Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
3,108
null
Deletion and Insertion Tests in Regression Models
A basic task in explainable AI (XAI) is to identify the most important features behind a prediction made by a black box function $f$. The insertion and deletion tests of \cite{petsiuk2018rise} are used to judge the quality of algorithms that rank pixels from most to least important for a classification. Motivated by regression problems we establish a formula for their area under the curve (AUC) criteria in terms of certain main effects and interactions in an anchored decomposition of $f$. We find an expression for the expected value of the AUC under a random ordering of inputs to $f$ and propose an alternative area above a straight line for the regression setting. We use this criterion to compare feature importances computed by integrated gradients (IG) to those computed by Kernel SHAP (KS). Exact computation of KS grows exponentially with dimension, while that of IG grows linearly with dimension. In two data sets including binary variables we find that KS is superior to IG in insertion and deletion tests, but only by a very small amount. Our comparison problems include some binary inputs that pose a challenge to IG because it must use values between the possible variable levels. We show that IG will match KS when $f$ is an additive function plus a multilinear function of the variables. This includes a multilinear interpolation over the binary variables that would cause IG to have exponential cost in a naive implementation.
3,109
null
Physics Guided Machine Learning for Variational Multiscale Reduced Order Modeling
We propose a new physics guided machine learning (PGML) paradigm that leverages the variational multiscale (VMS) framework and available data to dramatically increase the accuracy of reduced order models (ROMs) at a modest computational cost. The hierarchical structure of the ROM basis and the VMS framework enable a natural separation of the resolved and unresolved ROM spatial scales. Modern PGML algorithms are used to construct novel models for the interaction among the resolved and unresolved ROM scales. Specifically, the new framework builds ROM operators that are closest to the true interaction terms in the VMS framework. Finally, machine learning is used to reduce the projection error and further increase the ROM accuracy. Our numerical experiments for a two-dimensional vorticity transport problem show that the novel PGML-VMS-ROM paradigm maintains the low computational cost of current ROMs, while significantly increasing the ROM accuracy.
3,110
null
Tiered Reinforcement Learning: Pessimism in the Face of Uncertainty and Constant Regret
We propose a new learning framework that captures the tiered structure of many real-world user-interaction applications, where the users can be divided into two groups based on their different tolerance on exploration risks and should be treated separately. In this setting, we simultaneously maintain two policies $\pi^{\text{O}}$ and $\pi^{\text{E}}$: $\pi^{\text{O}}$ ("O" for "online") interacts with more risk-tolerant users from the first tier and minimizes regret by balancing exploration and exploitation as usual, while $\pi^{\text{E}}$ ("E" for "exploit") exclusively focuses on exploitation for risk-averse users from the second tier utilizing the data collected so far. An important question is whether such a separation yields advantages over the standard online setting (i.e., $\pi^{\text{E}}=\pi^{\text{O}}$) for the risk-averse users. We individually consider the gap-independent vs.~gap-dependent settings. For the former, we prove that the separation is indeed not beneficial from a minimax perspective. For the latter, we show that if choosing Pessimistic Value Iteration as the exploitation algorithm to produce $\pi^{\text{E}}$, we can achieve a constant regret for risk-averse users independent of the number of episodes $K$, which is in sharp contrast to the $\Omega(\log K)$ regret for any online RL algorithms in the same setting, while the regret of $\pi^{\text{O}}$ (almost) maintains its online regret optimality and does not need to compromise for the success of $\pi^{\text{E}}$.
3,111
null
Differentially Private AUC Computation in Vertical Federated Learning
Federated learning has gained great attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple parties. As a sub-category, vertical federated learning (vFL) focuses on the scenario where features and labels are split into different parties. The prior work on vFL has mostly studied how to protect label privacy during model training. However, model evaluation in vFL might also lead to potential leakage of private label information. One mitigation strategy is to apply label differential privacy (DP) but it gives bad estimations of the true (non-private) metrics. In this work, we propose two evaluation algorithms that can more accurately compute the widely used AUC (area under curve) metric when using label DP in vFL. Through extensive experiments, we show our algorithms can achieve more accurate AUCs compared to the baselines.
3,112
null
Linear Connectivity Reveals Generalization Strategies
It is widely accepted in the mode connectivity literature that when two neural networks are trained similarly on the same data, they are connected by a path through parameter space over which test set accuracy is maintained. Under some circumstances, including transfer learning from pretrained models, these paths are presumed to be linear. In contrast to existing results, we find that among text classifiers (trained on MNLI, QQP, and CoLA), some pairs of finetuned models have large barriers of increasing loss on the linear paths between them. On each task, we find distinct clusters of models which are linearly connected on the test loss surface, but are disconnected from models outside the cluster -- models that occupy separate basins on the surface. By measuring performance on specially-crafted diagnostic datasets, we find that these clusters correspond to different generalization strategies: one cluster behaves like a bag of words model under domain shift, while another cluster uses syntactic heuristics. Our work demonstrates how the geometry of the loss surface can guide models towards different heuristic functions.
3,113
null
AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large Language Models
Fine-tuning large-scale pre-trained language models to downstream tasks require updating hundreds of millions of parameters. This not only increases the serving cost to store a large copy of the model weights for every task, but also exhibits instability during few-shot task adaptation. Parameter-efficient techniques have been developed that tune small trainable components (e.g., adapters) injected in the large model while keeping most of the model weights frozen. The prevalent mechanism to increase adapter capacity is to increase the bottleneck dimension which increases the adapter parameters. In this work, we introduce a new mechanism to improve adapter capacity without increasing parameters or computational cost by two key techniques. (i) We introduce multiple shared adapter components in each layer of the Transformer architecture. We leverage sparse learning via random routing to update the adapter parameters (encoder is kept frozen) resulting in the same amount of computational cost (FLOPs) as that of training a single adapter. (ii) We propose a simple merging mechanism to average the weights of multiple adapter components to collapse to a single adapter in each Transformer layer, thereby, keeping the overall parameters also the same but with significant performance improvement. We demonstrate these techniques to work well across multiple task settings including fully supervised and few-shot Natural Language Understanding tasks. By only tuning 0.23% of a pre-trained language model's parameters, our model outperforms the full model fine-tuning performance and several competing methods.
3,114
null
Convolutional Neural Processes for Inpainting Satellite Images
The widespread availability of satellite images has allowed researchers to model complex systems such as disease dynamics. However, many satellite images have missing values due to measurement defects, which render them unusable without data imputation. For example, the scanline corrector for the LANDSAT 7 satellite broke down in 2003, resulting in a loss of around 20\% of its data. Inpainting involves predicting what is missing based on the known pixels and is an old problem in image processing, classically based on PDEs or interpolation methods, but recent deep learning approaches have shown promise. However, many of these methods do not explicitly take into account the inherent spatiotemporal structure of satellite images. In this work, we cast satellite image inpainting as a natural meta-learning problem, and propose using convolutional neural processes (ConvNPs) where we frame each satellite image as its own task or 2D regression problem. We show ConvNPs can outperform classical methods and state-of-the-art deep learning inpainting models on a scanline inpainting problem for LANDSAT 7 satellite images, assessed on a variety of in and out-of-distribution images.
3,115
null
Multi-Head Online Learning for Delayed Feedback Modeling
In online advertising, it is highly important to predict the probability and the value of a conversion (e.g., a purchase). It not only impacts user experience by showing relevant ads, but also affects ROI of advertisers and revenue of marketplaces. Unlike clicks, which often occur within minutes after impressions, conversions are expected to happen over a long period of time (e.g., 30 days for online shopping). It creates a challenge, as the true labels are only available after the long delays. Either inaccurate labels (partial conversions) are used, or models are trained on stale data (e.g., from 30 days ago). The problem is more eminent in online learning, which focuses on the live performance on the latest data. In this paper, a novel solution is presented to address this challenge using multi-head modeling. Unlike traditional methods, it directly quantizes conversions into multiple windows, such as day 1, day 2, day 3-7, and day 8-30. A sub-model is trained specifically on conversions within each window. Label freshness is maximally preserved in early models (e.g., day 1 and day 2), while late conversions are accurately utilized in models with longer delays (e.g., day 8-30). It is shown to greatly exceed the performance of known methods in online learning experiments for both conversion rate (CVR) and value per click (VPC) predictions. Lastly, as a general method for delayed feedback modeling, it can be combined with any advanced ML techniques to further improve the performance.
3,116
null
Reward Uncertainty for Exploration in Preference-based Reinforcement Learning
Conveying complex objectives to reinforcement learning (RL) agents often requires meticulous reward engineering. Preference-based RL methods are able to learn a more flexible reward model based on human preferences by actively incorporating human feedback, i.e. teacher's preferences between two clips of behaviors. However, poor feedback-efficiency still remains a problem in current preference-based RL algorithms, as tailored human feedback is very expensive. To handle this issue, previous methods have mainly focused on improving query selection and policy initialization. At the same time, recent exploration methods have proven to be a recipe for improving sample-efficiency in RL. We present an exploration method specifically for preference-based RL algorithms. Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward. Specifically, we utilize disagreement across ensemble of learned reward models. Our intuition is that disagreement in learned reward model reflects uncertainty in tailored human feedback and could be useful for exploration. Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms on complex robot manipulation tasks from MetaWorld benchmarks, compared with other existing exploration methods that measure the novelty of state visitation.
3,117
null
Symbol Emergence as Inter-personal Categorization with Head-to-head Latent Word
In this study, we propose a head-to-head type (H2H-type) inter-personal multimodal Dirichlet mixture (Inter-MDM) by modifying the original Inter-MDM, which is a probabilistic generative model that represents the symbol emergence between two agents as multiagent multimodal categorization. A Metropolis--Hastings method-based naming game based on the Inter-MDM enables two agents to collaboratively perform multimodal categorization and share signs with a solid mathematical foundation of convergence. However, the conventional Inter-MDM presumes a tail-to-tail connection across a latent word variable, causing inflexibility of the further extension of Inter-MDM for modeling a more complex symbol emergence. Therefore, we propose herein a head-to-head type (H2H-type) Inter-MDM that treats a latent word variable as a child node of an internal variable of each agent in the same way as many prior studies of multimodal categorization. On the basis of the H2H-type Inter-MDM, we propose a naming game in the same way as the conventional Inter-MDM. The experimental results show that the H2H-type Inter-MDM yields almost the same performance as the conventional Inter-MDM from the viewpoint of multimodal categorization and sign sharing.
3,118
null
Sparse Mixers: Combining MoE and Mixing to build a more efficient BERT
We combine the capacity of sparsely gated Mixture-of-Experts (MoE) with the speed and stability of linear, mixing transformations to design the Sparse Mixer encoder model. The Sparse Mixer slightly outperforms (<1%) BERT on GLUE and SuperGLUE, but more importantly trains 65% faster and runs inference 61% faster. We also present a faster variant, prosaically named Fast Sparse Mixer, that marginally underperforms (<0.2%) BERT on SuperGLUE, but trains and runs nearly twice as fast: 89% faster training and 98% faster inference. We justify the design of these two models by carefully ablating through various mixing mechanisms, MoE configurations and model hyperparameters. The Sparse Mixer overcomes many of the latency and stability concerns of MoE models and offers the prospect of serving sparse student models, without resorting to distilling them to dense variants.
3,119
null
Recipe2Vec: Multi-modal Recipe Representation Learning with Graph Neural Networks
Learning effective recipe representations is essential in food studies. Unlike what has been developed for image-based recipe retrieval or learning structural text embeddings, the combined effect of multi-modal information (i.e., recipe images, text, and relation data) receives less attention. In this paper, we formalize the problem of multi-modal recipe representation learning to integrate the visual, textual, and relational information into recipe embeddings. In particular, we first present Large-RG, a new recipe graph data with over half a million nodes, making it the largest recipe graph to date. We then propose Recipe2Vec, a novel graph neural network based recipe embedding model to capture multi-modal information. Additionally, we introduce an adversarial attack strategy to ensure stable learning and improve performance. Finally, we design a joint objective function of node classification and adversarial learning to optimize the model. Extensive experiments demonstrate that Recipe2Vec outperforms state-of-the-art baselines on two classic food study tasks, i.e., cuisine category classification and region prediction. Dataset and codes are available at https://github.com/meettyj/Recipe2Vec.
