Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
106,100
106,100
Taking ROCKET on an Efficiency Mission: Multivariate Time Series Classification with LightWaveS
Nowadays, with the rising number of sensors in sectors such as healthcare and industry, the problem of multivariate time series classification (MTSC) is getting increasingly relevant and is a prime target for machine and deep learning approaches. Their expanding adoption in real-world environments is causing a shift in focus from the pursuit of ever-higher prediction accuracy with complex models towards practical, deployable solutions that balance accuracy and parameters such as prediction speed. An MTSC model that has attracted attention recently is ROCKET, based on random convolutional kernels, both because of its very fast training process and its state-of-the-art accuracy. However, the large number of features it utilizes may be detrimental to inference time. Examining its theoretical background and limitations enables us to address potential drawbacks and present LightWaveS: a framework for accurate MTSC, which is fast both during training and inference. Specifically, utilizing wavelet scattering transformation and distributed feature selection, we manage to create a solution that employs just 2.5% of the ROCKET features, while achieving accuracy comparable to recent MTSC models. LightWaveS also scales well across multiple compute nodes and with the number of input channels during training. In addition, it can significantly reduce the input size and provide insight to an MTSC problem by keeping only the most useful channels. We present three versions of our algorithm and their results on distributed training time and scalability, accuracy, and inference speedup. We show that we achieve speedup ranging from 9x to 53x compared to ROCKET during inference on an edge device, on datasets with comparable accuracy.
106,101
106,101
Aligned Weight Regularizers for Pruning Pretrained Neural Networks
While various avenues of research have been explored for iterative pruning, little is known what effect pruning has on zero-shot test performance and its potential implications on the choice of pruning criteria. This pruning setup is particularly important for cross-lingual models that implicitly learn alignment between language representations during pretraining, which if distorted via pruning, not only leads to poorer performance on language data used for retraining but also on zero-shot languages that are evaluated. In this work, we show that there is a clear performance discrepancy in magnitude-based pruning when comparing standard supervised learning to the zero-shot setting. From this finding, we propose two weight regularizers that aim to maximize the alignment between units of pruned and unpruned networks to mitigate alignment distortion in pruned cross-lingual models and perform well for both non zero-shot and zero-shot settings. We provide experimental results on cross-lingual tasks for the zero-shot setting using XLM-RoBERTa$_{\mathrm{Base}}$, where we also find that pruning has varying degrees of representational degradation depending on the language corresponding to the zero-shot test set. This is also the first study that focuses on cross-lingual language model compression.
106,102
106,102
Anti-Spoofing Using Transfer Learning with Variational Information Bottleneck
Recent advances in sophisticated synthetic speech generated from text-to-speech (TTS) or voice conversion (VC) systems cause threats to the existing automatic speaker verification (ASV) systems. Since such synthetic speech is generated from diverse algorithms, generalization ability with using limited training data is indispensable for a robust anti-spoofing system. In this work, we propose a transfer learning scheme based on the wav2vec 2.0 pretrained model with variational information bottleneck (VIB) for speech anti-spoofing task. Evaluation on the ASVspoof 2019 logical access (LA) database shows that our method improves the performance of distinguishing unseen spoofed and genuine speech, outperforming current state-of-the-art anti-spoofing systems. Furthermore, we show that the proposed system improves performance in low-resource and cross-dataset settings of anti-spoofing task significantly, demonstrating that our system is also robust in terms of data size and data distribution.
106,103
106,103
Re-examining Distillation For Continual Object Detection
Training models continually to detect and classify objects, from new classes and new domains, remains an open problem. In this work, we conduct a thorough analysis of why and how object detection models forget catastrophically. We focus on distillation-based approaches in two-stage networks; the most-common strategy employed in contemporary continual object detection work.Distillation aims to transfer the knowledge of a model trained on previous tasks -- the teacher -- to a new model -- the student -- while it learns the new task. We show that this works well for the region proposal network, but that wrong, yet overly confident teacher predictions prevent student models from effective learning of the classification head. Our analysis provides a foundation that allows us to propose improvements for existing techniques by detecting incorrect teacher predictions, based on current ground-truth labels, and by employing an adaptive Huber loss as opposed to the mean squared error for the distillation loss in the classification heads. We evidence that our strategy works not only in a class incremental setting, but also in domain incremental settings, which constitute a realistic context, likely to be the setting of representative real-world problems.
106,104
106,104
SAM-kNN Regressor for Online Learning in Water Distribution Networks
Water distribution networks are a key component of modern infrastructure for housing and industry. They transport and distribute water via widely branched networks from sources to consumers. In order to guarantee a working network at all times, the water supply company continuously monitors the network and takes actions when necessary -- e.g. reacting to leakages, sensor faults and drops in water quality. Since real world networks are too large and complex to be monitored by a human, algorithmic monitoring systems have been developed. A popular type of such systems are residual based anomaly detection systems that can detect events such as leakages and sensor faults. For a continuous high quality monitoring, it is necessary for these systems to adapt to changed demands and presence of various anomalies. In this work, we propose an adaption of the incremental SAM-kNN classifier for regression to build a residual based anomaly detection system for water distribution networks that is able to adapt to any kind of change.
106,105
106,105
Learning Commonsense-aware Moment-Text Alignment for Fast Video Temporal Grounding
Grounding temporal video segments described in natural language queries effectively and efficiently is a crucial capability needed in vision-and-language fields. In this paper, we deal with the fast video temporal grounding (FVTG) task, aiming at localizing the target segment with high speed and favorable accuracy. Most existing approaches adopt elaborately designed cross-modal interaction modules to improve the grounding performance, which suffer from the test-time bottleneck. Although several common space-based methods enjoy the high-speed merit during inference, they can hardly capture the comprehensive and explicit relations between visual and textual modalities. In this paper, to tackle the dilemma of speed-accuracy tradeoff, we propose a commonsense-aware cross-modal alignment (CCA) framework, which incorporates commonsense-guided visual and text representations into a complementary common space for fast video temporal grounding. Specifically, the commonsense concepts are explored and exploited by extracting the structural semantic information from a language corpus. Then, a commonsense-aware interaction module is designed to obtain bridged visual and text features by utilizing the learned commonsense concepts. Finally, to maintain the original semantic information of textual queries, a cross-modal complementary common space is optimized to obtain matching scores for performing FVTG. Extensive results on two challenging benchmarks show that our CCA method performs favorably against state-of-the-arts while running at high speed. Our code is available at https://github.com/ZiyueWu59/CCA.
106,106
106,106
SHiFT: An Efficient, Flexible Search Engine for Transfer Learning
Transfer learning can be seen as a data- and compute-efficient alternative to training models from scratch. The emergence of rich model repositories, such as TensorFlow Hub, enables practitioners and researchers to unleash the potential of these models across a wide range of downstream tasks. As these repositories keep growing exponentially, efficiently selecting a good model for the task at hand becomes paramount. By carefully comparing various selection and search strategies, we realize that no single method outperforms the others, and hybrid or mixed strategies can be beneficial. Therefore, we propose SHiFT, the first downstream task-aware, flexible, and efficient model search engine for transfer learning. These properties are enabled by a custom query language SHiFT-QL together with a cost-based decision maker, which we empirically validate. Motivated by the iterative nature of machine learning development, we further support efficient incremental executions of our queries, which requires a careful implementation when jointly used with our optimizations.
