Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
106,300
106,300
Data-Centric Green AI: An Exploratory Empirical Study
With the growing availability of large-scale datasets, and the popularization of affordable storage and computational capabilities, the energy consumed by AI is becoming a growing concern. To address this issue, in recent years, studies have focused on demonstrating how AI energy efficiency can be improved by tuning the model training strategy. Nevertheless, how modifications applied to datasets can impact the energy consumption of AI is still an open question. To fill this gap, in this exploratory study, we evaluate if data-centric approaches can be utilized to improve AI energy efficiency. To achieve our goal, we conduct an empirical experiment, executed by considering 6 different AI algorithms, a dataset comprising 5,574 data points, and two dataset modifications (number of data points and number of features). Our results show evidence that, by exclusively conducting modifications on datasets, energy consumption can be drastically reduced (up to 92.16%), often at the cost of a negligible or even absent accuracy decline. As additional introductory results, we demonstrate how, by exclusively changing the algorithm used, energy savings up to two orders of magnitude can be achieved. In conclusion, this exploratory investigation empirically demonstrates the importance of applying data-centric techniques to improve AI energy efficiency. Our results call for a research agenda that focuses on data-centric techniques, to further enable and democratize Green AI.
106,301
106,301
Walk this Way! Entity Walks and Property Walks for RDF2vec
RDF2vec is a knowledge graph embedding mechanism which first extracts sequences from knowledge graphs by performing random walks, then feeds those into the word embedding algorithm word2vec for computing vector representations for entities. In this poster, we introduce two new flavors of walk extraction coined e-walks and p-walks, which put an emphasis on the structure or the neighborhood of an entity respectively, and thereby allow for creating embeddings which focus on similarity or relatedness. By combining the walk strategies with order-aware and classic RDF2vec, as well as CBOW and skip-gram word2vec embeddings, we conduct a preliminary evaluation with a total of 12 RDF2vec variants.
106,302
106,302
A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Deep learning models for medical image segmentation can fail unexpectedly and spectacularly for pathological cases and for images acquired at different centers than those used for training, with labeling errors that violate expert knowledge about the anatomy and the intensity distribution of the regions to be segmented. Such errors undermine the trustworthiness of deep learning models developed for medical image segmentation. Mechanisms with a fallback method for detecting and correcting such failures are essential for safely translating this technology into clinics and are likely to be a requirement of future regulations on artificial intelligence (AI). Here, we propose a principled trustworthy AI theoretical framework and a practical system that can augment any backbone AI system using a fallback method and a fail-safe mechanism based on Dempster-Shafer theory. Our approach relies on an actionable definition of trustworthy AI. Our method automatically discards the voxel-level labeling predicted by the backbone AI that are likely to violate expert knowledge and relies on a fallback atlas-based segmentation method for those voxels. We demonstrate the effectiveness of the proposed trustworthy AI approach on the largest reported annotated dataset of fetal T2w MRI consisting of 540 manually annotated fetal brain 3D MRIs with neurotypical or abnormal brain development and acquired from 13 sources of data across 6 countries. We show that our trustworthy AI method improves the robustness of a state-of-the-art backbone AI for fetal brain MRI segmentation on MRIs acquired across various centers and for fetuses with various brain abnormalities.
106,303
106,303
How Do Graph Networks Generalize to Large and Diverse Molecular Systems?
The predominant method of demonstrating progress of atomic graph neural networks are benchmarks on small and limited datasets. The implicit hypothesis behind this approach is that progress on these narrow datasets generalize to the large diversity of chemistry. This generalizability would be very helpful for research, but currently remains untested. In this work we test this assumption by identifying four aspects of complexity in which many datasets are lacking: 1. Chemical diversity (number of different elements), 2. system size (number of atoms per sample), 3. dataset size (number of data samples), and 4. domain shift (similarity of the training and test set). We introduce multiple subsets of the large Open Catalyst 2020 (OC20) dataset to independently investigate each of these aspects. We then perform 21 ablation studies and sensitivity analyses on 9 datasets testing both previously proposed and new model enhancements. We find that some improvements are consistent between datasets, but many are not and some even have opposite effects. Based on this analysis, we identify a smaller dataset that correlates well with the full OC20 dataset, and propose the GemNet-OC model, which outperforms the previous state-of-the-art on OC20 by 16%, while reducing training time by a factor of 10. Overall, our findings challenge the common belief that graph neural networks work equally well independent of dataset size and diversity, and suggest that caution must be exercised when making generalizations based on narrow datasets.
106,304
106,304
Reinforcement Learning Agents in Colonel Blotto
Models and games are simplified representations of the world. There are many different kinds of models, all differing in complexity and which aspect of the world they allow us to further our understanding of. In this paper we focus on a specific instance of agent-based models, which uses reinforcement learning (RL) to train the agent how to act in its environment. Reinforcement learning agents are usually also Markov processes, which is another type of model that can be used. We test this reinforcement learning agent in a Colonel Blotto environment1, and measure its performance against Random agents as its opponent. We find that the RL agent handily beats a single opponent, and still performs quite well when the number of opponents are increased. We also analyze the RL agent and look at what strategies it has arrived by looking at the actions that it has given the highest and lowest Q-values. Interestingly, the optimal strategy for playing multiple opponents is almost the complete opposite of the optimal strategy for playing a single opponent.
106,305
106,305
Classification of NEQR Processed Classical Images using Quantum Neural Networks (QNN)
A quantum neural network (QNN) is interpreted today as any quantum circuit with trainable continuous parameters. This work builds on previous works by the authors and addresses QNN for image classification with Novel Enhanced Quantum Representation of (NEQR) processed classical data where Principal component analysis (PCA) and Projected Quantum Kernel features (PQK) were investigated previously by the authors as a path to quantum advantage for the same classical dataset. For each of these cases the Fashion-MNIST dataset was downscaled using PCA to convert into quantum data where the classical NN easily outperformed the QNN. However, we demonstrated quantum advantage by using PQK where quantum models achieved more than ~90% accuracy surpassing their classical counterpart on the same training dataset as in the first case. In this current work, we use the same dataset fed into a QNN and compare that with performance of a classical NN model. We built an NEQR model circuit to pre-process the same data and feed the images into the QNN. Our results showed marginal improvements (only about ~5.0%) where the QNN performance with NEQR exceeded the performance of QNN without NEQR. We conclude that given the computational cost and the massive circuit depth associated with running NEQR, the advantage offered by this specific Quantum Image Processing (QIMP) algorithm is questionable at least for classical image dataset. No actual quantum computing hardware platform exists today that can support the circuit depth needed to run NEQR even for the reduced image sizes of our toy classical dataset.
106,306
106,306
Dimensionality Expansion and Transfer Learning for Next Generation Energy Management Systems
Electrical management systems (EMS) are playing a central role in enabling energy savings. They can be deployed within an everyday household where they monitor and manage appliances and help residents be more energy efficient and subsequently also more economical. One of they key functionalities of EMS is to automatically detect and identify appliances within a household through the process of load monitoring. In this paper, we propose a new transfer learning approach for building EMS (BEMS) and study the trade-offs in terms of numbers of samples and target classes in adapting a backbone model during the transfer process. We also perform a first time analysis of feature expansion through video-like transformation of time series data for device classification in non intrusive load monitoring (NILM) and propose a deep learning architecture enabling accurate appliance identification. We examine the relative performance of our method on 5 different representative low-frequency datasets and show that our method performs with an average F1 score of 0.88 on these datasets.
106,307
106,307
A Transformer-Based Contrastive Learning Approach for Few-Shot Sign Language Recognition
Sign language recognition from sequences of monocular images or 2D poses is a challenging field, not only due to the difficulty to infer 3D information from 2D data, but also due to the temporal relationship between the sequences of information. Additionally, the wide variety of signs and the constant need to add new ones on production environments makes it infeasible to use traditional classification techniques. We propose a novel Contrastive Transformer-based model, which demonstrate to learn rich representations from body key points sequences, allowing better comparison between vector embedding. This allows us to apply these techniques to perform one-shot or few-shot tasks, such as classification and translation. The experiments showed that the model could generalize well and achieved competitive results for sign classes never seen in the training process.
106,308
106,308
Federated Self-supervised Speech Representations: Are We There Yet?
The ubiquity of microphone-enabled devices has lead to large amounts of unlabelled audio data being produced at the edge. The integration of self-supervised learning (SSL) and federated learning (FL) into one coherent system can potentially offer data privacy guarantees while also advancing the quality and robustness of speech representations. In this paper, we provide a first-of-its-kind systematic study of the feasibility and complexities for training speech SSL models under FL scenarios from the perspective of algorithms, hardware, and systems limits. Despite the high potential of their combination, we find existing system constraints and algorithmic behaviour make SSL and FL systems nearly impossible to build today. Yet critically, our results indicate specific performance bottlenecks and research opportunities that would allow this situation to be reversed. While our analysis suggests that, given existing trends in hardware, hybrid SSL and FL speech systems will not be viable until 2027. We believe this study can act as a roadmap to accelerate work towards reaching this milestone much earlier.
106,309
106,309
High Probability Bounds for a Class of Nonconvex Algorithms with AdaGrad Stepsize
In this paper, we propose a new, simplified high probability analysis of AdaGrad for smooth, non-convex problems. More specifically, we focus on a particular accelerated gradient (AGD) template (Lan, 2020), through which we recover the original AdaGrad and its variant with averaging, and prove a convergence rate of $\mathcal O (1/ \sqrt{T})$ with high probability without the knowledge of smoothness and variance. We use a particular version of Freedman's concentration bound for martingale difference sequences (Kakade & Tewari, 2008) which enables us to achieve the best-known dependence of $\log (1 / \delta )$ on the probability margin $\delta$. We present our analysis in a modular way and obtain a complementary $\mathcal O (1 / T)$ convergence rate in the deterministic setting. To the best of our knowledge, this is the first high probability result for AdaGrad with a truly adaptive scheme, i.e., completely oblivious to the knowledge of smoothness and uniform variance bound, which simultaneously has best-known dependence of $\log( 1/ \delta)$. We further prove noise adaptation property of AdaGrad under additional noise assumptions.
106,310
106,310
KNN-Diffusion: Image Generation via Large-Scale Retrieval
While the availability of massive Text-Image datasets is shown to be extremely useful in training large-scale generative models (e.g. DDPMs, Transformers), their output typically depends on the quality of both the input text, as well as the training dataset. In this work, we show how large-scale retrieval methods, in particular efficient K-Nearest-Neighbors (KNN) search, can be used in order to train a model to adapt to new samples. Learning to adapt enables several new capabilities. Sifting through billions of records at inference time is extremely efficient and can alleviate the need to train or memorize an adequately large generative model. Additionally, fine-tuning trained models to new samples can be achieved by simply adding them to the table. Rare concepts, even without any presence in the training set, can be then leveraged during test time without any modification to the generative model. Our diffusion-based model trains on images only, by leveraging a joint Text-Image multi-modal metric. Compared to baseline methods, our generations achieve state of the art results both in human evaluations as well as with perceptual scores when tested on a public multimodal dataset of natural images, as well as on a collected dataset of 400 million Stickers.
106,311
106,311
PAnDR: Fast Adaptation to New Environments from Offline Experiences via Decoupling Policy and Environment Representations
Deep Reinforcement Learning (DRL) has been a promising solution to many complex decision-making problems. Nevertheless, the notorious weakness in generalization among environments prevent widespread application of DRL agents in real-world scenarios. Although advances have been made recently, most prior works assume sufficient online interaction on training environments, which can be costly in practical cases. To this end, we focus on an offline-training-online-adaptation setting, in which the agent first learns from offline experiences collected in environments with different dynamics and then performs online policy adaptation in environments with new dynamics. In this paper, we propose Policy Adaptation with Decoupled Representations (PAnDR) for fast policy adaptation. In offline training phase, the environment representation and policy representation are learned through contrastive learning and policy recovery, respectively. The representations are further refined by mutual information optimization to make them more decoupled and complete. With learned representations, a Policy-Dynamics Value Function (PDVF) [Raileanu et al., 2020] network is trained to approximate the values for different combinations of policies and environments from offline experiences. In online adaptation phase, with the environment context inferred from few experiences collected in new environments, the policy is optimized by gradient ascent with respect to the PDVF. Our experiments show that PAnDR outperforms existing algorithms in several representative policy adaptation problems.
