Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
3,408
null
TWEET-FID: An Annotated Dataset for Multiple Foodborne Illness Detection Tasks
Foodborne illness is a serious but preventable public health problem -- with delays in detecting the associated outbreaks resulting in productivity loss, expensive recalls, public safety hazards, and even loss of life. While social media is a promising source for identifying unreported foodborne illnesses, there is a dearth of labeled datasets for developing effective outbreak detection models. To accelerate the development of machine learning-based models for foodborne outbreak detection, we thus present TWEET-FID (TWEET-Foodborne Illness Detection), the first publicly available annotated dataset for multiple foodborne illness incident detection tasks. TWEET-FID collected from Twitter is annotated with three facets: tweet class, entity type, and slot type, with labels produced by experts as well as by crowdsource workers. We introduce several domain tasks leveraging these three facets: text relevance classification (TRC), entity mention detection (EMD), and slot filling (SF). We describe the end-to-end methodology for dataset design, creation, and labeling for supporting model development for these tasks. A comprehensive set of results for these tasks leveraging state-of-the-art single- and multi-task deep learning methods on the TWEET-FID dataset are provided. This dataset opens opportunities for future research in foodborne outbreak detection.
3,409
null
Policy-based Primal-Dual Methods for Convex Constrained Markov Decision Processes
We study convex Constrained Markov Decision Processes (CMDPs) in which the objective is concave and the constraints are convex in the state-action visitation distribution. We propose a policy-based primal-dual algorithm that updates the primal variable via policy gradient ascent and updates the dual variable via projected sub-gradient descent. Despite the loss of additivity structure and the nonconvex nature, we establish the global convergence of the proposed algorithm by leveraging a hidden convexity in the problem under the general soft-max parameterization, and prove the $\mathcal{O}\left(T^{-1/3}\right)$ convergence rate in terms of both optimality gap and constraint violation. When the objective is strongly concave in the visitation distribution, we prove an improved convergence rate of $\mathcal{O}\left(T^{-1/2}\right)$. By introducing a pessimistic term to the constraint, we further show that a zero constraint violation can be achieved while preserving the same convergence rate for the optimality gap. This work is the first one in the literature that establishes non-asymptotic convergence guarantees for policy-based primal-dual methods for solving infinite-horizon discounted convex CMDPs.
3,410
null
Active Source Free Domain Adaptation
Source free domain adaptation (SFDA) aims to transfer a trained source model to the unlabeled target domain without accessing the source data. However, the SFDA setting faces an effect bottleneck due to the absence of source data and target supervised information, as evidenced by the limited performance gains of newest SFDA methods. In this paper, for the first time, we introduce a more practical scenario called active source free domain adaptation (ASFDA) that permits actively selecting a few target data to be labeled by experts. To achieve that, we first find that those satisfying the properties of neighbor-chaotic, individual-different, and target-like are the best points to select, and we define them as the minimum happy (MH) points. We then propose minimum happy points learning (MHPL) to actively explore and exploit MH points. We design three unique strategies: neighbor ambient uncertainty, neighbor diversity relaxation, and one-shot querying, to explore the MH points. Further, to fully exploit MH points in the learning process, we design a neighbor focal loss that assigns the weighted neighbor purity to the cross-entropy loss of MH points to make the model focus more on them. Extensive experiments verify that MHPL remarkably exceeds the various types of baselines and achieves significant performance gains at a small cost of labeling.
3,411
null
The Selectively Adaptive Lasso
Machine learning regression methods allow estimation of functions without unrealistic parametric assumptions. Although they can perform exceptionally in prediction error, most lack theoretical convergence rates necessary for semi-parametric efficient estimation (e.g. TMLE, AIPW) of parameters like average treatment effects. The Highly Adaptive Lasso (HAL) is the only regression method proven to converge quickly enough for a meaningfully large class of functions, independent of the dimensionality of the predictors. Unfortunately, HAL is not computationally scalable. In this paper we build upon the theory of HAL to construct the Selectively Adaptive Lasso (SAL), a new algorithm which retains HAL's dimension-free, nonparametric convergence rate but which also scales computationally to massive datasets. To accomplish this, we prove some general theoretical results pertaining to empirical loss minimization in nested Donsker classes. Our resulting algorithm is a form of gradient tree boosting with an adaptive learning rate, which makes it fast and trivial to implement with off-the-shelf software. Finally, we show that our algorithm retains the performance of standard gradient boosting on a diverse group of real-world datasets. SAL makes semi-parametric efficient estimators practically possible and theoretically justifiable in many big data settings.
3,412
null
All You Need Is Logs: Improving Code Completion by Learning from Anonymous IDE Usage Logs
Integrated Development Environments (IDE) are designed to make users more productive, as well as to make their work more comfortable. To achieve this, a lot of diverse tools are embedded into IDEs, and the developers of IDEs can employ anonymous usage logs to collect the data about how they are being used to improve them. A particularly important component that this can be applied to is code completion, since improving code completion using statistical learning techniques is a well-established research area. In this work, we propose an approach for collecting completion usage logs from the users in an IDE and using them to train a machine learning based model for ranking completion candidates. We developed a set of features that describe completion candidates and their context, and deployed their anonymized collection in the Early Access Program of IntelliJ-based IDEs. We used the logs to collect a dataset of code completions from users, and employed it to train a ranking CatBoost model. Then, we evaluated it in two settings: on a held-out set of the collected completions and in a separate A/B test on two different groups of users in the IDE. Our evaluation shows that using a simple ranking model trained on the past user behavior logs significantly improved code completion experience. Compared to the default heuristics-based ranking, our model demonstrated a decrease in the number of typing actions necessary to perform the completion in the IDE from 2.073 to 1.832. The approach adheres to privacy requirements and legal constraints, since it does not require collecting personal information, performing all the necessary anonymization on the client's side. Importantly, it can be improved continuously: implementing new features, collecting new data, and evaluating new models - this way, we have been using it in production since the end of 2020.
3,413
null
Producing Histopathology Phantom Images using Generative Adversarial Networks to improve Tumor Detection
Advance in medical imaging is an important part in deep learning research. One of the goals of computer vision is development of a holistic, comprehensive model which can identify tumors from histology slides obtained via biopsies. A major problem that stands in the way is lack of data for a few cancer-types. In this paper, we ascertain that data augmentation using GANs can be a viable solution to reduce the unevenness in the distribution of different cancer types in our dataset. Our demonstration showed that a dataset augmented to a 50% increase causes an increase in tumor detection from 80% to 87.5%
3,414
null
Diversity Preference-Aware Link Recommendation for Online Social Networks
Link recommendation, which recommends links to connect unlinked online social network users, is a fundamental social network analytics problem with ample business implications. Existing link recommendation methods tend to recommend similar friends to a user but overlook the user's diversity preference, although social psychology theories suggest the criticality of diversity preference to link recommendation performance. In recommender systems, a field related to link recommendation, a number of diversification methods have been proposed to improve the diversity of recommended items. Nevertheless, diversity preference is distinct from diversity studied by diversification methods. To address these research gaps, we define and operationalize the concept of diversity preference for link recommendation and propose a new link recommendation problem: the diversity preference-aware link recommendation problem. We then analyze key properties of the new link recommendation problem and develop a novel link recommendation method to solve the problem. Using two large-scale online social network data sets, we conduct extensive empirical evaluations to demonstrate the superior performance of our method over representative diversification methods adapted for link recommendation as well as state-of-the-art link recommendation methods.
3,415
null
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Large convolutional neural networks (CNN) can be difficult to train in the differentially private (DP) regime, since the optimization algorithms require a computationally expensive operation, known as the per-sample gradient clipping. We propose an efficient and scalable implementation of this clipping on convolutional layers, termed as the mixed ghost clipping, that significantly eases the private training in terms of both time and space complexities, without affecting the accuracy. The improvement in efficiency is rigorously studied through the first complexity analysis for the mixed ghost clipping and existing DP training algorithms. Extensive experiments on vision classification tasks, with large ResNet, VGG, and Vision Transformers, demonstrate that DP training with mixed ghost clipping adds $1\sim 10\%$ memory overhead and $<2\times$ slowdown to the standard non-private training. Specifically, when training VGG19 on CIFAR10, the mixed ghost clipping is $3\times$ faster than state-of-the-art Opacus library with $18\times$ larger maximum batch size. To emphasize the significance of efficient DP training on convolutional layers, we achieve 96.7\% accuracy on CIFAR10 and 83.0\% on CIFAR100 at $\epsilon=1$ using BEiT, while the previous best results are 94.8\% and 67.4\%, respectively. We open-source a privacy engine (\url{https://github.com/JialinMao/private_CNN}) that implements DP training of CNN with a few lines of code.
3,416
null
A Novel Markov Model for Near-Term Railway Delay Prediction
Predicting the near-future delay with accuracy for trains is momentous for railway operations and passengers' traveling experience. This work aims to design prediction models for train delays based on Netherlands Railway data. We first develop a chi-square test to show that the delay evolution over stations follows a first-order Markov chain. We then propose a delay prediction model based on non-homogeneous Markov chains. To deal with the sparsity of the transition matrices of the Markov chains, we propose a novel matrix recovery approach that relies on Gaussian kernel density estimation. Our numerical tests show that this recovery approach outperforms other heuristic approaches in prediction accuracy. The Markov chain model we propose also shows to be better than other widely-used time series models with respect to both interpretability and prediction accuracy. Moreover, our proposed model does not require a complicated training process, which is capable of handling large-scale forecasting problems.
3,417
null
On the problem of entity matching and its application in automated settlement of receivables
This paper covers automated settlement of receivables in non-governmental organizations. We tackle the problem with entity matching techniques. We consider setup, where base algorithm is used for preliminary ranking of matches, then we apply several novel methods to increase matching quality of base algorithm: score post processing, cascade model and chain model. The methods presented here contribute to automated settlement of receivables, entity matching and multilabel classification in open-world scenario. We evaluate our approach on real world operational data which come from company providing settlement of receivables as a service: proposed methods boost recall from 78% (base model) to >90% at precision 99%.
3,418
null
NS3: Neuro-Symbolic Semantic Code Search
Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries.
3,419
null
Pessimism for Offline Linear Contextual Bandits using $\ell_p$ Confidence Sets
We present a family $\{\hat{\pi}\}_{p\ge 1}$ of pessimistic learning rules for offline learning of linear contextual bandits, relying on confidence sets with respect to different $\ell_p$ norms, where $\hat{\pi}_2$ corresponds to Bellman-consistent pessimism (BCP), while $\hat{\pi}_\infty$ is a novel generalization of lower confidence bound (LCB) to the linear setting. We show that the novel $\hat{\pi}_\infty$ learning rule is, in a sense, adaptively optimal, as it achieves the minimax performance (up to log factors) against all $\ell_q$-constrained problems, and as such it strictly dominates all other predictors in the family, including $\hat{\pi}_2$.
3,420
null
Online Coreference Resolution for Dialogue Processing: Improving Mention-Linking on Real-Time Conversations
This paper suggests a direction of coreference resolution for online decoding on actively generated input such as dialogue, where the model accepts an utterance and its past context, then finds mentions in the current utterance as well as their referents, upon each dialogue turn. A baseline and four incremental-updated models adapted from the mention-linking paradigm are proposed for this new setting, which address different aspects including the singletons, speaker-grounded encoding and cross-turn mention contextualization. Our approach is assessed on three datasets: Friends, OntoNotes, and BOLT. Results show that each aspect brings out steady improvement, and our best models outperform the baseline by over 10%, presenting an effective system for this setting. Further analysis highlights the task characteristics, such as the significance of addressing the mention recall.