3,120
null
PLAtE: A Large-scale Dataset for List Page Web Extraction
Recently, neural models have been leveraged to significantly improve the performance of information extraction from semi-structured websites. However, a barrier for continued progress is the small number of datasets large enough to train these models. In this work, we introduce the PLAtE (Pages of Lists Attribute Extraction) dataset as a challenging new web extraction task. PLAtE focuses on shopping data, specifically extractions from product review pages with multiple items. PLAtE encompasses both the tasks of: (1) finding product-list segmentation boundaries and (2) extracting attributes for each product. PLAtE is composed of 53, 905 items from 6, 810 pages, making it the first large-scale list page web extraction dataset. We construct PLAtE by collecting list pages from Common Crawl, then annotating them on Mechanical Turk. Quantitative and qualitative analyses are performed to demonstrate PLAtE has high-quality annotations. We establish strong baseline performance on PLAtE with a SOTA model achieving an F1-score of 0.750 for attribute classification and 0.915 for segmentation, indicating opportunities for future research innovations in web extraction.
3,121
null
RecipeRec: A Heterogeneous Graph Learning Model for Recipe Recommendation
Recipe recommendation systems play an essential role in helping people decide what to eat. Existing recipe recommendation systems typically focused on content-based or collaborative filtering approaches, ignoring the higher-order collaborative signal such as relational structure information among users, recipes and food items. In this paper, we formalize the problem of recipe recommendation with graphs to incorporate the collaborative signal into recipe recommendation through graph modeling. In particular, we first present URI-Graph, a new and large-scale user-recipe-ingredient graph. We then propose RecipeRec, a novel heterogeneous graph learning model for recipe recommendation. The proposed model can capture recipe content and collaborative signal through a heterogeneous graph neural network with hierarchical attention and an ingredient set transformer. We also introduce a graph contrastive augmentation strategy to extract informative graph knowledge in a self-supervised manner. Finally, we design a joint objective function of recommendation and contrastive learning to optimize the model. Extensive experiments demonstrate that RecipeRec outperforms state-of-the-art methods for recipe recommendation. Dataset and codes are available at https://github.com/meettyj/RecipeRec.
3,122
null
First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization
How can we train an assistive human-machine interface (e.g., an electromyography-based limb prosthesis) to translate a user's raw command signals into the actions of a robot or computer when there is no prior mapping, we cannot ask the user for supervision in the form of action labels or reward feedback, and we do not have prior knowledge of the tasks the user is trying to accomplish? The key idea in this paper is that, regardless of the task, when an interface is more intuitive, the user's commands are less noisy. We formalize this idea as a completely unsupervised objective for optimizing interfaces: the mutual information between the user's command signals and the induced state transitions in the environment. To evaluate whether this mutual information score can distinguish between effective and ineffective interfaces, we conduct an observational study on 540K examples of users operating various keyboard and eye gaze interfaces for typing, controlling simulated robots, and playing video games. The results show that our mutual information scores are predictive of the ground-truth task completion metrics in a variety of domains, with an average Spearman's rank correlation of 0.43. In addition to offline evaluation of existing interfaces, we use our unsupervised objective to learn an interface from scratch: we randomly initialize the interface, have the user attempt to perform their desired tasks using the interface, measure the mutual information score, and update the interface to maximize mutual information through reinforcement learning. We evaluate our method through a user study with 12 participants who perform a 2D cursor control task using a perturbed mouse, and an experiment with one user playing the Lunar Lander game using hand gestures. The results show that we can learn an interface from scratch, without any user supervision or prior knowledge of tasks, in under 30 minutes.
3,123
null
Imposing Gaussian Pre-Activations in a Neural Network
The goal of the present work is to propose a way to modify both the initialization distribution of the weights of a neural network and its activation function, such that all pre-activations are Gaussian. We propose a family of pairs initialization/activation, where the activation functions span a continuum from bounded functions (such as Heaviside or tanh) to the identity function. This work is motivated by the contradiction between existing works dealing with Gaussian pre-activations: on one side, the works in the line of the Neural Tangent Kernels and the Edge of Chaos are assuming it, while on the other side, theoretical and experimental results challenge this hypothesis. The family of pairs initialization/activation we are proposing will help us to answer this hot question: is it desirable to have Gaussian pre-activations in a neural network?
3,124
null
Hardness of Maximum Likelihood Learning of DPPs
Determinantal Point Processes (DPPs) are a widely used probabilistic model for negatively correlated sets. DPPs have been successfully employed in Machine Learning applications to select a diverse, yet representative subset of data. In seminal work on DPPs in Machine Learning, Kulesza conjectured in his PhD Thesis (2011) that the problem of finding a maximum likelihood DPP model for a given data set is NP-complete. In this work we prove Kulesza's conjecture. In fact, we prove the following stronger hardness of approximation result: even computing a $\left(1-O(\frac{1}{\log^9{N}})\right)$-approximation to the maximum log-likelihood of a DPP on a ground set of $N$ elements is NP-complete. At the same time, we also obtain the first polynomial-time algorithm that achieves a nontrivial worst-case approximation to the optimal log-likelihood: the approximation factor is $\frac{1}{(1+o(1))\log{m}}$ unconditionally (for data sets that consist of $m$ subsets), and can be improved to $1-\frac{1+o(1)}{\log N}$ if all $N$ elements appear in a $O(1/N)$-fraction of the subsets. In terms of techniques, we reduce approximating the maximum log-likelihood of DPPs on a data set to solving a gap instance of a "vector coloring" problem on a hypergraph. Such a hypergraph is built on a bounded-degree graph construction of Bogdanov, Obata and Trevisan (FOCS 2002), and is further enhanced by the strong expanders of Alon and Capalbo (FOCS 2007) to serve our purposes.
3,125
null
Learning to Model Editing Processes
Most existing sequence generation models produce outputs in one pass, usually left-to-right. However, this is in contrast with a more natural approach that humans use in generating content; iterative refinement and editing. Recent work has introduced edit-based models for various tasks (such as neural machine translation and text style transfer), but these generally model a single edit step. In this work, we propose modeling editing processes, modeling the whole process of iteratively generating sequences. We form a conceptual framework to describe the likelihood of multi-step edits, and describe neural models that can learn a generative model of sequences based on these multistep edits. We introduce baseline results and metrics on this task, finding that modeling editing processes improves performance on a variety of axes on both our proposed task and related downstream tasks compared to previous single-step models of edits.
3,126
null
TorchNTK: A Library for Calculation of Neural Tangent Kernels of PyTorch Models
We introduce torchNTK, a python library to calculate the empirical neural tangent kernel (NTK) of neural network models in the PyTorch framework. We provide an efficient method to calculate the NTK of multilayer perceptrons. We compare the explicit differentiation implementation against autodifferentiation implementations, which have the benefit of extending the utility of the library to any architecture supported by PyTorch, such as convolutional networks. A feature of the library is that we expose the user to layerwise NTK components, and show that in some regimes a layerwise calculation is more memory efficient. We conduct preliminary experiments to demonstrate use cases for the software and probe the NTK.
3,127
null
Low-rank Optimal Transport: Approximation, Statistics and Debiasing
The matching principles behind optimal transport (OT) play an increasingly important role in machine learning, a trend which can be observed when OT is used to disambiguate datasets in applications (e.g. single-cell genomics) or used to improve more complex methods (e.g. balanced attention in transformers or self-supervised learning). To scale to more challenging problems, there is a growing consensus that OT requires solvers that can operate on millions, not thousands, of points. The low-rank optimal transport (LOT) approach advocated in \cite{scetbon2021lowrank} holds several promises in that regard, and was shown to complement more established entropic regularization approaches, being able to insert itself in more complex pipelines, such as quadratic OT. LOT restricts the search for low-cost couplings to those that have a low-nonnegative rank, yielding linear time algorithms in cases of interest. However, these promises can only be fulfilled if the LOT approach is seen as a legitimate contender to entropic regularization when compared on properties of interest, where the scorecard typically includes theoretical properties (statistical bounds, relation to other methods) or practical aspects (debiasing, hyperparameter tuning, initialization). We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.
3,128
null
Wavelet Feature Maps Compression for Image-to-Image CNNs
Convolutional Neural Networks (CNNs) are known for requiring extensive computational resources, and quantization is among the best and most common methods for compressing them. While aggressive quantization (i.e., less than 4-bits) performs well for classification, it may cause severe performance degradation in image-to-image tasks such as semantic segmentation and depth estimation. In this paper, we propose Wavelet Compressed Convolution (WCC) -- a novel approach for high-resolution activation maps compression integrated with point-wise convolutions, which are the main computational cost of modern architectures. To this end, we use an efficient and hardware-friendly Haar-wavelet transform, known for its effectiveness in image compression, and define the convolution on the compressed activation map. We experiment on various tasks, that benefit from high-resolution input, and by combining WCC with light quantization, we achieve compression rates equivalent to 1-4bit activation quantization with relatively small and much more graceful degradation in performance.
3,129
null
Accelerating hydrodynamic simulations of urban drainage systems with physics-guided machine learning
We propose and demonstrate a new approach for fast and accurate surrogate modelling of urban drainage system hydraulics based on physics-guided machine learning. The surrogates are trained against a limited set of simulation results from a hydrodynamic (HiFi) model. Our approach reduces simulation times by one to two orders of magnitude compared to a HiFi model. It is thus slower than e.g. conceptual hydrological models, but it enables simulations of water levels, flows and surcharges in all nodes and links of a drainage network and thus largely preserves the level of detail provided by HiFi models. Comparing time series simulated by the surrogate and the HiFi model, R2 values in the order of 0.9 are achieved. Surrogate training times are currently in the order of one hour. However, they can likely be reduced through the application of transfer learning and graph neural networks. Our surrogate approach will be useful for interactive workshops in initial design phases of urban drainage systems, as well as for real time applications. In addition, our model formulation is generic and future research should investigate its application for simulating other water systems.
3,130
null
K-12BERT: BERT for K-12 education
Online education platforms are powered by various NLP pipelines, which utilize models like BERT to aid in content curation. Since the inception of the pre-trained language models like BERT, there have also been many efforts toward adapting these pre-trained models to specific domains. However, there has not been a model specifically adapted for the education domain (particularly K-12) across subjects to the best of our knowledge. In this work, we propose to train a language model on a corpus of data curated by us across multiple subjects from various sources for K-12 education. We also evaluate our model, K12-BERT, on downstream tasks like hierarchical taxonomy tagging.
3,131
null
Certified Robustness Against Natural Language Attacks by Causal Intervention
Deep learning models have achieved great success in many fields, yet they are vulnerable to adversarial examples. This paper follows a causal perspective to look into the adversarial vulnerability and proposes Causal Intervention by Semantic Smoothing (CISS), a novel framework towards robustness against natural language attacks. Instead of merely fitting observational data, CISS learns causal effects p(y|do(x)) by smoothing in the latent semantic space to make robust predictions, which scales to deep architectures and avoids tedious construction of noise customized for specific attacks. CISS is provably robust against word substitution attacks, as well as empirically robust even when perturbations are strengthened by unknown attack algorithms. For example, on YELP, CISS surpasses the runner-up by 6.7% in terms of certified robustness against word substitutions, and achieves 79.4% empirical robustness when syntactic attacks are integrated.