106,312
106,312
Sub-Task Decomposition Enables Learning in Sequence to Sequence Tasks
The field of Natural Language Processing has experienced a dramatic leap in capabilities with the recent introduction of huge Language Models. Despite this success, natural language problems that involve several compounded steps are still practically unlearnable, even by the largest LMs. This complies with experimental failures for end-to-end learning of composite problems that were demonstrated in a variety of domains. An effective mitigation is to introduce intermediate supervision for solving sub-tasks of the compounded problem. Recently, several works have demonstrated high gains by taking a straightforward approach for incorporating intermediate supervision in compounded natural language problems: the sequence-to-sequence LM is fed with an augmented input, in which the decomposed tasks' labels are simply concatenated to the original input. In this paper, we prove a positive learning result that motivates these recent efforts. We show that when concatenating intermediate supervision to the input and training a sequence-to-sequence model on this modified input, unlearnable composite problems can become learnable. We show that this is true for any family of tasks which on the one hand, are unlearnable, and on the other hand, can be decomposed into a polynomial number of simple sub-tasks, each of which depends only on O(1) previous sub-task results. Beyond motivating contemporary empirical efforts for incorporating intermediate supervision in sequence-to-sequence language models, our positive theoretical result is the first of its kind in the landscape of results on the benefits of intermediate supervision for neural-network learning: Until now, all theoretical results on the subject are negative, i.e., show cases where learning is impossible without intermediate supervision, while our result is positive, showing that learning is facilitated in the presence of intermediate supervision.
106,313
106,313
Efficient Bayesian Network Structure Learning via Parameterized Local Search on Topological Orderings
In Bayesian Network Structure Learning (BNSL), one is given a variable set and parent scores for each variable and aims to compute a DAG, called Bayesian network, that maximizes the sum of parent scores, possibly under some structural constraints. Even very restricted special cases of BNSL are computationally hard, and, thus, in practice heuristics such as local search are used. A natural approach for a local search algorithm is a hill climbing strategy, where one replaces a given BNSL solution by a better solution within some pre-defined neighborhood as long as this is possible. We study ordering-based local search, where a solution is described via a topological ordering of the variables. We show that given such a topological ordering, one can compute an optimal DAG whose ordering is within inversion distance $r$ in subexponential FPT time; the parameter $r$ allows to balance between solution quality and running time of the local search algorithm. This running time bound can be achieved for BNSL without structural constraints and for all structural constraints that can be expressed via a sum of weights that are associated with each parent set. We also introduce a related distance called `window inversions distance' and show that the corresponding local search problem can also be solved in subexponential FPT time for the parameter $r$. For two further natural modification operations on the variable orderings, we show that algorithms with an FPT time for $r$ are unlikely. We also outline the limits of ordering-based local search by showing that it cannot be used for common structural constraints on the moralized graph of the network.
106,314
106,314
Question Generation for Reading Comprehension Assessment by Modeling How and What to Ask
Reading is integral to everyday life, and yet learning to read is a struggle for many young learners. During lessons, teachers can use comprehension questions to increase engagement, test reading skills, and improve retention. Historically such questions were written by skilled teachers, but recently language models have been used to generate comprehension questions. However, many existing Question Generation (QG) systems focus on generating literal questions from the text, and have no way to control the type of the generated question. In this paper, we study QG for reading comprehension where inferential questions are critical and extractive techniques cannot be used. We propose a two-step model (HTA-WTA) that takes advantage of previous datasets, and can generate questions for a specific targeted comprehension skill. We propose a new reading comprehension dataset that contains questions annotated with story-based reading comprehension skills (SBRCS), allowing for a more complete reader assessment. Across several experiments, our results show that HTA-WTA outperforms multiple strong baselines on this new dataset. We show that the HTA-WTA model tests for strong SCRS by asking deep inferential questions.
106,315
106,315
A survey on recently proposed activation functions for Deep Learning
Artificial neural networks (ANN), typically referred to as neural networks, are a class of Machine Learning algorithms and have achieved widespread success, having been inspired by the biological structure of the human brain. Neural networks are inherently powerful due to their ability to learn complex function approximations from data. This generalization ability has been able to impact multidisciplinary areas involving image recognition, speech recognition, natural language processing, and others. Activation functions are a crucial sub-component of neural networks. They define the output of a node in the network given a set of inputs. This survey discusses the main concepts of activation functions in neural networks, including; a brief introduction to deep neural networks, a summary of what are activation functions and how they are used in neural networks, their most common properties, the different types of activation functions, some of the challenges, limitations, and alternative solutions faced by activation functions, concluding with the final remarks.
106,316
106,316
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Neural network classifiers can largely rely on simple spurious features, such as backgrounds, to make predictions. However, even in these cases, we show that they still often learn core features associated with the desired attributes of the data, contrary to recent findings. Inspired by this insight, we demonstrate that simple last layer retraining can match or outperform state-of-the-art approaches on spurious correlation benchmarks, but with profoundly lower complexity and computational expenses. Moreover, we show that last layer retraining on large ImageNet-trained models can also significantly reduce reliance on background and texture information, improving robustness to covariate shift, after only minutes of training on a single GPU.
106,317
106,317
Marrying Fairness and Explainability in Supervised Learning
Machine learning algorithms that aid human decision-making may inadvertently discriminate against certain protected groups. We formalize direct discrimination as a direct causal effect of the protected attributes on the decisions, while induced discrimination as a change in the causal influence of non-protected features associated with the protected attributes. The measurements of marginal direct effect (MDE) and SHapley Additive exPlanations (SHAP) reveal that state-of-the-art fair learning methods can induce discrimination via association or reverse discrimination in synthetic and real-world datasets. To inhibit discrimination in algorithmic systems, we propose to nullify the influence of the protected attribute on the output of the system, while preserving the influence of remaining features. We introduce and study post-processing methods achieving such objectives, finding that they yield relatively high model accuracy, prevent direct discrimination, and diminishes various disparity measures, e.g., demographic disparity.
106,318
106,318
Guaranteed Bounds for Posterior Inference in Universal Probabilistic Programming
We propose a new method to approximate the posterior distribution of probabilistic programs by means of computing guaranteed bounds. The starting point of our work is an interval-based trace semantics for a recursive, higher-order probabilistic programming language with continuous distributions. Taking the form of (super-/subadditive) measures, these lower/upper bounds are non-stochastic and provably correct: using the semantics, we prove that the actual posterior of a given program is sandwiched between the lower and upper bounds (soundness); moreover the bounds converge to the posterior (completeness). As a practical and sound approximation, we introduce a weight-aware interval type system, which automatically infers interval bounds on not just the return value but also weight of program executions, simultaneously. We have built a tool implementation, called GuBPI, which automatically computes these posterior lower/upper bounds. Our evaluation on examples from the literature shows that the bounds are useful, and can even be used to recognise wrong outputs from stochastic posterior inference procedures.
106,319
106,319
Simple and Effective Synthesis of Indoor 3D Scenes
We study the problem of synthesizing immersive 3D indoor scenes from one or more images. Our aim is to generate high-resolution images and videos from novel viewpoints, including viewpoints that extrapolate far beyond the input images while maintaining 3D consistency. Existing approaches are highly complex, with many separately trained stages and components. We propose a simple alternative: an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images. On the Matterport3D and RealEstate10K datasets, our approach significantly outperforms prior work when evaluated by humans, as well as on FID scores. Further, we show that our model is useful for generative data augmentation. A vision-and-language navigation (VLN) agent trained with trajectories spatially-perturbed by our model improves success rate by up to 1.5% over a state of the art baseline on the R2R benchmark. Our code will be made available to facilitate generative data augmentation and applications to downstream robotics and embodied AI tasks.
106,320
106,320
LilNetX: Lightweight Networks with EXtreme Model Compression and Structured Sparsification
We introduce LilNetX, an end-to-end trainable technique for neural networks that enables learning models with specified accuracy-rate-computation trade-off. Prior works approach these problems one at a time and often require post-processing or multistage training which become less practical and do not scale very well for large datasets or architectures. Our method constructs a joint training objective that penalizes the self-information of network parameters in a reparameterized latent space to encourage small model size while also introducing priors to increase structured sparsity in the parameter space to reduce computation. We achieve up to 50% smaller model size and 98% model sparsity on ResNet-20 while retaining the same accuracy on the CIFAR-10 dataset as well as 35% smaller model size and 42% structured sparsity on ResNet-50 trained on ImageNet, when compared to existing state-of-the-art model compression methods. Code is available at https://github.com/Sharath-girish/LilNetX.
106,321
106,321
Multi-task nonparallel support vector machine for classification
Direct multi-task twin support vector machine (DMTSVM) explores the shared information between multiple correlated tasks, then it produces better generalization performance. However, it contains matrix inversion operation when solving the dual problems, so it costs much running time. Moreover, kernel trick cannot be directly utilized in the nonlinear case. To effectively avoid above problems, a novel multi-task nonparallel support vector machine (MTNPSVM) including linear and nonlinear cases is proposed in this paper. By introducing epsilon-insensitive loss instead of square loss in DMTSVM, MTNPSVM effectively avoids matrix inversion operation and takes full advantage of the kernel trick. Theoretical implication of the model is further discussed. To further improve the computational efficiency, the alternating direction method of multipliers (ADMM) is employed when solving the dual problem. The computational complexity and convergence of the algorithm are provided. In addition, the property and sensitivity of the parameter in model are further explored. The experimental results on fifteen benchmark datasets and twelve image datasets demonstrate the validity of MTNPSVM in comparison with the state-of-the-art algorithms. Finally, it is applied to real Chinese Wine dataset, and also verifies its effectiveness.
106,322
106,322
Incremental Unsupervised Feature Selection for Dynamic Incomplete Multi-view Data
Multi-view unsupervised feature selection has been proven to be efficient in reducing the dimensionality of multi-view unlabeled data with high dimensions. The previous methods assume all of the views are complete. However, in real applications, the multi-view data are often incomplete, i.e., some views of instances are missing, which will result in the failure of these methods. Besides, while the data arrive in form of streams, these existing methods will suffer the issues of high storage cost and expensive computation time. To address these issues, we propose an Incremental Incomplete Multi-view Unsupervised Feature Selection method (I$^2$MUFS) on incomplete multi-view streaming data. By jointly considering the consistent and complementary information across different views, I$^2$MUFS embeds the unsupervised feature selection into an extended weighted non-negative matrix factorization model, which can learn a consensus clustering indicator matrix and fuse different latent feature matrices with adaptive view weights. Furthermore, we introduce the incremental leaning mechanisms to develop an alternative iterative algorithm, where the feature selection matrix is incrementally updated, rather than recomputing on the entire updated data from scratch. A series of experiments are conducted to verify the effectiveness of the proposed method by comparing with several state-of-the-art methods. The experimental results demonstrate the effectiveness and efficiency of the proposed method in terms of the clustering metrics and the computational cost.
106,323
106,323
End-To-End Optimization of Online Neural Network-supported Two-Stage Dereverberation for Hearing Devices
A two-stage online dereverberation algorithm for hearing devices is presented in this paper. The approach combines a multi-channel multi-frame linear filtering approach with a single-channel single-frame post-filter. Both components rely on power spectral density (PSD) estimates provided by deep neural networks (DNNs). This contribution extends our prior work, which shows that directly optimizing for a criterion at the output of the multi-channel linear filtering stage results in a more efficient dereverberation, as compared to placing the criterion at the output of the DNN to optimize the PSD estimation. In the present work, we show that the dereverberation performance of the proposed first stage particularly improves the early-to-mid reverberation ratio if trained end-to-end. We thus argue that it can be combined with a post-filtering stage which benefits from the early-to-mid ratio improvement and is consequently able to efficiently suppress the residual late reverberation. This proposed two stage procedure is shown to be both very effective in terms of dereverberation performance and computational demands. Furthermore, the proposed system can be adapted to the needs of different types of hearing-device users by controlling the amount of reduction of early reflections. The proposed system outperforms the previously proposed end-to-end DNN-supported linear filtering algorithm, as well as other traditional approaches, based on an evaluation using the noise-free version of the WHAMR! dataset.
