Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
106,600
106,600
Pareto Conditioned Networks
In multi-objective optimization, learning all the policies that reach Pareto-efficient solutions is an expensive process. The set of optimal policies can grow exponentially with the number of objectives, and recovering all solutions requires an exhaustive exploration of the entire state space. We propose Pareto Conditioned Networks (PCN), a method that uses a single neural network to encompass all non-dominated policies. PCN associates every past transition with its episode's return. It trains the network such that, when conditioned on this same return, it should reenact said transition. In doing so we transform the optimization problem into a classification problem. We recover a concrete policy by conditioning the network on the desired Pareto-efficient solution. Our method is stable as it learns in a supervised fashion, thus avoiding moving target issues. Moreover, by using a single network, PCN scales efficiently with the number of objectives. Finally, it makes minimal assumptions on the shape of the Pareto front, which makes it suitable to a wider range of problems than previous state-of-the-art multi-objective reinforcement learning algorithms.
106,601
106,601
Forecasting new diseases in low-data settings using transfer learning
Recent infectious disease outbreaks, such as the COVID-19 pandemic and the Zika epidemic in Brazil, have demonstrated both the importance and difficulty of accurately forecasting novel infectious diseases. When new diseases first emerge, we have little knowledge of the transmission process, the level and duration of immunity to reinfection, or other parameters required to build realistic epidemiological models. Time series forecasts and machine learning, while less reliant on assumptions about the disease, require large amounts of data that are also not available in early stages of an outbreak. In this study, we examine how knowledge of related diseases can help make predictions of new diseases in data-scarce environments using transfer learning. We implement both an empirical and a theoretical approach. Using empirical data from Brazil, we compare how well different machine learning models transfer knowledge between two different disease pairs: (i) dengue and Zika, and (ii) influenza and COVID-19. In the theoretical analysis, we generate data using different transmission and recovery rates with an SIR compartmental model, and then compare the effectiveness of different transfer learning methods. We find that transfer learning offers the potential to improve predictions, even beyond a model based on data from the target disease, though the appropriate source disease must be chosen carefully. While imperfect, these models offer an additional input for decision makers during pandemic response.
106,602
106,602
Fine-grained Noise Control for Multispeaker Speech Synthesis
A text-to-speech (TTS) model typically factorizes speech attributes such as content, speaker and prosody into disentangled representations.Recent works aim to additionally model the acoustic conditions explicitly, in order to disentangle the primary speech factors, i.e. linguistic content, prosody and timbre from any residual factors, such as recording conditions and background noise.This paper proposes unsupervised, interpretable and fine-grained noise and prosody modeling. We incorporate adversarial training, representation bottleneck and utterance-to-frame modeling in order to learn frame-level noise representations. To the same end, we perform fine-grained prosody modeling via a Fully Hierarchical Variational AutoEncoder (FVAE) which additionally results in more expressive speech synthesis.
106,603
106,603
Zero-phase angle asteroid taxonomy classification using unsupervised machine learning algorithms
We are in an era of large catalogs and, thus, statistical analysis tools for large data sets, such as machine learning, play a fundamental role. One example of such a survey is the Sloan Moving Object Catalog (MOC), which lists the astrometric and photometric information of all moving objects captured by the Sloan field of view. One great advantage of this telescope is represented by its set of five filters, allowing for taxonomic analysis of asteroids by studying their colors. However, until now, the color variation produced by the change of phase angle of the object has not been taken into account. In this paper, we address this issue by using absolute magnitudes for classification. We aim to produce a new taxonomic classification of asteroids based on their magnitudes that is unaffected by variations caused by the change in phase angle. We selected 9481 asteroids with absolute magnitudes of Hg, Hi and Hz, computed from the Sloan Moving Objects Catalog using the HG12 system. We calculated the absolute colors with them. To perform the taxonomic classification, we applied a unsupervised machine learning algorithm known as fuzzy C-means. This is a useful soft clustering tool for working with {data sets where the different groups are not completely separated and there are regions of overlap between them. We have chosen to work with the four main taxonomic complexes, C, S, X, and V, as they comprise most of the known spectral characteristics. We classified a total of 6329 asteroids with more than 60% probability of belonging to the assigned taxonomic class, with 162 of these objects having been characterized by an ambiguous classification in the past. By analyzing the sample obtained in the plane Semimajor axis versus inclination, we identified 15 new V-type asteroid candidates outside the Vesta family region.
106,604
106,604
Semantic Exploration from Language Abstractions and Pretrained Representations
Effective exploration is a challenge in reinforcement learning (RL). Novelty-based exploration methods can suffer in high-dimensional state spaces, such as continuous partially-observable 3D environments. We address this challenge by defining novelty using semantically meaningful state abstractions, which can be found in learned representations shaped by natural language. In particular, we evaluate vision-language representations, pretrained on natural image captioning datasets. We show that these pretrained representations drive meaningful, task-relevant exploration and improve performance on 3D simulated environments. We also characterize why and how language provides useful abstractions for exploration by considering the impacts of using representations from a pretrained model, a language oracle, and several ablations. We demonstrate the benefits of our approach in two very different task domains -- one that stresses the identification and manipulation of everyday objects, and one that requires navigational exploration in an expansive world -- as well as two popular deep RL algorithms: Impala and R2D2. Our results suggest that using language-shaped representations could improve exploration for various algorithms and agents in challenging environments.
106,605
106,605
An approach to improving sound-based vehicle speed estimation
We consider improving the performance of a recently proposed sound-based vehicle speed estimation method. In the original method, an intermediate feature, referred to as the modified attenuation (MA), has been proposed for both vehicle detection and speed estimation. The MA feature maximizes at the instant of the vehicle's closest point of approach, which represents a training label extracted from video recording of the vehicle's pass by. In this paper, we show that the original labeling approach is suboptimal and propose a method for label correction. The method is tested on the VS10 dataset, which contains 304 audio-video recordings of ten different vehicles. The results show that the proposed label correction method reduces average speed estimation error from 7.39 km/h to 6.92 km/h. If the speed is discretized into 10 km/h classes, the accuracy of correct class prediction is improved from 53.2% to 53.8%, whereas when tolerance of one class offset is allowed, accuracy is improved from 93.4% to 94.3%.
106,606
106,606
Concept Drift Adaptation for CTR Prediction in Online Advertising Systems
Click-through rate (CTR) prediction is a crucial task in web search, recommender systems, and online advertisement displaying. In practical application, CTR models often serve with high-speed user-generated data streams, whose underlying distribution rapidly changing over time. The concept drift problem inevitably exists in those streaming data, which can lead to performance degradation due to the timeliness issue. To ensure model freshness, incremental learning has been widely adopted in real-world production systems. However, it is hard for the incremental update to achieve the balance of the CTR models between the adaptability to capture the fast-changing trends and generalization ability to retain common knowledge. In this paper, we propose adaptive mixture of experts (AdaMoE), a new framework to alleviate the concept drift problem by adaptive filtering in the data stream of CTR prediction. The extensive experiments on the offline industrial dataset and online A/B tests show that our AdaMoE significantly outperforms all incremental learning frameworks considered.
106,607
106,607
Convolutional autoencoders for spatially-informed ensemble post-processing
Ensemble weather predictions typically show systematic errors that have to be corrected via post-processing. Even state-of-the-art post-processing methods based on neural networks often solely rely on location-specific predictors that require an interpolation of the physical weather model's spatial forecast fields to the target locations. However, potentially useful predictability information contained in large-scale spatial structures within the input fields is potentially lost in this interpolation step. Therefore, we propose the use of convolutional autoencoders to learn compact representations of spatial input fields which can then be used to augment location-specific information as additional inputs to post-processing models. The benefits of including this spatial information is demonstrated in a case study of 2-m temperature forecasts at surface stations in Germany.
106,608
106,608
Transformer-Based Self-Supervised Learning for Emotion Recognition
In order to exploit representations of time-series signals, such as physiological signals, it is essential that these representations capture relevant information from the whole signal. In this work, we propose to use a Transformer-based model to process electrocardiograms (ECG) for emotion recognition. Attention mechanisms of the Transformer can be used to build contextualized representations for a signal, giving more importance to relevant parts. These representations may then be processed with a fully-connected network to predict emotions. To overcome the relatively small size of datasets with emotional labels, we employ self-supervised learning. We gathered several ECG datasets with no labels of emotion to pre-train our model, which we then fine-tuned for emotion recognition on the AMIGOS dataset. We show that our approach reaches state-of-the-art performances for emotion recognition using ECG signals on AMIGOS. More generally, our experiments show that transformers and pre-training are promising strategies for emotion recognition with physiological signals.
106,609
106,609
Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation
Domain adaptation (DA) tries to tackle the scenarios when the test data does not fully follow the same distribution of the training data, and multi-source domain adaptation (MSDA) is very attractive for real world applications. By learning from large-scale unlabeled samples, self-supervised learning has now become a new trend in deep learning. It is worth noting that both self-supervised learning and multi-source domain adaptation share a similar goal: they both aim to leverage unlabeled data to learn more expressive representations. Unfortunately, traditional multi-task self-supervised learning faces two challenges: (1) the pretext task may not strongly relate to the downstream task, thus it could be difficult to learn useful knowledge being shared from the pretext task to the target task; (2) when the same feature extractor is shared between the pretext task and the downstream one and only different prediction heads are used, it is ineffective to enable inter-task information exchange and knowledge sharing. To address these issues, we propose a novel \textbf{S}elf-\textbf{S}upervised \textbf{G}raph Neural Network (SSG), where a graph neural network is used as the bridge to enable more effective inter-task information exchange and knowledge sharing. More expressive representation is learned by adopting a mask token strategy to mask some domain information. Our extensive experiments have demonstrated that our proposed SSG method has achieved state-of-the-art results over four multi-source domain adaptation datasets, which have shown the effectiveness of our proposed SSG method from different aspects.
106,610
106,610
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Learning the solution of partial differential equations (PDEs) with a neural network (known in the literature as a physics-informed neural network, PINN) is an attractive alternative to traditional solvers due to its elegancy, greater flexibility and the ease of incorporating observed data. However, training PINNs is notoriously difficult in practice. One problem is the existence of multiple simple (but wrong) solutions which are attractive for PINNs when the solution interval is too large. In this paper, we propose to expand the solution interval gradually to make the PINN converge to the correct solution. To find a good schedule for the solution interval expansion, we train an ensemble of PINNs. The idea is that all ensemble members converge to the same solution in the vicinity of observed data (e.g., initial conditions) while they may be pulled towards different wrong solutions farther away from the observations. Therefore, we use the ensemble agreement as the criterion for including new points for computing the loss derived from PDEs. We show experimentally that the proposed method can improve the accuracy of the found solution.
106,611
106,611
Comparative Survey of Multigraph Integration Methods for Holistic Brain Connectivity Mapping
One of the greatest scientific challenges in network neuroscience is to create a representative map of a population of heterogeneous brain networks, which acts as a connectional fingerprint. The connectional brain template (CBT), also named network atlas, presents a powerful tool for capturing the most representative and discriminative traits of a given population while preserving its topological patterns. The idea of a CBT is to integrate a population of heterogeneous brain connectivity networks, derived from different neuroimaging modalities or brain views (e.g., structural and functional), into a unified holistic representation. Here we review current state-of-the-art methods designed to estimate well-centered and representative CBT for populations of single-view and multi-view brain networks. We start by reviewing each CBT learning method, then we introduce the evaluation measures to compare CBT representativeness of populations generated by single-view and multigraph integration methods, separately, based on the following criteria: centeredness, biomarker-reproducibility, node-level similarity, global-level similarity, and distance-based similarity. We demonstrate that the deep graph normalizer (DGN) method significantly outperforms other multi-graph and all single-view integration methods for estimating CBTs using a variety of healthy and disordered datasets in terms of centeredness, reproducibility (i.e., graph-derived biomarkers reproducibility that disentangle the typical from the atypical connectivity variability), and preserving the topological traits at both local and global graph-levels.