106,107
106,107
Value Gradient weighted Model-Based Reinforcement Learning
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies, yet unavoidable modeling errors often lead performance deterioration. The model in MBRL is often solely fitted to reconstruct dynamics, state observations in particular, while the impact of model error on the policy is not captured by the training objective. This leads to a mismatch between the intended goal of MBRL, enabling good policy and value learning, and the target of the loss function employed in practice, future state prediction. Naive intuition would suggest that value-aware model learning would fix this problem and, indeed, several solutions to this objective mismatch problem have been proposed based on theoretical analysis. However, they tend to be inferior in practice to commonly used maximum likelihood (MLE) based approaches. In this paper we propose the Value-gradient weighted Model Learning (VaGraM), a novel method for value-aware model learning which improves the performance of MBRL in challenging settings, such as small model capacity and the presence of distracting state dimensions. We analyze both MLE and value-aware approaches and demonstrate how they fail to account for exploration and the behavior of function approximation when learning value-aware models and highlight the additional goals that must be met to stabilize optimization in the deep learning setting. We verify our analysis by showing that our loss function is able to achieve high returns on the Mujoco benchmark suite while being more robust than maximum likelihood based approaches.
106,108
106,108
A single Long Short-Term Memory network for enhancing the prediction of path-dependent plasticity with material heterogeneity and anisotropy
This study presents the applicability of conventional deep recurrent neural networks (RNN) to predict path-dependent plasticity associated with material heterogeneity and anisotropy. Although the architecture of RNN possesses inductive biases toward information over time, it is still challenging to learn the path-dependent material behavior as a function of the loading path considering the change from elastic to elastoplastic regimes. Our attempt is to develop a simple machine-learning-based model that can replicate elastoplastic behaviors considering material heterogeneity and anisotropy. The basic Long-Short Term Memory Unit (LSTM) is adopted for the modeling of plasticity in the two-dimensional space by enhancing the inductive bias toward the past information through manipulating input variables. Our results find that a single LSTM based model can capture the J2 plasticity responses under both monotonic and arbitrary loading paths provided the material heterogeneity. The proposed neural network architecture is then used to model elastoplastic responses of a two-dimensional transversely anisotropic material associated with computational homogenization (FE2). It is also found that a single LSTM model can be used to accurately and effectively capture the path-dependent responses of heterogeneous and anisotropic microstructures under arbitrary mechanical loading conditions.
106,109
106,109
On scientific understanding with artificial intelligence
Imagine an oracle that correctly predicts the outcome of every particle physics experiment, the products of every chemical reaction, or the function of every protein. Such an oracle would revolutionize science and technology as we know them. However, as scientists, we would not be satisfied with the oracle itself. We want more. We want to comprehend how the oracle conceived these predictions. This feat, denoted as scientific understanding, has frequently been recognized as the essential aim of science. Now, the ever-growing power of computers and artificial intelligence poses one ultimate question: How can advanced artificial systems contribute to scientific understanding or achieve it autonomously? We are convinced that this is not a mere technical question but lies at the core of science. Therefore, here we set out to answer where we are and where we can go from here. We first seek advice from the philosophy of science to understand scientific understanding. Then we review the current state of the art, both from literature and by collecting dozens of anecdotes from scientists about how they acquired new conceptual understanding with the help of computers. Those combined insights help us to define three dimensions of android-assisted scientific understanding: The android as a I) computational microscope, II) resource of inspiration and the ultimate, not yet existent III) agent of understanding. For each dimension, we explain new avenues to push beyond the status quo and unleash the full power of artificial intelligence's contribution to the central aim of science. We hope our perspective inspires and focuses research towards androids that get new scientific understanding and ultimately bring us closer to true artificial scientists.
106,110
106,110
Event Log Sampling for Predictive Monitoring
Predictive process monitoring is a subfield of process mining that aims to estimate case or event features for running process instances. Such predictions are of significant interest to the process stakeholders. However, state-of-the-art methods for predictive monitoring require the training of complex machine learning models, which is often inefficient. This paper proposes an instance selection procedure that allows sampling training process instances for prediction models. We show that our sampling method allows for a significant increase of training speed for next activity prediction methods while maintaining reliable levels of prediction accuracy.
106,111
106,111
Feasibility of nowcasting SDG indicators: a comprehensive survey
The 2030 Agenda and accompanying Sustainable Development Goals (SDGs) are vital in guiding national and global policy. However, many of the SDG indicators used to measure progress toward those goals suffer from long publication lags. Nowcasting has the potential to address this problem and generate more timely estimates of those indicators. This paper provides resources for achieving that potential by 1) carrying out a comprehensive nowcasting feasibility survey of all SDG indicators to assess their potential to be nowcast, and 2) performing a case study of indicator 9.4.1 to illustrate and shed light on the process of performing a nowcasting exercise. There exist 231 SDG indicators, but due to only examining Tier 1 indicators and the fact that many indicators have multiple sub-indicators, 362 indicators and sub-indicators were eventually surveyed. Of those 362, 150 were found highly likely to be suitable candidates for nowcasting, 87 were found to be likely, and 125 were found to be unsuitable.
106,112
106,112
Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques
Dengue fever is a vector-borne disease mostly endemic to tropical and subtropical countries that affect millions every year and is considered a significant burden for public health. Its geographic distribution makes it highly sensitive to climate conditions. Here, we explore the effect of climate variables using the Generalized Additive Model for location, scale, and shape (GAMLSS) and Random Forest (RF) machine learning algorithms. Using the reported number of dengue cases, we obtained reliable predictions. The uncertainty of the predictions was also measured. These predictions will serve as input to health officials to further improve and optimize the allocation of resources prior to dengue outbreaks.
106,113
106,113
Satellite Monitoring of Terrestrial Plastic Waste
Plastic waste is a significant environmental pollutant that is difficult to monitor. We created a system of neural networks to analyze spectral, spatial, and temporal components of Sentinel-2 satellite data to identify terrestrial aggregations of waste. The system works at continental scale. We evaluated performance in Indonesia and detected 374 waste aggregations, more than double the number of sites found in public databases. The same system deployed across twelve countries in Southeast Asia identifies 996 subsequently confirmed waste sites. For each detected site, we algorithmically monitor waste site footprints through time and cross-reference other datasets to generate physical and social metadata. 19% of detected waste sites are located within 200 m of a waterway. Numerous sites sit directly on riverbanks, with high risk of ocean leakage.
106,114
106,114
FedRecAttack: Model Poisoning Attack to Federated Recommendation
Federated Recommendation (FR) has received considerable popularity and attention in the past few years. In FR, for each user, its feature vector and interaction data are kept locally on its own client thus are private to others. Without the access to above information, most existing poisoning attacks against recommender systems or federated learning lose validity. Benifiting from this characteristic, FR is commonly considered fairly secured. However, we argue that there is still possible and necessary security improvement could be made in FR. To prove our opinion, in this paper we present FedRecAttack, a model poisoning attack to FR aiming to raise the exposure ratio of target items. In most recommendation scenarios, apart from private user-item interactions (e.g., clicks, watches and purchases), some interactions are public (e.g., likes, follows and comments). Motivated by this point, in FedRecAttack we make use of the public interactions to approximate users' feature vectors, thereby attacker can generate poisoned gradients accordingly and control malicious users to upload the poisoned gradients in a well-designed way. To evaluate the effectiveness and side effects of FedRecAttack, we conduct extensive experiments on three real-world datasets of different sizes from two completely different scenarios. Experimental results demonstrate that our proposed FedRecAttack achieves the state-of-the-art effectiveness while its side effects are negligible. Moreover, even with small proportion (3%) of malicious users and small proportion (1%) of public interactions, FedRecAttack remains highly effective, which reveals that FR is more vulnerable to attack than people commonly considered.
106,115
106,115
Which Tricks are Important for Learning to Rank?