3,132
null
Beyond Impossibility: Balancing Sufficiency, Separation and Accuracy
Among the various aspects of algorithmic fairness studied in recent years, the tension between satisfying both \textit{sufficiency} and \textit{separation} -- e.g. the ratios of positive or negative predictive values, and false positive or false negative rates across groups -- has received much attention. Following a debate sparked by COMPAS, a criminal justice predictive system, the academic community has responded by laying out important theoretical understanding, showing that one cannot achieve both with an imperfect predictor when there is no equal distribution of labels across the groups. In this paper, we shed more light on what might be still possible beyond the impossibility -- the existence of a trade-off means we should aim to find a good balance within it. After refining the existing theoretical result, we propose an objective that aims to balance \textit{sufficiency} and \textit{separation} measures, while maintaining similar accuracy levels. We show the use of such an objective in two empirical case studies, one involving a multi-objective framework, and the other fine-tuning of a model pre-trained for accuracy. We show promising results, where better trade-offs are achieved compared to existing alternatives.
3,133
null
ColdGuess: A General and Effective Relational Graph Convolutional Network to Tackle Cold Start Cases
Low-quality listings and bad actor behavior in online retail websites threatens e-commerce business as these result in sub-optimal buying experience and erode customer trust. When a new listing is created, how to tell it has good-quality? Is the method effective, fast, and scalable? Previous approaches often have three limitations/challenges: (1) unable to handle cold start problems where new sellers/listings lack sufficient selling histories. (2) inability of scoring hundreds of millions of listings at scale, or compromise performance for scalability. (3) has space challenges from large-scale graph with giant e-commerce business size. To overcome these limitations/challenges, we proposed ColdGuess, an inductive graph-based risk predictor built upon a heterogeneous seller product graph, which effectively identifies risky seller/product/listings at scale. ColdGuess tackles the large-scale graph by consolidated nodes, and addresses the cold start problems using homogeneous influence1. The evaluation on real data demonstrates that ColdGuess has stable performance as the number of unknown features increases. It outperforms the lightgbm2 by up to 34 pcp ROC-AUC in a cold start case when a new seller sells a new product . The resulting system, ColdGuess, is effective, adaptable to changing risky seller behavior, and is already in production
3,134
null
Fast & Furious: Modelling Malware Detection as Evolving Data Streams
Malware is a major threat to computer systems and imposes many challenges to cyber security. Targeted threats, such as ransomware, cause millions of dollars in losses every year. The constant increase of malware infections has been motivating popular antiviruses (AVs) to develop dedicated detection strategies, which include meticulously crafted machine learning (ML) pipelines. However, malware developers unceasingly change their samples features to bypass detection. This constant evolution of malware samples causes changes to the data distribution (i.e., concept drifts) that directly affect ML model detection rates. In this work, we evaluate the impact of concept drift on malware classifiers for two Android datasets: DREBIN (~130K apps) and AndroZoo (~350K apps). Android is a ubiquitous operating system for smartphones, which stimulates attackers to regularly create and update malware to the platform. We conducted a longitudinal evaluation by (i) classifying malware samples collected over nine years (2009-2018), (ii) reviewing concept drift detection algorithms to attest its pervasiveness, (iii) comparing distinct ML approaches to mitigate the issue, and (iv) proposing an ML data stream pipeline that outperformed literature approaches. As a result, we observed that updating every component of the pipeline in response to concept drifts allows the classification model to achieve increasing detection rates as the data representation (extracted features) is updated. Furthermore, we discuss the impact of the changes on the classification models by comparing the variations in the extracted features.
3,135
null
FreDo: Frequency Domain-based Long-Term Time Series Forecasting
The ability to forecast far into the future is highly beneficial to many applications, including but not limited to climatology, energy consumption, and logistics. However, due to noise or measurement error, it is questionable how far into the future one can reasonably predict. In this paper, we first mathematically show that due to error accumulation, sophisticated models might not outperform baseline models for long-term forecasting. To demonstrate, we show that a non-parametric baseline model based on periodicity can actually achieve comparable performance to a state-of-the-art Transformer-based model on various datasets. We further propose FreDo, a frequency domain-based neural network model that is built on top of the baseline model to enhance its performance and which greatly outperforms the state-of-the-art model. Finally, we validate that the frequency domain is indeed better by comparing univariate models trained in the frequency v.s. time domain.
3,136
null
lpSpikeCon: Enabling Low-Precision Spiking Neural Network Processing for Efficient Unsupervised Continual Learning on Autonomous Agents
Recent advances have shown that SNN-based systems can efficiently perform unsupervised continual learning due to their bio-plausible learning rule, e.g., Spike-Timing-Dependent Plasticity (STDP). Such learning capabilities are especially beneficial for use cases like autonomous agents (e.g., robots and UAVs) that need to continuously adapt to dynamically changing scenarios/environments, where new data gathered directly from the environment may have novel features that should be learned online. Current state-of-the-art works employ high-precision weights (i.e., 32 bit) for both training and inference phases, which pose high memory and energy costs thereby hindering efficient embedded implementations of such systems for battery-driven mobile autonomous systems. On the other hand, precision reduction may jeopardize the quality of unsupervised continual learning due to information loss. Towards this, we propose lpSpikeCon, a novel methodology to enable low-precision SNN processing for efficient unsupervised continual learning on resource-constrained autonomous agents/systems. Our lpSpikeCon methodology employs the following key steps: (1) analyzing the impacts of training the SNN model under unsupervised continual learning settings with reduced weight precision on the inference accuracy; (2) leveraging this study to identify SNN parameters that have a significant impact on the inference accuracy; and (3) developing an algorithm for searching the respective SNN parameter values that improve the quality of unsupervised continual learning. The experimental results show that our lpSpikeCon can reduce weight memory of the SNN model by 8x (i.e., by judiciously employing 4-bit weights) for performing online training with unsupervised continual learning and achieve no accuracy loss in the inference phase, as compared to the baseline model with 32-bit weights across different network sizes.
3,137
null
Policy Compliance Detection via Expression Tree Inference
Policy Compliance Detection (PCD) is a task we encounter when reasoning over texts, e.g. legal frameworks. Previous work to address PCD relies heavily on modeling the task as a special case of Recognizing Textual Entailment. Entailment is applicable to the problem of PCD, however viewing the policy as a single proposition, as opposed to multiple interlinked propositions, yields poor performance and lacks explainability. To address this challenge, more recent proposals for PCD have argued for decomposing policies into expression trees consisting of questions connected with logic operators. Question answering is used to obtain answers to these questions with respect to a scenario. Finally, the expression tree is evaluated in order to arrive at an overall solution. However, this work assumes expression trees are provided by experts, thus limiting its applicability to new policies. In this work, we learn how to infer expression trees automatically from policy texts. We ensure the validity of the inferred trees by introducing constrained decoding using a finite state automaton to ensure the generation of valid trees. We determine through automatic evaluation that 63% of the expression trees generated by our constrained generation model are logically equivalent to gold trees. Human evaluation shows that 88% of trees generated by our model are correct.
3,138
null
History Compression via Language Models in Reinforcement Learning
In a partially observable Markov decision process (POMDP), an agent typically uses a representation of the past to approximate the underlying MDP. We propose to utilize a frozen Pretrained Language Transformer (PLT) for history representation and compression to improve sample efficiency. To avoid training of the Transformer, we introduce FrozenHopfield, which automatically associates observations with pretrained token embeddings. To form these associations, a modern Hopfield network stores these token embeddings, which are retrieved by queries that are obtained by a random but fixed projection of observations. Our new method, HELM, enables actor-critic network architectures that contain a pretrained language Transformer for history representation as a memory module. Since a representation of the past need not be learned, HELM is much more sample efficient than competitors. On Minigrid and Procgen environments HELM achieves new state-of-the-art results. Our code is available at https://github.com/ml-jku/helm.
3,139
null
Interpretation Quality Score for Measuring the Quality of interpretability methods
Machine learning (ML) models have been applied to a wide range of natural language processing (NLP) tasks in recent years. In addition to making accurate decisions, the necessity of understanding how models make their decisions has become apparent in many applications. To that end, many interpretability methods that help explain the decision processes of ML models have been developed. Yet, there currently exists no widely-accepted metric to evaluate the quality of explanations generated by these methods. As a result, there currently is no standard way of measuring to what degree an interpretability method achieves an intended objective. Moreover, there is no accepted standard of performance by which we can compare and rank the current existing interpretability methods. In this paper, we propose a novel metric for quantifying the quality of explanations generated by interpretability methods. We compute the metric on three NLP tasks using six interpretability methods and present our results.
3,140
null
Taming the sign problem of explicitly antisymmetrized neural networks via rough activation functions
Explicit antisymmetrization of a two-layer neural network is a potential candidate for a universal function approximator for generic antisymmetric functions, which are ubiquitous in quantum physics. However, this strategy suffers from a sign problem, namely, due to near exact cancellation of positive and negative contributions, the magnitude of the antisymmetrized function may be significantly smaller than that before antisymmetrization. We prove that the severity of the sign problem is directly related to the smoothness of the activation function. For smooth activation functions (e.g., $\tanh$), the sign problem of the explicitly antisymmetrized two-layer neural network deteriorates super-polynomially with respect to the system size. On the other hand, for rough activation functions (e.g., ReLU), the deterioration rate of the sign problem can be tamed to be at most polynomial with respect to the system size. Finally, the cost of a direct implementation of antisymmetrized two-layer neural network scales factorially with respect to the system size. We describe an efficient algorithm for approximate evaluation of such a network, of which the cost scales polynomially with respect to the system size and inverse precision.
3,141
null
RevUp: Revise and Update Information Bottleneck for Event Representation
In machine learning, latent variables play a key role to capture the underlying structure of data, but they are often unsupervised. When we have side knowledge that already has high-level information about the input data, we can use that source to guide latent variables and capture the available background information in a process called "parameter injection." In that regard, we propose a semi-supervised information bottleneck-based model that enables the use of side knowledge, even if it is noisy and imperfect, to direct the learning of discrete latent variables. Fundamentally, we introduce an auxiliary continuous latent variable as a way to reparameterize the model's discrete variables with a light-weight hierarchical structure. With this reparameterization, the model's discrete latent variables are learned to minimize the mutual information between the observed data and optional side knowledge that is not already captured by the new, auxiliary variables. We theoretically show that our approach generalizes an existing method of parameter injection, and perform an empirical case study of our approach on language-based event modeling. We corroborate our theoretical results with strong empirical experiments, showing that the proposed method outperforms previous proposed approaches on multiple datasets.
3,142
null
Asynchronous Neural Networks for Learning in Graphs
This paper studies asynchronous message passing (AMP), a new paradigm for applying neural network based learning to graphs. Existing graph neural networks use the synchronous distributed computing model and aggregate their neighbors in each round, which causes problems such as oversmoothing and limits their expressiveness. On the other hand, AMP is based on the asynchronous model, where nodes react to messages of their neighbors individually. We prove that (i) AMP can simulate synchronous GNNs and that (ii) AMP can theoretically distinguish any pair of graphs. We experimentally validate AMP's expressiveness. Further, we show that AMP might be better suited to propagate messages over large distances in graphs and performs well on several graph classification benchmarks.
3,143
null
EBM Life Cycle: MCMC Strategies for Synthesis, Defense, and Density Modeling
This work presents strategies to learn an Energy-Based Model (EBM) according to the desired length of its MCMC sampling trajectories. MCMC trajectories of different lengths correspond to models with different purposes. Our experiments cover three different trajectory magnitudes and learning outcomes: 1) shortrun sampling for image generation; 2) midrun sampling for classifier-agnostic adversarial defense; and 3) longrun sampling for principled modeling of image probability densities. To achieve these outcomes, we introduce three novel methods of MCMC initialization for negative samples used in Maximum Likelihood (ML) learning. With standard network architectures and an unaltered ML objective, our MCMC initialization methods alone enable significant performance gains across the three applications that we investigate. Our results include state-of-the-art FID scores for unnormalized image densities on the CIFAR-10 and ImageNet datasets; state-of-the-art adversarial defense on CIFAR-10 among purification methods and the first EBM defense on ImageNet; and scalable techniques for learning valid probability densities. Code for this project can be found at https://github.com/point0bar1/ebm-life-cycle.