106,612
106,612
FastMapSVM: Classifying Complex Objects Using the FastMap Algorithm and Support-Vector Machines
Neural Networks and related Deep Learning methods are currently at the leading edge of technologies used for classifying objects. However, they generally demand large amounts of time and data for model training; and their learned models can sometimes be difficult to interpret. In this paper, we advance FastMapSVM -- an interpretable Machine Learning framework for classifying complex objects -- as an advantageous alternative to Neural Networks for general classification tasks. FastMapSVM extends the applicability of Support-Vector Machines (SVMs) to domains with complex objects by combining the complementary strengths of FastMap and SVMs. FastMap is an efficient linear-time algorithm that maps complex objects to points in a Euclidean space while preserving pairwise domain-specific distances between them. We demonstrate the efficiency and effectiveness of FastMapSVM in the context of classifying seismograms. We show that its performance, in terms of precision, recall, and accuracy, is comparable to that of other state-of-the-art methods. However, compared to other methods, FastMapSVM uses significantly smaller amounts of time and data for model training. It also provides a perspicuous visualization of the objects and the classification boundaries between them. We expect FastMapSVM to be viable for classification tasks in many other real-world domains.
106,613
106,613
ShiftNAS: Towards Automatic Generation of Advanced Mulitplication-Less Neural Networks
Multiplication-less neural networks significantly reduce the time and energy cost on the hardware platform, as the compute-intensive multiplications are replaced with lightweight bit-shift operations. However, existing bit-shift networks are all directly transferred from state-of-the-art convolutional neural networks (CNNs), which lead to non-negligible accuracy drop or even failure of model convergence. To combat this, we propose ShiftNAS, the first framework tailoring Neural Architecture Search (NAS) to substantially reduce the accuracy gap between bit-shift neural networks and their real-valued counterparts. Specifically, we pioneer dragging NAS into a shift-oriented search space and endow it with the robust topology-related search strategy and custom regularization and stabilization. As a result, our ShiftNAS breaks through the incompatibility of traditional NAS methods for bit-shift neural networks and achieves more desirable performance in terms of accuracy and convergence. Extensive experiments demonstrate that ShiftNAS sets a new state-of-the-art for bit-shift neural networks, where the accuracy increases (1.69-8.07)% on CIFAR10, (5.71-18.09)% on CIFAR100 and (4.36-67.07)% on ImageNet, especially when many conventional CNNs fail to converge on ImageNet with bit-shift weights.
106,614
106,614
PetroGAN: A novel GAN-based approach to generate realistic, label-free petrographic datasets
Deep learning architectures have enriched data analytics in the geosciences, complementing traditional approaches to geological problems. Although deep learning applications in geosciences show encouraging signs, the actual potential remains untapped. This is primarily because geological datasets, particularly petrography, are limited, time-consuming, and expensive to obtain, requiring in-depth knowledge to provide a high-quality labeled dataset. We approached these issues by developing a novel deep learning framework based on generative adversarial networks (GANs) to create the first realistic synthetic petrographic dataset. The StyleGAN2 architecture is selected to allow robust replication of statistical and esthetical characteristics, and improving the internal variance of petrographic data. The training dataset consists of 10070 images of rock thin sections both in plane- and cross-polarized light. The algorithm trained for 264 GPU hours and reached a state-of-the-art Fr\'echet Inception Distance (FID) score of 12.49 for petrographic images. We further observed the FID values vary with lithology type and image resolution. Our survey established that subject matter experts found the generated images were indistinguishable from real images. This study highlights that GANs are a powerful method for generating realistic synthetic data, experimenting with the latent space, and as a future tool for self-labelling, reducing the effort of creating geological datasets.
106,615
106,615
IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification
Early detection of cardiovascular diseases is crucial for effective treatment and an electrocardiogram (ECG) is pivotal for diagnosis. The accuracy of Deep Learning based methods for ECG signal classification has progressed in recent years to reach cardiologist-level performance. In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording. Automatic analysis of ECG recordings from a multiple-channel perspective has not been given enough attention, so it is essential to analyze an ECG recording from a multiple-channel perspective. We propose a model that leverages the multiple-channel information available in the standard 12-channel ECG recordings and learns patterns at the beat, rhythm, and channel level. The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85\%, and a maximum F1 score of 0.8057 on the PTB-XL dataset. The attention visualization results from the interpretable model are compared against the cardiologist's guidelines to validate the correctness and usability.
106,616
106,616
SoK: Privacy Preserving Machine Learning using Functional Encryption: Opportunities and Challenges
With the advent of functional encryption, new possibilities for computation on encrypted data have arisen. Functional Encryption enables data owners to grant third-party access to perform specified computations without disclosing their inputs. It also provides computation results in plain, unlike Fully Homomorphic Encryption. The ubiquitousness of machine learning has led to the collection of massive private data in the cloud computing environment. This raises potential privacy issues and the need for more private and secure computing solutions. Numerous efforts have been made in privacy-preserving machine learning (PPML) to address security and privacy concerns. There are approaches based on fully homomorphic encryption (FHE), secure multiparty computation (SMC), and, more recently, functional encryption (FE). However, FE-based PPML is still in its infancy and has not yet gotten much attention compared to FHE-based PPML approaches. In this paper, we provide a systematization of PPML works based on FE summarizing state-of-the-art in the literature. We focus on Inner-product-FE and Quadratic-FE-based machine learning models for the PPML applications. We analyze the performance and usability of the available FE libraries and their applications to PPML. We also discuss potential directions for FE-based PPML approaches. To the best of our knowledge, this is the first work to systematize FE-based PPML approaches.
106,617
106,617
Artificial Intelligence Software Structured to Simulate Human Working Memory, Mental Imagery, and Mental Continuity
This article presents an artificial intelligence (AI) architecture intended to simulate the human working memory system as well as the manner in which it is updated iteratively. It features several interconnected neural networks designed to emulate the specialized modules of the cerebral cortex. These are structured hierarchically and integrated into a global workspace. They are capable of temporarily maintaining high-level patterns akin to the psychological items maintained in working memory. This maintenance is made possible by persistent neural activity in the form of two modalities: sustained neural firing (resulting in a focus of attention) and synaptic potentiation (resulting in a short-term store). This persistent activity is updated iteratively resulting in incremental changes to the content of the working memory system. As the content stored in working memory gradually evolves, successive states overlap and are continuous with one another. The present article will explore how this architecture can lead to gradual shift in the distribution of coactive representations, ultimately leading to mental continuity between processing states, and thus to human-like cognition.
106,618
106,618
On unsupervised projections and second order signals
Linear projections are widely used in the analysis of high-dimensional data. In unsupervised settings where the data harbour latent classes/clusters, the question of whether class discriminatory signals are retained under projection is crucial. In the case of mean differences between classes, this question has been well studied. However, in many contemporary applications, notably in biomedicine, group differences at the level of covariance or graphical model structure are important. Motivated by such applications, in this paper we ask whether linear projections can preserve differences in second order structure between latent groups. We focus on unsupervised projections, which can be computed without knowledge of class labels. We discuss a simple theoretical framework to study the behaviour of such projections which we use to inform an analysis via quasi-exhaustive enumeration. This allows us to consider the performance, over more than a hundred thousand sets of data-generating population parameters, of two popular projections, namely random projections (RP) and Principal Component Analysis (PCA). Across this broad range of regimes, PCA turns out to be more effective at retaining second order signals than RP and is often even competitive with supervised projection. We complement these results with fully empirical experiments showing 0-1 loss using simulated and real data. We study also the effect of projection dimension, drawing attention to a bias-variance trade-off in this respect. Our results show that PCA can indeed be a suitable first-step for unsupervised analysis, including in cases where differential covariance or graphical model structure are of interest.
106,619
106,619
Learning Object-Centered Autotelic Behaviors with Graph Neural Networks
Although humans live in an open-ended world and endlessly face new challenges, they do not have to learn from scratch each time they face the next one. Rather, they have access to a handful of previously learned skills, which they rapidly adapt to new situations. In artificial intelligence, autotelic agents, which are intrinsically motivated to represent and set their own goals, exhibit promising skill adaptation capabilities. However, these capabilities are highly constrained by their policy and goal space representations. In this paper, we propose to investigate the impact of these representations on the learning capabilities of autotelic agents. We study different implementations of autotelic agents using four types of Graph Neural Networks policy representations and two types of goal spaces, either geometric or predicate-based. We show that combining object-centered architectures that are expressive enough with semantic relational goals enables an efficient transfer between skills and promotes behavioral diversity. We also release our graph-based implementations to encourage further research in this direction.
106,620
106,620
The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink
Machine Learning (ML) workloads have rapidly grown in importance, but raised concerns about their carbon footprint. Four best practices can reduce ML training energy by up to 100x and CO2 emissions up to 1000x. By following best practices, overall ML energy use (across research, development, and production) held steady at <15% of Google's total energy use for the past three years. If the whole ML field were to adopt best practices, total carbon emissions from training would reduce. Hence, we recommend that ML papers include emissions explicitly to foster competition on more than just model quality. Estimates of emissions in papers that omitted them have been off 100x-100,000x, so publishing emissions has the added benefit of ensuring accurate accounting. Given the importance of climate change, we must get the numbers right to make certain that we work on its biggest challenges.
106,621
106,621
Metaethical Perspectives on 'Benchmarking' AI Ethics
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research and have been developed for a variety of tasks ranging from question answering to facial recognition. An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system. In this paper, drawing upon research in moral philosophy and metaethics, we argue that it is impossible to develop such a benchmark. As such, alternative mechanisms are necessary for evaluating whether an AI system is 'ethical'. This is especially pressing in light of the prevalence of applied, industrial AI research. We argue that it makes more sense to talk about 'values' (and 'value alignment') rather than 'ethics' when considering the possible actions of present and future AI systems. We further highlight that, because values are unambiguously relative, focusing on values forces us to consider explicitly what the values are and whose values they are. Shifting the emphasis from ethics to values therefore gives rise to several new ways of understanding how researchers might advance research programmes for robustly safe or beneficial AI. We conclude by highlighting a number of possible ways forward for the field as a whole, and we advocate for different approaches towards more value-aligned AI research.
106,622
106,622
SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles
A critical concern in data-driven processes is to build models whose outcomes do not discriminate against some demographic groups, including gender, ethnicity, or age. To ensure non-discrimination in learning tasks, knowledge of the group attributes is essential. However, in practice, these attributes may not be available due to legal and ethical requirements. To address this challenge, this paper studies a model that protects the privacy of the individuals' sensitive information while also allowing it to learn non-discriminatory predictors. A key characteristic of the proposed model is to enable the adoption of off-the-selves and non-private fair models to create a privacy-preserving and fair model. The paper analyzes the relation between accuracy, privacy, and fairness, and the experimental evaluation illustrates the benefits of the proposed models on several prediction tasks. In particular, this proposal is the first to allow both scalable and accurate training of private and fair models for very large neural networks.
106,623
106,623
Machine Learning State-of-the-Art with Uncertainties
With the availability of data, hardware, software ecosystem and relevant skill sets, the machine learning community is undergoing a rapid development with new architectures and approaches appearing at high frequency every year. In this article, we conduct an exemplary image classification study in order to demonstrate how confidence intervals around accuracy measurements can greatly enhance the communication of research results as well as impact the reviewing process. In addition, we explore the hallmarks and limitations of this approximation. We discuss the relevance of this approach reflecting on a spotlight publication of ICLR22. A reproducible workflow is made available as an open-source adjoint to this publication. Based on our discussion, we make suggestions for improving the authoring and reviewing process of machine learning articles.
106,624
106,624
Towards Painless Policy Optimization for Constrained MDPs
We study policy optimization in an infinite horizon, $\gamma$-discounted constrained Markov decision process (CMDP). Our objective is to return a policy that achieves large expected reward with a small constraint violation. We consider the online setting with linear function approximation and assume global access to the corresponding features. We propose a generic primal-dual framework that allows us to bound the reward sub-optimality and constraint violation for arbitrary algorithms in terms of their primal and dual regret on online linear optimization problems. We instantiate this framework to use coin-betting algorithms and propose the Coin Betting Politex (CBP) algorithm. Assuming that the action-value functions are $\varepsilon_b$-close to the span of the $d$-dimensional state-action features and no sampling errors, we prove that $T$ iterations of CBP result in an $O\left(\frac{1}{(1 - \gamma)^3 \sqrt{T}} + \frac{\varepsilon_b\sqrt{d}}{(1 - \gamma)^2} \right)$ reward sub-optimality and an $O\left(\frac{1}{(1 - \gamma)^2 \sqrt{T}} + \frac{\varepsilon_b \sqrt{d}}{1 - \gamma} \right)$ constraint violation. Importantly, unlike gradient descent-ascent and other recent methods, CBP does not require extensive hyperparameter tuning. Via experiments on synthetic and Cartpole environments, we demonstrate the effectiveness and robustness of CBP.
