Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
106,900
106,900
Ensemble diverse hypotheses and knowledge distillation for unsupervised cross-subject adaptation
Recognizing human locomotion intent and activities is important for controlling the wearable robots while walking in complex environments. However, human-robot interface signals are usually user-dependent, which causes that the classifier trained on source subjects performs poorly on new subjects. To address this issue, this paper designs the ensemble diverse hypotheses and knowledge distillation (EDHKD) method to realize unsupervised cross-subject adaptation. EDH mitigates the divergence between labeled data of source subjects and unlabeled data of target subjects to accurately classify the locomotion modes of target subjects without labeling data. Compared to previous domain adaptation methods based on the single learner, which may only learn a subset of features from input signals, EDH can learn diverse features by incorporating multiple diverse feature generators and thus increases the accuracy and decreases the variance of classifying target data, but it sacrifices the efficiency. To solve this problem, EDHKD (student) distills the knowledge from the EDH (teacher) to a single network to remain efficient and accurate. The performance of the EDHKD is theoretically proved and experimentally validated on a 2D moon dataset and two public human locomotion datasets. Experimental results show that the EDHKD outperforms all other methods. The EDHKD can classify target data with 96.9%, 94.4%, and 97.4% average accuracy on the above three datasets with a short computing time (1 ms). Compared to a benchmark (BM) method, the EDHKD increases 1.3% and 7.1% average accuracy for classifying the locomotion modes of target subjects. The EDHKD also stabilizes the learning curves. Therefore, the EDHKD is significant for increasing the generalization ability and efficiency of the human intent prediction and human activity recognition system, which will improve human-robot interactions.
106,901
106,901
Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts
The incorporation of cutting planes within the branch-and-bound algorithm, known as branch-and-cut, forms the backbone of modern integer programming solvers. These solvers are the foremost method for solving discrete optimization problems and thus have a vast array of applications in machine learning, operations research, and many other fields. Choosing cutting planes effectively is a major research topic in the theory and practice of integer programming. We conduct a novel structural analysis of branch-and-cut that pins down how every step of the algorithm is affected by changes in the parameters defining the cutting planes added to the input integer program. Our main application of this analysis is to derive sample complexity guarantees for using machine learning to determine which cutting planes to apply during branch-and-cut. These guarantees apply to infinite families of cutting planes, such as the family of Gomory mixed integer cuts, which are responsible for the main breakthrough speedups of integer programming solvers. We exploit geometric and combinatorial structure of branch-and-cut in our analysis, which provides a key missing piece for the recent generalization theory of branch-and-cut.
106,902
106,902
XDBERT: Distilling Visual Information to BERT from Cross-Modal Systems to Improve Language Understanding
Transformer-based models are widely used in natural language understanding (NLU) tasks, and multimodal transformers have been effective in visual-language tasks. This study explores distilling visual information from pretrained multimodal transformers to pretrained language encoders. Our framework is inspired by cross-modal encoders' success in visual-language tasks while we alter the learning objective to cater to the language-heavy characteristics of NLU. After training with a small number of extra adapting steps and finetuned, the proposed XDBERT (cross-modal distilled BERT) outperforms pretrained-BERT in general language understanding evaluation (GLUE), situations with adversarial generations (SWAG) benchmarks, and readability benchmarks. We analyze the performance of XDBERT on GLUE to show that the improvement is likely visually grounded.
106,903
106,903
Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities
Graph neural networks have emerged as a leading architecture for many graph-level tasks such as graph classification and graph generation with a notable improvement. Among these tasks, graph pooling is an essential component of graph neural network architectures for obtaining a holistic graph-level representation of the entire graph. Although a great variety of methods have been proposed in this promising and fast-developing research field, to the best of our knowledge, little effort has been made to systematically summarize these methods. To set the stage for the development of future works, in this paper, we attempt to fill this gap by providing a broad review of recent methods on graph pooling. Specifically, 1) we first propose a taxonomy of existing graph pooling methods and provide a mathematical summary for each category; 2) next, we provide an overview of the libraries related to graph pooling, including the commonly used datasets, model architectures for downstream tasks, and open-source implementations; 3) then, we further outline in brief the applications that incorporate the idea of graph pooling in a number of domains; 4) and finally, we discuss some critical challenges faced by the current studies and share our insights on potential directions for improving graph pooling in the future.
106,904
106,904
Knowledgebra: An Algebraic Learning Framework for Knowledge Graph
Knowledge graph (KG) representation learning aims to encode entities and relations into dense continuous vector spaces such that knowledge contained in a dataset could be consistently represented. Dense embeddings trained from KG datasets benefit a variety of downstream tasks such as KG completion and link prediction. However, existing KG embedding methods fell short to provide a systematic solution for the global consistency of knowledge representation. We developed a mathematical language for KG based on an observation of their inherent algebraic structure, which we termed as Knowledgebra. By analyzing five distinct algebraic properties, we proved that the semigroup is the most reasonable algebraic structure for the relation embedding of a general knowledge graph. We implemented an instantiation model, SemE, using simple matrix semigroups, which exhibits state-of-the-art performance on standard datasets. Moreover, we proposed a regularization-based method to integrate chain-like logic rules derived from human knowledge into embedding training, which further demonstrates the power of the developed language. As far as we know, by applying abstract algebra in statistical learning, this work develops the first formal language for general knowledge graphs, and also sheds light on the problem of neural-symbolic integration from an algebraic perspective.
106,905
106,905
Crowd counting with crowd attention convolutional neural network
Crowd counting is a challenging problem due to the scene complexity and scale variation. Although deep learning has achieved great improvement in crowd counting, scene complexity affects the judgement of these methods and they usually regard some objects as people mistakenly; causing potentially enormous errors in the crowd counting result. To address the problem, we propose a novel end-to-end model called Crowd Attention Convolutional Neural Network (CAT-CNN). Our CAT-CNN can adaptively assess the importance of a human head at each pixel location by automatically encoding a confidence map. With the guidance of the confidence map, the position of human head in estimated density map gets more attention to encode the final density map, which can avoid enormous misjudgements effectively. The crowd count can be obtained by integrating the final density map. To encode a highly refined density map, the total crowd count of each image is classified in a designed classification task and we first explicitly map the prior of the population-level category to feature maps. To verify the efficiency of our proposed method, extensive experiments are conducted on three highly challenging datasets. Results establish the superiority of our method over many state-of-the-art methods.
106,906
106,906
A Differentially Private Probabilistic Framework for Modeling the Variability Across Federated Datasets of Heterogeneous Multi-View Observations
We propose a novel federated learning paradigm to model data variability among heterogeneous clients in multi-centric studies. Our method is expressed through a hierarchical Bayesian latent variable model, where client-specific parameters are assumed to be realization from a global distribution at the master level, which is in turn estimated to account for data bias and variability across clients. We show that our framework can be effectively optimized through expectation maximization (EM) over latent master's distribution and clients' parameters. We also introduce formal differential privacy (DP) guarantees compatibly with our EM optimization scheme. We tested our method on the analysis of multi-modal medical imaging data and clinical scores from distributed clinical datasets of patients affected by Alzheimer's disease. We demonstrate that our method is robust when data is distributed either in iid and non-iid manners, even when local parameters perturbation is included to provide DP guarantees. Moreover, the variability of data, views and centers can be quantified in an interpretable manner, while guaranteeing high-quality data reconstruction as compared to state-of-the-art autoencoding models and federated learning schemes. The code is available at https://gitlab.inria.fr/epione/federated-multi-views-ppca.
106,907
106,907
Anomalous Sound Detection Based on Machine Activity Detection
We have developed an unsupervised anomalous sound detection method for machine condition monitoring that utilizes an auxiliary task -- detecting when the target machine is active. First, we train a model that detects machine activity by using normal data with machine activity labels and then use the activity-detection error as the anomaly score for a given sound clip if we have access to the ground-truth activity labels in the inference phase. If these labels are not available, the anomaly score is calculated through outlier detection on the embedding vectors obtained by the activity-detection model. Solving this auxiliary task enables the model to learn the difference between the target machine sounds and similar background noise, which makes it possible to identify small deviations in the target sounds. Experimental results showed that the proposed method improves the anomaly-detection performance of the conventional method complementarily by means of an ensemble.
106,908
106,908
Prototype-based Domain Generalization Framework for Subject-Independent Brain-Computer Interfaces
Brain-computer interface (BCI) is challenging to use in practice due to the inter/intra-subject variability of electroencephalography (EEG). The BCI system, in general, necessitates a calibration technique to obtain subject/session-specific data in order to tune the model each time the system is utilized. This issue is acknowledged as a key hindrance to BCI, and a new strategy based on domain generalization has recently evolved to address it. In light of this, we've concentrated on developing an EEG classification framework that can be applied directly to data from unknown domains (i.e. subjects), using only data acquired from separate subjects previously. For this purpose, in this paper, we proposed a framework that employs the open-set recognition technique as an auxiliary task to learn subject-specific style features from the source dataset while helping the shared feature extractor with mapping the features of the unseen target dataset as a new unseen domain. Our aim is to impose cross-instance style in-variance in the same domain and reduce the open space risk on the potential unseen subject in order to improve the generalization ability of the shared feature extractor. Our experiments showed that using the domain information as an auxiliary network increases the generalization performance.
106,909
106,909
Spatio-Temporal-Frequency Graph Attention Convolutional Network for Aircraft Recognition Based on Heterogeneous Radar Network
This paper proposes a knowledge-and-data-driven graph neural network-based collaboration learning model for reliable aircraft recognition in a heterogeneous radar network. The aircraft recognizability analysis shows that: (1) the semantic feature of an aircraft is motion patterns driven by the kinetic characteristics, and (2) the grammatical features contained in the radar cross-section (RCS) signals present spatial-temporal-frequency (STF) diversity decided by both the electromagnetic radiation shape and motion pattern of the aircraft. Then a STF graph attention convolutional network (STFGACN) is developed to distill semantic features from the RCS signals received by the heterogeneous radar network. Extensive experiment results verify that the STFGACN outperforms the baseline methods in terms of detection accuracy, and ablation experiments are carried out to further show that the expansion of the information dimension can gain considerable benefits to perform robustly in the low signal-to-noise ratio region.
106,910
106,910
Towards Building a Personalized Dialogue Generator via Implicit User Persona Detection
Current works in the generation of personalized dialogue primarily contribute to the agent avoiding contradictory persona and driving the response more informative. However, we found that the generated responses from these models are mostly self-centered with little care for the other party since they ignore the user's persona. Moreover, we consider high-quality transmission is essentially built based on apprehending the persona of the other party. Motivated by this, we propose a novel personalized dialogue generator by detecting implicit user persona. Because it's difficult to collect a large number of personas for each user, we attempt to model the user's potential persona and its representation from the dialogue absence of any external information. Perception variable and fader variable are conceived utilizing Conditional Variational Inference. The two latent variables simulate the process of people being aware of the other party's persona and producing the corresponding expression in conversation. Finally, Posterior-discriminated Regularization is presented to enhance the training procedure. Empirical studies demonstrate that compared with the state-of-the-art methods, ours is more concerned with the user's persona and outperforms in evaluations.
106,911
106,911
Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning
Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning can make adversarial training suitable for real-world robot applications. We evaluate a wide variety of robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment, to mobile robot gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative side-effects caused by adversarial training still outweigh the improvements by an order of magnitude. We conclude that more substantial advances in robust learning methods are necessary before they can benefit robot learning tasks in practice.