3,421
null
Individual Topology Structure of Eye Movement Trajectories
Traditionally, extracting patterns from eye movement data relies on statistics of different macro-events such as fixations and saccades. This requires an additional preprocessing step to separate the eye movement subtypes, often with a number of parameters on which the classification results depend. Besides that, definitions of such macro events are formulated in different ways by different researchers. We propose an application of a new class of features to the quantitative analysis of personal eye movement trajectories structure. This new class of features based on algebraic topology allows extracting patterns from different modalities of gaze such as time series of coordinates and amplitudes, heatmaps, and point clouds in a unified way at all scales from micro to macro. We experimentally demonstrate the competitiveness of the new class of features with the traditional ones and their significant synergy while being used together for the person authentication task on the recently published eye movement trajectories dataset.
3,422
null
MultiBiSage: A Web-Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest
Graph Convolutional Networks (GCN) can efficiently integrate graph structure and node features to learn high-quality node embeddings. These embeddings can then be used for several tasks such as recommendation and search. At Pinterest, we have developed and deployed PinSage, a data-efficient GCN that learns pin embeddings from the Pin-Board graph. The Pin-Board graph contains pin and board entities and the graph captures the pin belongs to a board interaction. However, there exist several entities at Pinterest such as users, idea pins, creators, and there exist heterogeneous interactions among these entities such as add-to-cart, follow, long-click. In this work, we show that training deep learning models on graphs that captures these diverse interactions would result in learning higher-quality pin embeddings than training PinSage on only the Pin-Board graph. To that end, we model the diverse entities and their diverse interactions through multiple bipartite graphs and propose a novel data-efficient MultiBiSage model. MultiBiSage can capture the graph structure of multiple bipartite graphs to learn high-quality pin embeddings. We take this pragmatic approach as it allows us to utilize the existing infrastructure developed at Pinterest -- such as Pixie system that can perform optimized random-walks on billion node graphs, along with existing training and deployment workflows. We train MultiBiSage on six bipartite graphs including our Pin-Board graph. Our offline metrics show that MultiBiSage significantly outperforms the deployed latest version of PinSage on multiple user engagement metrics.
3,423
null
Temporal Domain Generalization with Drift-Aware Dynamic Neural Network
Temporal domain generalization is a promising yet extremely challenging area where the goal is to learn models under temporally changing data distributions and generalize to unseen data distributions following the trends of the change. The advancement of this area is challenged by: 1) characterizing data distribution drift and its impacts on models, 2) expressiveness in tracking the model dynamics, and 3) theoretical guarantee on the performance. To address them, we propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework. Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics. We then build a recurrent graph generation scenario to characterize the dynamic graph-structured neural networks learned across different time points. It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data. In addition, we explore theoretical guarantees of the model performance under the challenging temporal DG setting and provide theoretical analysis, including uncertainty and generalization error. Finally, extensive experiments on several real-world benchmarks with temporal drift demonstrate the effectiveness and efficiency of the proposed method.
3,424
null
Equivariant Mesh Attention Networks
Equivariance to symmetries has proven to be a powerful inductive bias in deep learning research. Recent works on mesh processing have concentrated on various kinds of natural symmetries, including translations, rotations, scaling, node permutations, and gauge transformations. To date, no existing architecture is equivariant to all of these transformations. Moreover, previous implementations have not always applied these symmetry transformations to the test dataset. This inhibits the ability to determine whether the model attains the claimed equivariance properties. In this paper, we present an attention-based architecture for mesh data that is provably equivariant to all transformations mentioned above. We carry out experiments on the FAUST and TOSCA datasets, and apply the mentioned symmetries to the test set only. Our results confirm that our proposed architecture is equivariant, and therefore robust, to these local/global transformations.
3,425
null
Are Graph Neural Networks Really Helpful for Knowledge Graph Completion?
Knowledge graphs (KGs) facilitate a wide variety of applications due to their ability to store relational knowledge applicable to many areas. Despite great efforts invested in creation and maintenance, even the largest KGs are far from complete. Hence, KG completion (KGC) has become one of the most crucial tasks for KG research. Recently, considerable literature in this space has centered around the use of Graph Neural Networks (GNNs) to learn powerful embeddings which leverage topological structures in the KGs. Specifically, dedicated efforts have been made to extend GNNs, which are commonly designed for simple homogeneous and uni-relational graphs, to the KG context which has diverse and multi-relational connections between entities, by designing more complex aggregation schemes over neighboring nodes (crucial to GNN performance) to appropriately leverage multi-relational information. The success of these methods is naturally attributed to the use of GNNs over simpler multi-layer perceptron (MLP) models, owing to their additional aggregation functionality. In this work, we find that surprisingly, simple MLP models are able to achieve comparable performance to GNNs, suggesting that aggregation may not be as crucial as previously believed. With further exploration, we show careful scoring function and loss function design has a much stronger influence on KGC model performance, and aggregation is not practically required. This suggests a conflation of scoring function design, loss function design, and aggregation in prior work, with promising insights regarding the scalability of state-of-the-art KGC methods today, as well as careful attention to more suitable aggregation designs for KGC tasks tomorrow.
3,426
null
Tensor Shape Search for Optimum Data Compression
Various tensor decomposition methods have been proposed for data compression. In real world applications of the tensor decomposition, selecting the tensor shape for the given data poses a challenge and the shape of the tensor may affect the error and the compression ratio. In this work, we study the effect of the tensor shape on the tensor decomposition and propose an optimization model to find an optimum shape for the tensor train (TT) decomposition. The proposed optimization model maximizes the compression ratio of the TT decomposition given an error bound. We implement a genetic algorithm (GA) linked with the TT-SVD algorithm to solve the optimization model. We apply the proposed method for the compression of RGB images. The results demonstrate the effectiveness of the proposed evolutionary tensor shape search for the TT decomposition.
3,427
null
Transformer-based out-of-distribution detection for clinically safe segmentation
In a clinical setting it is essential that deployed image processing systems are robust to the full range of inputs they might encounter and, in particular, do not make confidently wrong predictions. The most popular approach to safe processing is to train networks that can provide a measure of their uncertainty, but these tend to fail for inputs that are far outside the training data distribution. Recently, generative modelling approaches have been proposed as an alternative; these can quantify the likelihood of a data sample explicitly, filtering out any out-of-distribution (OOD) samples before further processing is performed. In this work, we focus on image segmentation and evaluate several approaches to network uncertainty in the far-OOD and near-OOD cases for the task of segmenting haemorrhages in head CTs. We find all of these approaches are unsuitable for safe segmentation as they provide confidently wrong predictions when operating OOD. We propose performing full 3D OOD detection using a VQ-GAN to provide a compressed latent representation of the image and a transformer to estimate the data likelihood. Our approach successfully identifies images in both the far- and near-OOD cases. We find a strong relationship between image likelihood and the quality of a model's segmentation, making this approach viable for filtering images unsuitable for segmentation. To our knowledge, this is the first time transformers have been applied to perform OOD detection on 3D image data.
3,428
null
Symmetry Teleportation for Accelerated Optimization
Existing gradient-based optimization methods update the parameters locally, in a direction that minimizes the loss function. We study a different approach, symmetry teleportation, that allows the parameters to travel a large distance on the loss level set, in order to improve the convergence speed in subsequent steps. Teleportation exploits parameter space symmetries of the optimization problem and transforms parameters while keeping the loss invariant. We derive the loss-invariant group actions for test functions and multi-layer neural networks, and prove a necessary condition of when teleportation improves convergence rate. We also show that our algorithm is closely related to second order methods. Experimentally, we show that teleportation improves the convergence speed of gradient descent and AdaGrad for several optimization problems including test functions, multi-layer regressions, and MNIST classification.
3,429
null
User-Interactive Offline Reinforcement Learning
Offline reinforcement learning algorithms still lack trust in practice due to the risk that the learned policy performs worse than the original policy that generated the dataset or behaves in an unexpected way that is unfamiliar to the user. At the same time, offline RL algorithms are not able to tune their most important hyperparameter - the proximity of the learned policy to the original policy. We propose an algorithm that allows the user to tune this hyperparameter at runtime, thereby overcoming both of the above mentioned issues simultaneously. This allows users to start with the original behavior and grant successively greater deviation, as well as stopping at any time when the policy deteriorates or the behavior is too far from the familiar one.
3,430
null
DProQ: A Gated-Graph Transformer for Protein Complex Structure Assessment
Proteins interact to form complexes to carry out essential biological functions. Computational methods have been developed to predict the structures of protein complexes. However, an important challenge in protein complex structure prediction is to estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. We challenge this significant task with DProQ, which introduces a gated neighborhood-modulating Graph Transformer (GGT) designed to predict the quality of 3D protein complex structures. Notably, we incorporate node and edge gates within a novel Graph Transformer framework to control information flow during graph message passing. We train and evaluate DProQ on four newly-developed datasets that we make publicly available in this work. Our rigorous experiments demonstrate that DProQ achieves state-of-the-art performance in ranking protein complex structures.
3,431
null
CEP3: Community Event Prediction with Neural Point Process on Graph
Many real world applications can be formulated as event forecasting on Continuous Time Dynamic Graphs (CTDGs) where the occurrence of a timed event between two entities is represented as an edge along with its occurrence timestamp in the graphs.However, most previous works approach the problem in compromised settings, either formulating it as a link prediction task on the graph given the event time or a time prediction problem given which event will happen next. In this paper, we propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP) that jointly forecasts multiple link events and their timestamps on communities over a CTDG. Moreover, to scale our model to large graphs, we factorize the jointly event prediction problem into three easier conditional probability modeling problems.To evaluate the effectiveness of our model and the rationale behind such a decomposition, we establish a set of benchmarks and evaluation metrics for this event forecasting task. Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
3,432
null
Learning Meta Representations of One-shot Relations for Temporal Knowledge Graph Link Prediction
Few-shot relational learning for static knowledge graphs (KGs) has drawn greater interest in recent years, while few-shot learning for temporal knowledge graphs (TKGs) has hardly been studied. Compared to KGs, TKGs contain rich temporal information, thus requiring temporal reasoning techniques for modeling. This poses a greater challenge in learning few-shot relations in the temporal context. In this paper, we revisit the previous work related to few-shot relational learning in KGs and extend two existing TKG reasoning tasks, i.e., interpolated and extrapolated link prediction, to the one-shot setting. We propose four new large-scale benchmark datasets and develop a TKG reasoning model for learning one-shot relations in TKGs. Experimental results show that our model can achieve superior performance on all datasets in both interpolation and extrapolation tasks.
3,433
null
A Pilot Study of Relating MYCN-Gene Amplification with Neuroblastoma-Patient CT Scans
Neuroblastoma is one of the most common cancers in infants, and the initial diagnosis of this disease is difficult. At present, the MYCN gene amplification (MNA) status is detected by invasive pathological examination of tumor samples. This is time-consuming and may have a hidden impact on children. To handle this problem, we adopt multiple machine learning (ML) algorithms to predict the presence or absence of MYCN gene amplification. The dataset is composed of retrospective CT images of 23 neuroblastoma patients. Different from previous work, we develop the algorithm without manually-segmented primary tumors which is time-consuming and not practical. Instead, we only need the coordinate of the center point and the number of tumor slices given by a subspecialty-trained pediatric radiologist. Specifically, CNN-based method uses pre-trained convolutional neural network, and radiomics-based method extracts radiomics features. Our results show that CNN-based method outperforms the radiomics-based method.