106,324
106,324
Federated Learning for Distributed Spectrum Sensing in NextG Communication Networks
NextG networks are intended to provide the flexibility of sharing the spectrum with incumbent users and support various spectrum monitoring tasks such as anomaly detection, fault diagnostics, user equipment identification, and authentication. A network of wireless sensors is needed to monitor the spectrum for signal transmissions of interest over a large deployment area. Each sensor receives signals under a specific channel condition depending on its location and trains an individual model of a deep neural network (DNN) accordingly to classify signals. To improve the accuracy, individual sensors may exchange sensing data or sensor results with each other or with a fusion center (such as in cooperative spectrum sensing). In this paper, distributed federated learning over a multi-hop wireless network is considered to collectively train a DNN for signal identification. In distributed federated learning, each sensor broadcasts its trained model to its neighbors, collects the DNN models from its neighbors, and aggregates them to initialize its own model for the next round of training. Without exchanging any spectrum data, this process is repeated over time such that a common DNN is built across the network while preserving the privacy associated with signals collected at different locations. Signal classification accuracy and convergence time are evaluated for different network topologies (including line, star, ring, grid, and random networks) and packet loss events. Then, the reduction of communication overhead and energy consumption is considered with random participation of sensors in model updates. The results show the feasibility of extending cooperative spectrum sensing over a general multi-hop wireless network through federated learning and indicate its robustness to wireless network effects, thereby sustaining high accuracy with low communication overhead and energy consumption.
106,325
106,325
Statistical Model Criticism of Variational Auto-Encoders
We propose a framework for the statistical evaluation of variational auto-encoders (VAEs) and test two instances of this framework in the context of modelling images of handwritten digits and a corpus of English text. Our take on evaluation is based on the idea of statistical model criticism, popular in Bayesian data analysis, whereby a statistical model is evaluated in terms of its ability to reproduce statistics of an unknown data generating process from which we can obtain samples. A VAE learns not one, but two joint distributions over a shared sample space, each exploiting a choice of factorisation that makes sampling tractable in one of two directions (latent-to-data, data-to-latent). We evaluate samples from these distributions, assessing their (marginal) fit to the observed data and our choice of prior, and we also evaluate samples through a pipeline that connects the two distributions starting from a data sample, assessing whether together they exploit and reveal latent factors of variation that are useful to a practitioner. We show that this methodology offers possibilities for model selection qualitatively beyond intrinsic evaluation metrics and at a finer granularity than commonly used statistics can offer.
106,326
106,326
SOMOS: The Samsung Open MOS Dataset for the Evaluation of Neural Text-to-Speech Synthesis
In this work, we present the SOMOS dataset, the first large-scale mean opinion scores (MOS) dataset consisting of solely neural text-to-speech (TTS) samples. It can be employed to train automatic MOS prediction systems focused on the assessment of modern synthesizers, and can stimulate advancements in acoustic model evaluation. It consists of 20K synthetic utterances of the LJ Speech voice, a public domain speech dataset which is a common benchmark for building neural acoustic models and vocoders. Utterances are generated from 200 TTS systems including vanilla neural acoustic models as well as models which allow prosodic variations. An LPCNet vocoder is used for all systems, so that the samples' variation depends only on the acoustic models. The synthesized utterances provide balanced and adequate domain and length coverage. We collect MOS naturalness evaluations on 3 English Amazon Mechanical Turk locales and share practices leading to reliable crowdsourced annotations for this task. Baseline results of state-of-the-art MOS prediction models on the SOMOS dataset are presented, while we show the challenges that such models face when assigned to evaluate synthetic utterances.
106,327
106,327
Fusing finetuned models for better pretraining
Pretrained models are the standard starting point for training. This approach consistently outperforms the use of a random initialization. However, pretraining is a costly endeavour that few can undertake. In this paper, we create better base models at hardly any cost, by fusing multiple existing fine tuned models into one. Specifically, we fuse by averaging the weights of these models. We show that the fused model results surpass the pretrained model ones. We also show that fusing is often better than intertraining. We find that fusing is less dependent on the target task. Furthermore, weight decay nullifies intertraining effects but not those of fusing.
106,328
106,328
Perceive, Represent, Generate: Translating Multimodal Information to Robotic Motion Trajectories
We present Perceive-Represent-Generate (PRG), a novel three-stage framework that maps perceptual information of different modalities (e.g., visual or sound), corresponding to a sequence of instructions, to an adequate sequence of movements to be executed by a robot. In the first stage, we perceive and pre-process the given inputs, isolating individual commands from the complete instruction provided by a human user. In the second stage we encode the individual commands into a multimodal latent space, employing a deep generative model. Finally, in the third stage we convert the multimodal latent values into individual trajectories and combine them into a single dynamic movement primitive, allowing its execution in a robotic platform. We evaluate our pipeline in the context of a novel robotic handwriting task, where the robot receives as input a word through different perceptual modalities (e.g., image, sound), and generates the corresponding motion trajectory to write it, creating coherent and readable handwritten words.
106,329
106,329
Standardized feature extraction from pairwise conflicts applied to the train rescheduling problem
We propose a train rescheduling algorithm which applies a standardized feature selection based on pairwise conflicts in order to serve as input for the reinforcement learning framework. We implement an analytical method which identifies and optimally solves every conflict arising between two trains, then we design a corresponding observation space which features the most relevant information considering these conflicts. The data obtained this way then translates to actions in the context of the reinforcement learning framework. We test our preliminary model using the evaluation metrics of the Flatland Challenge. The empirical results indicate that the suggested feature space provides meaningful observations, from which a sensible scheduling policy can be learned.
106,330
106,330
Graph Neural Networks Designed for Different Graph Types: A Survey
Graphs are ubiquitous in nature and can therefore serve as models for many practical but also theoretical problems. Based on this, the young research field of Graph Neural Networks (GNNs) has emerged. Despite the youth of the field and the speed in which new models are developed, many good surveys have been published in the last years. Nevertheless, an overview on which graph types can be modeled by GNNs is missing. In this survey, we give a detailed overview of already existing GNNs and, unlike previous surveys, categorize them according to their ability to handle different graph types and properties. We consider GNNs operating on static as well as on dynamic graphs of different structural constitutions, with or without node or edge attributes. Moreover in the dynamic case, we separate the models in discrete-time and continuous-time dynamic graphs based on their architecture. While ordering the existing GNN models, we find, that there are still graph types, that are not or only rarely covered by existing GNN models. We point out where models are missing and give potential reasons for their absence.
106,331
106,331
Knowledge Infused Decoding
Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence, they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications. We present Knowledge Infused Decoding (KID) -- a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates exposure bias and provides stable generation quality when generating longer sequences. Code for KID is available at https://github.com/microsoft/KID.
106,332
106,332
Data Justice Stories: A Repository of Case Studies
The idea of "data justice" is of recent academic vintage. It has arisen over the past decade in Anglo-European research institutions as an attempt to bring together a critique of the power dynamics that underlie accelerating trends of datafication with a normative commitment to the principles of social justice-a commitment to the achievement of a society that is equitable, fair, and capable of confronting the root causes of injustice.However, despite the seeming novelty of such a data justice pedigree, this joining up of the critique of the power imbalances that have shaped the digital and "big data" revolutions with a commitment to social equity and constructive societal transformation has a deeper historical, and more geographically diverse, provenance. As the stories of the data justice initiatives, activism, and advocacy contained in this volume well evidence, practices of data justice across the globe have, in fact, largely preceded the elaboration and crystallisation of the idea of data justice in contemporary academic discourse. In telling these data justice stories, we hope to provide the reader with two interdependent tools of data justice thinking: First, we aim to provide the reader with the critical leverage needed to discern those distortions and malformations of data justice that manifest in subtle and explicit forms of power, domination, and coercion. Second, we aim to provide the reader with access to the historically effective forms of normativity and ethical insight that have been marshalled by data justice activists and advocates as tools of societal transformation-so that these forms of normativity and insight can be drawn on, in turn, as constructive resources to spur future transformative data justice practices.
106,333
106,333
AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis
In this paper, we address the problem of texture representation for 3D shapes for the challenging and underexplored tasks of texture transfer and synthesis. Previous works either apply spherical texture maps which may lead to large distortions, or use continuous texture fields that yield smooth outputs lacking details. We argue that the traditional way of representing textures with images and linking them to a 3D mesh via UV mapping is more desirable, since synthesizing 2D images is a well-studied problem. We propose AUV-Net which learns to embed 3D surfaces into a 2D aligned UV space, by mapping the corresponding semantic parts of different 3D shapes to the same location in the UV space. As a result, textures are aligned across objects, and can thus be easily synthesized by generative models of images. Texture alignment is learned in an unsupervised manner by a simple yet effective texture alignment module, taking inspiration from traditional works on linear subspace learning. The learned UV mapping and aligned texture representations enable a variety of applications including texture transfer, texture synthesis, and textured single view 3D reconstruction. We conduct experiments on multiple datasets to demonstrate the effectiveness of our method. Project page: https://nv-tlabs.github.io/AUV-NET.
106,334
106,334
Deep transfer learning for system identification using long short-term memory neural networks
Recurrent neural networks (RNNs) have many advantages over more traditional system identification techniques. They may be applied to linear and nonlinear systems, and they require fewer modeling assumptions. However, these neural network models may also need larger amounts of data to learn and generalize. Furthermore, neural networks training is a time-consuming process. Hence, building upon long-short term memory neural networks (LSTM), this paper proposes using two types of deep transfer learning, namely parameter fine-tuning and freezing, to reduce the data and computation requirements for system identification. We apply these techniques to identify two dynamical systems, namely a second-order linear system and a Wiener-Hammerstein nonlinear system. Results show that compared with direct learning, our method accelerates learning by 10% to 50%, which also saves data and computing resources.
106,335
106,335
First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs) in which the strategy sets for each player are defined by equality and inequality constraints that may depend on the choices of rival players. While the asymptotic global convergence and local convergence rate of solution procedures have been studied in this setting, the analysis of iteration complexity is still in its infancy. Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method, respectively, with an accelerated mirror-prox algorithm as the inner loop. We provide nonasymptotic theoretical guarantees for these algorithms. More specifically, we establish the global convergence rate of our algorithms for solving (strongly) monotone NGNEPs and we provide iteration complexity bounds expressed in terms of the number of gradient evaluations. Experimental results demonstrate the efficiency of our algorithms.
106,336
106,336
DiffCloud: Real-to-Sim from Point Clouds with Differentiable Simulation and Rendering of Deformable Objects
Research in manipulation of deformable objects is typically conducted on a limited range of scenarios, because handling each scenario on hardware takes significant effort. Realistic simulators with support for various types of deformations and interactions have the potential to speed up experimentation with novel tasks and algorithms. However, for highly deformable objects it is challenging to align the output of a simulator with the behavior of real objects. Manual tuning is not intuitive, hence automated methods are needed. We view this alignment problem as a joint perception-inference challenge and demonstrate how to use recent neural network architectures to successfully perform simulation parameter inference from real point clouds. We analyze the performance of various architectures, comparing their data and training requirements. Furthermore, we propose to leverage differentiable point cloud sampling and differentiable simulation to significantly reduce the time to achieve the alignment. We employ an efficient way to propagate gradients from point clouds to simulated meshes and further through to the physical simulation parameters, such as mass and stiffness. Experiments with highly deformable objects show that our method can achieve comparable or better alignment with real object behavior, while reducing the time needed to achieve this by more than an order of magnitude. Videos and supplementary material are available at https://tinyurl.com/diffcloud.
106,337
106,337
Learning and Transferring Value Function for Robot Exploration in Subterranean Environments
In traditional robot exploration methods, the robot usually does not have prior biases about the environment it is exploring. Thus the robot assigns equal importance to the goals which leads to insufficient exploration efficiency. Alternative, often a hand-tuned policy is used to tweak the value of goals. In this paper, we present a method to learn how "good" some states are, measured by the state value function, to provide a hint for the robot to make exploration decisions. We propose to learn state value functions from previous offline collected datasets and then transfer and improve the value function during testing in a new environment. Moreover, the environments usually have very few and even no extrinsic reward or feedback for the robot. Therefore in this work, we also tackle the problem of sparse extrinsic rewards from the environments. We design several intrinsic rewards to encourage the robot to obtain more information during exploration. These reward functions then become the building blocks of the state value functions. We test our method on challenging subterranean and urban environments. To the best of our knowledge, this work for the first time demonstrates value function prediction with previous collected datasets to help exploration in challenging subterranean environments.
106,338
106,338
DeepTensor: Low-Rank Tensor Decomposition with Deep Network Priors
DeepTensor is a computationally efficient framework for low-rank decomposition of matrices and tensors using deep generative networks. We decompose a tensor as the product of low-rank tensor factors (e.g., a matrix as the outer product of two vectors), where each low-rank tensor is generated by a deep network (DN) that is trained in a self-supervised manner to minimize the mean-squared approximation error. Our key observation is that the implicit regularization inherent in DNs enables them to capture nonlinear signal structures (e.g., manifolds) that are out of the reach of classical linear methods like the singular value decomposition (SVD) and principal component analysis (PCA). Furthermore, in contrast to the SVD and PCA, whose performance deteriorates when the tensor's entries deviate from additive white Gaussian noise, we demonstrate that the performance of DeepTensor is robust to a wide range of distributions. We validate that DeepTensor is a robust and computationally efficient drop-in replacement for the SVD, PCA, nonnegative matrix factorization (NMF), and similar decompositions by exploring a range of real-world applications, including hyperspectral image denoising, 3D MRI tomography, and image classification. In particular, DeepTensor offers a 6dB signal-to-noise ratio improvement over standard denoising methods for signals corrupted by Poisson noise and learns to decompose 3D tensors 60 times faster than a single DN equipped with 3D convolutions.