106,912
106,912
Crowd counting with segmentation attention convolutional neural network
Deep learning occupies an undisputed dominance in crowd counting. In this paper, we propose a novel convolutional neural network (CNN) architecture called SegCrowdNet. Despite the complex background in crowd scenes, the proposeSegCrowdNet still adaptively highlights the human head region and suppresses the non-head region by segmentation. With the guidance of an attention mechanism, the proposed SegCrowdNet pays more attention to the human head region and automatically encodes the highly refined density map. The crowd count can be obtained by integrating the density map. To adapt the variation of crowd counts, SegCrowdNet intelligently classifies the crowd count of each image into several groups. In addition, the multi-scale features are learned and extracted in the proposed SegCrowdNet to overcome the scale variations of the crowd. To verify the effectiveness of our proposed method, extensive experiments are conducted on four challenging datasets. The results demonstrate that our proposed SegCrowdNet achieves excellent performance compared with the state-of-the-art methods.
106,913
106,913
Email Spam Detection Using Hierarchical Attention Hybrid Deep Learning Method
Email is one of the most widely used ways to communicate, with millions of people and businesses relying on it to communicate and share knowledge and information on a daily basis. Nevertheless, the rise in email users has occurred a dramatic increase in spam emails in recent years. Processing and managing emails properly for individuals and companies are getting increasingly difficult. This article proposes a novel technique for email spam detection that is based on a combination of convolutional neural networks, gated recurrent units, and attention mechanisms. During system training, the network is selectively focused on necessary parts of the email text. The usage of convolution layers to extract more meaningful, abstract, and generalizable features by hierarchical representation is the major contribution of this study. Additionally, this contribution incorporates cross-dataset evaluation, which enables the generation of more independent performance results from the model's training dataset. According to cross-dataset evaluation results, the proposed technique advances the results of the present attention-based techniques by utilizing temporal convolutions, which give us more flexible receptive field sizes are utilized. The suggested technique's findings are compared to those of state-of-the-art models and show that our approach outperforms them.
106,914
106,914
Characterizing metastable states with the help of machine learning
Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.
106,915
106,915
Deep learning model solves change point detection for multiple change types
A change points detection aims to catch an abrupt disorder in data distribution. Common approaches assume that there are only two fixed distributions for data: one before and another after a change point. Real-world data are richer than this assumption. There can be multiple different distributions before and after a change. We propose an approach that works in the multiple-distributions scenario. Our approach learn representations for semi-structured data suitable for change point detection, while a common classifiers-based approach fails. Moreover, our model is more robust, when predicting change points. The datasets used for benchmarking are sequences of images with and without change points in them.
106,916
106,916
SSR-HEF: Crowd Counting with Multi-Scale Semantic Refining and Hard Example Focusing
Crowd counting based on density maps is generally regarded as a regression task.Deep learning is used to learn the mapping between image content and crowd density distribution. Although great success has been achieved, some pedestrians far away from the camera are difficult to be detected. And the number of hard examples is often larger. Existing methods with simple Euclidean distance algorithm indiscriminately optimize the hard and easy examples so that the densities of hard examples are usually incorrectly predicted to be lower or even zero, which results in large counting errors. To address this problem, we are the first to propose the Hard Example Focusing(HEF) algorithm for the regression task of crowd counting. The HEF algorithm makes our model rapidly focus on hard examples by attenuating the contribution of easy examples.Then higher importance will be given to the hard examples with wrong estimations. Moreover, the scale variations in crowd scenes are large, and the scale annotations are labor-intensive and expensive. By proposing a multi-Scale Semantic Refining (SSR) strategy, lower layers of our model can break through the limitation of deep learning to capture semantic features of different scales to sufficiently deal with the scale variation. We perform extensive experiments on six benchmark datasets to verify the proposed method. Results indicate the superiority of our proposed method over the state-of-the-art methods. Moreover, our designed model is smaller and faster.
106,917
106,917
End-to-End Sensitivity-Based Filter Pruning
In this paper, we present a novel sensitivity-based filter pruning algorithm (SbF-Pruner) to learn the importance scores of filters of each layer end-to-end. Our method learns the scores from the filter weights, enabling it to account for the correlations between the filters of each layer. Moreover, by training the pruning scores of all layers simultaneously our method can account for layer interdependencies, which is essential to find a performant sparse sub-network. Our proposed method can train and generate a pruned network from scratch in a straightforward, one-stage training process without requiring a pretrained network. Ultimately, we do not need layer-specific hyperparameters and pre-defined layer budgets, since SbF-Pruner can implicitly determine the appropriate number of channels in each layer. Our experimental results on different network architectures suggest that SbF-Pruner outperforms advanced pruning methods. Notably, on CIFAR-10, without requiring a pretrained baseline network, we obtain 1.02% and 1.19% accuracy gain on ResNet56 and ResNet110, compared to the baseline reported for state-of-the-art pruning algorithms. This is while SbF-Pruner reduces parameter-count by 52.3% (for ResNet56) and 54% (for ResNet101), which is better than the state-of-the-art pruning algorithms with a high margin of 9.5% and 6.6%.
106,918
106,918
Super Resolution for Turbulent Flows in 2D: Stabilized Physics Informed Neural Networks
We propose a new design of a neural network for solving a zero shot super resolution problem for turbulent flows. We embed Luenberger-type observer into the network's architecture to inform the network of the physics of the process, and to provide error correction and stabilization mechanisms. In addition, to compensate for decrease of observer's performance due to the presence of unknown destabilizing forcing, the network is designed to estimate the contribution of the unknown forcing implicitly from the data over the course of training. By running a set of numerical experiments, we demonstrate that the proposed network does recover unknown forcing from data and is capable of predicting turbulent flows in high resolution from low resolution noisy observations.
106,919
106,919
Universal approximation property of invertible neural networks
Invertible neural networks (INNs) are neural network architectures with invertibility by design. Thanks to their invertibility and the tractability of Jacobian, INNs have various machine learning applications such as probabilistic modeling, generative modeling, and representation learning. However, their attractive properties often come at the cost of restricting the layer designs, which poses a question on their representation power: can we use these models to approximate sufficiently diverse functions? To answer this question, we have developed a general theoretical framework to investigate the representation power of INNs, building on a structure theorem of differential geometry. The framework simplifies the approximation problem of diffeomorphisms, which enables us to show the universal approximation properties of INNs. We apply the framework to two representative classes of INNs, namely Coupling-Flow-based INNs (CF-INNs) and Neural Ordinary Differential Equations (NODEs), and elucidate their high representation power despite the restrictions on their architectures.
106,920
106,920
Safe Reinforcement Learning Using Black-Box Reachability Analysis
Reinforcement learning (RL) is capable of sophisticated motion planning and control for robots in uncertain environments. However, state-of-the-art deep RL approaches typically lack safety guarantees, especially when the robot and environment models are unknown. To justify widespread deployment, robots must respect safety constraints without sacrificing performance. Thus, we propose a Black-box Reachability-based Safety Layer (BRSL) with three main components: (1) data-driven reachability analysis for a black-box robot model, (2) a trajectory rollout planner that predicts future actions and observations using an ensemble of neural networks trained online, and (3) a differentiable polytope collision check between the reachable set and obstacles that enables correcting unsafe actions. In simulation, BRSL outperforms other state-of-the-art safe RL methods on a Turtlebot 3, a quadrotor, and a trajectory-tracking point mass with an unsafe set adjacent to the area of highest reward.
106,921
106,921
An interpretable machine learning approach for ferroalloys consumptions
This paper is devoted to a practical method for ferroalloys consumption modeling and optimization. We consider the problem of selecting the optimal process control parameters based on the analysis of historical data from sensors. We developed approach, which predicts results of chemical reactions and give ferroalloys consumption recommendation. The main features of our method are easy interpretation and noise resistance. Our approach is based on k-means clustering algorithm, decision trees and linear regression. The main idea of the method is to identify situations where processes go similarly. For this, we propose using a k-means based dataset clustering algorithm and a classification algorithm to determine the cluster. This algorithm can be also applied to various technological processes, in this article, we demonstrate its application in metallurgy. To test the application of the proposed method, we used it to optimize ferroalloys consumption in Basic Oxygen Furnace steelmaking when finishing steel in a ladle furnace. The minimum required element content for a given steel grade was selected as the predictive model's target variable, and the required amount of the element to be added to the melt as the optimized variable. Keywords: Clustering, Machine Learning, Linear Regression, Steelmaking, Optimization, Gradient Boosting, Artificial Intelligence, Decision Trees, Recommendation services
106,922
106,922
Experimentally realized memristive memory augmented neural network
Lifelong on-device learning is a key challenge for machine intelligence, and this requires learning from few, often single, samples. Memory augmented neural network has been proposed to achieve the goal, but the memory module has to be stored in an off-chip memory due to its size. Therefore the practical use has been heavily limited. Previous works on emerging memory-based implementation have difficulties in scaling up because different modules with various structures are difficult to integrate on the same chip and the small sense margin of the content addressable memory for the memory module heavily limited the degree of mismatch calculation. In this work, we implement the entire memory augmented neural network architecture in a fully integrated memristive crossbar platform and achieve an accuracy that closely matches standard software on digital hardware for the Omniglot dataset. The successful demonstration is supported by implementing new functions in crossbars in addition to widely reported matrix multiplications. For example, the locality-sensitive hashing operation is implemented in crossbar arrays by exploiting the intrinsic stochasticity of memristor devices. Besides, the content-addressable memory module is realized in crossbars, which also supports the degree of mismatches. Simulations based on experimentally validated models show such an implementation can be efficiently scaled up for one-shot learning on the Mini-ImageNet dataset. The successful demonstration paves the way for practical on-device lifelong learning and opens possibilities for novel attention-based algorithms not possible in conventional hardware.
106,923
106,923
The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants
Selecting the most suitable algorithm and determining its hyperparameters for a given optimization problem is a challenging task. Accurately predicting how well a certain algorithm could solve the problem is hence desirable. Recent studies in single-objective numerical optimization show that supervised machine learning methods can predict algorithm performance using landscape features extracted from the problem instances. Existing approaches typically treat the algorithms as black-boxes, without consideration of their characteristics. To investigate in this work if a selection of landscape features that depends on algorithms properties could further improve regression accuracy, we regard the modular CMA-ES framework and estimate how much each landscape feature contributes to the best algorithm performance regression models. Exploratory data analysis performed on this data indicate that the set of most relevant features does not depend on the configuration of individual modules, but the influence that these features have on regression accuracy does. In addition, we have shown that by using classifiers that take the features relevance on the model accuracy, we are able to predict the status of individual modules in the CMA-ES configurations.
106,924
106,924
Transfer Learning for Instance Segmentation of Waste Bottles using Mask R-CNN Algorithm
This paper proposes a methodological approach with a transfer learning scheme for plastic waste bottle detection and instance segmentation using the \textit{mask region proposal convolutional neural network} (Mask R-CNN). Plastic bottles constitute one of the major pollutants posing a serious threat to the environment both in oceans and on land. The automated identification and segregation of bottles can facilitate plastic waste recycling. We prepare a custom-made dataset of 192 bottle images with pixel-by pixel-polygon annotation for the automatic segmentation task. The proposed transfer learning scheme makes use of a Mask R-CNN model pre-trained on the Microsoft COCO dataset. We present a comprehensive scheme for fine-tuning the base pre-trained Mask-RCNN model on our custom dataset. Our final fine-tuned model has achieved 59.4 \textit{mean average precision} (mAP), which corresponds to the MS COCO metric. The results indicate a promising application of deep learning for detecting waste bottles.