Nowadays, state-of-the-art learning-to-rank (LTR) methods are based on gradient-boosted decision trees (GBDT). The most well-known algorithm is LambdaMART that was proposed more than a decade ago. Recently, several other GBDT-based ranking algorithms were proposed. In this paper, we conduct a thorough analysis of these methods in a unified setup. In particular, we address the following questions. Is direct optimization of a smoothed ranking loss preferable over optimizing a convex surrogate? How to properly construct and smooth surrogate ranking losses? To address these questions, we compare LambdaMART with YetiRank and StochasticRank methods and their modifications. We also improve the YetiRank approach to allow for optimizing specific ranking loss functions. As a result, we gain insights into learning-to-rank approaches and obtain a new state-of-the-art algorithm.
106,116
106,116
The Group Loss++: A deeper look into group loss for deep metric learning
Deep metric learning has yielded impressive results in tasks such as clustering and image retrieval by leveraging neural networks to obtain highly discriminative feature embeddings, which can be used to group samples into different classes. Much research has been devoted to the design of smart loss functions or data mining strategies for training such networks. Most methods consider only pairs or triplets of samples within a mini-batch to compute the loss function, which is commonly based on the distance between embeddings. We propose Group Loss, a loss function based on a differentiable label-propagation method that enforces embedding similarity across all samples of a group while promoting, at the same time, low-density regions amongst data points belonging to different groups. Guided by the smoothness assumption that "similar objects should belong to the same group", the proposed loss trains the neural network for a classification task, enforcing a consistent labelling amongst samples within a class. We design a set of inference strategies tailored towards our algorithm, named Group Loss++ that further improve the results of our model. We show state-of-the-art results on clustering and image retrieval on four retrieval datasets, and present competitive results on two person re-identification datasets, providing a unified framework for retrieval and re-identification.
106,117
106,117
Matrix Completion with Sparse Noisy Rows
Exact matrix completion and low rank matrix estimation problems has been studied in different underlying conditions. In this work we study exact low-rank completion under non-degenerate noise model. Non-degenerate random noise model has been previously studied by many researchers under given condition that the noise is sparse and existing in some of the columns. In this paper, we assume that each row can receive random noise instead of columns and propose an interactive algorithm that is robust to this noise. We show that we use a parametrization technique to give a condition when the underlying matrix could be recoverable and suggest an algorithm which recovers the underlying matrix.
106,118
106,118
Survey of Matrix Completion Algorithms
Matrix completion problem has been investigated under many different conditions since Netflix announced the Netflix Prize problem. Many research work has been done in the field once it has been discovered that many real life dataset could be estimated with a low-rank matrix. Since then compressed sensing, adaptive signal detection has gained the attention of many researchers. In this survey paper we are going to visit some of the matrix completion methods, mainly in the direction of passive and adaptive directions. First, we discuss passive matrix completion methods with convex optimization, and the second active matrix completion techniques with adaptive signal detection methods. Traditionally many machine learning problems are solved in passive environment. However, later it has been observed that adaptive sensing algorithms many times performs more efficiently than former algorithms. Hence algorithms in this setting has been extensively studied. Therefore, we are going to present some of the latest adaptive matrix completion algorithms in this paper meanwhile providing passive methods.
106,119
106,119
Deep Learning for Spectral Filling in Radio Frequency Applications
Due to the Internet of Things (IoT) proliferation, Radio Frequency (RF) channels are increasingly congested with new kinds of devices, which carry unique and diverse communication needs. This poses complex challenges in modern digital communications, and calls for the development of technological innovations that (i) optimize capacity (bitrate) in limited bandwidth environments, (ii) integrate cooperatively with already-deployed RF protocols, and (iii) are adaptive to the ever-changing demands in modern digital communications. In this paper we present methods for applying deep neural networks for spectral filling. Given an RF channel transmitting digital messages with a pre-established modulation scheme, we automatically learn novel modulation schemes for sending extra information, in the form of additional messages, "around" the fixed-modulation signals (i.e., without interfering with them). In so doing, we effectively increase channel capacity without increasing bandwidth. We further demonstrate the ability to generate signals that closely resemble the original modulations, such that the presence of extra messages is undetectable to third-party listeners. We present three computational experiments demonstrating the efficacy of our methods, and conclude by discussing the implications of our results for modern RF applications.
106,120
106,120
CDKT-FL: Cross-Device Knowledge Transfer using Proxy Dataset in Federated Learning
In a practical setting towards better generalization abilities of client models for realizing robust personalized Federated Learning (FL) systems, efficient model aggregation methods have been considered as a critical research objective. It is a challenging issue due to the consequences of non-i.i.d. properties of client's data, often referred to as statistical heterogeneity and small local data samples from the various data distributions. Therefore, to develop robust generalized global and personalized models, conventional FL methods need redesigning the knowledge aggregation from biased local models while considering huge divergence of learning parameters due to skewed client data. In this work, we demonstrate that the knowledge transfer mechanism is a de facto technique to achieve these objectives and develop a novel knowledge distillation-based approach to study the extent of knowledge transfer between the global model and local models. Henceforth, our method considers the suitability of transferring the outcome distribution and (or) the embedding vector of representation from trained models during cross-device knowledge transfer using a small proxy dataset in heterogeneous FL. In doing so, we alternatively perform cross-device knowledge transfer following general formulations as 1) global knowledge transfer and 2) on-device knowledge transfer. Through simulations on four federated datasets, we show the proposed method achieves significant speedups and high personalized performance of local models. Furthermore, the proposed approach offers a more stable algorithm than FedAvg during the training, with minimal communication data load when exchanging the trained model's outcomes and representation.
106,121
106,121
Causality, Causal Discovery, and Causal Inference in Structural Engineering
Much of our experiments are designed to uncover the cause(s) and effect(s) behind a data generating mechanism (i.e., phenomenon) we happen to be interested in. Uncovering such relationships allows us to identify the true working of a phenomenon and, most importantly, articulate a model that may enable us to further explore the phenomenon on hand and/or allow us to predict it accurately. Fundamentally, such models are likely to be derived via a causal approach (as opposed to an observational or empirical mean). In this approach, causal discovery is required to create a causal model, which can then be applied to infer the influence of interventions, and answer any hypothetical questions (i.e., in the form of What ifs? Etc.) that we might have. This paper builds a case for causal discovery and causal inference and contrasts that against traditional machine learning approaches; all from a civil and structural engineering perspective. More specifically, this paper outlines the key principles of causality and the most commonly used algorithms and packages for causal discovery and causal inference. Finally, this paper also presents a series of examples and case studies of how causal concepts can be adopted for our domain.
106,122
106,122
Con$^{2}$DA: Simplifying Semi-supervised Domain Adaptation by Learning Consistent and Contrastive Feature Representations
In this work, we present Con$^{2}$DA, a simple framework that extends recent advances in semi-supervised learning to the semi-supervised domain adaptation (SSDA) problem. Our framework generates pairs of associated samples by performing stochastic data transformations to a given input. Associated data pairs are mapped to a feature representation space using a feature extractor. We use different loss functions to enforce consistency between the feature representations of associated data pairs of samples. We show that these learned representations are useful to deal with differences in data distributions in the domain adaptation problem. We performed experiments to study the main components of our model and we show that (i) learning of the consistent and contrastive feature representations is crucial to extract good discriminative features across different domains, and ii) our model benefits from the use of strong augmentation policies. With these findings, our method achieves state-of-the-art performances in three benchmark datasets for SSDA.
