Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
2,708
null
Deep Learning with Label Noise: A Hierarchical Approach
Deep neural networks are susceptible to label noise. Existing methods to improve robustness, such as meta-learning and regularization, usually require significant change to the network architecture or careful tuning of the optimization procedure. In this work, we propose a simple hierarchical approach that incorporates a label hierarchy when training the deep learning models. Our approach requires no change of the network architecture or the optimization procedure. We investigate our hierarchical network through a wide range of simulated and real datasets and various label noise types. Our hierarchical approach improves upon regular deep neural networks in learning with label noise. Combining our hierarchical approach with pre-trained models achieves state-of-the-art performance in real-world noisy datasets.
2,709
null
MC-GEN:Multi-level Clustering for Private Synthetic Data Generation
Nowadays, machine learning is one of the most common technology to turn raw data into useful information in scientific and industrial processes. The performance of the machine learning model often depends on the size of dataset. Companies and research institutes usually share or exchange their data to avoid data scarcity. However, sharing original datasets that contain private information can cause privacy leakage. Utilizing synthetic datasets which have similar characteristics as a substitute is one of the solutions to avoid the privacy issue. Differential privacy provides a strong privacy guarantee to protect the individual data records which contain sensitive information. We propose MC-GEN, a privacy-preserving synthetic data generation method under differential privacy guarantee for multiple classification tasks. MC-GEN builds differentially private generative models on the multi-level clustered data to generate synthetic datasets. Our method also reduced the noise introduced from differential privacy to improve the utility. In experimental evaluation, we evaluated the parameter effect of MC-GEN and compared MC-GEN with three existing methods. Our results showed that MC-GEN can achieve significant effectiveness under certain privacy guarantees on multiple classification tasks.
2,710
null
Fake It Till You Make It: Near-Distribution Novelty Detection by Score-Based Generative Models
We aim for image-based novelty detection. Despite considerable progress, existing models either fail or face a dramatic drop under the so-called ``near-distribution" setting, where the differences between normal and anomalous samples are subtle. We first demonstrate existing methods experience up to 20\% decrease in performance in the near-distribution setting. Next, we propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data. Our model is then fine-tuned to distinguish such data from the normal samples. We provide a quantitative as well as qualitative evaluation of this strategy, and compare the results with a variety of GAN-based models. Effectiveness of our method for both the near-distribution and standard novelty detection is assessed through extensive experiments on datasets in diverse applications such as medical images, object classification, and quality control. This reveals that our method considerably improves over existing models, and consistently decreases the gap between the near-distribution and standard novelty detection performance. Overall, our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks. The code repository is available at https://github.com/rohban-lab/FITYMI
2,711
null
Provably Auditing Ordinary Least Squares in Low Dimensions
Measuring the stability of conclusions derived from Ordinary Least Squares linear regression is critically important, but most metrics either only measure local stability (i.e. against infinitesimal changes in the data), or are only interpretable under statistical assumptions. Recent work proposes a simple, global, finite-sample stability metric: the minimum number of samples that need to be removed so that rerunning the analysis overturns the conclusion, specifically meaning that the sign of a particular coefficient of the estimated regressor changes. However, besides the trivial exponential-time algorithm, the only approach for computing this metric is a greedy heuristic that lacks provable guarantees under reasonable, verifiable assumptions; the heuristic provides a loose upper bound on the stability and also cannot certify lower bounds on it. We show that in the low-dimensional regime where the number of covariates is a constant but the number of samples is large, there are efficient algorithms for provably estimating (a fractional version of) this metric. Applying our algorithms to the Boston Housing dataset, we exhibit regression analyses where we can estimate the stability up to a factor of $3$ better than the greedy heuristic, and analyses where we can certify stability to dropping even a majority of the samples.
2,712
null
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Sparse modeling for signal processing and machine learning has been at the focus of scientific research for over two decades. Among others, supervised sparsity-aware learning comprises two major paths paved by: a) discriminative methods and b) generative methods. The latter, more widely known as Bayesian methods, enable uncertainty evaluation w.r.t. the performed predictions. Furthermore, they can better exploit related prior information and naturally introduce robustness into the model, due to their unique capacity to marginalize out uncertainties related to the parameter estimates. Moreover, hyper-parameters associated with the adopted priors can be learnt via the training data. To implement sparsity-aware learning, the crucial point lies in the choice of the function regularizer for discriminative methods and the choice of the prior distribution for Bayesian learning. Over the last decade or so, due to the intense research on deep learning, emphasis has been put on discriminative techniques. However, a come back of Bayesian methods is taking place that sheds new light on the design of deep neural networks, which also establish firm links with Bayesian models and inspire new paths for unsupervised learning, such as Bayesian tensor decomposition. The goal of this article is two-fold. First, to review, in a unified way, some recent advances in incorporating sparsity-promoting priors into three highly popular data modeling tools, namely deep neural networks, Gaussian processes, and tensor decomposition. Second, to review their associated inference techniques from different aspects, including: evidence maximization via optimization and variational inference methods. Challenges such as small data dilemma, automatic model structure search, and natural prediction uncertainty evaluation are also discussed. Typical signal processing and machine learning tasks are demonstrated.
2,713
null
Uniform Convergence and Generalization for Nonconvex Stochastic Minimax Problems
This paper studies the uniform convergence and generalization bounds for nonconvex-(strongly)-concave (NC-SC/NC-C) stochastic minimax optimization. We first establish the uniform convergence between the empirical minimax problem and the population minimax problem and show the $\tilde{\mathcal{O}}(d\kappa^2\epsilon^{-2})$ and $\tilde{\mathcal{O}}(d\epsilon^{-4})$ sample complexities respectively for the NC-SC and NC-C settings, where $d$ is the dimension number and $\kappa$ is the condition number. To the best of our knowledge, this is the first uniform convergence measured by the first-order stationarity in stochastic minimax optimization. Based on the uniform convergence, we shed light on the sample and gradient complexities required for finding an approximate stationary point for stochastic minimax optimization in the NC-SC and NC-C settings.
2,714
null
So3krates -- Self-attention for higher-order geometric interactions on arbitrary length-scales
The application of machine learning methods in quantum chemistry has enabled the study of numerous chemical phenomena, which are computationally intractable with traditional ab-initio methods. However, some quantum mechanical properties of molecules and materials depend on non-local electronic effects, which are often neglected due to the difficulty of modeling them efficiently. This work proposes a modified attention mechanism adapted to the underlying physics, which allows to recover the relevant non-local effects. Namely, we introduce spherical harmonic coordinates (SPHCs) to reflect higher-order geometric information for each atom in a molecule, enabling a non-local formulation of attention in the SPHC space. Our proposed model So3krates -- a self-attention based message passing neural network -- uncouples geometric information from atomic features, making them independently amenable to attention mechanisms. We show that in contrast to other published methods, So3krates is able to describe non-local quantum mechanical effects over arbitrary length scales. Further, we find evidence that the inclusion of higher-order geometric correlations increases data efficiency and improves generalization. So3krates matches or exceeds state-of-the-art performance on popular benchmarks, notably, requiring a significantly lower number of parameters (0.25--0.4x) while at the same time giving a substantial speedup (6--14x for training and 2--11x for inference) compared to other models.
2,715
null
Image Keypoint Matching using Graph Neural Networks
Image matching is a key component of many tasks in computer vision and its main objective is to find correspondences between features extracted from different natural images. When images are represented as graphs, image matching boils down to the problem of graph matching which has been studied intensively in the past. In recent years, graph neural networks have shown great potential in the graph matching task, and have also been applied to image matching. In this paper, we propose a graph neural network for the problem of image matching. The proposed method first generates initial soft correspondences between keypoints using localized node embeddings and then iteratively refines the initial correspondences using a series of graph neural network layers. We evaluate our method on natural image datasets with keypoint annotations and show that, in comparison to a state-of-the-art model, our method speeds up inference times without sacrificing prediction accuracy.
2,716
null
Towards Communication-Learning Trade-off for Federated Learning at the Network Edge
In this letter, we study a wireless federated learning (FL) system where network pruning is applied to local users with limited resources. Although pruning is beneficial to reduce FL latency, it also deteriorates learning performance due to the information loss. Thus, a trade-off problem between communication and learning is raised. To address this challenge, we quantify the effects of network pruning and packet error on the learning performance by deriving the convergence rate of FL with a non-convex loss function. Then, closed-form solutions for pruning control and bandwidth allocation are proposed to minimize the weighted sum of FL latency and FL performance. Finally, numerical results demonstrate that 1) our proposed solution can outperform benchmarks in terms of cost reduction and accuracy guarantee, and 2) a higher pruning rate would bring less communication overhead but also worsen FL accuracy, which is consistent with our theoretical analysis.
2,717
null
NeuPSL: Neural Probabilistic Soft Logic
We present Neural Probabilistic Soft Logic (NeuPSL), a novel neuro-symbolic (NeSy) framework that unites state-of-the-art symbolic reasoning with the low-level perception of deep neural networks. To explicitly model the boundary between neural and symbolic representations, we introduce NeSy Energy-Based Models, a general family of energy-based models that combine neural and symbolic reasoning. Using this framework, we show how to seamlessly integrate neural and symbolic parameter learning and inference. We perform an extensive empirical evaluation and show that NeuPSL outperforms existing methods on joint inference and has significantly lower variance in almost all settings.
2,718
null
Personalized PageRank Graph Attention Networks
There has been a rising interest in graph neural networks (GNNs) for representation learning over the past few years. GNNs provide a general and efficient framework to learn from graph-structured data. However, GNNs typically only use the information of a very limited neighborhood for each node to avoid over-smoothing. A larger neighborhood would be desirable to provide the model with more information. In this work, we incorporate the limit distribution of Personalized PageRank (PPR) into graph attention networks (GATs) to reflect the larger neighbor information without introducing over-smoothing. Intuitively, message aggregation based on Personalized PageRank corresponds to infinitely many neighborhood aggregation layers. We show that our models outperform a variety of baseline models for four widely used benchmark datasets. Our implementation is publicly available online.
2,719
null
On the Symmetries of Deep Learning Models and their Internal Representations
Symmetry has been a fundamental tool in the exploration of a broad range of complex systems. In machine learning, symmetry has been explored in both models and data. In this paper we seek to connect the symmetries arising from the architecture of a family of models with the symmetries of that family's internal representation of data. We do this by calculating a set of fundamental symmetry groups, which we call the \emph{intertwiner groups} of the model. Each of these arises from a particular nonlinear layer of the model and different nonlinearities result in different symmetry groups. These groups change the weights of a model in such a way that the underlying function that the model represents remains constant but the internal representations of data inside the model may change. We connect intertwiner groups to a model's internal representations of data through a range of experiments that probe similarities between hidden states across models with the same architecture. Our work suggests that the symmetries of a network are propagated into the symmetries in that network's representation of data, providing us with a better understanding of how architecture affects the learning and prediction process. Finally, we speculate that for ReLU networks, the intertwiner groups may provide a justification for the common practice of concentrating model interpretability exploration on the activation basis in hidden layers rather than arbitrary linear combinations thereof.