106,625
106,625
Domain Adversarial Graph Convolutional Network Based on RSSI and Crowdsensing for Indoor Localization
In recent years, due to the wider WiFi coverage and the popularization of mobile communication devices, the technology of indoor positioning using WiFi fingerprints has been rapidly developed. Currently, most supervised methods need to collect a large amount of data to construct fingerprint datasets, which is labor-intensive and time-consuming. In addition, many studies focused on the ideal laboratory environment and lack the consideration in the practical application environment, especially in the scenario of multiple large multi-floor buildings. To solve these problems, we proposed a novel WiDAGCN model which can be trained by a few labeled site survey data and unlabeled crowdsensing WiFi fingerprints. To comprehensively represent the topology structure of the data, we constructed heterogeneous graphs according to the received signal strength indicators (RSSIs) between the waypoints and WiFi access points (APs). Moreover, previous WiFi indoor localization studies rarely involved complete graph feature representation, thus we use graph convolutional network (GCN) to extract graph-level embeddings. There are also some difficult problems, for example, a large amount of unlabeled data that cannot be applied to a supervised model, and the existence of multiple data domains leads to inconsistency in data distribution. Therefore, a semi-supervised domain adversarial training scheme was used to make full use of unlabeled data and align the data distribution of different domains. A public indoor localization dataset containing different buildings was used to evaluate the performance of the model. The experimental results show that our system can achieve a competitive localization accuracy in large buildings such as shopping malls.
106,626
106,626
Uniform Complexity for Text Generation
Powerful language models such as GPT-2 have shown promising results in tasks such as narrative generation which can be useful in an educational setup. These models, however, should be consistent with the linguistic properties of triggers used. For example, if the reading level of an input text prompt is appropriate for low-leveled learners (ex. A2 in the CEFR), then the generated continuation should also assume this particular level. Thus, we propose the task of uniform complexity for text generation which serves as a call to make existing language generators uniformly complex with respect to prompts used. Our study surveyed over 160 linguistic properties for evaluating text complexity and found out that both humans and GPT-2 models struggle in preserving the complexity of prompts in a narrative generation setting.
106,627
106,627
Correcting Robot Plans with Natural Language Feedback
When humans design cost or goal specifications for robots, they often produce specifications that are ambiguous, underspecified, or beyond planners' ability to solve. In these cases, corrections provide a valuable tool for human-in-the-loop robot control. Corrections might take the form of new goal specifications, new constraints (e.g. to avoid specific objects), or hints for planning algorithms (e.g. to visit specific waypoints). Existing correction methods (e.g. using a joystick or direct manipulation of an end effector) require full teleoperation or real-time interaction. In this paper, we explore natural language as an expressive and flexible tool for robot correction. We describe how to map from natural language sentences to transformations of cost functions. We show that these transformations enable users to correct goals, update robot motions to accommodate additional user preferences, and recover from planning errors. These corrections can be leveraged to get 81% and 93% success rates on tasks where the original planner failed, with either one or two language corrections. Our method makes it possible to compose multiple constraints and generalizes to unseen scenes, objects, and sentences in simulated environments and real-world environments.
106,628
106,628
Time-Adaptive Recurrent Neural Networks
Data are often sampled irregularly in time. Dealing with this using Recurrent Neural Networks (RNNs) traditionally involved ignoring the fact, feeding the time differences as additional inputs, or resampling the data. All these methods have their shortcomings. We propose an elegant alternative approach where instead the RNN is in effect resampled in time to match the time of the data. We use Echo State Network (ESN) and Gated Recurrent Unit (GRU) as the basis for our solution. Such RNNs can be seen as discretizations of continuous-time dynamical systems, which gives a solid theoretical ground for our approach. Similar recent observations have been made in feed-forward neural networks as neural ordinary differential equations. Our Time-Adaptive ESN (TAESN) and GRU (TAGRU) models allow for a direct model time setting and require no additional training, parameter tuning, or computation compared to the regular counterparts, thus retaining their original efficiency. We confirm empirically that our models can effectively compensate for the time-non-uniformity of the data and demonstrate that they compare favorably to data resampling, classical RNN methods, and alternative RNN models proposed to deal with time irregularities on several real-world nonuniform-time datasets.
106,629
106,629
Worldwide city transport typology prediction with sentence-BERT based supervised learning via Wikipedia
An overwhelming majority of the world's human population lives in urban areas and cities. Understanding a city's transportation typology is immensely valuable for planners and policy makers whose decisions can potentially impact millions of city residents. Despite the value of understanding a city's typology, labeled data (city and it's typology) is scarce, and spans at most a few hundred cities in the current transportation literature. To break this barrier, we propose a supervised machine learning approach to predict a city's typology given the information in its Wikipedia page. Our method leverages recent breakthroughs in natural language processing, namely sentence-BERT, and shows how the text-based information from Wikipedia can be effectively used as a data source for city typology prediction tasks that can be applied to over 2000 cities worldwide. We propose a novel method for low-dimensional city representation using a city's Wikipedia page, which makes supervised learning of city typology labels tractable even with a few hundred labeled samples. These features are used with labeled city samples to train binary classifiers (logistic regression) for four different city typologies: (i) congestion, (ii) auto-heavy, (iii) transit-heavy, and (iv) bike-friendly cities resulting in reasonably high AUC scores of 0.87, 0.86, 0.61 and 0.94 respectively. Our approach provides sufficient flexibility for incorporating additional variables in the city typology models and can be applied to study other city typologies as well. Our findings can assist a diverse group of stakeholders in transportation and urban planning fields, and opens up new opportunities for using text-based information from Wikipedia (or similar platforms) as data sources in such fields.
106,630
106,630
Automatically Learning Fallback Strategies with Model-Free Reinforcement Learning in Safety-Critical Driving Scenarios
When learning to behave in a stochastic environment where safety is critical, such as driving a vehicle in traffic, it is natural for human drivers to plan fallback strategies as a backup to use if ever there is an unexpected change in the environment. Knowing to expect the unexpected, and planning for such outcomes, increases our capability for being robust to unseen scenarios and may help prevent catastrophic failures. Control of Autonomous Vehicles (AVs) has a particular interest in knowing when and how to use fallback strategies in the interest of safety. Due to imperfect information available to an AV about its environment, it is important to have alternate strategies at the ready which might not have been deduced from the original training data distribution. In this paper we present a principled approach for a model-free Reinforcement Learning (RL) agent to capture multiple modes of behaviour in an environment. We introduce an extra pseudo-reward term to the reward model, to encourage exploration to areas of state-space different from areas privileged by the optimal policy. We base this reward term on a distance metric between the trajectories of agents, in order to force policies to focus on different areas of state-space than the initial exploring agent. Throughout the paper, we refer to this particular training paradigm as learning fallback strategies. We apply this method to an autonomous driving scenario, and show that we are able to learn useful policies that would have otherwise been missed out on during training, and unavailable to use when executing the control algorithm.
106,631
106,631
A Post-Processing Tool and Feasibility Study for Three-Dimensional Imaging with Electrical Impedance Tomography During Deep Brain Stimulation Surgery
Electrical impedance tomography (EIT) is a promising technique for biomedical imaging. The strength of EIT is its ability to reconstruct images of the body's internal structures through radiation-safe techniques. EIT is regarded as safe for patients' health, and it is currently being actively researched. This paper investigates the application of EIT during deep brain stimulation (DBS) surgery as a means to identify targets during operations. DBS involves a surgical procedure in which a lead or electrode array is implanted in a specific target area in the brain. Electrical stimulations are then used to modulate neural circuits within the target area to reduce disabling neurological symptoms. The main difficulty in performing DBS surgery is to accurately position the lead in the target area before commencing the treatment. Brain tissue shifts during DBS surgery can be as large as the target size when compared with the pre-operative magnetic resonance imaging (MRI) or computed tomography (CT) images. To address this problem, a solution based on open-domain EIT to reconstruct images surrounding the probe during DBS surgery is proposed. Data acquisition and image reconstruction were performed, and artificial intelligence was applied to enhance the resulting images. The results showed that the proposed method is rapid, produces valuable high-quality images, and constitutes a first step towards in-vivo study.
106,632
106,632
Rethinking Machine Learning Model Evaluation in Pathology
Machine Learning has been applied to pathology images in research and clinical practice with promising outcomes. However, standard ML models often lack the rigorous evaluation required for clinical decisions. Machine learning techniques for natural images are ill-equipped to deal with pathology images that are significantly large and noisy, require expensive labeling, are hard to interpret, and are susceptible to spurious correlations. We propose a set of practical guidelines for ML evaluation in pathology that address the above concerns. The paper includes measures for setting up the evaluation framework, effectively dealing with variability in labels, and a recommended suite of tests to address issues related to domain shift, robustness, and confounding variables. We hope that the proposed framework will bridge the gap between ML researchers and domain experts, leading to wider adoption of ML techniques in pathology and improving patient outcomes.
106,633
106,633
"FIJO": a French Insurance Soft Skill Detection Dataset
Understanding the evolution of job requirements is becoming more important for workers, companies and public organizations to follow the fast transformation of the employment market. Fortunately, recent natural language processing (NLP) approaches allow for the development of methods to automatically extract information from job ads and recognize skills more precisely. However, these efficient approaches need a large amount of annotated data from the studied domain which is difficult to access, mainly due to intellectual property. This article proposes a new public dataset, FIJO, containing insurance job offers, including many soft skill annotations. To understand the potential of this dataset, we detail some characteristics and some limitations. Then, we present the results of skill detection algorithms using a named entity recognition approach and show that transformers-based models have good token-wise performances on this dataset. Lastly, we analyze some errors made by our best model to emphasize the difficulties that may arise when applying NLP approaches.
106,634
106,634
Mixture-of-experts VAEs can disregard variation in surjective multimodal data
Machine learning systems are often deployed in domains that entail data from multiple modalities, for example, phenotypic and genotypic characteristics describe patients in healthcare. Previous works have developed multimodal variational autoencoders (VAEs) that generate several modalities. We consider subjective data, where single datapoints from one modality (such as class labels) describe multiple datapoints from another modality (such as images). We theoretically and empirically demonstrate that multimodal VAEs with a mixture of experts posterior can struggle to capture variability in such surjective data.
106,635
106,635
GDC- Generalized Distribution Calibration for Few-Shot Learning
Few shot learning is an important problem in machine learning as large labelled datasets take considerable time and effort to assemble. Most few-shot learning algorithms suffer from one of two limitations- they either require the design of sophisticated models and loss functions, thus hampering interpretability; or employ statistical techniques but make assumptions that may not hold across different datasets or features. Developing on recent work in extrapolating distributions of small sample classes from the most similar larger classes, we propose a Generalized sampling method that learns to estimate few-shot distributions for classification as weighted random variables of all large classes. We use a form of covariance shrinkage to provide robustness against singular covariances due to overparameterized features or small datasets. We show that our sampled points are close to few-shot classes even in cases when there are no similar large classes in the training set. Our method works with arbitrary off-the-shelf feature extractors and outperforms existing state-of-the-art on miniImagenet, CUB and Stanford Dogs datasets by 3% to 5% on 5way-1shot and 5way-5shot tasks and by 1% in challenging cross domain tasks.
