Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
106,800
106,800
Joint Coreset Construction and Quantization for Distributed Machine Learning
Coresets are small, weighted summaries of larger datasets, aiming at providing provable error bounds for machine learning (ML) tasks while significantly reducing the communication and computation costs. To achieve a better trade-off between ML error bounds and costs, we propose the first framework to incorporate quantization techniques into the process of coreset construction. Specifically, we theoretically analyze the ML error bounds caused by a combination of coreset construction and quantization. Based on that, we formulate an optimization problem to minimize the ML error under a fixed budget of communication cost. To improve the scalability for large datasets, we identify two proxies of the original objective function, for which efficient algorithms are developed. For the case of data on multiple nodes, we further design a novel algorithm to allocate the communication budget to the nodes while minimizing the overall ML error. Through extensive experiments on multiple real-world datasets, we demonstrate the effectiveness and efficiency of our proposed algorithms for a variety of ML tasks. In particular, our algorithms have achieved more than 90% data reduction with less than 10% degradation in ML performance in most cases.
106,801
106,801
Sketching Algorithms and Lower Bounds for Ridge Regression
We give a sketching-based iterative algorithm that computes $1+\varepsilon$ approximate solutions for the ridge regression problem $\min_x \|{Ax-b}\|_2^2 +\lambda\|{x}\|_2^2$ where $A \in \mathbb{R}^{n \times d}$ with $d \ge n$. Our algorithm, for a constant number of iterations (requiring a constant number of passes over the input), improves upon earlier work of Chowdhury et al., by requiring that the sketching matrix only has a weaker Approximate Matrix Multiplication (AMM) guarantee that depends on $\epsilon$, along with a constant subspace embedding guarantee. The earlier work instead requires that the sketching matrix have a subspace embedding guarantee that depends on $\epsilon$. For example, to produce a $1+\varepsilon$ approximate solution in $1$ iteration, which requires $2$ passes over the input, our algorithm requires the OSNAP embedding to have $m= O(n\sigma^2/\lambda\varepsilon)$ rows with a sparsity parameter $s = O(\log(n))$, whereas the earlier algorithm of Chowdhury et al., with the same number of rows of OSNAP requires a sparsity $s = O(\sqrt{\sigma^2/\lambda\varepsilon} \cdot \log(n))$, where $\sigma = \|{A}\|_2$ is the spectral norm of the matrix $A$. We also show that this algorithm can be used to give faster algorithms for kernel ridge regression. Finally, we show that the sketch size required for our algorithm is essentially optimal for a natural framework of algorithms for ridge regression by proving lower bounds on oblivious sketching matrices for AMM. The sketch size lower bounds for AMM may be of independent interest.
106,802
106,802
Second Order Regret Bounds Against Generalized Expert Sequences under Partial Bandit Feedback
We study the problem of expert advice under partial bandit feedback setting and create a sequential minimax optimal algorithm. Our algorithm works with a more general partial monitoring setting, where, in contrast to the classical bandit feedback, the losses can be revealed in an adversarial manner. Our algorithm adopts a universal prediction perspective, whose performance is analyzed with regret against a general expert selection sequence. The regret we study is against a general competition class that covers many settings (such as the switching or contextual experts settings) and the expert selection sequences in the competition class are determined by the application at hand. Our regret bounds are second order bounds in terms of the sum of squared losses and the normalized regret of our algorithm is invariant under arbitrary affine transforms of the loss sequence. Our algorithm is truly online and does not use any preliminary information about the loss sequences.
106,803
106,803
Achieving Representative Data via Convex Hull Feasibility Sampling Algorithms
Sampling biases in training data are a major source of algorithmic biases in machine learning systems. Although there are many methods that attempt to mitigate such algorithmic biases during training, the most direct and obvious way is simply collecting more representative training data. In this paper, we consider the task of assembling a training dataset in which minority groups are adequately represented from a given set of data sources. In essence, this is an adaptive sampling problem to determine if a given point lies in the convex hull of the means from a set of unknown distributions. We present adaptive sampling methods to determine, with high confidence, whether it is possible to assemble a representative dataset from the given data sources. We also demonstrate the efficacy of our policies in simulations in the Bernoulli and a multinomial setting.
106,804
106,804
A deep learning algorithm for reducing false positives in screening mammography
Screening mammography improves breast cancer outcomes by enabling early detection and treatment. However, false positive callbacks for additional imaging from screening exams cause unnecessary procedures, patient anxiety, and financial burden. This work demonstrates an AI algorithm that reduces false positives by identifying mammograms not suspicious for breast cancer. We trained the algorithm to determine the absence of cancer using 123,248 2D digital mammograms (6,161 cancers) and performed a retrospective study on 14,831 screening exams (1,026 cancers) from 15 US and 3 UK sites. Retrospective evaluation of the algorithm on the largest of the US sites (11,592 mammograms, 101 cancers) a) left the cancer detection rate unaffected (p=0.02, non-inferiority margin 0.25 cancers per 1000 exams), b) reduced callbacks for diagnostic exams by 31.1% compared to standard clinical readings, c) reduced benign needle biopsies by 7.4%, and d) reduced screening exams requiring radiologist interpretation by 41.6% in the simulated clinical workflow. This work lays the foundation for semi-autonomous breast cancer screening systems that could benefit patients and healthcare systems by reducing false positives, unnecessary procedures, patient anxiety, and expenses.
106,805
106,805
GM-TOuNN: Graded Multiscale Topology Optimization using Neural Networks
Multiscale topology optimization (M-TO) entails generating an optimal global topology, and an optimal set of microstructures at a smaller scale, for a physics-constrained problem. With the advent of additive manufacturing, M-TO has gained significant prominence. However, generating optimal microstructures at various locations can be computationally very expensive. As an alternate, graded multiscale topology optimization (GM-TO) has been proposed where one or more pre-selected and graded (parameterized) microstructural topologies are used to fill the domain optimally. This leads to a significant reduction in computation while retaining many of the benefits of M-TO. A successful GM-TO framework must: (1) be capable of efficiently handling numerous pre-selected microstructures, (2) be able to continuously switch between these microstructures during optimization, (3) ensure that the partition of unity is satisfied, and (4) discourage microstructure mixing at termination. In this paper, we propose to meet these requirements by exploiting the unique classification capacity of neural networks. Specifically, we propose a graded multiscale topology optimization using neural-network (GM-TOuNN) framework with the following features: (1) the number of design variables is only weakly dependent on the number of pre-selected microstructures, (2) it guarantees partition of unity while discouraging microstructure mixing, and (3) it supports automatic differentiation, thereby eliminating manual sensitivity analysis. The proposed framework is illustrated through several examples.
106,806
106,806
Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport
Deep neural operators can learn operators mapping between infinite-dimensional function spaces via deep neural networks and have become an emerging paradigm of scientific machine learning. However, training neural operators usually requires a large amount of high-fidelity data, which is often difficult to obtain in real engineering problems. Here, we address this challenge by using multifidelity learning, i.e., learning from multifidelity datasets. We develop a multifidelity neural operator based on a deep operator network (DeepONet). A multifidelity DeepONet includes two standard DeepONets coupled by residual learning and input augmentation. Multifidelity DeepONet significantly reduces the required amount of high-fidelity data and achieves one order of magnitude smaller error when using the same amount of high-fidelity data. We apply a multifidelity DeepONet to learn the phonon Boltzmann transport equation (BTE), a framework to compute nanoscale heat transport. By combining a trained multifidelity DeepONet with genetic algorithm or topology optimization, we demonstrate a fast solver for the inverse design of BTE problems.
106,807
106,807
Time Series of Non-Additive Metrics: Identification and Interpretation of Contributing Factors of Variance by Linear Decomposition
The research paper addresses linear decomposition of time series of non-additive metrics that allows for the identification and interpretation of contributing factors (input features) of variance. Non-additive metrics, such as ratios, are widely used in a variety of domains. It commonly requires preceding aggregations of underlying variables that are used to calculate the metric of interest. The latest poses a dimensionality challenge when the input features and underlying variables are formed as two-dimensional arrays along elements, such as account or customer identifications, and time points. It rules out direct modeling of the time series of a non-additive metric as a function of input features. The article discusses a five-step approach: (1) segmentations of input features and the underlying variables of the metric that are supported by unsupervised autoencoders, (2) univariate or joint fittings of the metric by the aggregated input features on the segmented domains, (3) transformations of pre-screened input features according to the fitted models, (4) aggregation of the transformed features as time series, and (5) modelling of the metric time series as a sum of constrained linear effects of the aggregated features. Alternatively, approximation by numerical differentiation has been considered to linearize the metric. It allows for element level univariate or joint modeling of step (2). The process of these analytical steps allows for a backward-looking explanatory decomposition of the metric as a sum of time series of the survived input features. The paper includes a synthetic example that studies loss-to-balance monthly rates of a hypothetical retail credit portfolio. To validate that no latent factors other than the survived input features have significant impacts on the metric, Statistical Process Control has been introduced for the residual time series.
106,808
106,808
HASA: Hybrid Architecture Search with Aggregation Strategy for Echinococcosis Classification and Ovary Segmentation in Ultrasound Images
Different from handcrafted features, deep neural networks can automatically learn task-specific features from data. Due to this data-driven nature, they have achieved remarkable success in various areas. However, manual design and selection of suitable network architectures are time-consuming and require substantial effort of human experts. To address this problem, researchers have proposed neural architecture search (NAS) algorithms which can automatically generate network architectures but suffer from heavy computational cost and instability if searching from scratch. In this paper, we propose a hybrid NAS framework for ultrasound (US) image classification and segmentation. The hybrid framework consists of a pre-trained backbone and several searched cells (i.e., network building blocks), which takes advantage of the strengths of both NAS and the expert knowledge from existing convolutional neural networks. Specifically, two effective and lightweight operations, a mixed depth-wise convolution operator and a squeeze-and-excitation block, are introduced into the candidate operations to enhance the variety and capacity of the searched cells. These two operations not only decrease model parameters but also boost network performance. Moreover, we propose a re-aggregation strategy for the searched cells, aiming to further improve the performance for different vision tasks. We tested our method on two large US image datasets, including a 9-class echinococcosis dataset containing 9566 images for classification and an ovary dataset containing 3204 images for segmentation. Ablation experiments and comparison with other handcrafted or automatically searched architectures demonstrate that our method can generate more powerful and lightweight models for the above US image classification and segmentation tasks.
106,809
106,809
Leveraging convergence behavior to balance conflicting tasks in multi-task learning
Multi-Task Learning is a learning paradigm that uses correlated tasks to improve performance generalization. A common way to learn multiple tasks is through the hard parameter sharing approach, in which a single architecture is used to share the same subset of parameters, creating an inductive bias between them during the training process. Due to its simplicity, potential to improve generalization, and reduce computational cost, it has gained the attention of the scientific and industrial communities. However, tasks often conflict with each other, which makes it challenging to define how the gradients of multiple tasks should be combined to allow simultaneous learning. To address this problem, we use the idea of multi-objective optimization to propose a method that takes into account temporal behaviour of the gradients to create a dynamic bias that adjust the importance of each task during the backpropagation. The result of this method is to give more attention to the tasks that are diverging or that are not being benefited during the last iterations, allowing to ensure that the simultaneous learning is heading to the performance maximization of all tasks. As a result, we empirically show that the proposed method outperforms the state-of-art approaches on learning conflicting tasks. Unlike the adopted baselines, our method ensures that all tasks reach good generalization performances.
106,810
106,810
SNP2Vec: Scalable Self-Supervised Pre-Training for Genome-Wide Association Study
Self-supervised pre-training methods have brought remarkable breakthroughs in the understanding of text, image, and speech. Recent developments in genomics has also adopted these pre-training methods for genome understanding. However, they focus only on understanding haploid sequences, which hinders their applicability towards understanding genetic variations, also known as single nucleotide polymorphisms (SNPs), which is crucial for genome-wide association study. In this paper, we introduce SNP2Vec, a scalable self-supervised pre-training approach for understanding SNP. We apply SNP2Vec to perform long-sequence genomics modeling, and we evaluate the effectiveness of our approach on predicting Alzheimer's disease risk in a Chinese cohort. Our approach significantly outperforms existing polygenic risk score methods and all other baselines, including the model that is trained entirely with haploid sequences. We release our code and dataset on https://github.com/HLTCHKUST/snp2vec.