2,720
null
Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration
The deep learning boom motivates researchers and practitioners of computational fluid dynamics eager to integrate the two areas.The PINN (physics-informed neural network) method is one such attempt. While most reports in the literature show positive outcomes of applying the PINN method, our experiments with it stifled such optimism. This work presents our not-so-successful story of using PINN to solve two fundamental flow problems: 2D Taylor-Green vortex at $Re = 100$ and 2D cylinder flow at $Re = 200$. The PINN method solved the 2D Taylor-Green vortex problem with acceptable results, and we used this flow as an accuracy and performance benchmark. About 32 hours of training were required for the PINN method's accuracy to match the accuracy of a $16 \times 16$ finite-difference simulation, which took less than 20 seconds. The 2D cylinder flow, on the other hand, did not even result in a physical solution. The PINN method behaved like a steady-flow solver and did not capture the vortex shedding phenomenon. By sharing our experience, we would like to emphasize that the PINN method is still a work-in-progress. More work is needed to make PINN feasible for real-world problems.
2,721
null
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
We propose a general purpose Bayesian inference algorithm for expensive likelihoods, replacing the stochastic term in the Langevin equation with a deterministic density gradient term. The particle density is evaluated from the current particle positions using a Normalizing Flow (NF), which is differentiable and has good generalization properties in high dimensions. We take advantage of NF preconditioning and NF based Metropolis-Hastings updates for a faster and unbiased convergence. We show on various examples that the method is competitive against state of the art sampling methods.
2,722
null
Provably Sample-Efficient RL with Side Information about Latent Dynamics
We study reinforcement learning (RL) in settings where observations are high-dimensional, but where an RL agent has access to abstract knowledge about the structure of the state space, as is the case, for example, when a robot is tasked to go to a specific room in a building using observations from its own camera, while having access to the floor plan. We formalize this setting as transfer reinforcement learning from an abstract simulator, which we assume is deterministic (such as a simple model of moving around the floor plan), but which is only required to capture the target domain's latent-state dynamics approximately up to unknown (bounded) perturbations (to account for environment stochasticity). Crucially, we assume no prior knowledge about the structure of observations in the target domain except that they can be used to identify the latent states (but the decoding map is unknown). Under these assumptions, we present an algorithm, called TASID, that learns a robust policy in the target domain, with sample complexity that is polynomial in the horizon, and independent of the number of states, which is not possible without access to some prior knowledge. In synthetic experiments, we verify various properties of our algorithm and show that it empirically outperforms transfer RL algorithms that require access to "full simulators" (i.e., those that also simulate observations).
2,723
null
FedControl: When Control Theory Meets Federated Learning
To date, the most popular federated learning algorithms use coordinate-wise averaging of the model parameters. We depart from this approach by differentiating client contributions according to the performance of local learning and its evolution. The technique is inspired from control theory and its classification performance is evaluated extensively in IID framework and compared with FedAvg.
2,724
null
Competitive Gradient Optimization
We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO ), a gradient-based method that incorporates the interactions between the two players in zero-sum games for optimization updates. We provide continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, CGO predecessors degenerate to their gradient descent ascent (GDA) variants. We provide a rate of convergence to stationary points and further propose a generalized class of $\alpha$-coherent function for which we provide convergence analysis. We show that for strictly $\alpha$-coherent functions, our algorithm convergences to a saddle point. Moreover, we propose optimistic CGO (OCGO), an optimistic variant, for which we show convergence rate to saddle points in $\alpha$-coherent class of functions.
2,725
null
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Predicting the trajectories of surrounding objects is a critical task in self-driving and many other autonomous systems. Recent works demonstrate that adversarial attacks on trajectory prediction, where small crafted perturbations are introduced to history trajectories, may significantly mislead the prediction of future trajectories and ultimately induce unsafe planning. However, few works have addressed enhancing the robustness of this important safety-critical task. In this paper, we present the first adversarial training method for trajectory prediction. Compared with typical adversarial training on image tasks, our work is challenged by more random inputs with rich context, and a lack of class labels. To address these challenges, we propose a method based on a semi-supervised adversarial autoencoder that models disentangled semantic features with domain knowledge and provides additional latent labels for the adversarial training. Extensive experiments with different types of attacks demonstrate that our semi-supervised semantics-guided adversarial training method can effectively mitigate the impact of adversarial attacks and generally improve the system's adversarial robustness to a variety of attacks, including unseen ones. We believe that such semantics-guided architecture and advancement in robust generalization is an important step for developing robust prediction models and enabling safe decision making.
2,726
null
Will Bilevel Optimizers Benefit from Loops
Bilevel optimization has arisen as a powerful tool for solving a variety of machine learning problems. Two current popular bilevel optimizers AID-BiO and ITD-BiO naturally involve solving one or two sub-problems, and consequently, whether we solve these problems with loops (that take many iterations) or without loops (that take only a few iterations) can significantly affect the overall computational efficiency. Existing studies in the literature cover only some of those implementation choices, and the complexity bounds available are not refined enough to enable rigorous comparison among different implementations. In this paper, we first establish unified convergence analysis for both AID-BiO and ITD-BiO that are applicable to all implementation choices of loops. We then specialize our results to characterize the computational complexity for all implementations, which enable an explicit comparison among them. Our result indicates that for AID-BiO, the loop for estimating the optimal point of the inner function is beneficial for overall efficiency, although it causes higher complexity for each update step, and the loop for approximating the outer-level Hessian-inverse-vector product reduces the gradient complexity. For ITD-BiO, the two loops always coexist, and our convergence upper and lower bounds show that such loops are necessary to guarantee a vanishing convergence error, whereas the no-loop scheme suffers from an unavoidable non-vanishing convergence error. Our numerical experiments further corroborate our theoretical results.
2,727
null
Diffusion-LM Improves Controllable Text Generation
Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
2,728
null
Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case Study on COVID-19 Chest X-ray Image
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff for facilitating a diagnosis of COVID-19 in a more efficient and comprehensive manner. As a breakthrough of artificial intelligence (AI), deep learning has been applied to perform COVID-19 infection region segmentation and disease classification by analyzing CXR and CT data. However, prediction uncertainty of deep learning models for these tasks, which is very important to safety-critical applications like medical image processing, has not been comprehensively investigated. In this work, we propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration to not only enhance segmentation performance, but also reduce prediction uncertainty. The proposed method has been validated on a large dataset that is associated with CXR image segmentation. Experimental results demonstrate that the proposed method can improve the segmentation performance, as well as decrease prediction uncertainties.
2,729
null
KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal
In this work, we consider and analyze the sample complexity of model-free reinforcement learning with a generative model. Particularly, we analyze mirror descent value iteration (MDVI) by Geist et al. (2019) and Vieillard et al. (2020a), which uses the Kullback-Leibler divergence and entropy regularization in its value and policy updates. Our analysis shows that it is nearly minimax-optimal for finding an $\varepsilon$-optimal policy when $\varepsilon$ is sufficiently small. This is the first theoretical result that demonstrates that a simple model-free algorithm without variance-reduction can be nearly minimax-optimal under the considered setting.
2,730
null
MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
Mixed-integer programming (MIP) technology offers a generic way of formulating and solving combinatorial optimization problems. While generally reliable, state-of-the-art MIP solvers base many crucial decisions on hand-crafted heuristics, largely ignoring common patterns within a given instance distribution of the problem of interest. Here, we propose MIP-GNN, a general framework for enhancing such solvers with data-driven insights. By encoding the variable-constraint interactions of a given mixed-integer linear program (MILP) as a bipartite graph, we leverage state-of-the-art graph neural network architectures to predict variable biases, i.e., component-wise averages of (near) optimal solutions, indicating how likely a variable will be set to 0 or 1 in (near) optimal solutions of binary MILPs. In turn, the predicted biases stemming from a single, once-trained model are used to guide the solver, replacing heuristic components. We integrate MIP-GNN into a state-of-the-art MIP solver, applying it to tasks such as node selection and warm-starting, showing significant improvements compared to the default setting of the solver on two classes of challenging binary MILPs.
2,731
null
StarGraph: A Coarse-to-Fine Representation Method for Large-Scale Knowledge Graph
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector, ignoring the rich information contained in neighbor entities. We propose a method named StarGraph, which gives a novel way to utilize the neighborhood information for large-scale knowledge graphs to get better entity representations. The core idea is to divide the neighborhood information into different levels for sampling and processing, where the generalized coarse-grained information and unique fine-grained information are combined to generate an efficient subgraph for each node. In addition, a self-attention network is proposed to process the subgraphs and get the entity representations, which are used to replace the entity embeddings in conventional methods. The proposed method achieves the best results on the ogbl-wikikg2 dataset, which validates the effectiveness of it. The code is now available at https://github.com/hzli-ucas/StarGraph
2,732
null
Targeted Adaptive Design
Modern advanced manufacturing and advanced materials design often require searches of relatively high-dimensional process control parameter spaces for settings that result in optimal structure, property, and performance parameters. The mapping from the former to the latter must be determined from noisy experiments or from expensive simulations. We abstract this problem to a mathematical framework in which an unknown function from a control space to a design space must be ascertained by means of expensive noisy measurements, which locate optimal control settings generating desired design features within specified tolerances, with quantified uncertainty. We describe targeted adaptive design (TAD), a new algorithm that performs this optimal sampling task. TAD creates a Gaussian process surrogate model of the unknown mapping at each iterative stage, proposing a new batch of control settings to sample experimentally and optimizing the updated log-predictive likelihood of the target design. TAD either stops upon locating a solution with uncertainties that fit inside the tolerance box or uses a measure of expected future information to determine that the search space has been exhausted with no solution. TAD thus embodies the exploration-exploitation tension in a manner that recalls, but is essentially different from, Bayesian optimization and optimal experimental design.
2,733
null
ALMA: Hierarchical Learning for Composite Multi-Agent Tasks
Despite significant progress on multi-agent reinforcement learning (MARL) in recent years, coordination in complex domains remains a challenge. Work in MARL often focuses on solving tasks where agents interact with all other agents and entities in the environment; however, we observe that real-world tasks are often composed of several isolated instances of local agent interactions (subtasks), and each agent can meaningfully focus on one subtask to the exclusion of all else in the environment. In these composite tasks, successful policies can often be decomposed into two levels of decision-making: agents are allocated to specific subtasks and each agent acts productively towards their assigned subtask alone. This decomposed decision making provides a strong structural inductive bias, significantly reduces agent observation spaces, and encourages subtask-specific policies to be reused and composed during training, as opposed to treating each new composition of subtasks as unique. We introduce ALMA, a general learning method for taking advantage of these structured tasks. ALMA simultaneously learns a high-level subtask allocation policy and low-level agent policies. We demonstrate that ALMA learns sophisticated coordination behavior in a number of challenging environments, outperforming strong baselines. ALMA's modularity also enables it to better generalize to new environment configurations. Finally, we find that while ALMA can integrate separately trained allocation and action policies, the best performance is obtained only by training all components jointly.