106,925
106,925
INSTA-BNN: Binary Neural Network with INSTAnce-aware Threshold
Binary Neural Networks (BNNs) have emerged as a promising solution for reducing the memory footprint and compute costs of deep neural networks. BNNs, on the other hand, suffer from information loss because binary activations are limited to only two values, resulting in reduced accuracy. To improve the accuracy, previous studies have attempted to control the distribution of binary activation by manually shifting the threshold of the activation function or making the shift amount trainable. During the process, they usually depended on statistical information computed from a batch. We argue that using statistical data from a batch fails to capture the crucial information for each input instance in BNN computations, and the differences between statistical information computed from each instance need to be considered when determining the binary activation threshold of each instance. Based on the concept, we propose the Binary Neural Network with INSTAnce-aware threshold (INSTA-BNN), which decides the activation threshold value considering the difference between statistical data computed from a batch and each instance. The proposed INSTA-BNN outperforms the baseline by 2.5% and 2.3% on the ImageNet classification task with comparable computing cost, achieving 68.0% and 71.7% top-1 accuracy on ResNet-18 and MobileNetV1 based models, respectively.
106,926
106,926
Stretching Sentence-pair NLI Models to Reason over Long Documents and Clusters
Natural Language Inference (NLI) has been extensively studied by the NLP community as a framework for estimating the semantic relation between sentence pairs. While early work identified certain biases in NLI models, recent advancements in modeling and datasets demonstrated promising performance. In this work, we further explore the direct zero-shot applicability of NLI models to real applications, beyond the sentence-pair setting they were trained on. First, we analyze the robustness of these models to longer and out-of-domain inputs. Then, we develop new aggregation methods to allow operating over full documents, reaching state-of-the-art performance on the ContractNLI dataset. Interestingly, we find NLI scores to provide strong retrieval signals, leading to more relevant evidence extractions compared to common similarity-based methods. Finally, we go further and investigate whole document clusters to identify both discrepancies and consensus among sources. In a test case, we find real inconsistencies between Wikipedia pages in different languages about the same topic.
106,927
106,927
Model-Based Deep Learning of Joint Probabilistic and Geometric Shaping for Optical Communication
Autoencoder-based deep learning is applied to jointly optimize geometric and probabilistic constellation shaping for optical coherent communication. The optimized constellation shaping outperforms the 256 QAM Maxwell-Boltzmann probabilistic distribution with extra 0.05 bits/4D-symbol mutual information for 64 GBd transmission over 170 km SMF link.
106,928
106,928
Kernel similarity matching with Hebbian neural networks
Recent works have derived neural networks with online correlation-based learning rules to perform \textit{kernel similarity matching}. These works applied existing linear similarity matching algorithms to nonlinear features generated with random Fourier methods. In this paper attempt to perform kernel similarity matching by directly learning the nonlinear features. Our algorithm proceeds by deriving and then minimizing an upper bound for the sum of squared errors between output and input kernel similarities. The construction of our upper bound leads to online correlation-based learning rules which can be implemented with a 1 layer recurrent neural network. In addition to generating high-dimensional linearly separable representations, we show that our upper bound naturally yields representations which are sparse and selective for specific input patterns. We compare the approximation quality of our method to neural random Fourier method and variants of the popular but non-biological "Nystr{\"o}m" method for approximating the kernel matrix. Our method appears to be comparable or better than randomly sampled Nystr{\"o}m methods when the outputs are relatively low dimensional (although still potentially higher dimensional than the inputs) but less faithful when the outputs are very high dimensional.
106,929
106,929
Towards PAC Multi-Object Detection and Tracking
Accurately detecting and tracking multi-objects is important for safety-critical applications such as autonomous navigation. However, it remains challenging to provide guarantees on the performance of state-of-the-art techniques based on deep learning. We consider a strategy known as conformal prediction, which predicts sets of labels instead of a single label; in the classification and regression settings, these algorithms can guarantee that the true label lies within the prediction set with high probability. Building on these ideas, we propose multi-object detection and tracking algorithms that come with probably approximately correct (PAC) guarantees. They do so by constructing both a prediction set around each object detection as well as around the set of edge transitions; given an object, the detection prediction set contains its true bounding box with high probability, and the edge prediction set contains its true transition across frames with high probability. We empirically demonstrate that our method can detect and track objects with PAC guarantees on the COCO and MOT-17 datasets.
106,930
106,930
Big-means: Less is More for K-means Clustering
K-means clustering plays a vital role in data mining. However, its performance drastically drops when applied to huge amounts of data. We propose a new heuristic that is built on the basis of regular K-means for faster and more accurate big data clustering using the "less is more" and decomposition approaches. The main advantage of the proposed algorithm is that it naturally turns the K-means local search into global one through the process of decomposition of the minimum sum-of-squares clustering (MSSC) problem. On one hand, decomposition of the MSSC problem into smaller subproblems reduces the computational complexity and allows for their parallel processing. On the other hand, the MSSC decomposition provides a new method for the natural data-driven shaking of the incumbent solution while introducing a new neighborhood structure for the solution of the MSSC problem. The proposed algorithm is scalable, fast, and accurate. The scalability of the algorithm can be easily adjusted by choosing the appropriate number of subproblems and their size. In our experiments it outperforms all recent state-of-the-art algorithms for the MSSC in both in time and the solution quality.
106,931
106,931
A Machine Learning Tutorial for Operational Meteorology, Part I: Traditional Machine Learning
Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and are not required to become a meteorologist. The lack of formal instruction has contributed to perception that machine learning methods are 'black boxes' and thus end-users are hesitant to apply the machine learning methods in their every day workflow. To reduce the opaqueness of machine learning methods and lower hesitancy towards machine learning in meteorology, this paper provides a survey of some of the most common machine learning methods. A familiar meteorological example is used to contextualize the machine learning methods while also discussing machine learning topics using plain language. The following machine learning methods are demonstrated: linear regression; logistic regression; decision trees; random forest; gradient boosted decision trees; naive Bayes; and support vector machines. Beyond discussing the different methods, the paper also contains discussions on the general machine learning process as well as best practices to enable readers to apply machine learning to their own datasets. Furthermore, all code (in the form of Jupyter notebooks and Google Colaboratory notebooks) used to make the examples in the paper is provided in an effort to catalyse the use of machine learning in meteorology.
106,932
106,932
Synthesizing Informative Training Samples with GAN
Remarkable progress has been achieved in synthesizing photo-realistic images with generative adversarial neural networks (GANs). Recently, GANs are utilized as the training sample generator when obtaining or storing real training data is expensive even infeasible. However, traditional GANs generated images are not as informative as the real training samples when being used to train deep neural networks. In this paper, we propose a novel method to synthesize Informative Training samples with GAN (IT-GAN). Specifically, we freeze a pre-trained GAN model and learn the informative latent vectors that corresponds to informative training samples. The synthesized images are required to preserve information for training deep neural networks rather than visual reality or fidelity. Experiments verify that the deep neural networks can learn faster and achieve better performance when being trained with our IT-GAN generated images. We also show that our method is a promising solution to dataset condensation problem.
106,933
106,933
Neural Structured Prediction for Inductive Node Classification
This paper studies node classification in the inductive setting, i.e., aiming to learn a model on labeled training graphs and generalize it to infer node labels on unlabeled test graphs. This problem has been extensively studied with graph neural networks (GNNs) by learning effective node representations, as well as traditional structured prediction methods for modeling the structured output of node labels, e.g., conditional random fields (CRFs). In this paper, we present a new approach called the Structured Proxy Network (SPN), which combines the advantages of both worlds. SPN defines flexible potential functions of CRFs with GNNs. However, learning such a model is nontrivial as it involves optimizing a maximin game with high-cost inference. Inspired by the underlying connection between joint and marginal distributions defined by Markov networks, we propose to solve an approximate version of the optimization problem as a proxy, which yields a near-optimal solution, making learning more efficient. Extensive experiments on two settings show that our approach outperforms many competitive baselines.
106,934
106,934
Statistical-Computational Trade-offs in Tensor PCA and Related Problems via Communication Complexity
Tensor PCA is a stylized statistical inference problem introduced by Montanari and Richard to study the computational difficulty of estimating an unknown parameter from higher-order moment tensors. Unlike its matrix counterpart, Tensor PCA exhibits a statistical-computational gap, i.e., a sample size regime where the problem is information-theoretically solvable but conjectured to be computationally hard. This paper derives computational lower bounds on the run-time of memory bounded algorithms for Tensor PCA using communication complexity. These lower bounds specify a trade-off among the number of passes through the data sample, the sample size, and the memory required by any algorithm that successfully solves Tensor PCA. While the lower bounds do not rule out polynomial-time algorithms, they do imply that many commonly-used algorithms, such as gradient descent and power method, must have a higher iteration count when the sample size is not large enough. Similar lower bounds are obtained for Non-Gaussian Component Analysis, a family of statistical estimation problems in which low-order moment tensors carry no information about the unknown parameter. Finally, stronger lower bounds are obtained for an asymmetric variant of Tensor PCA and related statistical estimation problems. These results explain why many estimators for these problems use a memory state that is significantly larger than the effective dimensionality of the parameter of interest.
106,935
106,935
Accurate ADMET Prediction with XGBoost
The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are important in drug discovery as they define efficacy and safety. In this work, we applied an ensemble of features, including fingerprints and descriptors, and a tree-based machine learning model, extreme gradient boosting, for accurate ADMET prediction. Our model performs well in the Therapeutics Data Commons ADMET benchmark group. For 22 tasks, our model is ranked first in 11 tasks and top 3 in 19 tasks.
106,936
106,936
Unconditional Image-Text Pair Generation with Multimodal Cross Quantizer
Though deep generative models have gained a lot of attention, most of the existing works are designed for the unimodal generation task. In this paper, we explore a new method for unconditional image-text pair generation. We propose MXQ-VAE, a vector quantization method for multimodal image-text representation. MXQ-VAE accepts a paired image and text as input, and learns a joint quantized representation space, so that the image-text pair can be converted to a sequence of unified indices. Then we can use autoregressive generative models to model the joint image-text representation, and even perform unconditional image-text pair generation. Extensive experimental results demonstrate that our approach effectively generates semantically consistent image-text pair and also enhances meaningful alignment between image and text.
106,937
106,937
Selecting Continuous Life-Like Cellular Automata for Halting Unpredictability: Evolving for Abiogenesis
Substantial efforts have been applied to engineer CA with desired emergent properties, such as supporting gliders. Recent work in continuous CA has generated a wide variety of compelling bioreminiscent patterns, and the expansion of CA research into continuously-valued domains, multiple channels, and higher dimensions complicates their study. In this work we devise a strategy for evolving CA and CA patterns in two steps, based on the simple idea that CA are likely to be complex and computationally capable if they support patterns that grow indefinitely as well as patterns that vanish completely, and are difficult to predict the difference in advance. The second part of our strategy evolves patterns by selecting for mobility and conservation of mean cell value. We validate our pattern evolution method by re-discovering gliders in 17 of 17 Lenia CA, and also report 4 new evolved CA and 1 randomly evolved CA that support novel evolved glider patterns. The CA reported here share neighborhood kernels with previously described Lenia CA, but exhibit a wider range of typical dynamics than their Lenia counterparts. Code for evolving continuous CA is made available under an MIT License (https://github.com/rivesunder/yuca).
106,938
106,938
CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection
Single-particle cryo-electron microscopy (cryo-EM) has become one of the mainstream structural biology techniques because of its ability to determine high-resolution structures of dynamic bio-molecules. However, cryo-EM data acquisition remains expensive and labor-intensive, requiring substantial expertise. Structural biologists need a more efficient and objective method to collect the best data in a limited time frame. We formulate the cryo-EM data collection task as an optimization problem in this work. The goal is to maximize the total number of good images taken within a specified period. We show that reinforcement learning offers an effective way to plan cryo-EM data collection, successfully navigating heterogenous cryo-EM grids. The approach we developed, cryoRL, demonstrates better performance than average users for data collection under similar settings.
