Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
106,400
106,400
Risk-based regulation for all: The need and a method for a wide adoption solution for data-driven inspection targeting
Access to data and data processing, including the use of machine learning techniques, has become significantly easier and cheaper in recent years. Nevertheless, solutions that can be widely adopted by regulators for market monitoring and inspection targeting in a data-driven way have not been frequently discussed by the scientific community. This article discusses the need and the difficulties for the development of such solutions, presents an effective method to address regulation planning, and illustrates its use to account for the most important and common subject for the majority of regulators: the consumer. This article hopes to contribute to increase the awareness of the regulatory community to the need for data processing methods that are objective, impartial, transparent, explainable, simple to implement and with low computational cost, aiming to the implementation of risk-based regulation in the world.
106,401
106,401
Heterogeneous Target Speech Separation
We introduce a new paradigm for single-channel target source separation where the sources of interest can be distinguished using non-mutually exclusive concepts (e.g., loudness, gender, language, spatial location, etc). Our proposed heterogeneous separation framework can seamlessly leverage datasets with large distribution shifts and learn cross-domain representations under a variety of concepts used as conditioning. Our experiments show that training separation models with heterogeneous conditions facilitates the generalization to new concepts with unseen out-of-domain data while also performing substantially higher than single-domain specialist models. Notably, such training leads to more robust learning of new harder source separation discriminative concepts and can yield improvements over permutation invariant training with oracle source selection. We analyze the intrinsic behavior of source separation training with heterogeneous metadata and propose ways to alleviate emerging problems with challenging separation conditions. We release the collection of preparation recipes for all datasets used to further promote research towards this challenging task.
106,402
106,402
Imitating, Fast and Slow: Robust learning from demonstrations via decision-time planning
The goal of imitation learning is to mimic expert behavior from demonstrations, without access to an explicit reward signal. A popular class of approach infers the (unknown) reward function via inverse reinforcement learning (IRL) followed by maximizing this reward function via reinforcement learning (RL). The policies learned via these approaches are however very brittle in practice and deteriorate quickly even with small test-time perturbations due to compounding errors. We propose Imitation with Planning at Test-time (IMPLANT), a new meta-algorithm for imitation learning that utilizes decision-time planning to correct for compounding errors of any base imitation policy. In contrast to existing approaches, we retain both the imitation policy and the rewards model at decision-time, thereby benefiting from the learning signal of the two components. Empirically, we demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments and excels at zero-shot generalization when subject to challenging perturbations in test-time dynamics.
106,403
106,403
Pin the Memory: Learning to Generalize Semantic Segmentation
The rise of deep neural networks has led to several breakthroughs for semantic segmentation. In spite of this, a model trained on source domain often fails to work properly in new challenging domains, that is directly concerned with the generalization capability of the model. In this paper, we present a novel memory-guided domain generalization method for semantic segmentation based on meta-learning framework. Especially, our method abstracts the conceptual knowledge of semantic classes into categorical memory which is constant beyond the domains. Upon the meta-learning concept, we repeatedly train memory-guided networks and simulate virtual test to 1) learn how to memorize a domain-agnostic and distinct information of classes and 2) offer an externally settled memory as a class-guidance to reduce the ambiguity of representation in the test data of arbitrary unseen domain. To this end, we also propose memory divergence and feature cohesion losses, which encourage to learn memory reading and update processes for category-aware domain generalization. Extensive experiments for semantic segmentation demonstrate the superior generalization capability of our method over state-of-the-art works on various benchmarks.
106,404
106,404
Unified Contrastive Learning in Image-Text-Label Space
Visual recognition is recently learned via either supervised learning on human-annotated image-label data or language-image contrastive learning with webly-crawled image-text pairs. While supervised learning may result in a more discriminative representation, language-image pretraining shows unprecedented zero-shot recognition capability, largely due to the different properties of data sources and learning objectives. In this work, we introduce a new formulation by combining the two data sources into a common image-text-label space. In this space, we propose a new learning paradigm, called Unified Contrastive Learning (UniCL) with a single learning objective to seamlessly prompt the synergy of two data types. Extensive experiments show that our UniCL is an effective way of learning semantically rich yet discriminative representations, universally for image recognition in zero-shot, linear-probe, fully finetuning and transfer learning scenarios. Particularly, it attains gains up to 9.2% and 14.5% in average on zero-shot recognition benchmarks over the language-image contrastive learning and supervised learning methods, respectively. In linear probe setting, it also boosts the performance over the two methods by 7.3% and 3.4%, respectively. Our study also indicates that UniCL stand-alone is a good learner on pure image-label data, rivaling the supervised learning methods across three image classification datasets and two types of vision backbones, ResNet and Swin Transformer. Code is available at https://github.com/microsoft/UniCL.
106,405
106,405
Modeling Label Correlations for Second-Order Semantic Dependency Parsing with Mean-Field Inference
Second-order semantic parsing with end-to-end mean-field inference has been shown good performance. In this work we aim to improve this method by modeling label correlations between adjacent arcs. However, direct modeling leads to memory explosion because second-order score tensors have sizes of $O(n^3L^2)$ ($n$ is the sentence length and $L$ is the number of labels), which is not affordable. To tackle this computational challenge, we leverage tensor decomposition techniques, and interestingly, we show that the large second-order score tensors have no need to be materialized during mean-field inference, thereby reducing the computational complexity from cubic to quadratic. We conduct experiments on SemEval 2015 Task 18 English datasets, showing the effectiveness of modeling label correlations. Our code is publicly available at https://github.com/sustcsonglin/mean-field-dep-parsing.
106,406
106,406
Security Aspects of Quantum Machine Learning: Opportunities, Threats and Defenses
In the last few years, quantum computing has experienced a growth spurt. One exciting avenue of quantum computing is quantum machine learning (QML) which can exploit the high dimensional Hilbert space to learn richer representations from limited data and thus can efficiently solve complex learning tasks. Despite the increased interest in QML, there have not been many studies that discuss the security aspects of QML. In this work, we explored the possible future applications of QML in the hardware security domain. We also expose the security vulnerabilities of QML and emerging attack models, and corresponding countermeasures.
106,407
106,407
The Effects of Regularization and Data Augmentation are Class Dependent
Regularization is a fundamental technique to prevent over-fitting and to improve generalization performances by constraining a model's complexity. Current Deep Networks heavily rely on regularizers such as Data-Augmentation (DA) or weight-decay, and employ structural risk minimization, i.e. cross-validation, to select the optimal regularization hyper-parameters. In this study, we demonstrate that techniques such as DA or weight decay produce a model with a reduced complexity that is unfair across classes. The optimal amount of DA or weight decay found from cross-validation leads to disastrous model performances on some classes e.g. on Imagenet with a resnet50, the "barn spider" classification test accuracy falls from $68\%$ to $46\%$ only by introducing random crop DA during training. Even more surprising, such performance drop also appears when introducing uninformative regularization techniques such as weight decay. Those results demonstrate that our search for ever increasing generalization performance -- averaged over all classes and samples -- has left us with models and regularizers that silently sacrifice performances on some classes. This scenario can become dangerous when deploying a model on downstream tasks e.g. an Imagenet pre-trained resnet50 deployed on INaturalist sees its performances fall from $70\%$ to $30\%$ on class \#8889 when introducing random crop DA during the Imagenet pre-training phase. Those results demonstrate that designing novel regularizers without class-dependent bias remains an open research question.
106,408
106,408
Class-Incremental Learning with Strong Pre-trained Models
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes). Instead, we explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes. We hypothesize that a strong base model can provide a good representation for novel classes and incremental learning can be done with small adaptations. We propose a 2-stage training scheme, i) feature augmentation -- cloning part of the backbone and fine-tuning it on the novel data, and ii) fusion -- combining the base and novel classifiers into a unified classifier. Experiments show that the proposed method significantly outperforms state-of-the-art CIL methods on the large-scale ImageNet dataset (e.g. +10% overall accuracy than the best). We also propose and analyze understudied practical CIL scenarios, such as base-novel overlap with distribution shift. Our proposed method is robust and generalizes to all analyzed CIL settings.
106,409
106,409
Equivariance Discovery by Learned Parameter-Sharing
Designing equivariance as an inductive bias into deep-nets has been a prominent approach to build effective models, e.g., a convolutional neural network incorporates translation equivariance. However, incorporating these inductive biases requires knowledge about the equivariance properties of the data, which may not be available, e.g., when encountering a new domain. To address this, we study how to discover interpretable equivariances from data. Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes. We propose to use the partition distance to empirically quantify the accuracy of the recovered equivariance. Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme. Empirically, we show that the approach recovers known equivariances, such as permutations and shifts, on sum of numbers and spatially-invariant data.
106,410
106,410
Unsupervised Image-to-Image Translation with Generative Prior
Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data. Despite the recent progress in image translation models, it remains challenging to build mappings between complex domains with drastic visual discrepancies. In this work, we present a novel framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), to improve the overall quality and applicability of the translation algorithm. Our key insight is to leverage the generative prior from pre-trained class-conditional GANs (e.g., BigGAN) to learn rich content correspondences across various domains. We propose a novel coarse-to-fine scheme: we first distill the generative prior to capture a robust coarse-level content representation that can link objects at an abstract semantic level, based on which fine-level content features are adaptively learned for more accurate multi-level content correspondences. Extensive experiments demonstrate the superiority of our versatile framework over state-of-the-art methods in robust, high-quality and diversified translations, even for challenging and distant domains.
106,411
106,411
Identification of Autism spectrum disorder based on a novel feature selection method and Variational Autoencoder
The development of noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) and its combination with AI algorithm provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD). However, the performance of the current ASD classification based on rs-fMRI still needs to be improved. This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI. In the framework, we proposed a novel filter feature selection method based on the difference between step distribution curves (DSDC) to select remarkable functional connectivities (FCs) and utilized a multilayer perceptron (MLP) which was pretrained by a simplified Variational Autoencoder (VAE) for classification. We also designed a pipeline consisting of a normalization procedure and a modified hyperbolic tangent (tanh) activation function to replace the original tanh function, further improving the model accuracy. Our model was evaluated by 10 times 10-fold cross-validation and achieved an average accuracy of 78.12%, outperforming the state-of-the-art methods reported on the same dataset. Given the importance of sensitivity and specificity in disease diagnosis, two constraints were designed in our model which can improve the model's sensitivity and specificity by up to 9.32% and 10.21%, respectively. The added constraints allow our model to handle different application scenarios and can be used broadly.
106,412
106,412
Learning to Walk Autonomously via Reset-Free Quality-Diversity
Quality-Diversity (QD) algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills. However, the generation of behavioural repertoires has mainly been limited to simulation environments instead of real-world learning. This is because existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions. This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments. We build on Dynamics-Aware Quality-Diversity (DA-QD) and introduce a behaviour selection policy that leverages the diversity of the imagined repertoire and environmental information to intelligently select of behaviours that can act as automatic resets. We demonstrate this through a task of learning to walk within defined training zones with obstacles. Our experiments show that we can learn full repertoires of legged locomotion controllers autonomously without manual resets with high sample efficiency in spite of harsh safety constraints. Finally, using an ablation of different target objectives, we show that it is important for RF-QD to have diverse types solutions available for the behaviour selection policy over solutions optimised with a specific objective. Videos and code available at https://sites.google.com/view/rf-qd.
106,413
106,413
Qade: Solving Differential Equations on Quantum Annealers
We present a general method, called Qade, for solving differential equations using a quantum annealer. The solution is obtained as a linear combination of a set of basis functions. On current devices, Qade can solve systems of coupled partial differential equations that depend linearly on the solution and its derivatives, with non-linear variable coefficients and arbitrary inhomogeneous terms. We test the method with several examples and find that state-of-the-art quantum annealers can find the solution accurately for problems requiring a small enough function basis. We provide a Python package implementing the method at gitlab.com/jccriado/qade.