106,123
106,123
Introducing ECAPA-TDNN and Wav2Vec2.0 Embeddings to Stuttering Detection
The adoption of advanced deep learning (DL) architecture in stuttering detection (SD) tasks is challenging due to the limited size of the available datasets. To this end, this work introduces the application of speech embeddings extracted with pre-trained deep models trained on massive audio datasets for different tasks. In particular, we explore audio representations obtained using emphasized channel attention, propagation, and aggregation-time-delay neural network (ECAPA-TDNN) and Wav2Vec2.0 model trained on VoxCeleb and LibriSpeech datasets respectively. After extracting the embeddings, we benchmark with several traditional classifiers, such as a k-nearest neighbor, Gaussian naive Bayes, and neural network, for the stuttering detection tasks. In comparison to the standard SD system trained only on the limited SEP-28k dataset, we obtain a relative improvement of 16.74% in terms of overall accuracy over baseline. Finally, we have shown that combining two embeddings and concatenating multiple layers of Wav2Vec2.0 can further improve SD performance up to 1% and 2.64% respectively.
106,124
106,124
DAD: Data-free Adversarial Defense at Test Time
Deep models are highly susceptible to adversarial attacks. Such attacks are carefully crafted imperceptible noises that can fool the network and can cause severe consequences when deployed. To encounter them, the model requires training data for adversarial training or explicit regularization-based techniques. However, privacy has become an important concern, restricting access to only trained models but not the training data (e.g. biometric data). Also, data curation is expensive and companies may have proprietary rights over it. To handle such situations, we propose a completely novel problem of 'test-time adversarial defense in absence of training data and even their statistics'. We solve it in two stages: a) detection and b) correction of adversarial samples. Our adversarial sample detection framework is initially trained on arbitrary data and is subsequently adapted to the unlabelled test data through unsupervised domain adaptation. We further correct the predictions on detected adversarial samples by transforming them in Fourier domain and obtaining their low frequency component at our proposed suitable radius for model prediction. We demonstrate the efficacy of our proposed technique via extensive experiments against several adversarial attacks and for different model architectures and datasets. For a non-robust Resnet-18 model pre-trained on CIFAR-10, our detection method correctly identifies 91.42% adversaries. Also, we significantly improve the adversarial accuracy from 0% to 37.37% with a minimal drop of 0.02% in clean accuracy on state-of-the-art 'Auto Attack' without having to retrain the model.
106,125
106,125
Coarse-to-Fine Q-attention with Learned Path Ranking
We propose Learned Path Ranking (LPR), a method that accepts an end-effector goal pose, and learns to rank a set of goal-reaching paths generated from an array of path generating methods, including: path planning, Bezier curve sampling, and a learned policy. The core idea being that each of the path generation modules will be useful in different tasks, or at different stages in a task. When LPR is added as an extension to C2F-ARM, our new system, C2F-ARM+LPR, retains the sample efficiency of its predecessor, while also being able to accomplish a larger set of tasks; in particular, tasks that require very specific motions (e.g. opening toilet seat) that need to be inferred from both demonstrations and exploration data. In addition to benchmarking our approach across 16 RLBench tasks, we also learn real-world tasks, tabula rasa, in 10-15 minutes, with only 3 demonstrations.
106,126
106,126
Langevin Diffusion: An Almost Universal Algorithm for Private Euclidean (Convex) Optimization
In this paper we revisit the problem of differentially private empirical risk minimization (DP-ERM) and stochastic convex optimization (DP-SCO). We show that a well-studied continuous time algorithm from statistical physics called Langevin diffusion (LD) simultaneously provides optimal privacy/utility tradeoffs for both DP-ERM and DP-SCO under $\epsilon$-DP and $(\epsilon,\delta)$-DP. Using the uniform stability properties of LD, we provide the optimal excess population risk guarantee for $\ell_2$-Lipschitz convex losses under $\epsilon$-DP (even up to $\log n$ factors), thus improving on Asi et al. Along the way we provide various technical tools which can be of independent interest: i) A new R\'enyi divergence bound for LD when run on loss functions over two neighboring data sets, ii) Excess empirical risk bounds for last-iterate LD analogous to that of Shamir and Zhang for noisy stochastic gradient descent (SGD), and iii) A two phase excess risk analysis of LD, where the first phase is when the diffusion has not converged in any reasonable sense to a stationary distribution, and in the second phase when the diffusion has converged to a variant of Gibbs distribution. Our universality results crucially rely on the dynamics of LD. When it has converged to a stationary distribution, we obtain the optimal bounds under $\epsilon$-DP. When it is run only for a very short time $\propto 1/p$, we obtain the optimal bounds under $(\epsilon,\delta)$-DP. Here, $p$ is the dimensionality of the model space. Our work initiates a systematic study of DP continuous time optimization. We believe this may have ramifications in the design of discrete time DP optimization algorithms analogous to that in the non-private setting, where continuous time dynamical viewpoints have helped in designing new algorithms, including the celebrated mirror-descent and Polyak's momentum method.
106,127
106,127
Optimize Deep Learning Models for Prediction of Gene Mutations Using Unsupervised Clustering
Deep learning has become the mainstream methodological choice for analyzing and interpreting whole-slide digital pathology images (WSIs). It is commonly assumed that tumor regions carry most predictive information. In this paper, we proposed an unsupervised clustering-based multiple-instance learning, and apply our method to develop deep-learning models for prediction of gene mutations using WSIs from three cancer types in The Cancer Genome Atlas (TCGA) studies (CRC, LUAD, and HNSCC). We showed that unsupervised clustering of image patches could help identify predictive patches, exclude patches lack of predictive information, and therefore improve prediction on gene mutations in all three different cancer types, compared with the WSI based method without selection of image patches and models based on only tumor regions. Additionally, our proposed algorithm outperformed two recently published baseline algorithms leveraging unsupervised clustering to assist model prediction. The unsupervised-clustering-based approach for mutation prediction allows identification of the spatial regions related to mutation of a specific gene via the resolved probability scores, highlighting the heterogeneity of a predicted genotype in the tumor microenvironment. Finally, our study also demonstrated that selection of tumor regions of WSIs is not always the best way to identify patches for prediction of gene mutations, and other tissue types in the tumor micro-environment may provide better prediction ability for gene mutations than tumor tissues.
106,128
106,128
Optimising Energy Efficiency in UAV-Assisted Networks using Deep Reinforcement Learning
In this letter, we study the energy efficiency (EE) optimisation of unmanned aerial vehicles (UAVs) providing wireless coverage to static and mobile ground users. Recent multi-agent reinforcement learning approaches optimise the system's EE using a 2D trajectory design, neglecting interference from nearby UAV cells. We aim to maximise the system's EE by jointly optimising each UAV's 3D trajectory, number of connected users, and the energy consumed, while accounting for interference. Thus, we propose a cooperative Multi-Agent Decentralised Double Deep Q-Network (MAD-DDQN) approach. Our approach outperforms existing baselines in terms of EE by as much as 55 -- 80%.
106,129
106,129
DODA: Data-oriented Sim-to-Real Domain Adaptation for 3D Indoor Semantic Segmentation
Deep learning approaches achieve prominent success in 3D semantic segmentation. However, collecting densely annotated real-world 3D datasets is extremely time-consuming and expensive. Training models on synthetic data and generalizing on real-world scenarios becomes an appealing alternative, but unfortunately suffers from notorious domain shifts. In this work, we propose a Data-Oriented Domain Adaptation (DODA) framework to mitigate pattern and context gaps caused by different sensing mechanisms and layout placements across domains. Our DODA encompasses virtual scan simulation to imitate real-world point cloud patterns and tail-aware cuboid mixing to alleviate the interior context gap with a cuboid-based intermediate domain. The first unsupervised sim-to-real adaptation benchmark on 3D indoor semantic segmentation is also built on 3D-FRONT, ScanNet and S3DIS along with 7 popular Unsupervised Domain Adaptation (UDA) methods. Our DODA surpasses existing UDA approaches by over 13% on both 3D-FRONT $\rightarrow$ ScanNet and 3D-FRONT $\rightarrow$ S3DIS. Code will be available.