106,939
106,939
Efficient Architecture Search for Diverse Tasks
While neural architecture search (NAS) has enabled automated machine learning (AutoML) for well-researched areas, its application to tasks beyond computer vision is still under-explored. As less-studied domains are precisely those where we expect AutoML to have the greatest impact, in this work we study NAS for efficiently solving diverse problems. Seeking an approach that is fast, simple, and broadly applicable, we fix a standard convolutional network (CNN) topology and propose to search for the right kernel sizes and dilations its operations should take on. This dramatically expands the model's capacity to extract features at multiple resolutions for different types of data while only requiring search over the operation space. To overcome the efficiency challenges of naive weight-sharing in this search space, we introduce DASH, a differentiable NAS algorithm that computes the mixture-of-operations using the Fourier diagonalization of convolution, achieving both a better asymptotic complexity and an up-to-10x search time speedup in practice. We evaluate DASH on ten tasks spanning a variety of application domains such as PDE solving, protein folding, and heart disease detection. DASH outperforms state-of-the-art AutoML methods in aggregate, attaining the best-known automated performance on seven tasks. Meanwhile, on six of the ten tasks, the combined search and retraining time is less than 2x slower than simply training a CNN backbone that is far less accurate.
106,940
106,940
Streaming Align-Refine for Non-autoregressive Deliberation
We propose a streaming non-autoregressive (non-AR) decoding algorithm to deliberate the hypothesis alignment of a streaming RNN-T model. Our algorithm facilitates a simple greedy decoding procedure, and at the same time is capable of producing the decoding result at each frame with limited right context, thus enjoying both high efficiency and low latency. These advantages are achieved by converting the offline Align-Refine algorithm to be streaming-compatible, with a novel transformer decoder architecture that performs local self-attentions for both text and audio, and a time-aligned cross-attention at each layer. Furthermore, we perform discriminative training of our model with the minimum word error rate (MWER) criterion, which has not been done in the non-AR decoding literature. Experiments on voice search datasets and Librispeech show that with reasonable right context, our streaming model performs as well as the offline counterpart, and discriminative training leads to further WER gain when the first-pass model has small capacity.
106,941
106,941
Deep Learning-based List Sphere Decoding for Faster-than-Nyquist (FTN) Signaling Detection
Faster-than-Nyquist (FTN) signaling is a candidate non-orthonormal transmission technique to improve the spectral efficiency (SE) of future communication systems. However, such improvements of the SE are at the cost of additional computational complexity to remove the intentionally introduced intersymbol interference. In this paper, we investigate the use of deep learning (DL) to reduce the detection complexity of FTN signaling. To eliminate the need of having a noise whitening filter at the receiver, we first present an equivalent FTN signaling model based on using a set of orthonormal basis functions and identify its operation region. Second, we propose a DL-based list sphere decoding (DL-LSD) algorithm that selects and updates the initial radius of the original LSD to guarantee a pre-defined number $N_{\text{L}}$ of lattice points inside the hypersphere. This is achieved by training a neural network to output an approximate initial radius that includes $N_{\text{L}}$ lattice points. At the testing phase, if the hypersphere has more than $N_{\text{L}}$ lattice points, we keep the $N_{\text{L}}$ closest points to the point corresponding to the received FTN signal; however, if the hypersphere has less than $N_{\text{L}}$ points, we increase the approximate initial radius by a value that depends on the standard deviation of the distribution of the output radii from the training phase. Then, the approximate value of the log-likelihood ratio (LLR) is calculated based on the obtained $N_{\text{L}}$ points. Simulation results show that the computational complexity of the proposed DL-LSD is lower than its counterpart of the original LSD by orders of magnitude.
106,942
106,942
The Distributed Information Bottleneck reveals the explanatory structure of complex systems
The fruits of science are relationships made comprehensible, often by way of approximation. While deep learning is an extremely powerful way to find relationships in data, its use in science has been hindered by the difficulty of understanding the learned relationships. The Information Bottleneck (IB) is an information theoretic framework for understanding a relationship between an input and an output in terms of a trade-off between the fidelity and complexity of approximations to the relationship. Here we show that a crucial modification -- distributing bottlenecks across multiple components of the input -- opens fundamentally new avenues for interpretable deep learning in science. The Distributed Information Bottleneck throttles the downstream complexity of interactions between the components of the input, deconstructing a relationship into meaningful approximations found through deep learning without requiring custom-made datasets or neural network architectures. Applied to a complex system, the approximations illuminate aspects of the system's nature by restricting -- and monitoring -- the information about different components incorporated into the approximation. We demonstrate the Distributed IB's explanatory utility in systems drawn from applied mathematics and condensed matter physics. In the former, we deconstruct a Boolean circuit into approximations that isolate the most informative subsets of input components without requiring exhaustive search. In the latter, we localize information about future plastic rearrangement in the static structure of a sheared glass, and find the information to be more or less diffuse depending on the system's preparation. By way of a principled scheme of approximations, the Distributed IB brings much-needed interpretability to deep learning and enables unprecedented analysis of information flow through a system.
106,943
106,943
Interpretable Fault Diagnosis of Rolling Element Bearings with Temporal Logic Neural Network
Machine learning-based methods have achieved successful applications in machinery fault diagnosis. However, the main limitation that exists for these methods is that they operate as a black box and are generally not interpretable. This paper proposes a novel neural network structure, called temporal logic neural network (TLNN), in which the neurons of the network are logic propositions. More importantly, the network can be described and interpreted as a weighted signal temporal logic. TLNN not only keeps the nice properties of traditional neuron networks but also provides a formal interpretation of itself with formal language. Experiments with real datasets show the proposed neural network can obtain highly accurate fault diagnosis results with good computation efficiency. Additionally, the embedded formal language of the neuron network can provide explanations about the decision process, thus achieve interpretable fault diagnosis.
106,944
106,944
Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning
An ideal learned representation should display transferability and robustness. Supervised contrastive learning (SupCon) is a promising method for training accurate models, but produces representations that do not capture these properties due to class collapse -- when all points in a class map to the same representation. Recent work suggests that "spreading out" these representations improves them, but the precise mechanism is poorly understood. We argue that creating spread alone is insufficient for better representations, since spread is invariant to permutations within classes. Instead, both the correct degree of spread and a mechanism for breaking this invariance are necessary. We first prove that adding a weighted class-conditional InfoNCE loss to SupCon controls the degree of spread. Next, we study three mechanisms to break permutation invariance: using a constrained encoder, adding a class-conditional autoencoder, and using data augmentation. We show that the latter two encourage clustering of latent subclasses under more realistic conditions than the former. Using these insights, we show that adding a properly-weighted class-conditional InfoNCE loss and a class-conditional autoencoder to SupCon achieves 11.1 points of lift on coarse-to-fine transfer across 5 standard datasets and 4.7 points on worst-group robustness on 3 datasets, setting state-of-the-art on CelebA by 11.5 points.
106,945
106,945
Sources of Irreproducibility in Machine Learning: A Review
Lately, several benchmark studies have shown that the state of the art in some of the sub-fields of machine learning actually has not progressed despite progress being reported in the literature. The lack of progress is partly caused by the irreproducibility of many model comparison studies. Model comparison studies are conducted that do not control for many known sources of irreproducibility. This leads to results that cannot be verified by third parties. Our objective is to provide an overview of the sources of irreproducibility that are reported in the literature. We review the literature to provide an overview and a taxonomy in addition to a discussion on the identified sources of irreproducibility. Finally, we identify three lines of further inquiry.
106,946
106,946
$\Upsilon$-Net: A Spatiospectral Network for Retinal OCT Segmentation
Automated segmentation of retinal optical coherence tomography (OCT) images has become an important recent direction in machine learning for medical applications. We hypothesize that the anatomic structure of layers and their high-frequency variation in OCT images make retinal OCT a fitting choice for extracting spectral-domain features and combining them with spatial domain features. In this work, we present $\Upsilon$-Net, an architecture that combines the frequency domain features with the image domain to improve the segmentation performance of OCT images. The results of this work demonstrate that the introduction of two branches, one for spectral and one for spatial domain features, brings a very significant improvement in fluid segmentation performance and allows outperformance as compared to the well-known U-Net model. Our improvement was 13% on the fluid segmentation dice score and 1.9% on the average dice score. Finally, removing selected frequency ranges in the spectral domain demonstrates the impact of these features on the fluid segmentation outperformance.
106,947
106,947
DeepCSI: Rethinking Wi-Fi Radio Fingerprinting Through MU-MIMO CSI Feedback Deep Learning
We present DeepCSI, a novel approach to Wi-Fi radio fingerprinting (RFP) which leverages standard-compliant beamforming feedback matrices to authenticate MU-MIMO Wi-Fi devices on the move. By capturing unique imperfections in off-the-shelf radio circuitry, RFP techniques can identify wireless devices directly at the physical layer, allowing low-latency low-energy cryptography-free authentication. However, existing Wi-Fi RFP techniques are based on software-defined radio (SDRs), which may ultimately prevent their widespread adoption. Moreover, it is unclear whether existing strategies can work in the presence of MU-MIMO transmitters - a key technology in modern Wi-Fi standards. Conversely from prior work, DeepCSI does not require SDR technologies and can be run on any low-cost Wi-Fi device to authenticate MU-MIMO transmitters. Our key intuition is that imperfections in the transmitter's radio circuitry percolate onto the beamforming feedback matrix, and thus RFP can be performed without explicit channel state information (CSI) computation. DeepCSI is robust to inter-stream and inter-user interference being the beamforming feedback not affected by those phenomena. We extensively evaluate the performance of DeepCSI through a massive data collection campaign performed in the wild with off-the-shelf equipment, where 10 MU-MIMO Wi-Fi radios emit signals in different positions. Experimental results indicate that DeepCSI correctly identifies the transmitter with an accuracy of up to 98%. The identification accuracy remains above 82% when the device moves within the environment. To allow replicability and provide a performance benchmark, we pledge to share the 800 GB datasets - collected in static and, for the first time, dynamic conditions - and the code database with the community.
106,948
106,948
TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets
The best neural architecture for a given machine learning problem depends on many factors: not only the complexity and structure of the dataset, but also on resource constraints including latency, compute, energy consumption, etc. Neural architecture search (NAS) for tabular datasets is an important but under-explored problem. Previous NAS algorithms designed for image search spaces incorporate resource constraints directly into the reinforcement learning (RL) rewards. However, for NAS on tabular datasets, this protocol often discovers suboptimal architectures. This paper develops TabNAS, a new and more effective approach to handle resource constraints in tabular NAS using an RL controller motivated by the idea of rejection sampling. TabNAS immediately discards any architecture that violates the resource constraints without training or learning from that architecture. TabNAS uses a Monte-Carlo-based correction to the RL policy gradient update to account for this extra filtering step. Results on several tabular datasets demonstrate the superiority of TabNAS over previous reward-shaping methods: it finds better models that obey the constraints.
106,949
106,949
Evaluating the Effectiveness of Corrective Demonstrations and a Low-Cost Sensor for Dexterous Manipulation
Imitation learning is a promising approach to help robots acquire dexterous manipulation capabilities without the need for a carefully-designed reward or a significant computational effort. However, existing imitation learning approaches require sophisticated data collection infrastructure and struggle to generalize beyond the training distribution. One way to address this limitation is to gather additional data that better represents the full operating conditions. In this work, we investigate characteristics of such additional demonstrations and their impact on performance. Specifically, we study the effects of corrective and randomly-sampled additional demonstrations on learning a policy that guides a five-fingered robot hand through a pick-and-place task. Our results suggest that corrective demonstrations considerably outperform randomly-sampled demonstrations, when the proportion of additional demonstrations sampled from the full task distribution is larger than the number of original demonstrations sampled from a restrictive training distribution. Conversely, when the number of original demonstrations are higher than that of additional demonstrations, we find no significant differences between corrective and randomly-sampled additional demonstrations. These results provide insights into the inherent trade-off between the effort required to collect corrective demonstrations and their relative benefits over randomly-sampled demonstrations. Additionally, we show that inexpensive vision-based sensors, such as LeapMotion, can be used to dramatically reduce the cost of providing demonstrations for dexterous manipulation tasks. Our code is available at https://github.com/GT-STAR-Lab/corrective-demos-dexterous-manipulation.