106,636
106,636
Towards Generalizable Semantic Product Search by Text Similarity Pre-training on Search Click Logs
Recently, semantic search has been successfully applied to e-commerce product search and the learned semantic space(s) for query and product encoding are expected to generalize to unseen queries or products. Yet, whether generalization can conveniently emerge has not been thoroughly studied in the domain thus far. In this paper, we examine several general-domain and domain-specific pre-trained Roberta variants and discover that general-domain fine-tuning does not help generalization, which aligns with the discovery of prior art. Proper domain-specific fine-tuning with clickstream data can lead to better model generalization, based on a bucketed analysis of a publicly available manual annotated query-product pair da
106,637
106,637
Approximate Top-$m$ Arm Identification with Heterogeneous Reward Variances
We study the effect of reward variance heterogeneity in the approximate top-$m$ arm identification setting. In this setting, the reward for the $i$-th arm follows a $\sigma^2_i$-sub-Gaussian distribution, and the agent needs to incorporate this knowledge to minimize the expected number of arm pulls to identify $m$ arms with the largest means within error $\epsilon$ out of the $n$ arms, with probability at least $1-\delta$. We show that the worst-case sample complexity of this problem is $$\Theta\left( \sum_{i =1}^n \frac{\sigma_i^2}{\epsilon^2} \ln\frac{1}{\delta} + \sum_{i \in G^{m}} \frac{\sigma_i^2}{\epsilon^2} \ln(m) + \sum_{j \in G^{l}} \frac{\sigma_j^2}{\epsilon^2} \text{Ent}(\sigma^2_{G^{r}}) \right),$$ where $G^{m}, G^{l}, G^{r}$ are certain specific subsets of the overall arm set $\{1, 2, \ldots, n\}$, and $\text{Ent}(\cdot)$ is an entropy-like function which measures the heterogeneity of the variance proxies. The upper bound of the complexity is obtained using a divide-and-conquer style algorithm, while the matching lower bound relies on the study of a dual formulation.
106,638
106,638
Learning Downstream Task by Selectively Capturing Complementary Knowledge from Multiple Self-supervisedly Learning Pretexts
Self-supervised learning (SSL), as a newly emerging unsupervised representation learning paradigm, generally follows a two-stage learning pipeline: 1) learning invariant and discriminative representations with auto-annotation pretext(s), then 2) transferring the representations to assist downstream task(s). Such two stages are usually implemented separately, making the learned representation learned agnostic to the downstream tasks. Currently, most works are devoted to exploring the first stage. Whereas, it is less studied on how to learn downstream tasks with limited labeled data using the already learned representations. Especially, it is crucial and challenging to selectively utilize the complementary representations from diverse pretexts for a downstream task. In this paper, we technically propose a novel solution by leveraging the attention mechanism to adaptively squeeze suitable representations for the tasks. Meanwhile, resorting to information theory, we theoretically prove that gathering representation from diverse pretexts is more effective than a single one. Extensive experiments validate that our scheme significantly exceeds current popular pretext-matching based methods in gathering knowledge and relieving negative transfer in downstream tasks.
106,639
106,639
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
A simultaneously accurate and computationally efficient parametrization of the energy and atomic forces of molecules and materials is a long-standing goal in the natural sciences. In pursuit of this goal, neural message passing has lead to a paradigm shift by describing many-body correlations of atoms through iteratively passing messages along an atomistic graph. This propagation of information, however, makes parallel computation difficult and limits the length scales that can be studied. Strictly local descriptor-based methods, on the other hand, can scale to large systems but do not currently match the high accuracy observed with message passing approaches. This work introduces Allegro, a strictly local equivariant deep learning interatomic potential that simultaneously exhibits excellent accuracy and scalability of parallel computation. Allegro learns many-body functions of atomic coordinates using a series of tensor products of learned equivariant representations, but without relying on message passing. Allegro obtains improvements over state-of-the-art methods on the QM9 and revised MD-17 data sets. A single tensor product layer is shown to outperform existing deep message passing neural networks and transformers on the QM9 benchmark. Furthermore, Allegro displays remarkable generalization to out-of-distribution data. Molecular dynamics simulations based on Allegro recover structural and kinetic properties of an amorphous phosphate electrolyte in excellent agreement with first principles calculations. Finally, we demonstrate the parallel scaling of Allegro with a dynamics simulation of 100 million atoms.
106,640
106,640
Bayes Point Rule Set Learning
Interpretability is having an increasingly important role in the design of machine learning algorithms. However, interpretable methods tend to be less accurate than their black-box counterparts. Among others, DNFs (Disjunctive Normal Forms) are arguably the most interpretable way to express a set of rules. In this paper, we propose an effective bottom-up extension of the popular FIND-S algorithm to learn DNF-type rulesets. The algorithm greedily finds a partition of the positive examples. The produced DNF is a set of conjunctive rules, each corresponding to the most specific rule consistent with a part of positive and all negative examples. We also propose two principled extensions of this method, approximating the Bayes Optimal Classifier by aggregating DNF decision rules. Finally, we provide a methodology to significantly improve the explainability of the learned rules while retaining their generalization capabilities. An extensive comparison with state-of-the-art symbolic and statistical methods on several benchmark data sets shows that our proposal provides an excellent balance between explainability and accuracy.
106,641
106,641
Narcissus: A Practical Clean-Label Backdoor Attack with Limited Information
Backdoor attacks insert malicious data into a training set so that, during inference time, it misclassifies inputs that have been patched with a backdoor trigger as the malware specified label. For backdoor attacks to bypass human inspection, it is essential that the injected data appear to be correctly labeled. The attacks with such property are often referred to as "clean-label attacks." Existing clean-label backdoor attacks require knowledge of the entire training set to be effective. Obtaining such knowledge is difficult or impossible because training data are often gathered from multiple sources (e.g., face images from different users). It remains a question whether backdoor attacks still present a real threat. This paper provides an affirmative answer to this question by designing an algorithm to mount clean-label backdoor attacks based only on the knowledge of representative examples from the target class. With poisoning equal to or less than 0.5% of the target-class data and 0.05% of the training set, we can train a model to classify test examples from arbitrary classes into the target class when the examples are patched with a backdoor trigger. Our attack works well across datasets and models, even when the trigger presents in the physical world. We explore the space of defenses and find that, surprisingly, our attack can evade the latest state-of-the-art defenses in their vanilla form, or after a simple twist, we can adapt to the downstream defenses. We study the cause of the intriguing effectiveness and find that because the trigger synthesized by our attack contains features as persistent as the original semantic features of the target class, any attempt to remove such triggers would inevitably hurt the model accuracy first.
106,642
106,642
Multi-view graph structure learning using subspace merging on Grassmann manifold
Many successful learning algorithms have been recently developed to represent graph-structured data. For example, Graph Neural Networks (GNNs) have achieved considerable successes in various tasks such as node classification, graph classification, and link prediction. However, these methods are highly dependent on the quality of the input graph structure. One used approach to alleviate this problem is to learn the graph structure instead of relying on a manually designed graph. In this paper, we introduce a new graph structure learning approach using multi-view learning, named MV-GSL (Multi-View Graph Structure Learning), in which we aggregate different graph structure learning methods using subspace merging on Grassmann manifold to improve the quality of the learned graph structures. Extensive experiments are performed to evaluate the effectiveness of the proposed method on two benchmark datasets, Cora and Citeseer. Our experiments show that the proposed method has promising performance compared to single and other combined graph structure learning methods.
106,643
106,643
Maximum entropy optimal density control of discrete-time linear systems and Schr\"odinger bridges
We consider an entropy-regularized version of optimal density control of deterministic discrete-time linear systems. Entropy regularization, or a maximum entropy (MaxEnt) method for optimal control has attracted much attention especially in reinforcement learning due to its many advantages such as a natural exploration strategy. Despite the merits, high-entropy control policies introduce probabilistic uncertainty into systems, which severely limits the applicability of MaxEnt optimal control to safety-critical systems. To remedy this situation, we impose a Gaussian density constraint at a specified time on the MaxEnt optimal control to directly control state uncertainty. Specifically, we derive the explicit form of the MaxEnt optimal density control. In addition, we also consider the case where a density constraint is replaced by a fixed point constraint. Then, we characterize the associated state process as a pinned process, which is a generalization of the Brownian bridge to linear systems. Finally, we reveal that the MaxEnt optimal density control induces the so-called Schr\"odinger bridge associated to a discrete-time linear system.
106,644
106,644
The Importance of Future Information in Credit Card Fraud Detection
Fraud detection systems (FDS) mainly perform two tasks: (i) real-time detection while the payment is being processed and (ii) posterior detection to block the card retrospectively and avoid further frauds. Since human verification is often necessary and the payment processing time is limited, the second task manages the largest volume of transactions. In the literature, fraud detection challenges and algorithms performance are widely studied but the very formulation of the problem is never disrupted: it aims at predicting if a transaction is fraudulent based on its characteristics and the past transactions of the cardholder. Yet, in posterior detection, verification often takes days, so new payments on the card become available before a decision is taken. This is our motivation to propose a new paradigm: posterior fraud detection with "future" information. We start by providing evidence of the on-time availability of subsequent transactions, usable as extra context to improve detection. We then design a Bidirectional LSTM to make use of these transactions. On a real-world dataset with over 30 million transactions, it achieves higher performance than a regular LSTM, which is the state-of-the-art classifier for fraud detection that only uses the past context. We also introduce new metrics to show that the proposal catches more frauds, more compromised cards, and based on their earliest frauds. We believe that future works on this new paradigm will have a significant impact on the detection of compromised cards.
106,645
106,645
MIME: Adapting a Single Neural Network for Multi-task Inference with Memory-efficient Dynamic Pruning
Recent years have seen a paradigm shift towards multi-task learning. This calls for memory and energy-efficient solutions for inference in a multi-task scenario. We propose an algorithm-hardware co-design approach called MIME. MIME reuses the weight parameters of a trained parent task and learns task-specific threshold parameters for inference on multiple child tasks. We find that MIME results in highly memory-efficient DRAM storage of neural-network parameters for multiple tasks compared to conventional multi-task inference. In addition, MIME results in input-dependent dynamic neuronal pruning, thereby enabling energy-efficient inference with higher throughput on a systolic-array hardware. Our experiments with benchmark datasets (child tasks)- CIFAR10, CIFAR100, and Fashion-MNIST, show that MIME achieves ~3.48x memory-efficiency and ~2.4-3.1x energy-savings compared to conventional multi-task inference in Pipelined task mode.
106,646
106,646
Settling the Sample Complexity of Model-Based Offline Reinforcement Learning
This paper is concerned with offline reinforcement learning (RL), which learns using pre-collected data without further exploration. Effective offline RL would be able to accommodate distribution shift and limited data coverage. However, prior algorithms or analyses either suffer from suboptimal sample complexities or incur high burn-in cost to reach sample optimality, thus posing an impediment to efficient offline RL in sample-starved applications. We demonstrate that the model-based (or "plug-in") approach achieves minimax-optimal sample complexity without burn-in cost for tabular Markov decision processes (MDPs). Concretely, consider a finite-horizon (resp. $\gamma$-discounted infinite-horizon) MDP with $S$ states and horizon $H$ (resp. effective horizon $\frac{1}{1-\gamma}$), and suppose the distribution shift of data is reflected by some single-policy clipped concentrability coefficient $C^{\star}_{\text{clipped}}$. We prove that model-based offline RL yields $\varepsilon$-accuracy with a sample complexity of \[ \begin{cases} \frac{H^{4}SC_{\text{clipped}}^{\star}}{\varepsilon^{2}} & (\text{finite-horizon MDPs}) \frac{SC_{\text{clipped}}^{\star}}{(1-\gamma)^{3}\varepsilon^{2}} & (\text{infinite-horizon MDPs}) \end{cases} \] up to log factor, which is minimax optimal for the entire $\varepsilon$-range. Our algorithms are "pessimistic" variants of value iteration with Bernstein-style penalties, and do not require sophisticated variance reduction.
106,647
106,647
Segmentation-Consistent Probabilistic Lesion Counting
Lesion counts are important indicators of disease severity, patient prognosis, and treatment efficacy, yet counting as a task in medical imaging is often overlooked in favor of segmentation. This work introduces a novel continuously differentiable function that maps lesion segmentation predictions to lesion count probability distributions in a consistent manner. The proposed end-to-end approach--which consists of voxel clustering, lesion-level voxel probability aggregation, and Poisson-binomial counting--is non-parametric and thus offers a robust and consistent way to augment lesion segmentation models with post hoc counting capabilities. Experiments on Gadolinium-enhancing lesion counting demonstrate that our method outputs accurate and well-calibrated count distributions that capture meaningful uncertainty information. They also reveal that our model is suitable for multi-task learning of lesion segmentation, is efficient in low data regimes, and is robust to adversarial attacks.