106,130
106,130
Modern Views of Machine Learning for Precision Psychiatry
In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
106,131
106,131
Neural Estimation of the Rate-Distortion Function With Applications to Operational Source Coding
A fundamental question in designing lossy data compression schemes is how well one can do in comparison with the rate-distortion function, which describes the known theoretical limits of lossy compression. Motivated by the empirical success of deep neural network (DNN) compressors on large, real-world data, we investigate methods to estimate the rate-distortion function on such data, which would allow comparison of DNN compressors with optimality. While one could use the empirical distribution of the data and apply the Blahut-Arimoto algorithm, this approach presents several computational challenges and inaccuracies when the datasets are large and high-dimensional, such as the case of modern image datasets. Instead, we re-formulate the rate-distortion objective, and solve the resulting functional optimization problem using neural networks. We apply the resulting rate-distortion estimator, called NERD, on popular image datasets, and provide evidence that NERD can accurately estimate the rate-distortion function. Using our estimate, we show that the rate-distortion achievable by DNN compressors are within several bits of the rate-distortion function for real-world datasets. Additionally, NERD provides access to the rate-distortion achieving channel, as well as samples from its output marginal. Therefore, using recent results in reverse channel coding, we describe how NERD can be used to construct an operational one-shot lossy compression scheme with guarantees on the achievable rate and distortion. Experimental results demonstrate competitive performance with DNN compressors.
106,132
106,132
SPECTRE : Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct modeling of the global and local graph structure and helps to overcome the expressivity and mode collapse issues of one-shot graph generators. Our novel GAN, called SPECTRE, enables the one-shot generation of much larger graphs than previously possible with one-shot models. SPECTRE outperforms state-of-the-art deep autoregressive generators in terms of modeling fidelity, while also avoiding expensive sequential generation and dependence on node ordering. A case in point, in sizable synthetic and real-world graphs SPECTRE achieves a 4-to-170 fold improvement over the best competitor that does not overfit and is 23-to-30 times faster than autoregressive generators.
106,133
106,133
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph Neural Networks for Traffic Forecasting
Deep-learning-based data-driven forecasting methods have produced impressive results for traffic forecasting. A major limitation of these methods, however, is that they provide forecasts without estimates of uncertainty, which are critical for real-time deployments. We focus on a diffusion convolutional recurrent neural network (DCRNN), a state-of-the-art method for short-term traffic forecasting. We develop a scalable deep ensemble approach to quantify uncertainties for DCRNN. Our approach uses a scalable Bayesian optimization method to perform hyperparameter optimization, selects a set of high-performing configurations, fits a generative model to capture the joint distributions of the hyperparameter configurations, and trains an ensemble of models by sampling a new set of hyperparameter configurations from the generative model. We demonstrate the efficacy of the proposed methods by comparing them with other uncertainty estimation techniques. We show that our generic and scalable approach outperforms the current state-of-the-art Bayesian and a number of other commonly used frequentist techniques.
106,134
106,134
Towards Deep Industrial Transfer Learning: Clustering for Transfer Case Selection
Industrial transfer learning increases the adaptability of deep learning algorithms towards heterogenous and dynamic industrial use cases without high manual efforts. The appropriate selection of what to transfer can vastly improve a transfer's results. In this paper, a transfer case selection based upon clustering is presented. Founded on a survey of clustering algorithms, the BIRCH algorithm is selected for this purpose. It is evaluated on an industrial time series dataset from a discrete manufacturing scenario. Results underline the approaches' applicability caused by its results' reproducibility and practical indifference to sequence, size and dimensionality of (sub-)datasets to be clustered sequentially.
106,135
106,135
More Efficient Identifiability Verification in ODE Models by Reducing Non-Identifiability
Structural global parameter identifiability indicates whether one can determine a parameter's value from given inputs and outputs in the absence of noise. If a given model has parameters for which there may be infinitely many values, such parameters are called non-identifiable. We present a procedure for accelerating a global identifiability query by eliminating algebraically independent non-identifiable parameters. Our proposed approach significantly improves performance across different computer algebra frameworks.
106,136
106,136
Stuttgart Open Relay Degradation Dataset (SOReDD)
Real-life industrial use cases for machine learning oftentimes involve heterogeneous and dynamic assets, processes and data, resulting in a need to continuously adapt the learning algorithm accordingly. Industrial transfer learning offers to lower the effort of such adaptation by allowing the utilization of previously acquired knowledge in solving new (variants of) tasks. Being data-driven methods, the development of industrial transfer learning algorithms naturally requires appropriate datasets for training. However, open-source datasets suitable for transfer learning training, i.e. spanning different assets, processes and data (variants), are rare. With the Stuttgart Open Relay Degradation Dataset (SOReDD) we want to offer such a dataset. It provides data on the degradation of different electromechanical relays under different operating conditions, allowing for a large number of different transfer scenarios. Although such relays themselves are usually inexpensive standard components, their failure often leads to the failure of a machine as a whole due to their role as the central power switching element of a machine. The main cost factor in the event of a relay defect is therefore not the relay itself, but the reduced machine availability. It is therefore desirable to predict relay degradation as accurately as possible for specific applications in order to be able to replace relays in good time and avoid unplanned machine downtimes. Nevertheless, data-driven failure prediction for electromechanical relays faces the challenge that relay degradation behavior is highly dependent on the operating conditions, high-resolution measurement data on relay degradation behavior is only collected in rare cases, and such data can then only cover a fraction of the possible operating environments. Relays are thus representative of many other central standard components in automation technology.
106,137
106,137
Estimating Social Influence from Observational Data
We consider the problem of estimating social influence, the effect that a person's behavior has on the future behavior of their peers. The key challenge is that shared behavior between friends could be equally explained by influence or by two other confounding factors: 1) latent traits that caused people to both become friends and engage in the behavior, and 2) latent preferences for the behavior. This paper addresses the challenges of estimating social influence with three contributions. First, we formalize social influence as a causal effect, one which requires inferences about hypothetical interventions. Second, we develop Poisson Influence Factorization (PIF), a method for estimating social influence from observational data. PIF fits probabilistic factor models to networks and behavior data to infer variables that serve as substitutes for the confounding latent traits. Third, we develop assumptions under which PIF recovers estimates of social influence. We empirically study PIF with semi-synthetic and real data from Last.fm, and conduct a sensitivity analysis. We find that PIF estimates social influence most accurately compared to related methods and remains robust under some violations of its assumptions.
106,138
106,138
Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection?
Anomaly detection in time series is a complex task that has been widely studied. In recent years, the ability of unsupervised anomaly detection algorithms has received much attention. This trend has led researchers to compare only learning-based methods in their articles, abandoning some more conventional approaches. As a result, the community in this field has been encouraged to propose increasingly complex learning-based models mainly based on deep neural networks. To our knowledge, there are no comparative studies between conventional, machine learning-based and, deep neural network methods for the detection of anomalies in multivariate time series. In this work, we study the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches on five real-world open datasets. By analyzing and comparing the performance of each of the sixteen methods, we show that no family of methods outperforms the others. Therefore, we encourage the community to reincorporate the three categories of methods in the anomaly detection in multivariate time series benchmarks.
