now beginning to emerge in recent literature. The forecasting problem for this domain is difficult and has also been complicated by the COVID-19 pandemic which has introduced an additional complexity to this estimation due to typical demand patterns being disrupted. This study explores the ability of machine learning methods to generate accurate patient presentations at two large urgent care clinics located in Auckland, New Zealand. A number of machine learning algorithms were explored in order to determine the most effective technique for this problem domain, with the task of making forecasts of daily patient demand three months in advance. The study also performed an in-depth analysis into the model behaviour in respect to the exploration of which features are most effective at predicting demand and which features are capable of adaptation to the volatility caused by the COVID-19 pandemic lockdowns. The results showed that ensemble-based methods delivered the most accurate and consistent solutions on average, generating improvements in the range of 23%-27% over the existing in-house methods for estimating the daily demand.
3,003
null
Semi-supervised Drifted Stream Learning with Short Lookback
In many scenarios, 1) data streams are generated in real time; 2) labeled data are expensive and only limited labels are available in the beginning; 3) real-world data is not always i.i.d. and data drift over time gradually; 4) the storage of historical streams is limited and model updating can only be achieved based on a very short lookback window. This learning setting limits the applicability and availability of many Machine Learning (ML) algorithms. We generalize the learning task under such setting as a semi-supervised drifted stream learning with short lookback problem (SDSL). SDSL imposes two under-addressed challenges on existing methods in semi-supervised learning, continuous learning, and domain adaptation: 1) robust pseudo-labeling under gradual shifts and 2) anti-forgetting adaptation with short lookback. To tackle these challenges, we propose a principled and generic generation-replay framework to solve SDSL. The framework is able to accomplish: 1) robust pseudo-labeling in the generation step; 2) anti-forgetting adaption in the replay step. To achieve robust pseudo-labeling, we develop a novel pseudo-label classification model to leverage supervised knowledge of previously labeled data, unsupervised knowledge of new data, and, structure knowledge of invariant label semantics. To achieve adaptive anti-forgetting model replay, we propose to view the anti-forgetting adaptation task as a flat region search problem. We propose a novel minimax game-based replay objective function to solve the flat region search problem and develop an effective optimization solver. Finally, we present extensive experiments to demonstrate our framework can effectively address the task of anti-forgetting learning in drifted streams with short lookback.
3,004
null
Urban Rhapsody: Large-scale exploration of urban soundscapes
Noise is one of the primary quality-of-life issues in urban environments. In addition to annoyance, noise negatively impacts public health and educational performance. While low-cost sensors can be deployed to monitor ambient noise levels at high temporal resolutions, the amount of data they produce and the complexity of these data pose significant analytical challenges. One way to address these challenges is through machine listening techniques, which are used to extract features in attempts to classify the source of noise and understand temporal patterns of a city's noise situation. However, the overwhelming number of noise sources in the urban environment and the scarcity of labeled data makes it nearly impossible to create classification models with large enough vocabularies that capture the true dynamism of urban soundscapes In this paper, we first identify a set of requirements in the yet unexplored domain of urban soundscape exploration. To satisfy the requirements and tackle the identified challenges, we propose Urban Rhapsody, a framework that combines state-of-the-art audio representation, machine learning, and visual analytics to allow users to interactively create classification models, understand noise patterns of a city, and quickly retrieve and label audio excerpts in order to create a large high-precision annotated database of urban sound recordings. We demonstrate the tool's utility through case studies performed by domain experts using data generated over the five-year deployment of a one-of-a-kind sensor network in New York City.
3,005
null
RENs: Relevance Encoding Networks
The manifold assumption for high-dimensional data assumes that the data is generated by varying a set of parameters obtained from a low-dimensional latent space. Deep generative models (DGMs) are widely used to learn data representations in an unsupervised way. DGMs parameterize the underlying low-dimensional manifold in the data space using bottleneck architectures such as variational autoencoders (VAEs). The bottleneck dimension for VAEs is treated as a hyperparameter that depends on the dataset and is fixed at design time after extensive tuning. As the intrinsic dimensionality of most real-world datasets is unknown, often, there is a mismatch between the intrinsic dimensionality and the latent dimensionality chosen as a hyperparameter. This mismatch can negatively contribute to the model performance for representation learning and sample generation tasks. This paper proposes relevance encoding networks (RENs): a novel probabilistic VAE-based framework that uses the automatic relevance determination (ARD) prior in the latent space to learn the data-specific bottleneck dimensionality. The relevance of each latent dimension is directly learned from the data along with the other model parameters using stochastic gradient descent and a reparameterization trick adapted to non-Gaussian priors. We leverage the concept of DeepSets to capture permutation invariant statistical properties in both data and latent spaces for relevance determination. The proposed framework is general and flexible and can be used for the state-of-the-art VAE models that leverage regularizers to impose specific characteristics in the latent space (e.g., disentanglement). With extensive experimentation on synthetic and public image datasets, we show that the proposed model learns the relevant latent bottleneck dimensionality without compromising the representation and generation quality of the samples.
3,006
null
Designing an Efficient End-to-end Machine Learning Pipeline for Real-time Empty-shelf Detection
On-Shelf Availability (OSA) of products in retail stores is a critical business criterion in the fast moving consumer goods and retails sector. When a product is out-of-stock (OOS) and a customer cannot find it on its designed shelf, this motivates the customer to store-switching or buying nothing, which causes fall in future sales and demands. Retailers are employing several approaches to detect empty shelves and ensure high OSA of products; however, such methods are generally ineffective and infeasible since they are either manual, expensive or less accurate. Recently machine learning based solutions have been proposed, but they suffer from high computational cost and low accuracy problem due to lack of large annotated datasets of on-shelf products. Here, we present an elegant approach for designing an end-to-end machine learning (ML) pipeline for real-time empty shelf detection. Considering the strong dependency between the quality of ML models and the quality of data, we focus on the importance of proper data collection, cleaning and correct data annotation before delving into modeling. Since an empty-shelf detection solution should be computationally-efficient for real-time predictions, we explore different run-time optimizations to improve the model performance. Our dataset contains 1000 images, collected and annotated by following well-defined guidelines. Our low-latency model achieves a mean average F1-score of 68.5%, and can process up to 67 images/s on Intel Xeon Gold and up to 860 images/s on an A100 GPU.
3,007
null
Efficient and Near-Optimal Smoothed Online Learning for Generalized Linear Functions
Due to the drastic gap in complexity between sequential and batch statistical learning, recent work has studied a smoothed sequential learning setting, where Nature is constrained to select contexts with density bounded by 1/{\sigma} with respect to a known measure {\mu}. Unfortunately, for some function classes, there is an exponential gap between the statistically optimal regret and that which can be achieved efficiently. In this paper, we give a computationally efficient algorithm that is the first to enjoy the statistically optimal log(T/{\sigma}) regret for realizable K-wise linear classification. We extend our results to settings where the true classifier is linear in an over-parameterized polynomial featurization of the contexts, as well as to a realizable piecewise-regression setting assuming access to an appropriate ERM oracle. Somewhat surprisingly, standard disagreement-based analyses are insufficient to achieve regret logarithmic in 1/{\sigma}. Instead, we develop a novel characterization of the geometry of the disagreement region induced by generalized linear classifiers. Along the way, we develop numerous technical tools of independent interest, including a general anti-concentration bound for the determinant of certain matrix averages.