106,648
106,648
Full-Spectrum Out-of-Distribution Detection
Existing out-of-distribution (OOD) detection literature clearly defines semantic shift as a sign of OOD but does not have a consensus over covariate shift. Samples experiencing covariate shift but not semantic shift are either excluded from the test set or treated as OOD, which contradicts the primary goal in machine learning -- being able to generalize beyond the training distribution. In this paper, we take into account both shift types and introduce full-spectrum OOD (FS-OOD) detection, a more realistic problem setting that considers both detecting semantic shift and being tolerant to covariate shift; and designs three benchmarks. These new benchmarks have a more fine-grained categorization of distributions (i.e., training ID, covariate-shifted ID, near-OOD, and far-OOD) for the purpose of more comprehensively evaluating the pros and cons of algorithms. To address the FS-OOD detection problem, we propose SEM, a simple feature-based semantics score function. SEM is mainly composed of two probability measures: one is based on high-level features containing both semantic and non-semantic information, while the other is based on low-level feature statistics only capturing non-semantic image styles. With a simple combination, the non-semantic part is cancelled out, which leaves only semantic information in SEM that can better handle FS-OOD detection. Extensive experiments on the three new benchmarks show that SEM significantly outperforms current state-of-the-art methods. Our code and benchmarks are released in https://github.com/Jingkang50/OpenOOD.
106,649
106,649
Toward More Effective Human Evaluation for Machine Translation
Improvements in text generation technologies such as machine translation have necessitated more costly and time-consuming human evaluation procedures to ensure an accurate signal. We investigate a simple way to reduce cost by reducing the number of text segments that must be annotated in order to accurately predict a score for a complete test set. Using a sampling approach, we demonstrate that information from document membership and automatic metrics can help improve estimates compared to a pure random sampling baseline. We achieve gains of up to 20% in average absolute error by leveraging stratified sampling and control variates. Our techniques can improve estimates made from a fixed annotation budget, are easy to implement, and can be applied to any problem with structure similar to the one we study.
106,650
106,650
Causal Discovery and Causal Learning for Fire Resistance Evaluation: Incorporating Domain Knowledge
Experiments remain the gold standard to establish an understanding of fire-related phenomena. A primary goal in designing tests is to uncover the data generating process (i.e., the how and why the observations we see come to be); or simply what causes such observations. Uncovering such a process not only advances our knowledge but also provides us with the capability to be able to predict phenomena accurately. This paper presents an approach that leverages causal discovery and causal inference to evaluate the fire resistance of structural members. In this approach, causal discovery algorithms are adopted to uncover the causal structure between key variables pertaining to the fire resistance of reinforced concrete (RC) columns. Then, companion inference algorithms are applied to infer (estimate) the influence of each variable on the fire resistance given a specific intervention. Finally, this study ends by contrasting the algorithmic causal discovery with that obtained from domain knowledge and traditional machine learning. Our findings clearly show the potential and merit of adopting causality into our domain.
106,651
106,651
Graph Ordering Attention Networks
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
106,652
106,652
Random Similarity Forests
The wealth of data being gathered about humans and their surroundings drives new machine learning applications in various fields. Consequently, more and more often, classifiers are trained using not only numerical data but also complex data objects. For example, multi-omics analyses attempt to combine numerical descriptions with distributions, time series data, discrete sequences, and graphs. Such integration of data from different domains requires either omitting some of the data, creating separate models for different formats, or simplifying some of the data to adhere to a shared scale and format, all of which can hinder predictive performance. In this paper, we propose a classification method capable of handling datasets with features of arbitrary data types while retaining each feature's characteristic. The proposed algorithm, called Random Similarity Forest, uses multiple domain-specific distance measures to combine the predictive performance of Random Forests with the flexibility of Similarity Forests. We show that Random Similarity Forests are on par with Random Forests on numerical data and outperform them on datasets from complex or mixed data domains. Our results highlight the applicability of Random Similarity Forests to noisy, multi-source datasets that are becoming ubiquitous in high-impact life science projects.
106,653
106,653
Transfer Learning for Autonomous Chatter Detection in Machining
Large-amplitude chatter vibrations are one of the most important phenomena in machining processes. It is often detrimental in cutting operations causing a poor surface finish and decreased tool life. Therefore, chatter detection using machine learning has been an active research area over the last decade. Three challenges can be identified in applying machine learning for chatter detection at large in industry: an insufficient understanding of the universality of chatter features across different processes, the need for automating feature extraction, and the existence of limited data for each specific workpiece-machine tool combination. These three challenges can be grouped under the umbrella of transfer learning. This paper studies automating chatter detection by evaluating transfer learning of prominent as well as novel chatter detection methods. We investigate chatter classification accuracy using a variety of features extracted from turning and milling experiments with different cutting configurations. The studied methods include Fast Fourier Transform (FFT), Power Spectral Density (PSD), the Auto-correlation Function (ACF), Wavelet Packet Transform (WPT), and Ensemble Empirical Mode Decomposition (EEMD). We also examine more recent approaches based on Topological Data Analysis (TDA) and similarity measures of time series based on Discrete Time Warping (DTW). We evaluate the transfer learning potential of each approach by training and testing both within and across the turning and milling data sets. Our results show that carefully chosen time-frequency features can lead to high classification accuracies albeit at the cost of requiring manual pre-processing and the tagging of an expert user. On the other hand, we found that the TDA and DTW approaches can provide accuracies and F1 scores on par with the time-frequency methods without the need for manual preprocessing.
106,654
106,654
$\{\text{PF}\}^2\text{ES}$: Parallel Feasible Pareto Frontier Entropy Search for Multi-Objective Bayesian Optimization Under Unknown Constraints
We present Parallel Feasible Pareto Frontier Entropy Search ($\{\text{PF}\}^2$ES) -- a novel information-theoretic acquisition function for multi-objective Bayesian optimization. Although information-theoretic approaches regularly provide state-of-the-art optimization, they are not yet widely used in the context of constrained multi-objective optimization. Due to the complexity of characterizing mutual information between candidate evaluations and (feasible) Pareto frontiers, existing approaches must employ severe approximations that significantly hamper their performance. By instead using a variational lower bound, $\{\text{PF}\}^2$ES provides a low cost and accurate estimate of the mutual information for the parallel setting (where multiple evaluations must be chosen for each optimization step). Moreover, we are able to interpret our proposed acquisition function by exploring direct links with other popular multi-objective acquisition functions. We benchmark $\{\text{PF}\}^2$ES across synthetic and real-life problems, demonstrating its competitive performance for batch optimization across synthetic and real-world problems including vehicle and electronic filter design.
106,655
106,655
A Simple Approach to Adversarial Robustness in Few-shot Image Classification
Few-shot image classification, where the goal is to generalize to tasks with limited labeled data, has seen great progress over the years. However, the classifiers are vulnerable to adversarial examples, posing a question regarding their generalization capabilities. Recent works have tried to combine meta-learning approaches with adversarial training to improve the robustness of few-shot classifiers. We show that a simple transfer-learning based approach can be used to train adversarially robust few-shot classifiers. We also present a method for novel classification task based on calibrating the centroid of the few-shot category towards the base classes. We show that standard adversarial training on base categories along with calibrated centroid-based classifier in the novel categories, outperforms or is on-par with state-of-the-art advanced methods on standard benchmarks for few-shot learning. Our method is simple, easy to scale, and with little effort can lead to robust few-shot classifiers. Code is available here: \url{https://github.com/UCDvision/Simple_few_shot.git}
106,656
106,656
Heterogeneous Acceleration Pipeline for Recommendation System Training
Recommendation systems are unique as they show a conflation of compute and memory intensity due to their deep learning and massive embedding tables. Training these models typically involve a hybrid CPU-GPU mode, where GPUs accelerate the deep learning portion and the CPUs store and process the memory-intensive embedding tables. The hybrid mode incurs a substantial CPU-to-GPU transfer time and relies on main memory bandwidth to feed embeddings to GPU for deep learning acceleration. Alternatively, we can store the entire embeddings across GPUs to avoid the transfer time and utilize the GPU's High Bandwidth Memory (HBM). This approach requires GPU-to-GPU backend communication and scales the number of GPUs with the size of the embedding tables. To overcome these concerns, this paper offers a heterogeneous acceleration pipeline, called Hotline. Hotline leverages the insight that only a small number of embedding entries are accessed frequently, and can easily fit in a single GPU's HBM. Hotline implements a data-aware and model-aware scheduling pipeline that utilizes the (1) CPU main memory for not-frequently-accessed embeddings and (2) GPUs' local memory for frequently-accessed embeddings. Hotline improves the training throughput by dynamically stitching the execution of popular and not-popular inputs through a novel hardware accelerator and feeding to the GPUs. Results on real-world datasets and recommender models show that Hotline reduces the average training time by 3x and 1.8x in comparison to Intel-optimized CPU-GPU DLRM and HugeCTR-optimized GPU-only baseline, respectively. Hotline increases the overall training throughput to 35.7 epochs/hour in comparison to 5.3 epochs/hour for the Intel-optimized DLRM baseline
106,657
106,657
Lost Vibration Test Data Recovery Using Convolutional Neural Network: A Case Study
Data loss in Structural Health Monitoring (SHM) networks has recently become one of the main challenges for engineers. Therefore, a data recovery method for SHM, generally an expensive procedure, is essential. Lately, some techniques offered to recover this valuable raw data using Neural Network (NN) algorithms. Among them, the convolutional neural network (CNN) based on convolution, a mathematical operation, can be applied to non-image datasets such as signals to extract important features without human supervision. However, the effect of different parameters has not been studied and optimized for SHM applications. Therefore, this paper aims to propose different architectures and investigate the effects of different hyperparameters for one of the newest proposed methods, which is based on a CNN algorithm for the Alamosa Canyon Bridge as a real structure. For this purpose, three different CNN models were considered to predict one and two malfunctioned sensors by finding the correlation between other sensors, respectively. Then the CNN algorithm was trained by experimental data, and the results showed that the method had a reliable performance in predicting Alamosa Canyon Bridge's missed data. The accuracy of the model was increased by adding a convolutional layer. Also, a standard neural network with two hidden layers was trained with the same inputs and outputs of the CNN models. Based on the results, the CNN model had higher accuracy, lower computational cost, and was faster than the standard neural network.
106,658
106,658
Neural Processes with Stochastic Attention: Paying more attention to the context dataset
Neural processes (NPs) aim to stochastically complete unseen data points based on a given context dataset. NPs essentially leverage a given dataset as a context representation to derive a suitable identifier for a novel task. To improve the prediction accuracy, many variants of NPs have investigated context embedding approaches that generally design novel network architectures and aggregation functions satisfying permutation invariant. In this work, we propose a stochastic attention mechanism for NPs to capture appropriate context information. From the perspective of information theory, we demonstrate that the proposed method encourages context embedding to be differentiated from a target dataset, allowing NPs to consider features in a target dataset and context embedding independently. We observe that the proposed method can appropriately capture context embedding even under noisy data sets and restricted task distributions, where typical NPs suffer from a lack of context embeddings. We empirically show that our approach substantially outperforms conventional NPs in various domains through 1D regression, predator-prey model, and image completion. Moreover, the proposed method is also validated by MovieLens-10k dataset, a real-world problem.
106,659
106,659
Independent Natural Policy Gradient Methods for Potential Games: Finite-time Global Convergence with Entropy Regularization
A major challenge in multi-agent systems is that the system complexity grows dramatically with the number of agents as well as the size of their action spaces, which is typical in real world scenarios such as autonomous vehicles, robotic teams, network routing, etc. It is hence in imminent need to design decentralized or independent algorithms where the update of each agent is only based on their local observations without the need of introducing complex communication/coordination mechanisms. In this work, we study the finite-time convergence of independent entropy-regularized natural policy gradient (NPG) methods for potential games, where the difference in an agent's utility function due to unilateral deviation matches exactly that of a common potential function. The proposed entropy-regularized NPG method enables each agent to deploy symmetric, decentralized, and multiplicative updates according to its own payoff. We show that the proposed method converges to the quantal response equilibrium (QRE) -- the equilibrium to the entropy-regularized game -- at a sublinear rate, which is independent of the size of the action space and grows at most sublinearly with the number of agents. Appealingly, the convergence rate further becomes independent with the number of agents for the important special case of identical-interest games, leading to the first method that converges at a dimension-free rate. Our approach can be used as a smoothing technique to find an approximate Nash equilibrium (NE) of the unregularized problem without assuming that stationary policies are isolated.