106,339
106,339
Optimization Models and Interpretations for Three Types of Adversarial Perturbations against Support Vector Machines
Adversarial perturbations have drawn great attentions in various deep neural networks. Most of them are computed by iterations and cannot be interpreted very well. In contrast, little attentions are paid to basic machine learning models such as support vector machines. In this paper, we investigate the optimization models and the interpretations for three types of adversarial perturbations against support vector machines, including sample-adversarial perturbations (sAP), class-universal adversarial perturbations (cuAP) as well as universal adversarial perturbations (uAP). For linear binary/multi classification support vector machines (SVMs), we derive the explicit solutions for sAP, cuAP and uAP (binary case), and approximate solution for uAP of multi-classification. We also obtain the upper bound of fooling rate for uAP. Such results not only increase the interpretability of the three adversarial perturbations, but also provide great convenience in computation since iterative process can be avoided. Numerical results show that our method is fast and effective in calculating three types of adversarial perturbations.
106,340
106,340
Enhancement on Model Interpretability and Sleep Stage Scoring Performance with A Novel Pipeline Based on Deep Neural Network
Considering the natural frequency characteristics in sleep medicine, this paper first proposes a time-frequency framework for the representation learning of the electroencephalogram (EEG) following the definition of the American Academy of Sleep Medicine. To meet the temporal-random and transient nature of the defining characteristics of sleep stages, we further design a context-sensitive flexible pipeline that automatically adapts to the attributes of data itself. That is, the input EEG spectrogram is partitioned into a sequence of patches in the time and frequency axes, and then input to a delicate deep learning network for further representation learning to extract the stage-dependent features, which are used in the classification step finally. The proposed pipeline is validated against a large database, i.e., the Sleep Heart Health Study (SHHS), and the results demonstrate that the competitive performance for the wake, N2, and N3 stages outperforms the state-of-art works, with the F1 scores being 0.93, 0.88, and 0.87, respectively, and the proposed method has a high inter-rater reliability of 0.80 kappa. Importantly, we visualize the stage scoring process of the model decision with the Layer-wise Relevance Propagation (LRP) method, which shows that the proposed pipeline is more sensitive and perceivable in the decision-making process than the baseline pipelines. Therefore, the pipeline together with the LRP method can provide better model interpretability, which is important for clinical support.
106,341
106,341
FedCos: A Scene-adaptive Federated Optimization Enhancement for Performance Improvement
As an emerging technology, federated learning (FL) involves training machine learning models over distributed edge devices, which attracts sustained attention and has been extensively studied. However, the heterogeneity of client data severely degrades the performance of FL compared with that in centralized training. It causes the locally trained models of clients to move in different directions. On the one hand, it slows down or even stalls the global updates, leading to inefficient communication. On the other hand, it enlarges the distances between local models, resulting in an aggregated global model with poor performance. Fortunately, these shortcomings can be mitigated by reducing the angle between the directions that local models move in. Based on this fact, we propose FedCos, which reduces the directional inconsistency of local models by introducing a cosine-similarity penalty. It promotes the local model iterations towards an auxiliary global direction. Moreover, our approach is auto-adapt to various non-IID settings without an elaborate selection of hyperparameters. The experimental results show that FedCos outperforms the well-known baselines and can enhance them under a variety of FL scenes, including varying degrees of data heterogeneity, different number of participants, and cross-silo and cross-device settings. Besides, FedCos improves communication efficiency by 2 to 5 times. With the help of FedCos, multiple FL methods require significantly fewer communication rounds than before to obtain a model with comparable performance.
106,342
106,342
Distributed Statistical Min-Max Learning in the Presence of Byzantine Agents
Recent years have witnessed a growing interest in the topic of min-max optimization, owing to its relevance in the context of generative adversarial networks (GANs), robust control and optimization, and reinforcement learning. Motivated by this line of work, we consider a multi-agent min-max learning problem, and focus on the emerging challenge of contending with worst-case Byzantine adversarial agents in such a setup. By drawing on recent results from robust statistics, we design a robust distributed variant of the extra-gradient algorithm - a popular algorithmic approach for min-max optimization. Our main contribution is to provide a crisp analysis of the proposed robust extra-gradient algorithm for smooth convex-concave and smooth strongly convex-strongly concave functions. Specifically, we establish statistical rates of convergence to approximate saddle points. Our rates are near-optimal, and reveal both the effect of adversarial corruption and the benefit of collaboration among the non-faulty agents. Notably, this is the first paper to provide formal theoretical guarantees for large-scale distributed min-max learning in the presence of adversarial agents.
106,343
106,343
MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems
A new data-driven method for operator learning of stochastic differential equations(SDE) is proposed in this paper. The central goal is to solve forward and inverse stochastic problems more effectively using limited data. Deep operator network(DeepONet) has been proposed recently for operator learning. Compared to other neural networks to learn functions, it aims at the problem of learning nonlinear operators. However, it can be challenging by using the original model to learn nonlinear operators for high-dimensional stochastic problems. We propose a new multi-resolution autoencoder DeepONet model referred to as MultiAuto-DeepONet to deal with this difficulty with the aid of convolutional autoencoder. The encoder part of the network is designed to reduce the dimensionality as well as discover the hidden features of high-dimensional stochastic inputs. The decoder is designed to have a special structure, i.e. in the form of DeepONet. The first DeepONet in decoder is designed to reconstruct the input function involving randomness while the second one is used to approximate the solution of desired equations. Those two DeepONets has a common branch net and two independent trunk nets. This architecture enables us to deal with multi-resolution inputs naturally. By adding $L_1$ regularization to our network, we found the outputs from the branch net and two trunk nets all have sparse structures. This reduces the number of trainable parameters in the neural network thus making the model more efficient. Finally, we conduct several numerical experiments to illustrate the effectiveness of our proposed MultiAuto-DeepONet model with uncertainty quantification.
106,344
106,344
A Joint Learning Approach for Semi-supervised Neural Topic Modeling
Topic models are some of the most popular ways to represent textual data in an interpret-able manner. Recently, advances in deep generative models, specifically auto-encoding variational Bayes (AEVB), have led to the introduction of unsupervised neural topic models, which leverage deep generative models as opposed to traditional statistics-based topic models. We extend upon these neural topic models by introducing the Label-Indexed Neural Topic Model (LI-NTM), which is, to the extent of our knowledge, the first effective upstream semi-supervised neural topic model. We find that LI-NTM outperforms existing neural topic models in document reconstruction benchmarks, with the most notable results in low labeled data regimes and for data-sets with informative labels; furthermore, our jointly learned classifier outperforms baseline classifiers in ablation studies.
106,345
106,345
Transformer-Based Language Models for Software Vulnerability Detection: Performance, Model's Security and Platforms
The large transformer-based language models demonstrate excellent performance in natural language processing. By considering the closeness of natural languages to the high-level programming language such as C/C++, this work studies how good are the large transformer-based language models detecting software vulnerabilities. Our results demonstrate the well performance of these models on software vulnerability detection. The answer enables extending transformer-based language models to vulnerability detection and leveraging superior performance beyond the natural language processing domain. Besides, we perform the model's security check using Microsoft's Counterfit, a command-line tool to assess the model's security. Our results find that these models are vulnerable to adversarial examples. In this regard, we present a simple countermeasure and its result. Experimenting with large models is always a challenge due to the requirement of computing resources and platforms/libraries & dependencies. Based on the experiences and difficulties we faced during this work, we present our recommendation while choosing the platforms to run these large models. Moreover, the popular platforms are surveyed thoroughly in this paper.
106,346
106,346
Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data
High-dimensional spatio-temporal dynamics can often be encoded in a low-dimensional subspace. Engineering applications for modeling, characterization, design, and control of such large-scale systems often rely on dimensionality reduction to make solutions computationally tractable in real-time. Common existing paradigms for dimensionality reduction include linear methods, such as the singular value decomposition (SVD), and nonlinear methods, such as variants of convolutional autoencoders (CAE). However, these encoding techniques lack the ability to efficiently represent the complexity associated with spatio-temporal data, which often requires variable geometry, non-uniform grid resolution, adaptive meshing, and/or parametric dependencies. To resolve these practical engineering challenges, we propose a general framework called Neural Implicit Flow (NIF) that enables a mesh-agnostic, low-rank representation of large-scale, parametric, spatial-temporal data. NIF consists of two modified multilayer perceptrons (MLPs): (i) ShapeNet, which isolates and represents the spatial complexity, and (ii) ParameterNet, which accounts for any other input complexity, including parametric dependencies, time, and sensor measurements. We demonstrate the utility of NIF for parametric surrogate modeling, enabling the interpretable representation and compression of complex spatio-temporal dynamics, efficient many-spatial-query tasks, and improved generalization performance for sparse reconstruction.
106,347
106,347
DDOS: A MOS Prediction Framework utilizing Domain Adaptive Pre-training and Distribution of Opinion Scores
Mean opinion score (MOS) is a typical subjective evaluation metric for speech synthesis systems. Since collecting MOS is time-consuming, it would be desirable if there are accurate MOS prediction models for automatic evaluation. In this work, we propose DDOS, a novel MOS prediction model. DDOS utilizes domain adaptive pre-training to further pre-train self-supervised learning models on synthetic speech. And a proposed module is added to model the opinion score distribution of each utterance. With the proposed components, DDOS outperforms previous works on BVCC dataset. And the zero shot transfer result on BC2019 dataset is significantly improved. DDOS also wins second place in Interspeech 2022 VoiceMOS challenge in terms of system-level score.
106,348
106,348
Explicit Feature Interaction-aware Graph Neural Networks
Graph neural networks are powerful methods to handle graph-structured data. However, existing graph neural networks only learn higher-order feature interactions implicitly. Thus, they cannot capture information that occurred in low-order feature interactions. To overcome this problem, we propose Explicit Feature Interaction-aware Graph Neural Network (EFI-GNN), which explicitly learns arbitrary-order feature interactions. EFI-GNN can jointly learn with any other graph neural network. We demonstrate that the joint learning method always enhances performance on the various node classification tasks. Furthermore, since EFI-GNN is inherently a linear model, we can interpret the prediction result of EFI-GNN. With the computation rule, we can obtain an any-order feature's effect on the decision. By that, we visualize the effects of the first-order and second-order features as a form of a heatmap.
106,349
106,349
Accelerating Attention through Gradient-Based Learned Runtime Pruning
Self-attention is a key enabler of state-of-art accuracy for various transformer-based Natural Language Processing models. This attention mechanism calculates a correlation score for each word with respect to the other words in a sentence. Commonly, only a small subset of words highly correlates with the word under attention, which is only determined at runtime. As such, a significant amount of computation is inconsequential due to low attention scores and can potentially be pruned. The main challenge is finding the threshold for the scores below which subsequent computation will be inconsequential. Although such a threshold is discrete, this paper formulates its search through a soft differentiable regularizer integrated into the loss function of the training. This formulation piggy backs on the back-propagation training to analytically co-optimize the threshold and the weights simultaneously, striking a formally optimal balance between accuracy and computation pruning. To best utilize this mathematical innovation, we devise a bit-serial architecture, dubbed LeOPArd, for transformer language models with bit-level early termination microarchitectural mechanism. We evaluate our design across 43 back-end tasks for MemN2N, BERT, ALBERT, GPT-2, and Vision transformer models. Post-layout results show that, on average, LeOPArd yields 1.9x and 3.9x speedup and energy reduction, respectively, while keeping the average accuracy virtually intact (<0.2% degradation)
106,350
106,350
What You See is What You Get: Distributional Generalization for Algorithm Design in Deep Learning
We investigate and leverage a connection between Differential Privacy (DP) and the recently proposed notion of Distributional Generalization (DG). Applying this connection, we introduce new conceptual tools for designing deep-learning methods that bypass "pathologies" of standard stochastic gradient descent (SGD). First, we prove that differentially private methods satisfy a "What You See Is What You Get (WYSIWYG)" generalization guarantee: whatever a model does on its train data is almost exactly what it will do at test time. This guarantee is formally captured by distributional generalization. WYSIWYG enables principled algorithm design in deep learning by reducing $\textit{generalization}$ concerns to $\textit{optimization}$ ones: in order to mitigate unwanted behavior at test time, it is provably sufficient to mitigate this behavior on the train data. This is notably false for standard (non-DP) methods, hence this observation has applications even when privacy is not required. For example, importance sampling is known to fail for standard SGD, but we show that it has exactly the intended effect for DP-trained models. Thus, with DP-SGD, unlike with SGD, we can influence test-time behavior by making principled train-time interventions. We use these insights to construct simple algorithms which match or outperform SOTA in several distributional robustness applications, and to significantly improve the privacy vs. disparate impact trade-off of DP-SGD. Finally, we also improve on known theoretical bounds relating differential privacy, stability, and distributional generalization.