106,811
106,811
LSTM-Autoencoder based Anomaly Detection for Indoor Air Quality Time Series Data
Anomaly detection for indoor air quality (IAQ) data has become an important area of research as the quality of air is closely related to human health and well-being. However, traditional statistics and shallow machine learning-based approaches in anomaly detection in the IAQ area could not detect anomalies involving the observation of correlations across several data points (i.e., often referred to as long-term dependences). We propose a hybrid deep learning model that combines LSTM with Autoencoder for anomaly detection tasks in IAQ to address this issue. In our approach, the LSTM network is comprised of multiple LSTM cells that work with each other to learn the long-term dependences of the data in a time-series sequence. Autoencoder identifies the optimal threshold based on the reconstruction loss rates evaluated on every data across all time-series sequences. Our experimental results, based on the Dunedin CO2 time-series dataset obtained through a real-world deployment of the schools in New Zealand, demonstrate a very high and robust accuracy rate (99.50%) that outperforms other similar models.
106,812
106,812
Control-oriented meta-learning
Real-time adaptation is imperative to the control of robots operating in complex, dynamic environments. Adaptive control laws can endow even nonlinear systems with good trajectory tracking performance, provided that any uncertain dynamics terms are linearly parameterizable with known nonlinear features. However, it is often difficult to specify such features a priori, such as for aerodynamic disturbances on rotorcraft or interaction forces between a manipulator arm and various objects. In this paper, we turn to data-driven modeling with neural networks to learn, offline from past data, an adaptive controller with an internal parametric model of these nonlinear features. Our key insight is that we can better prepare the controller for deployment with control-oriented meta-learning of features in closed-loop simulation, rather than regression-oriented meta-learning of features to fit input-output data. Specifically, we meta-learn the adaptive controller with closed-loop tracking simulation as the base-learner and the average tracking error as the meta-objective. With both fully-actuated and underactuated nonlinear planar rotorcraft subject to wind, we demonstrate that our adaptive controller outperforms other controllers trained with regression-oriented meta-learning when deployed in closed-loop for trajectory tracking control.
106,813
106,813
Learning Convolutional Neural Networks in the Frequency Domain
Convolutional neural network (CNN) has achieved impressive success in computer vision during the past few decades. The image convolution operation helps CNNs to get good performance on image-related tasks. However, the image convolution has high computation complexity and hard to be implemented. This paper proposes the CEMNet, which can be trained in the frequency domain. The most important motivation of this research is that we can use the straightforward element-wise multiplication operation to replace the image convolution in the frequency domain based on the Cross-Correlation Theorem, which obviously reduces the computation complexity. We further introduce a Weight Fixation mechanism to alleviate the problem of over-fitting, and analyze the working behavior of Batch Normalization, Leaky ReLU, and Dropout in the frequency domain to design their counterparts for CEMNet. Also, to deal with complex inputs brought by Discrete Fourier Transform, we design a two-branches network structure for CEMNet. Experimental results imply that CEMNet achieves good performance on MNIST and CIFAR-10 databases.
106,814
106,814
Improving Top-K Decoding for Non-Autoregressive Semantic Parsing via Intent Conditioning
Semantic parsing (SP) is a core component of modern virtual assistants like Google Assistant and Amazon Alexa. While sequence-to-sequence-based auto-regressive (AR) approaches are common for conversational semantic parsing, recent studies employ non-autoregressive (NAR) decoders and reduce inference latency while maintaining competitive parsing quality. However, a major drawback of NAR decoders is the difficulty of generating top-k (i.e., k-best) outputs with approaches such as beam search. To address this challenge, we propose a novel NAR semantic parser that introduces intent conditioning on the decoder. Inspired by the traditional intent and slot tagging parsers, we decouple the top-level intent prediction from the rest of a parse. As the top-level intent largely governs the syntax and semantics of a parse, the intent conditioning allows the model to better control beam search and improves the quality and diversity of top-k outputs. We introduce a hybrid teacher-forcing approach to avoid training and inference mismatch. We evaluate the proposed NAR on conversational SP datasets, TOP & TOPv2. Like the existing NAR models, we maintain the O(1) decoding time complexity while generating more diverse outputs and improving the top-3 exact match (EM) by 2.4 points. In comparison with AR models, our model speeds up beam search inference by 6.7 times on CPU with competitive top-k EM.
106,815
106,815
HCFL: A High Compression Approach for Communication-Efficient Federated Learning in Very Large Scale IoT Networks
Federated learning (FL) is a new artificial intelligence concept that enables Internet-of-Things (IoT) devices to learn a collaborative model without sending the raw data to centralized nodes for processing. Despite numerous advantages, low computing resources at IoT devices and high communication costs for exchanging model parameters make applications of FL in massive IoT networks very limited. In this work, we develop a novel compression scheme for FL, called high-compression federated learning (HCFL), for very large scale IoT networks. HCFL can reduce the data load for FL processes without changing their structure and hyperparameters. In this way, we not only can significantly reduce communication costs, but also make intensive learning processes more adaptable on low-computing resource IoT devices. Furthermore, we investigate a relationship between the number of IoT devices and the convergence level of the FL model and thereby better assess the quality of the FL process. We demonstrate our HCFL scheme in both simulations and mathematical analyses. Our proposed theoretical research can be used as a minimum level of satisfaction, proving that the FL process can achieve good performance when a determined configuration is met. Therefore, we show that HCFL is applicable in any FL-integrated networks with numerous IoT devices.
106,816
106,816
Supplementation of deep neural networks with simplified physics-based features to increase model prediction accuracy
To improve predictive models for STEM applications, supplemental physics-based features computed from input parameters are introduced into single and multiple layers of a deep neural network (DNN). While many studies focus on informing DNNs with physics through differential equations or numerical simulation, much may be gained through integration of simplified relationships. To evaluate this hypothesis, a number of thin rectangular plates simply-supported on all edges are simulated for five materials. With plate dimensions and material properties as input features and fundamental natural frequency as the sole output, predictive performance of a purely data-driven DNN-based model is compared with models using additional inputs computed from simplified physical relationships among baseline parameters, namely plate weight, modulus of rigidity, and shear modulus. To better understand the benefit to model accuracy, these additional features are injected into various single and multiple DNN layers, and trained with four different dataset sizes. When these physics-enhanced models are evaluated against independent data of the same materials and similar dimensions to the training sets, supplementation with simplified physics-based parameters provides little reduction in prediction error over the baseline for models trained with dataset sizes of 60 and greater, although small improvement from 19.3% to 16.1% occurs when trained with a sparse size of 30. Conversely, notable accuracy gains occur when the independent test data is of material and dimensions not conforming to the training set. Specifically, when physics-enhanced data is injected into multiple DNN layers, reductions in error from 33.2% to 19.6%, 34.9% to 19.9%, 35.8% to 22.4%, and 43.0% to 28.4% are achieved for training dataset sizes of 261, 117, 60, and 30, respectively, demonstrating attainment of a degree of generalizability.
106,817
106,817
Multimodal spatiotemporal graph neural networks for improved prediction of 30-day all-cause hospital readmission
Measures to predict 30-day readmission are considered an important quality factor for hospitals as accurate predictions can reduce the overall cost of care by identifying high risk patients before they are discharged. While recent deep learning-based studies have shown promising empirical results on readmission prediction, several limitations exist that may hinder widespread clinical utility, such as (a) only patients with certain conditions are considered, (b) existing approaches do not leverage data temporality, (c) individual admissions are assumed independent of each other, which is unrealistic, (d) prior studies are usually limited to single source of data and single center data. To address these limitations, we propose a multimodal, modality-agnostic spatiotemporal graph neural network (MM-STGNN) for prediction of 30-day all-cause hospital readmission that fuses multimodal in-patient longitudinal data. By training and evaluating our methods using longitudinal chest radiographs and electronic health records from two independent centers, we demonstrate that MM-STGNN achieves AUROC of 0.79 on both primary and external datasets. Furthermore, MM-STGNN significantly outperforms the current clinical reference standard, LACE+ score (AUROC=0.61), on the primary dataset. For subset populations of patients with heart and vascular disease, our model also outperforms baselines on predicting 30-day readmission (e.g., 3.7 point improvement in AUROC in patients with heart disease). Lastly, qualitative model interpretability analysis indicates that while patients' primary diagnoses were not explicitly used to train the model, node features crucial for model prediction directly reflect patients' primary diagnoses. Importantly, our MM-STGNN is agnostic to node feature modalities and could be utilized to integrate multimodal data for triaging patients in various downstream resource allocation tasks.
106,818
106,818
Learning Task-Aware Energy Disaggregation: a Federated Approach
We consider the problem of learning the energy disaggregation signals for residential load data. Such task is referred as non-intrusive load monitoring (NILM), and in order to find individual devices' power consumption profiles based on aggregated meter measurements, a machine learning model is usually trained based on large amount of training data coming from a number of residential homes. Yet collecting such residential load datasets require both huge efforts and customers' approval on sharing metering data, while load data coming from different regions or electricity users may exhibit heterogeneous usage patterns. Both practical concerns make training a single, centralized NILM model challenging. In this paper, we propose a decentralized and task-adaptive learning scheme for NILM tasks, where nested meta learning and federated learning steps are designed for learning task-specific models collectively. Simulation results on benchmark dataset validate proposed algorithm's performance on efficiently inferring appliance-level consumption for a variety of homes and appliances.
106,819
106,819
Sign Bit is Enough: A Learning Synchronization Framework for Multi-hop All-reduce with Ultimate Compression
Traditional one-bit compressed stochastic gradient descent can not be directly employed in multi-hop all-reduce, a widely adopted distributed training paradigm in network-intensive high-performance computing systems such as public clouds. According to our theoretical findings, due to the cascading compression, the training process has considerable deterioration on the convergence performance. To overcome this limitation, we implement a sign-bit compression-based learning synchronization framework, Marsit. It prevents cascading compression via an elaborate bit-wise operation for unbiased sign aggregation and its specific global compensation mechanism for mitigating compression deviation. The proposed framework retains the same theoretical convergence rate as non-compression mechanisms. Experimental results demonstrate that Marsit reduces up to 35% training time while preserving the same accuracy as training without compression.
106,820
106,820
YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss
We introduce YOLO-pose, a novel heatmap-free approach for joint detection, and 2D multi-person pose estimation in an image based on the popular YOLO object detection framework. Existing heatmap based two-stage approaches are sub-optimal as they are not end-to-end trainable and training relies on a surrogate L1 loss that is not equivalent to maximizing the evaluation metric, i.e. Object Keypoint Similarity (OKS). Our framework allows us to train the model end-to-end and optimize the OKS metric itself. The proposed model learns to jointly detect bounding boxes for multiple persons and their corresponding 2D poses in a single forward pass and thus bringing in the best of both top-down and bottom-up approaches. Proposed approach doesn't require the postprocessing of bottom-up approaches to group detected keypoints into a skeleton as each bounding box has an associated pose, resulting in an inherent grouping of the keypoints. Unlike top-down approaches, multiple forward passes are done away with since all persons are localized along with their pose in a single inference. YOLO-pose achieves new state-of-the-art results on COCO validation (90.2% AP50) and test-dev set (90.3% AP50), surpassing all existing bottom-up approaches in a single forward pass without flip test, multi-scale testing, or any other test time augmentation. All experiments and results reported in this paper are without any test time augmentation, unlike traditional approaches that use flip-test and multi-scale testing to boost performance. Our training codes will be made publicly available at https://github.com/TexasInstruments/edgeai-yolov5 and https://github.com/TexasInstruments/edgeai-yolox
106,821
106,821
deep-significance - Easy and Meaningful Statistical Significance Testing in the Age of Neural Networks
A lot of Machine Learning (ML) and Deep Learning (DL) research is of an empirical nature. Nevertheless, statistical significance testing (SST) is still not widely used. This endangers true progress, as seeming improvements over a baseline might be statistical flukes, leading follow-up research astray while wasting human and computational resources. Here, we provide an easy-to-use package containing different significance tests and utility functions specifically tailored towards research needs and usability.
106,822
106,822
Stream-based Active Learning with Verification Latency in Non-stationary Environments
Data stream classification is an important problem in the field of machine learning. Due to the non-stationary nature of the data where the underlying distribution changes over time (concept drift), the model needs to continuously adapt to new data statistics. Stream-based Active Learning (AL) approaches address this problem by interactively querying a human expert to provide new data labels for the most recent samples, within a limited budget. Existing AL strategies assume that labels are immediately available, while in a real-world scenario the expert requires time to provide a queried label (verification latency), and by the time the requested labels arrive they may not be relevant anymore. In this article, we investigate the influence of finite, time-variable, and unknown verification delay, in the presence of concept drift on AL approaches. We propose PRopagate (PR), a latency independent utility estimator which also predicts the requested, but not yet known, labels. Furthermore, we propose a drift-dependent dynamic budget strategy, which uses a variable distribution of the labelling budget over time, after a detected drift. Thorough experimental evaluation, with both synthetic and real-world non-stationary datasets, and different settings of verification latency and budget are conducted and analyzed. We empirically show that the proposed method consistently outperforms the state-of-the-art. Additionally, we demonstrate that with variable budget allocation in time, it is possible to boost the performance of AL strategies, without increasing the overall labeling budget.