2,734
null
Robust Phi-Divergence MDPs
In recent years, robust Markov decision processes (MDPs) have emerged as a prominent modeling framework for dynamic decision problems affected by uncertainty. In contrast to classical MDPs, which only account for stochasticity by modeling the dynamics through a stochastic process with a known transition kernel, robust MDPs additionally account for ambiguity by optimizing in view of the most adverse transition kernel from a prescribed ambiguity set. In this paper, we develop a novel solution framework for robust MDPs with s-rectangular ambiguity sets that decomposes the problem into a sequence of robust Bellman updates and simplex projections. Exploiting the rich structure present in the simplex projections corresponding to phi-divergence ambiguity sets, we show that the associated s-rectangular robust MDPs can be solved substantially faster than with state-of-the-art commercial solvers as well as a recent first-order solution scheme, thus rendering them attractive alternatives to classical MDPs in practical applications.
2,735
null
Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost
Clustering is a fundamental building block of modern statistical analysis pipelines. Fair clustering has seen much attention from the machine learning community in recent years. We are some of the first to study fairness in the context of hierarchical clustering, after the results of Ahmadian et al. from NeurIPS in 2020. We evaluate our results using Dasgupta's cost function, perhaps one of the most prevalent theoretical metrics for hierarchical clustering evaluation. Our work vastly improves the previous $O(n^{5/6}poly\log(n))$ fair approximation for cost to a near polylogarithmic $O(n^\delta poly\log(n))$ fair approximation for any constant $\delta\in(0,1)$. This result establishes a cost-fairness tradeoff and extends to broader fairness constraints than the previous work. We also show how to alter existing hierarchical clusterings to guarantee fairness and cluster balance across any level in the hierarchy.
2,736
null
FadMan: Federated Anomaly Detection across Multiple Attributed Networks
Anomaly subgraph detection has been widely used in various applications, ranging from cyber attack in computer networks to malicious activities in social networks. Despite an increasing need for federated anomaly detection across multiple attributed networks, only a limited number of approaches are available for this problem. Federated anomaly detection faces two major challenges. One is that isolated data in most industries are restricted share with others for data privacy and security. The other is most of the centralized approaches training based on data integration. The main idea of federated anomaly detection is aligning private anomalies from local data owners on the public anomalies from the attributed network in the server through public anomalies to federate local anomalies. In each private attributed network, the detected anomaly subgraph is aligned with an anomaly subgraph in the public attributed network. The significant public anomaly subgraphs are selected for federated private anomalies while preventing local private data leakage. The proposed algorithm FadMan is a vertical federated learning framework for public node aligned with many private nodes of different features, and is validated on two tasks correlated anomaly detection on multiple attributed networks and anomaly detection on an attributeless network using five real-world datasets. In the first scenario, FadMan outperforms competitive methods by at least 12% accuracy at 10% noise level. In the second scenario, by analyzing the distribution of abnormal nodes, we find that the nodes of traffic anomalies are associated with the event of postgraduate entrance examination on the same day.
2,737
null
Constrained Langevin Algorithms with L-mixing External Random Variables
Langevin algorithms are gradient descent methods augmented with additive noise, and are widely used in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. In recent years, the non-asymptotic analysis of Langevin algorithms for non-convex optimization learning has been extensively explored. For constrained problems with non-convex losses over compact convex domain in the case of IID data variables, Langevin algorithm achieves a deviation of $O(T^{-1/4} (\log T)^{1/2})$ from its target distribution [22]. In this paper, we obtain a deviation of $O(T^{-1/2} \log T)$ in $1$-Wasserstein distance for non-convex losses with $L$-mixing data variables and polyhedral constraints (which are not necessarily bounded). This deviation indicates that our convergence rate is faster than those in the previous works on constrained Langevin algorithms for non-convex optimization.
2,738
null
Optimizing Objective Functions from Trained ReLU Neural Networks via Sampling
This paper introduces scalable, sampling-based algorithms that optimize trained neural networks with ReLU activations. We first propose an iterative algorithm that takes advantage of the piecewise linear structure of ReLU neural networks and reduces the initial mixed-integer optimization problem (MIP) into multiple easy-to-solve linear optimization problems (LPs) through sampling. Subsequently, we extend this approach by searching around the neighborhood of the LP solution computed at each iteration. This scheme allows us to devise a second, enhanced algorithm that reduces the initial MIP problem into smaller, easier-to-solve MIPs. We analytically show the convergence of the methods and we provide a sample complexity guarantee. We also validate the performance of our algorithms by comparing them against state-of-the-art MIP-based methods. Finally, we show computationally how the sampling algorithms can be used effectively to warm-start MIP-based methods.
2,739
null
FlowNet-PET: Unsupervised Learning to Perform Respiratory Motion Correction in PET Imaging
To correct for respiratory motion in PET imaging, an interpretable and unsupervised deep learning technique, FlowNet-PET, was constructed. The network was trained to predict the optical flow between two PET frames from different breathing amplitude ranges. The trained model aligns different retrospectively-gated PET images, providing a final image with similar counting statistics as a non-gated image, but without the blurring effects. FlowNet-PET was applied to anthropomorphic digital phantom data, which provided the possibility to design robust metrics to quantify the corrections. When comparing the predicted optical flows to the ground truths, the median absolute error was found to be smaller than the pixel and slice widths. The improvements were illustrated by comparing against images without motion and computing the intersection over union (IoU) of the tumors as well as the enclosed activity and coefficient of variation (CoV) within the no-motion tumor volume before and after the corrections were applied. The average relative improvements provided by the network were 64%, 89%, and 75% for the IoU, total activity, and CoV, respectively. FlowNet-PET achieved similar results as the conventional retrospective phase binning approach, but only required one sixth of the scan duration. The code and data have been made publicly available (https://github.com/teaghan/FlowNet_PET).
2,740
null
Multiscale Voxel Based Decoding For Enhanced Natural Image Reconstruction From Brain Activity
Reconstructing perceived images from human brain activity monitored by functional magnetic resonance imaging (fMRI) is hard, especially for natural images. Existing methods often result in blurry and unintelligible reconstructions with low fidelity. In this study, we present a novel approach for enhanced image reconstruction, in which existing methods for object decoding and image reconstruction are merged together. This is achieved by conditioning the reconstructed image to its decoded image category using a class-conditional generative adversarial network and neural style transfer. The results indicate that our approach improves the semantic similarity of the reconstructed images and can be used as a general framework for enhanced image reconstruction.
2,741
null
TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation
We present TURJUMAN, a neural toolkit for translating from 20 languages into Modern Standard Arabic (MSA). TURJUMAN exploits the recently-introduced text-to-text Transformer AraT5 model, endowing it with a powerful ability to decode into Arabic. The toolkit offers the possibility of employing a number of diverse decoding methods, making it suited for acquiring paraphrases for the MSA translations as an added value. To train TURJUMAN, we sample from publicly available parallel data employing a simple semantic similarity method to ensure data quality. This allows us to prepare and release AraOPUS-20, a new machine translation benchmark. We publicly release our translation toolkit (TURJUMAN) as well as our benchmark dataset (AraOPUS-20).
2,742
null
Private and Byzantine-Proof Cooperative Decision-Making
The cooperative bandit problem is a multi-agent decision problem involving a group of agents that interact simultaneously with a multi-armed bandit, while communicating over a network with delays. The central idea in this problem is to design algorithms that can efficiently leverage communication to obtain improvements over acting in isolation. In this paper, we investigate the stochastic bandit problem under two settings - (a) when the agents wish to make their communication private with respect to the action sequence, and (b) when the agents can be byzantine, i.e., they provide (stochastically) incorrect information. For both these problem settings, we provide upper-confidence bound algorithms that obtain optimal regret while being (a) differentially-private and (b) tolerant to byzantine agents. Our decentralized algorithms require no information about the network of connectivity between agents, making them scalable to large dynamic systems. We test our algorithms on a competitive benchmark of random graphs and demonstrate their superior performance with respect to existing robust algorithms. We hope that our work serves as an important step towards creating distributed decision-making systems that maintain privacy.
2,743
null
Momentum Stiefel Optimizer, with Applications to Suitably-Orthogonal Attention, and Optimal Transport
The problem of optimization on Stiefel manifold, i.e., minimizing functions of (not necessarily square) matrices that satisfy orthogonality constraints, has been extensively studied, partly due to rich machine learning applications. Yet, a new approach is proposed based on, for the first time, an interplay between thoughtfully designed continuous and discrete dynamics. It leads to a gradient-based optimizer with intrinsically added momentum. This method exactly preserves the manifold structure but does not require commonly used projection or retraction, and thus having low computational costs when compared to existing algorithms. Its generalization to adaptive learning rates is also demonstrated. Pleasant performances are observed in various practical tasks. For instance, we discover that placing orthogonal constraints on attention heads of trained-from-scratch Vision Transformer [Dosovitskiy et al. 2022] could remarkably improve its performance, when our optimizer is used, and it is better that each head is made orthogonal within itself but not necessarily to other heads. This optimizer also makes the useful notion of Projection Robust Wasserstein Distance [Paty & Cuturi 2019][Lin et al. 2020] for high-dim. optimal transport even more effective.
2,744
null
Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation
Masked image modeling (MIM) learns representations with remarkably good fine-tuning performances, overshadowing previous prevalent pre-training approaches such as image classification, instance contrastive learning, and image-text alignment. In this paper, we show that the inferior fine-tuning performance of these pre-training approaches can be significantly improved by a simple post-processing in the form of feature distillation (FD). The feature distillation converts the old representations to new representations that have a few desirable properties just like those representations produced by MIM. These properties, which we aggregately refer to as optimization friendliness, are identified and analyzed by a set of attention- and optimization-related diagnosis tools. With these properties, the new representations show strong fine-tuning performance. Specifically, the contrastive self-supervised learning methods are made as competitive in fine-tuning as the state-of-the-art masked image modeling (MIM) algorithms. The CLIP models' fine-tuning performance is also significantly improved, with a CLIP ViT-L model reaching 89.0% top-1 accuracy on ImageNet-1K classification. More importantly, our work provides a way for the future research to focus more effort on the generality and scalability of the learnt representations without being pre-occupied with optimization friendliness since it can be enhanced rather easily. The code will be available at https://github.com/SwinTransformer/Feature-Distillation.
2,745
null
PSL is Dead. Long Live PSL
Property Specification Language (PSL) is a form of temporal logic that has been mainly used in discrete domains (e.g. formal hardware verification). In this paper, we show that by merging machine learning techniques with PSL monitors, we can extend PSL to work on continuous domains. We apply this technique in machine learning-based anomaly detection to analyze scenarios of real-time streaming events from continuous variables in order to detect abnormal behaviors of a system. By using machine learning with formal models, we leverage the strengths of both machine learning methods and formal semantics of time. On one hand, machine learning techniques can produce distributions on continuous variables, where abnormalities can be captured as deviations from the distributions. On the other hand, formal methods can characterize discrete temporal behaviors and relations that cannot be easily learned by machine learning techniques. Interestingly, the anomalies detected by machine learning and the underlying time representation used are discrete events. We implemented a temporal monitoring package (TEF) that operates in conjunction with normal data science packages for anomaly detection machine learning systems, and we show that TEF can be used to perform accurate interpretation of temporal correlation between events.