106,351
106,351
Learning to Solve Travelling Salesman Problem with Hardness-adaptive Curriculum
Various neural network models have been proposed to tackle combinatorial optimization problems such as the travelling salesman problem (TSP). Existing learning-based TSP methods adopt a simple setting that the training and testing data are independent and identically distributed. However, the existing literature fails to solve TSP instances when training and testing data have different distributions. Concretely, we find that different training and testing distribution will result in more difficult TSP instances, i.e., the solution obtained by the model has a large gap from the optimal solution. To tackle this problem, in this work, we study learning-based TSP methods when training and testing data have different distributions using adaptive-hardness, i.e., how difficult a TSP instance can be for a solver. This problem is challenging because it is non-trivial to (1) define hardness measurement quantitatively; (2) efficiently and continuously generate sufficiently hard TSP instances upon model training; (3) fully utilize instances with different levels of hardness to learn a more powerful TSP solver. To solve these challenges, we first propose a principled hardness measurement to quantify the hardness of TSP instances. Then, we propose a hardness-adaptive generator to generate instances with different hardness. We further propose a curriculum learner fully utilizing these instances to train the TSP solver. Experiments show that our hardness-adaptive generator can generate instances ten times harder than the existing methods, and our proposed method achieves significant improvement over state-of-the-art models in terms of the optimality gap.
106,352
106,352
Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators
We present a new framework AMOS that pretrains text encoders with an Adversarial learning curriculum via a Mixture Of Signals from multiple auxiliary generators. Following ELECTRA-style pretraining, the main encoder is trained as a discriminator to detect replaced tokens generated by auxiliary masked language models (MLMs). Different from ELECTRA which trains one MLM as the generator, we jointly train multiple MLMs of different sizes to provide training signals at various levels of difficulty. To push the discriminator to learn better with challenging replaced tokens, we learn mixture weights over the auxiliary MLMs' outputs to maximize the discriminator loss by backpropagating the gradient from the discriminator via Gumbel-Softmax. For better pretraining efficiency, we propose a way to assemble multiple MLMs into one unified auxiliary model. AMOS outperforms ELECTRA and recent state-of-the-art pretrained models by about 1 point on the GLUE benchmark for BERT base-sized models.
106,353
106,353
Composite Spatial Monte Carlo Integration Based on Generalized Least Squares
Although evaluation of the expectations on the Ising model is essential in various applications, this is frequently infeasible because of intractable multiple summations (or integrations). Spatial Monte Carlo integration (SMCI) is a sampling-based approximation, and can provide high-accuracy estimations for such intractable expectations. To evaluate the expectation of a function of variables in a specific region (called target region), SMCI considers a larger region containing the target region (called sum region). In SMCI, the multiple summation for the variables in the sum region is precisely executed, and that in the outer region is evaluated by the sampling approximation such as the standard Monte Carlo integration. It is guaranteed that the accuracy of the SMCI estimator is monotonically improved as the size of the sum region increases. However, a haphazard expansion of the sum region could cause a combinatorial explosion. Therefore, we hope to improve the accuracy without such region expansion. In this study, based on the theory of generalized least squares, a new effective method is proposed by combining multiple SMCI estimators. The validity of the proposed method is demonstrated theoretically and numerically. The results indicate that the proposed method can be effective in the inverse Ising problem (or Boltzmann machine learning).
106,354
106,354
mulEEG: A Multi-View Representation Learning on EEG Signals
Modeling effective representations using multiple views that positively influence each other is challenging, and the existing methods perform poorly on Electroencephalogram (EEG) signals for sleep-staging tasks. In this paper, we propose a novel multi-view self-supervised method (mulEEG) for unsupervised EEG representation learning. Our method attempts to effectively utilize the complementary information available in multiple views to learn better representations. We introduce diverse loss that further encourages complementary information across multiple views. Our method with no access to labels beats the supervised training while outperforming multi-view baseline methods on transfer learning experiments carried out on sleep-staging tasks. We posit that our method was able to learn better representations by using complementary multi-views.
106,355
106,355
PALBERT: Teaching ALBERT to Ponder
Currently, pre-trained models can be considered the default choice for a wide range of NLP tasks. Despite their SoTA results, there is practical evidence that these models may require a different number of computing layers for different input sequences, since evaluating all layers leads to overconfidence on wrong predictions (namely overthinking). This problem can potentially be solved by implementing adaptive computation time approaches, which were first designed to improve inference speed. Recently proposed PonderNet may be a promising solution for performing an early exit by treating the exit layers index as a latent variable. However, the originally proposed exit criterion, relying on sampling from trained posterior distribution on the probability of exiting from i-th layer, introduces major variance in model outputs, significantly reducing the resulting models performance. In this paper, we propose Ponder ALBERT (PALBERT): an improvement to PonderNet with a novel deterministic Q-exit criterion and a revisited model architecture. We compared PALBERT with recent methods for performing an early exit. We observed that the proposed changes can be considered significant improvements on the original PonderNet architecture and outperform PABEE on a wide range of GLUE tasks. In addition, we also performed an in-depth ablation study of the proposed architecture to further understand Lambda layers and their performance.
106,356
106,356
Enhancing Semantic Code Search with Multimodal Contrastive Learning and Soft Data Augmentation
Code search aims to retrieve the most semantically relevant code snippet for a given natural language query. Recently, large-scale code pre-trained models such as CodeBERT and GraphCodeBERT learn generic representations of source code and have achieved substantial improvement on code search task. However, the high-quality sequence-level representations of code snippets have not been sufficiently explored. In this paper, we propose a new approach with multimodal contrastive learning and soft data augmentation for code search. Multimodal contrastive learning is used to pull together the representations of code-query pairs and push apart the unpaired code snippets and queries. Moreover, data augmentation is critical in contrastive learning for learning high-quality representations. However, only semantic-preserving augmentations for source code are considered in existing work. In this work, we propose to do soft data augmentation by dynamically masking and replacing some tokens in code sequences to generate code snippets that are similar but not necessarily semantic-preserving as positive samples for paired queries. We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages. The experimental results show that our approach significantly outperforms the state-of-the-art methods. We also adapt our techniques to several pre-trained models such as RoBERTa and CodeBERT, and significantly boost their performance on the code search task.
106,357
106,357
Federated Learning from Only Unlabeled Data with Class-Conditional-Sharing Clients
Supervised federated learning (FL) enables multiple clients to share the trained model without sharing their labeled data. However, potential clients might even be reluctant to label their own data, which could limit the applicability of FL in practice. In this paper, we show the possibility of unsupervised FL whose model is still a classifier for predicting class labels, if the class-prior probabilities are shifted while the class-conditional distributions are shared among the unlabeled data owned by the clients. We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients, a modified model is trained by supervised FL, and the wanted model is recovered from the modified model. FedUL is a very general solution to unsupervised FL: it is compatible with many supervised FL methods, and the recovery of the wanted model can be theoretically guaranteed as if the data have been labeled. Experiments on benchmark and real-world datasets demonstrate the effectiveness of FedUL. Code is available at https://github.com/lunanbit/FedUL.
106,358
106,358
MBI-Net: A Non-Intrusive Multi-Branched Speech Intelligibility Prediction Model for Hearing Aids
Improving the user's hearing ability to understand speech in noisy environments is critical to the development of hearing aid (HA) devices. For this, it is important to derive a metric that can fairly predict speech intelligibility for HA users. A straightforward approach is to conduct a subjective listening test and use the test results as an evaluation metric. However, conducting large-scale listening tests is time-consuming and expensive. Therefore, several evaluation metrics were derived as surrogates for subjective listening test results. In this study, we propose a multi-branched speech intelligibility prediction model (MBI-Net), for predicting the subjective intelligibility scores of HA users. MBI-Net consists of two branches of models, with each branch consisting of a hearing loss model, a cross-domain feature extraction module, and a speech intelligibility prediction model, to process speech signals from one channel. The outputs of the two branches are fused through a linear layer to obtain predicted speech intelligibility scores. Experimental results confirm the effectiveness of MBI-Net, which produces higher prediction scores than the baseline system in Track 1 and Track 2 on the Clarity Prediction Challenge 2022 dataset.
106,359
106,359
MTI-Net: A Multi-Target Speech Intelligibility Prediction Model
Recently, deep learning (DL)-based non-intrusive speech assessment models have attracted great attention. Many studies report that these DL-based models yield satisfactory assessment performance and good flexibility, but their performance in unseen environments remains a challenge. Furthermore, compared to quality scores, fewer studies elaborate deep learning models to estimate intelligibility scores. This study proposes a multi-task speech intelligibility prediction model, called MTI-Net, for simultaneously predicting human and machine intelligibility measures. Specifically, given a speech utterance, MTI-Net is designed to predict subjective listening test results and word error rate (WER) scores. We also investigate several methods that can improve the prediction performance of MTI-Net. First, we compare different features (including low-level features and embeddings from self-supervised learning (SSL) models) and prediction targets of MTI-Net. Second, we explore the effect of transfer learning and multi-tasking learning on training MTI-Net. Finally, we examine the potential advantages of fine-tuning SSL embeddings. Experimental results demonstrate the effectiveness of using cross-domain features, multi-task learning, and fine-tuning SSL embeddings. Furthermore, it is confirmed that the intelligibility and WER scores predicted by MTI-Net are highly correlated with the ground-truth scores.
106,360
106,360
Using Decision Tree as Local Interpretable Model in Autoencoder-based LIME
Nowadays, deep neural networks are being used in many domains because of their high accuracy results. However, they are considered as "black box", means that they are not explainable for humans. On the other hand, in some tasks such as medical, economic, and self-driving cars, users want the model to be interpretable to decide if they can trust these results or not. In this work, we present a modified version of an autoencoder-based approach for local interpretability called ALIME. The ALIME itself is inspired by a famous method called Local Interpretable Model-agnostic Explanations (LIME). LIME generates a single instance level explanation by generating new data around the instance and training a local linear interpretable model. ALIME uses an autoencoder to weigh the new data around the sample. Nevertheless, the ALIME uses a linear model as the interpretable model to be trained locally, just like the LIME. This work proposes a new approach, which uses a decision tree instead of the linear model, as the interpretable model. We evaluate the proposed model in case of stability, local fidelity, and interpretability on different datasets. Compared to ALIME, the experiments show significant results on stability and local fidelity and improved results on interpretability.
106,361
106,361
Multi-Sample $\zeta$-mixup: Richer, More Realistic Synthetic Samples from a $p$-Series Interpolant
Modern deep learning training procedures rely on model regularization techniques such as data augmentation methods, which generate training samples that increase the diversity of data and richness of label information. A popular recent method, mixup, uses convex combinations of pairs of original samples to generate new samples. However, as we show in our experiments, mixup can produce undesirable synthetic samples, where the data is sampled off the manifold and can contain incorrect labels. We propose $\zeta$-mixup, a generalization of mixup with provably and demonstrably desirable properties that allows convex combinations of $N \geq 2$ samples, leading to more realistic and diverse outputs that incorporate information from $N$ original samples by using a $p$-series interpolant. We show that, compared to mixup, $\zeta$-mixup better preserves the intrinsic dimensionality of the original datasets, which is a desirable property for training generalizable models. Furthermore, we show that our implementation of $\zeta$-mixup is faster than mixup, and extensive evaluation on controlled synthetic and 24 real-world natural and medical image classification datasets shows that $\zeta$-mixup outperforms mixup and traditional data augmentation techniques.