106,823
106,823
The Vision of Self-Evolving Computing Systems
Computing systems are omnipresent; their sustainability has become crucial for our society. A key aspect of this sustainability is the ability of computing systems to cope with the continuous change they face, ranging from dynamic operating conditions, to changing goals, and technological progress. While we are able to engineer smart computing systems that autonomously deal with various types of changes, handling unanticipated changes requires system evolution, which remains in essence a human-centered process. This will eventually become unmanageable. To break through the status quo, we put forward an arguable opinion for the vision of self-evolving computing systems that are equipped with an evolutionary engine enabling them to evolve autonomously. Specifically, when a self-evolving computing system detects conditions outside its operational domain, such as an anomaly or a new goal, it activates an evolutionary engine that runs online experiments to determine how the system needs to evolve to deal with the changes, thereby evolving its architecture. During this process the engine can integrate new computing elements that are provided by computing warehouses. These computing elements provide specifications and procedures enabling their automatic integration. We motivate the need for self-evolving computing systems in light of the state of the art, outline a conceptual architecture of self-evolving computing systems, and illustrate the architecture for a future smart city mobility system that needs to evolve continuously with changing conditions. To conclude, we highlight key research challenges to realize the vision of self-evolving computing systems.
106,824
106,824
MARF: Multiscale Adaptive-switch Random Forest for Leg Detection with 2D Laser Scanners
For the 2D laser-based tasks, e.g., people detection and people tracking, leg detection is usually the first step. Thus, it carries great weight in determining the performance of people detection and people tracking. However, many leg detectors ignore the inevitable noise and the multiscale characteristics of the laser scan, which makes them sensitive to the unreliable features of point cloud and further degrades the performance of the leg detector. In this paper, we propose a multiscale adaptive-switch Random Forest (MARF) to overcome these two challenges. Firstly, the adaptive-switch decision tree is designed to use noisesensitive features to conduct weighted classification and noiseinvariant features to conduct binary classification, which makes our detector perform more robust to noise. Secondly, considering the multiscale property that the sparsity of the 2D point cloud is proportional to the length of laser beams, we design a multiscale random forest structure to detect legs at different distances. Moreover, the proposed approach allows us to discover a sparser human leg from point clouds than others. Consequently, our method shows an improved performance compared to other state-of-the-art leg detectors on the challenging Moving Legs dataset and retains the whole pipeline at a speed of 60+ FPS on lowcomputational laptops. Moreover, we further apply the proposed MARF to the people detection and tracking system, achieving a considerable gain in all metrics.
106,825
106,825
Surface Similarity Parameter: A New Machine Learning Loss Metric for Oscillatory Spatio-Temporal Data
Supervised machine learning approaches require the formulation of a loss functional to be minimized in the training phase. Sequential data are ubiquitous across many fields of research, and are often treated with Euclidean distance-based loss functions that were designed for tabular data. For smooth oscillatory data, those conventional approaches lack the ability to penalize amplitude, frequency and phase prediction errors at the same time, and tend to be biased towards amplitude errors. We introduce the surface similarity parameter (SSP) as a novel loss function that is especially useful for training machine learning models on smooth oscillatory sequences. Our extensive experiments on chaotic spatio-temporal dynamical systems indicate that the SSP is beneficial for shaping gradients, thereby accelerating the training process, reducing the final prediction error, and implementing a stronger regularization effect compared to using classical loss functions. The results indicate the potential of the novel loss metric particularly for highly complex and chaotic data, such as data stemming from the nonlinear two-dimensional Kuramoto-Sivashinsky equation and the linear propagation of dispersive surface gravity waves in fluids.
106,826
106,826
ULF: Unsupervised Labeling Function Correction using Cross-Validation for Weak Supervision
A way to overcome expensive and time-consuming manual data labeling is weak supervision - automatic annotation of data samples via a predefined set of labeling functions (LFs), rule-based mechanisms that generate potentially erroneous labels. In this work, we investigate noise reduction techniques for weak supervision based on the principle of k-fold cross-validation. In particular, we extend two frameworks for detecting the erroneous samples in manually annotated data to the weakly supervised setting. Our methods profit from leveraging the information about matching LFs and detect noisy samples more accurately. We also introduce a new algorithm for denoising the weakly annotated data called ULF, that refines the allocation of LFs to classes by estimating the reliable LFs-to-classes joint matrix. Evaluation on several datasets shows that ULF successfully improves weakly supervised learning without using any manually labeled data.
106,827
106,827
Program Analysis of Probabilistic Programs
Probabilistic programming is a growing area that strives to make statistical analysis more accessible, by separating probabilistic modelling from probabilistic inference. In practice this decoupling is difficult. No single inference algorithm can be used as a probabilistic programming back-end that is simultaneously reliable, efficient, black-box, and general. Probabilistic programming languages often choose a single algorithm to apply to a given problem, thus inheriting its limitations. While substantial work has been done both to formalise probabilistic programming and to improve efficiency of inference, there has been little work that makes use of the available program structure, by formally analysing it, to better utilise the underlying inference algorithm. This dissertation presents three novel techniques (both static and dynamic), which aim to improve probabilistic programming using program analysis. The techniques analyse a probabilistic program and adapt it to make inference more efficient, sometimes in a way that would have been tedious or impossible to do by hand.
106,828
106,828
Shedding New Light on the Language of the Dark Web
The hidden nature and the limited accessibility of the Dark Web, combined with the lack of public datasets in this domain, make it difficult to study its inherent characteristics such as linguistic properties. Previous works on text classification of Dark Web domain have suggested that the use of deep neural models may be ineffective, potentially due to the linguistic differences between the Dark and Surface Webs. However, not much work has been done to uncover the linguistic characteristics of the Dark Web. This paper introduces CoDA, a publicly available Dark Web dataset consisting of 10000 web documents tailored towards text-based Dark Web analysis. By leveraging CoDA, we conduct a thorough linguistic analysis of the Dark Web and examine the textual differences between the Dark Web and the Surface Web. We also assess the performance of various methods of Dark Web page classification. Finally, we compare CoDA with an existing public Dark Web dataset and evaluate their suitability for various use cases.
106,829
106,829
Gradient boosting for convex cone predict and optimize problems
Many problems in engineering and statistics involve both predictive forecasting and decision-based optimization. Traditionally, predictive models are optimized independently from the final decision-based optimization problem. In contrast, a `smart, predict then optimize' (SPO) framework optimizes prediction models to explicitly minimize the final downstream decision loss. In this paper we present dboost, a gradient boosting algorithm for training prediction model ensembles to minimize decision regret. The dboost framework supports any convex optimization program that can be cast as convex quadratic cone program and gradient boosting is performed by implicit differentiation of a custom fixed-point mapping. To our knowledge, the dboost framework is the first general purpose implementation of gradient boosting to predict and optimize problems. Experimental results comparing with state-of-the-art SPO methods show that dboost can further reduce out-of-sample decision regret.
106,830
106,830
Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning
Efficient quantum compiling tactics greatly enhance the capability of quantum computers to execute complicated quantum algorithms. Due to its fundamental importance, a plethora of quantum compilers has been designed in past years. However, there are several caveats to current protocols, which are low optimality, high inference time, limited scalability, and lack of universality. To compensate for these defects, here we devise an efficient and practical quantum compiler assisted by advanced deep reinforcement learning (RL) techniques, i.e., data generation, deep Q-learning, and AQ* search. In this way, our protocol is compatible with various quantum machines and can be used to compile multi-qubit operators. We systematically evaluate the performance of our proposal in compiling quantum operators with both inverse-closed and inverse-free universal basis sets. In the task of single-qubit operator compiling, our proposal outperforms other RL-based quantum compilers in the measure of compiling sequence length and inference time. Meanwhile, the output solution is near-optimal, guaranteed by the Solovay-Kitaev theorem. Notably, for the inverse-free universal basis set, the achieved sequence length complexity is comparable with the inverse-based setting and dramatically advances previous methods. These empirical results contribute to improving the inverse-free Solovay-Kitaev theorem. In addition, for the first time, we demonstrate how to leverage RL-based quantum compilers to accomplish two-qubit operator compiling. The achieved results open an avenue for integrating RL with quantum compiling to unify efficiency and practicality and thus facilitate the exploration of quantum advantages.
106,831
106,831
Measurement-based Admission Control in Sliced Networks: A Best Arm Identification Approach
In sliced networks, the shared tenancy of slices requires adaptive admission control of data flows, based on measurements of network resources. In this paper, we investigate the design of measurement-based admission control schemes, deciding whether a new data flow can be admitted and in this case, on which slice. The objective is to devise a joint measurement and decision strategy that returns a correct decision (e.g., the least loaded slice) with a certain level of confidence while minimizing the measurement cost (the number of measurements made before committing to the decision). We study the design of such strategies for several natural admission criteria specifying what a correct decision is. For each of these criteria, using tools from best arm identification in bandits, we first derive an explicit information-theoretical lower bound on the cost of any algorithm returning the correct decision with fixed confidence. We then devise a joint measurement and decision strategy achieving this theoretical limit. We compare empirically the measurement costs of these strategies, and compare them both to the lower bounds as well as a naive measurement scheme. We find that our algorithm significantly outperforms the naive scheme (by a factor $2-8$).
106,832
106,832
Global Counterfactual Explanations: Investigations, Implementations and Improvements
Counterfactual explanations have been widely studied in explainability, with a range of application dependent methods emerging in fairness, recourse and model understanding. However, the major shortcoming associated with these methods is their inability to provide explanations beyond the local or instance-level. While some works touch upon the notion of a global explanation, typically suggesting to aggregate masses of local explanations in the hope of ascertaining global properties, few provide frameworks that are either reliable or computationally tractable. Meanwhile, practitioners are requesting more efficient and interactive explainability tools. We take this opportunity to investigate existing global methods, with a focus on implementing and improving Actionable Recourse Summaries (AReS), the only known global counterfactual explanation framework for recourse.
106,833
106,833
Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis
Ultrasound (US) imaging is widely used for anatomical structure inspection in clinical diagnosis. The training of new sonographers and deep learning based algorithms for US image analysis usually requires a large amount of data. However, obtaining and labeling large-scale US imaging data are not easy tasks, especially for diseases with low incidence. Realistic US image synthesis can alleviate this problem to a great extent. In this paper, we propose a generative adversarial network (GAN) based image synthesis framework. Our main contributions include: 1) we present the first work that can synthesize realistic B-mode US images with high-resolution and customized texture editing features; 2) to enhance structural details of generated images, we propose to introduce auxiliary sketch guidance into a conditional GAN. We superpose the edge sketch onto the object mask and use the composite mask as the network input; 3) to generate high-resolution US images, we adopt a progressive training strategy to gradually generate high-resolution images from low-resolution images. In addition, a feature loss is proposed to minimize the difference of high-level features between the generated and real images, which further improves the quality of generated images; 4) the proposed US image synthesis method is quite universal and can also be generalized to the US images of other anatomical structures besides the three ones tested in our study (lung, hip joint, and ovary); 5) extensive experiments on three large US image datasets are conducted to validate our method. Ablation studies, customized texture editing, user studies, and segmentation tests demonstrate promising results of our method in synthesizing realistic US images.
106,834
106,834
Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis
Purpose: The optic nerve head (ONH) undergoes complex and deep 3D morphological changes during the development and progression of glaucoma. Optical coherence tomography (OCT) is the current gold standard to visualize and quantify these changes, however the resulting 3D deep-tissue information has not yet been fully exploited for the diagnosis and prognosis of glaucoma. To this end, we aimed: (1) To compare the performance of two relatively recent geometric deep learning techniques in diagnosing glaucoma from a single OCT scan of the ONH; and (2) To identify the 3D structural features of the ONH that are critical for the diagnosis of glaucoma. Methods: In this study, we included a total of 2,247 non-glaucoma and 2,259 glaucoma scans from 1,725 subjects. All subjects had their ONHs imaged in 3D with Spectralis OCT. All OCT scans were automatically segmented using deep learning to identify major neural and connective tissues. Each ONH was then represented as a 3D point cloud. We used PointNet and dynamic graph convolutional neural network (DGCNN) to diagnose glaucoma from such 3D ONH point clouds and to identify the critical 3D structural features of the ONH for glaucoma diagnosis. Results: Both the DGCNN (AUC: 0.97$\pm$0.01) and PointNet (AUC: 0.95$\pm$0.02) were able to accurately detect glaucoma from 3D ONH point clouds. The critical points formed an hourglass pattern with most of them located in the inferior and superior quadrant of the ONH. Discussion: The diagnostic accuracy of both geometric deep learning approaches was excellent. Moreover, we were able to identify the critical 3D structural features of the ONH for glaucoma diagnosis that tremendously improved the transparency and interpretability of our method. Consequently, our approach may have strong potential to be used in clinical applications for the diagnosis and prognosis of a wide range of ophthalmic disorders.