106,414
106,414
TemporalUV: Capturing Loose Clothing with Temporally Coherent UV Coordinates
We propose a novel approach to generate temporally coherent UV coordinates for loose clothing. Our method is not constrained by human body outlines and can capture loose garments and hair. We implemented a differentiable pipeline to learn UV mapping between a sequence of RGB inputs and textures via UV coordinates. Instead of treating the UV coordinates of each frame separately, our data generation approach connects all UV coordinates via feature matching for temporal stability. Subsequently, a generative model is trained to balance the spatial quality and temporal stability. It is driven by supervised and unsupervised losses in both UV and image spaces. Our experiments show that the trained models output high-quality UV coordinates and generalize to new poses. Once a sequence of UV coordinates has been inferred by our model, it can be used to flexibly synthesize new looks and modified visual styles. Compared to existing methods, our approach reduces the computational workload to animate new outfits by several orders of magnitude.
106,415
106,415
Adaptive-Gravity: A Defense Against Adversarial Samples
This paper presents a novel model training solution, denoted as Adaptive-Gravity, for enhancing the robustness of deep neural network classifiers against adversarial examples. We conceptualize the model parameters/features associated with each class as a mass characterized by its centroid location and the spread (standard deviation of the distance) of features around the centroid. We use the centroid associated with each cluster to derive an anti-gravity force that pushes the centroids of different classes away from one another during network training. Then we customized an objective function that aims to concentrate each class's features toward their corresponding new centroid, which has been obtained by anti-gravity force. This methodology results in a larger separation between different masses and reduces the spread of features around each centroid. As a result, the samples are pushed away from the space that adversarial examples could be mapped to, effectively increasing the degree of perturbation needed for making an adversarial example. We have implemented this training solution as an iterative method consisting of four steps at each iteration: 1) centroid extraction, 2) anti-gravity force calculation, 3) centroid relocation, and 4) gravity training. Gravity's efficiency is evaluated by measuring the corresponding fooling rates against various attack models, including FGSM, MIM, BIM, and PGD using LeNet and ResNet110 networks, benchmarked against MNIST and CIFAR10 classification problems. Test results show that Gravity not only functions as a powerful instrument to robustify a model against state-of-the-art adversarial attacks but also effectively improves the model training accuracy.
106,416
106,416
Physics-assisted Generative Adversarial Network for X-Ray Tomography
X-ray tomography is capable of imaging the interior of objects in three dimensions non-invasively, with applications in biomedical imaging, materials science, electronic inspection, and other fields. The reconstruction process can be an ill-conditioned inverse problem, requiring regularization to obtain satisfactory results. Recently, deep learning has been adopted for tomographic reconstruction. Unlike iterative algorithms which require a distribution that is known a priori, deep reconstruction networks can learn a prior distribution through sampling the training distributions. In this work, we develop a Physics-assisted Generative Adversarial Network (PGAN), a two-step algorithm for tomographic reconstruction. In contrast to previous efforts, our PGAN utilizes maximum-likelihood estimates derived from the measurements to regularize the reconstruction with both known physics and the learned prior. Compared with methods with less physics assisting in training, PGAN can reduce the photon requirement with limited projection angles to achieve a given error rate. The advantages of using a physics-assisted learned prior in X-ray tomography may further enable low-photon nanoscale imaging.
106,417
106,417
Introducing a Framework and a Decision Protocol to Calibrate Recommender Systems
Recommender Systems use the user's profile to generate a recommendation list with unknown items to a target user. Although the primary goal of traditional recommendation systems is to deliver the most relevant items, such an effort unintentionally can cause collateral effects including low diversity and unbalanced genres or categories, benefiting particular groups of categories. This paper proposes an approach to create recommendation lists with a calibrated balance of genres, avoiding disproportion between the user's profile interests and the recommendation list. The calibrated recommendations consider concomitantly the relevance and the divergence between the genres distributions extracted from the user's preference and the recommendation list. The main claim is that calibration can contribute positively to generate fairer recommendations. In particular, we propose a new trade-off equation, which considers the users' bias to provide a recommendation list that seeks for the users' tendencies. Moreover, we propose a conceptual framework and a decision protocol to generate more than one thousand combinations of calibrated systems in order to find the best combination. We compare our approach against state-of-the-art approaches using multiple domain datasets, which are analyzed by rank and calibration metrics. The results indicate that the trade-off, which considers the users' bias, produces positive effects on the precision and to the fairness, thus generating recommendation lists that respect the genre distribution and, through the decision protocol, we also found the best system for each dataset.
106,418
106,418
Using Multiple Self-Supervised Tasks Improves Model Robustness
Deep networks achieve state-of-the-art performance on computer vision tasks, yet they fail under adversarial attacks that are imperceptible to humans. In this paper, we propose a novel defense that can dynamically adapt the input using the intrinsic structure from multiple self-supervised tasks. By simultaneously using many self-supervised tasks, our defense avoids over-fitting the adapted image to one specific self-supervised task and restores more intrinsic structure in the image compared to a single self-supervised task approach. Our approach further improves robustness and clean accuracy significantly compared to the state-of-the-art single task self-supervised defense. Our work is the first to connect multiple self-supervised tasks to robustness, and suggests that we can achieve better robustness with more intrinsic signal from visual data.
106,419
106,419
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework
Class imbalance poses new challenges when it comes to classifying data streams. Many algorithms recently proposed in the literature tackle this problem using a variety of data-level, algorithm-level, and ensemble approaches. However, there is a lack of standardized and agreed-upon procedures on how to evaluate these algorithms. This work presents a taxonomy of algorithms for imbalanced data streams and proposes a standardized, exhaustive, and informative experimental testbed to evaluate algorithms in a collection of diverse and challenging imbalanced data stream scenarios. The experimental study evaluates 24 state-of-the-art data streams algorithms on 515 imbalanced data streams that combine static and dynamic class imbalance ratios, instance-level difficulties, concept drift, real-world and semi-synthetic datasets in binary and multi-class scenarios. This leads to the largest experimental study conducted so far in the data stream mining domain. We discuss the advantages and disadvantages of state-of-the-art classifiers in each of these scenarios and we provide general recommendations to end-users for selecting the best algorithms for imbalanced data streams. Additionally, we formulate open challenges and future directions for this domain. Our experimental testbed is fully reproducible and easy to extend with new methods. This way we propose the first standardized approach to conducting experiments in imbalanced data streams that can be used by other researchers to create trustworthy and fair evaluation of newly proposed methods. Our experimental framework can be downloaded from https://github.com/canoalberto/imbalanced-streams.
106,420
106,420
Automated Design of Salient Object Detection Algorithms with Brain Programming
Despite recent improvements in computer vision, artificial visual systems' design is still daunting since an explanation of visual computing algorithms remains elusive. Salient object detection is one problem that is still open due to the difficulty of understanding the brain's inner workings. Progress on this research area follows the traditional path of hand-made designs using neuroscience knowledge. In recent years two different approaches based on genetic programming appear to enhance their technique. One follows the idea of combining previous hand-made methods through genetic programming and fuzzy logic. The other approach consists of improving the inner computational structures of basic hand-made models through artificial evolution. This research work proposes expanding the artificial dorsal stream using a recent proposal to solve salient object detection problems. This approach uses the benefits of the two main aspects of this research area: fixation prediction and detection of salient objects. We decided to apply the fusion of visual saliency and image segmentation algorithms as a template. The proposed methodology discovers several critical structures in the template through artificial evolution. We present results on a benchmark designed by experts with outstanding results in comparison with the state-of-the-art.
106,421
106,421
A Kernel Method to Nonlinear Location Estimation with RSS-based Fingerprint
This paper presents a nonlinear location estimation to infer the position of a user holding a smartphone. We consider a large location with $M$ number of grid points, each grid point is labeled with a unique fingerprint consisting of the received signal strength (RSS) values measured from $N$ number of Bluetooth Low Energy (BLE) beacons. Given the fingerprint observed by the smartphone, the user's current location can be estimated by finding the top-k similar fingerprints from the list of fingerprints registered in the database. Besides the environmental factors, the dynamicity in holding the smartphone is another source to the variation in fingerprint measurements, yet there are not many studies addressing the fingerprint variability due to dynamic smartphone positions held by human hands during online detection. To this end, we propose a nonlinear location estimation using the kernel method. Specifically, our proposed method comprises of two steps: 1) a beacon selection strategy to select a subset of beacons that is insensitive to the subtle change of holding positions, and 2) a kernel method to compute the similarity between this subset of observed signals and all the fingerprints registered in the database. The experimental results based on large-scale data collected in a complex building indicate a substantial performance gain of our proposed approach in comparison to state-of-the-art methods. The dataset consisting of the signal information collected from the beacons is available online.
106,422
106,422
T4PdM: a Deep Neural Network based on the Transformer Architecture for Fault Diagnosis of Rotating Machinery
Deep learning and big data algorithms have become widely used in industrial applications to optimize several tasks in many complex systems. Particularly, deep learning model for diagnosing and prognosing machinery health has leveraged predictive maintenance (PdM) to be more accurate and reliable in decision making, in this way avoiding unnecessary interventions, machinery accidents, and environment catastrophes. Recently, Transformer Neural Networks have gained notoriety and have been increasingly the favorite choice for Natural Language Processing (NLP) tasks. Thus, given their recent major achievements in NLP, this paper proposes the development of an automatic fault classifier model for predictive maintenance based on a modified version of the Transformer architecture, namely T4PdM, to identify multiple types of faults in rotating machinery. Experimental results are developed and presented for the MaFaulDa and CWRU databases. T4PdM was able to achieve an overall accuracy of 99.98% and 98% for both datasets, respectively. In addition, the performance of the proposed model is compared to other previously published works. It has demonstrated the superiority of the model in detecting and classifying faults in rotating industrial machinery. Therefore, the proposed Transformer-based model can improve the performance of machinery fault analysis and diagnostic processes and leverage companies to a new era of the Industry 4.0. In addition, this methodology can be adapted to any other task of time series classification.
106,423
106,423
Decentralized Event-Triggered Federated Learning with Heterogeneous Communication Thresholds
A recent emphasis of distributed learning research has been on federated learning (FL), in which model training is conducted by the data-collecting devices. Existing research on FL has mostly focused on a star topology learning architecture with synchronized (time-triggered) model training rounds, where the local models of the devices are periodically aggregated by a centralized coordinating node. However, in many settings, such a coordinating node may not exist, motivating efforts to fully decentralize FL. In this work, we propose a novel methodology for distributed model aggregations via asynchronous, event-triggered consensus iterations over the network graph topology. We consider heterogeneous communication event thresholds at each device that weigh the change in local model parameters against the available local resources in deciding the benefit of aggregations at each iteration. Through theoretical analysis, we demonstrate that our methodology achieves asymptotic convergence to the globally optimal learning model under standard assumptions in distributed learning and graph consensus literature, and without restrictive connectivity requirements on the underlying topology. Subsequent numerical results demonstrate that our methodology obtains substantial improvements in communication requirements compared with FL baselines.
106,424
106,424
GreaseVision: Rewriting the Rules of the Interface
Digital harms can manifest across any interface. Key problems in addressing these harms include the high individuality of harms and the fast-changing nature of digital systems. As a result, we still lack a systematic approach to study harms and produce interventions for end-users. We put forward GreaseVision, a new framework that enables end-users to collaboratively develop interventions against harms in software using a no-code approach and recent advances in few-shot machine learning. The contribution of the framework and tool allow individual end-users to study their usage history and create personalized interventions. Our contribution also enables researchers to study the distribution of harms and interventions at scale.