3,144
null
Gacs-Korner Common Information Variational Autoencoder
We propose a notion of common information that allows one to quantify and separate the information that is shared between two random variables from the information that is unique to each. Our notion of common information is a variational relaxation of the G\'acs-K\"orner common information, which we recover as a special case, but is more amenable to optimization and can be approximated empirically using samples from the underlying distribution. We then provide a method to partition and quantify the common and unique information using a simple modification of a traditional variational auto-encoder. Empirically, we demonstrate that our formulation allows us to learn semantically meaningful common and unique factors of variation even on high-dimensional data such as images and videos. Moreover, on datasets where ground-truth latent factors are known, we show that we can accurately quantify the common information between the random variables. Additionally, we show that the auto-encoder that we learn recovers semantically meaningful disentangled factors of variation, even though we do not explicitly optimize for it.
3,145
null
Psychotic Relapse Prediction in Schizophrenia Patients using A Mobile Sensing-based Supervised Deep Learning Model
Mobile sensing-based modeling of behavioral changes could predict an oncoming psychotic relapse in schizophrenia patients for timely interventions. Deep learning models could complement existing non-deep learning models for relapse prediction by modeling latent behavioral features relevant to the prediction. However, given the inter-individual behavioral differences, model personalization might be required for a predictive model. In this work, we propose RelapsePredNet, a Long Short-Term Memory (LSTM) neural network-based model for relapse prediction. The model is personalized for a particular patient by training using data from patients most similar to the given patient. Several demographics and baseline mental health scores were considered as personalization metrics to define patient similarity. We investigated the effect of personalization on training dataset characteristics, learned embeddings, and relapse prediction performance. We compared RelapsePredNet with a deep learning-based anomaly detection model for relapse prediction. Further, we investigated if RelapsePredNet could complement ClusterRFModel (a random forest model leveraging clustering and template features proposed in prior work) in a fusion model, by identifying latent behavioral features relevant for relapse prediction. The CrossCheck dataset consisting of continuous mobile sensing data obtained from 63 schizophrenia patients, each monitored for up to a year, was used for our evaluations. The proposed RelapsePredNet outperformed the deep learning-based anomaly detection model for relapse prediction. The F2 score for prediction were 0.21 and 0.52 in the full test set and the Relapse Test Set (consisting of data from patients who have had relapse only), respectively. These corresponded to a 29.4% and 38.8% improvement compared to the existing deep learning-based model for relapse prediction.
3,146
null
Forecasting Multilinear Data via Transform-Based Tensor Autoregression
In the era of big data, there is an increasing demand for new methods for analyzing and forecasting 2-dimensional data. The current research aims to accomplish these goals through the combination of time-series modeling and multilinear algebraic systems. We expand previous autoregressive techniques to forecast multilinear data, aptly named the L-Transform Tensor autoregressive (L-TAR for short). Tensor decompositions and multilinear tensor products have allowed for this approach to be a feasible method of forecasting. We achieve statistical independence between the columns of the observations through invertible discrete linear transforms, enabling a divide and conquer approach. We present an experimental validation of the proposed methods on datasets containing image collections, video sequences, sea surface temperature measurements, stock prices, and networks.
3,147
null
Rethinking Evaluation Practices in Visual Question Answering: A Case Study on Out-of-Distribution Generalization
Vision-and-language (V&L) models pretrained on large-scale multimodal data have demonstrated strong performance on various tasks such as image captioning and visual question answering (VQA). The quality of such models is commonly assessed by measuring their performance on unseen data that typically comes from the same distribution as the training data. However, we observe that these models exhibit poor out-of-distribution (OOD) generalization on the task of VQA. To better understand the underlying causes of poor generalization, we comprehensively investigate performance of two pretrained V&L models under different settings (i.e. classification and open-ended text generation) by conducting cross-dataset evaluations. We find that these models tend to learn to solve the benchmark, rather than learning the high-level skills required by the VQA task. We also argue that in most cases generative models are less susceptible to shifts in data distribution, while frequently performing better on our tested benchmarks. Moreover, we find that multimodal pretraining improves OOD performance in most settings. Finally, we revisit assumptions underlying the use of automatic VQA evaluation metrics, and empirically show that their stringent nature repeatedly penalizes models for correct responses.
3,148
null
Learning for Expressive Task-Related Sentence Representations
NLP models learn sentence representations for downstream tasks by tuning a model which is pre-trained by masked language modeling. However, after tuning, the learned sentence representations may be skewed heavily toward label space and thus are not expressive enough to represent whole samples, which should contain task-related information of both sentence inputs and labels. In this work, we learn expressive sentence representations for supervised tasks which (1). contain task-related information in the sentence inputs, and (2). enable correct label predictions. To achieve this goal, we first propose a new objective which explicitly points out the label token space in the input, and predicts categories of labels via an added [MASK] token. This objective encourages fusing the semantic information of both the label and sentence. Then we develop a neighbor attention module, added on a frozen pre-trained model, to build connections between label/sentence tokens via their neighbors. The propagation can be further guided by the regularization on neighborhood representations to encourage expressiveness. Experimental results show that, despite tuning only 5% additional parameters over a frozen pre-trained model, our model can achieve classification results comparable to the SOTA while maintaining strong expressiveness as well.
3,149
null
Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning
Continuous-time reinforcement learning offers an appealing formalism for describing control problems in which the passage of time is not naturally divided into discrete increments. Here we consider the problem of predicting the distribution of returns obtained by an agent interacting in a continuous-time, stochastic environment. Accurate return predictions have proven useful for determining optimal policies for risk-sensitive control, learning state representations, multiagent coordination, and more. We begin by establishing the distributional analogue of the Hamilton-Jacobi-Bellman (HJB) equation for It\^o diffusions and the broader class of Feller-Dynkin processes. We then specialize this equation to the setting in which the return distribution is approximated by $N$ uniformly-weighted particles, a common design choice in distributional algorithms. Our derivation highlights additional terms due to statistical diffusivity which arise from the proper handling of distributions in the continuous-time setting. Based on this, we propose a tractable algorithm for approximately solving the distributional HJB based on a JKO scheme, which can be implemented in an online control algorithm. We demonstrate the effectiveness of such an algorithm in a synthetic control problem.
3,150
null
Regret-Aware Black-Box Optimization with Natural Gradients, Trust-Regions and Entropy Control
Most successful stochastic black-box optimizers, such as CMA-ES, use rankings of the individual samples to obtain a new search distribution. Yet, the use of rankings also introduces several issues such as the underlying optimization objective is often unclear, i.e., we do not optimize the expected fitness. Further, while these algorithms typically produce a high-quality mean estimate of the search distribution, the produced samples can have poor quality as these algorithms are ignorant of the regret. Lastly, noisy fitness function evaluations may result in solutions that are highly sub-optimal on expectation. In contrast, stochastic optimizers that are motivated by policy gradients, such as the Model-based Relative Entropy Stochastic Search (MORE) algorithm, directly optimize the expected fitness function without the use of rankings. MORE can be derived by applying natural policy gradients and compatible function approximation, and is using information theoretic constraints to ensure the stability of the policy update. While MORE does not suffer from the listed limitations, it often cannot achieve state of the art performance in comparison to ranking based methods. We improve MORE by decoupling the update of the mean and covariance of the search distribution allowing for more aggressive updates on the mean while keeping the update on the covariance conservative, an improved entropy scheduling technique based on an evolution path which results in faster convergence and a simplified and more effective model learning approach in comparison to the original paper. We compare our algorithm to state of the art black-box optimization algorithms on standard optimization tasks as well as on episodic RL tasks in robotics where it is also crucial to have small regret. We obtain competitive results on benchmark functions and clearly outperform ranking-based methods in terms of regret on the RL tasks.
3,151
null
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Byzantine resilience emerged as a prominent topic within the distributed machine learning community. Essentially, the goal is to enhance distributed optimization algorithms, such as distributed SGD, in a way that guarantees convergence despite the presence of some misbehaving (a.k.a., {\em Byzantine}) workers. Although a myriad of techniques addressing the problem have been proposed, the field arguably rests on fragile foundations. These techniques are hard to prove correct and rely on assumptions that are (a) quite unrealistic, i.e., often violated in practice, and (b) heterogeneous, i.e., making it difficult to compare approaches. We present \emph{RESAM (RESilient Averaging of Momentums)}, a unified framework that makes it simple to establish optimal Byzantine resilience, relying only on standard machine learning assumptions. Our framework is mainly composed of two operators: \emph{resilient averaging} at the server and \emph{distributed momentum} at the workers. We prove a general theorem stating the convergence of distributed SGD under RESAM. Interestingly, demonstrating and comparing the convergence of many existing techniques become direct corollaries of our theorem, without resorting to stringent assumptions. We also present an empirical evaluation of the practical relevance of RESAM.
3,152
null
D$^\text{2}$UF: Deep Coded Aperture Design and Unrolling Algorithm for Compressive Spectral Image Fusion
Compressive spectral imaging (CSI) has attracted significant attention since it employs synthetic apertures to codify spatial and spectral information, sensing only 2D projections of the 3D spectral image. However, these optical architectures suffer from a trade-off between the spatial and spectral resolution of the reconstructed image due to technology limitations. To overcome this issue, compressive spectral image fusion (CSIF) employs the projected measurements of two CSI architectures with different resolutions to estimate a high-spatial high-spectral resolution. This work presents the fusion of the compressive measurements of a low-spatial high-spectral resolution coded aperture snapshot spectral imager (CASSI) architecture and a high-spatial low-spectral resolution multispectral color filter array (MCFA) system. Unlike previous CSIF works, this paper proposes joint optimization of the sensing architectures and a reconstruction network in an end-to-end (E2E) manner. The trainable optical parameters are the coded aperture (CA) in the CASSI and the colored coded aperture in the MCFA system, employing a sigmoid activation function and regularization function to encourage binary values on the trainable variables for an implementation purpose. Additionally, an unrolling-based network inspired by the alternating direction method of multipliers (ADMM) optimization is formulated to address the reconstruction step and the acquisition systems design jointly. Finally, a spatial-spectral inspired loss function is employed at the end of each unrolling layer to increase the convergence of the unrolling network. The proposed method outperforms previous CSIF methods, and experimental results validate the method with real measurements.
3,153
null
Not too little, not too much: a theoretical analysis of graph (over)smoothing
We analyze graph smoothing with \emph{mean aggregation}, where each node successively receives the average of the features of its neighbors. Indeed, it has quickly been observed that Graph Neural Networks (GNNs), which generally follow some variant of Message-Passing (MP) with repeated aggregation, may be subject to the \emph{oversmoothing} phenomenon: by performing too many rounds of MP, the node features tend to converge to a non-informative limit. In the case of mean aggregation, for connected graphs, the node features become constant across the whole graph. At the other end of the spectrum, it is intuitively obvious that \emph{some} MP rounds are necessary, but existing analyses do not exhibit both phenomena at once: beneficial ``finite'' smoothing and oversmoothing in the limit. In this paper, we consider simplified linear GNNs, and rigorously analyze two examples for which a finite number of mean aggregation steps provably improves the learning performance, before oversmoothing kicks in. We consider a latent space random graph model, where node features are partial observations of the latent variables and the graph contains pairwise relationships between them. We show that graph smoothing restores some of the lost information, up to a certain point, by two phenomenon: graph smoothing shrinks non-principal directions in the data faster than principal ones, which is useful for regression, and shrinks nodes within communities faster than they collapse together, which improves classification.
3,154
null
Mathematical Models of Human Drivers Using Artificial Risk Fields
In this paper, we use the concept of artificial risk fields to predict how human operators control a vehicle in response to upcoming road situations. A risk field assigns a non-negative risk measure to the state of the system in order to model how close that state is to violating a safety property, such as hitting an obstacle or exiting the road. Using risk fields, we construct a stochastic model of the operator that maps from states to likely actions. We demonstrate our approach on a driving task wherein human subjects are asked to drive a car inside a realistic driving simulator while avoiding obstacles placed on the road. We show that the most likely risk field given the driving data is obtained by solving a convex optimization problem. Next, we apply the inferred risk fields to generate distinct driving behaviors while comparing predicted trajectories against ground truth measurements. We observe that the risk fields are excellent at predicting future trajectory distributions with high prediction accuracy for up to twenty seconds prediction horizons. At the same time, we observe some challenges such as the inability to account for how drivers choose to accelerate/decelerate based on the road conditions.