106,835
106,835
Concentration of Random Feature Matrices in High-Dimensions
The spectra of random feature matrices provide essential information on the conditioning of the linear system used in random feature regression problems and are thus connected to the consistency and generalization of random feature models. Random feature matrices are asymmetric rectangular nonlinear matrices depending on two input variables, the data and the weights, which can make their characterization challenging. We consider two settings for the two input variables, either both are random variables or one is a random variable and the other is well-separated, i.e. there is a minimum distance between points. With conditions on the dimension, the complexity ratio, and the sampling variance, we show that the singular values of these matrices concentrate near their full expectation and near one with high-probability. In particular, since the dimension depends only on the logarithm of the number of random weights or the number of data points, our complexity bounds can be achieved even in moderate dimensions for many practical setting. The theoretical results are verified with numerical experiments.
106,836
106,836
EEG-ITNet: An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification
In recent years, neural networks and especially deep architectures have received substantial attention for EEG signal analysis in the field of brain-computer interfaces (BCIs). In this ongoing research area, the end-to-end models are more favoured than traditional approaches requiring signal transformation pre-classification. They can eliminate the need for prior information from experts and the extraction of handcrafted features. However, although several deep learning algorithms have been already proposed in the literature, achieving high accuracies for classifying motor movements or mental tasks, they often face a lack of interpretability and therefore are not quite favoured by the neuroscience community. The reasons behind this issue can be the high number of parameters and the sensitivity of deep neural networks to capture tiny yet unrelated discriminative features. We propose an end-to-end deep learning architecture called EEG-ITNet and a more comprehensible method to visualise the network learned patterns. Using inception modules and causal convolutions with dilation, our model can extract rich spectral, spatial, and temporal information from multi-channel EEG signals with less complexity (in terms of the number of trainable parameters) than other existing end-to-end architectures, such as EEG-Inception and EEG-TCNet. By an exhaustive evaluation on dataset 2a from BCI competition IV and OpenBMI motor imagery dataset, EEG-ITNet shows up to 5.9\% improvement in the classification accuracy in different scenarios with statistical significance compared to its competitors. We also comprehensively explain and support the validity of network illustration from a neuroscientific perspective. We have also made our code open at https://github.com/AbbasSalami/EEG-ITNet
106,837
106,837
LEFM-Nets: Learnable Explicit Feature Map Deep Networks for Segmentation of Histopathological Images of Frozen Sections
Accurate segmentation of medical images is essential for diagnosis and treatment of diseases. These problems are solved by highly complex models, such as deep networks (DN), requiring a large amount of labeled data for training. Thereby, many DNs possess task- or imaging modality specific architectures with a decision-making process that is often hard to explain and interpret. Here, we propose a framework that embeds existing DNs into a low-dimensional subspace induced by the learnable explicit feature map (LEFM) layer. Compared to the existing DN, the framework adds one hyperparameter and only modestly increase the number of learnable parameters. The method is aimed at, but not limited to, segmentation of low-dimensional medical images, such as color histopathological images of stained frozen sections. Since features in the LEFM layer are polynomial functions of the original features, proposed LEFM-Nets contribute to the interpretability of network decisions. In this work, we combined LEFM with the known networks: DeepLabv3+, UNet, UNet++ and MA-net. New LEFM-Nets are applied to the segmentation of adenocarcinoma of a colon in a liver from images of hematoxylin and eosin (H&E) stained frozen sections. LEFM-Nets are also tested on nuclei segmentation from images of H&E stained frozen sections of ten human organs. On the first problem, LEFM-Nets achieved statistically significant performance improvement in terms of micro balanced accuracy and $F_1$ score than original networks. LEFM-Nets achieved only better performance in comparison with the original networks on the second problem. The source code is available at https://github.com/dsitnik/lefm.
106,838
106,838
Finding MNEMON: Reviving Memories of Node Embeddings
Previous security research efforts orbiting around graphs have been exclusively focusing on either (de-)anonymizing the graphs or understanding the security and privacy issues of graph neural networks. Little attention has been paid to understand the privacy risks of integrating the output from graph embedding models (e.g., node embeddings) with complex downstream machine learning pipelines. In this paper, we fill this gap and propose a novel model-agnostic graph recovery attack that exploits the implicit graph structural information preserved in the embeddings of graph nodes. We show that an adversary can recover edges with decent accuracy by only gaining access to the node embedding matrix of the original graph without interactions with the node embedding models. We demonstrate the effectiveness and applicability of our graph recovery attack through extensive experiments.
106,839
106,839
Latent Aspect Detection from Online Unsolicited Customer Reviews
Within the context of review analytics, aspects are the features of products and services at which customers target their opinions and sentiments. Aspect detection helps product owners and service providers to identify shortcomings and prioritize customers' needs, and hence, maintain revenues and mitigate customer churn. Existing methods focus on detecting the surface form of an aspect by training supervised learning methods that fall short when aspects are latent in reviews. In this paper, we propose an unsupervised method to extract latent occurrences of aspects. Specifically, we assume that a customer undergoes a two-stage hypothetical generative process when writing a review: (1) deciding on an aspect amongst the set of aspects available for the product or service, and (2) writing the opinion words that are more interrelated to the chosen aspect from the set of all words available in a language. We employ latent Dirichlet allocation to learn the latent aspects distributions for generating the reviews. Experimental results on benchmark datasets show that our proposed method is able to improve the state of the art when the aspects are latent with no surface form in reviews.
106,840
106,840
The multi-modal universe of fast-fashion: the Visuelle 2.0 benchmark
We present Visuelle 2.0, the first dataset useful for facing diverse prediction problems that a fast-fashion company has to manage routinely. Furthermore, we demonstrate how the use of computer vision is substantial in this scenario. Visuelle 2.0 contains data for 6 seasons / 5355 clothing products of Nuna Lie, a famous Italian company with hundreds of shops located in different areas within the country. In particular, we focus on a specific prediction problem, namely short-observation new product sale forecasting (SO-fore). SO-fore assumes that the season has started and a set of new products is on the shelves of the different stores. The goal is to forecast the sales for a particular horizon, given a short, available past (few weeks), since no earlier statistics are available. To be successful, SO-fore approaches should capture this short past and exploit other modalities or exogenous data. To these aims, Visuelle 2.0 is equipped with disaggregated data at the item-shop level and multi-modal information for each clothing item, allowing computer vision approaches to come into play. The main message that we deliver is that the use of image data with deep networks boosts performances obtained when using the time series in long-term forecasting scenarios, ameliorating the WAPE by 8.2% and the MAE by 7.7%. The dataset is available at: https://humaticslab.github.io/forecasting/visuelle.
106,841
106,841
Planting Undetectable Backdoors in Machine Learning Models
Given the computational cost and technical expertise required to train machine learning models, users may delegate the task of learning to a service provider. We show how a malicious learner can plant an undetectable backdoor into a classifier. On the surface, such a backdoored classifier behaves normally, but in reality, the learner maintains a mechanism for changing the classification of any input, with only a slight perturbation. Importantly, without the appropriate "backdoor key", the mechanism is hidden and cannot be detected by any computationally-bounded observer. We demonstrate two frameworks for planting undetectable backdoors, with incomparable guarantees. First, we show how to plant a backdoor in any model, using digital signature schemes. The construction guarantees that given black-box access to the original model and the backdoored version, it is computationally infeasible to find even a single input where they differ. This property implies that the backdoored model has generalization error comparable with the original model. Second, we demonstrate how to insert undetectable backdoors in models trained using the Random Fourier Features (RFF) learning paradigm or in Random ReLU networks. In this construction, undetectability holds against powerful white-box distinguishers: given a complete description of the network and the training data, no efficient distinguisher can guess whether the model is "clean" or contains a backdoor. Our construction of undetectable backdoors also sheds light on the related issue of robustness to adversarial examples. In particular, our construction can produce a classifier that is indistinguishable from an "adversarially robust" classifier, but where every input has an adversarial example! In summary, the existence of undetectable backdoors represent a significant theoretical roadblock to certifying adversarial robustness.
106,842
106,842
Solving AC Power Flow with Graph Neural Networks under Realistic Constraints
In this paper we propose a graph neural network architecture solving the AC power flow problem under realistic constraints. While the energy transition is changing the energy industry to a digitalized and decentralized energy system, the challenges are increasingly shifting to the distribution grid level to integrate new loads and generation technologies. To ensure a save and resilient operation of distribution grids, AC power flow calculations are the means of choice to determine grid operating limits or analyze grid asset utilization in planning procedures. In our approach we demonstrate the development of a framework which makes use of graph neural networks to learn the physical constraints of the power flow. We present our model architecture on which we perform unsupervised training to learn a general solution of the AC power flow formulation that is independent of the specific topologies and supply tasks used for training. Finally, we demonstrate, validate and discuss our results on medium voltage benchmark grids.
106,843
106,843
Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma
Purpose: (1) To assess the performance of geometric deep learning (PointNet) in diagnosing glaucoma from a single optical coherence tomography (OCT) 3D scan of the optic nerve head (ONH); (2) To compare its performance to that obtained with a standard 3D convolutional neural network (CNN), and with a gold-standard glaucoma parameter, i.e. retinal nerve fiber layer (RNFL) thickness. Methods: 3D raster scans of the ONH were acquired with Spectralis OCT for 477 glaucoma and 2,296 non-glaucoma subjects at the Singapore National Eye Centre. All volumes were automatically segmented using deep learning to identify 7 major neural and connective tissues including the RNFL, the prelamina, and the lamina cribrosa (LC). Each ONH was then represented as a 3D point cloud with 1,000 points chosen randomly from all tissue boundaries. To simplify the problem, all ONH point clouds were aligned with respect to the plane and center of Bruch's membrane opening. Geometric deep learning (PointNet) was then used to provide a glaucoma diagnosis from a single OCT point cloud. The performance of our approach was compared to that obtained with a 3D CNN, and with RNFL thickness. Results: PointNet was able to provide a robust glaucoma diagnosis solely from the ONH represented as a 3D point cloud (AUC=95%). The performance of PointNet was superior to that obtained with a standard 3D CNN (AUC=87%) and with that obtained from RNFL thickness alone (AUC=80%). Discussion: We provide a proof-of-principle for the application of geometric deep learning in the field of glaucoma. Our technique requires significantly less information as input to perform better than a 3D CNN, and with an AUC superior to that obtained from RNFL thickness alone. Geometric deep learning may have wide applicability in the field of Ophthalmology.
106,844
106,844
Interpretability of Machine Learning Methods Applied to Neuroimaging
Deep learning methods have become very popular for the processing of natural images, and were then successfully adapted to the neuroimaging field. As these methods are non-transparent, interpretability methods are needed to validate them and ensure their reliability. Indeed, it has been shown that deep learning models may obtain high performance even when using irrelevant features, by exploiting biases in the training set. Such undesirable situations can potentially be detected by using interpretability methods. Recently, many methods have been proposed to interpret neural networks. However, this domain is not mature yet. Machine learning users face two major issues when aiming to interpret their models: which method to choose, and how to assess its reliability? Here, we aim at providing answers to these questions by presenting the most common interpretability methods and metrics developed to assess their reliability, as well as their applications and benchmarks in the neuroimaging context. Note that this is not an exhaustive survey: we aimed to focus on the studies which we found to be the most representative and relevant.
106,845
106,845
Learning Invariances with Generalised Input-Convex Neural Networks
Considering smooth mappings from input vectors to continuous targets, our goal is to characterise subspaces of the input domain, which are invariant under such mappings. Thus, we want to characterise manifolds implicitly defined by level sets. Specifically, this characterisation should be of a global parametric form, which is especially useful for different informed data exploration tasks, such as building grid-based approximations, sampling points along the level curves, or finding trajectories on the manifold. However, global parameterisations can only exist if the level sets are connected. For this purpose, we introduce a novel and flexible class of neural networks that generalise input-convex networks. These networks represent functions that are guaranteed to have connected level sets forming smooth manifolds on the input space. We further show that global parameterisations of these level sets can be always found efficiently. Lastly, we demonstrate that our novel technique for characterising invariances is a powerful generative data exploration tool in real-world applications, such as computational chemistry.