106,425
106,425
Mixing Signals: Data Augmentation Approach for Deep Learning Based Modulation Recognition
With the rapid development of deep learning, automatic modulation recognition (AMR), as an important task in cognitive radio, has gradually transformed from traditional feature extraction and classification to automatic classification by deep learning technology. However, deep learning models are data-driven methods, which often require a large amount of data as the training support. Data augmentation, as the strategy of expanding dataset, can improve the generalization of the deep learning models and thus improve the accuracy of the models to a certain extent. In this paper, for AMR of radio signals, we propose a data augmentation strategy based on mixing signals and consider four specific methods (Random Mixing, Maximum-Similarity-Mixing, $\theta-$Similarity Mixing and n-times Random Mixing) to achieve data augmentation. Experiments show that our proposed method can improve the classification accuracy of deep learning based AMR models in the full public dataset RML2016.10a. In particular, for the case of a single signal-to-noise ratio signal set, the classification accuracy can be significantly improved, which verifies the effectiveness of the methods.
106,426
106,426
BankNote-Net: Open dataset for assistive universal currency recognition
Millions of people around the world have low or no vision. Assistive software applications have been developed for a variety of day-to-day tasks, including optical character recognition, scene identification, person recognition, and currency recognition. This last task, the recognition of banknotes from different denominations, has been addressed by the use of computer vision models for image recognition. However, the datasets and models available for this task are limited, both in terms of dataset size and in variety of currencies covered. In this work, we collect a total of 24,826 images of banknotes in variety of assistive settings, spanning 17 currencies and 112 denominations. Using supervised contrastive learning, we develop a machine learning model for universal currency recognition. This model learns compliant embeddings of banknote images in a variety of contexts, which can be shared publicly (as a compressed vector representation), and can be used to train and test specialized downstream models for any currency, including those not covered by our dataset or for which only a few real images per denomination are available (few-shot learning). We deploy a variation of this model for public use in the last version of the Seeing AI app developed by Microsoft. We share our encoder model and the embeddings as an open dataset in our BankNote-Net repository.
106,427
106,427
Brain-Inspired Hyperdimensional Computing: How Thermal-Friendly for Edge Computing?
Brain-inspired hyperdimensional computing (HDC) is an emerging machine learning (ML) methods. It is based on large vectors of binary or bipolar symbols and a few simple mathematical operations. The promise of HDC is a highly efficient implementation for embedded systems like wearables. While fast implementations have been presented, other constraints have not been considered for edge computing. In this work, we aim at answering how thermal-friendly HDC for edge computing is. Devices like smartwatches, smart glasses, or even mobile systems have a restrictive cooling budget due to their limited volume. Although HDC operations are simple, the vectors are large, resulting in a high number of CPU operations and thus a heavy load on the entire system potentially causing temperature violations. In this work, the impact of HDC on the chip's temperature is investigated for the first time. We measure the temperature and power consumption of a commercial embedded system and compare HDC with conventional CNN. We reveal that HDC causes up to 6.8{\deg}C higher temperatures and leads to up to 47% more CPU throttling. Even when both HDC and CNN aim for the same throughput (i.e., perform a similar number of classifications per second), HDC still causes higher on-chip temperatures due to the larger power consumption.
106,428
106,428
Compositional Generalization and Decomposition in Neural Program Synthesis
When writing programs, people have the ability to tackle a new complex task by decomposing it into smaller and more familiar subtasks. While it is difficult to measure whether neural program synthesis methods have similar capabilities, what we can measure is whether they compositionally generalize, that is, whether a model that has been trained on the simpler subtasks is subsequently able to solve more complex tasks. In this paper, we focus on measuring the ability of learned program synthesizers to compositionally generalize. We first characterize several different axes along which program synthesis methods would be desired to generalize, e.g., length generalization, or the ability to combine known subroutines in new ways that do not occur in the training data. Based on this characterization, we introduce a benchmark suite of tasks to assess these abilities based on two popular existing datasets, SCAN and RobustFill. Finally, we make first attempts to improve the compositional generalization ability of Transformer models along these axes through novel attention mechanisms that draw inspiration from a human-like decomposition strategy. Empirically, we find our modified Transformer models generally perform better than natural baselines, but the tasks remain challenging.
106,429
106,429
Quantum version of the k-NN classifier based on a quantum sorting algorithm
In this work we introduce a quantum sorting algorithm with adaptable requirements of memory and circuit depth, and then use it to develop a new quantum version of the classical machine learning algorithm known as k-nearest neighbors (k-NN). Both the efficiency and performance of this new quantum version of the k-NN algorithm are compared to those of the classical k-NN and another quantum version proposed by Schuld et al. \cite{Int13}. Results show that the efficiency of both quantum algorithms is similar to each other and superior to that of the classical algorithm. On the other hand, the performance of our proposed quantum k-NN algorithm is superior to the one proposed by Schuld et al. and similar to that of the classical k-NN.
106,430
106,430
Global ECG Classification by Self-Operational Neural Networks with Feature Injection
Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performances. This study proposes a novel approach to narrow this gap and propose a real-time solution with shallow and compact 1D Self-Organized Operational Neural Networks (Self-ONNs). Methods: In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification. Results: Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs).
106,431
106,431
Q-learning with online random forests
$Q$-learning is the most fundamental model-free reinforcement learning algorithm. Deployment of $Q$-learning requires approximation of the state-action value function (also known as the $Q$-function). In this work, we provide online random forests as $Q$-function approximators and propose a novel method wherein the random forest is grown as learning proceeds (through expanding forests). We demonstrate improved performance of our methods over state-of-the-art Deep $Q$-Networks in two OpenAI gyms (`blackjack' and `inverted pendulum') but not in the `lunar lander' gym. We suspect that the resilience to overfitting enjoyed by random forests recommends our method for common tasks that do not require a strong representation of the problem domain. We show that expanding forests (in which the number of trees increases as data comes in) improve performance, suggesting that expanding forests are viable for other applications of online random forests beyond the reinforcement learning setting.
106,432
106,432
Free Energy Evaluation Using Marginalized Annealed Importance Sampling
The evaluation of the free energy of a stochastic model is considered to be a significant issue in various fields of physics and machine learning. However, the exact free energy evaluation is computationally infeasible because it includes an intractable partition function. Annealed importance sampling (AIS) is a type of importance sampling based on the Markov chain Monte Carlo method, which is similar to a simulated annealing, and can effectively approximate the free energy. This study proposes a new AIS-based approach, referred to as marginalized AIS (mAIS). The statistical efficiency of mAIS is investigated in detail based on a theoretical and numerical perspectives. Based on the investigation, it has been proved that mAIS is more effective than AIS under a certain condition.
106,433
106,433
Personal VAD 2.0: Optimizing Personal Voice Activity Detection for On-Device Speech Recognition
Personalization of on-device speech recognition (ASR) has seen explosive growth in recent years, largely due to the increasing popularity of personal assistant features on mobile devices and smart home speakers. In this work, we present Personal VAD 2.0, a personalized voice activity detector that detects the voice activity of a target speaker, as part of a streaming on-device ASR system. Although previous proof-of-concept studies have validated the effectiveness of Personal VAD, there are still several critical challenges to address before this model can be used in production: first, the quality must be satisfactory in both enrollment and enrollment-less scenarios; second, it should operate in a streaming fashion; and finally, the model size should be small enough to fit a limited latency and CPU/Memory budget. To meet the multi-faceted requirements, we propose a series of novel designs: 1) advanced speaker embedding modulation methods; 2) a new training paradigm to generalize to enrollment-less conditions; 3) architecture and runtime optimizations for latency and resource restrictions. Extensive experiments on a realistic speech recognition system demonstrated the state-of-the-art performance of our proposed method.
106,434
106,434
A Learnable Variational Model for Joint Multimodal MRI Reconstruction and Synthesis
Generating multi-contrasts/modal MRI of the same anatomy enriches diagnostic information but is limited in practice due to excessive data acquisition time. In this paper, we propose a novel deep-learning model for joint reconstruction and synthesis of multi-modal MRI using incomplete k-space data of several source modalities as inputs. The output of our model includes reconstructed images of the source modalities and high-quality image synthesized in the target modality. Our proposed model is formulated as a variational problem that leverages several learnable modality-specific feature extractors and a multimodal synthesis module. We propose a learnable optimization algorithm to solve this model, which induces a multi-phase network whose parameters can be trained using multi-modal MRI data. Moreover, a bilevel-optimization framework is employed for robust parameter training. We demonstrate the effectiveness of our approach using extensive numerical experiments.
106,435
106,435
Federated Learning with Partial Model Personalization
We consider two federated learning algorithms for training partially personalized models, where the shared and personal parameters are updated either simultaneously or alternately on the devices. Both algorithms have been proposed in the literature, but their convergence properties are not fully understood, especially for the alternating variant. We provide convergence analyses of both algorithms in the general nonconvex setting with partial participation and delineate the regime where one dominates the other. Our experiments on real-world image, text, and speech datasets demonstrate that (a) partial personalization can obtain most of the benefits of full model personalization with a small fraction of personal parameters, and, (b) the alternating update algorithm often outperforms the simultaneous update algorithm.
106,436
106,436
Exploring the Universality of Hadronic Jet Classification
The modeling of jet substructure significantly differs between Parton Shower Monte Carlo (PSMC) programs. Despite this, we observe that machine learning classifiers trained on different PSMCs learn nearly the same function. This means that when these classifiers are applied to the same PSMC for testing, they result in nearly the same performance. This classifier universality indicates that a machine learning model trained on one simulation and tested on another simulation (or data) will likely be optimal. Our observations are based on detailed studies of shallow and deep neural networks applied to simulated Lorentz boosted Higgs jet tagging at the LHC.
106,437
106,437
DiversiTree: A New Method to Efficiently Compute Diverse Sets of Near-Optimal Solutions to Mixed-Integer Optimization Problems
While most methods for solving mixed-integer optimization problems compute a single optimal solution, a diverse set of near-optimal solutions can often be more useful. We present a new method for finding a set of diverse solutions by emphasizing diversity within the search for near-optimal solutions. Specifically, within a branch-and-bound framework, we investigate parameterized node selection rules that explicitly consider diversity. Our results indicate that our approach significantly increases diversity of the final solution set. When compared with two existing methods, our method runs with similar runtime as regular node selection methods and gives a diversity improvement of up to 140%. In contrast, popular node selection rules such as best-first search gives an improvement in diversity of no more than 40%. Further, we find that our method is most effective when diversity in node selection is continuously emphasized after reaching a minimal depth in the tree and when the solution set has grown sufficiently large. Our method can be easily incorporated into integer programming solvers and has the potential to significantly increase diversity of solution sets.
106,438
106,438
Does the Market of Citations Reward Reproducible Work?
The field of bibliometrics, studying citations and behavior, is critical to the discussion of reproducibility. Citations are one of the primary incentive and reward systems for academic work, and so we desire to know if this incentive rewards reproducible work. Yet to the best of our knowledge, only one work has attempted to look at this combined space, concluding that non-reproducible work is more highly cited. We show that answering this question is more challenging than first proposed, and subtle issues can inhibit a robust conclusion. To make inferences with more robust behavior, we propose a hierarchical Bayesian model that incorporates the citation rate over time, rather than the total number of citations after a fixed amount of time. In doing so we show that, under current evidence the answer is more likely that certain fields of study such as Medicine and Machine Learning (ML) do correlate reproducible works with more citations, but other fields appear to have no relationship. Further, we find that making code available and thoroughly referencing prior works appear to also positively correlate with increased citations. Our code and data can be found at https://github.com/EdwardRaff/ReproducibleCitations .