3,434
null
Lightweight Human Pose Estimation Using Heatmap-Weighting Loss
Recent research on human pose estimation exploits complex structures to improve performance on benchmark datasets, ignoring the resource overhead and inference speed when the model is actually deployed. In this paper, we lighten the computation cost and parameters of the deconvolution head network in SimpleBaseline and introduce an attention mechanism that utilizes original, inter-level, and intra-level information to intensify the accuracy. Additionally, we propose a novel loss function called heatmap weighting loss, which generates weights for each pixel on the heatmap that makes the model more focused on keypoints. Experiments demonstrate our method achieves a balance between performance, resource volume, and inference speed. Specifically, our method can achieve 65.3 AP score on COCO test-dev, while the inference speed is 55 FPS and 18 FPS on the mobile GPU and CPU, respectively.
3,435
null
Calibration of Natural Language Understanding Models with Venn--ABERS Predictors
Transformers, currently the state-of-the-art in natural language understanding (NLU) tasks, are prone to generate uncalibrated predictions or extreme probabilities, making the process of taking different decisions based on their output relatively difficult. In this paper we propose to build several inductive Venn--ABERS predictors (IVAP), which are guaranteed to be well calibrated under minimal assumptions, based on a selection of pre-trained transformers. We test their performance over a set of diverse NLU tasks and show that they are capable of producing well-calibrated probabilistic predictions that are uniformly spread over the [0,1] interval -- all while retaining the original model's predictive accuracy.
3,436
null
Evaluating Performance of Machine Learning Models for Diabetic Sensorimotor Polyneuropathy Severity Classification using Biomechanical Signals during Gait
Diabetic sensorimotor polyneuropathy (DSPN) is one of the prevalent forms of neuropathy affected by diabetic patients that involves alterations in biomechanical changes in human gait. In literature, for the last 50 years, researchers are trying to observe the biomechanical changes due to DSPN by studying muscle electromyography (EMG), and ground reaction forces (GRF). However, the literature is contradictory. In such a scenario, we are proposing to use Machine learning techniques to identify DSPN patients by using EMG, and GRF data. We have collected a dataset consists of three lower limb muscles EMG (tibialis anterior (TA), vastus lateralis (VL), gastrocnemius medialis (GM) and 3-dimensional GRF components (GRFx, GRFy, and GRFz). Raw EMG and GRF signals were preprocessed, and a newly proposed feature extraction technique scheme from literature was applied to extract the best features from the signals. The extracted feature list was ranked using Relief feature ranking techniques, and highly correlated features were removed. We have trained different ML models to find out the best-performing model and optimized that model. We trained the optimized ML models for different combinations of muscles and GRF components features, and the performance matrix was evaluated. This study has found ensemble classifier model was performing in identifying DSPN Severity, and we optimized it before training. For EMG analysis, we have found the best accuracy of 92.89% using the Top 14 features for features from GL, VL and TA muscles combined. In the GRF analysis, the model showed 94.78% accuracy by using the Top 15 features for the feature combinations extracted from GRFx, GRFy and GRFz signals. The performance of ML-based DSPN severity classification models, improved significantly, indicating their reliability in DSPN severity classification, for biomechanical data.
3,437
null
Non-Autoregressive Neural Machine Translation: A Call for Clarity
Non-autoregressive approaches aim to improve the inference speed of translation models by only requiring a single forward pass to generate the output sequence instead of iteratively producing each predicted token. Consequently, their translation quality still tends to be inferior to their autoregressive counterparts due to several issues involving output token interdependence. In this work, we take a step back and revisit several techniques that have been proposed for improving non-autoregressive translation models and compare their combined translation quality and speed implications under third-party testing environments. We provide novel insights for establishing strong baselines using length prediction or CTC-based architecture variants and contribute standardized BLEU, chrF++, and TER scores using sacreBLEU on four translation tasks, which crucially have been missing as inconsistencies in the use of tokenized BLEU lead to deviations of up to 1.7 BLEU points. Our open-sourced code is integrated into fairseq for reproducibility.
3,438
null
KGNN: Harnessing Kernel-based Networks for Semi-supervised Graph Classification
This paper studies semi-supervised graph classification, which is an important problem with various applications in social network analysis and bioinformatics. This problem is typically solved by using graph neural networks (GNNs), which yet rely on a large number of labeled graphs for training and are unable to leverage unlabeled graphs. We address the limitations by proposing the Kernel-based Graph Neural Network (KGNN). A KGNN consists of a GNN-based network as well as a kernel-based network parameterized by a memory network. The GNN-based network performs classification through learning graph representations to implicitly capture the similarity between query graphs and labeled graphs, while the kernel-based network uses graph kernels to explicitly compare each query graph with all the labeled graphs stored in a memory for prediction. The two networks are motivated from complementary perspectives, and thus combing them allows KGNN to use labeled graphs more effectively. We jointly train the two networks by maximizing their agreement on unlabeled graphs via posterior regularization, so that the unlabeled graphs serve as a bridge to let both networks mutually enhance each other. Experiments on a range of well-known benchmark datasets demonstrate that KGNN achieves impressive performance over competitive baselines.
3,439
null
Neuroevolutionary Feature Representations for Causal Inference
Within the field of causal inference, we consider the problem of estimating heterogeneous treatment effects from data. We propose and validate a novel approach for learning feature representations to aid the estimation of the conditional average treatment effect or CATE. Our method focuses on an intermediate layer in a neural network trained to predict the outcome from the features. In contrast to previous approaches that encourage the distribution of representations to be treatment-invariant, we leverage a genetic algorithm that optimizes over representations useful for predicting the outcome to select those less useful for predicting the treatment. This allows us to retain information within the features useful for predicting outcome even if that information may be related to treatment assignment. We validate our method on synthetic examples and illustrate its use on a real life dataset.
3,440
null
Principled Knowledge Extrapolation with GANs
Human can extrapolate well, generalize daily knowledge into unseen scenarios, raise and answer counterfactual questions. To imitate this ability via generative models, previous works have extensively studied explicitly encoding Structural Causal Models (SCMs) into architectures of generator networks. This methodology, however, limits the flexibility of the generator as they must be carefully crafted to follow the causal graph, and demands a ground truth SCM with strong ignorability assumption as prior, which is a nontrivial assumption in many real scenarios. Thus, many current causal GAN methods fail to generate high fidelity counterfactual results as they cannot easily leverage state-of-the-art generative models. In this paper, we propose to study counterfactual synthesis from a new perspective of knowledge extrapolation, where a given knowledge dimension of the data distribution is extrapolated, but the remaining knowledge is kept indistinguishable from the original distribution. We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem, and a novel principal knowledge descent method can efficiently estimate the extrapolated distribution through the adversarial game. Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
3,441
null
Automated machine learning: AI-driven decision making in business analytics
The realization that AI-driven decision-making is indispensable in todays fast-paced and ultra-competitive marketplace has raised interest in industrial machine learning (ML) applications significantly. The current demand for analytics experts vastly exceeds the supply. One solution to this problem is to increase the user-friendliness of ML frameworks to make them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt to solve the problem of expertise by providing fully automated off-the-shelf solutions for model choice and hyperparameter tuning. This paper analyzed the potential of AutoML for applications within business analytics, which could help to increase the adoption rate of ML across all industries. The H2O AutoML framework was benchmarked against a manually tuned stacked ML model on three real-world datasets to test its performance, robustness, and reliability. The manually tuned ML model could reach a performance advantage in all three case studies used in the experiment. Nevertheless, the H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable results, which come close to a professionally tuned ML model. The H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping with the potential to shorten development and deployment cycles. It can also bridge the existing gap between supply and demand for ML experts and is a big step towards fully automated decisions in business analytics.
3,442
null
Knowledge Distillation from A Stronger Teacher
Unlike existing knowledge distillation methods focus on the baseline settings, where the teacher models and training strategies are not that strong and competing as state-of-the-art approaches, this paper presents a method dubbed DIST to distill better from a stronger teacher. We empirically find that the discrepancy of predictions between the student and a stronger teacher may tend to be fairly severer. As a result, the exact match of predictions in KL divergence would disturb the training and make existing methods perform poorly. In this paper, we show that simply preserving the relations between the predictions of teacher and student would suffice, and propose a correlation-based loss to capture the intrinsic inter-class relations from the teacher explicitly. Besides, considering that different instances have different semantic similarities to each class, we also extend this relational match to the intra-class level. Our method is simple yet practical, and extensive experiments demonstrate that it adapts well to various architectures, model sizes and training strategies, and can achieve state-of-the-art performance consistently on image classification, object detection, and semantic segmentation tasks. Code is available at: https://github.com/hunto/DIST_KD .
3,443
null
Deep Learning vs. Gradient Boosting: Benchmarking state-of-the-art machine learning algorithms for credit scoring
Artificial intelligence (AI) and machine learning (ML) have become vital to remain competitive for financial services companies around the globe. The two models currently competing for the pole position in credit risk management are deep learning (DL) and gradient boosting machines (GBM). This paper benchmarked those two algorithms in the context of credit scoring using three distinct datasets with different features to account for the reality that model choice/power is often dependent on the underlying characteristics of the dataset. The experiment has shown that GBM tends to be more powerful than DL and has also the advantage of speed due to lower computational requirements. This makes GBM the winner and choice for credit scoring. However, it was also shown that the outperformance of GBM is not always guaranteed and ultimately the concrete problem scenario or dataset will determine the final model choice. Overall, based on this study both algorithms can be considered state-of-the-art for binary classification tasks on structured datasets, while GBM should be the go-to solution for most problem scenarios due to easier use, significantly faster training time, and superior accuracy.
3,444
null
Visualizing CoAtNet Predictions for Aiding Melanoma Detection
Melanoma is considered to be the most aggressive form of skin cancer. Due to the similar shape of malignant and benign cancerous lesions, doctors spend considerably more time when diagnosing these findings. At present, the evaluation of malignancy is performed primarily by invasive histological examination of the suspicious lesion. Developing an accurate classifier for early and efficient detection can minimize and monitor the harmful effects of skin cancer and increase patient survival rates. This paper proposes a multi-class classification task using the CoAtNet architecture, a hybrid model that combines the depthwise convolution matrix operation of traditional convolutional neural networks with the strengths of Transformer models and self-attention mechanics to achieve better generalization and capacity. The proposed multi-class classifier achieves an overall precision of 0.901, recall 0.895, and AP 0.923, indicating high performance compared to other state-of-the-art networks.
3,445
null
Travel Time, Distance and Costs Optimization for Paratransit Operations using Graph Convolutional Neural Network
The provision of paratransit services is one option to meet the transportation needs of Vulnerable Road Users (VRUs). Like any other means of transportation, paratransit has obstacles such as high operational costs and longer trip times. As a result, customers are dissatisfied, and paratransit operators have a low approval rating. Researchers have undertaken various studies over the years to better understand the travel behaviors of paratransit customers and how they are operated. According to the findings of these researches, paratransit operators confront the challenge of determining the optimal route for their trips in order to save travel time. Depending on the nature of the challenge, most research used different optimization techniques to solve these routing problems. As a result, the goal of this study is to use Graph Convolutional Neural Networks (GCNs) to assist paratransit operators in researching various operational scenarios in a strategic setting in order to optimize routing, minimize operating costs and minimize their users' travel time. The study was carried out by using a randomized simulated dataset to help determine the decision to make in terms of fleet composition and capacity under different situations. For the various scenarios investigated, the GCN assisted in determining the minimum optimal gap.
3,446
null
Deeper vs Wider: A Revisit of Transformer Configuration
Transformer-based models have delivered impressive results on many tasks, particularly vision and language tasks. In many model training situations, conventional configurations are typically adopted. For example, we often set the base model with hidden dimensions (i.e. model width) to be 768 and the number of transformer layers (i.e. model depth) to be 12. In this paper, we revisit these conventional configurations. Through theoretical analysis and experimental evaluation, we show that the masked autoencoder is effective in alleviating the over-smoothing issue in deep transformer training. Based on this finding, we propose Bamboo, an idea of using deeper and narrower transformer configurations, for masked autoencoder training. On ImageNet, with such a simple change in configuration, re-designed model achieves 87.1% top-1 accuracy and outperforms SoTA models like MAE and BEiT. On language tasks, re-designed model outperforms BERT with default setting by 1.1 points on average, on GLUE datasets.