2,746
null
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms IO-aware -- accounting for reads and writes between levels of GPU memory. We propose FlashAttention, an IO-aware exact attention algorithm that uses tiling to reduce the number of memory reads/writes between GPU high bandwidth memory (HBM) and GPU on-chip SRAM. We analyze the IO complexity of FlashAttention, showing that it requires fewer HBM accesses than standard attention, and is optimal for a range of SRAM sizes. We also extend FlashAttention to block-sparse attention, yielding an approximate attention algorithm that is faster than any existing approximate attention method. FlashAttention trains Transformers faster than existing baselines: 15% end-to-end wall-clock speedup on BERT-large (seq. length 512) compared to the MLPerf 1.1 training speed record, 3$\times$ speedup on GPT-2 (seq. length 1K), and 2.4$\times$ speedup on long-range arena (seq. length 1K-4K). FlashAttention and block-sparse FlashAttention enable longer context in Transformers, yielding higher quality models (0.7 better perplexity on GPT-2 and 6.4 points of lift on long-document classification) and entirely new capabilities: the first Transformers to achieve better-than-chance performance on the Path-X challenge (seq. length 16K, 61.4% accuracy) and Path-256 (seq. length 64K, 63.1% accuracy).
2,747
null
Meta-Learning Adversarial Bandits
We study online learning with bandit feedback across multiple tasks, with the goal of improving average performance across tasks if they are similar according to some natural task-similarity measure. As the first to target the adversarial setting, we design a unified meta-algorithm that yields setting-specific guarantees for two important cases: multi-armed bandits (MAB) and bandit linear optimization (BLO). For MAB, the meta-algorithm tunes the initialization, step-size, and entropy parameter of the Tsallis-entropy generalization of the well-known Exp3 method, with the task-averaged regret provably improving if the entropy of the distribution over estimated optima-in-hindsight is small. For BLO, we learn the initialization, step-size, and boundary-offset of online mirror descent (OMD) with self-concordant barrier regularizers, showing that task-averaged regret varies directly with a measure induced by these functions on the interior of the action space. Our adaptive guarantees rely on proving that unregularized follow-the-leader combined with multiplicative weights is enough to online learn a non-smooth and non-convex sequence of affine functions of Bregman divergences that upper-bound the regret of OMD.
2,748
null
Neural Basis Models for Interpretability
Due to the widespread use of complex machine learning models in real-world applications, it is becoming critical to explain model predictions. However, these models are typically black-box deep neural networks, explained post-hoc via methods with known faithfulness limitations. Generalized Additive Models (GAMs) are an inherently interpretable class of models that address this limitation by learning a non-linear shape function for each feature separately, followed by a linear model on top. However, these models are typically difficult to train, require numerous parameters, and are difficult to scale. We propose an entirely new subfamily of GAMs that utilizes basis decomposition of shape functions. A small number of basis functions are shared among all features, and are learned jointly for a given task, thus making our model scale much better to large-scale data with high-dimensional features, especially when features are sparse. We propose an architecture denoted as the Neural Basis Model (NBM) which uses a single neural network to learn these bases. On a variety of tabular and image datasets, we demonstrate that for interpretable machine learning, NBMs are the state-of-the-art in accuracy, model size, and, throughput and can easily model all higher-order feature interactions. Source code is available at https://github.com/facebookresearch/nbm-spam.
2,749
null
Robust Counterfactual Explanations for Random Forests
Counterfactual explanations describe how to modify a feature vector in order to flip the outcome of a trained classifier. Several heuristic and optimal methods have been proposed to generate these explanations. However, the robustness of counterfactual explanations when the classifier is re-trained has yet to be studied. Our goal is to obtain counterfactual explanations for random forests that are robust to algorithmic uncertainty. We study the link between the robustness of ensemble models and the robustness of base learners and frame the generation of robust counterfactual explanations as a chance-constrained optimization problem. We develop a practical method with good empirical performance and provide finite-sample and asymptotic guarantees for simple random forests of stumps. We show that existing methods give surprisingly low robustness: the validity of naive counterfactuals is below $50\%$ on most data sets and can fall to $20\%$ on large problem instances with many features. Even with high plausibility, counterfactual explanations often exhibit low robustness to algorithmic uncertainty. In contrast, our method achieves high robustness with only a small increase in the distance from counterfactual explanations to their initial observations. Furthermore, we highlight the connection between the robustness of counterfactual explanations and the predictive importance of features.
2,750
null
Bayesian Robust Graph Contrastive Learning
Graph Neural Networks (GNNs) have been widely used to learn node representations and with outstanding performance on various tasks such as node classification. However, noise, which inevitably exists in real-world graph data, would considerably degrade the performance of GNNs as the noise is easily propagated via the graph structure. In this work, we propose a novel and robust method, Bayesian Robust Graph Contrastive Learning (BRGCL), which trains a GNN encoder to learn robust node representations. The BRGCL encoder is a completely unsupervised encoder. Two steps are iteratively executed at each epoch of training the BRGCL encoder: (1) estimating confident nodes and computing robust cluster prototypes of node representations through a novel Bayesian nonparametric method; (2) prototypical contrastive learning between the node representations and the robust cluster prototypes. Experiments on public and large-scale benchmarks demonstrate the superior performance of BRGCL and the robustness of the learned node representations. The code of BRGCL is available at \url{https://github.com/BRGCL-code/BRGCL-code}.
2,751
null
Scalable Interpretability via Polynomials
Generalized Additive Models (GAMs) have quickly become the leading choice for fully-interpretable machine learning. However, unlike uninterpretable methods such as DNNs, they lack expressive power and easy scalability, and are hence not a feasible alternative for real-world tasks. We present a new class of GAMs that use tensor rank decompositions of polynomials to learn powerful, {\em fully-interpretable} models. Our approach, titled Scalable Polynomial Additive Models (SPAM) is effortlessly scalable and models {\em all} higher-order feature interactions without a combinatorial parameter explosion. SPAM outperforms all current interpretable approaches, and matches DNN/XGBoost performance on a series of real-world benchmarks with up to hundreds of thousands of features. We demonstrate by human subject evaluations that SPAMs are demonstrably more interpretable in practice, and are hence an effortless replacement for DNNs for creating interpretable and high-performance systems suitable for large-scale machine learning. Source code is available at https://github.com/facebookresearch/nbm-spam.
2,752
null
Spartan: Differentiable Sparsity via Regularized Transportation
We present Spartan, a method for training sparse neural network models with a predetermined level of sparsity. Spartan is based on a combination of two techniques: (1) soft top-k masking of low-magnitude parameters via a regularized optimal transportation problem and (2) dual averaging-based parameter updates with hard sparsification in the forward pass. This scheme realizes an exploration-exploitation tradeoff: early in training, the learner is able to explore various sparsity patterns, and as the soft top-k approximation is gradually sharpened over the course of training, the balance shifts towards parameter optimization with respect to a fixed sparsity mask. Spartan is sufficiently flexible to accommodate a variety of sparsity allocation policies, including both unstructured and block structured sparsity, as well as general cost-sensitive sparsity allocation mediated by linear models of per-parameter costs. On ImageNet-1K classification, Spartan yields 95% sparse ResNet-50 models and 90% block sparse ViT-B/16 models while incurring absolute top-1 accuracy losses of less than 1% compared to fully dense training.
2,753
null
Learning to Solve Combinatorial Graph Partitioning Problems via Efficient Exploration
From logistics to the natural sciences, combinatorial optimisation on graphs underpins numerous real-world applications. Reinforcement learning (RL) has shown particular promise in this setting as it can adapt to specific problem structures and does not require pre-solved instances for these, often NP-hard, problems. However, state-of-the-art (SOTA) approaches typically suffer from severe scalability issues, primarily due to their reliance on expensive graph neural networks (GNNs) at each decision step. We introduce ECORD; a novel RL algorithm that alleviates this expense by restricting the GNN to a single pre-processing step, before entering a fast-acting exploratory phase directed by a recurrent unit. Experimentally, ECORD achieves a new SOTA for RL algorithms on the Maximum Cut problem, whilst also providing orders of magnitude improvement in speed and scalability. Compared to the nearest competitor, ECORD reduces the optimality gap by up to 73% on 500 vertex graphs with a decreased wall-clock time. Moreover, ECORD retains strong performance when generalising to larger graphs with up to 10000 vertices.
2,754
null
Efficient Forecasting of Large Scale Hierarchical Time Series via Multilevel Clustering
We propose a novel approach to the problem of clustering hierarchically aggregated time-series data, which has remained an understudied problem though it has several commercial applications. We first group time series at each aggregated level, while simultaneously leveraging local and global information. The proposed method can cluster hierarchical time series (HTS) with different lengths and structures. For common two-level hierarchies, we employ a combined objective for local and global clustering over spaces of discrete probability measures, using Wasserstein distance coupled with Soft-DTW divergence. For multi-level hierarchies, we present a bottom-up procedure that progressively leverages lower-level information for higher-level clustering. Our final goal is to improve both the accuracy and speed of forecasts for a larger number of HTS needed for a real-world application. To attain this goal, each time series is first assigned the forecast for its cluster representative, which can be considered as a "shrinkage prior" for the set of time series it represents. Then this base forecast can be quickly fine-tuned to adjust to the specifics of that time series. We empirically show that our method substantially improves performance in terms of both speed and accuracy for large-scale forecasting tasks involving much HTS.
2,755
null
Generalizing Brain Decoding Across Subjects with Deep Learning
Decoding experimental variables from brain imaging data is gaining popularity, with applications in brain-computer interfaces and the study of neural representations. Decoding is typically subject-specific and does not generalise well over subjects. Here, we investigate ways to achieve cross-subject decoding. We used magnetoencephalography (MEG) data where 15 subjects viewed 118 different images, with 30 examples per image. Training on the entire 1s window following the presentation of each image, we experimented with an adaptation of the WaveNet architecture for classification. We also investigated the use of subject embedding to aid learning of subject variability in the group model. We show that deep learning and subject embedding are crucial to closing the performance gap between subject and group-level models. Importantly group models outperform subject models when tested on an unseen subject with little available data. The potential of such group modelling is even higher with bigger datasets. Furthermore, we demonstrate the use of permutation feature importance to gain insight into the spatio-temporal and spectral information encoded in the models, enabling better physiological interpretation. All experimental code is available at https://github.com/ricsinaruto/MEG-group-decode.
2,756
null
Solving infinite-horizon POMDPs with memoryless stochastic policies in state-action space
Reward optimization in fully observable Markov decision processes is equivalent to a linear program over the polytope of state-action frequencies. Taking a similar perspective in the case of partially observable Markov decision processes with memoryless stochastic policies, the problem was recently formulated as the optimization of a linear objective subject to polynomial constraints. Based on this we present an approach for Reward Optimization in State-Action space (ROSA). We test this approach experimentally in maze navigation tasks. We find that ROSA is computationally efficient and can yield stability improvements over other existing methods.