106,439
106,439
Data-Driven Evaluation of Training Action Space for Reinforcement Learning
Training action space selection for reinforcement learning (RL) is conflict-prone due to complex state-action relationships. To address this challenge, this paper proposes a Shapley-inspired methodology for training action space categorization and ranking. To reduce exponential-time shapley computations, the methodology includes a Monte Carlo simulation to avoid unnecessary explorations. The effectiveness of the methodology is illustrated using a cloud infrastructure resource tuning case study. It reduces the search space by 80\% and categorizes the training action sets into dispensable and indispensable groups. Additionally, it ranks different training actions to facilitate high-performance yet cost-efficient RL model design. The proposed data-driven methodology is extensible to different domains, use cases, and reinforcement learning algorithms.
106,440
106,440
Decompositional Generation Process for Instance-Dependent Partial Label Learning
Partial label learning (PLL) is a typical weakly supervised learning problem, where each training example is associated with a set of candidate labels among which only one is true. Most existing PLL approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels and model the generation process of the candidate labels in a simple way. However, these approaches usually do not perform as well as expected due to the fact that the generation process of the candidate labels is always instance-dependent. Therefore, it deserves to be modeled in a refined way. In this paper, we consider instance-dependent PLL and assume that the generation process of the candidate labels could decompose into two sequential parts, where the correct label emerges first in the mind of the annotator but then the incorrect labels related to the feature are also selected with the correct label as candidate labels due to uncertainty of labeling. Motivated by this consideration, we propose a novel PLL method that performs Maximum A Posterior(MAP) based on an explicitly modeled generation process of candidate labels via decomposed probability distribution models. Experiments on benchmark and real-world datasets validate the effectiveness of the proposed method.
106,441
106,441
Controllable Missingness from Uncontrollable Missingness: Joint Learning Measurement Policy and Imputation
Due to the cost or interference of measurement, we need to control measurement system. Assuming that each variable can be measured sequentially, there exists optimal policy choosing next measurement for the former observations. Though optimal measurement policy is actually dependent on the goal of measurement, we mainly focus on retrieving complete data, so called as imputation. Also, we adapt the imputation method to missingness varying with measurement policy. However, learning measurement policy and imputation requires complete data which is impossible to be observed, unfortunately. To tackle this problem, we propose a data generation method and joint learning algorithm. The main idea is that 1) the data generation method is inherited by imputation method, and 2) the adaptation of imputation encourages measurement policy to learn more than individual learning. We implemented some variations of proposed algorithm for two different datasets and various missing rates. From the experimental results, we demonstrate that our algorithm is generally applicable and outperforms baseline methods.
106,442
106,442
CD$^2$-pFed: Cyclic Distillation-guided Channel Decoupling for Model Personalization in Federated Learning
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to collaboratively learn a shared global model. Despite the recent progress, it remains challenging to deal with heterogeneous data clients, as the discrepant data distributions usually prevent the global model from delivering good generalization ability on each participating client. In this paper, we propose CD^2-pFed, a novel Cyclic Distillation-guided Channel Decoupling framework, to personalize the global model in FL, under various settings of data heterogeneity. Different from previous works which establish layer-wise personalization to overcome the non-IID data across different clients, we make the first attempt at channel-wise assignment for model personalization, referred to as channel decoupling. To further facilitate the collaboration between private and shared weights, we propose a novel cyclic distillation scheme to impose a consistent regularization between the local and global model representations during the federation. Guided by the cyclical distillation, our channel decoupling framework can deliver more accurate and generalized results for different kinds of heterogeneity, such as feature skew, label distribution skew, and concept shift. Comprehensive experiments on four benchmarks, including natural image and medical image analysis tasks, demonstrate the consistent effectiveness of our method on both local and external validations.
106,443
106,443
Optimizing Coordinative Schedules for Tanker Terminals: An Intelligent Large Spatial-Temporal Data-Driven Approach -- Part 1
In this study, a novel coordinative scheduling optimization approach is proposed to enhance port efficiency by reducing average wait time and turnaround time. The proposed approach consists of enhanced particle swarm optimization (ePSO) as kernel and augmented firefly algorithm (AFA) as global optimal search. Two paradigm methods of the proposed approach are investigated, which are batch method and rolling horizon method. The experimental results show that both paradigm methods of proposed approach can effectively enhance port efficiency. The average wait time could be significantly reduced by 86.0% - 95.5%, and the average turnaround time could eventually save 38.2% - 42.4% with respect to historical benchmarks. Moreover, the paradigm method of rolling horizon could reduce to 20 mins on running time over 3-month datasets, rather than 4 hrs on batch method at corresponding maximum performance.
106,444
106,444
A posteriori learning for quasi-geostrophic turbulence parametrization
The use of machine learning to build subgrid parametrizations for climate models is receiving growing attention. State-of-the-art strategies address the problem as a supervised learning task and optimize algorithms that predict subgrid fluxes based on information from coarse resolution models. In practice, training data are generated from higher resolution numerical simulations transformed in order to mimic coarse resolution simulations. By essence, these strategies optimize subgrid parametrizations to meet so-called $\textit{a priori}$ criteria. But the actual purpose of a subgrid parametrization is to obtain good performance in terms of $\textit{a posteriori}$ metrics which imply computing entire model trajectories. In this paper, we focus on the representation of energy backscatter in two dimensional quasi-geostrophic turbulence and compare parametrizations obtained with different learning strategies at fixed computational complexity. We show that strategies based on $\textit{a priori}$ criteria yield parametrizations that tend to be unstable in direct simulations and describe how subgrid parametrizations can alternatively be trained end-to-end in order to meet $\textit{a posteriori}$ criteria. We illustrate that end-to-end learning strategies yield parametrizations that outperform known empirical and data-driven schemes in terms of performance, stability and ability to apply to different flow configurations. These results support the relevance of differentiable programming paradigms for climate models in the future.
106,445
106,445
SuperNet in Neural Architecture Search: A Taxonomic Survey
Deep Neural Networks (DNN) have made significant progress in a wide range of visual recognition tasks such as image classification, object detection, and semantic segmentation. The evolution of convolutional architectures has led to better performance by incurring expensive computational costs. In addition, network design has become a difficult task, which is labor-intensive and requires a high level of domain knowledge. To mitigate such issues, there have been studies for a variety of neural architecture search methods that automatically search for optimal architectures, achieving models with impressive performance that outperform human-designed counterparts. This survey aims to provide an overview of existing works in this field of research and specifically focus on the supernet optimization that builds a neural network that assembles all the architectures as its sub models by using weight sharing. We aim to accomplish that by categorizing supernet optimization by proposing them as solutions to the common challenges found in the literature: data-side optimization, poor rank correlation alleviation, and transferable NAS for a number of deployment scenarios.
106,446
106,446
Network Shuffling: Privacy Amplification via Random Walks
Recently, it is shown that shuffling can amplify the central differential privacy guarantees of data randomized with local differential privacy. Within this setup, a centralized, trusted shuffler is responsible for shuffling by keeping the identities of data anonymous, which subsequently leads to stronger privacy guarantees for systems. However, introducing a centralized entity to the originally local privacy model loses some appeals of not having any centralized entity as in local differential privacy. Moreover, implementing a shuffler in a reliable way is not trivial due to known security issues and/or requirements of advanced hardware or secure computation technology. Motivated by these practical considerations, we rethink the shuffle model to relax the assumption of requiring a centralized, trusted shuffler. We introduce network shuffling, a decentralized mechanism where users exchange data in a random-walk fashion on a network/graph, as an alternative of achieving privacy amplification via anonymity. We analyze the threat model under such a setting, and propose distributed protocols of network shuffling that is straightforward to implement in practice. Furthermore, we show that the privacy amplification rate is similar to other privacy amplification techniques such as uniform shuffling. To our best knowledge, among the recently studied intermediate trust models that leverage privacy amplification techniques, our work is the first that is not relying on any centralized entity to achieve privacy amplification.
106,447
106,447
Global Update Guided Federated Learning
Federated learning protects data privacy and security by exchanging models instead of data. However, unbalanced data distributions among participating clients compromise the accuracy and convergence speed of federated learning algorithms. To alleviate this problem, unlike previous studies that limit the distance of updates for local models, we propose global-update-guided federated learning (FedGG), which introduces a model-cosine loss into local objective functions, so that local models can fit local data distributions under the guidance of update directions of global models. Furthermore, considering that the update direction of a global model is informative in the early stage of training, we propose adaptive loss weights based on the update distances of local models. Numerical simulations show that, compared with other advanced algorithms, FedGG has a significant improvement on model convergence accuracies and speeds. Additionally, compared with traditional fixed loss weights, adaptive loss weights enable our algorithm to be more stable and easier to implement in practice.
106,448
106,448
Does Robustness on ImageNet Transfer to Downstream Tasks?
As clean ImageNet accuracy nears its ceiling, the research community is increasingly more concerned about robust accuracy under distributional shifts. While a variety of methods have been proposed to robustify neural networks, these techniques often target models trained on ImageNet classification. At the same time, it is a common practice to use ImageNet pretrained backbones for downstream tasks such as object detection, semantic segmentation, and image classification from different domains. This raises a question: Can these robust image classifiers transfer robustness to downstream tasks? For object detection and semantic segmentation, we find that a vanilla Swin Transformer, a variant of Vision Transformer tailored for dense prediction tasks, transfers robustness better than Convolutional Neural Networks that are trained to be robust to the corrupted version of ImageNet. For CIFAR10 classification, we find that models that are robustified for ImageNet do not retain robustness when fully fine-tuned. These findings suggest that current robustification techniques tend to emphasize ImageNet evaluations. Moreover, network architecture is a strong source of robustness when we consider transfer learning.
106,449
106,449
Study of a committee of neural networks for biometric hand-geometry recognition
This Paper studies different committees of neural networks for biometric pattern recognition. We use the neural nets as classifiers for identification and verification purposes. We show that a committee of nets can improve the recognition rates when compared with a multi-start initialization algo-rithm that just picks up the neural net which offers the best performance. On the other hand, we found that there is no strong correlation between identifi-cation and verification applications using the same classifier.
106,450
106,450
Channel model for end-to-end learning of communications systems: A survey
The traditional communication model based on chain of multiple independent processing blocks is constraint to efficiency and introduces artificial barriers. Thus, each individually optimized block does not guarantee end-to-end performance of the system. Recently, end-to-end learning of communications systems through machine learning (ML) have been proposed to optimize the system metrics jointly over all components. These methods show performance improvements but has a limitation that it requires a differentiable channel model. In this study, we have summarized the existing approaches that alleviates this problem. We believe that this study will provide better understanding of the topic and an insight into future research in this field.
106,451
106,451
Optimizing Coordinative Schedules for Tanker Terminals: An Intelligent Large Spatial-Temporal Data-Driven Approach -- Part 2
In this study, a novel coordinative scheduling optimization approach is proposed to enhance port efficiency by reducing weighted average turnaround time. The proposed approach is developed as a heuristic algorithm applied and investigated through different observation windows with weekly rolling horizon paradigm method. The experimental results show that the proposed approach is effective and promising on mitigating the turnaround time of vessels. The results demonstrate that largest potential savings of turnaround time (weighted average) are around 17 hours (28%) reduction on baseline of 1-week observation, 45 hours (37%) reduction on baseline of 2-week observation and 70 hours (40%) reduction on baseline of 3-week observation. Even though the experimental results are based on historical datasets, the results potentially present significant benefits if real-time applications were applied under a quadratic computational complexity.