106,950
106,950
A generative neural network model for random dot product graphs
We present GraphMoE, a novel neural network-based approach to learning generative models for random graphs. The neural network is trained to match the distribution of a class of random graphs by way of a moment estimator. The features used for training are graphlets, subgraph counts of small order. The neural network accepts random noise as input and outputs vector representations for nodes in the graph. Random graphs are then realized by applying a kernel to the representations. Graphs produced this way are demonstrated to be able to imitate data from chemistry, medicine, and social networks. The produced graphs are similar enough to the target data to be able to fool discriminator neural networks otherwise capable of separating classes of random graphs.
106,951
106,951
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
One of the main challenges in solving time-dependent partial differential equations is to develop computationally efficient solvers that are accurate and stable. Here, we introduce a graph neural network approach to finding efficient PDE solvers through learning using message-passing models. We first introduce domain invariant features for PDE-data inspired by classical PDE solvers for an efficient physical representation. Next, we use graphs to represent PDE-data on an unstructured mesh and show that message passing graph neural networks (MPGNN) can parameterize governing equations, and as a result, efficiently learn accurate solver schemes for linear/nonlinear PDEs. We further show that the solvers are independent of the initial trained geometry, i.e. the trained solver can find PDE solution on different complex domains. Lastly, we show that a recurrent graph neural network approach can find a temporal sequence of solutions to a PDE.
106,952
106,952
Deep Unlearning via Randomized Conditionally Independent Hessians
Recent legislation has led to interest in machine unlearning, i.e., removing specific training samples from a predictive model as if they never existed in the training dataset. Unlearning may also be required due to corrupted/adversarial data or simply a user's updated privacy requirement. For models which require no training (k-NN), simply deleting the closest original sample can be effective. But this idea is inapplicable to models which learn richer representations. Recent ideas leveraging optimization-based updates scale poorly with the model dimension d, due to inverting the Hessian of the loss function. We use a variant of a new conditional independence coefficient, L-CODEC, to identify a subset of the model parameters with the most semantic overlap on an individual sample level. Our approach completely avoids the need to invert a (possibly) huge matrix. By utilizing a Markov blanket selection, we premise that L-CODEC is also suitable for deep unlearning, as well as other applications in vision. Compared to alternatives, L-CODEC makes approximate unlearning possible in settings that would otherwise be infeasible, including vision models used for face recognition, person re-identification and NLP models that may require unlearning samples identified for exclusion. Code can be found at https://github.com/vsingh-group/LCODEC-deep-unlearning/
106,953
106,953
Accurate detection of sepsis at ED triage using machine learning with clinical natural language processing
Sepsis is a life-threatening condition with organ dysfunction and is a leading cause of death and critical illness worldwide. Accurate detection of sepsis during emergency department triage would allow early initiation of lab analysis, antibiotic administration, and other sepsis treatment protocols. The purpose of this study was to determine whether EHR data can be extracted and synthesized with the latest machine learning algorithms (KATE Sepsis) and clinical natural language processing to produce accurate sepsis models, and compare KATE Sepsis performance with existing sepsis screening protocols, such as SIRS and qSOFA. A machine learning model (KATE Sepsis) was developed using patient encounters with triage data from 16 participating hospitals. KATE Sepsis, SIRS, standard screening (SIRS with source of infection) and qSOFA were tested in three settings. Cohort-A was a retrospective analysis on medical records from a single Site 1. Cohort-B was a prospective analysis of Site 1. Cohort-C was a retrospective analysis on Site 1 with 15 additional sites. Across all cohorts, KATE Sepsis demonstrates an AUC of 0.94-0.963 with 73-74.87% TPR and 3.76-7.17% FPR. Standard screening demonstrates an AUC of 0.682-0.726 with 39.39-51.19% TPR and 2.9-6.02% FPR. The qSOFA protocol demonstrates an AUC of 0.544-0.56, with 10.52-13.18% TPR and 1.22-1.68% FPR. For severe sepsis, across all cohorts, KATE Sepsis demonstrates an AUC of 0.935-0.972 with 70-82.26% TPR and 4.64-8.62% FPR. For septic shock, across all cohorts, KATE Sepsis demonstrates an AUC of 0.96-0.981 with 85.71-89.66% TPR and 4.85-8.8% FPR. SIRS, standard screening, and qSOFA demonstrate low AUC and TPR for severe sepsis and septic shock detection. KATE Sepsis provided substantially better sepsis detection performance in triage than commonly used screening protocols.
106,954
106,954
It is Okay to Not Be Okay: Overcoming Emotional Bias in Affective Image Captioning by Contrastive Data Collection
Datasets that capture the connection between vision, language, and affection are limited, causing a lack of understanding of the emotional aspect of human intelligence. As a step in this direction, the ArtEmis dataset was recently introduced as a large-scale dataset of emotional reactions to images along with language explanations of these chosen emotions. We observed a significant emotional bias towards instance-rich emotions, making trained neural speakers less accurate in describing under-represented emotions. We show that collecting new data, in the same way, is not effective in mitigating this emotional bias. To remedy this problem, we propose a contrastive data collection approach to balance ArtEmis with a new complementary dataset such that a pair of similar images have contrasting emotions (one positive and one negative). We collected 260,533 instances using the proposed method, we combine them with ArtEmis, creating a second iteration of the dataset. The new combined dataset, dubbed ArtEmis v2.0, has a balanced distribution of emotions with explanations revealing more fine details in the associated painting. Our experiments show that neural speakers trained on the new dataset improve CIDEr and METEOR evaluation metrics by 20% and 7%, respectively, compared to the biased dataset. Finally, we also show that the performance per emotion of neural speakers is improved across all the emotion categories, significantly on under-represented emotions. The collected dataset and code are available at https://artemisdataset-v2.org.
106,955
106,955
Conditional Injective Flows for Bayesian Imaging
Most deep learning models for computational imaging regress a single reconstructed image. In practice, however, ill-posedness, nonlinearity, model mismatch, and noise often conspire to make such point estimates misleading or insufficient. The Bayesian approach models images and (noisy) measurements as jointly distributed random vectors and aims to approximate the posterior distribution of unknowns. Recent variational inference methods based on conditional normalizing flows are a promising alternative to traditional MCMC methods, but they come with drawbacks: excessive memory and compute demands for moderate to high resolution images and underwhelming performance on hard nonlinear problems. In this work, we propose C-Trumpets -- conditional injective flows specifically designed for imaging problems, which greatly diminish these challenges. Injectivity reduces memory footprint and training time while low-dimensional latent space together with architectural innovations like fixed-volume-change layers and skip-connection revnet layers, C-Trumpets outperform regular conditional flow models on a variety of imaging and image restoration tasks, including limited-view CT and nonlinear inverse scattering, with a lower compute and memory budget. C-Trumpets enable fast approximation of point estimates like MMSE or MAP as well as physically-meaningful uncertainty quantification.
106,956
106,956
Self-Similarity Priors: Neural Collages as Differentiable Fractal Representations
Many patterns in nature exhibit self-similarity: they can be compactly described via self-referential transformations. Said patterns commonly appear in natural and artificial objects, such as molecules, shorelines, galaxies and even images. In this work, we investigate the role of learning in the automated discovery of self-similarity and in its utilization for downstream tasks. To this end, we design a novel class of implicit operators, Neural Collages, which (1) represent data as the parameters of a self-referential, structured transformation, and (2) employ hypernetworks to amortize the cost of finding these parameters to a single forward pass. We investigate how to leverage the representations produced by Neural Collages in various tasks, including data compression and generation. Neural Collages image compressors are orders of magnitude faster than other self-similarity-based algorithms during encoding and offer compression rates competitive with implicit methods. Finally, we showcase applications of Neural Collages for fractal art and as deep generative models.
106,957
106,957
Safe Self-Refinement for Transformer-based Domain Adaptation
Unsupervised Domain Adaptation (UDA) aims to leverage a label-rich source domain to solve tasks on a related unlabeled target domain. It is a challenging problem especially when a large domain gap lies between the source and target domains. In this paper we propose a novel solution named SSRT (Safe Self-Refinement for Transformer-based domain adaptation), which brings improvement from two aspects. First, encouraged by the success of vision transformers in various vision tasks, we arm SSRT with a transformer backbone. We find that the combination of vision transformer with simple adversarial adaptation surpasses best reported Convolutional Neural Network (CNN)-based results on the challenging DomainNet benchmark, showing its strong transferable feature representation. Second, to reduce the risk of model collapse and improve the effectiveness of knowledge transfer between domains with large gaps, we propose a Safe Self-Refinement strategy. Specifically, SSRT utilizes predictions of perturbed target domain data to refine the model. Since the model capacity of vision transformer is large and predictions in such challenging tasks can be noisy, a safe training mechanism is designed to adaptively adjust learning configuration. Extensive evaluations are conducted on several widely tested UDA benchmarks and SSRT achieves consistently the best performances, including 85.43% on Office-Home, 88.76% on VisDA-2017 and 45.2% on DomainNet.
106,958
106,958
Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners
Traditional multi-task learning (MTL) methods use dense networks that use the same set of shared weights across several different tasks. This often creates interference where two or more tasks compete to pull model parameters in different directions. In this work, we study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning by specializing some weights for learning shared representations and using the others for learning task-specific information. To this end, we devise task-aware gating functions to route examples from different tasks to specialized experts which share subsets of network weights conditioned on the task. This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model. We demonstrate such sparse networks to improve multi-task learning along three key dimensions: (i) transfer to low-resource tasks from related tasks in the training mixture; (ii) sample-efficient generalization to tasks not seen during training by making use of task-aware routing from seen related tasks; (iii) robustness to the addition of unrelated tasks by avoiding catastrophic forgetting of existing tasks.
106,959
106,959
Theory of Graph Neural Networks: Representation and Learning
Graph Neural Networks (GNNs), neural network architectures targeted to learning representations of graphs, have become a popular learning model for prediction tasks on nodes, graphs and configurations of points, with wide success in practice. This article summarizes a selection of the emerging theoretical results on approximation and learning properties of widely used message passing GNNs and higher-order GNNs, focusing on representation, generalization and extrapolation. Along the way, it summarizes mathematical connections.
106,960
106,960
On Acceleration of Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
We study the acceleration of the Local Polynomial Interpolation-based Gradient Descent method (LPI-GD) recently proposed for the approximate solution of empirical risk minimization problems (ERM). We focus on loss functions that are strongly convex and smooth with condition number $\sigma$. We additionally assume the loss function is $\eta$-H\"older continuous with respect to the data. The oracle complexity of LPI-GD is $\tilde{O}\left(\sigma m^d \log(1/\varepsilon)\right)$ for a desired accuracy $\varepsilon$, where $d$ is the dimension of the parameter space, and $m$ is the cardinality of an approximation grid. The factor $m^d$ can be shown to scale as $O((1/\varepsilon)^{d/2\eta})$. LPI-GD has been shown to have better oracle complexity than gradient descent (GD) and stochastic gradient descent (SGD) for certain parameter regimes. We propose two accelerated methods for the ERM problem based on LPI-GD and show an oracle complexity of $\tilde{O}\left(\sqrt{\sigma} m^d \log(1/\varepsilon)\right)$. Moreover, we provide the first empirical study on local polynomial interpolation-based gradient methods and corroborate that LPI-GD has better performance than GD and SGD in some scenarios, and the proposed methods achieve acceleration.