106,660
106,660
Breaking Fair Binary Classification with Optimal Flipping Attacks
Minimizing risk with fairness constraints is one of the popular approaches to learning a fair classifier. Recent works showed that this approach yields an unfair classifier if the training set is corrupted. In this work, we study the minimum amount of data corruption required for a successful flipping attack. First, we find lower/upper bounds on this quantity and show that these bounds are tight when the target model is the unique unconstrained risk minimizer. Second, we propose a computationally efficient data poisoning attack algorithm that can compromise the performance of fair learning algorithms.
106,661
106,661
Accurate Discharge Coefficient Prediction of Streamlined Weirs by Coupling Linear Regression and Deep Convolutional Gated Recurrent Unit
Streamlined weirs which are a nature-inspired type of weir have gained tremendous attention among hydraulic engineers, mainly owing to their established performance with high discharge coefficients. Computational fluid dynamics (CFD) is considered as a robust tool to predict the discharge coefficient. To bypass the computational cost of CFD-based assessment, the present study proposes data-driven modeling techniques, as an alternative to CFD simulation, to predict the discharge coefficient based on an experimental dataset. To this end, after splitting the dataset using a k fold cross validation technique, the performance assessment of classical and hybrid machine learning deep learning (ML DL) algorithms is undertaken. Among ML techniques linear regression (LR) random forest (RF) support vector machine (SVM) k-nearest neighbor (KNN) and decision tree (DT) algorithms are studied. In the context of DL, long short-term memory (LSTM) convolutional neural network (CNN) and gated recurrent unit (GRU) and their hybrid forms such as LSTM GRU, CNN LSTM and CNN GRU techniques, are compared using different error metrics. It is found that the proposed three layer hierarchical DL algorithm consisting of a convolutional layer coupled with two subsequent GRU levels, which is also hybridized with the LR method, leads to lower error metrics. This paper paves the way for data-driven modeling of streamlined weirs.
106,662
106,662
Deep Normed Embeddings for Patient Representation
We introduce a novel contrastive representation learning objective and a training scheme for clinical time series. Specifically, we project high dimensional E.H.R. data to a closed unit ball of low dimension, encoding geometric priors so that the origin represents an idealized perfect health state and the euclidean norm is associated with the patient's mortality risk. Moreover, using septic patients as an example, we show how we could learn to associate the angle between two vectors with the different organ system failures, thereby, learning a compact representation which is indicative of both mortality risk and specific organ failure. We show how the learned embedding can be used for online patient monitoring, supplement clinicians and improve performance of downstream machine learning tasks. This work was partially motivated from the desire and the need to introduce a systematic way of defining intermediate rewards for Reinforcement Learning in critical care medicine. Hence, we also show how such a design in terms of the learned embedding can result in qualitatively different policies and value distributions, as compared with using only terminal rewards.
106,663
106,663
Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison
In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In beginning, we apply a document layout analysis that combining traditional and modern technics to segment layout in blocks of various types appropriately. Then we transform this issue to a problem of layout graph matching with textual awareness. About graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our graph neural approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.
106,664
106,664
Modelling Evolutionary and Stationary User Preferences for Temporal Sets Prediction
Given a sequence of sets, where each set is associated with a timestamp and contains an arbitrary number of elements, the task of temporal sets prediction aims to predict the elements in the subsequent set. Previous studies for temporal sets prediction mainly capture each user's evolutionary preference by learning from his/her own sequence. Although insightful, we argue that: 1) the collaborative signals latent in different users' sequences are essential but have not been exploited; 2) users also tend to show stationary preferences while existing methods fail to consider. To this end, we propose an integrated learning framework to model both the evolutionary and the stationary preferences of users for temporal sets prediction, which first constructs a universal sequence by chronologically arranging all the user-set interactions, and then learns on each user-set interaction. In particular, for each user-set interaction, we first design an evolutionary user preference modelling component to track the user's time-evolving preference and exploit the latent collaborative signals among different users. This component maintains a memory bank to store memories of the related user and elements, and continuously updates their memories based on the currently encoded messages and the past memories. Then, we devise a stationary user preference modelling module to discover each user's personalized characteristics according to the historical sequence, which adaptively aggregates the previously interacted elements from dual perspectives with the guidance of the user's and elements' embeddings. Finally, we develop a set-batch algorithm to improve the model efficiency, which can create time-consistent batches in advance and achieve 3.5x training speedups on average. Experiments on real-world datasets demonstrate the effectiveness and good interpretability of our approach.
106,665
106,665
A Comparative Study of Faithfulness Metrics for Model Interpretability Methods
Interpretation methods to reveal the internal reasoning processes behind machine learning models have attracted increasing attention in recent years. To quantify the extent to which the identified interpretations truly reflect the intrinsic decision-making mechanisms, various faithfulness evaluation metrics have been proposed. However, we find that different faithfulness metrics show conflicting preferences when comparing different interpretations. Motivated by this observation, we aim to conduct a comprehensive and comparative study of the widely adopted faithfulness metrics. In particular, we introduce two assessment dimensions, namely diagnosticity and time complexity. Diagnosticity refers to the degree to which the faithfulness metric favours relatively faithful interpretations over randomly generated ones, and time complexity is measured by the average number of model forward passes. According to the experimental results, we find that sufficiency and comprehensiveness metrics have higher diagnosticity and lower time complexity than the other faithfulness metric
106,666
106,666
Deep Annotation of Therapeutic Working Alliance in Psychotherapy
The therapeutic working alliance is an important predictor of the outcome of the psychotherapy treatment. In practice, the working alliance is estimated from a set of scoring questionnaires in an inventory that both the patient and the therapists fill out. In this work, we propose an analytical framework of directly inferring the therapeutic working alliance from the natural language within the psychotherapy sessions in a turn-level resolution with deep embeddings such as the Doc2Vec and SentenceBERT models. The transcript of each psychotherapy session can be transcribed and generated in real-time from the session speech recordings, and these embedded dialogues are compared with the distributed representations of the statements in the working alliance inventory. We demonstrate, in a real-world dataset with over 950 sessions of psychotherapy treatments in anxiety, depression, schizophrenia and suicidal patients, the effectiveness of this method in mapping out trajectories of patient-therapist alignment and the interpretability that can offer insights in clinical psychiatry. We believe such a framework can be provide timely feedback to the therapist regarding the quality of the conversation in interview sessions.
106,667
106,667
Near-Optimal Distributed Linear-Quadratic Regulator for Networked Systems
This paper studies the trade-off between the degree of decentralization and the performance of a distributed controller in a linear-quadratic control setting. We study a system of interconnected agents over a graph and a distributed controller, called $\kappa$-distributed control, which lets the agents make control decisions based on the state information within distance $\kappa$ on the underlying graph. This controller can tune its degree of decentralization using the parameter $\kappa$ and thus allows a characterization of the relationship between decentralization and performance. We show that under mild assumptions, including stabilizability, detectability, and a polynomially growing graph condition, the performance difference between $\kappa$-distributed control and centralized optimal control becomes exponentially small in $\kappa$. This result reveals that distributed control can achieve near-optimal performance with a moderate degree of decentralization, and thus it is an effective controller architecture for large-scale networked systems.
106,668
106,668
Solving Price Per Unit Problem Around the World: Formulating Fact Extraction as Question Answering
Price Per Unit (PPU) is an essential information for consumers shopping on e-commerce websites when comparing products. Finding total quantity in a product is required for computing PPU, which is not always provided by the sellers. To predict total quantity, all relevant quantities given in a product attributes such as title, description and image need to be inferred correctly. We formulate this problem as a question-answering (QA) task rather than named entity recognition (NER) task for fact extraction. In our QA approach, we first predict the unit of measure (UoM) type (e.g., volume, weight or count), that formulates the desired question (e.g., "What is the total volume?") and then use this question to find all the relevant answers. Our model architecture consists of two subnetworks for the two subtasks: a classifier to predict UoM type (or the question) and an extractor to extract the relevant quantities. We use a deep character-level CNN architecture for both subtasks, which enables (1) easy expansion to new stores with similar alphabets, (2) multi-span answering due to its span-image architecture and (3) easy deployment by keeping model-inference latency low. Our QA approach outperforms rule-based methods by 34.4% in precision and also BERT-based fact extraction approach in all stores globally, with largest precision lift of 10.6% in the US store.
106,669
106,669
FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at https://github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
106,670
106,670
Speech Emotion Recognition with Global-Aware Fusion on Multi-scale Feature Representation
Speech Emotion Recognition (SER) is a fundamental task to predict the emotion label from speech data. Recent works mostly focus on using convolutional neural networks~(CNNs) to learn local attention map on fixed-scale feature representation by viewing time-varied spectral features as images. However, rich emotional feature at different scales and important global information are not able to be well captured due to the limits of existing CNNs for SER. In this paper, we propose a novel GLobal-Aware Multi-scale (GLAM) neural network (The code is available at https://github.com/lixiangucas01/GLAM) to learn multi-scale feature representation with global-aware fusion module to attend emotional information. Specifically, GLAM iteratively utilizes multiple convolutional kernels with different scales to learn multiple feature representation. Then, instead of using attention-based methods, a simple but effective global-aware fusion module is applied to grab most important emotional information globally. Experiments on the benchmark corpus IEMOCAP over four emotions demonstrates the superiority of our proposed model with 2.5% to 4.5% improvements on four common metrics compared to previous state-of-the-art approaches.
106,671
106,671
Convolutional recurrent autoencoder network for learning underwater ocean acoustics
Underwater ocean acoustics is a complex physical phenomenon involving not only widely varying physical parameters and dynamical scales but also uncertainties in the ocean parameters. Thus, it is difficult to construct generalized physical models which can work in a broad range of situations. In this regard, we propose a convolutional recurrent autoencoder network (CRAN) architecture, which is a data-driven deep learning model for acoustic propagation. Being data-driven it is independent of how the data is obtained and can be employed for learning various ocean acoustic phenomena. The CRAN model can learn a reduced-dimensional representation of physical data and can predict the system evolution efficiently. Two cases of increasing complexity are considered to demonstrate the generalization ability of the CRAN. The first case is a one-dimensional wave propagation with spatially-varying discontinuous initial conditions. The second case corresponds to a far-field transmission loss distribution in a two-dimensional ocean domain with depth-dependent sources. For both cases, the CRAN can learn the essential elements of wave propagation physics such as characteristic patterns while predicting long-time system evolution with satisfactory accuracy. Such ability of the CRAN to learn complex ocean acoustics phenomena has the potential of real-time prediction for marine vessel decision-making and online control.
106,672
106,672
Regression or Classification? Reflection on BP prediction from PPG data using Deep Neural Networks in the scope of practical applications
Photoplethysmographic (PPG) signals offer diagnostic potential beyond heart rate analysis or blood oxygen level monitoring. In the recent past, research focused extensively on non-invasive PPG-based approaches to blood pressure (BP) estimation. These approaches can be subdivided into regression and classification methods. The latter assign PPG signals to predefined BP intervals that represent clinically relevant ranges. The former predict systolic (SBP) and diastolic (DBP) BP as continuous variables and are of particular interest to the research community. However, the reported accuracies of BP regression methods vary widely among publications with some authors even questioning the feasibility of PPG-based BP regression altogether. In our work, we compare BP regression and classification approaches. We argue that BP classification might provide diagnostic value that is equivalent to regression in many clinically relevant scenarios while being similar or even superior in terms of performance. We compare several established neural architectures using publicly available PPG data for SBP regression and classification with and without personalization using subject-specific data. We found that classification and regression models perform similar before personalization. However, after personalization, the accuracy of classification based methods outperformed regression approaches. We conclude that BP classification might be preferable over BP regression in certain scenarios where a coarser segmentation of the BP range is sufficient.
106,673
106,673
Stylized Knowledge-Grounded Dialogue Generation via Disentangled Template Rewriting
Current Knowledge-Grounded Dialogue Generation (KDG) models specialize in producing rational and factual responses. However, to establish long-term relationships with users, the KDG model needs the capability to generate responses in a desired style or attribute. Thus, we study a new problem: Stylized Knowledge-Grounded Dialogue Generation (SKDG). It presents two challenges: (1) How to train a SKDG model where no <context, knowledge, stylized response> triples are available. (2) How to cohere with context and preserve the knowledge when generating a stylized response. In this paper, we propose a novel disentangled template rewriting (DTR) method which generates responses via combing disentangled style templates (from monolingual stylized corpus) and content templates (from KDG corpus). The entire framework is end-to-end differentiable and learned without supervision. Extensive experiments on two benchmarks indicate that DTR achieves a significant improvement on all evaluation metrics compared with previous state-of-the-art stylized dialogue generation methods. Besides, DTR achieves comparable performance with the state-of-the-art KDG methods in standard KDG evaluation setting.