106,452
106,452
Blockchain as an Enabler for Transfer Learning in Smart Environments
The knowledge, embodied in machine learning models for intelligent systems, is commonly associated with time-consuming and costly processes such as large-scale data collection, data labelling, network training, and fine-tuning of models. Sharing and reuse of these elaborated models between intelligent systems deployed in a different environment, which is known as transfer learning, would facilitate the adoption of services for the users and accelerates the uptake of intelligent systems in environments such as smart building and smart city applications. In this context, the communication and knowledge exchange between AI-enabled environments depend on a complicated networks of systems, system of systems, digital assets, and their chain of dependencies that hardly follows the centralized schema of traditional information systems. Rather, it requires an adaptive decentralized system architecture that is empowered by features such as data provenance, workflow transparency, and validation of process participants. In this research, we propose a decentralized and adaptive software framework based on blockchain and knowledge graph technologies that supports the knowledge exchange and interoperability between IoT-enabled environments, in a transparent and trustworthy way.
106,453
106,453
Disability prediction in multiple sclerosis using performance outcome measures and demographic data
Literature on machine learning for multiple sclerosis has primarily focused on the use of neuroimaging data such as magnetic resonance imaging and clinical laboratory tests for disease identification. However, studies have shown that these modalities are not consistent with disease activity such as symptoms or disease progression. Furthermore, the cost of collecting data from these modalities is high, leading to scarce evaluations. In this work, we used multi-dimensional, affordable, physical and smartphone-based performance outcome measures (POM) in conjunction with demographic data to predict multiple sclerosis disease progression. We performed a rigorous benchmarking exercise on two datasets and present results across 13 clinically actionable prediction endpoints and 6 machine learning models. To the best of our knowledge, our results are the first to show that it is possible to predict disease progression using POMs and demographic data in the context of both clinical trials and smartphone-base studies by using two datasets. Moreover, we investigate our models to understand the impact of different POMs and demographics on model performance through feature ablation studies. We also show that model performance is similar across different demographic subgroups (based on age and sex). To enable this work, we developed an end-to-end reusable pre-processing and machine learning framework which allows quicker experimentation over disparate MS datasets.
106,454
106,454
KGI: An Integrated Framework for Knowledge Intensive Language Tasks
In a recent work, we presented a novel state-of-the-art approach to zero-shot slot filling that extends dense passage retrieval with hard negatives and robust training procedures for retrieval augmented generation models. In this paper, we propose a system based on an enhanced version of this approach where we train task specific models for other knowledge intensive language tasks, such as open domain question answering (QA), dialogue and fact checking. Our system achieves results comparable to the best models in the KILT leaderboards. Moreover, given a user query, we show how the output from these different models can be combined to cross-examine each other. Particularly, we show how accuracy in dialogue can be improved using the QA model. A short video demonstrating the system is available here - \url{https://ibm.box.com/v/kgi-interactive-demo} .
106,455
106,455
The Complexity of Markov Equilibrium in Stochastic Games
We show that computing approximate stationary Markov coarse correlated equilibria (CCE) in general-sum stochastic games is computationally intractable, even when there are two players, the game is turn-based, the discount factor is an absolute constant, and the approximation is an absolute constant. Our intractability results stand in sharp contrast to normal-form games where exact CCEs are efficiently computable. A fortiori, our results imply that there are no efficient algorithms for learning stationary Markov CCE policies in multi-agent reinforcement learning (MARL), even when the interaction is two-player and turn-based, and both the discount factor and the desired approximation of the learned policies is an absolute constant. In turn, these results stand in sharp contrast to single-agent reinforcement learning (RL) where near-optimal stationary Markov policies can be efficiently learned. Complementing our intractability results for stationary Markov CCEs, we provide a decentralized algorithm (assuming shared randomness among players) for learning a nonstationary Markov CCE policy with polynomial time and sample complexity in all problem parameters. Previous work for learning Markov CCE policies all required exponential time and sample complexity in the number of players.
106,456
106,456
ECG Biometric Recognition: Review, System Proposal, and Benchmark Evaluation
Electrocardiograms (ECGs) have shown unique patterns to distinguish between different subjects and present important advantages compared to other biometric traits, such as difficulty to counterfeit, liveness detection, and ubiquity. Also, with the success of Deep Learning technologies, ECG biometric recognition has received increasing interest in recent years. However, it is not easy to evaluate the improvements of novel ECG proposed methods, mainly due to the lack of public data and standard experimental protocols. In this study, we perform extensive analysis and comparison of different scenarios in ECG biometric recognition. Both verification and identification tasks are investigated, as well as single- and multi-session scenarios. Finally, we also perform single- and multi-lead ECG experiments, considering traditional scenarios using electrodes in the chest and limbs and current user-friendly wearable devices. In addition, we present ECGXtractor, a robust Deep Learning technology trained with an in-house large-scale database and able to operate successfully across various scenarios and multiple databases. We introduce our proposed feature extractor, trained with multiple sinus-rhythm heartbeats belonging to 55,967 subjects, and provide a general public benchmark evaluation with detailed experimental protocol. We evaluate the system performance over four different databases: i) our in-house database, ii) PTB, iii) ECG-ID, and iv) CYBHi. With the widely used PTB database, we achieve Equal Error Rates of 0.14% and 2.06% in verification, and accuracies of 100% and 96.46% in identification, respectively in single- and multi-session analysis. We release the source code, experimental protocol details, and pre-trained models in GitHub to advance in the field.
106,457
106,457
Labeling-Free Comparison Testing of Deep Learning Models
Various deep neural networks (DNNs) are developed and reported for their tremendous success in multiple domains. Given a specific task, developers can collect massive DNNs from public sources for efficient reusing and avoid redundant work from scratch. However, testing the performance (e.g., accuracy and robustness) of multiple DNNs and giving a reasonable recommendation that which model should be used is challenging regarding the scarcity of labeled data and demand of domain expertise. Existing testing approaches are mainly selection-based where after sampling, a few of the test data are labeled to discriminate DNNs. Therefore, due to the randomness of sampling, the performance ranking is not deterministic. In this paper, we propose a labeling-free comparison testing approach to overcome the limitations of labeling effort and sampling randomness. The main idea is to learn a Bayesian model to infer the models' specialty only based on predicted labels. To evaluate the effectiveness of our approach, we undertook exhaustive experiments on 9 benchmark datasets spanning in the domains of image, text, and source code, and 165 DNNs. In addition to accuracy, we consider the robustness against synthetic and natural distribution shifts. The experimental results demonstrate that the performance of existing approaches degrades under distribution shifts. Our approach outperforms the baseline methods by up to 0.74 and 0.53 on Spearman's correlation and Kendall's $\tau$, respectively, regardless of the dataset and distribution shift. Additionally, we investigated the impact of model quality (accuracy and robustness) and diversity (standard deviation of the quality) on the testing effectiveness and observe that there is a higher chance of a good result when the quality is over 50\% and the diversity is larger than 18\%.
106,458
106,458
SnapMode: An Intelligent and Distributed Large-Scale Fashion Image Retrieval Platform Based On Big Data and Deep Generative Adversarial Network Technologies
Fashion is now among the largest industries worldwide, for it represents human history and helps tell the worlds story. As a result of the Fourth Industrial Revolution, the Internet has become an increasingly important source of fashion information. However, with a growing number of web pages and social data, it is nearly impossible for humans to manually catch up with the ongoing evolution and the continuously variable content in this domain. The proper management and exploitation of big data can pave the way for the substantial growth of the global economy as well as citizen satisfaction. Therefore, computer scientists have found it challenging to handle e-commerce fashion websites by using big data and machine learning technologies. This paper first proposes a scalable focused Web Crawler engine based on the distributed computing platforms to extract and process fashion data on e-commerce websites. The role of the proposed platform is then described in developing a disentangled feature extraction method by employing deep convolutional generative adversarial networks (DCGANs) for content-based image indexing and retrieval. Finally, the state-of-the-art solutions are compared, and the results of the proposed approach are analyzed on a standard dataset. For the real-life implementation of the proposed solution, a Web-based application is developed on Apache Storm, Kafka, Solr, and Milvus platforms to create a fashion search engine called SnapMode.
106,459
106,459
Mel-spectrogram features for acoustic vehicle detection and speed estimation
The paper addresses acoustic vehicle detection and speed estimation from single sensor measurements. We predict the vehicle's pass-by instant by minimizing clipped vehicle-to-microphone distance, which is predicted from the mel-spectrogram of input audio, in a supervised learning approach. In addition, mel-spectrogram-based features are used directly for vehicle speed estimation, without introducing any intermediate features. The results show that the proposed features can be used for accurate vehicle detection and speed estimation, with an average error of 7.87 km/h. If we formulate speed estimation as a classification problem, with a 10 km/h discretization interval, the proposed method attains the average accuracy of 48.7% for correct class prediction and 91.0% when an offset of one class is allowed. The proposed method is evaluated on a dataset of 304 urban-environment on-field recordings of ten different vehicles.
106,460
106,460
Disentangled Latent Speech Representation for Automatic Pathological Intelligibility Assessment
Speech intelligibility assessment plays an important role in the therapy of patients suffering from pathological speech disorders. Automatic and objective measures are desirable to assist therapists in their traditionally subjective and labor-intensive assessments. In this work, we investigate a novel approach for obtaining such a measure using the divergence in disentangled latent speech representations of a parallel utterance pair, obtained from a healthy reference and a pathological speaker. Experiments on an English database of Cerebral Palsy patients, using all available utterances per speaker, show high and significant correlation values (R = -0.9) with subjective intelligibility measures, while having only minimal deviation (+-0.01) across four different reference speaker pairs. We also demonstrate the robustness of the proposed method (R = -0.89 deviating +-0.02 over 1000 iterations) by considering a significantly smaller amount of utterances per speaker. Our results are among the first to show that disentangled speech representations can be used for automatic pathological speech intelligibility assessment, resulting in a reference speaker pair invariant method, applicable in scenarios with only few utterances available.
106,461
106,461
Quantum Machine Learning Framework for Virtual Screening in Drug Discovery: a Prospective Quantum Advantage
Machine Learning (ML) for Ligand Based Virtual Screening (LB-VS) is an important in-silico tool for discovering new drugs in a faster and cost-effective manner, especially for emerging diseases such as COVID-19. In this paper, we propose a general-purpose framework combining a classical Support Vector Classifier (SVC) algorithm with quantum kernel estimation for LB-VS on real-world databases, and we argue in favor of its prospective quantum advantage. Indeed, we heuristically prove that our quantum integrated workflow can, at least in some relevant instances, provide a tangible advantage compared to state-of-art classical algorithms operating on the same datasets, showing strong dependence on target and features selection method. Finally, we test our algorithm on IBM Quantum processors using ADRB2 and COVID-19 datasets, showing that hardware simulations provide results in line with the predicted performances and can surpass classical equivalents.
106,462
106,462
Engagement Detection with Multi-Task Training in E-Learning Environments
Recognition of user interaction, in particular engagement detection, became highly crucial for online working and learning environments, especially during the COVID-19 outbreak. Such recognition and detection systems significantly improve the user experience and efficiency by providing valuable feedback. In this paper, we propose a novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes mean squared error and triplet loss together to determine the engagement level of students in an e-learning environment. The performance of this system is evaluated and compared against the state-of-the-art on a publicly available dataset as well as videos collected from real-life scenarios. The results show that ED-MTT achieves 6% lower MSE than the best state-of-the-art performance with highly acceptable training time and lightweight feature extraction.
106,463
106,463
Ontology Matching Through Absolute Orientation of Embedding Spaces
Ontology matching is a core task when creating interoperable and linked open datasets. In this paper, we explore a novel structure-based mapping approach which is based on knowledge graph embeddings: The ontologies to be matched are embedded, and an approach known as absolute orientation is used to align the two embedding spaces. Next to the approach, the paper presents a first, preliminary evaluation using synthetic and real-world datasets. We find in experiments with synthetic data, that the approach works very well on similarly structured graphs; it handles alignment noise better than size and structural differences in the ontologies.