106,139
106,139
APP: Anytime Progressive Pruning
With the latest advances in deep learning, there has been a lot of focus on the online learning paradigm due to its relevance in practical settings. Although many methods have been investigated for optimal learning settings in scenarios where the data stream is continuous over time, sparse networks training in such settings have often been overlooked. In this paper, we explore the problem of training a neural network with a target sparsity in a particular case of online learning: the anytime learning at macroscale paradigm (ALMA). We propose a novel way of progressive pruning, referred to as \textit{Anytime Progressive Pruning} (APP); the proposed approach significantly outperforms the baseline dense and Anytime OSP models across multiple architectures and datasets under short, moderate, and long-sequence training. Our method, for example, shows an improvement in accuracy of $\approx 7\%$ and a reduction in the generalization gap by $\approx 22\%$, while being $\approx 1/3$ rd the size of the dense baseline model in few-shot restricted imagenet training. We further observe interesting nonmonotonic transitions in the generalization gap in the high number of megabatches-based ALMA. The code and experiment dashboards can be accessed at \url{https://github.com/landskape-ai/Progressive-Pruning} and \url{https://wandb.ai/landskape/APP}, respectively.
106,140
106,140
Characterizing Parametric and Convergence Stability in Nonconvex and Nonsmooth Optimizations: A Geometric Approach
We consider stability issues in minimizing a continuous (probably parameterized, nonconvex and nonsmooth) real-valued function $f$. We call a point stationary if all its possible directional derivatives are nonnegative. In this work, we focus on two notions of stability on stationary points of $f$: parametric stability and convergence stability. Parametric considerations are widely studied in various fields, including smoothed analysis, numerical stability, condition numbers and sensitivity analysis for linear programming. Parametric stability asks whether minor perturbations on parameters lead to dramatic changes in the position and $f$ value of a stationary point. Meanwhile, convergence stability indicates a non-escapable solution: Any point sequence iteratively produced by an optimization algorithm cannot escape from a neighborhood of a stationary point but gets close to it in the sense that such stationary points are stable to the precision parameter and algorithmic numerical errors. It turns out that these notions have deep connections to geometry theory. We show that parametric stability is linked to deformations of graphs of functions. On the other hand, convergence stability is concerned with area partitioning of the function domain. Utilizing these connections, we prove quite tight conditions of these two stability notions for a wide range of functions and optimization algorithms with small enough step sizes and precision parameters. These conditions are subtle in the sense that a slightly weaker function requirement goes to the opposite of primitive intuitions and leads to wrong conclusions. We present three applications of this theory. These applications reveal some understanding on Nash equilibrium computation, nonconvex and nonsmooth optimization, as well as the new optimization methodology of deep neural networks.
106,141
106,141
Scalable Spike-and-Slab
Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab ($S^3$), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George and McCulloch (1993). For a dataset with $n$ observations and $p$ covariates, $S^3$ has order $\max\{ n^2 p_t, np \}$ computational cost at iteration $t$ where $p_t$ never exceeds the number of covariates switching spike-and-slab states between iterations $t$ and $t-1$ of the Markov chain. This improves upon the order $n^2 p$ per-iteration cost of state-of-the-art implementations as, typically, $p_t$ is substantially smaller than $p$. We apply $S^3$ on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost.
106,142
106,142
MultiMAE: Multi-modal Multi-task Masked Autoencoders
We propose a pre-training strategy called Multi-modal Multi-task Masked Autoencoders (MultiMAE). It differs from standard Masked Autoencoding in two key aspects: I) it can optionally accept additional modalities of information in the input besides the RGB image (hence "multi-modal"), and II) its training objective accordingly includes predicting multiple outputs besides the RGB image (hence "multi-task"). We make use of masking (across image patches and input modalities) to make training MultiMAE tractable as well as to ensure cross-modality predictive coding is indeed learned by the network. We show this pre-training strategy leads to a flexible, simple, and efficient framework with improved transfer results to downstream tasks. In particular, the same exact pre-trained network can be flexibly used when additional information besides RGB images is available or when no information other than RGB is available - in all configurations yielding competitive to or significantly better results than the baselines. To avoid needing training datasets with multiple modalities and tasks, we train MultiMAE entirely using pseudo labeling, which makes the framework widely applicable to any RGB dataset. The experiments are performed on multiple transfer tasks (image classification, semantic segmentation, depth estimation) and datasets (ImageNet, ADE20K, Taskonomy, Hypersim, NYUv2). The results show an intriguingly impressive capability by the model in cross-modal/task predictive coding and transfer.
106,143
106,143
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector. The algorithm exploits a distance-weighted graph neural network, trained with object condensation, a graph segmentation technique. Through a single-shot approach, the reconstruction task is paired with energy regression. We describe the reconstruction performance in terms of efficiency as well as in terms of energy resolution. In addition, we show the jet reconstruction performance of our method and discuss its inference computational cost. To our knowledge, this work is the first-ever example of single-shot calorimetric reconstruction of ${\cal O}(1000)$ particles in high-luminosity conditions with 200 pileup.
106,144
106,144
Deep Feature Screening: Feature Selection for Ultra High-Dimensional Data via Deep Neural Networks
The applications of traditional statistical feature selection methods to high-dimension, low sample-size data often struggle and encounter challenging problems, such as overfitting, curse of dimensionality, computational infeasibility, and strong model assumption. In this paper, we propose a novel two-step nonparametric approach called Deep Feature Screening (DeepFS) that can overcome these problems and identify significant features with high precision for ultra high-dimensional, low-sample-size data. This approach first extracts a low-dimensional representation of input data and then applies feature screening based on multivariate rank distance correlation recently developed by Deb and Sen (2021). This approach combines the strengths of both deep neural networks and feature screening, and thereby has the following appealing features in addition to its ability of handling ultra high-dimensional data with small number of samples: (1) it is model free and distribution free; (2) it can be used for both supervised and unsupervised feature selection; and (3) it is capable of recovering the original input data. The superiority of DeepFS is demonstrated via extensive simulation studies and real data analyses.
106,145
106,145
Using Explainable Boosting Machine to Compare Idiographic and Nomothetic Approaches for Ecological Momentary Assessment Data
Previous research on EMA data of mental disorders was mainly focused on multivariate regression-based approaches modeling each individual separately. This paper goes a step further towards exploring the use of non-linear interpretable machine learning (ML) models in classification problems. ML models can enhance the ability to accurately predict the occurrence of different behaviors by recognizing complicated patterns between variables in data. To evaluate this, the performance of various ensembles of trees are compared to linear models using imbalanced synthetic and real-world datasets. After examining the distributions of AUC scores in all cases, non-linear models appear to be superior to baseline linear models. Moreover, apart from personalized approaches, group-level prediction models are also likely to offer an enhanced performance. According to this, two different nomothetic approaches to integrate data of more than one individuals are examined, one using directly all data during training and one based on knowledge distillation. Interestingly, it is observed that in one of the two real-world datasets, knowledge distillation method achieves improved AUC scores (mean relative change of +17\% compared to personalized) showing how it can benefit EMA data classification and performance.