3,155
null
One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks
Unlearnable examples (ULEs) aim to protect data from unauthorized usage for training DNNs. Error-minimizing noise, which is injected to clean data, is one of the most successful methods for preventing DNNs from giving correct predictions on incoming new data. Nonetheless, under specific training strategies such as adversarial training, the unlearnability of error-minimizing noise will severely degrade. In addition, the transferability of error-minimizing noise is inherently limited by the mismatch between the generator model and the targeted learner model. In this paper, we investigate the mechanism of unlearnable examples and propose a novel model-free method, named \emph{One-Pixel Shortcut}, which only perturbs a single pixel of each image and makes the dataset unlearnable. Our method needs much less computational cost and obtains stronger transferability and thus can protect data from a wide range of different models. Based on this, we further introduce the first unlearnable dataset called CIFAR-10-S, which is indistinguishable from normal CIFAR-10 by human observers and can serve as a benchmark for different models or training strategies to evaluate their abilities to extract critical features from the disturbance of non-semantic representations. The original error-minimizing ULEs will lose efficiency under adversarial training, where the model can get over 83\% clean test accuracy. Meanwhile, even if adversarial training and strong data augmentation like RandAugment are applied together, the model trained on CIFAR-10-S cannot get over 50\% clean test accuracy.
3,156
null
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks
The score-based query attacks (SQAs) pose practical threats to deep neural networks by crafting adversarial perturbations within dozens of queries, only using the model's output scores. Nonetheless, we note that if the loss trend of the outputs is slightly perturbed, SQAs could be easily misled and thereby become much less effective. Following this idea, we propose a novel defense, namely Adversarial Attack on Attackers (AAA), to confound SQAs towards incorrect attack directions by slightly modifying the output logits. In this way, (1) SQAs are prevented regardless of the model's worst-case robustness; (2) the original model predictions are hardly changed, i.e., no degradation on clean accuracy; (3) the calibration of confidence scores can be improved simultaneously. Extensive experiments are provided to verify the above advantages. For example, by setting $\ell_\infty=8/255$ on CIFAR-10, our proposed AAA helps WideResNet-28 secure $80.59\%$ accuracy under Square attack ($2500$ queries), while the best prior defense (i.e., adversarial training) only attains $67.44\%$. Since AAA attacks SQA's general greedy strategy, such advantages of AAA over 8 defenses can be consistently observed on 8 CIFAR-10/ImageNet models under 6 SQAs, using different attack targets and bounds. Moreover, AAA calibrates better without hurting the accuracy. Our code would be released.
3,157
null
Inference of a Rumor's Source in the Independent Cascade Model
We consider the so-called Independent Cascade Model for rumor spreading or epidemic processes popularized by Kempe et al.\ [2003]. In this model, a small subset of nodes from a network are the source of a rumor. In discrete time steps, each informed node "infects" each of its uninformed neighbors with probability $p$. While many facets of this process are studied in the literature, less is known about the inference problem: given a number of infected nodes in a network, can we learn the source of the rumor? In the context of epidemiology this problem is often referred to as patient zero problem. It belongs to a broader class of problems where the goal is to infer parameters of the underlying spreading model, see, e.g., Lokhov [NeurIPS'16] or Mastakouri et al. [NeurIPS'20]. In this work we present a maximum likelihood estimator for the rumor's source, given a snapshot of the process in terms of a set of active nodes $X$ after $t$ steps. Our results show that, for cycle-free graphs, the likelihood estimator undergoes a non-trivial phase transition as a function $t$. We provide a rigorous analysis for two prominent classes of acyclic network, namely $d$-regular trees and Galton-Watson trees, and verify empirically that our heuristics work well in various general networks.
3,158
null
Phased Progressive Learning with Coupling-Regulation-Imbalance Loss for Imbalanced Classification
Deep neural networks generally perform poorly with datasets that suffer from quantity imbalance and classification difficulty imbalance between different classes. In order to alleviate the problem of dataset bias or domain shift in the existing two-stage approaches, a phased progressive learning schedule was proposed for smoothly transferring the training emphasis from representation learning to upper classifier training. This has greater effectivity on datasets that have more severe imbalances or smaller scales. A coupling-regulation-imbalance loss function was designed, coupling a correction term, Focal loss and LDAM loss. Coupling-regulation-imbalance loss can better deal with quantity imbalance and outliers, while regulating focus-of-attention of samples with a variety of classification difficulties. Excellent results were achieved on multiple benchmark datasets using these approaches and they can be easily generalized for other imbalanced classification models. Our code will be open source soon.
3,159
null
Federated singular value decomposition for high dimensional data
Federated learning (FL) is emerging as a privacy-aware alternative to classical cloud-based machine learning. In FL, the sensitive data remains in data silos and only aggregated parameters are exchanged. Hospitals and research institutions which are not willing to share their data can join a federated study without breaching confidentiality. In addition to the extreme sensitivity of biomedical data, the high dimensionality poses a challenge in the context of federated genome-wide association studies (GWAS). In this article, we present a federated singular value decomposition (SVD) algorithm, suitable for the privacy-related and computational requirements of GWAS. Notably, the algorithm has a transmission cost independent of the number of samples and is only weakly dependent on the number of features, because the singular vectors associated with the samples are never exchanged and the vectors associated with the features only for a fixed number of iterations. Although motivated by GWAS, the algorithm is generically applicable for both horizontally and vertically partitioned data.
3,160
null
Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width
Substantial work indicates that the dynamics of neural networks (NNs) is closely related to their initialization of parameters. Inspired by the phase diagram for two-layer ReLU NNs with infinite width (Luo et al., 2021), we make a step towards drawing a phase diagram for three-layer ReLU NNs with infinite width. First, we derive a normalized gradient flow for three-layer ReLU NNs and obtain two key independent quantities to distinguish different dynamical regimes for common initialization methods. With carefully designed experiments and a large computation cost, for both synthetic datasets and real datasets, we find that the dynamics of each layer also could be divided into a linear regime and a condensed regime, separated by a critical regime. The criteria is the relative change of input weights (the input weight of a hidden neuron consists of the weight from its input layer to the hidden neuron and its bias term) as the width approaches infinity during the training, which tends to $0$, $+\infty$ and $O(1)$, respectively. In addition, we also demonstrate that different layers can lie in different dynamical regimes in a training process within a deep NN. In the condensed regime, we also observe the condensation of weights in isolated orientations with low complexity. Through experiments under three-layer condition, our phase diagram suggests a complicated dynamical regimes consisting of three possible regimes, together with their mixture, for deep NNs and provides a guidance for studying deep NNs in different initialization regimes, which reveals the possibility of completely different dynamics emerging within a deep NN for its different layers.
3,161
null
Associative Learning Mechanism for Drug-Target Interaction Prediction
As a necessary process in drug development, finding a drug compound that can selectively bind to a specific protein is highly challenging and costly. Drug-target affinity (DTA), which represents the strength of drug-target interaction (DTI), has played an important role in the DTI prediction task over the past decade. Although deep learning has been applied to DTA-related research, existing solutions ignore fundamental correlations between molecular substructures in molecular representation learning of drug compound molecules/protein targets. Moreover, traditional methods lack the interpretability of the DTA prediction process. This results in missing feature information of intermolecular interactions, thereby affecting prediction performance. Therefore, this paper proposes a DTA prediction method with interactive learning and an autoencoder mechanism. The proposed model enhances the corresponding ability to capture the feature information of a single molecular sequence by the drug/protein molecular representation learning module and supplements the information interaction between molecular sequence pairs by the interactive information learning module. The DTA value prediction module fuses the drug-target pair interaction information to output the predicted value of DTA. Additionally, this paper theoretically proves that the proposed method maximizes evidence lower bound (ELBO) for the joint distribution of the DTA prediction model, which enhances the consistency of the probability distribution between the actual value and the predicted value. The experimental results confirm mutual transformer-drug target affinity (MT-DTA) achieves better performance than other comparative methods.
3,162
null
DNNAbacus: Toward Accurate Computational Cost Prediction for Deep Neural Networks
Deep learning is attracting interest across a variety of domains, including natural language processing, speech recognition, and computer vision. However, model training is time-consuming and requires huge computational resources. Existing works on the performance prediction of deep neural networks, which mostly focus on the training time prediction of a few models, rely on analytical models and result in high relative errors. %Optimizing task scheduling and reducing job failures in data centers are essential to improve resource utilization and reduce carbon emissions. This paper investigates the computational resource demands of 29 classical deep neural networks and builds accurate models for predicting computational costs. We first analyze the profiling results of typical networks and demonstrate that the computational resource demands of models with different inputs and hyperparameters are not obvious and intuitive. We then propose a lightweight prediction approach DNNAbacus with a novel network structural matrix for network representation. DNNAbacus can accurately predict both memory and time cost for PyTorch and TensorFlow models, which is also generalized to different hardware architectures and can have zero-shot capability for unseen networks. Our experimental results show that the mean relative error (MRE) is 0.9% with respect to time and 2.8% with respect to memory for 29 classic models, which is much lower than the state-of-the-art works.
3,163
null
Bias Discovery in Machine Learning Models for Mental Health
Fairness and bias are crucial concepts in artificial intelligence, yet they are relatively ignored in machine learning applications in clinical psychiatry. We computed fairness metrics and present bias mitigation strategies using a model trained on clinical mental health data. We collected structured data related to the admission, diagnosis, and treatment of patients in the psychiatry department of the University Medical Center Utrecht. We trained a machine learning model to predict future administrations of benzodiazepines on the basis of past data. We found that gender plays an unexpected role in the predictions-this constitutes bias. Using the AI Fairness 360 package, we implemented reweighing and discrimination-aware regularization as bias mitigation strategies, and we explored their implications for model performance. This is the first application of bias exploration and mitigation in a machine learning model trained on real clinical psychiatry data.
3,164
null
Optimality Conditions and Algorithms for Top-K Arm Identification
We consider the top-k arm identification problem for multi-armed bandits with rewards belonging to a one-parameter canonical exponential family. The objective is to select the set of k arms with the highest mean rewards by sequential allocation of sampling efforts. We propose a unified optimal allocation problem that identifies the complexity measures of this problem under the fixed-confidence, fixed-budget settings, and the posterior convergence rate from the Bayesian perspective. We provide the first characterization of its optimality. We provide the first provably optimal algorithm in the fixed-confidence setting for k>1. We also propose an efficient heuristic algorithm for the top-k arm identification problem. Extensive numerical experiments demonstrate superior performance compare to existing methods in all three settings.
3,165
null
Ensemble Multi-Relational Graph Neural Networks
It is well established that graph neural networks (GNNs) can be interpreted and designed from the perspective of optimization objective. With this clear optimization objective, the deduced GNNs architecture has sound theoretical foundation, which is able to flexibly remedy the weakness of GNNs. However, this optimization objective is only proved for GNNs with single-relational graph. Can we infer a new type of GNNs for multi-relational graphs by extending this optimization objective, so as to simultaneously solve the issues in previous multi-relational GNNs, e.g., over-parameterization? In this paper, we propose a novel ensemble multi-relational GNNs by designing an ensemble multi-relational (EMR) optimization objective. This EMR optimization objective is able to derive an iterative updating rule, which can be formalized as an ensemble message passing (EnMP) layer with multi-relations. We further analyze the nice properties of EnMP layer, e.g., the relationship with multi-relational personalized PageRank. Finally, a new multi-relational GNNs which well alleviate the over-smoothing and over-parameterization issues are proposed. Extensive experiments conducted on four benchmark datasets well demonstrate the effectiveness of the proposed model.