106,464
106,464
Checking HateCheck: a cross-functional analysis of behaviour-aware learning for hate speech detection
Behavioural testing -- verifying system capabilities by validating human-designed input-output pairs -- is an alternative evaluation method of natural language processing systems proposed to address the shortcomings of the standard approach: computing metrics on held-out data. While behavioural tests capture human prior knowledge and insights, there has been little exploration on how to leverage them for model training and development. With this in mind, we explore behaviour-aware learning by examining several fine-tuning schemes using HateCheck, a suite of functional tests for hate speech detection systems. To address potential pitfalls of training on data originally intended for evaluation, we train and evaluate models on different configurations of HateCheck by holding out categories of test cases, which enables us to estimate performance on potentially overlooked system properties. The fine-tuning procedure led to improvements in the classification accuracy of held-out functionalities and identity groups, suggesting that models can potentially generalise to overlooked functionalities. However, performance on held-out functionality classes and i.i.d. hate speech detection data decreased, which indicates that generalisation occurs mostly across functionalities from the same class and that the procedure led to overfitting to the HateCheck data distribution.
106,465
106,465
C-NMT: A Collaborative Inference Framework for Neural Machine Translation
Collaborative Inference (CI) optimizes the latency and energy consumption of deep learning inference through the inter-operation of edge and cloud devices. Albeit beneficial for other tasks, CI has never been applied to the sequence- to-sequence mapping problem at the heart of Neural Machine Translation (NMT). In this work, we address the specific issues of collaborative NMT, such as estimating the latency required to generate the (unknown) output sequence, and show how existing CI methods can be adapted to these applications. Our experiments show that CI can reduce the latency of NMT by up to 44% compared to a non-collaborative approach.
106,466
106,466
KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media
Political perspective detection has become an increasingly important task that can help combat echo chambers and political polarization. Previous approaches generally focus on leveraging textual content to identify stances, while they fail to reason with background knowledge or leverage the rich semantic and syntactic textual labels in news articles. In light of these limitations, we propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning and incorporate textual cues as paragraph-level labels. Specifically, we firstly generate random walks on external knowledge graphs and infuse them with news text representations. We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles. Finally, we adopt relational graph neural networks for graph-level representation learning and conduct political perspective detection. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods on two benchmark datasets. We further examine the effect of knowledge walks and textual cues and how they contribute to our approach's data efficiency.
106,467
106,467
GPSAF: A Generalized Probabilistic Surrogate-Assisted Framework for Constrained Single- and Multi-objective Optimization
Significant effort has been made to solve computationally expensive optimization problems in the past two decades, and various optimization methods incorporating surrogates into optimization have been proposed. Most research focuses on either exploiting the surrogate by defining a utility optimization problem or customizing an existing optimization method to use one or multiple approximation models. However, only a little attention has been paid to generic concepts applicable to different types of algorithms and optimization problems simultaneously. Thus this paper proposes a generalized probabilistic surrogate-assisted framework (GPSAF), applicable to a broad category of unconstrained and constrained, single- and multi-objective optimization algorithms. The idea is based on a surrogate assisting an existing optimization method. The assistance is based on two distinct phases, one facilitating exploration and another exploiting the surrogates. The exploration and exploitation of surrogates are automatically balanced by performing a probabilistic knockout tournament among different clusters of solutions. A study of multiple well-known population-based optimization algorithms is conducted with and without the proposed surrogate assistance on single- and multi-objective optimization problems with a maximum solution evaluation budget of 300 or less. The results indicate the effectiveness of applying GPSAF to an optimization algorithm and the competitiveness with other surrogate-assisted algorithms.
106,468
106,468
Transfer Attacks Revisited: A Large-Scale Empirical Study in Real Computer Vision Settings
One intriguing property of adversarial attacks is their "transferability" -- an adversarial example crafted with respect to one deep neural network (DNN) model is often found effective against other DNNs as well. Intensive research has been conducted on this phenomenon under simplistic controlled conditions. Yet, thus far, there is still a lack of comprehensive understanding about transferability-based attacks ("transfer attacks") in real-world environments. To bridge this critical gap, we conduct the first large-scale systematic empirical study of transfer attacks against major cloud-based MLaaS platforms, taking the components of a real transfer attack into account. The study leads to a number of interesting findings which are inconsistent to the existing ones, including: (1) Simple surrogates do not necessarily improve real transfer attacks. (2) No dominant surrogate architecture is found in real transfer attacks. (3) It is the gap between posterior (output of the softmax layer) rather than the gap between logit (so-called $\kappa$ value) that increases transferability. Moreover, by comparing with prior works, we demonstrate that transfer attacks possess many previously unknown properties in real-world environments, such as (1) Model similarity is not a well-defined concept. (2) $L_2$ norm of perturbation can generate high transferability without usage of gradient and is a more powerful source than $L_\infty$ norm. We believe this work sheds light on the vulnerabilities of popular MLaaS platforms and points to a few promising research directions.
106,469
106,469
Predicting Berth Stay for Tanker Terminals: A Systematic and Dynamic Approach
Given the trend of digitization and increasing number of maritime transport, prediction of vessel berth stay has been triggered for requirements of operation research and scheduling optimization problem in the era of maritime big data, which takes a significant part in port efficiency and maritime logistics enhancement. This study proposes a systematic and dynamic approach of predicting berth stay for tanker terminals. The approach covers three innovative aspects: 1) Data source employed is multi-faceted, including cargo operation data from tanker terminals, time-series data from automatic identification system (AIS), etc. 2) The process of berth stay is decomposed into multiple blocks according to data analysis and information extraction innovatively, and practical operation scenarios are also developed accordingly. 3) The predictive models of berth stay are developed on the basis of prior data analysis and information extraction under two methods, including regression and decomposed distribution. The models are evaluated under four dynamic scenarios with certain designated cargoes among two different terminals. The evaluation results show that the proposed approach can predict berth stay with the accuracy up to 98.81% validated by historical baselines, and also demonstrate the proposed approach has dynamic capability of predicting berth stay among the scenarios. The model may be potentially applied for short-term pilot-booking or scheduling optimizations within a reasonable time frame for advancement of port intelligence and logistics efficiency.
106,470
106,470
Neural Tangent Generalization Attacks
The remarkable performance achieved by Deep Neural Networks (DNNs) in many applications is followed by the rising concern about data privacy and security. Since DNNs usually require large datasets to train, many practitioners scrape data from external sources such as the Internet. However, an external data owner may not be willing to let this happen, causing legal or ethical issues. In this paper, we study the generalization attacks against DNNs, where an attacker aims to slightly modify training data in order to spoil the training process such that a trained network lacks generalizability. These attacks can be performed by data owners and protect data from unexpected use. However, there is currently no efficient generalization attack against DNNs due to the complexity of a bilevel optimization involved. We propose the Neural Tangent Generalization Attack (NTGA) that, to the best of our knowledge, is the first work enabling clean-label, black-box generalization attack against DNNs. We conduct extensive experiments, and the empirical results demonstrate the effectiveness of NTGA. Our code and perturbed datasets are available at: https://github.com/lionelmessi6410/ntga.
106,471
106,471
Karaoker: Alignment-free singing voice synthesis with speech training data
Existing singing voice synthesis models (SVS) are usually trained on singing data and depend on either error-prone time-alignment and duration features or explicit music score information. In this paper, we propose Karaoker, a multispeaker Tacotron-based model conditioned on voice characteristic features that is trained exclusively on spoken data without requiring time-alignments. Karaoker synthesizes singing voice following a multi-dimensional template extracted from a source waveform of an unseen speaker/singer. The model is jointly conditioned with a single deep convolutional encoder on continuous data including pitch, intensity, harmonicity, formants, cepstral peak prominence and octaves. We extend the text-to-speech training objective with feature reconstruction, classification and speaker identification tasks that guide the model to an accurate result. Except for multi-tasking, we also employ a Wasserstein GAN training scheme as well as new losses on the acoustic model's output to further refine the quality of the model.
106,472
106,472
EPASAD: Ellipsoid decision boundary based Process-Aware Stealthy Attack Detector
Due to the importance of Critical Infrastructure (CI) in a nation's economy, they have been lucrative targets for cyber attackers. These critical infrastructures are usually Cyber-Physical Systems (CPS) such as power grids, water, and sewage treatment facilities, oil and gas pipelines, etc. In recent times, these systems have suffered from cyber attacks numerous times. Researchers have been developing cyber security solutions for CIs to avoid lasting damages. According to standard frameworks, cyber security based on identification, protection, detection, response, and recovery are at the core of these research. Detection of an ongoing attack that escapes standard protection such as firewall, anti-virus, and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics of the system. Therefore, anomaly detection in physical dynamics proves an effective means to implement defense-in-depth. PASAD is one example of anomaly detection in the sensor/actuator data, representing such systems' physical dynamics. We present EPASAD, which improves the detection technique used in PASAD to detect these micro-stealthy attacks, as our experiments show that PASAD's spherical boundary-based detection fails to detect. Our method EPASAD overcomes this by using Ellipsoid boundaries, thereby tightening the boundaries in various dimensions, whereas a spherical boundary treats all dimensions equally. We validate EPASAD using the dataset produced by the TE-process simulator and the C-town datasets. The results show that EPASAD improves PASAD's average recall by 5.8% and 9.5% for the two datasets, respectively.
106,473
106,473
Self-supervised Speaker Diarization
Over the last few years, deep learning has grown in popularity for speaker verification, identification, and diarization. Inarguably, a significant part of this success is due to the demonstrated effectiveness of their speaker representations. These, however, are heavily dependent on large amounts of annotated data and can be sensitive to new domains. This study proposes an entirely unsupervised deep-learning model for speaker diarization. Specifically, the study focuses on generating high-quality neural speaker representations without any annotated data, as well as on estimating secondary hyperparameters of the model without annotations. The speaker embeddings are represented by an encoder trained in a self-supervised fashion using pairs of adjacent segments assumed to be of the same speaker. The trained encoder model is then used to self-generate pseudo-labels to subsequently train a similarity score between different segments of the same call using probabilistic linear discriminant analysis (PLDA) and further to learn a clustering stopping threshold. We compared our model to state-of-the-art unsupervised as well as supervised baselines on the CallHome benchmarks. According to empirical results, our approach outperforms unsupervised methods when only two speakers are present in the call, and is only slightly worse than recent supervised models.
106,474
106,474
Ranking with submodular functions on a budget
Submodular maximization has been the backbone of many important machine-learning problems, and has applications to viral marketing, diversification, sensor placement, and more. However, the study of maximizing submodular functions has mainly been restricted in the context of selecting a set of items. On the other hand, many real-world applications require a solution that is a ranking over a set of items. The problem of ranking in the context of submodular function maximization has been considered before, but to a much lesser extent than item-selection formulations. In this paper, we explore a novel formulation for ranking items with submodular valuations and budget constraints. We refer to this problem as max-submodular ranking (MSR). In more detail, given a set of items and a set of non-decreasing submodular functions, where each function is associated with a budget, we aim to find a ranking of the set of items that maximizes the sum of values achieved by all functions under the budget constraints. For the MSR problem with cardinality- and knapsack-type budget constraints we propose practical algorithms with approximation guarantees. In addition, we perform an empirical evaluation, which demonstrates the superior performance of the proposed algorithms against strong baselines.