106,961
106,961
FKreg: A MATLAB toolbox for fast Multivariate Kernel Regression
Kernel smooth is the most fundamental technique for data density and regression estimation. However, time-consuming is the biggest obstacle for the application that the direct evaluation of kernel smooth for $N$ samples needs ${O}\left( {{N}^{2}} \right)$ operations. People have developed fast smooth algorithms using the idea of binning with FFT. Unfortunately, the accuracy is not controllable, and the implementation for multivariable and its bandwidth selection for the fast method is not available. Hence, we introduce a new MATLAB toolbox for fast multivariate kernel regression with the idea of non-uniform FFT (NUFFT), which implemented the algorithm for $M$ gridding points with ${O}\left( N+M\log M \right)$ complexity and accuracy controllability. The bandwidth selection problem utilizes the Fast Monte-Carlo algorithm to estimate the degree of freedom (DF), saving enormous cross-validation time even better when data share the same grid space for multiple regression. Up to now, this is the first toolbox for fast-binning high-dimensional kernel regression. Moreover, the estimation for local polynomial regression, the conditional variance for the heteroscedastic model, and the complex-valued datasets are also implemented in this toolbox. The performance is demonstrated with simulations and an application on the quantitive EEG.
106,962
106,962
Stress-Testing LiDAR Registration
Point cloud registration (PCR) is an important task in many fields including autonomous driving with LiDAR sensors. PCR algorithms have improved significantly in recent years, by combining deep-learned features with robust estimation methods. These algorithms succeed in scenarios such as indoor scenes and object models registration. However, testing in the automotive LiDAR setting, which presents its own challenges, has been limited. The standard benchmark for this setting, KITTI-10m, has essentially been saturated by recent algorithms: many of them achieve near-perfect recall. In this work, we stress-test recent PCR techniques with LiDAR data. We propose a method for selecting balanced registration sets, which are challenging sets of frame-pairs from LiDAR datasets. They contain a balanced representation of the different relative motions that appear in a dataset, i.e. small and large rotations, small and large offsets in space and time, and various combinations of these. We perform a thorough comparison of accuracy and run-time on these benchmarks. Perhaps unexpectedly, we find that the fastest and simultaneously most accurate approach is a version of advanced RANSAC. We further improve results with a novel pre-filtering method.
106,963
106,963
Searching Intrinsic Dimensions of Vision Transformers
It has been shown by many researchers that transformers perform as well as convolutional neural networks in many computer vision tasks. Meanwhile, the large computational costs of its attention module hinder further studies and applications on edge devices. Some pruning methods have been developed to construct efficient vision transformers, but most of them have considered image classification tasks only. Inspired by these results, we propose SiDT, a method for pruning vision transformer backbones on more complicated vision tasks like object detection, based on the search of transformer dimensions. Experiments on CIFAR-100 and COCO datasets show that the backbones with 20\% or 40\% dimensions/parameters pruned can have similar or even better performance than the unpruned models. Moreover, we have also provided the complexity analysis and comparisons with the previous pruning methods.
106,964
106,964
Semantic interpretation for convolutional neural networks: What makes a cat a cat?
The interpretability of deep neural networks has attracted increasing attention in recent years, and several methods have been created to interpret the "black box" model. Fundamental limitations remain, however, that impede the pace of understanding the networks, especially the extraction of understandable semantic space. In this work, we introduce the framework of semantic explainable AI (S-XAI), which utilizes row-centered principal component analysis to obtain the common traits from the best combination of superpixels discovered by a genetic algorithm, and extracts understandable semantic spaces on the basis of discovered semantically sensitive neurons and visualization techniques. Statistical interpretation of the semantic space is also provided, and the concept of semantic probability is proposed for the first time. Our experimental results demonstrate that S-XAI is effective in providing a semantic interpretation for the CNN, and offers broad usage, including trustworthiness assessment and semantic sample searching.
106,965
106,965
A Hierarchical Terminal Recognition Approach based on Network Traffic Analysis
Recognizing the type of connected devices to a network helps to perform security policies. In smart grids, identifying massive number of grid metering terminals based on network traffic analysis is almost blank and existing research has not proposed a targeted end-to-end model to solve the flow classification problem. Therefore, we proposed a hierarchical terminal recognition approach that applies the details of grid data. We have formed a two-level model structure by segmenting the grid data, which uses the statistical characteristics of network traffic and the specific behavior characteristics of grid metering terminals. Moreover, through the selection and reconstruction of features, we combine three algorithms to achieve accurate identification of terminal types that transmit network traffic. We conduct extensive experiments on a real dataset containing three types of grid metering terminals, and the results show that our research has improved performance compared to common recognition models. The combination of an autoencoder, K-Means and GradientBoost algorithm achieved the best recognition rate with F1 value of 98.3%.
106,966
106,966
The Tree Loss: Improving Generalization with Many Classes
Multi-class classification problems often have many semantically similar classes. For example, 90 of ImageNet's 1000 classes are for different breeds of dog. We should expect that these semantically similar classes will have similar parameter vectors, but the standard cross entropy loss does not enforce this constraint. We introduce the tree loss as a drop-in replacement for the cross entropy loss. The tree loss re-parameterizes the parameter matrix in order to guarantee that semantically similar classes will have similar parameter vectors. Using simple properties of stochastic gradient descent, we show that the tree loss's generalization error is asymptotically better than the cross entropy loss's. We then validate these theoretical results on synthetic data, image data (CIFAR100, ImageNet), and text data (Twitter).
106,967
106,967
Efficient Bayesian Policy Reuse with a Scalable Observation Model in Deep Reinforcement Learning
Bayesian policy reuse (BPR) is a general policy transfer framework for selecting a source policy from an offline library by inferring the task belief based on some observation signals and a trained observation model. In this paper, we propose an improved BPR method to achieve more efficient policy transfer in deep reinforcement learning (DRL). First, most BPR algorithms use the episodic return as the observation signal that contains limited information and cannot be obtained until the end of an episode. Instead, we employ the state transition sample, which is informative and instantaneous, as the observation signal for faster and more accurate task inference. Second, BPR algorithms usually require numerous samples to estimate the probability distribution of the tabular-based observation model, which may be expensive and even infeasible to learn and maintain, especially when using the state transition sample as the signal. Hence, we propose a scalable observation model based on fitting state transition functions of source tasks from only a small number of samples, which can generalize to any signals observed in the target task. Moreover, we extend the offline-mode BPR to the continual learning setting by expanding the scalable observation model in a plug-and-play fashion, which can avoid negative transfer when faced with new unknown tasks. Experimental results show that our method can consistently facilitate faster and more efficient policy transfer.
106,968
106,968
Persua: A Visual Interactive System to Enhance the Persuasiveness of Arguments in Online Discussion
Persuading people to change their opinions is a common practice in online discussion forums on topics ranging from political campaigns to relationship consultation. Enhancing people's ability to write persuasive arguments could not only practice their critical thinking and reasoning but also contribute to the effectiveness and civility in online communication. It is, however, not an easy task in online discussion settings where written words are the primary communication channel. In this paper, we derived four design goals for a tool that helps users improve the persuasiveness of arguments in online discussions through a survey with 123 online forum users and interviews with five debating experts. To satisfy these design goals, we analyzed and built a labeled dataset of fine-grained persuasive strategies (i.e., logos, pathos, ethos, and evidence) in 164 arguments with high ratings on persuasiveness from ChangeMyView, a popular online discussion forum. We then designed an interactive visual system, Persua, which provides example-based guidance on persuasive strategies to enhance the persuasiveness of arguments. In particular, the system constructs portfolios of arguments based on different persuasive strategies applied to a given discussion topic. It then presents concrete examples based on the difference between the portfolios of user input and high-quality arguments in the dataset. A between-subjects study shows suggestive evidence that Persua encourages users to submit more times for feedback and helps users improve more on the persuasiveness of their arguments than a baseline system. Finally, a set of design considerations was summarized to guide future intelligent systems that improve the persuasiveness in text.
106,969
106,969
DRFLM: Distributionally Robust Federated Learning with Inter-client Noise via Local Mixup
Recently, federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data. Nevertheless, directly applying federated learning to real-world tasks faces two challenges: (1) heterogeneity in the data among different organizations; and (2) data noises inside individual organizations. In this paper, we propose a general framework to solve the above two challenges simultaneously. Specifically, we propose using distributionally robust optimization to mitigate the negative effects caused by data heterogeneity paradigm to sample clients based on a learnable distribution at each iteration. Additionally, we observe that this optimization paradigm is easily affected by data noises inside local clients, which has a significant performance degradation in terms of global model prediction accuracy. To solve this problem, we propose to incorporate mixup techniques into the local training process of federated learning. We further provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability. Furthermore, we conduct empirical studies across different drug discovery tasks, such as ADMET property prediction and drug-target affinity prediction.
106,970
106,970
Tensor-networks for High-order Polynomial Approximation: A Many-body Physics Perspective
We analyze the problem of high-order polynomial approximation from a many-body physics perspective, and demonstrate the descriptive power of entanglement entropy in capturing model capacity and task complexity. Instantiated with a high-order nonlinear dynamics modeling problem, tensor-network models are investigated and exhibit promising modeling advantages. This novel perspective establish a connection between quantum information and functional approximation, which worth further exploration in future research.
106,971
106,971
A Variational Approach to Bayesian Phylogenetic Inference
Bayesian phylogenetic inference is currently done via Markov chain Monte Carlo (MCMC) with simple proposal mechanisms. This hinders exploration efficiency and often requires long runs to deliver accurate posterior estimates. In this paper, we present an alternative approach: a variational framework for Bayesian phylogenetic analysis. We propose combining subsplit Bayesian networks, an expressive graphical model for tree topology distributions, and a structured amortization of the branch lengths over tree topologies for a suitable variational family of distributions. We train the variational approximation via stochastic gradient ascent and adopt gradient estimators for continuous and discrete variational parameters separately to deal with the composite latent space of phylogenetic models. We show that our variational approach provides competitive performance to MCMC, while requiring much less computation due to a more efficient exploration mechanism enabled by variational inference. Experiments on a benchmark of challenging real data Bayesian phylogenetic inference problems demonstrate the effectiveness and efficiency of our methods.
106,972
106,972
Homomorphic Encryption and Federated Learning based Privacy-Preserving CNN Training: COVID-19 Detection Use-Case
Medical data is often highly sensitive in terms of data privacy and security concerns. Federated learning, one type of machine learning techniques, has been started to use for the improvement of the privacy and security of medical data. In the federated learning, the training data is distributed across multiple machines, and the learning process is performed in a collaborative manner. There are several privacy attacks on deep learning (DL) models to get the sensitive information by attackers. Therefore, the DL model itself should be protected from the adversarial attack, especially for applications using medical data. One of the solutions for this problem is homomorphic encryption-based model protection from the adversary collaborator. This paper proposes a privacy-preserving federated learning algorithm for medical data using homomorphic encryption. The proposed algorithm uses a secure multi-party computation protocol to protect the deep learning model from the adversaries. In this study, the proposed algorithm using a real-world medical dataset is evaluated in terms of the model performance.
106,973
106,973
Visual Attention Methods in Deep Learning: An In-Depth Survey
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
106,974
106,974
Cannikin's Law in Tensor Modeling: A Rank Study for Entanglement and Separability in Tensor Complexity and Model Capacity
This study clarifies the proper criteria to assess the modeling capacity of a general tensor model. The work analyze the problem based on the study of tensor ranks, which is not a well-defined quantity for higher order tensors. To process, the author introduces the separability issue to discuss the Cannikin's law of tensor modeling. Interestingly, a connection between entanglement studied in information theory and tensor analysis is established, shedding new light on the theoretical understanding for modeling capacity problems.