3,447
null
How to Find Actionable Static Analysis Warnings
Automatically generated static code warnings suffer from a large number of false alarms. Hence, developers only take action on a small percent of those warnings. To better predict which static code warnings should not be ignored, we suggest that analysts need to look deeper into their algorithms to find choices that better improve the particulars of their specific problem. Specifically, we show here that effective predictors of such warnings can be created by methods that locally adjust the decision boundary (between actionable warnings and others). These methods yield a new high water-mark for recognizing actionable static code warnings. For eight open-source Java projects (CASSANDRA, JMETER, COMMONS, LUCENE-SOLR, ANT, TOMCAT, DERBY) we achieve perfect test results on 4/8 datasets and, overall, a median AUC (area under the true negatives, true positives curve) of 92\%.
3,448
null
eBIM-GNN : Fast and Scalable energy analysis through BIMs and Graph Neural Networks
Building Information Modeling has been used to analyze as well as increase the energy efficiency of the buildings. It has shown significant promise in existing buildings by deconstruction and retrofitting. Current cities which were built without the knowledge of energy savings are now demanding better ways to become smart in energy utilization. However, the existing methods of generating BIMs work on building basis. Hence they are slow and expensive when we scale to a larger community or even entire towns or cities. In this paper, we propose a method to creation of prototype buildings that enable us to match and generate statistics very efficiently. Our method suggests better energy efficient prototypes for the existing buildings. The existing buildings are identified and located in the 3D point cloud. We perform experiments on synthetic dataset to demonstrate the working of our approach.
3,449
null
Theoretically Accurate Regularization Technique for Matrix Factorization based Recommender Systems
Regularization is a popular technique to solve the overfitting problem of machine learning algorithms. Most regularization technique relies on parameter selection of the regularization coefficient. Plug-in method and cross-validation approach are two most common parameter selection approaches for regression methods such as Ridge Regression, Lasso Regression and Kernel Regression. Matrix factorization based recommendation system also has heavy reliance on the regularization technique. Most people select a single scalar value to regularize the user feature vector and item feature vector independently or collectively. In this paper, we prove that such approach of selecting regularization coefficient is invalid, and we provide a theoretically accurate method that outperforms the most widely used approach in both accuracy and fairness metrics.
3,450
null
LSTM-Based Adaptive Vehicle Position Control for Dynamic Wireless Charging
Dynamic wireless charging (DWC) is an emerging technology that allows electric vehicles (EVs) to be wirelessly charged while in motion. It is gaining significant momentum as it can potentially address the range limitation issue for EVs. However, due to significant power loss caused by wireless power transfer, improving charging efficiency remains as a major challenge for DWC systems. This paper presents the first LSTM-based vehicle motion control system for DWC designed to maximize charging efficiency. The dynamics of the electromagnetic field generated by the transmitter coils of a DWC system are modeled based on a multi-layer LSTM. The LSTM model is used to make a prediction of the lateral position where the electromagnetic strength is expected to be maximal and to control the EV motion accordingly to optimize charging efficiency. Simulations were conducted to demonstrate that our LSTM-based approach achieves by up to 162.3% higher charging efficiency compared with state-of-the-art vehicle motion control systems focused on keeping an EV in the center of lane.
3,451
null
Mapping Emulation for Knowledge Distillation
This paper formalizes the source-blind knowledge distillation problem that is essential to federated learning. A new geometric perspective is presented to view such a problem as aligning generated distributions between the teacher and student. With its guidance, a new architecture MEKD is proposed to emulate the inverse mapping through generative adversarial training. Unlike mimicking logits and aligning logit distributions, reconstructing the mapping from classifier-logits has a geometric intuition of decreasing empirical distances, and theoretical guarantees using the universal function approximation and optimal mass transportation theories. A new algorithm is also proposed to train the student model that reaches the teacher's performance source-blindly. On various benchmarks, MEKD outperforms existing source-blind KD methods, explainable with ablation studies and visualized results.
3,452
null
Scaling Laws and Interpretability of Learning from Repeated Data
Recent large language models have been trained on vast datasets, but also often on repeated data, either intentionally for the purpose of upweighting higher quality data, or unintentionally because data deduplication is not perfect and the model is exposed to repeated data at the sentence, paragraph, or document level. Some works have reported substantial negative performance effects of this repeated data. In this paper we attempt to study repeated data systematically and to understand its effects mechanistically. To do this, we train a family of models where most of the data is unique but a small fraction of it is repeated many times. We find a strong double descent phenomenon, in which repeated data can lead test loss to increase midway through training. A predictable range of repetition frequency leads to surprisingly severe degradation in performance. For instance, performance of an 800M parameter model can be degraded to that of a 2x smaller model (400M params) by repeating 0.1% of the data 100 times, despite the other 90% of the training tokens remaining unique. We suspect there is a range in the middle where the data can be memorized and doing so consumes a large fraction of the model's capacity, and this may be where the peak of degradation occurs. Finally, we connect these observations to recent mechanistic interpretability work - attempting to reverse engineer the detailed computations performed by the model - by showing that data repetition disproportionately damages copying and internal structures associated with generalization, such as induction heads, providing a possible mechanism for the shift from generalization to memorization. Taken together, these results provide a hypothesis for why repeating a relatively small fraction of data in large language models could lead to disproportionately large harms to performance.
3,453
null
Nuclear Norm Maximization Based Curiosity-Driven Learning
To handle the sparsity of the extrinsic rewards in reinforcement learning, researchers have proposed intrinsic reward which enables the agent to learn the skills that might come in handy for pursuing the rewards in the future, such as encouraging the agent to visit novel states. However, the intrinsic reward can be noisy due to the undesirable environment's stochasticity and directly applying the noisy value predictions to supervise the policy is detrimental to improve the learning performance and efficiency. Moreover, many previous studies employ $\ell^2$ norm or variance to measure the exploration novelty, which will amplify the noise due to the square operation. In this paper, we address aforementioned challenges by proposing a novel curiosity leveraging the nuclear norm maximization (NNM), which can quantify the novelty of exploring the environment more accurately while providing high-tolerance to the noise and outliers. We conduct extensive experiments across a variety of benchmark environments and the results suggest that NNM can provide state-of-the-art performance compared with previous curiosity methods. On 26 Atari games subset, when trained with only intrinsic reward, NNM achieves a human-normalized score of 1.09, which doubles that of competitive intrinsic rewards-based approaches. Our code will be released publicly to enhance the reproducibility.
3,454
null
Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation
In this letter, we propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix. By representing the limited amount of supervisory information as a pairwise constraint matrix, we observe that the ideal affinity matrix for clustering shares the same low-rank structure as the ideal pairwise constraint matrix. Thus, we stack the two matrices into a 3-D tensor, where a global low-rank constraint is imposed to promote the affinity matrix construction and augment the initial pairwise constraints synchronously. Besides, we use the local geometry structure of input samples to complement the global low-rank prior to achieve better affinity matrix learning. The proposed model is formulated as a Laplacian graph regularized convex low-rank tensor representation problem, which is further solved with an alternative iterative algorithm. In addition, we propose to refine the affinity matrix with the augmented pairwise constraints. Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods. The code is publicly available at https://github.com/GuanxingLu/Subspace-Clustering.
3,455
null
DeepStruct: Pretraining of Language Models for Structure Prediction
We introduce a method for improving the structural understanding abilities of language models. Unlike previous approaches that finetune the models with task-specific augmentation, we pretrain language models on a collection of task-agnostic corpora to generate structures from text. Our structure pretraining enables zero-shot transfer of the learned knowledge that models have about the structure tasks. We study the performance of this approach on 28 datasets, spanning 10 structure prediction tasks including open information extraction, joint entity and relation extraction, named entity recognition, relation classification, semantic role labeling, event extraction, coreference resolution, factual probe, intent detection, and dialogue state tracking. We further enhance the pretraining with the task-specific training sets. We show that a 10B parameter language model transfers non-trivially to most tasks and obtains state-of-the-art performance on 21 of 28 datasets that we evaluate.
3,456
null
De novo design of protein target specific scaffold-based Inhibitors via Reinforcement Learning
Efficient design and discovery of target-driven molecules is a critical step in facilitating lead optimization in drug discovery. Current approaches to develop molecules for a target protein are intuition-driven, hampered by slow iterative design-test cycles due to computational challenges in utilizing 3D structural data, and ultimately limited by the expertise of the chemist - leading to bottlenecks in molecular design. In this contribution, we propose a novel framework, called 3D-MolGNN$_{RL}$, coupling reinforcement learning (RL) to a deep generative model based on 3D-Scaffold to generate target candidates specific to a protein building up atom by atom from the starting core scaffold. 3D-MolGNN$_{RL}$ provides an efficient way to optimize key features by multi-objective reward function within a protein pocket using parallel graph neural network models. The agent learns to build molecules in 3D space while optimizing the activity, binding affinity, potency, and synthetic accessibility of the candidates generated for infectious disease protein targets. Our approach can serve as an interpretable artificial intelligence (AI) tool for lead optimization with optimized activity, potency, and biophysical properties.
3,457
null
Retrieval-Augmented Multilingual Keyphrase Generation with Retriever-Generator Iterative Training
Keyphrase generation is the task of automatically predicting keyphrases given a piece of long text. Despite its recent flourishing, keyphrase generation on non-English languages haven't been vastly investigated. In this paper, we call attention to a new setting named multilingual keyphrase generation and we contribute two new datasets, EcommerceMKP and AcademicMKP, covering six languages. Technically, we propose a retrieval-augmented method for multilingual keyphrase generation to mitigate the data shortage problem in non-English languages. The retrieval-augmented model leverages keyphrase annotations in English datasets to facilitate generating keyphrases in low-resource languages. Given a non-English passage, a cross-lingual dense passage retrieval module finds relevant English passages. Then the associated English keyphrases serve as external knowledge for keyphrase generation in the current language. Moreover, we develop a retriever-generator iterative training algorithm to mine pseudo parallel passage pairs to strengthen the cross-lingual passage retriever. Comprehensive experiments and ablations show that the proposed approach outperforms all baselines.
3,458
null
Masterful: A Training Platform for Computer Vision Models
Masterful is a software platform to train deep learning computer vision models. Data and model architecture are inputs to the platform, and the output is a trained model. The platform's primary goal is to maximize a trained model's accuracy, which it achieves through its regularization and semi-supervised learning implementations. The platform's secondary goal is to minimize the amount of manual experimentation typically required to tune training hyperparameters, which it achieves via multiple metalearning algorithms which are custom built to control the platform's regularization and semi-supervised learning implementations. The platform's tertiary goal is to minimize the computing resources required to train a model, which it achieves via another set of metalearning algorithms which are purpose built to control Tensorflow's optimization implementations. The platform builds on top of Tensorflow's data management, architecture, automatic differentiation, and optimization implementations.
3,459
null
A Survey on Physiological Signal Based Emotion Recognition
Physiological Signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition such as preprocessing, feature extraction, and classification. While these are important steps, such steps are required for any signal processing application. Emotion recognition poses its own set of challenges that are very important to address for a robust system. Thus, to bridge the gap in the existing literature, in this paper, we review the effect of inter-subject data variance on emotion recognition, important data annotation techniques for emotion recognition and their comparison, data preprocessing techniques for each physiological signal, data splitting techniques for improving the generalization of emotion recognition models and different multimodal fusion techniques and their comparison. Finally we discuss key challenges and future directions in this field.