106,846
106,846
From Environmental Sound Representation to Robustness of 2D CNN Models Against Adversarial Attacks
This paper investigates the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network, namely ResNet-18. Our main motivation for focusing on such a front-end classifier rather than other complex architectures is balancing recognition accuracy and the total number of training parameters. Herein, we measure the impact of different settings required for generating more informative Mel-frequency cepstral coefficient (MFCC), short-time Fourier transform (STFT), and discrete wavelet transform (DWT) representations on our front-end model. This measurement involves comparing the classification performance over the adversarial robustness. We demonstrate an inverse relationship between recognition accuracy and model robustness against six benchmarking attack algorithms on the balance of average budgets allocated by the adversary and the attack cost. Moreover, our experimental results have shown that while the ResNet-18 model trained on DWT spectrograms achieves a high recognition accuracy, attacking this model is relatively more costly for the adversary than other 2D representations. We also report some results on different convolutional neural network architectures such as ResNet-34, ResNet-56, AlexNet, and GoogLeNet, SB-CNN, and LSTM-based.
106,847
106,847
Q-TART: Quickly Training for Adversarial Robustness and in-Transferability
Raw deep neural network (DNN) performance is not enough; in real-world settings, computational load, training efficiency and adversarial security are just as or even more important. We propose to simultaneously tackle Performance, Efficiency, and Robustness, using our proposed algorithm Q-TART, Quickly Train for Adversarial Robustness and in-Transferability. Q-TART follows the intuition that samples highly susceptible to noise strongly affect the decision boundaries learned by DNNs, which in turn degrades their performance and adversarial susceptibility. By identifying and removing such samples, we demonstrate improved performance and adversarial robustness while using only a subset of the training data. Through our experiments we highlight Q-TART's high performance across multiple Dataset-DNN combinations, including ImageNet, and provide insights into the complementary behavior of Q-TART alongside existing adversarial training approaches to increase robustness by over 1.3% while using up to 17.9% less training time.
106,848
106,848
Exploring the Distributed Knowledge Congruence in Proxy-data-free Federated Distillation
Federated learning (FL) is a distributed machine learning paradigm in which the server periodically aggregates local model parameters from clients without assembling their private data. Constrained communication and personalization requirements pose severe challenges to FL. Federated distillation (FD) is proposed to simultaneously address the above two problems, which exchanges knowledge between the server and clients, supporting heterogeneous local models while significantly reducing communication overhead. However, most existing FD methods require a proxy dataset, which is often unavailable in reality. A few recent proxy-data-free FD approaches can eliminate the need for additional public data, but suffer from remarkable discrepancy among local knowledge due to model heterogeneity, leading to ambiguous representation on the server and inevitable accuracy degradation. To tackle this issue, we propose a proxy-data-free FD algorithm based on distributed knowledge congruence (FedDKC). FedDKC leverages well-designed refinement strategies to narrow local knowledge differences into an acceptable upper bound, so as to mitigate the negative effects of knowledge incongruence. Specifically, from perspectives of peak probability and Shannon entropy of local knowledge, we design kernel-based knowledge refinement (KKR) and searching-based knowledge refinement (SKR) respectively, and theoretically guarantee that the refined-local knowledge can satisfy an approximately-similar distribution and be regarded as congruent. Extensive experiments conducted on three common datasets demonstrate that our proposed FedDKC significantly outperforms the state-of-the-art (accuracy boosts in 93.33% comparisons, Top-1 accuracy boosts by up to 4.38%, and Top-5 accuracy boosts by up to 10.31%) on various heterogeneous settings while evidently improving the convergence speed.
106,849
106,849
Activation Regression for Continuous Domain Generalization with Applications to Crop Classification
Geographic variance in satellite imagery impacts the ability of machine learning models to generalise to new regions. In this paper, we model geographic generalisation in medium resolution Landsat-8 satellite imagery as a continuous domain adaptation problem, demonstrating how models generalise better with appropriate domain knowledge. We develop a dataset spatially distributed across the entire continental United States, providing macroscopic insight into the effects of geography on crop classification in multi-spectral and temporally distributed satellite imagery. Our method demonstrates improved generalisability from 1) passing geographically correlated climate variables along with the satellite data to a Transformer model and 2) regressing on the model features to reconstruct these domain variables. Combined, we provide a novel perspective on geographic generalisation in satellite imagery and a simple-yet-effective approach to leverage domain knowledge. Code is available at: \url{https://github.com/samar-khanna/cropmap}
106,850
106,850
Epileptic Seizure Risk Assessment by Multi-Channel Imaging of the EEG
Refractory epileptic patients can suffer a seizure at any moment. Seizure prediction would substantially improve their lives. In this work, based on scalp EEG and its transformation into images, the likelihood of an epileptic seizure occurring at any moment is computed using an average of the softmax layer output (the likelihood) of a CNN, instead of the output of the classification layer. Results show that by analyzing the likelihood and thresholding it, prediction has higher sensitivity or a lower FPR/h. The best threshold for the likelihood was higher than 50% for 5 patients, and was lower for the remaining 36. However, more testing is needed, especially in new seizures, to better assess the real performance of this method. This work is a proof of concept with a positive outlook.
106,851
106,851
LDPC codes: tracking non-stationary channel noise using sequential variational Bayesian estimates
We present a sequential Bayesian learning method for tracking non-stationary signal-to-noise ratios in LDPC codes using probabilistic graphical models. We represent the LDPC code as a cluster graph using a general purpose cluster graph construction algorithm called the layered trees running intersection property (LTRIP) algorithm. The channel noise estimator is a global Gamma cluster, which we extend to allow for Bayesian tracking of non-stationary noise variation. We evaluate our proposed model on real-world 5G drive test data. Our results show that our model is capable of tracking non-stationary channel noise, which outperforms an LDPC code with a fixed knowledge of the actual average channel noise.
106,852
106,852
Ensemble learning using individual neonatal data for seizure detection
Sharing medical data between institutions is difficult in practice due to data protection laws and official procedures within institutions. Therefore, most existing algorithms are trained on relatively small electroencephalogram (EEG) data sets which is likely to be detrimental to prediction accuracy. In this work, we simulate a case when the data can not be shared by splitting the publicly available data set into disjoint sets representing data in individual institutions. We propose to train a (local) detector in each institution and aggregate their individual predictions into one final prediction. Four aggregation schemes are compared, namely, the majority vote, the mean, the weighted mean and the Dawid-Skene method. The approach allows different detector architectures amongst the institutions. The method was validated on an independent data set using only a subset of EEG channels. The ensemble reaches accuracy comparable to a single detector trained on all the data when sufficient amount of data is available in each institution. The weighted mean aggregation scheme showed best overall performance, it was only marginally outperformed by the Dawid-Skene method when local detectors approach performance of a single detector trained on all available data.
106,853
106,853
Sim-to-Real 6D Object Pose Estimation via Iterative Self-training for Robotic Bin-picking
In this paper, we propose an iterative self-training framework for sim-to-real 6D object pose estimation to facilitate cost-effective robotic grasping. Given a bin-picking scenario, we establish a photo-realistic simulator to synthesize abundant virtual data, and use this to train an initial pose estimation network. This network then takes the role of a teacher model, which generates pose predictions for unlabeled real data. With these predictions, we further design a comprehensive adaptive selection scheme to distinguish reliable results, and leverage them as pseudo labels to update a student model for pose estimation on real data. To continuously improve the quality of pseudo labels, we iterate the above steps by taking the trained student model as a new teacher and re-label real data using the refined teacher model. We evaluate our method on a public benchmark and our newly-released dataset, achieving an ADD(-S) improvement of 11.49% and 22.62% respectively. Our method is also able to improve robotic bin-picking success by 19.54%, demonstrating the potential of iterative sim-to-real solutions for robotic applications.
106,854
106,854
BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their established performance in other fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by 1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and 2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we also host the BrainGB website at https:// brainnet.us/ with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
106,855
106,855
Reflective Fiber Faults Detection and Characterization Using Long-Short-Term Memory
To reduce operation-and-maintenance expenses (OPEX) and to ensure optical network survivability, optical network operators need to detect and diagnose faults in a timely manner and with high accuracy. With the rapid advancement of telemetry technology and data analysis techniques, data-driven approaches leveraging telemetry data to tackle the fault diagnosis problem have been gaining popularity due to their quick implementation and deployment. In this paper, we propose a novel multi-task learning model based on long short-term memory (LSTM) to detect, locate, and estimate the reflectance of fiber reflective faults (events) including the connectors and the mechanical splices by extracting insights from monitored data obtained by the optical time domain reflectometry (OTDR) principle commonly used for troubleshooting of fiber optic cables or links. The experimental results prove that the proposed method: (i) achieves a good detection capability and high localization accuracy within short measurement time even for low SNR values; and (ii) outperforms conventionally employed techniques.
106,856
106,856
Machine Learning-based Anomaly Detection in Optical Fiber Monitoring
Secure and reliable data communication in optical networks is critical for high-speed Internet. However, optical fibers, serving as the data transmission medium providing connectivity to billons of users worldwide, are prone to a variety of anomalies resulting from hard failures (e.g., fiber cuts) and malicious physical attacks (e.g., optical eavesdropping (fiber tapping)) etc. Such anomalies may cause network disruption and thereby inducing huge financial and data losses, or compromise the confidentiality of optical networks by gaining unauthorized access to the carried data, or gradually degrade the network operations. Therefore, it is highly required to implement efficient anomaly detection, diagnosis, and localization schemes for enhancing the availability and reliability of optical networks. In this paper, we propose a data driven approach to accurately and quickly detect, diagnose, and localize fiber anomalies including fiber cuts, and optical eavesdropping attacks. The proposed method combines an autoencoder-based anomaly detection and an attention-based bidirectional gated recurrent unit algorithm, whereby the former is used for fault detection and the latter is adopted for fault diagnosis and localization once an anomaly is detected by the autoencoder. We verify the efficiency of our proposed approach by experiments under various anomaly scenarios using real operational data. The experimental results demonstrate that: (i) the autoencoder detects any fiber fault or anomaly with an F1 score of 96.86%; and (ii) the attention-based bidirectional gated recurrent unit algorithm identifies the the detected anomalies with an average accuracy of 98.2%, and localizes the faults with an average root mean square error of 0.19 m.
106,857
106,857
Network state Estimation using Raw Video Analysis: vQoS-GAN based non-intrusive Deep Learning Approach
Content based providers transmits real time complex signal such as video data from one region to another. During this transmission process, the signals usually end up distorted or degraded where the actual information present in the video is lost. This normally happens in the streaming video services applications. Hence there is a need to know the level of degradation that happened in the receiver side. This video degradation can be estimated by network state parameters like data rate and packet loss values. Our proposed solution vQoS GAN (video Quality of Service Generative Adversarial Network) can estimate the network state parameters from the degraded received video data using a deep learning approach of semi supervised generative adversarial network algorithm. A robust and unique design of deep learning network model has been trained with the video data along with data rate and packet loss class labels and achieves over 95 percent of training accuracy. The proposed semi supervised generative adversarial network can additionally reconstruct the degraded video data to its original form for a better end user experience.
106,858
106,858
Streamable Neural Audio Synthesis With Non-Causal Convolutions
Deep learning models are mostly used in an offline inference fashion. However, this strongly limits the use of these models inside audio generation setups, as most creative workflows are based on real-time digital signal processing. Although approaches based on recurrent networks can be naturally adapted to this buffer-based computation, the use of convolutions still poses some serious challenges. To tackle this issue, the use of causal streaming convolutions have been proposed. However, this requires specific complexified training and can impact the resulting audio quality. In this paper, we introduce a new method allowing to produce non-causal streaming models. This allows to make any convolutional model compatible with real-time buffer-based processing. As our method is based on a post-training reconfiguration of the model, we show that it is able to transform models trained without causal constraints into a streaming model. We show how our method can be adapted to fit complex architectures with parallel branches. To evaluate our method, we apply it on the recent RAVE model, which provides high-quality real-time audio synthesis. We test our approach on multiple music and speech datasets and show that it is faster than overlap-add methods, while having no impact on the generation quality. Finally, we introduce two open-source implementation of our work as Max/MSP and PureData externals, and as a VST audio plugin. This allows to endow traditional digital audio workstation with real-time neural audio synthesis on a laptop CPU.
106,859
106,859
EvoSTS Forecasting: Evolutionary Sparse Time-Series Forecasting
In this work, we highlight our novel evolutionary sparse time-series forecasting algorithm also known as EvoSTS. The algorithm attempts to evolutionary prioritize weights of Long Short-Term Memory (LSTM) Network that best minimize the reconstruction loss of a predicted signal using a learned sparse coded dictionary. In each generation of our evolutionary algorithm, a set number of children with the same initial weights are spawned. Each child undergoes a training step and adjusts their weights on the same data. Due to stochastic back-propagation, the set of children has a variety of weights with different levels of performance. The weights that best minimize the reconstruction loss with a given signal dictionary are passed to the next generation. The predictions from the best-performing weights of the first and last generation are compared. We found improvements while comparing the weights of these two generations. However, due to several confounding parameters and hyperparameter limitations, some of the weights had negligible improvements. To the best of our knowledge, this is the first attempt to use sparse coding in this way to optimize time series forecasting model weights, such as those of an LSTM network.