106,362
106,362
Enabling Deep Learning for All-in EDGE paradigm
Deep Learning-based models have been widely investigated, and they have demonstrated significant performance on non-trivial tasks such as speech recognition, image processing, and natural language understanding. However, this is at the cost of substantial data requirements. Considering the widespread proliferation of edge devices (e.g. Internet of Things devices) over the last decade, Deep Learning in the edge paradigm, such as device-cloud integrated platforms, is required to leverage its superior performance. Moreover, it is suitable from the data requirements perspective in the edge paradigm because the proliferation of edge devices has resulted in an explosion in the volume of generated and collected data. However, there are difficulties due to other requirements such as high computation, high latency, and high bandwidth caused by Deep Learning applications in real-world scenarios. In this regard, this survey paper investigates Deep Learning at the edge, its architecture, enabling technologies, and model adaption techniques, where edge servers and edge devices participate in deep learning training and inference. For simplicity, we call this paradigm the All-in EDGE paradigm. Besides, this paper presents the key performance metrics for Deep Learning at the All-in EDGE paradigm to evaluate various deep learning techniques and choose a suitable design. Moreover, various open challenges arising from the deployment of Deep Learning at the All-in EDGE paradigm are identified and discussed.
106,363
106,363
Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection---Extended Version
Time series data occurs widely, and outlier detection is a fundamental problem in data mining, which has numerous applications. Existing autoencoder-based approaches deliver state-of-the-art performance on challenging real-world data but are vulnerable to outliers and exhibit low explainability. To address these two limitations, we propose robust and explainable unsupervised autoencoder frameworks that decompose an input time series into a clean time series and an outlier time series using autoencoders. Improved explainability is achieved because clean time series are better explained with easy-to-understand patterns such as trends and periodicities. We provide insight into this by means of a post-hoc explainability analysis and empirical studies. In addition, since outliers are separated from clean time series iteratively, our approach offers improved robustness to outliers, which in turn improves accuracy. We evaluate our approach on five real-world datasets and report improvements over the state-of-the-art approaches in terms of robustness and explainability. This is an extended version of "Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection", to appear in IEEE ICDE 2022.
106,364
106,364
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift
The performance of a machine learning model degrades when it is applied to data from a similar but different domain than the data it has initially been trained on. To mitigate this domain shift problem, domain adaptation (DA) techniques search for an optimal transformation that converts the (current) input data from a source domain to a target domain to learn a domain-invariant representations that reduces domain discrepancy. This paper proposes a novel supervised domain adaptation based on two steps. First, we search for an optimal class-dependent transformation from the source to the target domain from a few samples. We consider optimal transport methods such as the earth mover distance with Laplacian regularization, Sinkhorn transport and correlation alignment. Second, we use embedding similarity techniques to select the corresponding transformation at inference. We use correlation metrics and maximum mean discrepancy with higher-order moment matching techniques. We conduct an extensive evaluation on time-series datasets with domain shift including simulated and various online handwriting datasets to demonstrate the performance.
106,365
106,365
Inference over radiative transfer models using variational and expectation maximization methods
Earth observation from satellites offers the possibility to monitor our planet with unprecedented accuracy. Radiative transfer models (RTMs) encode the energy transfer through the atmosphere, and are used to model and understand the Earth system, as well as to estimate the parameters that describe the status of the Earth from satellite observations by inverse modeling. However, performing inference over such simulators is a challenging problem. RTMs are nonlinear, non-differentiable and computationally costly codes, which adds a high level of difficulty in inference. In this paper, we introduce two computational techniques to infer not only point estimates of biophysical parameters but also their joint distribution. One of them is based on a variational autoencoder approach and the second one is based on a Monte Carlo Expectation Maximization (MCEM) scheme. We compare and discuss benefits and drawbacks of each approach. We also provide numerical comparisons in synthetic simulations and the real PROSAIL model, a popular RTM that combines land vegetation leaf and canopy modeling. We analyze the performance of the two approaches for modeling and inferring the distribution of three key biophysical parameters for quantifying the terrestrial biosphere.
106,366
106,366
Offline Reinforcement Learning for Safer Blood Glucose Control in People with Type 1 Diabetes
Hybrid closed loop systems represent the future of care for people with type 1 diabetes (T1D). These devices usually utilise simple control algorithms to select the optimal insulin dose for maintaining blood glucose levels within a healthy range. Online reinforcement learning (RL) has been utilised as a method for further enhancing glucose control in these devices. Previous approaches have been shown to reduce patient risk and improve time spent in the target range when compared to classical control algorithms, but are prone to instability in the learning process, often resulting in the selection of unsafe actions. This work presents an evaluation of offline RL as a means for developing clinically effective dosing policies without the need for patient interaction. This paper examines the utility of BCQ, CQL and TD3-BC in managing the blood glucose of nine virtual patients within the UVA/Padova glucose dynamics simulator. When trained on less than a tenth of the data required by online RL approaches, this work shows that offline RL can significantly increase time in the healthy blood glucose range when compared to the strongest state-of-art baseline. This is achieved without any associated increase in low blood glucose events. Offline RL is also shown to be able to correct for common and challenging scenarios such as incorrect bolus dosing, irregular meal timings and sub-optimal training data.
106,367
106,367
Correcting Misproducted Speech using Spectrogram Inpainting
Learning a new language involves constantly comparing speech productions with reference productions from the environment. Early in speech acquisition, children make articulatory adjustments to match their caregivers' speech. Grownup learners of a language tweak their speech to match the tutor reference. This paper proposes a method to synthetically generate correct pronunciation feedback given incorrect production. Furthermore, our aim is to generate the corrected production while maintaining the speaker's original voice. The system prompts the user to pronounce a phrase. The speech is recorded, and the samples associated with the inaccurate phoneme are masked with zeros. This waveform serves as an input to a speech generator, implemented as a deep learning inpainting system with a U-net architecture, and trained to output a reconstructed speech. The training set is composed of unimpaired proper speech examples, and the generator is trained to reconstruct the original proper speech. We evaluated the performance of our system on phoneme replacement of minimal pair words of English as well as on children with pronunciation disorders. Results suggest that human listeners slightly prefer our generated speech over a smoothed replacement of the inaccurate phoneme with a production of a different speaker.
106,368
106,368
Continual Inference: A Library for Efficient Online Inference with Deep Neural Networks in PyTorch
We present Continual Inference, a Python library for implementing Continual Inference Networks (CINs) in PyTorch, a class of Neural Networks designed specifically for efficient inference in both online and batch processing scenarios. We offer a comprehensive introduction and guide to CINs and their implementation in practice, and provide best-practices and code examples for composing complex modules for modern Deep Learning. Continual Inference is readily downloadable via the Python Package Index and at \url{www.github.com/lukashedegaard/continual-inference}.
106,369
106,369
Self supervised learning for robust voice cloning
Voice cloning is a difficult task which requires robust and informative features incorporated in a high quality TTS system in order to effectively copy an unseen speaker's voice. In our work, we utilize features learned in a self-supervised framework via the Bootstrap Your Own Latent (BYOL) method, which is shown to produce high quality speech representations when specific audio augmentations are applied to the vanilla algorithm. We further extend the augmentations in the training procedure to aid the resulting features to capture the speaker identity and to make them robust to noise and acoustic conditions. The learned features are used as pre-trained utterance-level embeddings and as inputs to a Non-Attentive Tacotron based architecture, aiming to achieve multispeaker speech synthesis without utilizing additional speaker features. This method enables us to train our model in an unlabeled multispeaker dataset as well as use unseen speaker embeddings to copy a speaker's voice. Subjective and objective evaluations are used to validate the proposed model, as well as the robustness to the acoustic conditions of the target utterance.
106,370
106,370
Energy-Efficient Adaptive Machine Learning on IoT End-Nodes With Class-Dependent Confidence
Energy-efficient machine learning models that can run directly on edge devices are of great interest in IoT applications, as they can reduce network pressure and response latency, and improve privacy. An effective way to obtain energy-efficiency with small accuracy drops is to sequentially execute a set of increasingly complex models, early-stopping the procedure for "easy" inputs that can be confidently classified by the smallest models. As a stopping criterion, current methods employ a single threshold on the output probabilities produced by each model. In this work, we show that such a criterion is sub-optimal for datasets that include classes of different complexity, and we demonstrate a more general approach based on per-classes thresholds. With experiments on a low-power end-node, we show that our method can significantly reduce the energy consumption compared to the single-threshold approach.
106,371
106,371
Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats
Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.
106,372
106,372
Half-sibling regression meets exoplanet imaging: PSF modeling and subtraction using a flexible, domain knowledge-driven, causal framework
High-contrast imaging of exoplanets hinges on powerful post-processing methods to denoise the data and separate the signal of a companion from its host star, which is typically orders of magnitude brighter. Existing post-processing algorithms do not use all prior domain knowledge that is available about the problem. We propose a new method that builds on our understanding of the systematic noise and the causal structure of the data-generating process. Our algorithm is based on a modified version of half-sibling regression (HSR), a flexible denoising framework that combines ideas from the fields of machine learning and causality. We adapt the method to address the specific requirements of high-contrast exoplanet imaging data obtained in pupil tracking mode. The key idea is to estimate the systematic noise in a pixel by regressing the time series of this pixel onto a set of causally independent, signal-free predictor pixels. We use regularized linear models in this work; however, other (non-linear) models are also possible. In a second step, we demonstrate how the HSR framework allows us to incorporate observing conditions such as wind speed or air temperature as additional predictors. When we apply our method to four data sets from the VLT/NACO instrument, our algorithm provides a better false-positive fraction than PCA-based PSF subtraction, a popular baseline method in the field. Additionally, we find that the HSR-based method provides direct and accurate estimates for the contrast of the exoplanets without the need to insert artificial companions for calibration in the data sets. Finally, we present first evidence that using the observing conditions as additional predictors can improve the results. Our HSR-based method provides an alternative, flexible and promising approach to the challenge of modeling and subtracting the stellar PSF and systematic noise in exoplanet imaging data.
106,373
106,373
Few-Shot Forecasting of Time-Series with Heterogeneous Channels
Learning complex time series forecasting models usually requires a large amount of data, as each model is trained from scratch for each task/data set. Leveraging learning experience with similar datasets is a well-established technique for classification problems called few-shot classification. However, existing approaches cannot be applied to time-series forecasting because i) multivariate time-series datasets have different channels and ii) forecasting is principally different from classification. In this paper we formalize the problem of few-shot forecasting of time-series with heterogeneous channels for the first time. Extending recent work on heterogeneous attributes in vector data, we develop a model composed of permutation-invariant deep set-blocks which incorporate a temporal embedding. We assemble the first meta-dataset of 40 multivariate time-series datasets and show through experiments that our model provides a good generalization, outperforming baselines carried over from simpler scenarios that either fail to learn across tasks or miss temporal information.
106,374
106,374
Video Diffusion Models
Generating temporally coherent high fidelity video is an important milestone in generative modeling research. We make progress towards this milestone by proposing a diffusion model for video generation that shows very promising initial results. Our model is a natural extension of the standard image diffusion architecture, and it enables jointly training from image and video data, which we find to reduce the variance of minibatch gradients and speed up optimization. To generate long and higher resolution videos we introduce a new conditional sampling technique for spatial and temporal video extension that performs better than previously proposed methods. We present the first results on a large text-conditioned video generation task, as well as state-of-the-art results on an established unconditional video generation benchmark. Supplementary material is available at https://video-diffusion.github.io/
106,375
106,375
BERTuit: Understanding Spanish language in Twitter through a native transformer
The appearance of complex attention-based language models such as BERT, Roberta or GPT-3 has allowed to address highly complex tasks in a plethora of scenarios. However, when applied to specific domains, these models encounter considerable difficulties. This is the case of Social Networks such as Twitter, an ever-changing stream of information written with informal and complex language, where each message requires careful evaluation to be understood even by humans given the important role that context plays. Addressing tasks in this domain through Natural Language Processing involves severe challenges. When powerful state-of-the-art multilingual language models are applied to this scenario, language specific nuances use to get lost in translation. To face these challenges we present \textbf{BERTuit}, the larger transformer proposed so far for Spanish language, pre-trained on a massive dataset of 230M Spanish tweets using RoBERTa optimization. Our motivation is to provide a powerful resource to better understand Spanish Twitter and to be used on applications focused on this social network, with special emphasis on solutions devoted to tackle the spreading of misinformation in this platform. BERTuit is evaluated on several tasks and compared against M-BERT, XLM-RoBERTa and XLM-T, very competitive multilingual transformers. The utility of our approach is shown with applications, in this case: a zero-shot methodology to visualize groups of hoaxes and profiling authors spreading disinformation. Misinformation spreads wildly on platforms such as Twitter in languages other than English, meaning performance of transformers may suffer when transferred outside English speaking communities.