3,460
null
Action Recognition for American Sign Language
In this research, we present our findings to recognize American Sign Language from series of hand gestures. While most researches in literature focus only on static handshapes, our work target dynamic hand gestures. Since dynamic signs dataset are very few, we collect an initial dataset of 150 videos for 10 signs and an extension of 225 videos for 15 signs. We apply transfer learning models in combination with deep neural networks and background subtraction for videos in different temporal settings. Our primarily results show that we can get an accuracy of $0.86$ and $0.71$ using DenseNet201, LSTM with video sequence of 12 frames accordingly.
3,461
null
Robust Sensible Adversarial Learning of Deep Neural Networks for Image Classification
The idea of robustness is central and critical to modern statistical analysis. However, despite the recent advances of deep neural networks (DNNs), many studies have shown that DNNs are vulnerable to adversarial attacks. Making imperceptible changes to an image can cause DNN models to make the wrong classification with high confidence, such as classifying a benign mole as a malignant tumor and a stop sign as a speed limit sign. The trade-off between robustness and standard accuracy is common for DNN models. In this paper, we introduce sensible adversarial learning and demonstrate the synergistic effect between pursuits of standard natural accuracy and robustness. Specifically, we define a sensible adversary which is useful for learning a robust model while keeping high natural accuracy. We theoretically establish that the Bayes classifier is the most robust multi-class classifier with the 0-1 loss under sensible adversarial learning. We propose a novel and efficient algorithm that trains a robust model using implicit loss truncation. We apply sensible adversarial learning for large-scale image classification to a handwritten digital image dataset called MNIST and an object recognition colored image dataset called CIFAR10. We have performed an extensive comparative study to compare our method with other competitive methods. Our experiments empirically demonstrate that our method is not sensitive to its hyperparameter and does not collapse even with a small model capacity while promoting robustness against various attacks and keeping high natural accuracy.
3,462
null
PSO-Convolutional Neural Networks with Heterogeneous Learning Rate
Convolutional Neural Networks (ConvNets or CNNs) have been candidly deployed in the scope of computer vision and related fields. Nevertheless, the dynamics of training of these neural networks lie still elusive: it is hard and computationally expensive to train them. A myriad of architectures and training strategies have been proposed to overcome this challenge and address several problems in image processing such as speech, image and action recognition as well as object detection. In this article, we propose a novel Particle Swarm Optimization (PSO) based training for ConvNets. In such framework, the vector of weights of each ConvNet is typically cast as the position of a particle in phase space whereby PSO collaborative dynamics intertwines with Stochastic Gradient Descent (SGD) in order to boost training performance and generalization. Our approach goes as follows: i) [regular phase] each ConvNet is trained independently via SGD; ii) [collaborative phase] ConvNets share among themselves their current vector of weights (or particle-position) along with their gradient estimates of the Loss function. Distinct step sizes are coined by distinct ConvNets. By properly blending ConvNets with large (possibly random) step-sizes along with more conservative ones, we propose an algorithm with competitive performance with respect to other PSO-based approaches on Cifar-10 (accuracy of 98.31%). These accuracy levels are obtained by resorting to only four ConvNets -- such results are expected to scale with the number of collaborative ConvNets accordingly. We make our source codes available for download https://github.com/leonlha/PSO-ConvNet-Dynamics.
3,463
null
E2FL: Equal and Equitable Federated Learning
Federated Learning (FL) enables data owners to train a shared global model without sharing their private data. Unfortunately, FL is susceptible to an intrinsic fairness issue: due to heterogeneity in clients' data distributions, the final trained model can give disproportionate advantages across the participating clients. In this work, we present Equal and Equitable Federated Learning (E2FL) to produce fair federated learning models by preserving two main fairness properties, equity and equality, concurrently. We validate the efficiency and fairness of E2FL in different real-world FL applications, and show that E2FL outperforms existing baselines in terms of the resulting efficiency, fairness of different groups, and fairness among all individual clients.
3,464
null
A Hybrid Model for Forecasting Short-Term Electricity Demand
Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator. A key factor in predicting demand is weather conditions, with forecasts published every hour. We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and finally LSTM encoder-decoders to achieve higher accuracy with respect to mainstream models from the literature. HYENA decreased MAPE loss by 16\% and RMSE loss by 10\% over the best available benchmark model, thus establishing a new state of the art for the UK electric load (and price) forecasting.
3,465
null
Neur2SP: Neural Two-Stage Stochastic Programming
Stochastic programming is a powerful modeling framework for decision-making under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs), the most widely applied and studied class of stochastic programming models. Solving 2SPs exactly requires evaluation of an expected value function that is computationally intractable. Additionally, having a mixed-integer linear program (MIP) or a nonlinear program (NLP) in the second stage further aggravates the problem difficulty. In such cases, solving them can be prohibitively expensive even if specialized algorithms that exploit problem structure are employed. Finding high-quality (first-stage) solutions -- without leveraging problem structure -- can be crucial in such settings. We develop Neur2SP, a new method that approximates the expected value function via a neural network to obtain a surrogate model that can be solved more efficiently than the traditional extensive formulation approach. Moreover, Neur2SP makes no assumptions about the problem structure, in particular about the second-stage problem, and can be implemented using an off-the-shelf solver and open-source libraries. Our extensive computational experiments on benchmark 2SP datasets from four problem classes with different structures (containing MIP and NLP second-stage problems) show the efficiency (time) and efficacy (solution quality) of Neur2SP. Specifically, the proposed method takes less than 1.66 seconds across all problems, achieving high-quality solutions even as the number of scenarios increases, an ideal property that is difficult to have for traditional 2SP solution techniques. Namely, the most generic baseline method typically requires minutes to hours to find solutions of comparable quality.
3,466
null
Quantum Kerr Learning
Quantum machine learning is a rapidly evolving area that could facilitate important applications for quantum computing and significantly impact data science. In our work, we argue that a single Kerr mode might provide some extra quantum enhancements when using quantum kernel methods based on various reasons from complexity theory and physics. Furthermore, we establish an experimental protocol, which we call \emph{quantum Kerr learning} based on circuit QED. A detailed study using the kernel method, neural tangent kernel theory, first-order perturbation theory of the Kerr non-linearity, and non-perturbative numerical simulations, shows quantum enhancements could happen in terms of the convergence time and the generalization error, while explicit protocols are also constructed for higher-dimensional input data.
3,467
null
Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced Dataset and Benchmark
The paper introduces a new dataset to assess the performance of machine learning algorithms in the prediction of the seriousness of injury in a traffic accident. The dataset is created by aggregating publicly available datasets from the UK Department for Transport, which are drastically imbalanced with missing attributes sometimes approaching 50\% of the overall data dimensionality. The paper presents the data analysis pipeline starting from the publicly available data of road traffic accidents and ending with predictors of possible injuries and their degree of severity. It addresses the huge incompleteness of public data with a MissForest model. The paper also introduces two baseline approaches to create injury predictors: a supervised artificial neural network and a reinforcement learning model. The dataset can potentially stimulate diverse aspects of machine learning research on imbalanced datasets and the two approaches can be used as baseline references when researchers test more advanced learning algorithms in this area.
3,468
null
How Useful are Gradients for OOD Detection Really?
One critical challenge in deploying highly performant machine learning models in real-life applications is out of distribution (OOD) detection. Given a predictive model which is accurate on in distribution (ID) data, an OOD detection system will further equip the model with the option to defer prediction when the input is novel and the model has little confidence in prediction. There has been some recent interest in utilizing the gradient information in pre-trained models for OOD detection. While these methods have shown competitive performance, there are misconceptions about the true mechanism underlying them, which conflate their performance with the necessity of gradients. In this work, we provide an in-depth analysis and comparison of gradient based methods and elucidate the key components that warrant their OOD detection performance. We further propose a general, non-gradient based method of OOD detection which improves over previous baselines in both performance and computational efficiency.
3,469
null
Dynamic Ensemble Selection Using Fuzzy Hyperboxes
Most dynamic ensemble selection (DES) methods utilize the K-Nearest Neighbors (KNN) algorithm to estimate the competence of classifiers in a small region surrounding the query sample. However, KNN is very sensitive to the local distribution of the data. Moreover, it also has a high computational cost as it requires storing the whole data in memory and performing multiple distance calculations during inference. Hence, the dependency on the KNN algorithm ends up limiting the use of DES techniques for large-scale problems. This paper presents a new DES framework based on fuzzy hyperboxes called FH-DES. Each hyperbox can represent a group of samples using only two data points (Min and Max corners). Thus, the hyperbox-based system will have less computational complexity than other dynamic selection methods. In addition, despite the KNN-based approaches, the fuzzy hyperbox is not sensitive to the local data distribution. Therefore, the local distribution of the samples does not affect the system's performance. Furthermore, in this research, for the first time, misclassified samples are used to estimate the competence of the classifiers, which has not been observed in previous fusion approaches. Experimental results demonstrate that the proposed method has high classification accuracy while having a lower complexity when compared with the state-of-the-art dynamic selection methods. The implemented code is available at https://github.com/redavtalab/FH-DES_IJCNN.git.
3,470
null
QADAM: Quantization-Aware DNN Accelerator Modeling for Pareto-Optimality
As the machine learning and systems communities strive to achieve higher energy-efficiency through custom deep neural network (DNN) accelerators, varied bit precision or quantization levels, there is a need for design space exploration frameworks that incorporate quantization-aware processing elements (PE) into the accelerator design space while having accurate and fast power, performance, and area models. In this work, we present QADAM, a highly parameterized quantization-aware power, performance, and area modeling framework for DNN accelerators. Our framework can facilitate future research on design space exploration and Pareto-efficiency of DNN accelerators for various design choices such as bit precision, PE type, scratchpad sizes of PEs, global buffer size, number of total PEs, and DNN configurations. Our results show that different bit precisions and PE types lead to significant differences in terms of performance per area and energy. Specifically, our framework identifies a wide range of design points where performance per area and energy varies more than 5x and 35x, respectively. We also show that the proposed lightweight processing elements (LightPEs) consistently achieve Pareto-optimal results in terms of accuracy and hardware-efficiency. With the proposed framework, we show that LightPEs achieve on par accuracy results and up to 5.7x more performance per area and energy improvement when compared to the best INT16 based design.
3,471
null
Towards Better Understanding Attribution Methods
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
3,472
null
Learning Dense Reward with Temporal Variant Self-Supervision
Rewards play an essential role in reinforcement learning. In contrast to rule-based game environments with well-defined reward functions, complex real-world robotic applications, such as contact-rich manipulation, lack explicit and informative descriptions that can directly be used as a reward. Previous effort has shown that it is possible to algorithmically extract dense rewards directly from multimodal observations. In this paper, we aim to extend this effort by proposing a more efficient and robust way of sampling and learning. In particular, our sampling approach utilizes temporal variance to simulate the fluctuating state and action distribution of a manipulation task. We then proposed a network architecture for self-supervised learning to better incorporate temporal information in latent representations. We tested our approach in two experimental setups, namely joint-assembly and door-opening. Preliminary results show that our approach is effective and efficient in learning dense rewards, and the learned rewards lead to faster convergence than baselines.