2,757
null
Capturing Graphs with Hypo-Elliptic Diffusions
Convolutional layers within graph neural networks operate by aggregating information about local neighbourhood structures; one common way to encode such substructures is through random walks. The distribution of these random walks evolves according to a diffusion equation defined using the graph Laplacian. We extend this approach by leveraging classic mathematical results about hypo-elliptic diffusions. This results in a novel tensor-valued graph operator, which we call the hypo-elliptic graph Laplacian. We provide theoretical guarantees and efficient low-rank approximation algorithms. In particular, this gives a structured approach to capture long-range dependencies on graphs that is robust to pooling. Besides the attractive theoretical properties, our experiments show that this method competes with graph transformers on datasets requiring long-range reasoning but scales only linearly in the number of edges as opposed to quadratically in nodes.
2,758
null
Surrogate modeling for Bayesian optimization beyond a single Gaussian process
Bayesian optimization (BO) has well-documented merits for optimizing black-box functions with an expensive evaluation cost. Such functions emerge in applications as diverse as hyperparameter tuning, drug discovery, and robotics. BO hinges on a Bayesian surrogate model to sequentially select query points so as to balance exploration with exploitation of the search space. Most existing works rely on a single Gaussian process (GP) based surrogate model, where the kernel function form is typically preselected using domain knowledge. To bypass such a design process, this paper leverages an ensemble (E) of GPs to adaptively select the surrogate model fit on-the-fly, yielding a GP mixture posterior with enhanced expressiveness for the sought function. Acquisition of the next evaluation input using this EGP-based function posterior is then enabled by Thompson sampling (TS) that requires no additional design parameters. To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model. The novel EGP-TS readily accommodates parallel operation. To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret for both sequential and parallel settings. Tests on synthetic functions and real-world applications showcase the merits of the proposed method.
2,759
null
Sharpness-Aware Training for Free
Modern deep neural networks (DNNs) have achieved state-of-the-art performances but are typically over-parameterized. The over-parameterization may result in undesirably large generalization error in the absence of other customized training strategies. Recently, a line of research under the name of Sharpness-Aware Minimization (SAM) has shown that minimizing a sharpness measure, which reflects the geometry of the loss landscape, can significantly reduce the generalization error. However, SAM-like methods incur a two-fold computational overhead of the given base optimizer (e.g. SGD) for approximating the sharpness measure. In this paper, we propose Sharpness-Aware Training for Free, or SAF, which mitigates the sharp landscape at almost zero additional computational cost over the base optimizer. Intuitively, SAF achieves this by avoiding sudden drops in the loss in the sharp local minima throughout the trajectory of the updates of the weights. Specifically, we suggest a novel trajectory loss, based on the KL-divergence between the outputs of DNNs with the current weights and past weights, as a replacement of the SAM's sharpness measure. This loss captures the rate of change of the training loss along the model's update trajectory. By minimizing it, SAF ensures the convergence to a flat minimum with improved generalization capabilities. Extensive empirical results show that SAF minimizes the sharpness in the same way that SAM does, yielding better results on the ImageNet dataset with essentially the same computational cost as the base optimizer.
2,760
null
AANG: Automating Auxiliary Learning
When faced with data-starved or highly complex end-tasks, it is commonplace for machine learning practitioners to introduce auxiliary objectives as supplementary learning signals. Whilst much work has been done to formulate useful auxiliary objectives, their construction is still an art which proceeds by slow and tedious hand-design. Intuitions about how and when these objectives improve end-task performance have also had limited theoretical backing. In this work, we present an approach for automatically generating a suite of auxiliary objectives. We achieve this by deconstructing existing objectives within a novel unified taxonomy, identifying connections between them, and generating new ones based on the uncovered structure. Next, we theoretically formalize widely-held intuitions about how auxiliary learning improves generalization of the end-task. This leads us to a principled and efficient algorithm for searching the space of generated objectives to find those most useful to a specified end-task. With natural language processing (NLP) as our domain of study, we empirically verify that our automated auxiliary learning pipeline leads to strong improvements over competitive baselines across continued training experiments on a pre-trained model on 5 NLP end-tasks.
2,761
null
Deep Coding Patterns Design for Compressive Near-Infrared Spectral Classification
Compressive spectral imaging (CSI) has emerged as an attractive compression and sensing technique, primarily to sense spectral regions where traditional systems result in highly costly such as in the near-infrared spectrum. Recently, it has been shown that spectral classification can be performed directly in the compressive domain, considering the amount of spectral information embedded in the measurements, skipping the reconstruction step. Consequently, the classification quality directly depends on the set of coding patterns employed in the sensing step. Therefore, this work proposes an end-to-end approach to jointly design the coding patterns used in CSI and the network parameters to perform spectral classification directly from the embedded near-infrared compressive measurements. Extensive simulation on the three-dimensional coded aperture snapshot spectral imaging (3D-CASSI) system validates that the proposed design outperforms traditional and random design in up to 10% of classification accuracy.
2,762
null
Finite mixture of skewed sub-Gaussian stable distributions
We propose the finite mixture of skewed sub-Gaussian stable distributions. The maximum likelihood estimator for the parameters of proposed finite mixture model is computed through the expectation-maximization algorithm. The proposed model contains the finite mixture of normal and skewed normal distributions. Since the tails of proposed model is heavier than even the Student's t distribution, it can be used as a powerful model for robust model-based clustering. Performance of the proposed model is demonstrated by clustering simulation data and two sets of real data.
2,763
null
Simple Unsupervised Object-Centric Learning for Complex and Naturalistic Videos
Unsupervised object-centric learning aims to represent the modular, compositional, and causal structure of a scene as a set of object representations and thereby promises to resolve many critical limitations of traditional single-vector representations such as poor systematic generalization. Although there have been many remarkable advances in recent years, one of the most critical problems in this direction has been that previous methods work only with simple and synthetic scenes but not with complex and naturalistic images or videos. In this paper, we propose STEVE, an unsupervised model for object-centric learning in videos. Our proposed model makes a significant advancement by demonstrating its effectiveness on various complex and naturalistic videos unprecedented in this line of research. Interestingly, this is achieved by neither adding complexity to the model architecture nor introducing a new objective or weak supervision. Rather, it is achieved by a surprisingly simple architecture that uses a transformer-based image decoder conditioned on slots and the learning objective is simply to reconstruct the observation. Our experiment results on various complex and naturalistic videos show significant improvements compared to the previous state-of-the-art.
2,764
null
Dual Convexified Convolutional Neural Networks
We propose the framework of dual convexified convolutional neural networks (DCCNNs). In this framework, we first introduce a primal learning problem motivated from convexified convolutional neural networks (CCNNs), and then construct the dual convex training program through careful analysis of the Karush-Kuhn-Tucker (KKT) conditions and Fenchel conjugates. Our approach reduces the memory overhead of constructing a large kernel matrix and eliminates the ambiguity of factorizing the matrix. Due to the low-rank structure in CCNNs and the related subdifferential of nuclear norms, there is no closed-form expression to recover the primal solution from the dual solution. To overcome this, we propose a highly novel weight recovery algorithm, which takes the dual solution and the kernel information as the input, and recovers the linear and convolutional weights of a CCNN. Furthermore, our recovery algorithm exploits the low-rank structure and imposes a small number of filters indirectly, which reduces the parameter size. As a result, DCCNNs inherit all the statistical benefits of CCNNs, while enjoying a more formal and efficient workflow.
2,765
null
Benign Overparameterization in Membership Inference with Early Stopping
Does a neural network's privacy have to be at odds with its accuracy? In this work, we study the effects the number of training epochs and parameters have on a neural network's vulnerability to membership inference (MI) attacks, which aim to extract potentially private information about the training data. We first demonstrate how the number of training epochs and parameters individually induce a privacy-utility trade-off: more of either improves generalization performance at the expense of lower privacy. However, remarkably, we also show that jointly tuning both can eliminate this privacy-utility trade-off. Specifically, with careful tuning of the number of training epochs, more overparameterization can increase model privacy for fixed generalization error. To better understand these phenomena theoretically, we develop a powerful new leave-one-out analysis tool to study the asymptotic behavior of linear classifiers and apply it to characterize the sample-specific loss threshold MI attack in high-dimensional logistic regression. For practitioners, we introduce a low-overhead procedure to estimate MI risk and tune the number of training epochs to guard against MI attacks.
2,766
null
Contrastive Siamese Network for Semi-supervised Speech Recognition
This paper introduces contrastive siamese (c-siam) network, an architecture for leveraging unlabeled acoustic data in speech recognition. c-siam is the first network that extracts high-level linguistic information from speech by matching outputs of two identical transformer encoders. It contains augmented and target branches which are trained by: (1) masking inputs and matching outputs with a contrastive loss, (2) incorporating a stop gradient operation on the target branch, (3) using an extra learnable transformation on the augmented branch, (4) introducing new temporal augment functions to prevent the shortcut learning problem. We use the Libri-light 60k unsupervised data and the LibriSpeech 100hrs/960hrs supervised data to compare c-siam and other best-performing systems. Our experiments show that c-siam provides 20% relative word error rate improvement over wav2vec baselines. A c-siam network with 450M parameters achieves competitive results compared to the state-of-the-art networks with 600M parameters.
2,767
null
Average Adjusted Association: Efficient Estimation with High Dimensional Confounders
The log odds ratio is a common parameter to measure association between (binary) outcome and exposure variables. Much attention has been paid to its parametric but robust estimation, or its nonparametric estimation as a function of confounders. However, discussion on how to use a summary statistic by averaging the log odds ratio function is surprisingly difficult to find despite the popularity and importance of averaging in other contexts such as estimating the average treatment effect. We propose a couple of efficient double/debiased machine learning (DML) estimators of the average log odds ratio, where the odds ratios are adjusted for observed (potentially high dimensional) confounders and are averaged over them. The estimators are built from two equivalent forms of the efficient influence function. The first estimator uses a prospective probability of the outcome conditional on the exposure and confounders; the second one employs a retrospective probability of the exposure conditional on the outcome and confounders. Our framework encompasses random sampling as well as outcome-based or exposure-based sampling. Finally, we illustrate how to apply the proposed estimators using real data.
2,768
null
Double Deep Q Networks for Sensor Management in Space Situational Awareness
We present a novel Double Deep Q Network (DDQN) application to a sensor management problem in space situational awareness (SSA). Frequent launches of satellites into Earth orbit pose a significant sensor management challenge, whereby a limited number of sensors are required to detect and track an increasing number of objects. In this paper, we demonstrate the use of reinforcement learning to develop a sensor management policy for SSA. We simulate a controllable Earth-based telescope, which is trained to maximise the number of satellites tracked using an extended Kalman filter. The estimated state covariance matrices for satellites observed under the DDQN policy are greatly reduced compared to those generated by an alternate (random) policy. This work provides the basis for further advancements and motivates the use of reinforcement learning for SSA.
2,769
null
Group-invariant max filtering
Given a real inner product space $V$ and a group $G$ of linear isometries, we construct a family of $G$-invariant real-valued functions on $V$ that we call max filters. In the case where $V=\mathbb{R}^d$ and $G$ is finite, a suitable max filter bank separates orbits, and is even bilipschitz in the quotient metric. In the case where $V=L^2(\mathbb{R}^d)$ and $G$ is the group of translation operators, a max filter exhibits stability to diffeomorphic distortion like that of the scattering transform introduced by Mallat. We establish that max filters are well suited for various classification tasks, both in theory and in practice.