106,975
106,975
UFRC: A Unified Framework for Reliable COVID-19 Detection on Crowdsourced Cough Audio
We suggested a unified system with core components of data augmentation, ImageNet-pretrained ResNet-50, cost-sensitive loss, deep ensemble learning, and uncertainty estimation to quickly and consistently detect COVID-19 using acoustic evidence. To increase the model's capacity to identify a minority class, data augmentation and cost-sensitive loss are incorporated (infected samples). In the COVID-19 detection challenge, ImageNet-pretrained ResNet-50 has been found to be effective. The unified framework also integrates deep ensemble learning and uncertainty estimation to integrate predictions from various base classifiers for generalisation and reliability. We ran a series of tests using the DiCOVA2021 challenge dataset to assess the efficacy of our proposed method, and the results show that our method has an AUC-ROC of 85.43 percent, making it a promising method for COVID-19 detection. The unified framework also demonstrates that audio may be used to quickly diagnose different respiratory disorders.
106,976
106,976
A Distributed and Elastic Aggregation Service for Scalable Federated Learning Systems
Federated Learning has promised a new approach to resolve the challenges in machine learning by bringing computation to the data. The popularity of the approach has led to rapid progress in the algorithmic aspects and the emergence of systems capable of simulating Federated Learning. State of art systems in Federated Learning support a single node aggregator that is insufficient to train a large corpus of devices or train larger-sized models. As the model size or the number of devices increase the single node aggregator incurs memory and computation burden while performing fusion tasks. It also faces communication bottlenecks when a large number of model updates are sent to a single node. We classify the workload for the aggregator into categories and propose a new aggregation service for handling each load. Our aggregation service is based on a holistic approach that chooses the best solution depending on the model update size and the number of clients. Our system provides a fault-tolerant, robust and efficient aggregation solution utilizing existing parallel and distributed frameworks. Through evaluation, we show the shortcomings of the state of art approaches and how a single solution is not suitable for all aggregation requirements. We also provide a comparison of current frameworks with our system through extensive experiments.
106,977
106,977
SETTI: A Self-supervised Adversarial Malware Detection Architecture in an IoT Environment
In recent years, malware detection has become an active research topic in the area of Internet of Things (IoT) security. The principle is to exploit knowledge from large quantities of continuously generated malware. Existing algorithms practice available malware features for IoT devices and lack real-time prediction behaviors. More research is thus required on malware detection to cope with real-time misclassification of the input IoT data. Motivated by this, in this paper we propose an adversarial self-supervised architecture for detecting malware in IoT networks, SETTI, considering samples of IoT network traffic that may not be labeled. In the SETTI architecture, we design three self-supervised attack techniques, namely Self-MDS, GSelf-MDS and ASelf-MDS. The Self-MDS method considers the IoT input data and the adversarial sample generation in real-time. The GSelf-MDS builds a generative adversarial network model to generate adversarial samples in the self-supervised structure. Finally, ASelf-MDS utilizes three well-known perturbation sample techniques to develop adversarial malware and inject it over the self-supervised architecture. Also, we apply a defence method to mitigate these attacks, namely adversarial self-supervised training to protect the malware detection architecture against injecting the malicious samples. To validate the attack and defence algorithms, we conduct experiments on two recent IoT datasets: IoT23 and NBIoT. Comparison of the results shows that in the IoT23 dataset, the Self-MDS method has the most damaging consequences from the attacker's point of view by reducing the accuracy rate from 98% to 74%. In the NBIoT dataset, the ASelf-MDS method is the most devastating algorithm that can plunge the accuracy rate from 98% to 77%.
106,978
106,978
FedCau: A Proactive Stop Policy for Communication and Computation Efficient Federated Learning
This paper investigates efficient distributed training of a Federated Learning~(FL) model over a wireless network of wireless devices. The communication iterations of the distributed training algorithm may be substantially deteriorated or even blocked by the effects of the devices' background traffic, packet losses, congestion, or latency. We abstract the communication-computation impacts as an `iteration cost' and propose a cost-aware causal FL algorithm~(FedCau) to tackle this problem. We propose an iteration-termination method that trade-offs the training performance and networking costs. We apply our approach when clients use the slotted-ALOHA, the carrier-sense multiple access with collision avoidance~(CSMA/CA), and the orthogonal frequency-division multiple access~(OFDMA) protocols. We show that, given a total cost budget, the training performance degrades as either the background communication traffic or the dimension of the training problem increases. Our results demonstrate the importance of proactively designing optimal cost-efficient stopping criteria to avoid unnecessary communication-computation costs to achieve only a marginal FL training improvement. We validate our method by training and testing FL over the MNIST dataset. Finally, we apply our approach to existing communication efficient FL methods from the literature, achieving further efficiency. We conclude that cost-efficient stopping criteria are essential for the success of practical FL over wireless networks.
106,979
106,979
TASTEset -- Recipe Dataset and Food Entities Recognition Benchmark
Food Computing is currently a fast-growing field of research. Natural language processing (NLP) is also increasingly essential in this field, especially for recognising food entities. However, there are still only a few well-defined tasks that serve as benchmarks for solutions in this area. We introduce a new dataset -- called \textit{TASTEset} -- to bridge this gap. In this dataset, Named Entity Recognition (NER) models are expected to find or infer various types of entities helpful in processing recipes, e.g.~food products, quantities and their units, names of cooking processes, physical quality of ingredients, their purpose, taste. The dataset consists of 700 recipes with more than 13,000 entities to extract. We provide a few state-of-the-art baselines of named entity recognition models, which show that our dataset poses a solid challenge to existing models. The best model achieved, on average, 0.95 $F_1$ score, depending on the entity type -- from 0.781 to 0.982. We share the dataset and the task to encourage progress on more in-depth and complex information extraction from recipes.
106,980
106,980
Exploiting Multiple EEG Data Domains with Adversarial Learning
Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are highly subject-dependent, and are bound to the equipment and experimental setup used, (i.e. domain). This leads to machine learning models often suffer from poor generalization ability, where they perform significantly worse on real-world data than on the exploited training data. Recent research heavily focuses on cross-subject and cross-session transfer learning frameworks to reduce domain calibration efforts for EEG signals. We argue that multi-source learning via learning domain-invariant representations from multiple data-sources is a viable alternative, as the available data from different EEG data-source domains (e.g., subjects, sessions, experimental setups) grow massively. We propose an adversarial inference approach to learn data-source invariant representations in this context, enabling multi-source learning for EEG-based brain-computer interfaces. We unify EEG recordings from different source domains (i.e., emotion recognition datasets SEED, SEED-IV, DEAP, DREAMER), and demonstrate the feasibility of our invariant representation learning approach in suppressing data-source-relevant information leakage by 35% while still achieving stable EEG-based emotion classification performance.
106,981
106,981
Approaching sales forecasting using recurrent neural networks and transformers
Accurate and fast demand forecast is one of the hot topics in supply chain for enabling the precise execution of the corresponding downstream processes (inbound and outbound planning, inventory placement, network planning, etc). We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques and the Corporaci\'on Favorita data set, published as part of a Kaggle competition. Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort. Additionally, we describe a training trick for making the model more time independent and hence improving generalization over time. The proposed solution achieves a RMSLE of around 0.54, which is competitive with other more specific solutions to the problem proposed in the Kaggle competition.
106,982
106,982
Graph-incorporated Latent Factor Analysis for High-dimensional and Sparse Matrices
A High-dimensional and sparse (HiDS) matrix is frequently encountered in a big data-related application like an e-commerce system or a social network services system. To perform highly accurate representation learning on it is of great significance owing to the great desire of extracting latent knowledge and patterns from it. Latent factor analysis (LFA), which represents an HiDS matrix by learning the low-rank embeddings based on its observed entries only, is one of the most effective and efficient approaches to this issue. However, most existing LFA-based models perform such embeddings on a HiDS matrix directly without exploiting its hidden graph structures, thereby resulting in accuracy loss. To address this issue, this paper proposes a graph-incorporated latent factor analysis (GLFA) model. It adopts two-fold ideas: 1) a graph is constructed for identifying the hidden high-order interaction (HOI) among nodes described by an HiDS matrix, and 2) a recurrent LFA structure is carefully designed with the incorporation of HOI, thereby improving the representa-tion learning ability of a resultant model. Experimental results on three real-world datasets demonstrate that GLFA outperforms six state-of-the-art models in predicting the missing data of an HiDS matrix, which evidently supports its strong representation learning ability to HiDS data.
106,983
106,983
A Multi-Metric Latent Factor Model for Analyzing High-Dimensional and Sparse data
High-dimensional and sparse (HiDS) matrices are omnipresent in a variety of big data-related applications. Latent factor analysis (LFA) is a typical representation learning method that extracts useful yet latent knowledge from HiDS matrices via low-rank approximation. Current LFA-based models mainly focus on a single-metric representation, where the representation strategy designed for the approximation Loss function, is fixed and exclusive. However, real-world HiDS matrices are commonly heterogeneous and inclusive and have diverse underlying patterns, such that a single-metric representation is most likely to yield inferior performance. Motivated by this, we in this paper propose a multi-metric latent factor (MMLF) model. Its main idea is two-fold: 1) two vector spaces and three Lp-norms are simultaneously employed to develop six variants of LFA model, each of which resides in a unique metric representation space, and 2) all the variants are ensembled with a tailored, self-adaptive weighting strategy. As such, our proposed MMLF enjoys the merits originated from a set of disparate metric spaces all at once, achieving the comprehensive and unbiased representation of HiDS matrices. Theoretical study guarantees that MMLF attains a performance gain. Extensive experiments on eight real-world HiDS datasets, spanning a wide range of industrial and science domains, verify that our MMLF significantly outperforms ten state-of-the-art, shallow and deep counterparts.
106,984
106,984
Beyond L1: Faster and Better Sparse Models with skglm
We propose a new fast algorithm to estimate any sparse generalized linear model with convex or non-convex separable penalties. Our algorithm is able to solve problems with millions of samples and features in seconds, by relying on coordinate descent, working sets and Anderson acceleration. It handles previously unaddressed models, and is extensively shown to improve state-of-art algorithms. We provide a flexible, scikit-learn compatible package, which easily handles customized datafits and penalties.
106,985
106,985
Optimizing differential equations to fit data and predict outcomes
Many scientific problems focus on observed patterns of change or on how to design a system to achieve particular dynamics. Those problems often require fitting differential equation models to target trajectories. Fitting such models can be difficult because each evaluation of the fit must calculate the distance between the model and target patterns at numerous points along a trajectory. The gradient of the fit with respect to the model parameters can be challenging. Recent technical advances in automatic differentiation through numerical differential equation solvers potentially change the fitting process into a relatively easy problem, opening up new possibilities to study dynamics. However, application of the new tools to real data may fail to achieve a good fit. This article illustrates how to overcome a variety of common challenges, using the classic ecological data for oscillations in hare and lynx populations. Models include simple ordinary differential equations (ODEs) and neural ordinary differential equations (NODEs), which use artificial neural networks to estimate the derivatives of differential equation systems. Comparing the fits obtained with ODEs versus NODEs, representing small and large parameter spaces, and changing the number of variable dimensions provide insight into the geometry of the observed and model trajectories. To analyze the quality of the models for predicting future observations, a Bayesian-inspired preconditioned stochastic gradient Langevin dynamics (pSGLD) calculation of the posterior distribution of predicted model trajectories clarifies the tendency for various models to underfit or overfit the data. Coupling fitted differential equation systems with pSGLD sampling provides a powerful way to study the properties of optimization surfaces, raising an analogy with mutation-selection dynamics on fitness landscapes.