3,473
null
Using machine learning on new feature sets extracted from 3D models of broken animal bones to classify fragments according to break agent
Distinguishing agents of bone modification at paleoanthropological sites is at the root of much of the research directed at understanding early hominin exploitation of large animal resources and the effects those subsistence behaviors had on early hominin evolution. However, current methods, particularly in the area of fracture pattern analysis as a signal of marrow exploitation, have failed to overcome equifinality. Furthermore, researchers debate the replicability and validity of current and emerging methods for analyzing bone modifications. Here we present a new approach to fracture pattern analysis aimed at distinguishing bone fragments resulting from hominin bone breakage and those produced by carnivores. This new method uses 3D models of fragmentary bone to extract a much richer dataset that is more transparent and replicable than feature sets previously used in fracture pattern analysis. Supervised machine learning algorithms are properly used to classify bone fragments according to agent of breakage with average mean accuracy of 77% across tests.
3,474
null
Learning Geometrically Disentangled Representations of Protein Folding Simulations
Massive molecular simulations of drug-target proteins have been used as a tool to understand disease mechanism and develop therapeutics. This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein, e.g. SARS-CoV-2 Spike protein, obtained from computationally expensive molecular simulations. Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules, as well as efficient generation of protein conformations that can serve as an complement of a molecular simulation engine. Specifically, we present a geometric autoencoder framework to learn separate latent space encodings of the intrinsic and extrinsic geometries of the protein structure. For this purpose, the proposed Protein Geometric AutoEncoder (ProGAE) model is trained on the protein contact map and the orientation of the backbone bonds of the protein. Using ProGAE latent embeddings, we reconstruct and generate the conformational ensemble of a protein at or near the experimental resolution, while gaining better interpretability and controllability in term of protein structure generation from the learned latent space. Additionally, ProGAE models are transferable to a different state of the same protein or to a new protein of different size, where only the dense layer decoding from the latent representation needs to be retrained. Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations, charting the path toward scalable and improved approaches for analyzing and enhancing high-cost simulations of drug-target proteins.
3,475
null
ARLO: A Framework for Automated Reinforcement Learning
Automated Reinforcement Learning (AutoRL) is a relatively new area of research that is gaining increasing attention. The objective of AutoRL consists in easing the employment of Reinforcement Learning (RL) techniques for the broader public by alleviating some of its main challenges, including data collection, algorithm selection, and hyper-parameter tuning. In this work, we propose a general and flexible framework, namely ARLO: Automated Reinforcement Learning Optimizer, to construct automated pipelines for AutoRL. Based on this, we propose a pipeline for offline and one for online RL, discussing the components, interaction, and highlighting the difference between the two settings. Furthermore, we provide a Python implementation of such pipelines, released as an open-source library. Our implementation has been tested on an illustrative LQG domain and on classic MuJoCo environments, showing the ability to reach competitive performances requiring limited human intervention. We also showcase the full pipeline on a realistic dam environment, automatically performing the feature selection and the model generation tasks.
3,476
null
Prototyping three key properties of specific curiosity in computational reinforcement learning
Curiosity for machine agents has been a focus of intense research. The study of human and animal curiosity, particularly specific curiosity, has unearthed several properties that would offer important benefits for machine learners, but that have not yet been well-explored in machine intelligence. In this work, we introduce three of the most immediate of these properties -- directedness, cessation when satisfied, and voluntary exposure -- and show how they may be implemented together in a proof-of-concept reinforcement learning agent; further, we demonstrate how the properties manifest in the behaviour of this agent in a simple non-episodic grid-world environment that includes curiosity-inducing locations and induced targets of curiosity. As we would hope, the agent exhibits short-term directed behaviour while updating long-term preferences to adaptively seek out curiosity-inducing situations. This work therefore presents a novel view into how specific curiosity operates and in the future might be integrated into the behaviour of goal-seeking, decision-making agents in complex environments.
3,477
null
Tackling Provably Hard Representative Selection via Graph Neural Networks
Representative selection (RS) is the problem of finding a small subset of exemplars from an unlabeled dataset, and has numerous applications in summarization, active learning, data compression and many other domains. In this paper, we focus on finding representatives that optimize the accuracy of a model trained on the selected representatives. We study RS for data represented as attributed graphs. We develop RS-GNN, a representation learning-based RS model based on Graph Neural Networks. Empirically, we demonstrate the effectiveness of RS-GNN on problems with predefined graph structures as well as problems with graphs induced from node feature similarities, by showing that RS-GNN achieves significant improvements over established baselines that optimize surrogate functions. Theoretically, we establish a new hardness result for RS by proving that RS is hard to approximate in polynomial time within any reasonable factor, which implies a significant gap between the optimum solution of widely-used surrogate functions and the actual accuracy of the model, and provides justification for the superiority of representation learning-based approaches such as RS-GNN over surrogate functions.
3,478
null
Multilingual Normalization of Temporal Expressions with Masked Language Models
The detection and normalization of temporal expressions is an important task and a preprocessing step for many applications. However, prior work on normalization is rule-based, which severely limits the applicability in real-world multilingual settings, due to the costly creation of new rules. We propose a novel neural method for normalizing temporal expressions based on masked language modeling. Our multilingual method outperforms prior rule-based systems in many languages, and in particular, for low-resource languages with performance improvements of up to 35 F1 on average compared to the state of the art.
3,479
null
Modernizing Open-Set Speech Language Identification
While most modern speech Language Identification methods are closed-set, we want to see if they can be modified and adapted for the open-set problem. When switching to the open-set problem, the solution gains the ability to reject an audio input when it fails to match any of our known language options. We tackle the open-set task by adapting two modern-day state-of-the-art approaches to closed-set language identification: the first using a CRNN with attention and the second using a TDNN. In addition to enhancing our input feature embeddings using MFCCs, log spectral features, and pitch, we will be attempting two approaches to out-of-set language detection: one using thresholds, and the other essentially performing a verification task. We will compare both the performance of the TDNN and the CRNN, as well as our detection approaches.
3,480
null
EGR: Equivariant Graph Refinement and Assessment of 3D Protein Complex Structures
Protein complexes are macromolecules essential to the functioning and well-being of all living organisms. As the structure of a protein complex, in particular its region of interaction between multiple protein subunits (i.e., chains), has a notable influence on the biological function of the complex, computational methods that can quickly and effectively be used to refine and assess the quality of a protein complex's 3D structure can directly be used within a drug discovery pipeline to accelerate the development of new therapeutics and improve the efficacy of future vaccines. In this work, we introduce the Equivariant Graph Refiner (EGR), a novel E(3)-equivariant graph neural network (GNN) for multi-task structure refinement and assessment of protein complexes. Our experiments on new, diverse protein complex datasets, all of which we make publicly available in this work, demonstrate the state-of-the-art effectiveness of EGR for atomistic refinement and assessment of protein complexes and outline directions for future work in the field. In doing so, we establish a baseline for future studies in macromolecular refinement and structure analysis.
3,481
null
A Dynamic Weighted Tabular Method for Convolutional Neural Networks
Traditional Machine Learning (ML) models like Support Vector Machine, Random Forest, and Logistic Regression are generally preferred for classification tasks on tabular datasets. Tabular data consists of rows and columns corresponding to instances and features, respectively. Past studies indicate that traditional classifiers often produce unsatisfactory results in complex tabular datasets. Hence, researchers attempt to use the powerful Convolutional Neural Networks (CNN) for tabular datasets. Recent studies propose several techniques like SuperTML, Conditional GAN (CTGAN), and Tabular Convolution (TAC) for applying Convolutional Neural Networks (CNN) on tabular data. These models outperform the traditional classifiers and substantially improve the performance on tabular data. This study introduces a novel technique, namely, Dynamic Weighted Tabular Method (DWTM), that uses feature weights dynamically based on statistical techniques to apply CNNs on tabular datasets. The method assigns weights dynamically to each feature based on their strength of associativity to the class labels. Each data point is converted into images and fed to a CNN model. The features are allocated image canvas space based on their weights. The DWTM is an improvement on the previously mentioned methods as it dynamically implements the entire experimental setting rather than using the static configuration provided in the previous methods. Furthermore, it uses the novel idea of using feature weights to create image canvas space. In this paper, the DWTM is applied to six benchmarked tabular datasets and it achieves outstanding performance (i.e., average accuracy = 95%) on all of them.
3,482
null
Lossless Acceleration for Seq2seq Generation with Aggressive Decoding
We study lossless acceleration for seq2seq generation with a novel decoding algorithm -- Aggressive Decoding. Unlike the previous efforts (e.g., non-autoregressive decoding) speeding up seq2seq generation at the cost of quality loss, our approach aims to yield the identical (or better) generation compared with autoregressive decoding but in a significant speedup, achieved by innovative cooperation of aggressive decoding and verification that are both efficient due to parallel computing. We propose two Aggressive Decoding paradigms for 2 kinds of seq2seq tasks: 1) For the seq2seq tasks whose inputs and outputs are highly similar (e.g., Grammatical Error Correction), we propose Input-guided Aggressive Decoding (IAD) that aggressively copies from the input sentence as drafted decoded tokens to verify in parallel; 2) For other general seq2seq tasks (e.g., Machine Translation), we propose Generalized Aggressive Decoding (GAD) that first employs an additional non-autoregressive decoding model for aggressive decoding and then verifies in parallel in the autoregressive manner. We test Aggressive Decoding on the most popular 6-layer Transformer model on GPU in multiple seq2seq tasks: 1) For IAD, we show that it can introduce a 7x-9x speedup for the Transformer in Grammatical Error Correction and Text Simplification tasks with the identical results as greedy decoding; 2) For GAD, we observe a 3x-5x speedup with the identical or even better quality in two important seq2seq tasks: Machine Translation and Abstractive Summarization. Moreover, Aggressive Decoding can benefit even more from stronger computing devices that are better at parallel computing. Given the lossless quality as well as significant and promising speedup, we believe Aggressive Decoding may potentially evolve into a de facto standard for efficient and lossless seq2seq generation in the near future.
3,483
null
Diverse super-resolution with pretrained deep hiererarchical VAEs
Image super-resolution is a one-to-many problem, but most deep-learning based methods only provide one single solution to this problem. In this work, we tackle the problem of diverse super-resolution by reusing VD-VAE, a state-of-the art variational autoencoder (VAE). We find that the hierarchical latent representation learned by VD-VAE naturally separates the image low-frequency information, encoded in the latent groups at the top of the hierarchy, from the image high-frequency details, determined by the latent groups at the bottom of the latent hierarchy. Starting from this observation, we design a super-resolution model exploiting the specific structure of VD-VAE latent space. Specifically, we train an encoder to encode low-resolution images in the subset of VD-VAE latent space encoding the low-frequency information, and we combine this encoder with VD-VAE generative model to sample diverse super-resolved version of a low-resolution input. We demonstrate the ability of our method to generate diverse solutions to the super-resolution problem on face super-resolution with upsampling factors x4, x8, and x16.
3,484
null
Towards Understanding Grokking: An Effective Theory of Representation Learning
We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations whose training dynamics and dependence on training set size can be predicted by our effective theory in a toy setting. We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. Compared to the comprehension phase, the grokking phase stays closer to the memorization phase, leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.
3,485
null
DELMAR: Deep Linear Matrix Approximately Reconstruction to Extract Hierarchical Functional Connectivity in the Human Brain
The Matrix Decomposition techniques have been a vital computational approach to analyzing the hierarchy of functional connectivity in the human brain. However, there are still four shortcomings of these methodologies: 1). Large training samples; 2). Manually tuning hyperparameters; 3). Time-consuming and require extensive computational source; 4). It cannot guarantee convergence to a unique fixed point. Therefore, we propose a novel deep matrix factorization technique called Deep Linear Matrix Approximate Reconstruction (DELMAR) to bridge the abovementioned gaps. The advantages of the proposed method are: at first, proposed DELMAR can estimate the important hyperparameters automatically; furthermore, DELMAR employs the matrix backpropagation to reduce the potential accumulative errors; finally, an orthogonal projection is introduced to update all variables of DELMAR rather than directly calculating the inverse matrices. The validation experiments of three peer methods and DELMAR using real functional MRI signal of the human brain demonstrates that our proposed method can efficiently identify the spatial feature in fMRI signal even faster and more accurately than other peer methods. Moreover, the theoretical analyses indicate that DELMAR can converge to the unique fixed point and even enable the accurate approximation of original input as DNNs.