3,166
null
Deep Reinforcement Learning for Multi-class Imbalanced Training
With the rapid growth of memory and computing power, datasets are becoming increasingly complex and imbalanced. This is especially severe in the context of clinical data, where there may be one rare event for many cases in the majority class. We introduce an imbalanced classification framework, based on reinforcement learning, for training extremely imbalanced data sets, and extend it for use in multi-class settings. We combine dueling and double deep Q-learning architectures, and formulate a custom reward function and episode-training procedure, specifically with the added capability of handling multi-class imbalanced training. Using real-world clinical case studies, we demonstrate that our proposed framework outperforms current state-of-the-art imbalanced learning methods, achieving more fair and balanced classification, while also significantly improving the prediction of minority classes.
3,167
null
Boosting Tail Neural Network for Realtime Custom Keyword Spotting
In this paper, we propose a Boosting Tail Neural Network (BTNN) for improving the performance of Realtime Custom Keyword Spotting (RCKS) that is still an industrial challenge for demanding powerful classification ability with limited computation resources. Inspired by Brain Science that a brain is only partly activated for a nerve simulation and numerous machine learning algorithms are developed to use a batch of weak classifiers to resolve arduous problems, which are often proved to be effective. We show that this method is helpful to the RCKS problem. The proposed approach achieve better performances in terms of wakeup rate and false alarm. In our experiments compared with those traditional algorithms that use only one strong classifier, it gets 18\% relative improvement. We also point out that this approach may be promising in future ASR exploration.
3,168
null
On statistic alignment for domain adaptation in structural health monitoring
The practical application of structural health monitoring (SHM) is often limited by the availability of labelled data. Transfer learning - specifically in the form of domain adaptation (DA) - gives rise to the possibility of leveraging information from a population of physical or numerical structures, by inferring a mapping that aligns the feature spaces. Typical DA methods rely on nonparametric distance metrics, which require sufficient data to perform density estimation. In addition, these methods can be prone to performance degradation under class imbalance. To address these issues, statistic alignment (SA) is discussed, with a demonstration of how these methods can be made robust to class imbalance, including a special case of class imbalance called a partial DA scenario. SA is demonstrated to facilitate damage localisation with no target labels in a numerical case study, outperforming other state-of-the-art DA methods. It is then shown to be capable of aligning the feature spaces of a real heterogeneous population, the Z24 and KW51 bridges, with only 220 samples used from the KW51 bridge. Finally, in scenarios where more complex mappings are required for knowledge transfer, SA is shown to be a vital pre-processing tool, increasing the performance of established DA methods.
3,169
null
FedEntropy: Efficient Device Grouping for Federated Learning Using Maximum Entropy Judgment
Along with the popularity of Artificial Intelligence (AI) and Internet-of-Things (IoT), Federated Learning (FL) has attracted steadily increasing attentions as a promising distributed machine learning paradigm, which enables the training of a central model on for numerous decentralized devices without exposing their privacy. However, due to the biased data distributions on involved devices, FL inherently suffers from low classification accuracy in non-IID scenarios. Although various device grouping method have been proposed to address this problem, most of them neglect both i) distinct data distribution characteristics of heterogeneous devices, and ii) contributions and hazards of local models, which are extremely important in determining the quality of global model aggregation. In this paper, we present an effective FL method named FedEntropy with a novel dynamic device grouping scheme, which makes full use of the above two factors based on our proposed maximum entropy judgement heuristic.Unlike existing FL methods that directly aggregate local models returned from all the selected devices, in one FL round FedEntropy firstly makes a judgement based on the pre-collected soft labels of selected devices and then only aggregates the local models that can maximize the overall entropy of these soft labels. Without collecting local models that are harmful for aggregation, FedEntropy can effectively improve global model accuracy while reducing the overall communication overhead. Comprehensive experimental results on well-known benchmarks show that, FedEntropy not only outperforms state-of-the-art FL methods in terms of model accuracy and communication overhead, but also can be integrated into them to enhance their classification performance.
3,170
null
Improving Human Image Synthesis with Residual Fast Fourier Transformation and Wasserstein Distance
With the rapid development of the Metaverse, virtual humans have emerged, and human image synthesis and editing techniques, such as pose transfer, have recently become popular. Most of the existing techniques rely on GANs, which can generate good human images even with large variants and occlusions. But from our best knowledge, the existing state-of-the-art method still has the following problems: the first is that the rendering effect of the synthetic image is not realistic, such as poor rendering of some regions. And the second is that the training of GAN is unstable and slow to converge, such as model collapse. Based on the above two problems, we propose several methods to solve them. To improve the rendering effect, we use the Residual Fast Fourier Transform Block to replace the traditional Residual Block. Then, spectral normalization and Wasserstein distance are used to improve the speed and stability of GAN training. Experiments demonstrate that the methods we offer are effective at solving the problems listed above, and we get state-of-the-art scores in LPIPS and PSNR.
3,171
null
PatchNR: Learning from Small Data by Patch Normalizing Flow Regularization
Learning neural networks using only a small amount of data is an important ongoing research topic with tremendous potential for applications. In this paper, we introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows. Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images. The subsequent reconstruction method is completely unsupervised and the same regularizer can be used for different forward operators acting on the same class of images. By investigating the distribution of patches versus those of the whole image class, we prove that our variational model is indeed a MAP approach. Our model can be generalized to conditional patchNRs, if additional supervised information is available. Numerical examples for low-dose CT, limited-angle CT and superresolution of material images demonstrate that our method provides high quality results among unsupervised methods, but requires only few data.
3,172
null
Concurrent Credit Assignment for Data-efficient Reinforcement Learning
The capability to widely sample the state and action spaces is a key ingredient toward building effective reinforcement learning algorithms. The variational optimization principles exposed in this paper emphasize the importance of an occupancy model to synthesizes the general distribution of the agent's environmental states over which it can act (defining a virtual ``territory''). The occupancy model is the subject of frequent updates as the exploration progresses and that new states are undisclosed during the course of the training. By making a uniform prior assumption, the resulting objective expresses a balance between two concurrent tendencies, namely the widening of the occupancy space and the maximization of the rewards, reminding of the classical exploration/exploitation trade-off. Implemented on an actor-critic off-policy on classic continuous action benchmarks, it is shown to provide significant increase in the sampling efficacy, that is reflected in a reduced training time and higher returns, in both the dense and the sparse rewards cases.
3,173
null
Naive Few-Shot Learning: Sequence Consistency Evaluation
Cognitive psychologists often use the term $\textit{fluid intelligence}$ to describe the ability of humans to solve novel tasks without any prior training. In contrast to humans, deep neural networks can perform cognitive tasks only after extensive (pre-)training with a large number of relevant examples. Motivated by fluid intelligence research in the cognitive sciences, we built a benchmark task which we call sequence consistency evaluation (SCE) that can be used to address this gap. Solving the SCE task requires the ability to extract simple rules from sequences, a basic computation that is required for solving various intelligence tests in humans. We tested $\textit{untrained}$ (naive) deep learning models in the SCE task. Specifically, we compared Relation Networks (RN) and Contrastive Predictive Coding (CPC), two models that can extract simple rules from sequences, and found that the latter, which imposes a structure on the predictable rule does better. We further found that simple networks fare better in this task than complex ones. Finally, we show that this approach can be used for security camera anomaly detection without any prior training.
3,174
null
Graph Convolutional Reinforcement Learning for Collaborative Queuing Agents
In this paper, we explore the use of multi-agent deep learning as well as learning to cooperate principles to meet stringent service level agreements, in terms of throughput and end-to-end delay, for a set of classified network flows. We consider agents built on top of a weighted fair queuing algorithm that continuously set weights for three flow groups: gold, silver, and bronze. We rely on a novel graph-convolution based, multi-agent reinforcement learning approach known as DGN. As benchmarks, we propose centralized and distributed deep Q-network approaches and evaluate their performances in different network, traffic, and routing scenarios, highlighting the effectiveness of our proposals and the importance of agent cooperation. We show that our DGN-based approach meets stringent throughput and delay requirements across all scenarios.
3,175
null
Highly Accurate FMRI ADHD Classification using time distributed multi modal 3D CNNs
This work proposes an algorithm for fMRI data analysis for the classification of ADHD disorders. There have been several breakthroughs in the analysis of fMRI via 3D convolutional neural networks (CNNs). With these new techniques it is possible to preserve the 3D spatial data of fMRI data. Additionally there have been recent advances in the use of 3D generative adversarial neural networks (GANs) for the generation of normal MRI data. This work utilizes multi modal 3D CNNs with data augmentation from 3D GAN for ADHD prediction from fMRI. By leveraging a 3D-GAN it would be possible to use deepfake data to enhance the accuracy of 3D CNN classification of brain disorders. A comparison will be made between a time distributed single modal 3D CNN model for classification and the modified multi modal model with MRI data as well.
3,176
null
Learning Stabilizing Policies in Stochastic Control Systems
In this work, we address the problem of learning provably stable neural network policies for stochastic control systems. While recent work has demonstrated the feasibility of certifying given policies using martingale theory, the problem of how to learn such policies is little explored. Here, we study the effectiveness of jointly learning a policy together with a martingale certificate that proves its stability using a single learning algorithm. We observe that the joint optimization problem becomes easily stuck in local minima when starting from a randomly initialized policy. Our results suggest that some form of pre-training of the policy is required for the joint optimization to repair and verify the policy successfully.
3,177
null
Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings
In this paper we show that neural ODE analogs of recurrent (ODE-RNN) and Long Short-Term Memory (ODE-LSTM) networks can be algorithmically embeddeded into the class of polynomial systems. This embedding preserves input-output behavior and can suitably be extended to other neural DE architectures. We then use realization theory of polynomial systems to provide necessary conditions for an input-output map to be realizable by an ODE-LSTM and sufficient conditions for minimality of such systems. These results represent the first steps towards realization theory of recurrent neural ODE architectures, which is is expected be useful for model reduction and learning algorithm analysis of recurrent neural ODEs.
3,178
null
The Data-Production Dispositif
Machine learning (ML) depends on data to train and verify models. Very often, organizations outsource processes related to data work (i.e., generating and annotating data and evaluating outputs) through business process outsourcing (BPO) companies and crowdsourcing platforms. This paper investigates outsourced ML data work in Latin America by studying three platforms in Venezuela and a BPO in Argentina. We lean on the Foucauldian notion of dispositif to define the data-production dispositif as an ensemble of discourses, actions, and objects strategically disposed to (re)produce power/knowledge relations in data and labor. Our dispositif analysis comprises the examination of 210 data work instruction documents, 55 interviews with data workers, managers, and requesters, and participant observation. Our findings show that discourses encoded in instructions reproduce and normalize the worldviews of requesters. Precarious working conditions and economic dependency alienate workers, making them obedient to instructions. Furthermore, discourses and social contexts materialize in artifacts, such as interfaces and performance metrics, limiting workers' agency and normalizing specific ways of interpreting data. We conclude by stressing the importance of counteracting the data-production dispositif by fighting alienation and precarization, and empowering data workers to become assets in the quest for high-quality data.
3,179
null
Bandwidth Selection for Gaussian Kernel Ridge Regression via Jacobian Control
Most machine learning methods depend on the tuning of hyper-parameters. For kernel ridge regression (KRR) with the Gaussian kernel, the hyper-parameter is the bandwidth. The bandwidth specifies the length-scale of the kernel and has to be carefully selected in order to obtain a model with good generalization. The default method for bandwidth selection is cross-validation, which often yields good results, albeit at high computational costs. Furthermore, the estimates provided by cross-validation tend to have very high variance, especially when training data are scarce. Inspired by Jacobian regularization, we formulate how the derivatives of the functions inferred by KRR with the Gaussian kernel depend on the kernel bandwidth. We then use this expression to propose a closed-form, computationally feather-light, bandwidth selection method based on controlling the Jacobian. In addition, the Jacobian expression illuminates how the bandwidth selection is a trade-off between the smoothness of the inferred function, and the conditioning of the training data kernel matrix. We show on real and synthetic data that compared to cross-validation, our method is considerably more stable in terms of bandwidth selection, and, for small data sets, provides better predictions.