106,146
106,146
Deep Image: A precious image based deep learning method for online malware detection in IoT Environment
The volume of malware and the number of attacks in IoT devices are rising everyday, which encourages security professionals to continually enhance their malware analysis tools. Researchers in the field of cyber security have extensively explored the usage of sophisticated analytics and the efficiency of malware detection. With the introduction of new malware kinds and attack routes, security experts confront considerable challenges in developing efficient malware detection and analysis solutions. In this paper, a different view of malware analysis is considered and the risk level of each sample feature is computed, and based on that the risk level of that sample is calculated. In this way, a criterion is introduced that is used together with accuracy and FPR criteria for malware analysis in IoT environment. In this paper, three malware detection methods based on visualization techniques called the clustering approach, the probabilistic approach, and the deep learning approach are proposed. Then, in addition to the usual machine learning criteria namely accuracy and FPR, a proposed criterion based on the risk of samples has also been used for comparison, with the results showing that the deep learning approach performed better in detecting malware
106,147
106,147
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Large language models can encode a wealth of semantic knowledge about the world. Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language. However, a significant weakness of language models is that they lack real-world experience, which makes it difficult to leverage them for decision making within a given embodiment. For example, asking a language model to describe how to clean a spill might result in a reasonable narrative, but it may not be applicable to a particular agent, such as a robot, that needs to perform this task in a particular environment. We propose to provide real-world grounding by means of pretrained skills, which are used to constrain the model to propose natural language actions that are both feasible and contextually appropriate. The robot can act as the language model's "hands and eyes," while the language model supplies high-level semantic knowledge about the task. We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions, while value functions associated with these skills provide the grounding necessary to connect this knowledge to a particular physical environment. We evaluate our method on a number of real-world robotic tasks, where we show the need for real-world grounding and that this approach is capable of completing long-horizon, abstract, natural language instructions on a mobile manipulator. The project's website and the video can be found at https://say-can.github.io/
106,148
106,148
"This is my unicorn, Fluffy": Personalizing frozen vision-language representations
Large Vision & Language models pretrained on web-scale data provide representations that are invaluable for numerous V&L problems. However, it is unclear how they can be used for reasoning about user-specific visual concepts in unstructured language. This problem arises in multiple domains, from personalized image retrieval to personalized interaction with smart devices. We introduce a new learning setup called Personalized Vision & Language (PerVL) with two new benchmark datasets for retrieving and segmenting user-specific "personalized" concepts "in the wild". In PerVL, one should learn personalized concepts (1) independently of the downstream task (2) allowing a pretrained model to reason about them with free language, and (3) does not require personalized negative examples. We propose an architecture for solving PerVL that operates by extending the input vocabulary of a pretrained model with new word embeddings for the new personalized concepts. The model can then reason about them by simply using them in a sentence. We demonstrate that our approach learns personalized visual concepts from a few examples and can effectively apply them in image retrieval and semantic segmentation using rich textual queries.
106,149
106,149
Joint Hand Motion and Interaction Hotspots Prediction from Egocentric Videos
We propose to forecast future hand-object interactions given an egocentric video. Instead of predicting action labels or pixels, we directly predict the hand motion trajectory and the future contact points on the next active object (i.e., interaction hotspots). This relatively low-dimensional representation provides a concrete description of future interactions. To tackle this task, we first provide an automatic way to collect trajectory and hotspots labels on large-scale data. We then use this data to train an Object-Centric Transformer (OCT) model for prediction. Our model performs hand and object interaction reasoning via the self-attention mechanism in Transformers. OCT also provides a probabilistic framework to sample the future trajectory and hotspots to handle uncertainty in prediction. We perform experiments on the Epic-Kitchens-55, Epic-Kitchens-100, and EGTEA Gaze+ datasets, and show that OCT significantly outperforms state-of-the-art approaches by a large margin. Project page is available at https://stevenlsw.github.io/hoi-forecast .
106,150
106,150
MaxViT: Multi-Axis Vision Transformer
Transformers have recently gained significant attention in the computer vision community. However, the lack of scalability of self-attention mechanisms with respect to image size has limited their wide adoption in state-of-the-art vision backbones. In this paper we introduce an efficient and scalable attention model we call multi-axis attention, which consists of two aspects: blocked local and dilated global attention. These design choices allow global-local spatial interactions on arbitrary input resolutions with only linear complexity. We also present a new architectural element by effectively blending our proposed attention model with convolutions, and accordingly propose a simple hierarchical vision backbone, dubbed MaxViT, by simply repeating the basic building block over multiple stages. Notably, MaxViT is able to "see" globally throughout the entire network, even in earlier, high-resolution stages. We demonstrate the effectiveness of our model on a broad spectrum of vision tasks. On image classification, MaxViT achieves state-of-the-art performance under various settings: without extra data, MaxViT attains 86.5\% ImageNet-1K top-1 accuracy; with ImageNet-21K pre-training, our model achieves 88.7\% top-1 accuracy. For downstream tasks, MaxViT as a backbone delivers favorable performance on object detection as well as visual aesthetic assessment. We also show that our proposed model expresses strong generative modeling capability on ImageNet, demonstrating the superior potential of MaxViT blocks as a universal vision module. We will make the code and models publicly available.
106,151
106,151
QuadraLib: A Performant Quadratic Neural Network Library for Architecture Optimization and Design Exploration
The significant success of Deep Neural Networks (DNNs) is highly promoted by the multiple sophisticated DNN libraries. On the contrary, although some work have proved that Quadratic Deep Neuron Networks (QDNNs) show better non-linearity and learning capability than the first-order DNNs, their neuron design suffers certain drawbacks from theoretical performance to practical deployment. In this paper, we first proposed a new QDNN neuron architecture design, and further developed QuadraLib, a QDNN library to provide architecture optimization and design exploration for QDNNs. Extensive experiments show that our design has good performance regarding prediction accuracy and computation consumption on multiple learning tasks.
106,152
106,152
Personalized Prediction of Future Lesion Activity and Treatment Effect in Multiple Sclerosis from Baseline MRI
Precision medicine for chronic diseases such as multiple sclerosis (MS) involves choosing a treatment which best balances efficacy and side effects/preferences for individual patients. Making this choice as early as possible is important, as delays in finding an effective therapy can lead to irreversible disability accrual. To this end, we present the first deep neural network model for individualized treatment decisions from baseline magnetic resonance imaging (MRI) (with clinical information if available) for MS patients. Our model (a) predicts future new and enlarging T2 weighted (NE-T2) lesion counts on follow-up MRI on multiple treatments and (b) estimates the conditional average treatment effect (CATE), as defined by the predicted future suppression of NE-T2 lesions, between different treatment options relative to placebo. Our model is validated on a proprietary federated dataset of 1817 multi-sequence MRIs acquired from MS patients during four multi-centre randomized clinical trials. Our framework achieves high average precision in the binarized regression of future NE-T2 lesions on five different treatments, identifies heterogeneous treatment effects, and provides a personalized treatment recommendation that accounts for treatment-associated risk (e.g. side effects, patient preference, administration difficulties).
106,153
106,153
Learning to Accelerate by the Methods of Step-size Planning
Gradient descent is slow to converge for ill-conditioned problems and non-convex problems. An important technique for acceleration is step-size adaptation. The first part of this paper contains a detailed review of step-size adaptation methods, including Polyak step-size, L4, LossGrad, Adam, IDBD, and Hypergradient descent, and the relation of step-size adaptation to meta-gradient methods. In the second part of this paper, we propose a new class of methods of accelerating gradient descent that have some distinctiveness from existing techniques. The new methods, which we call {\em step-size planning}, use the {\em update experience} to learn an improved way of updating the parameters. The methods organize the experience into $K$ steps away from each other to facilitate planning. From the past experience, our planning algorithm, Csawg, learns a step-size model which is a form of multi-step machine that predicts future updates. We extends Csawg to applying step-size planning multiple steps, which leads to further speedup. We discuss and highlight the projection power of the diagonal-matrix step-size for future large scale applications. We show for a convex problem, our methods can surpass the convergence rate of Nesterov's accelerated gradient, $1 - \sqrt{\mu/L}$, where $\mu, L$ are the strongly convex factor of the loss function $F$ and the Lipschitz constant of $F'$, which is the theoretical limit for the convergence rate of first-order methods. On the well-known non-convex Rosenbrock function, our planning methods achieve zero error below 500 gradient evaluations, while gradient descent takes about 10000 gradient evaluations to reach a $10^{-3}$ accuracy. We discuss the connection of step-size planing to planning in reinforcement learning, in particular, Dyna architectures. (This is a shorter abstract than in the paper because of length requirement)
106,154
106,154
Heterogeneous Autoencoder Empowered by Quadratic Neurons
Inspired by the complexity and diversity of biological neurons, a quadratic neuron is proposed to replace the inner product in the current neuron with a simplified quadratic function. Employing such a novel type of neurons offers a new perspective on developing deep learning. When analyzing quadratic neurons, we find that there exists a function such that a heterogeneous network can approximate it well with a polynomial number of neurons but a purely conventional or quadratic network needs an exponential number of neurons to achieve the same level of error. Encouraged by this inspiring theoretical result on heterogeneous networks, we directly integrate conventional and quadratic neurons in an autoencoder to make a new type of heterogeneous autoencoders. Anomaly detection experiments confirm that heterogeneous autoencoders perform competitively compared to other state-of-the-art models.