106,986
106,986
What If: Generating Code to Answer Simulation Questions
Many texts, especially in chemistry and biology, describe complex processes. We focus on texts that describe a chemical reaction process and questions that ask about the process's outcome under different environmental conditions. To answer questions about such processes, one needs to understand the interactions between the different entities involved in the process and to simulate their state transitions during the process execution under different conditions. A state transition is defined as the memory modification the program does to the variables during the execution. We hypothesize that generating code and executing it to simulate the process will allow answering such questions. We, therefore, define a domain-specific language (DSL) to represent processes. We contribute to the community a unique dataset curated by chemists and annotated by computer scientists. The dataset is composed of process texts, simulation questions, and their corresponding computer codes represented by the DSL.We propose a neural program synthesis approach based on reinforcement learning with a novel state-transition semantic reward. The novel reward is based on the run-time semantic similarity between the predicted code and the reference code. This allows simulating complex process transitions and thus answering simulation questions. Our approach yields a significant boost in accuracy for simulation questions: 88\% accuracy as opposed to 83\% accuracy of the state-of-the-art neural program synthesis approaches and 54\% accuracy of state-of-the-art end-to-end text-based approaches.
106,987
106,987
nigam@COLIEE-22: Legal Case Retrieval and Entailment using Cascading of Lexical and Semantic-based models
This paper describes our submission to the Competition on Legal Information Extraction/Entailment 2022 (COLIEE-2022) workshop on case law competition for tasks 1 and 2. Task 1 is a legal case retrieval task, which involves reading a new case and extracting supporting cases from the provided case law corpus to support the decision. Task 2 is the legal case entailment task, which involves the identification of a paragraph from existing cases that entails the decision in a relevant case. We employed the neural models Sentence-BERT and Sent2Vec for semantic understanding and the traditional retrieval model BM25 for exact matching in both tasks. As a result, our team ("nigam") ranked 5th among all the teams in Tasks 1 and 2. Experimental results indicate that the traditional retrieval model BM25 still outperforms neural network-based models.
106,988
106,988
IIFNet: A Fusion based Intelligent Service for Noisy Preamble Detection in 6G
In this article, we present our vision of preamble detection in a physical random access channel for next-generation (Next-G) networks using machine learning techniques. Preamble detection is performed to maintain communication and synchronization between devices of the Internet of Everything (IoE) and next-generation nodes. Considering the scalability and traffic density, Next-G networks have to deal with preambles corrupted by noise due to channel characteristics or environmental constraints. We show that when injecting 15% random noise, the detection performance degrades to 48%. We propose an informative instance-based fusion network (IIFNet) to cope with random noise and to improve detection performance, simultaneously. A novel sampling strategy for selecting informative instances from feature spaces has also been explored to improve detection performance. The proposed IIFNet is tested on a real dataset for preamble detection that was collected with the help of a reputable commercial company.
106,989
106,989
Alternating Channel Estimation and Prediction for Cell-Free mMIMO with Channel Aging: A Deep Learning Based Scheme
In large scale dynamic wireless networks, the amount of overhead caused by channel estimation (CE) is becoming one of the main performance bottlenecks. This is due to the large number users whose channels should be estimated, the user mobility, and the rapid channel change caused by the usage of the high-frequency spectrum (e.g. millimeter wave). In this work, we propose a new hybrid channel estimation/prediction (CEP) scheme to reduce overhead in time-division duplex (TDD) wireless cell-free massive multiple-input-multiple-output (mMIMO) systems. The scheme proposes sending a pilot signal from each user only once in a given number (window) of coherence intervals (CIs). Then minimum mean-square error (MMSE) estimation is used to estimate the channel of this CI, while a deep neural network (DNN) is used to predict the channels of the remaining CIs in the window. The DNN exploits the temporal correlation between the consecutive CIs and the received pilot signals to improve the channel prediction accuracy. By doing so, CE overhead is reduced by at least 50 percent at the expense of negligible CE error for practical user mobility settings. Consequently, the proposed CEP scheme improves the spectral efficiency compared to the conventional MMSE CE approach, especially when the number of users is large, which is demonstrated numerically.
106,990
106,990
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System
Integration of Machine Learning (ML) components in critical applications introduces novel challenges for software certification and verification. New safety standards and technical guidelines are under development to support the safety of ML-based systems, e.g., ISO 21448 SOTIF for the automotive domain and the Assurance of Machine Learning for use in Autonomous Systems (AMLAS) framework. SOTIF and AMLAS provide high-level guidance but the details must be chiseled out for each specific case. We report results from an industry-academia collaboration on safety assurance of SMIRK, an ML-based pedestrian automatic emergency braking demonstrator running in an industry-grade simulator. We present the outcome of applying AMLAS on SMIRK for a minimalistic operational design domain, i.e., a complete safety case for its integrated ML-based component. Finally, we report lessons learned and provide both SMIRK and the safety case under an open-source licence for the research community to reuse.
106,991
106,991
Assessing Differentially Private Variational Autoencoders under Membership Inference
We present an approach to quantify and compare the privacy-accuracy trade-off for differentially private Variational Autoencoders. Our work complements previous work in two aspects. First, we evaluate the the strong reconstruction MI attack against Variational Autoencoders under differential privacy. Second, we address the data scientist's challenge of setting privacy parameter epsilon, which steers the differential privacy strength and thus also the privacy-accuracy trade-off. In our experimental study we consider image and time series data, and three local and central differential privacy mechanisms. We find that the privacy-accuracy trade-offs strongly depend on the dataset and model architecture. We do rarely observe favorable privacy-accuracy trade-off for Variational Autoencoders, and identify a case where LDP outperforms CDP.
106,992
106,992
Polynomial-time Sparse Deconvolution
How can a probability measure be recovered with sparse support from its generalized moments? This problem, called sparse deconvolution, has been the focus of research in mathematics, theoretical computer science, and neural computing. However, there is no polynomial-time algorithm for the recovery. The best algorithm requires $O\left(\text{dimension}^{\text{poly}(1/\epsilon)}\right)$ for $\epsilon$-accurate recovery. We propose the first poly-time recovery method from carefully designed moments that requires $O\left(\text{dimension}^4\log(1/\epsilon)/\epsilon^2\right)$ computations for an $\epsilon$-accurate recovery. This method relies on learning a planted two-layer neural network with two-dimensional inputs, a finite width, and zero-one activation. For learning such networks, we establish the first poly-time complexity, and demonstrate its application in sparse deconvolution.
106,993
106,993
Accelerated MRI With Deep Linear Convolutional Transform Learning
Recent studies show that deep learning (DL) based MRI reconstruction outperforms conventional methods, such as parallel imaging and compressed sensing (CS), in multiple applications. Unlike CS that is typically implemented with pre-determined linear representations for regularization, DL inherently uses a non-linear representation learned from a large database. Another line of work uses transform learning (TL) to bridge the gap between these two approaches by learning linear representations from data. In this work, we combine ideas from CS, TL and DL reconstructions to learn deep linear convolutional transforms as part of an algorithm unrolling approach. Using end-to-end training, our results show that the proposed technique can reconstruct MR images to a level comparable to DL methods, while supporting uniform undersampling patterns unlike conventional CS methods. Our proposed method relies on convex sparse image reconstruction with linear representation at inference time, which may be beneficial for characterizing robustness, stability and generalizability.
106,994
106,994
StyleT2F: Generating Human Faces from Textual Description Using StyleGAN2
AI-driven image generation has improved significantly in recent years. Generative adversarial networks (GANs), like StyleGAN, are able to generate high-quality realistic data and have artistic control over the output, as well. In this work, we present StyleT2F, a method of controlling the output of StyleGAN2 using text, in order to be able to generate a detailed human face from textual description. We utilize StyleGAN's latent space to manipulate different facial features and conditionally sample the required latent code, which embeds the facial features mentioned in the input text. Our method proves to capture the required features correctly and shows consistency between the input text and the output images. Moreover, our method guarantees disentanglement on manipulating a wide range of facial features that sufficiently describes a human face.
106,995
106,995
Towards Comprehensive Testing on the Robustness of Cooperative Multi-agent Reinforcement Learning
While deep neural networks (DNNs) have strengthened the performance of cooperative multi-agent reinforcement learning (c-MARL), the agent policy can be easily perturbed by adversarial examples. Considering the safety critical applications of c-MARL, such as traffic management, power management and unmanned aerial vehicle control, it is crucial to test the robustness of c-MARL algorithm before it was deployed in reality. Existing adversarial attacks for MARL could be used for testing, but is limited to one robustness aspects (e.g., reward, state, action), while c-MARL model could be attacked from any aspect. To overcome the challenge, we propose MARLSafe, the first robustness testing framework for c-MARL algorithms. First, motivated by Markov Decision Process (MDP), MARLSafe consider the robustness of c-MARL algorithms comprehensively from three aspects, namely state robustness, action robustness and reward robustness. Any c-MARL algorithm must simultaneously satisfy these robustness aspects to be considered secure. Second, due to the scarceness of c-MARL attack, we propose c-MARL attacks as robustness testing algorithms from multiple aspects. Experiments on \textit{SMAC} environment reveals that many state-of-the-art c-MARL algorithms are of low robustness in all aspect, pointing out the urgent need to test and enhance robustness of c-MARL algorithms.
106,996
106,996
Unsupervised Cross-Task Generalization via Retrieval Augmentation
Humans can perform unseen tasks by recalling relevant skills that are acquired previously and then generalizing them to the target tasks, even if there is no supervision at all. In this paper, we aim to improve such cross-task generalization ability of massive multi-task language models such as T0 (Sanh et al., 2021) in an unsupervised setting. We propose a retrieval-augmentation method named ReCross that takes a few unlabelled examples as queries to retrieve a small subset of upstream data and uses them to update the multi-task model for better generalization. Our empirical results show that the proposed ReCross consistently outperforms non-retrieval baselines by a significant margin.
106,997
106,997
Wound Severity Classification using Deep Neural Network
The classification of wound severity is a critical step in wound diagnosis. An effective classifier can help wound professionals categorize wound conditions more quickly and affordably, allowing them to choose the best treatment option. This study used wound photos to construct a deep neural network-based wound severity classifier that classified them into one of three classes: green, yellow, or red. The green class denotes wounds still in the early stages of healing and are most likely to recover with adequate care. Wounds in the yellow category require more attention and treatment than those in the green category. Finally, the red class denotes the most severe wounds that require prompt attention and treatment. A dataset containing different types of wound images is designed with the help of wound specialists. Nine deep learning models are used with applying the concept of transfer learning. Several stacked models are also developed by concatenating these transfer learning models. The maximum accuracy achieved on multi-class classification is 68.49%. In addition, we achieved 78.79%, 81.40%, and 77.57% accuracies on green vs. yellow, green vs. red, and yellow vs. red classifications for binary classifications.
106,998
106,998
An Extendable, Efficient and Effective Transformer-based Object Detector
Transformers have been widely used in numerous vision problems especially for visual recognition and detection. Detection transformers are the first fully end-to-end learning systems for object detection, while vision transformers are the first fully transformer-based architecture for image classification. In this paper, we integrate Vision and Detection Transformers (ViDT) to construct an effective and efficient object detector. ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector, followed by a computationally efficient transformer decoder that exploits multi-scale features and auxiliary techniques essential to boost the detection performance without much increase in computational load. In addition, we extend it to ViDT+ to support joint-task learning for object detection and instance segmentation. Specifically, we attach an efficient multi-scale feature fusion layer and utilize two more auxiliary training losses, IoU-aware loss and token labeling loss. Extensive evaluation results on the Microsoft COCO benchmark dataset demonstrate that ViDT obtains the best AP and latency trade-off among existing fully transformer-based object detectors, and its extended ViDT+ achieves 53.2AP owing to its high scalability for large models. The source code and trained models are available at https://github.com/naver-ai/vidt.
106,999
106,999
Fair Classification under Covariate Shift and Missing Protected Attribute -- an Investigation using Related Features
This study investigated the problem of fair classification under Covariate Shift and missing protected attribute using a simple approach based on the use of importance-weights to handle covariate-shift and, Related Features arXiv:2104.14537 to handle missing protected attribute.