2,770
null
Learning to Control Linear Systems can be Hard
In this paper, we study the statistical difficulty of learning to control linear systems. We focus on two standard benchmarks, the sample complexity of stabilization, and the regret of the online learning of the Linear Quadratic Regulator (LQR). Prior results state that the statistical difficulty for both benchmarks scales polynomially with the system state dimension up to system-theoretic quantities. However, this does not reveal the whole picture. By utilizing minimax lower bounds for both benchmarks, we prove that there exist non-trivial classes of systems for which learning complexity scales dramatically, i.e. exponentially, with the system dimension. This situation arises in the case of underactuated systems, i.e. systems with fewer inputs than states. Such systems are structurally difficult to control and their system theoretic quantities can scale exponentially with the system dimension dominating learning complexity. Under some additional structural assumptions (bounding systems away from uncontrollability), we provide qualitatively matching upper bounds. We prove that learning complexity can be at most exponential with the controllability index of the system, that is the degree of underactuation.
2,771
null
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
We study a class of dynamical systems modelled as Markov chains that admit an invariant distribution via the corresponding transfer, or Koopman, operator. While data-driven algorithms to reconstruct such operators are well known, their relationship with statistical learning is largely unexplored. We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system. We consider the restriction of this operator to a reproducing kernel Hilbert space and introduce a notion of risk, from which different estimators naturally arise. We link the risk with the estimation of the spectral decomposition of the Koopman operator. These observations motivate a reduced-rank operator regression (RRR) estimator. We derive learning bounds for the proposed estimator, holding both in i.i.d. and non i.i.d. settings, the latter in terms of mixing coefficients. Our results suggest RRR might be beneficial over other widely used estimators as confirmed in numerical experiments both for forecasting and mode decomposition.
2,772
null
Inference and Sampling for Archimax Copulas
Understanding multivariate dependencies in both the bulk and the tails of a distribution is an important problem for many applications, such as ensuring algorithms are robust to observations that are infrequent but have devastating effects. Archimax copulas are a family of distributions endowed with a precise representation that allows simultaneous modeling of the bulk and the tails of a distribution. Rather than separating the two as is typically done in practice, incorporating additional information from the bulk may improve inference of the tails, where observations are limited. Building on the stochastic representation of Archimax copulas, we develop a non-parametric inference method and sampling algorithm. Our proposed methods, to the best of our knowledge, are the first that allow for highly flexible and scalable inference and sampling algorithms, enabling the increased use of Archimax copulas in practical settings. We experimentally compare to state-of-the-art density modeling techniques, and the results suggest that the proposed method effectively extrapolates to the tails while scaling to higher dimensional data. Our findings suggest that the proposed algorithms can be used in a variety of applications where understanding the interplay between the bulk and the tails of a distribution is necessary, such as healthcare and safety.
2,773
null
What Dense Graph Do You Need for Self-Attention?
Transformers have made progress in miscellaneous tasks, but suffer from quadratic computational and memory complexities. Recent works propose sparse Transformers with attention on sparse graphs to reduce complexity and remain strong performance. While effective, the crucial parts of how dense a graph needs to be to perform well are not fully explored. In this paper, we propose Normalized Information Payload (NIP), a graph scoring function measuring information transfer on graph, which provides an analysis tool for trade-offs between performance and complexity. Guided by this theoretical analysis, we present Hypercube Transformer, a sparse Transformer that models token interactions in a hypercube and shows comparable or even better results with vanilla Transformer while yielding $O(N\log N)$ complexity with sequence length $N$. Experiments on tasks requiring various sequence lengths lay validation for our graph function well.
2,774
null
Prototype Based Classification from Hierarchy to Fairness
Artificial neural nets can represent and classify many types of data but are often tailored to particular applications -- e.g., for "fair" or "hierarchical" classification. Once an architecture has been selected, it is often difficult for humans to adjust models for a new task; for example, a hierarchical classifier cannot be easily transformed into a fair classifier that shields a protected field. Our contribution in this work is a new neural network architecture, the concept subspace network (CSN), which generalizes existing specialized classifiers to produce a unified model capable of learning a spectrum of multi-concept relationships. We demonstrate that CSNs reproduce state-of-the-art results in fair classification when enforcing concept independence, may be transformed into hierarchical classifiers, or even reconcile fairness and hierarchy within a single classifier. The CSN is inspired by existing prototype-based classifiers that promote interpretability.
2,775
null
Deep Ensembles for Graphs with Higher-order Dependencies
Graph neural networks (GNNs) continue to achieve state-of-the-art performance on many graph learning tasks, but rely on the assumption that a given graph is a sufficient approximation of the true neighborhood structure. In the presence of higher-order sequential dependencies, we show that the tendency of traditional graph representations to underfit each node's neighborhood causes existing GNNs to generalize poorly. To address this, we propose a novel Deep Graph Ensemble (DGE), which captures neighborhood variance by training an ensemble of GNNs on different neighborhood subspaces of the same node within a higher-order network structure. We show that DGE consistently outperforms existing GNNs on semisupervised and supervised tasks on four real-world data sets with known higher-order dependencies, even under a similar parameter budget. We demonstrate that learning diverse and accurate base classifiers is central to DGE's success, and discuss the implications of these findings for future work on GNNs.
2,776
null
Counterfactual Fairness with Partially Known Causal Graph
Fair machine learning aims to avoid treating individuals or sub-populations unfavourably based on \textit{sensitive attributes}, such as gender and race. Those methods in fair machine learning that are built on causal inference ascertain discrimination and bias through causal effects. Though causality-based fair learning is attracting increasing attention, current methods assume the true causal graph is fully known. This paper proposes a general method to achieve the notion of counterfactual fairness when the true causal graph is unknown. To be able to select features that lead to counterfactual fairness, we derive the conditions and algorithms to identify ancestral relations between variables on a \textit{Partially Directed Acyclic Graph (PDAG)}, specifically, a class of causal DAGs that can be learned from observational data combined with domain knowledge. Interestingly, we find that counterfactual fairness can be achieved as if the true causal graph were fully known, when specific background knowledge is provided: the sensitive attributes do not have ancestors in the causal graph. Results on both simulated and real-world datasets demonstrate the effectiveness of our method.
2,777
null
Exploring Techniques for the Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications
This paper studies the utility of using data analytics and machine learning techniques for identifying, classifying, and characterizing the dynamics of large-scale parallel (MPI) programs. To this end, we run microbenchmarks and realistic proxy applications with the regular compute-communicate structure on two different supercomputing platforms and choose the per-process performance and MPI time per time step as relevant observables. Using principal component analysis, clustering techniques, correlation functions, and a new "phase space plot," we show how desynchronization patterns (or lack thereof) can be readily identified from a data set that is much smaller than a full MPI trace. Our methods also lead the way towards a more general classification of parallel program dynamics.
2,778
null
Guided Exploration of Data Summaries
Data summarization is the process of producing interpretable and representative subsets of an input dataset. It is usually performed following a one-shot process with the purpose of finding the best summary. A useful summary contains k individually uniform sets that are collectively diverse to be representative. Uniformity addresses interpretability and diversity addresses representativity. Finding such as summary is a difficult task when data is highly diverse and large. We examine the applicability of Exploratory Data Analysis (EDA) to data summarization and formalize Eda4Sum, the problem of guided exploration of data summaries that seeks to sequentially produce connected summaries with the goal of maximizing their cumulative utility. EdA4Sum generalizes one-shot summarization. We propose to solve it with one of two approaches: (i) Top1Sum which chooses the most useful summary at each step; (ii) RLSum which trains a policy with Deep Reinforcement Learning that rewards an agent for finding a diverse and new collection of uniform sets at each step. We compare these approaches with one-shot summarization and top-performing EDA solutions. We run extensive experiments on three large datasets. Our results demonstrate the superiority of our approaches for summarizing very large data, and the need to provide guidance to domain experts.
2,779
null
Non-Markovian policies occupancy measures
A central object of study in Reinforcement Learning (RL) is the Markovian policy, in which an agent's actions are chosen from a memoryless probability distribution, conditioned only on its current state. The family of Markovian policies is broad enough to be interesting, yet simple enough to be amenable to analysis. However, RL often involves more complex policies: ensembles of policies, policies over options, policies updated online, etc. Our main contribution is to prove that the occupancy measure of any non-Markovian policy, i.e., the distribution of transition samples collected with it, can be equivalently generated by a Markovian policy. This result allows theorems about the Markovian policy class to be directly extended to its non-Markovian counterpart, greatly simplifying proofs, in particular those involving replay buffers and datasets. We provide various examples of such applications to the field of Reinforcement Learning.
2,780
null
Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer
Spatio-temporal graph learning is a key method for urban computing tasks, such as traffic flow, taxi demand and air quality forecasting. Due to the high cost of data collection, some developing cities have few available data, which makes it infeasible to train a well-performed model. To address this challenge, cross-city knowledge transfer has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities. However, the spatio-temporal graphs among different cities show irregular structures and varied features, which limits the feasibility of existing Few-Shot Learning (\emph{FSL}) methods. Therefore, we propose a model-agnostic few-shot learning framework for spatio-temporal graph called ST-GFSL. Specifically, to enhance feature extraction by transfering cross-city knowledge, ST-GFSL proposes to generate non-shared parameters based on node-level meta knowledge. The nodes in target city transfer the knowledge via parameter matching, retrieving from similar spatio-temporal characteristics. Furthermore, we propose to reconstruct the graph structure during meta-learning. The graph reconstruction loss is defined to guide structure-aware learning, avoiding structure deviation among different datasets. We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
2,781
null
Deep Reinforcement Learning for Distributed and Uncoordinated Cognitive Radios Resource Allocation
This paper presents a novel deep reinforcement learning-based resource allocation technique for the multi-agent environment presented by a cognitive radio network where the interactions of the agents during learning may lead to a non-stationary environment. The resource allocation technique presented in this work is distributed, not requiring coordination with other agents. It is shown by considering aspects specific to deep reinforcement learning that the presented algorithm converges in an arbitrarily long time to equilibrium policies in a non-stationary multi-agent environment that results from the uncoordinated dynamic interaction between radios through the shared wireless environment. Simulation results show that the presented technique achieves a faster learning performance compared to an equivalent table-based Q-learning algorithm and is able to find the optimal policy in 99% of cases for a sufficiently long learning time. In addition, simulations show that our DQL approach requires less than half the number of learning steps to achieve the same performance as an equivalent table-based implementation. Moreover, it is shown that the use of a standard single-agent deep reinforcement learning approach may not achieve convergence when used in an uncoordinated interacting multi-radio scenario
2,782
null
Auditing Differential Privacy in High Dimensions with the Kernel Quantum Rényi Divergence
Differential privacy (DP) is the de facto standard for private data release and private machine learning. Auditing black-box DP algorithms and mechanisms to certify whether they satisfy a certain DP guarantee is challenging, especially in high dimension. We propose relaxations of differential privacy based on new divergences on probability distributions: the kernel R\'enyi divergence and its regularized version. We show that the regularized kernel R\'enyi divergence can be estimated from samples even in high dimensions, giving rise to auditing procedures for $\varepsilon$-DP, $(\varepsilon,\delta)$-DP and $(\alpha,\varepsilon)$-R\'enyi DP.