106,674
106,674
When Should We Prefer Offline Reinforcement Learning Over Behavioral Cloning?
Offline reinforcement learning (RL) algorithms can acquire effective policies by utilizing previously collected experience, without any online interaction. It is widely understood that offline RL is able to extract good policies even from highly suboptimal data, a scenario where imitation learning finds suboptimal solutions that do not improve over the demonstrator that generated the dataset. However, another common use case for practitioners is to learn from data that resembles demonstrations. In this case, one can choose to apply offline RL, but can also use behavioral cloning (BC) algorithms, which mimic a subset of the dataset via supervised learning. Therefore, it seems natural to ask: when can an offline RL method outperform BC with an equal amount of expert data, even when BC is a natural choice? To answer this question, we characterize the properties of environments that allow offline RL methods to perform better than BC methods, even when only provided with expert data. Additionally, we show that policies trained on sufficiently noisy suboptimal data can attain better performance than even BC algorithms with expert data, especially on long-horizon problems. We validate our theoretical results via extensive experiments on both diagnostic and high-dimensional domains including robotic manipulation, maze navigation, and Atari games, with a variety of data distributions. We observe that, under specific but common conditions such as sparse rewards or noisy data sources, modern offline RL methods can significantly outperform BC.
106,675
106,675
Continual Predictive Learning from Videos
Predictive learning ideally builds the world model of physical processes in one or more given environments. Typical setups assume that we can collect data from all environments at all times. In practice, however, different prediction tasks may arrive sequentially so that the environments may change persistently throughout the training procedure. Can we develop predictive learning algorithms that can deal with more realistic, non-stationary physical environments? In this paper, we study a new continual learning problem in the context of video prediction, and observe that most existing methods suffer from severe catastrophic forgetting in this setup. To tackle this problem, we propose the continual predictive learning (CPL) approach, which learns a mixture world model via predictive experience replay and performs test-time adaptation with non-parametric task inference. We construct two new benchmarks based on RoboNet and KTH, in which different tasks correspond to different physical robotic environments or human actions. Our approach is shown to effectively mitigate forgetting and remarkably outperform the na\"ive combinations of previous art in video prediction and continual learning.
106,676
106,676
X-DETR: A Versatile Architecture for Instance-wise Vision-Language Tasks
In this paper, we study the challenging instance-wise vision-language tasks, where the free-form language is required to align with the objects instead of the whole image. To address these tasks, we propose X-DETR, whose architecture has three major components: an object detector, a language encoder, and vision-language alignment. The vision and language streams are independent until the end and they are aligned using an efficient dot-product operation. The whole network is trained end-to-end, such that the detector is optimized for the vision-language tasks instead of an off-the-shelf component. To overcome the limited size of paired object-language annotations, we leverage other weak types of supervision to expand the knowledge coverage. This simple yet effective architecture of X-DETR shows good accuracy and fast speeds for multiple instance-wise vision-language tasks, e.g., 16.4 AP on LVIS detection of 1.2K categories at ~20 frames per second without using any LVIS annotation during training.
106,677
106,677
Malware Analysis with Symbolic Execution and Graph Kernel
Malware analysis techniques are divided into static and dynamic analysis. Both techniques can be bypassed by circumvention techniques such as obfuscation. In a series of works, the authors have promoted the use of symbolic executions combined with machine learning to avoid such traps. Most of those works rely on natural graph-based representations that can then be plugged into graph-based learning algorithms such as Gspan. There are two main problems with this approach. The first one is in the cost of computing the graph. Indeed, working with graphs requires one to compute and representing the entire state-space of the file under analysis. As such computation is too cumbersome, the techniques often rely on developing strategies to compute a representative subgraph of the behaviors. Unfortunately, efficient graph-building strategies remain weakly explored. The second problem is in the classification itself. Graph-based machine learning algorithms rely on comparing the biggest common structures. This sidelines small but specific parts of the malware signature. In addition, it does not allow us to work with efficient algorithms such as support vector machine. We propose a new efficient open source toolchain for machine learning-based classification. We also explore how graph-kernel techniques can be used in the process. We focus on the 1-dimensional Weisfeiler-Lehman kernel, which can capture local similarities between graphs. Our experimental results show that our approach outperforms existing ones by an impressive factor.
106,678
106,678
NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks
Given the ubiquitous nature of numbers in text, reasoning with numbers to perform simple calculations is an important skill of AI systems. While many datasets and models have been developed to this end, state-of-the-art AI systems are brittle; failing to perform the underlying mathematical reasoning when they appear in a slightly different scenario. Drawing inspiration from GLUE that was proposed in the context of natural language understanding, we propose NumGLUE, a multi-task benchmark that evaluates the performance of AI systems on eight different tasks, that at their core require simple arithmetic understanding. We show that this benchmark is far from being solved with neural models including state-of-the-art large-scale language models performing significantly worse than humans (lower by 46.4%). Further, NumGLUE promotes sharing knowledge across tasks, especially those with limited training data as evidenced by the superior performance (average gain of 3.4% on each task) when a model is jointly trained on all the tasks as opposed to task-specific modeling. Finally, we hope that NumGLUE will encourage systems that perform robust and general arithmetic reasoning within language, a first step towards being able to perform more complex mathematical reasoning.
106,679
106,679
Local Random Feature Approximations of the Gaussian Kernel
A fundamental drawback of kernel-based statistical models is their limited scalability to large data sets, which requires resorting to approximations. In this work, we focus on the popular Gaussian kernel and on techniques to linearize kernel-based models by means of random feature approximations. In particular, we do so by studying a less explored random feature approximation based on Maclaurin expansions and polynomial sketches. We show that such approaches yield poor results when modelling high-frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance significantly in this regime. We demonstrate these gains on a number of experiments involving the application of Gaussian process regression to synthetic and real-world data of different data sizes and dimensions.
106,680
106,680
Positive Feature Values Prioritized Hierarchical Redundancy Eliminated Tree Augmented Naive Bayes Classifier for Hierarchical Feature Spaces
The Hierarchical Redundancy Eliminated Tree Augmented Naive Bayes (HRE-TAN) classifier is a semi-naive Bayesian model that learns a type of hierarchical redundancy-free tree-like feature representation to estimate the data distribution. In this work, we propose two new types of positive feature values prioritized hierarchical redundancy eliminated tree augmented naive Bayes classifiers that focus on features bearing positive instance values. The two newly proposed methods are applied to 28 real-world bioinformatics datasets showing better predictive performance than the conventional HRE-TAN classifier.
106,681
106,681
An Analysis of Discretization Methods for Communication Learning with Multi-Agent Reinforcement Learning
Communication is crucial in multi-agent reinforcement learning when agents are not able to observe the full state of the environment. The most common approach to allow learned communication between agents is the use of a differentiable communication channel that allows gradients to flow between agents as a form of feedback. However, this is challenging when we want to use discrete messages to reduce the message size since gradients cannot flow through a discrete communication channel. Previous work proposed methods to deal with this problem. However, these methods are tested in different communication learning architectures and environments, making it hard to compare them. In this paper, we compare several state-of-the-art discretization methods as well as two methods that have not been used for communication learning before. We do this comparison in the context of communication learning using gradients from other agents and perform tests on several environments. Our results show that none of the methods is best in all environments. The best choice in discretization method greatly depends on the environment. However, the discretize regularize unit (DRU), straight through DRU and the straight through gumbel softmax show the most consistent results across all the tested environments. Therefore, these methods prove to be the best choice for general use while the straight through estimator and the gumbel softmax may provide better results in specific environments but fail completely in others.
106,682
106,682
A Robust Learning Rule for Soft-Bounded Memristive Synapses Competitive with Supervised Learning in Standard Spiking Neural Networks
Memristive devices are a class of circuit elements that shows great promise as future building block for brain-inspired computing. One influential view in theoretical neuroscience sees the brain as a function-computing device: given input signals, the brain applies a function in order to generate new internal states and motor outputs. Therefore, being able to approximate functions is a fundamental axiom to build upon for future brain research and to derive more efficient computational machines. In this work we apply a novel supervised learning algorithm - based on controlling niobium-doped strontium titanate memristive synapses - to learning non-trivial multidimensional functions. By implementing our method into the spiking neural network simulator Nengo, we show that we are able to at least match the performance obtained when using ideal, linear synapses and - in doing so - that this kind of memristive device can be harnessed as computational substrate to move towards more efficient, brain-inspired computing.
106,683
106,683
Medusa: Universal Feature Learning via Attentional Multitasking
Recent approaches to multi-task learning (MTL) have focused on modelling connections between tasks at the decoder level. This leads to a tight coupling between tasks, which need retraining if a new task is inserted or removed. We argue that MTL is a stepping stone towards universal feature learning (UFL), which is the ability to learn generic features that can be applied to new tasks without retraining. We propose Medusa to realize this goal, designing task heads with dual attention mechanisms. The shared feature attention masks relevant backbone features for each task, allowing it to learn a generic representation. Meanwhile, a novel Multi-Scale Attention head allows the network to better combine per-task features from different scales when making the final prediction. We show the effectiveness of Medusa in UFL (+13.18% improvement), while maintaining MTL performance and being 25% more efficient than previous approaches.
106,684
106,684
Unsupervised Anomaly and Change Detection with Multivariate Gaussianization
Anomaly detection is a field of intense research. Identifying low probability events in data/images is a challenging problem given the high-dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary. We propose an unsupervised method for detecting anomalies and changes in remote sensing images by means of a multivariate Gaussianization methodology that allows to estimate multivariate densities accurately, a long-standing problem in statistics and machine learning. The methodology transforms arbitrarily complex multivariate data into a multivariate Gaussian distribution. Since the transformation is differentiable, by applying the change of variables formula one can estimate the probability at any point of the original domain. The assumption is straightforward: pixels with low estimated probability are considered anomalies. Our method can describe any multivariate distribution, makes an efficient use of memory and computational resources, and is parameter-free. We show the efficiency of the method in experiments involving both anomaly detection and change detection in different remote sensing image sets. Results show that our approach outperforms other linear and nonlinear methods in terms of detection power in both anomaly and change detection scenarios, showing robustness and scalability to dimensionality and sample sizes.
106,685
106,685
Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model
Designing implants for large and complex cranial defects is a challenging task, even for professional designers. Current efforts on automating the design process focused mainly on convolutional neural networks (CNN), which have produced state-of-the-art results on reconstructing synthetic defects. However, existing CNN-based methods have been difficult to translate to clinical practice in cranioplasty, as their performance on complex and irregular cranial defects remains unsatisfactory. In this paper, a statistical shape model (SSM) built directly on the segmentation masks of the skulls is presented. We evaluate the SSM on several cranial implant design tasks, and the results show that, while the SSM performs suboptimally on synthetic defects compared to CNN-based approaches, it is capable of reconstructing large and complex defects with only minor manual corrections. The quality of the resulting implants is examined and assured by experienced neurosurgeons. In contrast, CNN-based approaches, even with massive data augmentation, fail or produce less-than-satisfactory implants for these cases. Codes are publicly available at https://github.com/Jianningli/ssm
106,686
106,686
Hierarchical Quality-Diversity for Online Damage Recovery
Adaptation capabilities, like damage recovery, are crucial for the deployment of robots in complex environments. Several works have demonstrated that using repertoires of pre-trained skills can enable robots to adapt to unforeseen mechanical damages in a few minutes. These adaptation capabilities are directly linked to the behavioural diversity in the repertoire. The more alternatives the robot has to execute a skill, the better are the chances that it can adapt to a new situation. However, solving complex tasks, like maze navigation, usually requires multiple different skills. Finding a large behavioural diversity for these multiple skills often leads to an intractable exponential growth of the number of required solutions. In this paper, we introduce the Hierarchical Trial and Error algorithm, which uses a hierarchical behavioural repertoire to learn diverse skills and leverages them to make the robot more adaptive to different situations. We show that the hierarchical decomposition of skills enables the robot to learn more complex behaviours while keeping the learning of the repertoire tractable. The experiments with a hexapod robot show that our method solves maze navigation tasks with 20% less actions in the most challenging scenarios than the best baseline while having 57% less complete failures.