106,860
106,860
A Unified Analysis of Dynamic Interactive Learning
In this paper we investigate the problem of learning evolving concepts over a combinatorial structure. Previous work by Emamjomeh-Zadeh et al. [2020] introduced dynamics into interactive learning as a way to model non-static user preferences in clustering problems or recommender systems. We provide many useful contributions to this problem. First, we give a framework that captures both of the models analyzed by [Emamjomeh-Zadeh et al., 2020], which allows us to study any type of concept evolution and matches the same query complexity bounds and running time guarantees of the previous models. Using this general model we solve the open problem of closing the gap between the upper and lower bounds on query complexity. Finally, we study an efficient algorithm where the learner simply follows the feedback at each round, and we provide mistake bounds for low diameter graphs such as cliques, stars, and general o(log n) diameter graphs by using a Markov Chain model.
106,861
106,861
SemiMultiPose: A Semi-supervised Multi-animal Pose Estimation Framework
Multi-animal pose estimation is essential for studying animals' social behaviors in neuroscience and neuroethology. Advanced approaches have been proposed to support multi-animal estimation and achieve state-of-the-art performance. However, these models rarely exploit unlabeled data during training even though real world applications have exponentially more unlabeled frames than labeled frames. Manually adding dense annotations for a large number of images or videos is costly and labor-intensive, especially for multiple instances. Given these deficiencies, we propose a novel semi-supervised architecture for multi-animal pose estimation, leveraging the abundant structures pervasive in unlabeled frames in behavior videos to enhance training, which is critical for sparsely-labeled problems. The resulting algorithm will provide superior multi-animal pose estimation results on three animal experiments compared to the state-of-the-art baseline and exhibits more predictive power in sparsely-labeled data regimes.
106,862
106,862
Leveraging Natural Learning Processing to Uncover Themes in Clinical Notes of Patients Admitted for Heart Failure
Heart failure occurs when the heart is not able to pump blood and oxygen to support other organs in the body as it should. Treatments include medications and sometimes hospitalization. Patients with heart failure can have both cardiovascular as well as non-cardiovascular comorbidities. Clinical notes of patients with heart failure can be analyzed to gain insight into the topics discussed in these notes and the major comorbidities in these patients. In this regard, we apply machine learning techniques, such as topic modeling, to identify the major themes found in the clinical notes specific to the procedures performed on 1,200 patients admitted for heart failure at the University of Illinois Hospital and Health Sciences System (UI Health). Topic modeling revealed five hidden themes in these clinical notes, including one related to heart disease comorbidities.
106,863
106,863
Learning and controlling the source-filter representation of speech with a variational autoencoder
Understanding and controlling latent representations in deep generative models is a challenging yet important problem for analyzing, transforming and generating various types of data. In speech processing, inspiring from the anatomical mechanisms of phonation, the source-filter model considers that speech signals are produced from a few independent and physically meaningful continuous latent factors, among which the fundamental frequency $f_0$ and the formants are of primary importance. In this work, we show that the source-filter model of speech production naturally arises in the latent space of a variational autoencoder (VAE) trained in an unsupervised manner on a dataset of natural speech signals. Using only a few seconds of labeled speech signals generated with an artificial speech synthesizer, we experimentally illustrate that $f_0$ and the formant frequencies are encoded in orthogonal subspaces of the VAE latent space and we develop a weakly-supervised method to accurately and independently control these speech factors of variation within the learned latent subspaces. Without requiring additional information such as text or human-labeled data, this results in a deep generative model of speech spectrograms that is conditioned on $f_0$ and the formant frequencies, and which is applied to the transformation of speech signals.
106,864
106,864
Generative power of a protein language model trained on multiple sequence alignments
Computational models starting from large ensembles of evolutionarily related protein sequences capture a representation of protein families and learn constraints associated to protein structure and function. They thus open the possibility for generating novel sequences belonging to protein families. Protein language models trained on multiple sequence alignments, such as MSA Transformer, are highly attractive candidates to this end. We propose and test an iterative method that directly uses the masked language modeling objective to generate sequences using MSA Transformer. We demonstrate that the resulting sequences generally score better than those generated by Potts models, and even than natural sequences, for homology, coevolution and structure-based measures. Moreover, MSA Transformer better reproduces the higher-order statistics and the distribution of sequences in sequence space of natural data than Potts models, although Potts models better reproduce first- and second-order statistics. MSA Transformer is thus a strong candidate for protein sequence generation and protein design.
106,865
106,865
Exploring Dual Encoder Architectures for Question Answering
Dual encoders have been used for question-answering (QA) and information retrieval (IR) tasks with good results. There are two major types of dual encoders, Siamese Dual Encoders (SDE), with parameters shared across two encoders, and Asymmetric Dual Encoder (ADE), with two distinctly parameterized encoders. In this work, we explore the dual encoder architectures for QA retrieval tasks. By evaluating on MS MARCO and the MultiReQA benchmark, we show that SDE performs significantly better than ADE. We further propose three different improved versions of ADEs. Based on the evaluation of QA retrieval tasks and direct analysis of the embeddings, we demonstrate that sharing parameters in projection layers would enable ADEs to perform competitively with SDEs.
106,866
106,866
MIMO Channel Estimation using Score-Based Generative Models
Channel estimation is a critical task in multiple-input multiple-output digital communications that has effects on end-to-end system performance. In this work, we introduce a novel approach for channel estimation using deep score-based generative models. These models are trained to estimate the gradient of the log-prior distribution, and can be used to iteratively refine estimates, given observed measurements of a signal. We introduce a framework for training score-based generative models for wireless channels, as well as performing channel estimation using posterior sampling at test time. We derive theoretical robustness guarantees of channel estimation with posterior sampling in single-input single-output scenarios, and show that the observations regarding estimation performance are verified experimentally in MIMO channels. Our results in simulated clustered delay line channels show competitive in-distribution performance without error floors in the high signal-to-noise ratio regime, and robust out-of-distribution performance, outperforming competing deep learning methods by up to 5 dB in end-to-end communication performance, while the complexity analysis reveals how model architecture can efficiently trade performance for estimation latency.
106,867
106,867
Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in Medicine
Dynamic treatment regimes (DTRs) are used in medicine to tailor sequential treatment decisions to patients by considering patient heterogeneity. Common methods for learning optimal DTRs, however, have shortcomings: they are typically based on outcome prediction and not treatment effect estimation, or they use linear models that are restrictive for patient data from modern electronic health records. To address these shortcomings, we develop two novel methods for learning optimal DTRs that effectively handle complex patient data. We call our methods DTR-CT and DTR-CF. Our methods are based on a data-driven estimation of heterogeneous treatment effects using causal tree methods, specifically causal trees and causal forests, that learn non-linear relationships, control for time-varying confounding, are doubly robust, and explainable. To the best of our knowledge, our paper is the first that adapts causal tree methods for learning optimal DTRs. We evaluate our proposed methods using synthetic data and then apply them to real-world data from intensive care units. Our methods outperform state-of-the-art baselines in terms of cumulative regret and percentage of optimal decisions by a considerable margin. Our work improves treatment recommendations from electronic health record and is thus of direct relevance for personalized medicine.
106,868
106,868
Reinforcement Learning Policy Recommendation for Interbank Network Stability
In this paper we analyze the effect of a policy recommendation on the performances of an artificial interbank market. Financial institutions stipulate lending agreements following a public recommendation and their individual information. The former, modeled by a reinforcement learning optimal policy trying to maximize the long term fitness of the system, gathers information on the economic environment and directs economic actors to create credit relationships based on the optimal choice between a low interest rate or high liquidity supply. The latter, based on the agents' balance sheet, allows to determine the liquidity supply and interest rate that the banks optimally offer on the market. Based on the combination between the public and the private signal, financial institutions create or cut their credit connections over time via a preferential attachment evolving procedure able to generate a dynamic network. Our results show that the emergence of a core-periphery interbank network, combined with a certain level of homogeneity on the size of lenders and borrowers, are essential features to ensure the resilience of the system. Moreover, the reinforcement learning optimal policy recommendation plays a crucial role in mitigating systemic risk with respect to alternative policy instruments.
106,869
106,869
Scalable and Robust Self-Learning for Skill Routing in Large-Scale Conversational AI Systems
Skill routing is an important component in large-scale conversational systems. In contrast to traditional rule-based skill routing, state-of-the-art systems use a model-based approach to enable natural conversations. To provide supervision signal required to train such models, ideas such as human annotation, replication of a rule-based system, relabeling based on user paraphrases, and bandit-based learning were suggested. However, these approaches: (a) do not scale in terms of the number of skills and skill on-boarding, (b) require a very costly expert annotation/rule-design, (c) introduce risks in the user experience with each model update. In this paper, we present a scalable self-learning approach to explore routing alternatives without causing abrupt policy changes that break the user experience, learn from the user interaction, and incrementally improve the routing via frequent model refreshes. To enable such robust frequent model updates, we suggest a simple and effective approach that ensures controlled policy updates for individual domains, followed by an off-policy evaluation for making deployment decisions without any need for lengthy A/B experimentation. We conduct various offline and online A/B experiments on a commercial large-scale conversational system to demonstrate the effectiveness of the proposed method in real-world production settings.
106,870
106,870
Accelerated Policy Learning with Parallel Differentiable Simulation
Deep reinforcement learning can generate complex control policies, but requires large amounts of training data to work effectively. Recent work has attempted to address this issue by leveraging differentiable simulators. However, inherent problems such as local minima and exploding/vanishing numerical gradients prevent these methods from being generally applied to control tasks with complex contact-rich dynamics, such as humanoid locomotion in classical RL benchmarks. In this work we present a high-performance differentiable simulator and a new policy learning algorithm (SHAC) that can effectively leverage simulation gradients, even in the presence of non-smoothness. Our learning algorithm alleviates problems with local minima through a smooth critic function, avoids vanishing/exploding gradients through a truncated learning window, and allows many physical environments to be run in parallel. We evaluate our method on classical RL control tasks, and show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms. In addition, we demonstrate the scalability of our method by applying it to the challenging high-dimensional problem of muscle-actuated locomotion with a large action space, achieving a greater than 17x reduction in training time over the best-performing established RL algorithm.
106,871
106,871
Masked Siamese Networks for Label-Efficient Learning
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
106,872
106,872
CLUES: A Benchmark for Learning Classifiers using Natural Language Explanations
Supervised learning has traditionally focused on inductive learning by observing labeled examples of a task. In contrast, humans have the ability to learn new concepts from language. Here, we explore training zero-shot classifiers for structured data purely from language. For this, we introduce CLUES, a benchmark for Classifier Learning Using natural language ExplanationS, consisting of a range of classification tasks over structured data along with natural language supervision in the form of explanations. CLUES consists of 36 real-world and 144 synthetic classification tasks. It contains crowdsourced explanations describing real-world tasks from multiple teachers and programmatically generated explanations for the synthetic tasks. To model the influence of explanations in classifying an example, we develop ExEnt, an entailment-based model that learns classifiers using explanations. ExEnt generalizes up to 18% better (relative) on novel tasks than a baseline that does not use explanations. We delineate key challenges for automated learning from explanations, addressing which can lead to progress on CLUES in the future. Code and datasets are available at: https://clues-benchmark.github.io.
106,873
106,873
Neighborhood Attention Transformer
We present Neighborhood Attention Transformer (NAT), an efficient, accurate and scalable hierarchical transformer that works well on both image classification and downstream vision tasks. It is built upon Neighborhood Attention (NA), a simple and flexible attention mechanism that localizes the receptive field for each query to its nearest neighboring pixels. NA is a localization of self-attention, and approaches it as the receptive field size increases. It is also equivalent in FLOPs and memory usage to Swin Transformer's shifted window attention given the same receptive field size, while being less constrained. Furthermore, NA includes local inductive biases, which eliminate the need for extra operations such as pixel shifts. Experimental results on NAT are competitive; NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet with only 4.3 GFLOPs and 28M parameters, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20k. We will open-source our checkpoints, training script, configurations, and our CUDA kernel at: https://github.com/SHI-Labs/Neighborhood-Attention-Transformer .