3,486
null
A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Reinforcement learning (RL) has achieved tremendous success in many complex decision making tasks. When it comes to deploying RL in the real world, safety concerns are usually raised, leading to a growing demand for safe RL algorithms, such as in autonomous driving and robotics scenarios. While safety control has a long history, the study of safe RL algorithms is still in the early stages. To establish a good foundation for future research in this thread, in this paper, we provide a review for safe RL from the perspectives of methods, theory and applications. Firstly, we review the progress of safe RL from five dimensions and come up with five problems that are crucial for safe RL being deployed in real-world applications, coined as "2H3W". Secondly, we analyze the theory and algorithm progress from the perspectives of answering the "2H3W" problems. Then, the sample complexity of safe RL methods is reviewed and discussed, followed by an introduction of the applications and benchmarks of safe RL algorithms. Finally, we open the discussion of the challenging problems in safe RL, hoping to inspire more future research on this thread. To advance the study of safe RL algorithms, we release a benchmark suite, an open-sourced repository containing the implementations of major safe RL algorithms, along with tutorials at the link: https://github.com/chauncygu/Safe-Reinforcement-Learning-Baselines.git.
3,487
null
What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment
The fundamental problem of causal inference -- that we never observe counterfactuals -- prevents us from identifying how many might be negatively affected by a proposed intervention. If, in an A/B test, half of users click (or buy, or watch, or renew, etc.), whether exposed to the standard experience A or a new one B, hypothetically it could be because the change affects no one, because the change positively affects half the user population to go from no-click to click while negatively affecting the other half, or something in between. While unknowable, this impact is clearly of material importance to the decision to implement a change or not, whether due to fairness, long-term, systemic, or operational considerations. We therefore derive the tightest-possible (i.e., sharp) bounds on the fraction negatively affected (and other related estimands) given data with only factual observations, whether experimental or observational. Naturally, the more we can stratify individuals by observable covariates, the tighter the sharp bounds. Since these bounds involve unknown functions that must be learned from data, we develop a robust inference algorithm that is efficient almost regardless of how and how fast these functions are learned, remains consistent when some are mislearned, and still gives valid conservative bounds when most are mislearned. Our methodology altogether therefore strongly supports credible conclusions: it avoids spuriously point-identifying this unknowable impact, focusing on the best bounds instead, and it permits exceedingly robust inference on these. We demonstrate our method in simulation studies and in a case study of career counseling for the unemployed.
3,488
null
Nothing makes sense in deep learning, except in the light of evolution
Deep Learning (DL) is a surprisingly successful branch of machine learning. The success of DL is usually explained by focusing analysis on a particular recent algorithm and its traits. Instead, we propose that an explanation of the success of DL must look at the population of all algorithms in the field and how they have evolved over time. We argue that cultural evolution is a useful framework to explain the success of DL. In analogy to biology, we use `development' to mean the process converting the pseudocode or text description of an algorithm into a fully trained model. This includes writing the programming code, compiling and running the program, and training the model. If all parts of the process don't align well then the resultant model will be useless (if the code runs at all!). This is a constraint. A core component of evolutionary developmental biology is the concept of deconstraints -- these are modification to the developmental process that avoid complete failure by automatically accommodating changes in other components. We suggest that many important innovations in DL, from neural networks themselves to hyperparameter optimization and AutoGrad, can be seen as developmental deconstraints. These deconstraints can be very helpful to both the particular algorithm in how it handles challenges in implementation and the overall field of DL in how easy it is for new ideas to be generated. We highlight how our perspective can both advance DL and lead to new insights for evolutionary biology.
3,489
null
Seeking entropy: complex behavior from intrinsic motivation to occupy action-state path space
Intrinsic motivation generates behaviors that do not necessarily lead to immediate reward, but help exploration and learning. Here we show that agents having the sole goal of maximizing occupancy of future actions and states, that is, moving and exploring on the long term, are capable of complex behavior without any reference to external rewards. We find that action-state path entropy is the only measure consistent with additivity and other intuitive properties of expected future action-state path occupancy. We provide analytical expressions that relate the optimal policy with the optimal state-value function, from where we prove uniqueness of the solution of the associated Bellman equation and convergence of our algorithm to the optimal state-value function. Using discrete and continuous state tasks, we show that `dancing', hide-and-seek and a basic form of altruistic behavior naturally result from entropy seeking without external rewards. Intrinsically motivated agents can objectively determine what states constitute rewards, exploiting them to ultimately maximize action-state path entropy.
3,490
null
ClusterEA: Scalable Entity Alignment with Stochastic Training and Normalized Mini-batch Similarities
Entity alignment (EA) aims at finding equivalent entities in different knowledge graphs (KGs). Embedding-based approaches have dominated the EA task in recent years. Those methods face problems that come from the geometric properties of embedding vectors, including hubness and isolation. To solve these geometric problems, many normalization approaches have been adopted for EA. However, the increasing scale of KGs renders it hard for EA models to adopt the normalization processes, thus limiting their usage in real-world applications. To tackle this challenge, we present ClusterEA, a general framework that is capable of scaling up EA models and enhancing their results by leveraging normalization methods on mini-batches with a high entity equivalent rate. ClusterEA contains three components to align entities between large-scale KGs, including stochastic training, ClusterSampler, and SparseFusion. It first trains a large-scale Siamese GNN for EA in a stochastic fashion to produce entity embeddings. Based on the embeddings, a novel ClusterSampler strategy is proposed for sampling highly overlapped mini-batches. Finally, ClusterEA incorporates SparseFusion, which normalizes local and global similarity and then fuses all similarity matrices to obtain the final similarity matrix. Extensive experiments with real-life datasets on EA benchmarks offer insight into the proposed framework, and suggest that it is capable of outperforming the state-of-the-art scalable EA framework by up to 8 times in terms of Hits@1.
3,491
null
Delator: Automatic Detection of Money Laundering Evidence on Transaction Graphs via Neural Networks
Money laundering is one of the most relevant criminal activities today, due to its potential to cause massive financial losses to governments, banks, etc. We propose DELATOR, a new CAAT (computer-assisted audit technology) to detect money laundering activities based on neural network models that encode bank transfers as a large-scale temporal graph. In collaboration with a Brazilian bank, we design and apply an evaluation strategy to quantify DELATOR's performance on historic data comprising millions of clients. DELATOR outperforms an off-the-shelf solution from Amazon AWS by 18.9% with respect to AUC. We conducted real experiments that led to discovery of 8 new suspicious among 100 analyzed cases, which would have been reported to the authorities under the current criteria.
3,492
null
On the SDEs and Scaling Rules for Adaptive Gradient Algorithms
Approximating Stochastic Gradient Descent (SGD) as a Stochastic Differential Equation (SDE) has allowed researchers to enjoy the benefits of studying a continuous optimization trajectory while carefully preserving the stochasticity of SGD. Analogous study of adaptive gradient methods, such as RMSprop and Adam, has been challenging because there were no rigorously proven SDE approximations for these methods. This paper derives the SDE approximations for RMSprop and Adam, giving theoretical guarantees of their correctness as well as experimental validation of their applicability to common large-scaling vision and language settings. A key practical result is the derivation of a $\textit{square root scaling rule}$ to adjust the optimization hyperparameters of RMSprop and Adam when changing batch size, and its empirical validation in deep learning settings.
3,493
null
Heterformer: A Transformer Architecture for Node Representation Learning on Heterogeneous Text-Rich Networks
We study node representation learning on heterogeneous text-rich networks, where nodes and edges are multi-typed and some types of nodes are associated with text information. Although recent studies on graph neural networks (GNNs) and pretrained language models (PLMs) have demonstrated their power in encoding network and text signals, respectively, less focus has been given to delicately coupling these two types of models on heterogeneous text-rich networks. Specifically, existing GNNs rarely model text in each node in a contextualized way; existing PLMs can hardly be applied to characterize graph structures due to their sequence architecture. In this paper, we propose Heterformer, a Heterogeneous GNN-nested transformer that blends GNNs and PLMs into a unified model. Different from previous "cascaded architectures" that directly add GNN layers upon a PLM, our Heterformer alternately stacks two modules - a graph-attention-based neighbor aggregation module and a transformer-based text and neighbor joint encoding module - to facilitate thorough mutual enhancement between network and text signals. Meanwhile, Heterformer is capable of characterizing network heterogeneity and nodes without text information. Comprehensive experiments on three large-scale datasets from different domains demonstrate the superiority of Heterformer over state-of-the-art baselines in link prediction, transductive/inductive node classification, node clustering, and semantics-based retrieval.
3,494
null
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
Deep learning is increasingly moving towards a transfer learning paradigm whereby large foundation models are fine-tuned on downstream tasks, starting from an initialization learned on the source task. But an initialization contains relatively little information about the source task. Instead, we show that we can learn highly informative posteriors from the source task, through supervised or self-supervised approaches, which then serve as the basis for priors that modify the whole loss surface on the downstream task. This simple modular approach enables significant performance gains and more data-efficient learning on a variety of downstream classification and segmentation tasks, serving as a drop-in replacement for standard pre-training strategies. These highly informative priors also can be saved for future use, similar to pre-trained weights, and stand in contrast to the zero-mean isotropic uninformative priors that are typically used in Bayesian deep learning.
3,495
null
DEMAND: Deep Matrix Approximately Nonlinear Decomposition to Identify Meta, Canonical, and Sub-Spatial Pattern of functional Magnetic Resonance Imaging in the Human Brain
Deep Neural Networks (DNNs) have already become a crucial computational approach to revealing the spatial patterns in the human brain; however, there are three major shortcomings in utilizing DNNs to detect the spatial patterns in functional Magnetic Resonance Signals: 1). It is a fully connected architecture that increases the complexity of network structures that is difficult to optimize and vulnerable to overfitting; 2). The requirement of large training samples results in erasing the individual/minor patterns in feature extraction; 3). The hyperparameters are required to be tuned manually, which is time-consuming. Therefore, we propose a novel deep nonlinear matrix factorization named Deep Matrix Approximately Nonlinear Decomposition (DEMAND) in this work to take advantage of the shallow linear model, e.g., Sparse Dictionary Learning (SDL) and DNNs. At first, the proposed DEMAND employs a non-fully connected and multilayer-stacked architecture that is easier to be optimized compared with canonical DNNs; furthermore, due to the efficient architecture, training DEMAND can avoid overfitting and enables the recognition of individual/minor features based on a small dataset such as an individual data; finally, a novel rank estimator technique is introduced to tune all hyperparameters of DEMAND automatically. Moreover, the proposed DEMAND is validated by four other peer methodologies via real functional Magnetic Resonance Imaging data in the human brain. In short, the validation results demonstrate that DEMAND can reveal the reproducible meta, canonical, and sub-spatial features of the human brain more efficiently than other peer methodologies.