106,376
106,376
Jacobian Norm for Unsupervised Source-Free Domain Adaptation
Unsupervised Source (data) Free domain adaptation (USFDA) aims to transfer knowledge from a well-trained source model to a related but unlabeled target domain. In such a scenario, all conventional adaptation methods that require source data fail. To combat this challenge, existing USFDAs turn to transfer knowledge by aligning the target feature to the latent distribution hidden in the source model. However, such information is naturally limited. Thus, the alignment in such a scenario is not only difficult but also insufficient, which degrades the target generalization performance. To relieve this dilemma in current USFDAs, we are motivated to explore a new perspective to boost their performance. For this purpose and gaining necessary insight, we look back upon the origin of the domain adaptation and first theoretically derive a new-brand target generalization error bound based on the model smoothness. Then, following the theoretical insight, a general and model-smoothness-guided Jacobian norm (JN) regularizer is designed and imposed on the target domain to mitigate this dilemma. Extensive experiments are conducted to validate its effectiveness. In its implementation, just with a few lines of codes added to the existing USFDAs, we achieve superior results on various benchmark datasets.
106,377
106,377
DynLight: Realize dynamic phase duration with multi-level traffic signal control
Adopting reinforcement learning (RL) for traffic signal control (TSC) is increasingly popular, and RL has become a promising solution for traffic signal control. However, several challenges still need to be overcome. Firstly, most RL methods use fixed action duration and select the green phase for the next state, which makes the phase duration less dynamic and flexible. Secondly, the phase sequence of RL methods can be arbitrary, affecting the real-world deployment which may require a cyclical phase structure. Lastly, the average travel time and throughput are not fair metrics to evaluate TSC performance. To address these challenges, we propose a multi-level traffic signal control framework, DynLight, which uses an optimization method Max-QueueLength (M-QL) to determine the phase and uses a deep Q-network to determine the duration of the corresponding phase. Based on DynLight, we further propose DynLight-C which adopts a well-trained deep Q-network of DynLight and replace M-QL with a cyclical control policy that actuates a set of phases in fixed cyclical order to realize cyclical phase structure. Comprehensive experiments on multiple real-world datasets demonstrate that DynLight achieves a new state-of-the-art. Furthermore, the deep Q-network of DynLight can learn well on determining the phase duration and DynLight-C demonstrates high performance for deployment.
106,378
106,378
Solving ImageNet: a Unified Scheme for Training any Backbone to Top Results
ImageNet serves as the primary dataset for evaluating the quality of computer-vision models. The common practice today is training each architecture with a tailor-made scheme, designed and tuned by an expert. In this paper, we present a unified scheme for training any backbone on ImageNet. The scheme, named USI (Unified Scheme for ImageNet), is based on knowledge distillation and modern tricks. It requires no adjustments or hyper-parameters tuning between different models, and is efficient in terms of training times. We test USI on a wide variety of architectures, including CNNs, Transformers, Mobile-oriented and MLP-only. On all models tested, USI outperforms previous state-of-the-art results. Hence, we are able to transform training on ImageNet from an expert-oriented task to an automatic seamless routine. Since USI accepts any backbone and trains it to top results, it also enables to perform methodical comparisons, and identify the most efficient backbones along the speed-accuracy Pareto curve. Implementation is available at:https://github.com/Alibaba-MIIL/Solving_ImageNet
106,379
106,379
Delta Keyword Transformer: Bringing Transformers to the Edge through Dynamically Pruned Multi-Head Self-Attention
Multi-head self-attention forms the core of Transformer networks. However, their quadratically growing complexity with respect to the input sequence length impedes their deployment on resource-constrained edge devices. We address this challenge by proposing a dynamic pruning method, which exploits the temporal stability of data across tokens to reduce inference cost. The threshold-based method only retains significant differences between the subsequent tokens, effectively reducing the number of multiply-accumulates, as well as the internal tensor data sizes. The approach is evaluated on the Google Speech Commands Dataset for keyword spotting, and the performance is compared against the baseline Keyword Transformer. Our experiments show that we can reduce ~80% of operations while maintaining the original 98.4% accuracy. Moreover, a reduction of ~87-94% operations can be achieved when only degrading the accuracy by 1-4%, speeding up the multi-head self-attention inference by a factor of ~7.5-16.
106,380
106,380
Optimizing the Long-Term Behaviour of Deep Reinforcement Learning for Pushing and Grasping
We investigate the "Visual Pushing for Grasping" (VPG) system by Zeng et al. and the "Hourglass" system by Ewerton et al., an evolution of the former. The focus of our work is the investigation of the capabilities of both systems to learn long-term rewards and policies. Zeng et al. original task only needs a limited amount of foresight. Ewerton et al. attain their best performance using an agent which only takes the most immediate action under consideration. We are interested in the ability of their models and training algorithms to accurately predict long-term Q-Values. To evaluate this ability, we design a new bin sorting task and reward function. Our task requires agents to accurately estimate future rewards and therefore use high discount factors in their Q-Value calculation. We investigate the behaviour of an adaptation of the VPG training algorithm on our task. We show that this adaptation can not accurately predict the required long-term action sequences. In addition to the limitations identified by Ewerton et al., it suffers from the known Deep Q-Learning problem of overestimated Q-Values. In an effort to solve our task, we turn to the Hourglass models and combine them with the Double Q-Learning approach. We show that this approach enables the models to accurately predict long-term action sequences when trained with large discount factors. Our results show that the Double Q-Learning technique is essential for training with very high discount factors, as the models Q-Value predictions diverge otherwise. We also experiment with different approaches for discount factor scheduling, loss calculation and exploration procedures. Our results show that the latter factors do not visibly influence the model's performance for our task.
106,381
106,381
Position-based Prompting for Health Outcome Generation
Probing Pre-trained Language Models (PLMs) using prompts has indirectly implied that language models (LMs) can be treated as knowledge bases. To this end, this phenomena has been effective especially when these LMs are fine-tuned towards not just data of a specific domain, but also to the style or linguistic pattern of the prompts themselves. We observe that, satisfying a particular linguistic pattern in prompts is an unsustainable constraint that unnecessarily lengthens the probing task, especially because, they are often manually designed and the range of possible prompt template patterns can vary depending on the prompting objective and domain. We therefore explore an idea of using a position-attention mechanism to capture positional information of each word in a prompt relative to the mask to be filled, hence avoiding the need to re-construct prompts when the prompts linguistic pattern changes. Using our approach, we demonstrate the ability of eliciting answers to rare prompt templates (in a case study on health outcome generation) such as Postfix and Mixed patterns whose missing information is respectively at the start and in multiple random places of the prompt. More so, using various biomedical PLMs, our approach consistently outperforms a baseline in which the default mask language model (MLM) representation is used to predict masked tokens.
106,382
106,382
Covariance matrix preparation for quantum principal component analysis
Principal component analysis (PCA) is a dimensionality reduction method in data analysis that involves diagonalizing the covariance matrix of the dataset. Recently, quantum algorithms have been formulated for PCA based on diagonalizing a density matrix. These algorithms assume that the covariance matrix can be encoded in a density matrix, but a concrete protocol for this encoding has been lacking. Our work aims to address this gap. Assuming amplitude encoding of the data, with the data given by the ensemble $\{p_i,| \psi_i \rangle\}$, then one can easily prepare the ensemble average density matrix $\overline{\rho} = \sum_i p_i |\psi_i\rangle \langle \psi_i |$. We first show that $\overline{\rho}$ is precisely the covariance matrix whenever the dataset is centered. For quantum datasets, we exploit global phase symmetry to argue that there always exists a centered dataset consistent with $\overline{\rho}$, and hence $\overline{\rho}$ can always be interpreted as a covariance matrix. This provides a simple means for preparing the covariance matrix for arbitrary quantum datasets or centered classical datasets. For uncentered classical datasets, our method is so-called "PCA without centering", which we interpret as PCA on a symmetrized dataset. We argue that this closely corresponds to standard PCA, and we derive equations and inequalities that bound the deviation of the spectrum obtained with our method from that of standard PCA. We numerically illustrate our method for the MNIST handwritten digit dataset. We also argue that PCA on quantum datasets is natural and meaningful, and we numerically implement our method for molecular ground-state datasets.
106,383
106,383
Generalised Latent Assimilation in Heterogeneous Reduced Spaces with Machine Learning Surrogate Models
Reduced-order modelling and low-dimensional surrogate models generated using machine learning algorithms have been widely applied in high-dimensional dynamical systems to improve the algorithmic efficiency. In this paper, we develop a system which combines reduced-order surrogate models with a novel data assimilation (DA) technique used to incorporate real-time observations from different physical spaces. We make use of local smooth surrogate functions which link the space of encoded system variables and the one of current observations to perform variational DA with a low computational cost. The new system, named Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation. A theoretical analysis of the difference between surrogate and original assimilation cost function is also provided in this paper where an upper bound, depending on the size of the local training set, is given. The new approach is tested on a high-dimensional CFD application of a two-phase liquid flow with non-linear observation operators that current Latent Assimilation methods can not handle. Numerical results demonstrate that the proposed assimilation approach can significantly improve the reconstruction and prediction accuracy of the deep learning surrogate model which is nearly 1000 times faster than the CFD simulation.
106,384
106,384
On the Effectiveness of Pretrained Models for API Learning
Developers frequently use APIs to implement certain functionalities, such as parsing Excel Files, reading and writing text files line by line, etc. Developers can greatly benefit from automatic API usage sequence generation based on natural language queries for building applications in a faster and cleaner manner. Existing approaches utilize information retrieval models to search for matching API sequences given a query or use RNN-based encoder-decoder to generate API sequences. As it stands, the first approach treats queries and API names as bags of words. It lacks deep comprehension of the semantics of the queries. The latter approach adapts a neural language model to encode a user query into a fixed-length context vector and generate API sequences from the context vector. We want to understand the effectiveness of recent Pre-trained Transformer based Models (PTMs) for the API learning task. These PTMs are trained on large natural language corpora in an unsupervised manner to retain contextual knowledge about the language and have found success in solving similar Natural Language Processing (NLP) problems. However, the applicability of PTMs has not yet been explored for the API sequence generation task. We use a dataset that contains 7 million annotations collected from GitHub to evaluate the PTMs empirically. This dataset was also used to assess previous approaches. Based on our results, PTMs generate more accurate API sequences and outperform other related methods by around 11%. We have also identified two different tokenization approaches that can contribute to a significant boost in PTMs' performance for the API sequence generation task.
106,385
106,385
Multi-Task Distributed Learning using Vision Transformer with Random Patch Permutation
The widespread application of artificial intelligence in health research is currently hampered by limitations in data availability. Distributed learning methods such as federated learning (FL) and shared learning (SL) are introduced to solve this problem as well as data management and ownership issues with their different strengths and weaknesses. The recent proposal of federated split task-agnostic (FeSTA) learning tries to reconcile the distinct merits of FL and SL by enabling the multi-task collaboration between participants through Vision Transformer (ViT) architecture, but they suffer from higher communication overhead. To address this, here we present a multi-task distributed learning using ViT with random patch permutation. Instead of using a CNN based head as in FeSTA, p-FeSTA adopts a randomly permuting simple patch embedder, improving the multi-task learning performance without sacrificing privacy. Experimental results confirm that the proposed method significantly enhances the benefit of multi-task collaboration, communication efficiency, and privacy preservation, shedding light on practical multi-task distributed learning in the field of medical imaging.
106,386
106,386
Survey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers
Automated short answer grading (ASAG) has gained attention in education as a means to scale educational tasks to the growing number of students. Recent progress in Natural Language Processing and Machine Learning has largely influenced the field of ASAG, of which we survey the recent research advancements. We complement previous surveys by providing a comprehensive analysis of recently published methods that deploy deep learning approaches. In particular, we focus our analysis on the transition from hand engineered features to representation learning approaches, which learn representative features for the task at hand automatically from large corpora of data. We structure our analysis of deep learning methods along three categories: word embeddings, sequential models, and attention-based methods. Deep learning impacted ASAG differently than other fields of NLP, as we noticed that the learned representations alone do not contribute to achieve the best results, but they rather show to work in a complementary way with hand-engineered features. The best performance are indeed achieved by methods that combine the carefully hand-engineered features with the power of the semantic descriptions provided by the latest models, like transformers architectures. We identify challenges and provide an outlook on research direction that can be addressed in the future
106,387
106,387
AI-aided Traffic Control Scheme for M2M Communications in the Internet of Vehicles
Due to the rapid growth of data transmissions in internet of vehicles (IoV), finding schemes that can effectively alleviate access congestion has become an important issue. Recently, many traffic control schemes have been studied. Nevertheless, the dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies, which is significant for the random access resource allocation. In this paper, we consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it. Firstly, IoV devices are divided into various classes based on delay characteristics. The target of maximizing the successful transmission of packets with the success rate constraint is established. Then, the optimization objective is transformed into a markov decision process (MDP) model. Finally, the access class barring (ACB) factors are obtained based on the PPO method to maximize the number of successful access devices. The performance of the proposal algorithm in respect of successful events and delay compared to existing schemes is verified by simulations.