106,687
106,687
PyDTS: A Python Package for Discrete-Time Survival (Regularized) Regression with Competing Risks
Time-to-event analysis (survival analysis) is used when the outcome or the response of interest is the time until a pre-specified event occurs. Time-to-event data are sometimes discrete either because time itself is discrete or due to grouping of failure times into intervals or rounding off measurements. In addition, the failure of an individual could be one of several distinct failure types; known as competing risks (events) data. This work focuses on discrete-time regression with competing events. We emphasize the main difference between the continuous and discrete settings with competing events, develop a new estimation procedure, and present PyDTS, an open source Python package which implements our estimation procedure and other tools for discrete-time-survival analysis with competing risks.
106,688
106,688
On Top-$k$ Selection from $m$-wise Partial Rankings via Borda Counting
We analyze the performance of the Borda counting algorithm in a non-parametric model. The algorithm needs to utilize probabilistic rankings of the items within $m$-sized subsets to accurately determine which items are the overall top-$k$ items in a total of $n$ items. The Borda counting algorithm simply counts the cumulative scores for each item from these partial ranking observations. This generalizes a previous work of a similar nature by Shah et al. using probabilistic pairwise comparison data. The performance of the Borda counting algorithm critically depends on the associated score separation $\Delta_k$ between the $k$-th item and the $(k+1)$-th item. Specifically, we show that if $\Delta_k$ is greater than certain value, then the top-$k$ items selected by the algorithm is asymptotically accurate almost surely; if $\Delta_k$ is below certain value, then the result will be inaccurate with a constant probability. In the special case of $m=2$, i.e., pairwise comparison, the resultant bound is tighter than that given by Shah et al., leading to a reduced gap between the error probability upper and lower bounds. These results are further extended to the approximate top-$k$ selection setting. Numerical experiments demonstrate the effectiveness and accuracy of the Borda counting algorithm, compared with the spectral MLE-based algorithm, particularly when the data does not necessarily follow an assumed parametric model.
106,689
106,689
Ultrasound Shear Wave Elasticity Imaging with Spatio-Temporal Deep Learning
Ultrasound shear wave elasticity imaging is a valuable tool for quantifying the elastic properties of tissue. Typically, the shear wave velocity is derived and mapped to an elasticity value, which neglects information such as the shape of the propagating shear wave or push sequence characteristics. We present 3D spatio-temporal CNNs for fast local elasticity estimation from ultrasound data. This approach is based on retrieving elastic properties from shear wave propagation within small local regions. A large training data set is acquired with a robot from homogeneous gelatin phantoms ranging from 17.42 kPa to 126.05 kPa with various push locations. The results show that our approach can estimate elastic properties on a pixelwise basis with a mean absolute error of 5.01+-4.37 kPa. Furthermore, we estimate local elasticity independent of the push location and can even perform accurate estimates inside the push region. For phantoms with embedded inclusions, we report a 53.93% lower MAE (7.50 kPa) and on the background of 85.24% (1.64 kPa) compared to a conventional shear wave method. Overall, our method offers fast local estimations of elastic properties with small spatio-temporal window sizes.
106,690
106,690
BABD: A Bitcoin Address Behavior Dataset for Pattern Analysis
Cryptocurrencies are no longer just the preferred option for cybercriminal activities on darknets, due to the increasing adoption in mainstream applications. This is partly due to the transparency associated with the underpinning ledgers, where any individual can access the record of a transaction record on the public ledger. In this paper, we build a dataset comprising Bitcoin transactions between 12 July 2019 and 26 May 2021. This dataset (hereafter referred to as BABD-13) contains 13 types of Bitcoin addresses, 5 categories of indicators with 148 features, and 544,462 labeled data, which is the largest labeled Bitcoin address behavior dataset publicly available to our knowledge. We then use our proposed dataset on common machine learning models, namely: k-nearest neighbors algorithm, decision tree, random forest, multilayer perceptron, and XGBoost. The results show that the accuracy rates of these machine learning models for the multi-classification task on our proposed dataset are between 93.24% and 97.13%. We also analyze the proposed features and their relationships from the experiments, and propose a k-hop subgraph generation algorithm to extract a k-hop subgraph from the entire Bitcoin transaction graph constructed by the directed heterogeneous multigraph starting from a specific Bitcoin address node (e.g., a known transaction associated with a criminal investigation). Besides, we initially analyze the behavior patterns of different types of Bitcoin addresses according to the extracted features.
106,691
106,691
A Collection of Deep Learning-based Feature-Free Approaches for Characterizing Single-Objective Continuous Fitness Landscapes
Exploratory Landscape Analysis is a powerful technique for numerically characterizing landscapes of single-objective continuous optimization problems. Landscape insights are crucial both for problem understanding as well as for assessing benchmark set diversity and composition. Despite the irrefutable usefulness of these features, they suffer from their own ailments and downsides. Hence, in this work we provide a collection of different approaches to characterize optimization landscapes. Similar to conventional landscape features, we require a small initial sample. However, instead of computing features based on that sample, we develop alternative representations of the original sample. These range from point clouds to 2D images and, therefore, are entirely feature-free. We demonstrate and validate our devised methods on the BBOB testbed and predict, with the help of Deep Learning, the high-level, expert-based landscape properties such as the degree of multimodality and the existence of funnel structures. The quality of our approaches is on par with methods relying on the traditional landscape features. Thereby, we provide an exciting new perspective on every research area which utilizes problem information such as problem understanding and algorithm design as well as automated algorithm configuration and selection.
106,692
106,692
CyNER: A Python Library for Cybersecurity Named Entity Recognition
Open Cyber threat intelligence (OpenCTI) information is available in an unstructured format from heterogeneous sources on the Internet. We present CyNER, an open-source python library for cybersecurity named entity recognition (NER). CyNER combines transformer-based models for extracting cybersecurity-related entities, heuristics for extracting different indicators of compromise, and publicly available NER models for generic entity types. We provide models trained on a diverse corpus that users can readily use. Events are described as classes in previous research - MALOnt2.0 (Christian et al., 2021) and MALOnt (Rastogi et al., 2020) and together extract a wide range of malware attack details from a threat intelligence corpus. The user can combine predictions from multiple different approaches to suit their needs. The library is made publicly available.
106,693
106,693
Backdoor Attack against NLP models with Robustness-Aware Perturbation defense
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker defined trigger. This threat could happen when the training process is not fully controlled, such as training on third-party data-sets or adopting third-party models. There has been a lot of research and different methods to defend such type of backdoor attacks, one being robustness-aware perturbation-based defense method. This method mainly exploits big gap of robustness between poisoned and clean samples. In our work, we break this defense by controlling the robustness gap between poisoned and clean samples using adversarial training step.
106,694
106,694
Examining the Proximity of Adversarial Examples to Class Manifolds in Deep Networks
Deep neural networks achieve remarkable performance in multiple fields. However, after proper training they suffer from an inherent vulnerability against adversarial examples (AEs). In this work we shed light on inner representations of the AEs by analysing their activations on the hidden layers. We test various types of AEs, each crafted using a specific norm constraint, which affects their visual appearance and eventually their behavior in the trained networks. Our results in image classification tasks (MNIST and CIFAR-10) reveal qualitative differences between the individual types of AEs, when comparing their proximity to the class-specific manifolds on the inner representations. We propose two methods that can be used to compare the distances to class-specific manifolds, regardless of the changing dimensions throughout the network. Using these methods, we consistently confirm that some of the adversarials do not necessarily leave the proximity of the manifold of the correct class, not even in the last hidden layer of the neural network. Next, using UMAP visualisation technique, we project the class activations to 2D space. The results indicate that the activations of the individual AEs are entangled with the activations of the test set. This, however, does not hold for a group of crafted inputs called the rubbish class. We also confirm the entanglement of adversarials with the test set numerically using the soft nearest neighbour loss.
106,695
106,695
Membership-Mappings for Practical Secure Distributed Deep Learning
This study leverages the data representation capability of fuzzy based membership-mappings for practical secure distributed deep learning using fully homomorphic encryption. The impracticality issue of secure machine (deep) learning with fully homomorphic encrypted data, arising from large computational overhead, is addressed via applying fuzzy attributes. Fuzzy attributes are induced by globally convergent and robust variational membership-mappings based local deep models. Fuzzy attributes combine the local deep models in a robust and flexible manner such that the global model can be evaluated homomorphically in an efficient manner using a boolean circuit composed of bootstrapped binary gates. The proposed method, while preserving privacy in a distributed learning scenario, remains accurate, practical, and scalable. The method is evaluated through numerous experiments including demonstrations through MNIST dataset and Freiburg Groceries Dataset. Further, a biomedical application related to mental stress detection on individuals is considered.
106,696
106,696
GORDA: Graph-based ORientation Distribution Analysis of SLI scatterometry Patterns of Nerve Fibres
Scattered Light Imaging (SLI) is a novel approach for microscopically revealing the fibre architecture of unstained brain sections. The measurements are obtained by illuminating brain sections from different angles and measuring the transmitted (scattered) light under normal incidence. The evaluation of scattering profiles commonly relies on a peak picking technique and feature extraction from the peaks, which allows quantitative determination of parallel and crossing in-plane nerve fibre directions for each image pixel. However, the estimation of the 3D orientation of the fibres cannot be assessed with the traditional methodology. We propose an unsupervised learning approach using spherical convolutions for estimating the 3D orientation of neural fibres, resulting in a more detailed interpretation of the fibre orientation distributions in the brain.
106,697
106,697
A Machine Learning and Computer Vision Approach to Geomagnetic Storm Forecasting
Geomagnetic storms, disturbances of Earth's magnetosphere caused by masses of charged particles being emitted from the Sun, are an uncontrollable threat to modern technology. Notably, they have the potential to damage satellites and cause instability in power grids on Earth, among other disasters. They result from high sun activity, which are induced from cool areas on the Sun known as sunspots. Forecasting the storms to prevent disasters requires an understanding of how and when they will occur. However, current prediction methods at the National Oceanic and Atmospheric Administration (NOAA) are limited in that they depend on expensive solar wind spacecraft and a global-scale magnetometer sensor network. In this paper, we introduce a novel machine learning and computer vision approach to accurately forecast geomagnetic storms without the need of such costly physical measurements. Our approach extracts features from images of the Sun to establish correlations between sunspots and geomagnetic storm classification and is competitive with NOAA's predictions. Indeed, our prediction achieves a 76% storm classification accuracy. This paper serves as an existence proof that machine learning and computer vision techniques provide an effective means for augmenting and improving existing geomagnetic storm forecasting methods.
106,698
106,698
Cryptocurrency Return Prediction Using Investor Sentiment Extracted by BERT-Based Classifiers from News Articles, Reddit Posts and Tweets
This paper studies the extent at which investor sentiment contributes to cryptocurrency return prediction. Investor sentiment is extracted from news articles, Reddit posts and Tweets using BERT-based classifiers fine-tuned on this specific text data. As this data is unlabeled, a weak supervision approach by pseudo-labeling using a zero-shot classifier is used. Contribution of sentiment is then examined using a variety of machine learning models. Each model is trained on data with and without sentiment separately. The conclusion is that sentiment leads to higher prediction accuracy and additional investment profit when the models are analyzed collectively, although this does not hold true for every single model.
106,699
106,699
Stochastic Multi-armed Bandits with Non-stationary Rewards Generated by a Linear Dynamical System
The stochastic multi-armed bandit has provided a framework for studying decision-making in unknown environments. We propose a variant of the stochastic multi-armed bandit where the rewards are sampled from a stochastic linear dynamical system. The proposed strategy for this stochastic multi-armed bandit variant is to learn a model of the dynamical system while choosing the optimal action based on the learned model. Motivated by mathematical finance areas such as Intertemporal Capital Asset Pricing Model proposed by Merton and Stochastic Portfolio Theory proposed by Fernholz that both model asset returns with stochastic differential equations, this strategy is applied to quantitative finance as a high-frequency trading strategy, where the goal is to maximize returns within a time period.