3,496
null
Adaptive Fairness-Aware Online Meta-Learning for Changing Environments
The fairness-aware online learning framework has arisen as a powerful tool for the continual lifelong learning setting. The goal for the learner is to sequentially learn new tasks where they come one after another over time and the learner ensures the statistic parity of the new coming task across different protected sub-populations (e.g. race and gender). A major drawback of existing methods is that they make heavy use of the i.i.d assumption for data and hence provide static regret analysis for the framework. However, low static regret cannot imply a good performance in changing environments where tasks are sampled from heterogeneous distributions. To address the fairness-aware online learning problem in changing environments, in this paper, we first construct a novel regret metric FairSAR by adding long-term fairness constraints onto a strongly adapted loss regret. Furthermore, to determine a good model parameter at each round, we propose a novel adaptive fairness-aware online meta-learning algorithm, namely FairSAOML, which is able to adapt to changing environments in both bias control and model precision. The problem is formulated in the form of a bi-level convex-concave optimization with respect to the model's primal and dual parameters that are associated with the model's accuracy and fairness, respectively. The theoretic analysis provides sub-linear upper bounds for both loss regret and violation of cumulative fairness constraints. Our experimental evaluation on different real-world datasets with settings of changing environments suggests that the proposed FairSAOML significantly outperforms alternatives based on the best prior online learning approaches.
3,497
null
Persistent Homology of Coarse Grained State Space Networks
This work is dedicated to the topological analysis of complex transitional networks for dynamic state detection. Transitional networks are formed from time series data and they leverage graph theory tools to reveal information about the underlying dynamic system. However, traditional tools can fail to summarize the complex topology present in such graphs. In this work, we leverage persistent homology from topological data analysis to study the structure of these networks. We contrast dynamic state detection from time series using CGSSN and TDA to two state of the art approaches: Ordinal Partition Networks (OPNs) combined with TDA, and the standard application of persistent homology to the time-delay embedding of the signal. We show that the CGSSN captures rich information about the dynamic state of the underlying dynamical system as evidenced by a significant improvement in dynamic state detection and noise robustness in comparison to OPNs. We also show that because the computational time of CGSSN is not linearly dependent on the signal's length, it is more computationally efficient than applying TDA to the time-delay embedding of the time series.
3,498
null
Explanatory machine learning for sequential human teaching
The topic of comprehensibility of machine-learned theories has recently drawn increasing attention. Inductive Logic Programming (ILP) uses logic programming to derive logic theories from small data based on abduction and induction techniques. Learned theories are represented in the form of rules as declarative descriptions of obtained knowledge. In earlier work, the authors provided the first evidence of a measurable increase in human comprehension based on machine-learned logic rules for simple classification tasks. In a later study, it was found that the presentation of machine-learned explanations to humans can produce both beneficial and harmful effects in the context of game learning. We continue our investigation of comprehensibility by examining the effects of the ordering of concept presentations on human comprehension. In this work, we examine the explanatory effects of curriculum order and the presence of machine-learned explanations for sequential problem-solving. We show that 1) there exist tasks A and B such that learning A before B has a better human comprehension with respect to learning B before A and 2) there exist tasks A and B such that the presence of explanations when learning A contributes to improved human comprehension when subsequently learning B. We propose a framework for the effects of sequential teaching on comprehension based on an existing definition of comprehensibility and provide evidence for support from data collected in human trials. Empirical results show that sequential teaching of concepts with increasing complexity a) has a beneficial effect on human comprehension and b) leads to human re-discovery of divide-and-conquer problem-solving strategies, and c) studying machine-learned explanations allows adaptations of human problem-solving strategy with better performance.
3,499
null
SADAM: Stochastic Adam, A Stochastic Operator for First-Order Gradient-based Optimizer
In this work, to efficiently help escape the stationary and saddle points, we propose, analyze, and generalize a stochastic strategy performed as an operator for a first-order gradient descent algorithm in order to increase the target accuracy and reduce time consumption. Unlike existing algorithms, the proposed stochastic the strategy does not require any batches and sampling techniques, enabling efficient implementation and maintaining the initial first-order optimizer's convergence rate, but provides an incomparable improvement of target accuracy when optimizing the target functions. In short, the proposed strategy is generalized, applied to Adam, and validated via the decomposition of biomedical signals using Deep Matrix Fitting and another four peer optimizers. The validation results show that the proposed random strategy can be easily generalized for first-order optimizers and efficiently improve the target accuracy.
3,500
null
EXODUS: Stable and Efficient Training of Spiking Neural Networks
Spiking Neural Networks (SNNs) are gaining significant traction in machine learning tasks where energy-efficiency is of utmost importance. Training such networks using the state-of-the-art back-propagation through time (BPTT) is, however, very time-consuming. Previous work by Shrestha and Orchard [2018] employs an efficient GPU-accelerated back-propagation algorithm called SLAYER, which speeds up training considerably. SLAYER, however, does not take into account the neuron reset mechanism while computing the gradients, which we argue to be the source of numerical instability. To counteract this, SLAYER introduces a gradient scale hyperparameter across layers, which needs manual tuning. In this paper, (i) we modify SLAYER and design an algorithm called EXODUS, that accounts for the neuron reset mechanism and applies the Implicit Function Theorem (IFT) to calculate the correct gradients (equivalent to those computed by BPTT), (ii) we eliminate the need for ad-hoc scaling of gradients, thus, reducing the training complexity tremendously, (iii) we demonstrate, via computer simulations, that EXODUS is numerically stable and achieves a comparable or better performance than SLAYER especially in various tasks with SNNs that rely on temporal features. Our code is available at https://github.com/synsense/sinabs-exodus.
3,501
null
Exploring the Trade-off between Plausibility, Change Intensity and Adversarial Power in Counterfactual Explanations using Multi-objective Optimization
There is a broad consensus on the importance of deep learning models in tasks involving complex data. Often, an adequate understanding of these models is required when focusing on the transparency of decisions in human-critical applications. Besides other explainability techniques, trustworthiness can be achieved by using counterfactuals, like the way a human becomes familiar with an unknown process: by understanding the hypothetical circumstances under which the output changes. In this work we argue that automated counterfactual generation should regard several aspects of the produced adversarial instances, not only their adversarial capability. To this end, we present a novel framework for the generation of counterfactual examples which formulates its goal as a multi-objective optimization problem balancing three different objectives: 1) plausibility, i.e., the likeliness of the counterfactual of being possible as per the distribution of the input data; 2) intensity of the changes to the original input; and 3) adversarial power, namely, the variability of the model's output induced by the counterfactual. The framework departs from a target model to be audited and uses a Generative Adversarial Network to model the distribution of input data, together with a multi-objective solver for the discovery of counterfactuals balancing among these objectives. The utility of the framework is showcased over six classification tasks comprising image and three-dimensional data. The experiments verify that the framework unveils counterfactuals that comply with intuition, increasing the trustworthiness of the user, and leading to further insights, such as the detection of bias and data misrepresentation.
3,502
null
Learning Task-relevant Representations for Generalization via Characteristic Functions of Reward Sequence Distributions
Generalization across different environments with the same tasks is critical for successful applications of visual reinforcement learning (RL) in real scenarios. However, visual distractions -- which are common in real scenes -- from high-dimensional observations can be hurtful to the learned representations in visual RL, thus degrading the performance of generalization. To tackle this problem, we propose a novel approach, namely Characteristic Reward Sequence Prediction (CRESP), to extract the task-relevant information by learning reward sequence distributions (RSDs), as the reward signals are task-relevant in RL and invariant to visual distractions. Specifically, to effectively capture the task-relevant information via RSDs, CRESP introduces an auxiliary task -- that is, predicting the characteristic functions of RSDs -- to learn task-relevant representations, because we can well approximate the high-dimensional distributions by leveraging the corresponding characteristic functions. Experiments demonstrate that CRESP significantly improves the performance of generalization on unseen environments, outperforming several state-of-the-arts on DeepMind Control tasks with different visual distractions.
3,503
null
Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization
The Neural Tangent Kernel (NTK) has emerged as a powerful tool to provide memorization, optimization and generalization guarantees in deep neural networks. A line of work has studied the NTK spectrum for two-layer and deep networks with at least a layer with $\Omega(N)$ neurons, $N$ being the number of training samples. Furthermore, there is increasing evidence suggesting that deep networks with sub-linear layer widths are powerful memorizers and optimizers, as long as the number of parameters exceeds the number of samples. Thus, a natural open question is whether the NTK is well conditioned in such a challenging sub-linear setup. In this paper, we answer this question in the affirmative. Our key technical contribution is a lower bound on the smallest NTK eigenvalue for deep networks with the minimum possible over-parameterization: the number of parameters is roughly $\Omega(N)$ and, hence, the number of neurons is as little as $\Omega(\sqrt{N})$. To showcase the applicability of our NTK bounds, we provide two results concerning memorization capacity and optimization guarantees for gradient descent training.
3,504
null
Test-time Batch Normalization
Deep neural networks often suffer the data distribution shift between training and testing, and the batch statistics are observed to reflect the shift. In this paper, targeting of alleviating distribution shift in test time, we revisit the batch normalization (BN) in the training process and reveals two key insights benefiting test-time optimization: $(i)$ preserving the same gradient backpropagation form as training, and $(ii)$ using dataset-level statistics for robust optimization and inference. Based on the two insights, we propose a novel test-time BN layer design, GpreBN, which is optimized during testing by minimizing Entropy loss. We verify the effectiveness of our method on two typical settings with distribution shift, i.e., domain generalization and robustness tasks. Our GpreBN significantly improves the test-time performance and achieves the state of the art results.
3,505
null
How to Guide Adaptive Depth Sampling?
Recent advances in depth sensing technologies allow fast electronic maneuvering of the laser beam, as opposed to fixed mechanical rotations. This will enable future sensors, in principle, to vary in real-time the sampling pattern. We examine here the abstract problem of whether adapting the sampling pattern for a given frame can reduce the reconstruction error or allow a sparser pattern. We propose a constructive generic method to guide adaptive depth sampling algorithms. Given a sampling budget B, a depth predictor P and a desired quality measure M, we propose an Importance Map that highlights important sampling locations. This map is defined for a given frame as the per-pixel expected value of M produced by the predictor P, given a pattern of B random samples. This map can be well estimated in a training phase. We show that a neural network can learn to produce a highly faithful Importance Map, given an RGB image. We then suggest an algorithm to produce a sampling pattern for the scene, which is denser in regions that are harder to reconstruct. The sampling strategy of our modular framework can be adjusted according to hardware limitations, type of depth predictor, and any custom reconstruction error measure that should be minimized. We validate through simulations that our approach outperforms grid and random sampling patterns as well as recent state-of-the-art adaptive algorithms.
3,506
null
The Fairness of Credit Scoring Models
In credit markets, screening algorithms aim to discriminate between good-type and bad-type borrowers. However, when doing so, they also often discriminate between individuals sharing a protected attribute (e.g. gender, age, racial origin) and the rest of the population. In this paper, we show how (1) to test whether there exists a statistically significant difference between protected and unprotected groups, which we call lack of fairness and (2) to identify the variables that cause the lack of fairness. We then use these variables to optimize the fairness-performance trade-off. Our framework provides guidance on how algorithmic fairness can be monitored by lenders, controlled by their regulators, and improved for the benefit of protected groups.
3,507
null
A Proximal Algorithm for Sampling from Non-convex Potentials
We study sampling problems associated with non-convex potentials that meanwhile lack smoothness. In particular, we consider target distributions that satisfy either logarithmic-Sobolev inequality or Poincar\'e inequality. Rather than smooth, the potentials are assumed to be semi-smooth or the summation of multiple semi-smooth functions. We develop a sampling algorithm that resembles proximal algorithms in optimization for this challenging sampling task. Our algorithm is based on a special case of Gibbs sampling known as the alternating sampling framework (ASF). The key contribution of this work is a practical realization of the ASF based on rejection sampling in the non-convex and semi-smooth setting. This work extends the recent algorithm in \cite{LiaChe21,LiaChe22} for non-smooth/semi-smooth log-concave distribution to the setting with non-convex potentials. In almost all the cases of sampling considered in this work, our proximal sampling algorithm achieves better complexity than all existing methods.