106,475
106,475
Automatic Data Augmentation Selection and Parametrization in Contrastive Self-Supervised Speech Representation Learning
Contrastive learning enables learning useful audio and speech representations without ground-truth labels by maximizing the similarity between latent representations of similar signal segments. In this framework various data augmentation techniques are usually exploited to help enforce desired invariances within the learned representations, improving performance on various audio tasks thanks to more robust embeddings. Now, selecting the most relevant augmentations has proven crucial for better downstream performances. Thus, this work introduces a conditional independance-based method which allows for automatically selecting a suitable distribution on the choice of augmentations and their parametrization from a set of predefined ones, for contrastive self-supervised pre-training. This is performed with respect to a downstream task of interest, hence saving a costly hyper-parameter search. Experiments performed on two different downstream tasks validate the proposed approach showing better results than experimenting without augmentation or with baseline augmentations. We furthermore conduct a qualitative analysis of the automatically selected augmentations and their variation according to the considered final downstream dataset.
106,476
106,476
A Low-Cost Robot Science Kit for Education with Symbolic Regression for Hypothesis Discovery and Validation
The next generation of physical science involves robot scientists - autonomous physical science systems capable of experimental design, execution, and analysis in a closed loop. Such systems have shown real-world success for scientific exploration and discovery, including the first discovery of a best-in-class material. To build and use these systems, the next generation workforce requires expertise in diverse areas including ML, control systems, measurement science, materials synthesis, decision theory, among others. However, education is lagging. Educators need a low-cost, easy-to-use platform to teach the required skills. Industry can also use such a platform for developing and evaluating autonomous physical science methodologies. We present the next generation in science education, a kit for building a low-cost autonomous scientist. The kit was used during two courses at the University of Maryland to teach undergraduate and graduate students autonomous physical science. We discuss its use in the course and its greater capability to teach the dual tasks of autonomous model exploration, optimization, and determination, with an example of autonomous experimental "discovery" of the Henderson-Hasselbalch equation.
106,477
106,477
Learning Polynomial Transformations
We consider the problem of learning high dimensional polynomial transformations of Gaussians. Given samples of the form $p(x)$, where $x\sim N(0, \mathrm{Id}_r)$ is hidden and $p: \mathbb{R}^r \to \mathbb{R}^d$ is a function where every output coordinate is a low-degree polynomial, the goal is to learn the distribution over $p(x)$. This problem is natural in its own right, but is also an important special case of learning deep generative models, namely pushforwards of Gaussians under two-layer neural networks with polynomial activations. Understanding the learnability of such generative models is crucial to understanding why they perform so well in practice. Our first main result is a polynomial-time algorithm for learning quadratic transformations of Gaussians in a smoothed setting. Our second main result is a polynomial-time algorithm for learning constant-degree polynomial transformations of Gaussian in a smoothed setting, when the rank of the associated tensors is small. In fact our results extend to any rotation-invariant input distribution, not just Gaussian. These are the first end-to-end guarantees for learning a pushforward under a neural network with more than one layer. Along the way, we also give the first polynomial-time algorithms with provable guarantees for tensor ring decomposition, a popular generalization of tensor decomposition that is used in practice to implicitly store large tensors.
106,478
106,478
Measuring AI Systems Beyond Accuracy
Current test and evaluation (T&E) methods for assessing machine learning (ML) system performance often rely on incomplete metrics. Testing is additionally often siloed from the other phases of the ML system lifecycle. Research investigating cross-domain approaches to ML T&E is needed to drive the state of the art forward and to build an Artificial Intelligence (AI) engineering discipline. This paper advocates for a robust, integrated approach to testing by outlining six key questions for guiding a holistic T&E strategy.
106,479
106,479
Structure-aware Protein Self-supervised Learning
Protein representation learning methods have shown great potential to yield useful representation for many downstream tasks, especially on protein classification. Moreover, a few recent studies have shown great promise in addressing insufficient labels of proteins with self-supervised learning methods. However, existing protein language models are usually pretrained on protein sequences without considering the important protein structural information. To this end, we propose a novel structure-aware protein self-supervised learning method to effectively capture structural information of proteins. In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information with self-supervised tasks from a pairwise residue distance perspective and a dihedral angle perspective, respectively. Furthermore, we propose to leverage the available protein language model pretrained on protein sequences to enhance the self-supervised learning. Specifically, we identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme. Experiments on several supervised downstream tasks verify the effectiveness of our proposed method.
106,480
106,480
Intelligent Sight and Sound: A Chronic Cancer Pain Dataset
Cancer patients experience high rates of chronic pain throughout the treatment process. Assessing pain for this patient population is a vital component of psychological and functional well-being, as it can cause a rapid deterioration of quality of life. Existing work in facial pain detection often have deficiencies in labeling or methodology that prevent them from being clinically relevant. This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial, guided by clinicians to help ensure that model findings yield clinically relevant results. The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores adopted from the Brief Pain Inventory (BPI). Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain today, with room for improvement. Due to the especially sensitive nature of the inherent Personally Identifiable Information (PII) of facial images, the dataset will be released under the guidance and control of the National Institutes of Health (NIH).
106,481
106,481
Data-Free Quantization with Accurate Activation Clipping and Adaptive Batch Normalization
Data-free quantization is a task that compresses the neural network to low bit-width without access to original training data. Most existing data-free quantization methods cause severe performance degradation due to inaccurate activation clipping range and quantization error, especially for low bit-width. In this paper, we present a simple yet effective data-free quantization method with accurate activation clipping and adaptive batch normalization. Accurate activation clipping (AAC) improves the model accuracy by exploiting accurate activation information from the full-precision model. Adaptive batch normalization firstly proposes to address the quantization error from distribution changes by updating the batch normalization layer adaptively. Extensive experiments demonstrate that the proposed data-free quantization method can yield surprisingly performance, achieving 64.33% top-1 accuracy of ResNet18 on ImageNet dataset, with 3.7% absolute improvement outperforming the existing state-of-the-art methods.
106,482
106,482
Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes for Medical Image Super-Resolution
Super-resolving medical images can help physicians in providing more accurate diagnostics. In many situations, computed tomography (CT) or magnetic resonance imaging (MRI) techniques output several scans (modes) during a single investigation, which can jointly be used (in a multimodal fashion) to further boost the quality of super-resolution results. To this end, we propose a novel multimodal multi-head convolutional attention module to super-resolve CT and MRI scans. Our attention module uses the convolution operation to perform joint spatial-channel attention on multiple concatenated input tensors, where the kernel (receptive field) size controls the reduction rate of the spatial attention and the number of convolutional filters controls the reduction rate of the channel attention, respectively. We introduce multiple attention heads, each head having a distinct receptive field size corresponding to a particular reduction rate for the spatial attention. We integrate our multimodal multi-head convolutional attention (MMHCA) into two deep neural architectures for super-resolution and conduct experiments on three data sets. Our empirical results show the superiority of our attention module over the state-of-the-art attention mechanisms used in super-resolution. Moreover, we conduct an ablation study to assess the impact of the components involved in our attention module, e.g. the number of inputs or the number of heads.
106,483
106,483
Towards Reliable and Explainable AI Model for Solid Pulmonary Nodule Diagnosis
Lung cancer has the highest mortality rate of deadly cancers in the world. Early detection is essential to treatment of lung cancer. However, detection and accurate diagnosis of pulmonary nodules depend heavily on the experiences of radiologists and can be a heavy workload for them. Computer-aided diagnosis (CAD) systems have been developed to assist radiologists in nodule detection and diagnosis, greatly easing the workload while increasing diagnosis accuracy. Recent development of deep learning, greatly improved the performance of CAD systems. However, lack of model reliability and interpretability remains a major obstacle for its large-scale clinical application. In this work, we proposed a multi-task explainable deep-learning model for pulmonary nodule diagnosis. Our neural model can not only predict lesion malignancy but also identify relevant manifestations. Further, the location of each manifestation can also be visualized for visual interpretability. Our proposed neural model achieved a test AUC of 0.992 on LIDC public dataset and a test AUC of 0.923 on our in-house dataset. Moreover, our experimental results proved that by incorporating manifestation identification tasks into the multi-task model, the accuracy of the malignancy classification can also be improved. This multi-task explainable model may provide a scheme for better interaction with the radiologists in a clinical environment.
106,484
106,484
Characterizing and Understanding the Behavior of Quantized Models for Reliable Deployment
Deep Neural Networks (DNNs) have gained considerable attention in the past decades due to their astounding performance in different applications, such as natural language modeling, self-driving assistance, and source code understanding. With rapid exploration, more and more complex DNN architectures have been proposed along with huge pre-trained model parameters. The common way to use such DNN models in user-friendly devices (e.g., mobile phones) is to perform model compression before deployment. However, recent research has demonstrated that model compression, e.g., model quantization, yields accuracy degradation as well as outputs disagreements when tested on unseen data. Since the unseen data always include distribution shifts and often appear in the wild, the quality and reliability of quantized models are not ensured. In this paper, we conduct a comprehensive study to characterize and help users understand the behaviors of quantized models. Our study considers 4 datasets spanning from image to text, 8 DNN architectures including feed-forward neural networks and recurrent neural networks, and 42 shifted sets with both synthetic and natural distribution shifts. The results reveal that 1) data with distribution shifts happen more disagreements than without. 2) Quantization-aware training can produce more stable models than standard, adversarial, and Mixup training. 3) Disagreements often have closer top-1 and top-2 output probabilities, and $Margin$ is a better indicator than the other uncertainty metrics to distinguish disagreements. 4) Retraining with disagreements has limited efficiency in removing disagreements. We opensource our code and models as a new benchmark for further studying the quantized models.
106,485
106,485
Vision-Based American Sign Language Classification Approach via Deep Learning
Hearing-impaired is the disability of partial or total hearing loss that causes a significant problem for communication with other people in society. American Sign Language (ASL) is one of the sign languages that most commonly used language used by Hearing impaired communities to communicate with each other. In this paper, we proposed a simple deep learning model that aims to classify the American Sign Language letters as a step in a path for removing communication barriers that are related to disabilities.
106,486
106,486
HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a Collaborative IoT Intrusion Detection
The continuous strengthening of the security posture of IoT ecosystems is vital due to the increasing number of interconnected devices and the volume of sensitive data shared. The utilisation of Machine Learning (ML) capabilities in the defence against IoT cyber attacks has many potential benefits. However, the currently proposed frameworks do not consider data privacy, secure architectures, and/or scalable deployments of IoT ecosystems. In this paper, we propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection. We highlight and demonstrate the importance of sharing cyber threat intelligence among inter-organisational IoT networks to improve the model's detection capabilities. The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data. The transactions (model updates) and processes will run on a secure immutable ledger, and the conformance of executed tasks will be verified by the smart contract. We have tested our solution and demonstrated its feasibility by implementing it and evaluating the intrusion detection performance using a key IoT data set. The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
106,487
106,487
Interpretable AI for policy-making in pandemics
Since the first wave of the COVID-19 pandemic, governments have applied restrictions in order to slow down its spreading. However, creating such policies is hard, especially because the government needs to trade-off the spreading of the pandemic with the economic losses. For this reason, several works have applied machine learning techniques, often with the help of special-purpose simulators, to generate policies that were more effective than the ones obtained by governments. While the performance of such approaches are promising, they suffer from a fundamental issue: since such approaches are based on black-box machine learning, their real-world applicability is limited, because these policies cannot be analyzed, nor tested, and thus they are not trustable. In this work, we employ a recently developed hybrid approach, which combines reinforcement learning with evolutionary computation, for the generation of interpretable policies for containing the pandemic. These policies, trained on an existing simulator, aim to reduce the spreading of the pandemic while minimizing the economic losses. Our results show that our approach is able to find solutions that are extremely simple, yet very powerful. In fact, our approach has significantly better performance (in simulated scenarios) than both previous work and government policies.