3,180
null
3D helical CT reconstruction with memory efficient invertible Learned Primal-Dual method
Helical acquisition geometry is the most common geometry used in computed tomography (CT) scanners for medical imaging. We adapt the invertible Learned Primal-Dual (iLPD) deep neural network architecture so that it can be applied to helical 3D CT reconstruction. We achieve this by splitting the geometry and the data in parts that fit the memory and by splitting images into corresponding sub-volumes. The architecture can be applied to images different in size along the rotation axis. We perform the experiments on tomographic data simulated from realistic helical geometries.
3,181
null
Causal Influences Decouple From Their Underlying Network Structure In Echo State Networks
Echo State Networks (ESN) are versatile recurrent neural network models in which the hidden layer remains unaltered during training. Interactions among nodes of this static backbone produce diverse representations of the given stimuli that are harnessed by a read-out mechanism to perform computations needed for solving a given task. ESNs are accessible models of neuronal circuits, since they are relatively inexpensive to train. Therefore, ESNs have become attractive for neuroscientists studying the relationship between neural structure, function, and behavior. For instance, it is not yet clear how distinctive connectivity patterns of brain networks support effective interactions among their nodes and how these patterns of interactions give rise to computation. To address this question, we employed an ESN with a biologically inspired structure and used a systematic multi-site lesioning framework to quantify the causal contribution of each node to the network's output, thus providing a causal link between network structure and behavior. We then focused on the structure-function relationship and decomposed the causal influence of each node on all other nodes, using the same lesioning framework. We found that nodes in a properly engineered ESN interact largely irrespective of the network's underlying structure. However, in a network with the same topology and a non-optimal parameter set, the underlying connectivity patterns determine the node interactions. Our results suggest that causal structure-function relations in ESNs can be decomposed into two components, direct and indirect interactions. The former are based on influences relying on structural connections. The latter describe the effective communication between any two nodes through other intermediate nodes. These widely distributed indirect interactions may crucially contribute to the efficient performance of ESNs.
3,182
null
Assessing the Quality of Computational Notebooks for a Frictionless Transition from Exploration to Production
The massive trend of integrating data-driven AI capabilities into traditional software systems is rising new intriguing challenges. One of such challenges is achieving a smooth transition from the explorative phase of Machine Learning projects - in which data scientists build prototypical models in the lab - to their production phase - in which software engineers translate prototypes into production-ready AI components. To narrow down the gap between these two phases, tools and practices adopted by data scientists might be improved by incorporating consolidated software engineering solutions. In particular, computational notebooks have a prominent role in determining the quality of data science prototypes. In my research project, I address this challenge by studying the best practices for collaboration with computational notebooks and proposing proof-of-concept tools to foster guidelines compliance.
3,183
null
Pynblint: a Static Analyzer for Python Jupyter Notebooks
Jupyter Notebook is the tool of choice of many data scientists in the early stages of ML workflows. The notebook format, however, has been criticized for inducing bad programming practices; indeed, researchers have already shown that open-source repositories are inundated by poor-quality notebooks. Low-quality output from the prototypical stages of ML workflows constitutes a clear bottleneck towards the productization of ML models. To foster the creation of better notebooks, we developed Pynblint, a static analyzer for Jupyter notebooks written in Python. The tool checks the compliance of notebooks (and surrounding repositories) with a set of empirically validated best practices and provides targeted recommendations when violations are detected.
3,184
null
How Human is Human Evaluation? Improving the Gold Standard for NLG with Utility Theory
Human ratings are treated as the gold standard in NLG evaluation. The standard protocol is to collect ratings of generated text, average across annotators, and then rank NLG systems by their average scores. However, little consideration has been given as to whether this approach faithfully captures human preferences. In this work, we analyze this standard protocol through the lens of utility theory in economics. We first identify the implicit assumptions it makes about annotators and find that these assumptions are often violated in practice, in which case annotator ratings become an unfaithful reflection of their preferences. The most egregious violations come from using Likert scales, which provably reverse the direction of the true preference in certain cases. We suggest improvements to the standard protocol to make it more theoretically sound, but even in its improved form, it cannot be used to evaluate open-ended tasks like story generation. For the latter, we propose a new evaluation protocol called $\textit{system-level probabilistic assessment}$ (SPA). In our experiments, we find that according to SPA, annotators prefer larger GPT-3 variants to smaller ones -- as expected -- with all comparisons being statistically significant. In contrast, the standard protocol only yields significant results half the time.
3,185
null
Compression-aware Training of Neural Networks using Frank-Wolfe
Many existing Neural Network pruning approaches either rely on retraining to compensate for pruning-caused performance degradation or they induce strong biases to converge to a specific sparse solution throughout training. A third paradigm obtains a wide range of compression ratios from a single dense training run while also avoiding retraining. Recent work of Pokutta et al. (2020) and Miao et al. (2022) suggests that the Stochastic Frank-Wolfe (SFW) algorithm is particularly suited for training state-of-the-art models that are robust to compression. We propose leveraging $k$-support norm ball constraints and demonstrate significant improvements over the results of Miao et al. (2022) in the case of unstructured pruning. We also extend these ideas to the structured pruning domain and propose novel approaches to both ensure robustness to the pruning of convolutional filters as well as to low-rank tensor decompositions of convolutional layers. In the latter case, our approach performs on-par with nuclear-norm regularization baselines while requiring only half of the computational resources. Our findings also indicate that the robustness of SFW-trained models largely depends on the gradient rescaling of the learning rate and we establish a theoretical foundation for that practice.
3,186
null
Large Language Models are Zero-Shot Reasoners
Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding "Let's think step by step" before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with 175B parameter InstructGPT model, as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot capabilities of LLMs, suggesting high-level, multi-task broad cognitive capabilities may be extracted by simple prompting. We hope our work not only serves as the minimal strongest zero-shot baseline for the challenging reasoning benchmarks, but also highlights the importance of carefully exploring and analyzing the enormous zero-shot knowledge hidden inside LLMs before crafting finetuning datasets or few-shot exemplars.
3,187
null
An Adaptive Contrastive Learning Model for Spike Sorting
Brain-computer interfaces (BCIs), is ways for electronic devices to communicate directly with the brain. For most medical-type brain-computer interface tasks, the activity of multiple units of neurons or local field potentials is sufficient for decoding. But for BCIs used in neuroscience research, it is important to separate out the activity of individual neurons. With the development of large-scale silicon technology and the increasing number of probe channels, artificially interpreting and labeling spikes is becoming increasingly impractical. In this paper, we propose a novel modeling framework: Adaptive Contrastive Learning Model that learns representations from spikes through contrastive learning based on the maximizing mutual information loss function as a theoretical basis. Based on the fact that data with similar features share the same labels whether they are multi-classified or binary-classified. With this theoretical support, we simplify the multi-classification problem into multiple binary-classification, improving both the accuracy and the runtime efficiency. Moreover, we also introduce a series of enhancements for the spikes, while solving the problem that the classification effect is affected because of the overlapping spikes.
3,188
null
Deep Learning Workload Scheduling in GPU Datacenters: Taxonomy, Challenges and Vision
Deep learning (DL) shows its prosperity in a wide variety of fields. The development of a DL model is a time-consuming and resource-intensive procedure. Hence, dedicated GPU accelerators have been collectively constructed into a GPU datacenter. An efficient scheduler design for such GPU datacenter is crucially important to reduce the operational cost and improve resource utilization. However, traditional approaches designed for big data or high performance computing workloads can not support DL workloads to fully utilize the GPU resources. Recently, substantial schedulers are proposed to tailor for DL workloads in GPU datacenters. This paper surveys existing research efforts for both training and inference workloads. We primarily present how existing schedulers facilitate the respective workloads from the scheduling objectives and resource consumption features. Finally, we prospect several promising future research directions. More detailed summary with the surveyed paper and code links can be found at our project website: https://github.com/S-Lab-System-Group/Awesome-DL-Scheduling-Papers
3,189
null
Physics-Embedded Neural Networks: $\boldsymbol{\mathrm{E}(n)}$-Equivariant Graph Neural PDE Solvers
Graph neural network (GNN) is a promising approach to learning and predicting physical phenomena described in boundary value problems, such as partial differential equations (PDEs) with boundary conditions. However, existing models inadequately treat boundary conditions essential for the reliable prediction of such problems. In addition, because of the locally connected nature of GNNs, it is difficult to accurately predict the state after a long time, where interaction between vertices tends to be global. We present our approach termed physics-embedded neural networks that considers boundary conditions and predicts the state after a long time using an implicit method. It is built based on an $\mathrm{E}(n)$-equivariant GNN, resulting in high generalization performance on various shapes. We demonstrate that our model learns flow phenomena in complex shapes and outperforms a well-optimized classical solver and a state-of-the-art machine learning model in speed-accuracy trade-off. Therefore, our model can be a useful standard for realizing reliable, fast, and accurate GNN-based PDE solvers.
3,190
null
An interpretation of the final fully connected layer
In recent years neural networks have achieved state-of-the-art accuracy for various tasks but the the interpretation of the generated outputs still remains difficult. In this work we attempt to provide a method to understand the learnt weights in the final fully connected layer in image classification models. We motivate our method by drawing a connection between the policy gradient objective in RL and supervised learning objective. We suggest that the commonly used cross entropy based supervised learning objective can be regarded as a special case of the policy gradient objective. Using this insight we propose a method to find the most discriminative and confusing parts of an image. Our method does not make any prior assumption about neural network achitecture and has low computational cost. We apply our method on publicly available pre-trained models and report the generated results.
3,191
null
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects. We introduce a new model that decomposes independent dynamics of single objects accurately from their interactions. By employing latent Gaussian process ordinary differential equations, our model infers both independent dynamics and their interactions with reliable uncertainty estimates. In our formulation, each object is represented as a graph node and interactions are modeled by accumulating the messages coming from neighboring objects. We show that efficient inference of such a complex network of variables is possible with modern variational sparse Gaussian process inference techniques. We empirically demonstrate that our model improves the reliability of long-term predictions over neural network based alternatives and it successfully handles missing dynamic or static information. Furthermore, we observe that only our model can successfully encapsulate independent dynamics and interaction information in distinct functions and show the benefit from this disentanglement in extrapolation scenarios.
3,192
null
A Quadrature Rule combining Control Variates and Adaptive Importance Sampling
Driven by several successful applications such as in stochastic gradient descent or in Bayesian computation, control variates have become a major tool for Monte Carlo integration. However, standard methods do not allow the distribution of the particles to evolve during the algorithm, as is the case in sequential simulation methods. Within the standard adaptive importance sampling framework, a simple weighted least squares approach is proposed to improve the procedure with control variates. The procedure takes the form of a quadrature rule with adapted quadrature weights to reflect the information brought in by the control variates. The quadrature points and weights do not depend on the integrand, a computational advantage in case of multiple integrands. Moreover, the target density needs to be known only up to a multiplicative constant. Our main result is a non-asymptotic bound on the probabilistic error of the procedure. The bound proves that for improving the estimate's accuracy, the benefits from adaptive importance sampling and control variates can be combined. The good behavior of the method is illustrated empirically on synthetic examples and real-world data for Bayesian linear regression.
3,193
null
Multi-Agent Collaborative Inference via DNN Decoupling: Intermediate Feature Compression and Edge Learning
Recently, deploying deep neural network (DNN) models via collaborative inference, which splits a pre-trained model into two parts and executes them on user equipment (UE) and edge server respectively, becomes attractive. However, the large intermediate feature of DNN impedes flexible decoupling, and existing approaches either focus on the single UE scenario or simply define tasks considering the required CPU cycles, but ignore the indivisibility of a single DNN layer. In this paper, we study the multi-agent collaborative inference scenario, where a single edge server coordinates the inference of multiple UEs. Our goal is to achieve fast and energy-efficient inference for all UEs. To achieve this goal, we first design a lightweight autoencoder-based method to compress the large intermediate feature. Then we define tasks according to the inference overhead of DNNs and formulate the problem as a Markov decision process (MDP). Finally, we propose a multi-agent hybrid proximal policy optimization (MAHPPO) algorithm to solve the optimization problem with a hybrid action space. We conduct extensive experiments with different types of networks, and the results show that our method can reduce up to 56\% of inference latency and save up to 72\% of energy consumption.