2,783
null
Combining observational datasets from multiple environments to detect hidden confounding
A common assumption in causal inference from observational data is the assumption of no hidden confounding. Yet it is, in general, impossible to verify the presence of hidden confounding factors from a single dataset. However, under the assumption of independent causal mechanisms underlying the data generative process, we demonstrate a way to detect unobserved confounders when having multiple observational datasets coming from different environments. We present a theory for testable conditional independencies that are only violated during hidden confounding and examine cases where we break its assumptions: degenerate & dependent mechanisms, and faithfulness violations. Additionally, we propose a procedure to test these independencies and study its empirical finite-sample behavior using simulation studies.
2,784
null
Standalone Neural ODEs with Sensitivity Analysis
This paper presents the Standalone Neural ODE (sNODE), a continuous-depth neural ODE model capable of describing a full deep neural network. This uses a novel nonlinear conjugate gradient (NCG) descent optimization scheme for training, where the Sobolev gradient can be incorporated to improve smoothness of model weights. We also present a general formulation of the neural sensitivity problem and show how it is used in the NCG training. The sensitivity analysis provides a reliable measure of uncertainty propagation throughout a network, and can be used to study model robustness and to generate adversarial attacks. Our evaluations demonstrate that our novel formulations lead to increased robustness and performance as compared to ResNet models, and that it opens up for new opportunities for designing and developing machine learning with improved explainability.
2,785
null
Fairness and Welfare Quantification for Regret in Multi-Armed Bandits
We extend the notion of regret with a welfarist perspective. Focussing on the classic multi-armed bandit (MAB) framework, the current work quantifies the performance of bandit algorithms by applying a fundamental welfare function, namely the Nash social welfare (NSW) function. This corresponds to equating algorithm's performance to the geometric mean of its expected rewards and leads us to the study of Nash regret, defined as the difference between the -- a priori unknown -- optimal mean (among the arms) and the algorithm's performance. Since NSW is known to satisfy fairness axioms, our approach complements the utilitarian considerations of average (cumulative) regret, wherein the algorithm is evaluated via the arithmetic mean of its expected rewards. This work develops an algorithm that, given the horizon of play $T$, achieves a Nash regret of $O \left( \sqrt{\frac{{k \log T}}{T}} \right)$, here $k$ denotes the number of arms in the MAB instance. Since, for any algorithm, the Nash regret is at least as much as its average regret (the AM-GM inequality), the known lower bound on average regret holds for Nash regret as well. Therefore, our Nash regret guarantee is essentially tight. In addition, we develop an anytime algorithm with a Nash regret guarantee of $O \left( \sqrt{\frac{{k\log T}}{T}} \log T \right)$.
2,786
null
Probabilistic Transformer: Modelling Ambiguities and Distributions for RNA Folding and Molecule Design
Our world is ambiguous and this is reflected in the data we use to train our algorithms. This is especially true when we try to model natural processes where collected data is affected by noisy measurements and differences in measurement techniques. Sometimes, the process itself can be ambiguous, such as in the case of RNA folding, where a single nucleotide sequence can fold into multiple structures. This ambiguity suggests that a predictive model should have similar probabilistic characteristics to match the data it models. Therefore, we propose a hierarchical latent distribution to enhance one of the most successful deep learning models, the Transformer, to accommodate ambiguities and data distributions. We show the benefits of our approach on a synthetic task, with state-of-the-art results in RNA folding, and demonstrate its generative capabilities on property-based molecule design, outperforming existing work.
2,787
null
Client Selection in Nonconvex Federated Learning: Improved Convergence Analysis for Optimal Unbiased Sampling Strategy
Federated learning (FL) is a distributed machine learning paradigm that selects a subset of clients to participate in training to reduce communication burdens. However, partial client participation in FL causes \emph{objective inconsistency}, which can hinder the convergence, while this objective inconsistency has not been analyzed in existing studies on sampling methods. To tackle this issue, we propose an improved analysis method that focuses on the convergence behavior of the practical participated client's objective. Moreover, based on our convergence analysis, we give a novel unbiased sampling strategy, i.e., FedSRC-D, whose sampling probability is proportional to the client's gradient diversity and local variance. FedSRC-D is provable the optimal unbiased sampling in non-convex settings for non-IID FL with respect to the given bounds. Specifically, FedSRC-D achieves $\mathop{O}(\frac{G^2}{\epsilon^2}+\frac{1}{\epsilon^{2/3}})$ higher than SOTA convergence rate of FedAvg, and $\mathop{O}(\frac{G^2}{\epsilon^2})$ higher than other unbiased sampling methods. We corroborate our results with experiments on both synthetic and real data sets.
2,788
null
Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits
We study the Bayesian regret of the renowned Thompson Sampling algorithm in contextual bandits with binary losses and adversarially-selected contexts. We adapt the information-theoretic perspective of Russo and Van Roy [2016] to the contextual setting by introducing a new concept of information ratio based on the mutual information between the unknown model parameter and the observed loss. This allows us to bound the regret in terms of the entropy of the prior distribution through a remarkably simple proof, and with no structural assumptions on the likelihood or the prior. The extension to priors with infinite entropy only requires a Lipschitz assumption on the log-likelihood. An interesting special case is that of logistic bandits with d-dimensional parameters, K actions, and Lipschitz logits, for which we provide a $\widetilde{O}(\sqrt{dKT})$ regret upper-bound that does not depend on the smallest slope of the sigmoid link function.
2,789
null
Federated Semi-Supervised Learning with Prototypical Networks
With the increasing computing power of edge devices, Federated Learning (FL) emerges to enable model training without privacy concerns. The majority of existing studies assume the data are fully labeled on the client side. In practice, however, the amount of labeled data is often limited. Recently, federated semi-supervised learning (FSSL) is explored as a way to effectively utilize unlabeled data during training. In this work, we propose ProtoFSSL, a novel FSSL approach based on prototypical networks. In ProtoFSSL, clients share knowledge with each other via lightweight prototypes, which prevents the local models from diverging. For computing loss on unlabeled data, each client creates accurate pseudo-labels based on shared prototypes. Jointly with labeled data, the pseudo-labels provide training signals for local prototypes. Compared to a FSSL approach based on weight sharing, the prototype-based inter-client knowledge sharing significantly reduces both communication and computation costs, enabling more frequent knowledge sharing between more clients for better accuracy. In multiple datasets, ProtoFSSL results in higher accuracy compared to the recent FSSL methods with and without knowledge sharing, such as FixMatch, FedRGD, and FedMatch. On SVHN dataset, ProtoFSSL performs comparably to fully supervised FL methods.
2,790
null
Fast Causal Orientation Learning in Directed Acyclic Graphs
Causal relationships among a set of variables are commonly represented by a directed acyclic graph. The orientations of some edges in the causal DAG can be discovered from observational/interventional data. Further edges can be oriented by iteratively applying so-called Meek rules. Inferring edges' orientations from some previously oriented edges, which we call Causal Orientation Learning (COL), is a common problem in various causal discovery tasks. In these tasks, it is often required to solve multiple COL problems and therefore applying Meek rules could be time-consuming. Motivated by Meek rules, we introduce Meek functions that can be utilized in solving COL problems. In particular, we show that these functions have some desirable properties, enabling us to speed up the process of applying Meek rules. In particular, we propose a dynamic programming (DP) based method to apply Meek functions. Moreover, based on the proposed DP method, we present a lower bound on the number of edges that can be oriented as a result of intervention. We also propose a method to check whether some oriented edges belong to a causal DAG. Experimental results show that the proposed methods can outperform previous work in several causal discovery tasks in terms of running-time.
2,791
null
Dynamic Domain Generalization
Domain generalization (DG) is a fundamental yet very challenging research topic in machine learning. The existing arts mainly focus on learning domain-invariant features with limited source domains in a static model. Unfortunately, there is a lack of training-free mechanism to adjust the model when generalized to the agnostic target domains. To tackle this problem, we develop a brand-new DG variant, namely Dynamic Domain Generalization (DDG), in which the model learns to twist the network parameters to adapt the data from different domains. Specifically, we leverage a meta-adjuster to twist the network parameters based on the static model with respect to different data from different domains. In this way, the static model is optimized to learn domain-shared features, while the meta-adjuster is designed to learn domain-specific features. To enable this process, DomainMix is exploited to simulate data from diverse domains during teaching the meta-adjuster to adapt to the upcoming agnostic target domains. This learning mechanism urges the model to generalize to different agnostic target domains via adjusting the model without training. Extensive experiments demonstrate the effectiveness of our proposed method. Code is available at: https://github.com/MetaVisionLab/DDG
2,792
null
(De-)Randomized Smoothing for Decision Stump Ensembles
Tree-based models are used in many high-stakes application domains such as finance and medicine, where robustness and interpretability are of utmost importance. Yet, methods for improving and certifying their robustness are severely under-explored, in contrast to those focusing on neural networks. Targeting this important challenge, we propose deterministic smoothing for decision stump ensembles. Whereas most prior work on randomized smoothing focuses on evaluating arbitrary base models approximately under input randomization, the key insight of our work is that decision stump ensembles enable exact yet efficient evaluation via dynamic programming. Importantly, we obtain deterministic robustness certificates, even jointly over numerical and categorical features, a setting ubiquitous in the real world. Further, we derive an MLE-optimal training method for smoothed decision stumps under randomization and propose two boosting approaches to improve their provable robustness. An extensive experimental evaluation shows that our approach yields significantly higher certified accuracies than the state-of-the-art for tree-based models. We release all code and trained models at ANONYMIZED.
2,793
null
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Faced with problems of increasing complexity, recent research in Bayesian Optimisation (BO) has focused on adapting deep probabilistic models as flexible alternatives to Gaussian Processes (GPs). In a similar vein, this paper investigates the feasibility of employing state-of-the-art probabilistic transformers in BO. Upon further investigation, we observe two drawbacks stemming from their training procedure and loss definition, hindering their direct deployment as proxies in black-box optimisation. First, we notice that these models are trained on uniformly distributed inputs, which impairs predictive accuracy on non-uniform data - a setting arising from any typical BO loop due to exploration-exploitation trade-offs. Second, we realise that training losses (e.g., cross-entropy) only asymptotically guarantee accurate posterior approximations, i.e., after arriving at the global optimum, which generally cannot be ensured. At the stationary points of the loss function, however, we observe a degradation in predictive performance especially in exploratory regions of the input space. To tackle these shortcomings we introduce two components: 1) a BO-tailored training prior supporting non-uniformly distributed points, and 2) a novel approximate posterior regulariser trading-off accuracy and input sensitivity to filter favourable stationary points for improved predictive performance. In a large panel of experiments, we demonstrate, for the first time, that one transformer pre-trained on data sampled from random GP priors produces competitive results on 16 benchmark black-boxes compared to GP-based BO. Since our model is only pre-trained once and used in all tasks without any retraining and/or fine-tuning, we report an order of magnitude time-reduction, while matching and sometimes outperforming GPs.