106,488
106,488
Evaluating the Adversarial Robustness for Fourier Neural Operators
In recent years, Machine-Learning (ML)-driven approaches have been widely used in scientific discovery domains. Among them, the Fourier Neural Operator (FNO) was the first to simulate turbulent flow with zero-shot super-resolution and superior accuracy, which significantly improves the speed when compared to traditional partial differential equation (PDE) solvers. To inspect the trustworthiness, we provide the first study on the adversarial robustness of scientific discovery models by generating adversarial examples for FNO, based on norm-bounded data input perturbations. Evaluated on the mean squared error between the FNO model's output and the PDE solver's output, our results show that the model's robustness degrades rapidly with increasing perturbation levels, particularly in non-simplistic cases like the 2D Darcy and the Navier cases. Our research provides a sensitivity analysis tool and evaluation principles for assessing the adversarial robustness of ML-based scientific discovery models.
106,489
106,489
Dimensionality Reduction in Deep Learning via Kronecker Multi-layer Architectures
Deep learning using neural networks is an effective technique for generating models of complex data. However, training such models can be expensive when networks have large model capacity resulting from a large number of layers and nodes. For training in such a computationally prohibitive regime, dimensionality reduction techniques ease the computational burden, and allow implementations of more robust networks. We propose a novel type of such dimensionality reduction via a new deep learning architecture based on fast matrix multiplication of a Kronecker product decomposition; in particular our network construction can be viewed as a Kronecker product-induced sparsification of an "extended" fully connected network. Analysis and practical examples show that this architecture allows a neural network to be trained and implemented with a significant reduction in computational time and resources, while achieving a similar error level compared to a traditional feedforward neural network.
106,490
106,490
On Improving Cross-dataset Generalization of Deepfake Detectors
Facial manipulation by deep fake has caused major security risks and raised severe societal concerns. As a countermeasure, a number of deep fake detection methods have been proposed recently. Most of them model deep fake detection as a binary classification problem using a backbone convolutional neural network (CNN) architecture pretrained for the task. These CNN-based methods have demonstrated very high efficacy in deep fake detection with the Area under the Curve (AUC) as high as 0.99. However, the performance of these methods degrades significantly when evaluated across datasets. In this paper, we formulate deep fake detection as a hybrid combination of supervised and reinforcement learning (RL) to improve its cross-dataset generalization performance. The proposed method chooses the top-k augmentations for each test sample by an RL agent in an image-specific manner. The classification scores, obtained using CNN, of all the augmentations of each test image are averaged together for final real or fake classification. Through extensive experimental validation, we demonstrate the superiority of our method over existing published research in cross-dataset generalization of deep fake detectors, thus obtaining state-of-the-art performance.
106,491
106,491
Multi-objective evolution for Generalizable Policy Gradient Algorithms
Performance, generalizability, and stability are three Reinforcement Learning (RL) challenges relevant to many practical applications in which they present themselves in combination. Still, state-of-the-art RL algorithms fall short when addressing multiple RL objectives simultaneously and current human-driven design practices might not be well-suited for multi-objective RL. In this paper we present MetaPG, an evolutionary method that discovers new RL algorithms represented as graphs, following a multi-objective search criteria in which different RL objectives are encoded in separate fitness scores. Our findings show that, when using a graph-based implementation of Soft Actor-Critic (SAC) to initialize the population, our method is able to find new algorithms that improve upon SAC's performance and generalizability by 3% and 17%, respectively, and reduce instability up to 65%. In addition, we analyze the graph structure of the best algorithms in the population and offer an interpretation of specific elements that help trading performance for generalizability and vice versa. We validate our findings in three different continuous control tasks: RWRL Cartpole, RWRL Walker, and Gym Pendulum.
106,492
106,492
Learning to modulate random weights can induce task-specific contexts for economical meta and continual learning
Neural networks are vulnerable to catastrophic forgetting when data distributions are non-stationary during continual online learning; learning of a later task often leads to forgetting of an earlier task. One solution approach is model-agnostic continual meta-learning, whereby both task-specific and meta parameters are trained. Here, we depart from this view and introduce a novel neural-network architecture inspired by neuromodulation in biological nervous systems. Neuromodulation is the biological mechanism that dynamically controls and fine-tunes synaptic dynamics to complement the behavioral context in real-time, which has received limited attention in machine learning. We introduce a single-hidden-layer network that learns only a relatively small context vector per task (task-specific parameters) that neuromodulates unchanging, randomized weights (meta parameters) that transform the input. We show that when task boundaries are available, this approach can eliminate catastrophic forgetting entirely while also drastically reducing the number of learnable parameters relative to other context-vector-based approaches. Furthermore, by combining this model with a simple meta-learning approach for inferring task identity, we demonstrate that the model can be generalized into a framework to perform continual learning without knowledge of task boundaries. Finally, we showcase the framework in a supervised continual online learning scenario and discuss the implications of the proposed formalism.
106,493
106,493
Grounding Hindsight Instructions in Multi-Goal Reinforcement Learning for Robotics
This paper focuses on robotic reinforcement learning with sparse rewards for natural language goal representations. An open problem is the sample-inefficiency that stems from the compositionality of natural language, and from the grounding of language in sensory data and actions. We address these issues with three contributions. We first present a mechanism for hindsight instruction replay utilizing expert feedback. Second, we propose a seq2seq model to generate linguistic hindsight instructions. Finally, we present a novel class of language-focused learning tasks. We show that hindsight instructions improve the learning performance, as expected. In addition, we also provide an unexpected result: We show that the learning performance of our agent can be improved by one third if, in a sense, the agent learns to talk to itself in a self-supervised manner. We achieve this by learning to generate linguistic instructions that would have been appropriate as a natural language goal for an originally unintended behavior. Our results indicate that the performance gain increases with the task-complexity.
106,494
106,494
Machine learning model to predict solar radiation, based on the integration of meteorological data and data obtained from satellite images
Knowing the behavior of solar radiation at a geographic location is essential for the use of energy from the sun using photovoltaic systems; however, the number of stations for measuring meteorological parameters and for determining the size of solar fields in remote areas is limited. In this work, images obtained from the GOES-13 satellite were used, from which variables were extracted that could be integrated into datasets from meteorological stations. From this, 3 different models were built, on which the performance of 5 machine learning algorithms in predicting solar radiation was evaluated. The neural networks had the highest performance in the model that integrated the meteorological variables and the variables obtained from the images, according to an analysis carried out using four evaluation metrics; although if the rRMSE is considered, all results obtained were higher than 20%, which classified the performance of the algorithms as fair. In the 2012 dataset, the estimation results according to the metrics MBE, R2, RMSE, and rRMSE corresponded to -0.051, 0.880, 90.99 and 26.7%, respectively. In the 2017 dataset, the results of MBE, R2, RMSE, and rRMSE were -0.146, 0.917, 40.97 and 22.3%, respectively. Although it is possible to calculate solar radiation from satellite images, it is also true that some statistical methods depend on radiation data and sunshine captured by ground-based instruments, which is not always possible given that the number of measurement stations on the surface is limited.
106,495
106,495
Approximate discounting-free policy evaluation from transient and recurrent states
In order to distinguish policies that prescribe good from bad actions in transient states, we need to evaluate the so-called bias of a policy from transient states. However, we observe that most (if not all) works in approximate discounting-free policy evaluation thus far are developed for estimating the bias solely from recurrent states. We therefore propose a system of approximators for the bias (specifically, its relative value) from transient and recurrent states. Its key ingredient is a seminorm LSTD (least-squares temporal difference), for which we derive its minimizer expression that enables approximation by sampling required in model-free reinforcement learning. This seminorm LSTD also facilitates the formulation of a general unifying procedure for LSTD-based policy value approximators. Experimental results validate the effectiveness of our proposed method.
106,496
106,496
An Adaptive Black-box Backdoor Detection Method for Deep Neural Networks
With the surge of Machine Learning (ML), An emerging amount of intelligent applications have been developed. Deep Neural Networks (DNNs) have demonstrated unprecedented performance across various fields such as medical diagnosis and autonomous driving. While DNNs are widely employed in security-sensitive fields, they are identified to be vulnerable to Neural Trojan (NT) attacks that are controlled and activated by stealthy triggers. In this paper, we target to design a robust and adaptive Trojan detection scheme that inspects whether a pre-trained model has been Trojaned before its deployment. Prior works are oblivious of the intrinsic property of trigger distribution and try to reconstruct the trigger pattern using simple heuristics, i.e., stimulating the given model to incorrect outputs. As a result, their detection time and effectiveness are limited. We leverage the observation that the pixel trigger typically features spatial dependency and propose the first trigger approximation based black-box Trojan detection framework that enables a fast and scalable search of the trigger in the input space. Furthermore, our approach can also detect Trojans embedded in the feature space where certain filter transformations are used to activate the Trojan. We perform extensive experiments to investigate the performance of our approach across various datasets and ML models. Empirical results show that our approach achieves a ROC-AUC score of 0.93 on the public TrojAI dataset. Our code can be found at https://github.com/xinqiaozhang/adatrojan
106,497
106,497
Fuzzy temporal convolutional neural networks in P300-based Brain-computer interface for smart home interaction
The processing and classification of electroencephalographic signals (EEG) are increasingly performed using deep learning frameworks, such as convolutional neural networks (CNNs), to generate abstract features from brain data, automatically paving the way for remarkable classification prowess. However, EEG patterns exhibit high variability across time and uncertainty due to noise. It is a significant problem to be addressed in P300-based Brain Computer Interface (BCI) for smart home interaction. It operates in a non-optimal natural environment where added noise is often present. In this work, we propose a sequential unification of temporal convolutional networks (TCNs) modified to EEG signals, LSTM cells, with a fuzzy neural block (FNB), which we called EEG-TCFNet. Fuzzy components may enable a higher tolerance to noisy conditions. We applied three different architectures comparing the effect of using block FNB to classify a P300 wave to build a BCI for smart home interaction with healthy and post-stroke individuals. Our results reported a maximum classification accuracy of 98.6% and 74.3% using the proposed method of EEG-TCFNet in subject-dependent strategy and subject-independent strategy, respectively. Overall, FNB usage in all three CNN topologies outperformed those without FNB. In addition, we compared the addition of FNB to other state-of-the-art methods and obtained higher classification accuracies on account of the integration with FNB. The remarkable performance of the proposed model, EEG-TCFNet, and the general integration of fuzzy units to other classifiers would pave the way for enhanced P300-based BCIs for smart home interaction within natural settings.
106,498
106,498
Sim-to-Real Learning for Bipedal Locomotion Under Unsensed Dynamic Loads
Recent work on sim-to-real learning for bipedal locomotion has demonstrated new levels of robustness and agility over a variety of terrains. However, that work, and most prior bipedal locomotion work, have not considered locomotion under a variety of external loads that can significantly influence the overall system dynamics. In many applications, robots will need to maintain robust locomotion under a wide range of potential dynamic loads, such as pulling a cart or carrying a large container of sloshing liquid, ideally without requiring additional load-sensing capabilities. In this work, we explore the capabilities of reinforcement learning (RL) and sim-to-real transfer for bipedal locomotion under dynamic loads using only proprioceptive feedback. We show that prior RL policies trained for unloaded locomotion fail for some loads and that simply training in the context of loads is enough to result in successful and improved policies. We also compare training specialized policies for each load versus a single policy for all considered loads and analyze how the resulting gaits change to accommodate different loads. Finally, we demonstrate sim-to-real transfer, which is successful but shows a wider sim-to-real gap than prior unloaded work, which points to interesting future research.
106,499
106,499
Neural networks embrace learned diversity
Diversity conveys advantages in nature, yet homogeneous neurons typically comprise the layers of artificial neural networks. Here we construct neural networks from neurons that learn their own activation functions, quickly diversify, and subsequently outperform their homogeneous counterparts. Sub-networks instantiate the neurons, which meta-learn especially efficient sets of nonlinear responses. Such learned diversity provides examples of dynamical systems selecting diversity over uniformity and elucidates the role of diversity in natural and artificial systems.