3,194
null
Faithful Explanations for Deep Graph Models
This paper studies faithful explanations for Graph Neural Networks (GNNs). First, we provide a new and general method for formally characterizing the faithfulness of explanations for GNNs. It applies to existing explanation methods, including feature attributions and subgraph explanations. Second, our analytical and empirical results demonstrate that feature attribution methods cannot capture the nonlinear effect of edge features, while existing subgraph explanation methods are not faithful. Third, we introduce \emph{k-hop Explanation with a Convolutional Core} (KEC), a new explanation method that provably maximizes faithfulness to the original GNN by leveraging information about the graph structure in its adjacency matrix and its \emph{k-th} power. Lastly, our empirical results over both synthetic and real-world datasets for classification and anomaly detection tasks with GNNs demonstrate the effectiveness of our approach.
3,195
null
CDFKD-MFS: Collaborative Data-free Knowledge Distillation via Multi-level Feature Sharing
Recently, the compression and deployment of powerful deep neural networks (DNNs) on resource-limited edge devices to provide intelligent services have become attractive tasks. Although knowledge distillation (KD) is a feasible solution for compression, its requirement on the original dataset raises privacy concerns. In addition, it is common to integrate multiple pretrained models to achieve satisfactory performance. How to compress multiple models into a tiny model is challenging, especially when the original data are unavailable. To tackle this challenge, we propose a framework termed collaborative data-free knowledge distillation via multi-level feature sharing (CDFKD-MFS), which consists of a multi-header student module, an asymmetric adversarial data-free KD module, and an attention-based aggregation module. In this framework, the student model equipped with a multi-level feature-sharing structure learns from multiple teacher models and is trained together with a generator in an asymmetric adversarial manner. When some real samples are available, the attention module adaptively aggregates predictions of the student headers, which can further improve performance. We conduct extensive experiments on three popular computer visual datasets. In particular, compared with the most competitive alternative, the accuracy of the proposed framework is 1.18\% higher on the CIFAR-100 dataset, 1.67\% higher on the Caltech-101 dataset, and 2.99\% higher on the mini-ImageNet dataset.
3,196
null
Diverse Lottery Tickets Boost Ensemble from a Single Pretrained Model
Ensembling is a popular method used to improve performance as a last resort. However, ensembling multiple models finetuned from a single pretrained model has been not very effective; this could be due to the lack of diversity among ensemble members. This paper proposes Multi-Ticket Ensemble, which finetunes different subnetworks of a single pretrained model and ensembles them. We empirically demonstrated that winning-ticket subnetworks produced more diverse predictions than dense networks, and their ensemble outperformed the standard ensemble on some tasks.
3,197
null
Advanced Manufacturing Configuration by Sample-efficient Batch Bayesian Optimization
We propose a framework for the configuration and operation of expensive-to-evaluate advanced manufacturing methods, based on Bayesian optimization. The framework unifies a tailored acquisition function, a parallel acquisition procedure, and the integration of process information providing context to the optimization procedure. The novel acquisition function is demonstrated and analyzed on benchmark illustrative problems. We apply the optimization approach to atmospheric plasma spraying in simulation and experiments. Our results demonstrate that the proposed framework can efficiently find input parameters that produce the desired outcome and minimize the process cost.
3,198
null
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free
Trojan attacks threaten deep neural networks (DNNs) by poisoning them to behave normally on most samples, yet to produce manipulated results for inputs attached with a particular trigger. Several works attempt to detect whether a given DNN has been injected with a specific trigger during the training. In a parallel line of research, the lottery ticket hypothesis reveals the existence of sparse subnetworks which are capable of reaching competitive performance as the dense network after independent training. Connecting these two dots, we investigate the problem of Trojan DNN detection from the brand new lens of sparsity, even when no clean training data is available. Our crucial observation is that the Trojan features are significantly more stable to network pruning than benign features. Leveraging that, we propose a novel Trojan network detection regime: first locating a "winning Trojan lottery ticket" which preserves nearly full Trojan information yet only chance-level performance on clean inputs; then recovering the trigger embedded in this already isolated subnetwork. Extensive experiments on various datasets, i.e., CIFAR-10, CIFAR-100, and ImageNet, with different network architectures, i.e., VGG-16, ResNet-18, ResNet-20s, and DenseNet-100 demonstrate the effectiveness of our proposal. Codes are available at https://github.com/VITA-Group/Backdoor-LTH.
3,199
null
Penalized Proximal Policy Optimization for Safe Reinforcement Learning
Safe reinforcement learning aims to learn the optimal policy while satisfying safety constraints, which is essential in real-world applications. However, current algorithms still struggle for efficient policy updates with hard constraint satisfaction. In this paper, we propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem. Specifically, P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective. We theoretically prove the exactness of the proposed method with a finite penalty factor and provide a worst-case analysis for approximate error when evaluated on sample trajectories. Moreover, we extend P3O to more challenging multi-constraint and multi-agent scenarios which are less studied in previous work. Extensive experiments show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
3,200
null
Learning to Assemble Geometric Shapes
Assembling parts into an object is a combinatorial problem that arises in a variety of contexts in the real world and involves numerous applications in science and engineering. Previous related work tackles limited cases with identical unit parts or jigsaw-style parts of textured shapes, which greatly mitigate combinatorial challenges of the problem. In this work, we introduce the more challenging problem of shape assembly, which involves textureless fragments of arbitrary shapes with indistinctive junctions, and then propose a learning-based approach to solving it. We demonstrate the effectiveness on shape assembly tasks with various scenarios, including the ones with abnormal fragments (e.g., missing and distorted), the different number of fragments, and different rotation discretization.
3,201
null
NFL: Robust Learned Index via Distribution Transformation
Recent works on learned index open a new direction for the indexing field. The key insight of the learned index is to approximate the mapping between keys and positions with piece-wise linear functions. Such methods require partitioning key space for a better approximation. Although lots of heuristics are proposed to improve the approximation quality, the bottleneck is that the segmentation overheads could hinder the overall performance. This paper tackles the approximation problem by applying a \textit{distribution transformation} to the keys before constructing the learned index. A two-stage Normalizing-Flow-based Learned index framework (NFL) is proposed, which first transforms the original complex key distribution into a near-uniform distribution, then builds a learned index leveraging the transformed keys. For effective distribution transformation, we propose a Numerical Normalizing Flow (Numerical NF). Based on the characteristics of the transformed keys, we propose a robust After-Flow Learned Index (AFLI). To validate the performance, comprehensive evaluations are conducted on both synthetic and real-world workloads, which shows that the proposed NFL produces the highest throughput and the lowest tail latency compared to the state-of-the-art learned indexes.
3,202
null
SepIt: Approaching a Single Channel Speech Separation Bound
We present an upper bound for the Single Channel Speech Separation task, which is based on an assumption regarding the nature of short segments of speech. Using the bound, we are able to show that while the recent methods have made significant progress for a few speakers, there is room for improvement for five and ten speakers. We then introduce a Deep neural network, SepIt, that iteratively improves the different speakers' estimation. At test time, SpeIt has a varying number of iterations per test sample, based on a mutual information criterion that arises from our analysis. In an extensive set of experiments, SepIt outperforms the state-of-the-art neural networks for 2, 3, 5, and 10 speakers.
3,203
null
G-Rep: Gaussian Representation for Arbitrary-Oriented Object Detection
Arbitrary-oriented object representations contain the oriented bounding box (OBB), quadrilateral bounding box (QBB), and point set (PointSet). Each representation encounters problems that correspond to its characteristics, such as the boundary discontinuity, square-like problem, representation ambiguity, and isolated points, which lead to inaccurate detection. Although many effective strategies have been proposed for various representations, there is still no unified solution. Current detection methods based on Gaussian modeling have demonstrated the possibility of breaking this dilemma; however, they remain limited to OBB. To go further, in this paper, we propose a unified Gaussian representation called G-Rep to construct Gaussian distributions for OBB, QBB, and PointSet, which achieves a unified solution to various representations and problems. Specifically, PointSet or QBB-based objects are converted into Gaussian distributions, and their parameters are optimized using the maximum likelihood estimation algorithm. Then, three optional Gaussian metrics are explored to optimize the regression loss of the detector because of their excellent parameter optimization mechanisms. Furthermore, we also use Gaussian metrics for sampling to align label assignment and regression loss. Experimental results on several public available datasets, DOTA, HRSC2016, UCAS-AOD, and ICDAR2015 show the excellent performance of the proposed method for arbitrary-oriented object detection. The code has been open sourced at https://github.com/open-mmlab/mmrotate.
3,204
null
DPSNN: A Differentially Private Spiking Neural Network
Privacy-preserving is a key problem for the machine learning algorithm. Spiking neural network (SNN) plays an important role in many domains, such as image classification, object detection, and speech recognition, but the study on the privacy protection of SNN is urgently needed. This study combines the differential privacy (DP) algorithm and SNN and proposes differentially private spiking neural network (DPSNN). DP injects noise into the gradient, and SNN transmits information in discrete spike trains so that our differentially private SNN can maintain strong privacy protection while still ensuring high accuracy. We conducted experiments on MNIST, Fashion-MNIST, and the face recognition dataset Extended YaleB. When the privacy protection is improved, the accuracy of the artificial neural network(ANN) drops significantly, but our algorithm shows little change in performance. Meanwhile, we analyzed different factors that affect the privacy protection of SNN. Firstly, the less precise the surrogate gradient is, the better the privacy protection of the SNN. Secondly, the Integrate-And-Fire (IF) neurons perform better than leaky Integrate-And-Fire (LIF) neurons. Thirdly, a large time window contributes more to privacy protection and performance.
3,205
null
Accelerating Frank-Wolfe via Averaging Step Directions
The Frank-Wolfe method is a popular method in sparse constrained optimization, due to its fast per-iteration complexity. However, the tradeoff is that its worst case global convergence is comparatively slow, and importantly, is fundamentally slower than its flow rate--that is to say, the convergence rate is throttled by discretization error. In this work, we consider a modified Frank-Wolfe where the step direction is a simple weighted average of past oracle calls. This method requires very little memory and computational overhead, and provably decays this discretization error term. Numerically, we show that this method improves the convergence rate over several problems, especially after the sparse manifold has been detected. Theoretically, we show the method has an overall global convergence rate of $O(1/k^p)$, where $0< p < 1$; after manifold identification, this rate speeds to $O(1/k^{3p/2})$. We also observe that the method achieves this accelerated rate from a very early stage, suggesting a promising mode of acceleration for this family of methods.
3,206
null
Quadratic models for understanding neural network dynamics
In this work, we propose using a quadratic model as a tool for understanding properties of wide neural networks in both optimization and generalization. We show analytically that certain deep learning phenomena such as the "catapult phase" from [Lewkowycz et al. 2020], which cannot be captured by linear models, are manifested in the quadratic model for shallow ReLU networks. Furthermore, our empirical results indicate that the behaviour of quadratic models parallels that of neural networks in generalization, especially in the large learning rate regime. We expect that quadratic models will serve as a useful tool for analysis of neural networks.
3,207
null
Transition to Linearity of General Neural Networks with Directed Acyclic Graph Architecture
In this paper we show that feedforward neural networks corresponding to arbitrary directed acyclic graphs undergo transition to linearity as their "width" approaches infinity. The width of these general networks is characterized by the minimum in-degree of their neurons, except for the input and first layers. Our results identify the mathematical structure underlying transition to linearity and generalize a number of recent works aimed at characterizing transition to linearity or constancy of the Neural Tangent Kernel for standard architectures.