106,874
106,874
Tight Bounds for Quantum State Certification with Incoherent Measurements
We consider the problem of quantum state certification, where we are given the description of a mixed state $\sigma \in \mathbb{C}^{d \times d}$, $n$ copies of a mixed state $\rho \in \mathbb{C}^{d \times d}$, and $\varepsilon > 0$, and we are asked to determine whether $\rho = \sigma$ or whether $\| \rho - \sigma \|_1 > \varepsilon$. When $\sigma$ is the maximally mixed state $\frac{1}{d} I_d$, this is known as mixedness testing. We focus on algorithms which use incoherent measurements, i.e. which only measure one copy of $\rho$ at a time. Unlike those that use entangled, multi-copy measurements, these can be implemented without persistent quantum memory and thus represent a large class of protocols that can be run on current or near-term devices. For mixedness testing, there is a folklore algorithm which uses incoherent measurements and only needs $O(d^{3/2} / \varepsilon^2)$ copies. The algorithm is non-adaptive, that is, its measurements are fixed ahead of time, and is known to be optimal for non-adaptive algorithms. However, when the algorithm can make arbitrary incoherent measurements, the best known lower bound is only $\Omega (d^{4/3} / \varepsilon^2)$ [Bubeck-Chen-Li '20], and it has been an outstanding open problem to close this polynomial gap. In this work, 1) we settle the copy complexity of mixedness testing with incoherent measurements and show that $\Omega (d^{3/2} / \varepsilon^2)$ copies are necessary, and 2) we show the instance-optimal bounds for state certification to general $\sigma$ first derived by [Chen-Li-O'Donnell '21] for non-adaptive measurements also hold for arbitrary incoherent measurements. Qualitatively, our results say that adaptivity does not help at all for these problems. Our results are based on new techniques that allow us to reduce the problem to understanding certain matrix martingales, which we believe may be of independent interest.
106,875
106,875
Any-resolution Training for High-resolution Image Synthesis
Generative models operate at fixed resolution, even though natural images come in a variety of sizes. As high-resolution details are downsampled away, and low-resolution images are discarded altogether, precious supervision is lost. We argue that every pixel matters and create datasets with variable-size images, collected at their native resolutions. Taking advantage of this data is challenging; high-resolution processing is costly, and current architectures can only process fixed-resolution data. We introduce continuous-scale training, a process that samples patches at random scales to train a new generator with variable output resolutions. First, conditioning the generator on a target scale allows us to generate higher resolutions images than previously possible, without adding layers to the model. Second, by conditioning on continuous coordinates, we can sample patches that still obey a consistent global layout, which also allows for scalable training at higher resolutions. Controlled FFHQ experiments show our method takes advantage of the multi-resolution training data better than discrete multi-scale approaches, achieving better FID scores and cleaner high-frequency details. We also train on other natural image domains including churches, mountains, and birds, and demonstrate arbitrary scale synthesis with both coherent global layouts and realistic local details, going beyond 2K resolution in our experiments. Our project page is available at: https://chail.github.io/anyres-gan/.
106,876
106,876
A Level Set Theory for Neural Implicit Evolution under Explicit Flows
Coordinate-based neural networks parameterizing implicit surfaces have emerged as efficient representations of geometry. They effectively act as parametric level sets with the zero-level set defining the surface of interest. We present a framework that allows applying deformation operations defined for triangle meshes onto such implicit surfaces. Several of these operations can be viewed as energy-minimization problems that induce an instantaneous flow field on the explicit surface. Our method uses the flow field to deform parametric implicit surfaces by extending the classical theory of level sets. We also derive a consolidated view for existing methods on differentiable surface extraction and rendering, by formalizing connections to the level-set theory. We show that these methods drift from the theory and that our approach exhibits improvements for applications like surface smoothing, mean-curvature flow, inverse rendering and user-defined editing on implicit geometry.
106,877
106,877
Spatio-Temporal Analysis of Transformer based Architecture for Attention Estimation from EEG
For many years now, understanding the brain mechanism has been a great research subject in many different fields. Brain signal processing and especially electroencephalogram (EEG) has recently known a growing interest both in academia and industry. One of the main examples is the increasing number of Brain-Computer Interfaces (BCI) aiming to link brains and computers. In this paper, we present a novel framework allowing us to retrieve the attention state, i.e degree of attention given to a specific task, from EEG signals. While previous methods often consider the spatial relationship in EEG through electrodes and process them in recurrent or convolutional based architecture, we propose here to also exploit the spatial and temporal information with a transformer-based network that has already shown its supremacy in many machine-learning (ML) related studies, e.g. machine translation. In addition to this novel architecture, an extensive study on the feature extraction methods, frequential bands and temporal windows length has also been carried out. The proposed network has been trained and validated on two public datasets and achieves higher results compared to state-of-the-art models. As well as proposing better results, the framework could be used in real applications, e.g. Attention Deficit Hyperactivity Disorder (ADHD) symptoms or vigilance during a driving assessment.
106,878
106,878
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
Likelihood-based, or explicit, deep generative models use neural networks to construct flexible high-dimensional densities. This formulation directly contradicts the manifold hypothesis, which states that observed data lies on a low-dimensional manifold embedded in high-dimensional ambient space. In this paper we investigate the pathologies of maximum-likelihood training in the presence of this dimensionality mismatch. We formally prove that degenerate optima are achieved wherein the manifold itself is learned but not the distribution on it, a phenomenon we call manifold overfitting. We propose a class of two-step procedures consisting of a dimensionality reduction step followed by maximum-likelihood density estimation, and prove that they recover the data-generating distribution in the nonparametric regime, thus avoiding manifold overfitting. We also show that these procedures enable density estimation on the manifolds learned by implicit models, such as generative adversarial networks, hence addressing a major shortcoming of these models. Several recently proposed methods are instances of our two-step procedures; we thus unify, extend, and theoretically justify a large class of models.
106,879
106,879
Active Learning for Regression and Classification by Inverse Distance Weighting
This paper proposes an active learning algorithm for solving regression and classification problems based on inverse-distance weighting functions for selecting the feature vectors to query. The algorithm has the following features: (i) supports both pool-based and population-based sampling; (ii) is independent of the type of predictor used; (iii) can handle known and unknown constraints on the queryable feature vectors; and (iv) can run either sequentially, or in batch mode, depending on how often the predictor is retrained. The method's potential is shown in numerical tests on illustrative synthetic problems and real-world regression and classification datasets from the UCI repository. A Python implementation of the algorithm that we call IDEAL (Inverse-Distance based Exploration for Active Learning), is available at \url{http://cse.lab.imtlucca.it/~bemporad/ideal}.
106,880
106,880
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Equivariances provide useful inductive biases in neural network modeling, with the translation equivariance of convolutional neural networks being a canonical example. Equivariances can be embedded in architectures through weight-sharing and place symmetry constraints on the functions a neural network can represent. The type of symmetry is typically fixed and has to be chosen in advance. Although some tasks are inherently equivariant, many tasks do not strictly follow such symmetries. In such cases, equivariance constraints can be overly restrictive. In this work, we propose a parameter-efficient relaxation of equivariance that can effectively interpolate between a (i) non-equivariant linear product, (ii) a strict-equivariant convolution, and (iii) a strictly-invariant mapping. The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks. Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
106,881
106,881
Brazilian Court Documents Clustered by Similarity Together Using Natural Language Processing Approaches with Transformers
Recent advances in Artificial intelligence (AI) have leveraged promising results in solving complex problems in the area of Natural Language Processing (NLP), being an important tool to help in the expeditious resolution of judicial proceedings in the legal area. In this context, this work targets the problem of detecting the degree of similarity between judicial documents that can be achieved in the inference group, by applying six NLP techniques based on transformers, namely BERT, GPT-2 and RoBERTa pre-trained in the Brazilian Portuguese language and the same specialized using 210,000 legal proceedings. Documents were pre-processed and had their content transformed into a vector representation using these NLP techniques. Unsupervised learning was used to cluster the lawsuits, calculating the quality of the model based on the cosine of the distance between the elements of the group to its centroid. We noticed that models based on transformers present better performance when compared to previous research, highlighting the RoBERTa model specialized in the Brazilian Portuguese language, making it possible to advance in the current state of the art in the area of NLP applied to the legal sector.
106,882
106,882
Testing distributional assumptions of learning algorithms
There are many important high dimensional function classes that have fast agnostic learning algorithms when strong assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be sufficiently confident that the data indeed satisfies the distributional assumption, so that one can trust in the output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs $(\mathcal{A},\mathcal{T})$, such that if the distribution on examples in the data passes the tester $\mathcal{T}$ then one can safely trust the output of the agnostic learner $\mathcal{A}$ on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with a combined run-time of $n^{\tilde{O}(1/\epsilon^4)}$. This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussian distribution testers do not exist for the $L_1$ and EMD distance measures. A key step in the analysis is a novel characterization of concentration and anti-concentration properties of a distribution whose low-degree moments approximately match those of a Gaussian. We also use tools from polynomial approximation theory. In contrast, we show strong lower bounds on the combined run-times of tester-learner pairs for the problems of agnostically learning convex sets under the Gaussian distribution and for monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Through these lower bounds we exhibit natural problems where there is a dramatic gap between standard agnostic learning run-time and the run-time of the best tester-learner pair.
106,883
106,883
Hierarchical Embedded Bayesian Additive Regression Trees
We propose a simple yet powerful extension of Bayesian Additive Regression Trees which we name Hierarchical Embedded BART (HE-BART). The model allows for random effects to be included at the terminal node level of a set of regression trees, making HE-BART a non-parametric alternative to mixed effects models which avoids the need for the user to specify the structure of the random effects in the model, whilst maintaining the prediction and uncertainty calibration properties of standard BART. Using simulated and real-world examples, we demonstrate that this new extension yields superior predictions for many of the standard mixed effects models' example data sets, and yet still provides consistent estimates of the random effect variances. In a future version of this paper, we outline its use in larger, more advanced data sets and structures.
106,884
106,884
Alternating Mahalanobis Distance Minimization for Stable and Accurate CP Decomposition
CP decomposition (CPD) is prevalent in chemometrics, signal processing, data mining and many more fields. While many algorithms have been proposed to compute the CPD, alternating least squares (ALS) remains one of the most widely used algorithm for computing the decomposition. Recent works have introduced the notion of eigenvalues and singular values of a tensor and explored applications of eigenvectors and singular vectors in areas like signal processing, data analytics and in various other fields. We introduce a new formulation for deriving singular values and vectors of a tensor by considering the critical points of a function different from what is used in the previous work. Computing these critical points in an alternating manner motivates an alternating optimization algorithm which corresponds to alternating least squares algorithm in the matrix case. However, for tensors with order greater than equal to $3$, it minimizes an objective function which is different from the commonly used least squares loss. Alternating optimization of this new objective leads to simple updates to the factor matrices with the same asymptotic computational cost as ALS. We show that a subsweep of this algorithm can achieve a superlinear convergence rate for exact CPD with known rank and verify it experimentally. We then view the algorithm as optimizing a Mahalanobis distance with respect to each factor with ground metric dependent on the other factors. This perspective allows us to generalize our approach to interpolate between updates corresponding to the ALS and the new algorithm to manage the tradeoff between stability and fitness of the decomposition. Our experimental results show that for approximating synthetic and real-world tensors, this algorithm and its variants converge to a better conditioned decomposition with comparable and sometimes better fitness as compared to the ALS algorithm.
106,885
106,885
Causal Disentanglement with Network Information for Debiased Recommendations
Recommender systems aim to recommend new items to users by learning user and item representations. In practice, these representations are highly entangled as they consist of information about multiple factors, including user's interests, item attributes along with confounding factors such as user conformity, and item popularity. Considering these entangled representations for inferring user preference may lead to biased recommendations (e.g., when the recommender model recommends popular items even if they do not align with the user's interests). Recent research proposes to debias by modeling a recommender system from a causal perspective. The exposure and the ratings are analogous to the treatment and the outcome in the causal inference framework, respectively. The critical challenge in this setting is accounting for the hidden confounders. These confounders are unobserved, making it hard to measure them. On the other hand, since these confounders affect both the exposure and the ratings, it is essential to account for them in generating debiased recommendations. To better approximate hidden confounders, we propose to leverage network information (i.e., user-social and user-item networks), which are shown to influence how users discover and interact with an item. Aside from the user conformity, aspects of confounding such as item popularity present in the network information is also captured in our method with the aid of \textit{causal disentanglement} which unravels the learned representations into independent factors that are responsible for (a) modeling the exposure of an item to the user, (b) predicting the ratings, and (c) controlling the hidden confounders. Experiments on real-world datasets validate the effectiveness of the proposed model for debiasing recommender systems.