106,388
106,388
Interval Bound Propagation$\unicode{x2013}$aided Few$\unicode{x002d}$shot Learning
Few-shot learning aims to transfer the knowledge acquired from training on a diverse set of tasks, from a given task distribution, to generalize to unseen tasks, from the same distribution, with a limited amount of labeled data. The underlying requirement for effective few-shot generalization is to learn a good representation of the task manifold. One way to encourage this is to preserve local neighborhoods in the feature space learned by the few-shot learner. To this end, we introduce the notion of interval bounds from the provably robust training literature to few-shot learning. The interval bounds are used to characterize neighborhoods around the training tasks. These neighborhoods can then be preserved by minimizing the distance between a task and its respective bounds. We further introduce a novel strategy to artificially form new tasks for training by interpolating between the available tasks and their respective interval bounds, to aid in cases with a scarcity of tasks. We apply our framework to both model-agnostic meta-learning as well as prototype-based metric-learning paradigms. The efficacy of our proposed approach is evident from the improved performance on several datasets from diverse domains in comparison to a sizable number of recent competitors.
106,389
106,389
Distributed Reinforcement Learning for Robot Teams: A Review
Purpose of review: Recent advances in sensing, actuation, and computation have opened the door to multi-robot systems consisting of hundreds/thousands of robots, with promising applications to automated manufacturing, disaster relief, harvesting, last-mile delivery, port/airport operations, or search and rescue. The community has leveraged model-free multi-agent reinforcement learning (MARL) to devise efficient, scalable controllers for multi-robot systems (MRS). This review aims to provide an analysis of the state-of-the-art in distributed MARL for multi-robot cooperation. Recent findings: Decentralized MRS face fundamental challenges, such as non-stationarity and partial observability. Building upon the "centralized training, decentralized execution" paradigm, recent MARL approaches include independent learning, centralized critic, value decomposition, and communication learning approaches. Cooperative behaviors are demonstrated through AI benchmarks and fundamental real-world robotic capabilities such as multi-robot motion/path planning. Summary: This survey reports the challenges surrounding decentralized model-free MARL for multi-robot cooperation and existing classes of approaches. We present benchmarks and robotic applications along with a discussion on current open avenues for research.
106,390
106,390
Temporal Alignment for History Representation in Reinforcement Learning
Environments in Reinforcement Learning are usually only partially observable. To address this problem, a possible solution is to provide the agent with information about the past. However, providing complete observations of numerous steps can be excessive. Inspired by human memory, we propose to represent history with only important changes in the environment and, in our approach, to obtain automatically this representation using self-supervision. Our method (TempAl) aligns temporally-close frames, revealing a general, slowly varying state of the environment. This procedure is based on contrastive loss, which pulls embeddings of nearby observations to each other while pushing away other samples from the batch. It can be interpreted as a metric that captures the temporal relations of observations. We propose to combine both common instantaneous and our history representation and we evaluate TempAl on all available Atari games from the Arcade Learning Environment. TempAl surpasses the instantaneous-only baseline in 35 environments out of 49. The source code of the method and of all the experiments is available at https://github.com/htdt/tempal.
106,391
106,391
Visualizing Deep Neural Networks with Topographic Activation Maps
Machine Learning with Deep Neural Networks (DNNs) has become a successful tool in solving tasks across various fields of application. The success of DNNs is strongly connected to their high complexity in terms of the number of network layers or of neurons in each layer, which severely complicates to understand how DNNs solve their learned task. To improve the explainability of DNNs, we adapt methods from neuroscience because this field has a rich experience in analyzing complex and opaque systems. In this work, we draw inspiration from how neuroscience uses topographic maps to visualize the activity of the brain when it performs certain tasks. Transferring this approach to DNNs can help to visualize and understand their internal processes more intuitively, too. However, the inner structures of brains and DNNs differ substantially. Therefore, to be able to visualize activations of neurons in DNNs as topographic maps, we research techniques to layout the neurons in a two-dimensional space in which neurons of similar activity are in the vicinity of each other. In this work, we introduce and compare different methods to obtain a topographic layout of the neurons in a network layer. Moreover, we demonstrate how to use the resulting topographic activation maps to identify errors or encoded biases in DNNs or data sets. Our novel visualization technique improves the transparency of DNN-based algorithmic decision-making systems and is accessible to a broad audience because topographic maps are intuitive to interpret without expert-knowledge in Machine Learning.
106,392
106,392
FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to System Heterogeneity
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices subject to limited communication bandwidths, heterogeneity in data distributions and computational resources, as well as privacy considerations. In this paper, we introduce a new FL protocol termed FedADMM based on primal-dual optimization. The proposed method leverages dual variables to tackle statistical heterogeneity, and accommodates system heterogeneity by tolerating variable amount of work performed by clients. FedADMM maintains identical communication costs per round as FedAvg/Prox, and generalizes them via the augmented Lagrangian. A convergence proof is established for nonconvex objectives, under no restrictions in terms of data dissimilarity or number of participants per round of the algorithm. We demonstrate the merits through extensive experiments on real datasets, under both IID and non-IID data distributions across clients. FedADMM consistently outperforms all baseline methods in terms of communication efficiency, with the number of rounds needed to reach a prescribed accuracy reduced by up to 87%. The algorithm effectively adapts to heterogeneous data distributions through the use of dual variables, without the need for hyperparameter tuning, and its advantages are more pronounced in large-scale systems.
106,393
106,393
RF Signal Transformation and Classification using Deep Neural Networks
Deep neural networks (DNNs) designed for computer vision and natural language processing tasks cannot be directly applied to the radio frequency (RF) datasets. To address this challenge, we propose to convert the raw RF data to data types that are suitable for off-the-shelf DNNs by introducing a convolutional transform technique. In addition, we propose a simple 5-layer convolutional neural network architecture (CONV-5) that can operate with raw RF I/Q data without any transformation. Further, we put forward an RF dataset, referred to as RF1024, to facilitate future RF research. RF1024 consists of 8 different RF modulation classes with each class having 1000/200 training/test samples. Each sample of the RF1024 dataset contains 1024 complex I/Q values. Lastly, the experiments are performed on the RadioML2016 and RF1024 datasets to demonstrate the improved classification performance.
106,394
106,394
Adaptive Spike-Like Representation of EEG Signals for Sleep Stages Scoring
Recently there has seen promising results on automatic stage scoring by extracting spatio-temporal features from electroencephalogram (EEG). Such methods entail laborious manual feature engineering and domain knowledge. In this study, we propose an adaptive scheme to probabilistically encode, filter and accumulate the input signals and weight the resultant features by the half-Gaussian probabilities of signal intensities. The adaptive representations are subsequently fed into a transformer model to automatically mine the relevance between features and corresponding stages. Extensive experiments on the largest public dataset against state-of-the-art methods validate the effectiveness of our proposed method and reveal promising future directions.
106,395
106,395
Faster algorithms for learning to link, align sequences, and price two-part tariffs
Data-driven algorithm configuration is a promising, learning-based approach for beyond worst-case analysis of algorithms with tunable parameters. An important open problem is the design of efficient data-driven algorithms for algorithm families with more than one parameter. In this work we provide algorithms for efficient (output-polynomial) multidimensional parameter tuning, i.e. for families with a small constant number of parameters, for three very different combinatorial problems -- linkage-based clustering, dynamic programming for sequence alignment, and auction design for two-part tariff schemes. We extend the single-parameter clustering algorithm of Balcan et al. 2020 arXiv:1907.00533 to multiple parameters and to the sequence alignment problem by proposing an execution graph which compactly represents all the states the algorithm could attain for all possible parameter values. A key problem-specific challenge is to efficiently compute how the partition of the parameter space (into regions with unique algorithmic states) changes with a single algorithmic step. We give algorithms which improve on the runtime of previously best known results for linkage-based clustering, sequence alignment and two-part tariff pricing.
106,396
106,396
Improving Urban Mobility: using artificial intelligence and new technologies to connect supply and demand
As the demand for mobility in our society seems to increase, the various issues centered on urban mobility are among those that worry most city inhabitants in this planet. For instance, how to go from A to B in an efficient (but also less stressful) way? These questions and concerns have not changed even during the covid-19 pandemic; on the contrary, as the current stand, people who are avoiding public transportation are only contributing to an increase in the vehicular traffic. The are of intelligent transportation systems (ITS) aims at investigating how to employ information and communication technologies to problems related to transportation. This may mean monitoring and managing the infrastructure (e.g., traffic roads, traffic signals, etc.). However, currently, ITS is also targeting the management of demand. In this panorama, artificial intelligence plays an important role, especially with the advances in machine learning that translates in the use of computational vision, connected and autonomous vehicles, agent-based simulation, among others. In the present work, a survey of several works developed by our group are discussed in a holistic perspective, i.e., they cover not only the supply side (as commonly found in ITS works), but also the demand side, and, in an novel perspective, the integration of both.
106,397
106,397
A Pathology-Based Machine Learning Method to Assist in Epithelial Dysplasia Diagnosis
The Epithelial Dysplasia (ED) is a tissue alteration commonly present in lesions preceding oral cancer, being its presence one of the most important factors in the progression toward carcinoma. This study proposes a method to design a low computational cost classification system to support the detection of dysplastic epithelia, contributing to reduce the variability of pathologist assessments. We employ a multilayer artificial neural network (MLP-ANN) and defining the regions of the epithelium to be assessed based on the knowledge of the pathologist. The performance of the proposed solution was statistically evaluated. The implemented MLP-ANN presented an average accuracy of 87%, with a variability much inferior to that obtained from three trained evaluators. Moreover, the proposed solution led to results which are very close to those obtained using a convolutional neural network (CNN) implemented by transfer learning, with 100 times less computational complexity. In conclusion, our results show that a simple neural network structure can lead to a performance equivalent to that of much more complex structures, which are routinely used in the literature.
106,398
106,398
An optimized hybrid solution for IoT based lifestyle disease classification using stress data
Stress, anxiety, and nervousness are all high-risk health states in everyday life. Previously, stress levels were determined by speaking with people and gaining insight into what they had experienced recently or in the past. Typically, stress is caused by an incidence that occurred a long time ago, but sometimes it is triggered by unknown factors. This is a challenging and complex task, but recent research advances have provided numerous opportunities to automate it. The fundamental features of most of these techniques are electro dermal activity (EDA) and heart rate values (HRV). We utilized an accelerometer to measure body motions to solve this challenge. The proposed novel method employs a test that measures a subject's electrocardiogram (ECG), galvanic skin values (GSV), HRV values, and body movements in order to provide a low-cost and time-saving solution for detecting stress lifestyle disease in modern times using cyber physical systems. This study provides a new hybrid model for lifestyle disease classification that decreases execution time while picking the best collection of characteristics and increases classification accuracy. The developed approach is capable of dealing with the class imbalance problem by using WESAD (wearable stress and affect dataset) dataset. The new model uses the Grid search (GS) method to select an optimized set of hyper parameters, and it uses a combination of the Correlation coefficient based Recursive feature elimination (CoC-RFE) method for optimal feature selection and gradient boosting as an estimator to classify the dataset, which achieves high accuracy and helps to provide smart, accurate, and high-quality healthcare systems. To demonstrate the validity and utility of the proposed methodology, its performance is compared to those of other well-established machine learning models.
106,399
106,399
Learning to Compose Soft Prompts for Compositional Zero-Shot Learning
We introduce compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) without the overhead of fine-tuning the entire model. VLMs can represent arbitrary classes as natural language prompts in their flexible text encoders but they underperform state-of-the-art methods on compositional zero-shot benchmark tasks. To improve VLMs, we propose a novel form of soft prompting. We treat the attributes and objects that are composed to define classes as learnable tokens of vocabulary and tune them on multiple prompt compositions. During inference, we recompose the learned attribute-object vocabulary in new combinations and show that CSP outperforms the original VLM on benchmark datasets by an average of 14.7 percentage points of accuracy. CSP also achieves new state-of-the-art accuracies on two out of three benchmark datasets, while only fine-tuning a small number of parameters. Further, we show that CSP improves generalization to higher-order attribute-attribute-object compositions and combinations of pretrained attributes and fine-tuned objects.