2,794
null
Bias Reduction via Cooperative Bargaining in Synthetic Graph Dataset Generation
In general, to draw robust conclusions from a dataset, all the analyzed population must be represented on said dataset. Having a dataset that does not fulfill this condition normally leads to selection bias. Additionally, graphs have been used to model a wide variety of problems. Although synthetic graphs can be used to augment available real graph datasets to overcome selection bias, the generation of unbiased synthetic datasets is complex with current tools. In this work, we propose a method to find a synthetic graph dataset that has an even representation of graphs with different metrics. The resulting dataset can then be used, among others, for benchmarking graph processing techniques as the accuracy of different Graph Neural Network (GNN) models or the speedups obtained by different graph processing acceleration frameworks.
2,795
null
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
While Bayesian neural networks (BNNs) provide a sound and principled alternative to standard neural networks, an artificial sharpening of the posterior usually needs to be applied to reach comparable performance. This is in stark contrast to theory, dictating that given an adequate prior and a well-specified model, the untempered Bayesian posterior should achieve optimal performance. Despite the community's extensive efforts, the observed gains in performance still remain disputed with several plausible causes pointing at its origin. While data augmentation has been empirically recognized as one of the main drivers of this effect, a theoretical account of its role, on the other hand, is largely missing. In this work we identify two interlaced factors concurrently influencing the strength of the cold posterior effect, namely the correlated nature of augmentations and the degree of invariance of the employed model to such transformations. By theoretically analyzing simplified settings, we prove that tempering implicitly reduces the misspecification arising from modeling augmentations as i.i.d. data. The temperature mimics the role of the effective sample size, reflecting the gain in information provided by the augmentations. We corroborate our theoretical findings with extensive empirical evaluations, scaling to realistic BNNs. By relying on the framework of group convolutions, we experiment with models of varying inherent degree of invariance, confirming its hypothesized relationship with the optimal temperature.
2,796
null
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning. Despite their extraordinary predictive accuracy, existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs, rendering these models vulnerable to graph structural attacks and with limited capacity in generalizing to graphs of varied homophily levels. Although many methods have been proposed to improve the robustness of GNN models, most of these techniques are restricted to the spatial domain and employ complicated defense mechanisms, such as learning new graph structures or calculating edge attentions. In this paper, we study the problem of designing simple and robust GNN models in the spectral domain. We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter. Based on our theoretical analysis in both spatial and spectral domains, we demonstrate that EvenNet outperforms full-order models in generalizing across homophilic and heterophilic graphs, implying that ignoring odd-hop neighbors improves the robustness of GNNs. We conduct experiments on both synthetic and real-world datasets to demonstrate the effectiveness of EvenNet. Notably, EvenNet outperforms existing defense models against structural attacks without introducing additional computational costs and maintains competitiveness in traditional node classification tasks on homophilic and heterophilic graphs.
2,797
null
Transformers from an Optimization Perspective
Deep learning models such as the Transformer are often constructed by heuristics and experience. To provide a complementary foundation, in this work we study the following problem: Is it possible to find an energy function underlying the Transformer model, such that descent steps along this energy correspond with the Transformer forward pass? By finding such a function, we can reinterpret Transformers as the unfolding of an interpretable optimization process across iterations. This unfolding perspective has been frequently adopted in the past to elucidate more straightforward deep models such as MLPs and CNNs; however, it has thus far remained elusive obtaining a similar equivalence for more complex models with self-attention mechanisms like the Transformer. To this end, we first outline several major obstacles before providing companion techniques to at least partially address them, demonstrating for the first time a close association between energy function minimization and deep layers with self-attention. This interpretation contributes to our intuition and understanding of Transformers, while potentially laying the ground-work for new model designs.
2,798
null
A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit Card Fraud Detection
Detection of a Fraud transaction on credit cards became one of the major problems for financial institutions, organizations and companies. As the global financial system is highly connected to non-cash transactions and online operations fraud makers invent more effective ways to access customers' finances. The main problem in credit card fraud detection is that the number of fraud transactions is significantly lower than genuine ones. The aim of the paper is to implement new techniques, which contains of under-sampling algorithms, K-nearest Neighbor Algorithm (KNN) and Deep Neural Network (KNN) on new obtained dataset. The performance evaluation showed that DNN model gives precise high accuracy (98.12%), which shows the good ability of presented method to detect fraudulent transactions.
2,799
null
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
2,800
null
TraClets: Harnessing the power of computer vision for trajectory classification
Due to the advent of new mobile devices and tracking sensors in recent years, huge amounts of data are being produced every day. Therefore, novel methodologies need to emerge that dive through this vast sea of information and generate insights and meaningful information. To this end, researchers have developed several trajectory classification algorithms over the years that are able to annotate tracking data. Similarly, in this research, a novel methodology is presented that exploits image representations of trajectories, called TraClets, in order to classify trajectories in an intuitive humans way, through computer vision techniques. Several real-world datasets are used to evaluate the proposed approach and compare its classification performance to other state-of-the-art trajectory classification algorithms. Experimental results demonstrate that TraClets achieves a classification performance that is comparable to, or in most cases, better than the state-of-the-art, acting as a universal, high-accuracy approach for trajectory classification.
2,801
null
MIMII DG: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection for Domain Generalization Task
We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD). To handle performance degradation caused by domain shifts that are difficult to detect or too frequent to adapt, domain generalization techniques are preferred. However, currently available datasets have difficulties in evaluating these techniques, such as limited number of values for parameters that cause domain shifts (domain shift parameters). In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG. The dataset consists of five machine types and three domain shift scenarios for each machine type. We prepared at least two values for the domain shift parameters in the source domain. Also, we introduced domain shifts that can be difficult to notice. Experimental results using two baseline systems indicate that the dataset reproduces the domain shift scenarios and is useful for benchmarking domain generalization techniques.
2,802
null
Comparison of Deep Learning Segmentation and Multigrader-annotated Mandibular Canals of Multicenter CBCT scans
Deep learning approach has been demonstrated to automatically segment the bilateral mandibular canals from CBCT scans, yet systematic studies of its clinical and technical validation are scarce. To validate the mandibular canal localization accuracy of a deep learning system (DLS) we trained it with 982 CBCT scans and evaluated using 150 scans of five scanners from clinical workflow patients of European and Southeast Asian Institutes, annotated by four radiologists. The interobserver variability was compared to the variability between the DLS and the radiologists. In addition, the generalization of DLS to CBCT scans from scanners not used in the training data was examined to evaluate the out-of-distribution generalization capability. The DLS had lower variability to the radiologists than the interobserver variability between them and it was able to generalize to three new devices. For the radiologists' consensus segmentation, used as gold standard, the DLS had a symmetric mean curve distance of 0.39 mm compared to those of the individual radiologists with 0.62 mm, 0.55 mm, 0.47 mm, and 0.42 mm. The DLS showed comparable or slightly better performance in the segmentation of the mandibular canal with the radiologists and generalization capability to new scanners.
2,803
null
Probabilistic Systems with Hidden State and Unobservable Transitions
We consider probabilistic systems with hidden state and unobservable transitions, an extension of Hidden Markov Models (HMMs) that in particular admits unobservable {\epsilon}-transitions (also called null transitions), allowing state changes of which the observer is unaware. Due to the presence of {\epsilon}-loops this additional feature complicates the theory and requires to carefully set up the corresponding probability space and random variables. In particular we present an algorithm for determining the most probable explanation given an observation (a generalization of the Viterbi algorithm for HMMs) and a method for parameter learning that adapts the probabilities of a given model based on an observation (a generalization of the Baum-Welch algorithm). The latter algorithm guarantees that the given observation has a higher (or equal) probability after adjustment of the parameters and its correctness can be derived directly from the so-called EM algorithm.
2,804
null
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm is unaware of the causal discovery step. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph prior as an inductive bias. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
2,805
null
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
It is well-known that modern neural networks are vulnerable to adversarial examples. To mitigate this problem, a series of robust learning algorithms have been proposed. However, although the robust training error can be near zero via some methods, all existing algorithms lead to a high robust generalization error. In this paper, we provide a theoretical understanding of this puzzling phenomenon from the perspective of expressive power for deep neural networks. Specifically, for binary classification problems with well-separated data, we show that, for ReLU networks, while mild over-parameterization is sufficient for high robust training accuracy, there exists a constant robust generalization gap unless the size of the neural network is exponential in the data dimension $d$. Even if the data is linear separable, which means achieving low clean generalization error is easy, we can still prove an $\exp({\Omega}(d))$ lower bound for robust generalization. Moreover, we establish an improved upper bound of $\exp({\mathcal{O}}(k))$ for the network size to achieve low robust generalization error when the data lies on a manifold with intrinsic dimension $k$ ($k \ll d$). Nonetheless, we also have a lower bound that grows exponentially with respect to $k$ -- the curse of dimensionality is inevitable. By demonstrating an exponential separation between the network size for achieving low robust training and generalization error, our results reveal that the hardness of robust generalization may stem from the expressive power of practical models.
2,806
null
On the Convergence of Semi-Relaxed Sinkhorn with Marginal Constraint and OT Distance Gaps
This paper presents consideration of the Semi-Relaxed Sinkhorn (SR-Sinkhorn) algorithm for the semi-relaxed optimal transport (SROT) problem, which relaxes one marginal constraint of the standard OT problem. For evaluation of how the constraint relaxation affects the algorithm behavior and solution, it is vitally necessary to present the theoretical convergence analysis in terms not only of the functional value gap, but also of the marginal constraint gap as well as the OT distance gap. However, no existing work has addressed all analyses simultaneously. To this end, this paper presents a comprehensive convergence analysis for SR-Sinkhorn. After presenting the $\epsilon$-approximation of the functional value gap based on a new proof strategy and exploiting this proof strategy, we give the upper bound of the marginal constraint gap. We also provide its convergence to the $\epsilon$-approximation when two distributions are in the probability simplex. Furthermore, the convergence analysis of the OT distance gap to the $\epsilon$-approximation is given as assisted by the obtained marginal constraint gap. The latter two theoretical results are the first results presented in the literature related to the SROT problem.
2,807
null
Raising the Bar in Graph-level Anomaly Detection
Graph-level anomaly detection has become a critical topic in diverse areas, such as financial fraud detection and detecting anomalous activities in social networks. While most research has focused on anomaly detection for visual data such as images, where high detection accuracies have been obtained, existing deep learning approaches for graphs currently show considerably worse performance. This paper raises the bar on graph-level anomaly detection, i.e., the task of detecting abnormal graphs in a set of graphs. By drawing on ideas from self-supervised learning and transformation learning, we present a new deep learning approach that significantly improves existing deep one-class approaches by fixing some of their known problems, including hypersphere collapse and performance flip. Experiments on nine real-world data sets involving nine techniques reveal that our method achieves an average performance improvement of 11.8% AUC compared to the best existing approach.