106,886
106,886
Learning two-phase microstructure evolution using neural operators and autoencoder architectures
Phase-field modeling is an effective mesoscale method for capturing the evolution dynamics of materials, e.g., in spinodal decomposition of a two-phase mixture. However, the accuracy of high-fidelity phase field models comes at a substantial computational cost. Hence, fast and generalizable surrogate models are needed to alleviate the cost in computationally taxing processes such as in optimization and design of materials. The intrinsic discontinuous nature of the physical phenomena incurred by the presence of sharp phase boundaries makes the training of the surrogate model cumbersome. We develop a new framework that integrates a convolutional autoencoder architecture with a deep neural operator (DeepONet) to learn the dynamic evolution of a two-phase mixture. We utilize the convolutional autoencoder to provide a compact representation of the microstructure data in a low-dimensional latent space. DeepONet, which consists of two sub-networks, one for encoding the input function at a fixed number of sensors locations (branch net) and another for encoding the locations for the output functions (trunk net), learns the mesoscale dynamics of the microstructure evolution in the latent space. The decoder part of the convolutional autoencoder can then reconstruct the time-evolved microstructure from the DeepONet predictions. The result is an efficient and accurate accelerated phase-field framework that outperforms other neural-network-based approaches while at the same time being robust to noisy inputs.
106,887
106,887
Physics-Aware Recurrent Convolutional (PARC) Neural Networks to Assimilate Meso-scale Reactive Mechanics of Energetic Materials
The thermomechanical properties of energetic materials (EM) are known to be a function of their microscopic structures, i.e., morphological configurations of crystals and pores. This microstructural dependency has motivated vigorous research in the EM community, seeking to engineer material microstructures with targeted properties and performance under the materials-by-design paradigm. However, establishing the complex structure-property-performance (SPP) relationships of EMs demands extensive experimental and simulation efforts, and assimilating and encapsulating these relationships in usable models is a challenge. Here, we present a novel deep learning method, Physics-Aware Recurrent Convolutional (PARC) Neural Network, that can "learn" the mesoscale thermo-mechanics of EM microstructures during the shock-to-detonation transition (SDT). We show that this new approach can produce accurate high-fidelity predictions of time-evolving temperature and pressure fields of the same quality as the state-of-the-art direct numerical simulations (DNS), despite the dramatic reduction of computing time, from hours and days on a high-performance computing cluster (HPC) to a little more than a second on a commodity laptop. We also demonstrate that PARC can provide physical insights, i.e., the artificial neurons can illuminate the underlying physics by identifying which microstructural features led to critical hotspots and what are the characteristics of "critical" versus "non-critical" microstructures. This new knowledge generated alongside the capacity to conduct high-throughput experiments will broaden our theoretical understanding of the initiation mechanisms of EM detonation, as a step towards engineering EMs with specific properties.
106,888
106,888
Harnessing Interpretable Machine Learning for Origami Feature Design and Pattern Selection
Engineering design of origami systems is challenging because comparing different origami patterns requires using categorical features and evaluating multi-physics behavior targets introduces multi-objective problems. This work shows that a decision tree machine learning method is particularly suitable for the inverse design of origami. This interpretable machine learning method can reveal complex interactions between categorical features and continuous features for comparing different origami patterns, can tackle multi-objective problems for designing active origami with multi-physics performance targets, and can extend existing origami shape fitting algorithms to further consider non-geometrical performances of origami systems. The proposed framework shows a holistic way of designing active origami systems for various applications such as metamaterials, deployable structures, soft robots, biomedical devices, and many more.
106,889
106,889
Robotic and Generative Adversarial Attacks in Offline Writer-independent Signature Verification
This study explores how robots and generative approaches can be used to mount successful false-acceptance adversarial attacks on signature verification systems. Initially, a convolutional neural network topology and data augmentation strategy are explored and tuned, producing an 87.12% accurate model for the verification of 2,640 human signatures. Two robots are then tasked with forging 50 signatures, where 25 are used for the verification attack, and the remaining 25 are used for tuning of the model to defend against them. Adversarial attacks on the system show that there exists an information security risk; the Line-us robotic arm can fool the system 24% of the time and the iDraw 2.0 robot 32% of the time. A conditional GAN finds similar success, with around 30% forged signatures misclassified as genuine. Following fine-tune transfer learning of robotic and generative data, adversarial attacks are reduced below the model threshold by both robots and the GAN. It is observed that tuning the model reduces the risk of attack by robots to 8% and 12%, and that conditional generative adversarial attacks can be reduced to 4% when 25 images are presented and 5% when 1000 images are presented.
106,890
106,890
Minimizing Control for Credit Assignment with Strong Feedback
The success of deep learning attracted interest in whether the brain learns hierarchical representations using gradient-based learning. However, current biologically plausible methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals, which is problematic in biologically realistic noisy environments and at odds with experimental evidence in neuroscience showing that top-down feedback can significantly influence neural activity. Building upon deep feedback control (DFC), a recently proposed credit assignment method, we combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization. Instead of gradually changing the network weights towards configurations with low output loss, weight updates gradually minimize the amount of feedback required from a controller that drives the network to the supervised output label. Moreover, we show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using a learning rule fully local in space and time. We complement our theoretical results with experiments on standard computer-vision benchmarks, showing competitive performance to backpropagation as well as robustness to noise. Overall, our work presents a fundamentally novel view of learning as control minimization, while sidestepping biologically unrealistic assumptions.
106,891
106,891
Methodical Advice Collection and Reuse in Deep Reinforcement Learning
Reinforcement learning (RL) has shown great success in solving many challenging tasks via use of deep neural networks. Although using deep learning for RL brings immense representational power, it also causes a well-known sample-inefficiency problem. This means that the algorithms are data-hungry and require millions of training samples to converge to an adequate policy. One way to combat this issue is to use action advising in a teacher-student framework, where a knowledgeable teacher provides action advice to help the student. This work considers how to better leverage uncertainties about when a student should ask for advice and if the student can model the teacher to ask for less advice. The student could decide to ask for advice when it is uncertain or when both it and its model of the teacher are uncertain. In addition to this investigation, this paper introduces a new method to compute uncertainty for a deep RL agent using a secondary neural network. Our empirical results show that using dual uncertainties to drive advice collection and reuse may improve learning performance across several Atari games.
106,892
106,892
Causal Transformer for Estimating Counterfactual Outcomes
Estimating counterfactual outcomes over time from observational data is relevant for many applications (e.g., personalized medicine). Yet, state-of-the-art methods build upon simple long short-term memory (LSTM) networks, thus rendering inferences for complex, long-range dependencies challenging. In this paper, we develop a novel Causal Transformer for estimating counterfactual outcomes over time. Our model is specifically designed to capture complex, long-range dependencies among time-varying confounders. For this, we combine three transformer subnetworks with separate inputs for time-varying covariates, previous treatments, and previous outcomes into a joint network with in-between cross-attentions. We further develop a custom, end-to-end training procedure for our Causal Transformer. Specifically, we propose a novel counterfactual domain confusion loss to address confounding bias: it aims to learn adversarial balanced representations, so that they are predictive of the next outcome but non-predictive of the current treatment assignment. We evaluate our Causal Transformer based on synthetic and real-world datasets, where it achieves superior performance over current baselines. To the best of our knowledge, this is the first work proposing transformer-based architecture for estimating counterfactual outcomes from longitudinal data.
106,893
106,893
Convergence and Implicit Regularization Properties of Gradient Descent for Deep Residual Networks
We prove linear convergence of gradient descent to a global minimum for the training of deep residual networks with constant layer width and smooth activation function. We further show that the trained weights, as a function of the layer index, admits a scaling limit which is H\"older continuous as the depth of the network tends to infinity. The proofs are based on non-asymptotic estimates of the loss function and of norms of the network weights along the gradient descent path. We illustrate the relevance of our theoretical results to practical settings using detailed numerical experiments on supervised learning problems.
106,894
106,894
auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data
Applications of machine learning in healthcare often require working with time-to-event prediction tasks including prognostication of an adverse event, re-hospitalization or death. Such outcomes are typically subject to censoring due to loss of follow up. Standard machine learning methods cannot be applied in a straightforward manner to datasets with censored outcomes. In this paper, we present auton-survival, an open-source repository of tools to streamline working with censored time-to-event or survival data. auton-survival includes tools for survival regression, adjustment in the presence of domain shift, counterfactual estimation, phenotyping for risk stratification, evaluation, as well as estimation of treatment effects. Through real world case studies employing a large subset of the SEER oncology incidence data, we demonstrate the ability of auton-survival to rapidly support data scientists in answering complex health and epidemiological questions.
106,895
106,895
Characterizing the Efficiency vs. Accuracy Trade-off for Long-Context NLP Models
With many real-world applications of Natural Language Processing (NLP) comprising of long texts, there has been a rise in NLP benchmarks that measure the accuracy of models that can handle longer input sequences. However, these benchmarks do not consider the trade-offs between accuracy, speed, and power consumption as input sizes or model sizes are varied. In this work, we perform a systematic study of this accuracy vs. efficiency trade-off on two widely used long-sequence models - Longformer-Encoder-Decoder (LED) and Big Bird - during fine-tuning and inference on four datasets from the SCROLLS benchmark. To study how this trade-off differs across hyperparameter settings, we compare the models across four sequence lengths (1024, 2048, 3072, 4096) and two model sizes (base and large) under a fixed resource budget. We find that LED consistently achieves better accuracy at lower energy costs than Big Bird. For summarization, we find that increasing model size is more energy efficient than increasing sequence length for higher accuracy. However, this comes at the cost of a large drop in inference speed. For question answering, we find that smaller models are both more efficient and more accurate due to the larger training batch sizes possible under a fixed resource budget.
106,896
106,896
The training response law explains how deep neural networks learn
Deep neural network is the widely applied technology in this decade. In spite of the fruitful applications, the mechanism behind that is still to be elucidated. We study the learning process with a very simple supervised learning encoding problem. As a result, we found a simple law, in the training response, which describes neural tangent kernel. The response consists of a power law like decay multiplied by a simple response kernel. We can construct a simple mean-field dynamical model with the law, which explains how the network learns. In the learning, the input space is split into sub-spaces along competition between the kernels. With the iterated splits and the aging, the network gets more complexity, but finally loses its plasticity.
106,897
106,897
Unsupervised Probabilistic Models for Sequential Electronic Health Records
We develop an unsupervised probabilistic model for heterogeneous Electronic Health Record (EHR) data. Utilizing a mixture model formulation, our approach directly models sequences of arbitrary length, such as medications and laboratory results. This allows for subgrouping and incorporation of the dynamics underlying heterogeneous data types. The model consists of a layered set of latent variables that encode underlying structure in the data. These variables represent subject subgroups at the top layer, and unobserved states for sequences in the second layer. We train this model on episodic data from subjects receiving medical care in the Kaiser Permanente Northern California integrated healthcare delivery system. The resulting properties of the trained model generate novel insight from these complex and multifaceted data. In addition, we show how the model can be used to analyze sequences that contribute to assessment of mortality likelihood.
106,898
106,898
Towards a Unified Framework for Uncertainty-aware Nonlinear Variable Selection with Theoretical Guarantees
We develop a simple and unified framework for nonlinear variable selection that incorporates uncertainty in the prediction function and is compatible with a wide range of machine learning models (e.g., tree ensembles, kernel methods, neural networks, etc). In particular, for a learned nonlinear model $f(\mathbf{x})$, we consider quantifying the importance of an input variable $\mathbf{x}^j$ using the integrated partial derivative $\Psi_j = \Vert \frac{\partial}{\partial \mathbf{x}^j} f(\mathbf{x})\Vert^2_{P_\mathcal{X}}$. We then (1) provide a principled approach for quantifying variable selection uncertainty by deriving its posterior distribution, and (2) show that the approach is generalizable even to non-differentiable models such as tree ensembles. Rigorous Bayesian nonparametric theorems are derived to guarantee the posterior consistency and asymptotic uncertainty of the proposed approach. Extensive simulations and experiments on healthcare benchmark datasets confirm that the proposed algorithm outperforms existing classic and recent variable selection methods.
106,899
106,899
Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference
Few-shot learning (FSL) is an important and topical problem in computer vision that has motivated extensive research into numerous methods spanning from sophisticated meta-learning methods to simple transfer learning baselines. We seek to push the limits of a simple-but-effective pipeline for more realistic and practical settings of few-shot image classification. To this end, we explore few-shot learning from the perspective of neural network architecture, as well as a three stage pipeline of network updates under different data supplies, where unsupervised external data is considered for pre-training, base categories are used to simulate few-shot tasks for meta-training, and the scarcely labelled data of an novel task is taken for fine-tuning. We investigate questions such as: (1) How pre-training on external data benefits FSL? (2) How state-of-the-art transformer architectures can be exploited? and (3) How fine-tuning mitigates domain shift? Ultimately, we show that a simple transformer-based pipeline yields surprisingly good performance on standard benchmarks such as Mini-ImageNet, CIFAR-FS, CDFSL and Meta-Dataset. Our code and demo are available at https://hushell.github.io/pmf.