106,155
106,155
Forestry digital twin with machine learning in Landsat 7 data
Modeling forests using historical data allows for more accurately evolution analysis, thus providing an important basis for other studies. As a recognized and effective tool, remote sensing plays an important role in forestry analysis. We can use it to derive information about the forest, including tree type, coverage and canopy density. There are many forest time series modeling studies using statistic values, but few using remote sensing images. Image prediction digital twin is an implementation of digital twin, which aims to predict future images bases on historical data. In this paper, we propose an LSTM-based digital twin approach for forest modeling, using Landsat 7 remote sensing image within 20 years. The experimental results show that the prediction twin method in this paper can effectively predict the future images of study area.
106,156
106,156
Convolutional Neural Networks for Image Spam Detection
Spam can be defined as unsolicited bulk email. In an effort to evade text-based filters, spammers sometimes embed spam text in an image, which is referred to as image spam. In this research, we consider the problem of image spam detection, based on image analysis. We apply convolutional neural networks (CNN) to this problem, we compare the results obtained using CNNs to other machine learning techniques, and we compare our results to previous related work. We consider both real-world image spam and challenging image spam-like datasets. Our results improve on previous work by employing CNNs based on a novel feature set consisting of a combination of the raw image and Canny edges.
106,157
106,157
Exemplar Learning for Medical Image Segmentation
Medical image annotation typically requires expert knowledge and hence incurs time-consuming and expensive data annotation costs. To reduce this burden, we propose a novel learning scenario, Exemplar Learning (EL), to explore automated learning processes for medical image segmentation from a single annotated image example. This innovative learning task is particularly suitable for medical image segmentation, where all categories of organs can be presented in one single image for annotation all at once. To address this challenging EL task, we propose an Exemplar Learning-based Synthesis Net (ELSNet) framework for medical image segmentation that enables innovative exemplar-based data synthesis, pixel-prototype based contrastive embedding learning, and pseudo-label based exploitation of the unlabeled data. Specifically, ELSNet introduces two new modules for image segmentation: an exemplar-guided synthesis module, which enriches and diversifies the training set by synthesizing annotated samples from the given exemplar, and a pixel-prototype based contrastive embedding module, which enhances the discriminative capacity of the base segmentation model via contrastive self-supervised learning. Moreover, we deploy a two-stage process for segmentation model training, which exploits the unlabeled data with predicted pseudo segmentation labels. To evaluate this new learning framework, we conduct extensive experiments on several organ segmentation datasets and present an in-depth analysis. The empirical results show that the proposed exemplar learning framework produces effective segmentation results.
106,158
106,158
BigDL 2.0: Seamless Scaling of AI Pipelines from Laptops to Distributed Cluster
Most AI projects start with a Python notebook running on a single laptop; however, one usually needs to go through a mountain of pains to scale it to handle larger dataset (for both experimentation and production deployment). These usually entail many manual and error-prone steps for the data scientists to fully take advantage of the available hardware resources (e.g., SIMD instructions, multi-processing, quantization, memory allocation optimization, data partitioning, distributed computing, etc.). To address this challenge, we have open sourced BigDL 2.0 at https://github.com/intel-analytics/BigDL/ under Apache 2.0 license (combining the original BigDL and Analytics Zoo projects); using BigDL 2.0, users can simply build conventional Python notebooks on their laptops (with possible AutoML support), which can then be transparently accelerated on a single node (with up-to 9.6x speedup in our experiments), and seamlessly scaled out to a large cluster (across several hundreds servers in real-world use cases). BigDL 2.0 has already been adopted by many real-world users (such as Mastercard, Burger King, Inspur, etc.) in production.
106,159
106,159
Meta-Learning Approaches for a One-Shot Collective-Decision Aggregation: Correctly Choosing how to Choose Correctly
Aggregating successfully the choices regarding a given decision problem made by the multiple collective members into a single solution is essential for exploiting the collective's intelligence and for effective crowdsourcing. There are various aggregation techniques, some of which come down to a simple and sometimes effective deterministic aggregation rule. However, it has been shown that the efficiency of those techniques is unstable under varying conditions and within different domains. Other methods mainly rely on learning from the decision-makers previous responses or the availability of additional information about them. In this study, we present two one-shot machine-learning-based aggregation approaches. The first predicts, given multiple features about the collective's choices, including meta-cognitive ones, which aggregation method will be best for a given case. The second directly predicts which decision is optimal, given, among other things, the selection made by each method. We offer a meta-cognitive feature-engineering approach for characterizing a collective decision-making case in a context-sensitive fashion. In addition, we offer a new aggregation method, the Devil's-Advocate aggregator, to deal with cases in which standard aggregation methods are predicted to fail. Experimental results show that using either of our proposed approaches increases the percentage of successfully aggregated cases (i.e., cases in which the correct answer is returned) significantly, compared to the uniform application of each rule-based aggregation method. We also demonstrate the importance of the Devil's Advocate aggregator.
106,160
106,160
Forward Signal Propagation Learning
We propose a new learning algorithm for propagating a learning signal and updating neural network parameters via a forward pass, as an alternative to backpropagation. In forward signal propagation learning (sigprop), there is only the forward path for learning and inference, so there are no additional structural or computational constraints on learning, such as feedback connectivity, weight transport, or a backward pass, which exist under backpropagation. Sigprop enables global supervised learning with only a forward path. This is ideal for parallel training of layers or modules. In biology, this explains how neurons without feedback connections can still receive a global learning signal. In hardware, this provides an approach for global supervised learning without backward connectivity. Sigprop by design has better compatibility with models of learning in the brain and in hardware than backpropagation and alternative approaches to relaxing learning constraints. We also demonstrate that sigprop is more efficient in time and memory than they are. To further explain the behavior of sigprop, we provide evidence that sigprop provides useful learning signals in context to backpropagation. To further support relevance to biological and hardware learning, we use sigprop to train continuous time neural networks with Hebbian updates and train spiking neural networks without surrogate functions.
106,161
106,161
Generalized Zero Shot Learning For Medical Image Classification
In many real world medical image classification settings we do not have access to samples of all possible disease classes, while a robust system is expected to give high performance in recognizing novel test data. We propose a generalized zero shot learning (GZSL) method that uses self supervised learning (SSL) for: 1) selecting anchor vectors of different disease classes; and 2) training a feature generator. Our approach does not require class attribute vectors which are available for natural images but not for medical images. SSL ensures that the anchor vectors are representative of each class. SSL is also used to generate synthetic features of unseen classes. Using a simpler architecture, our method matches a state of the art SSL based GZSL method for natural images and outperforms all methods for medical images. Our method is adaptable enough to accommodate class attribute vectors when they are available for natural images.
106,162
106,162
Analyzing the Effects of Handling Data Imbalance on Learned Features from Medical Images by Looking Into the Models
One challenging property lurking in medical datasets is the imbalanced data distribution, where the frequency of the samples between the different classes is not balanced. Training a model on an imbalanced dataset can introduce unique challenges to the learning problem where a model is biased towards the highly frequent class. Many methods are proposed to tackle the distributional differences and the imbalanced problem. However, the impact of these approaches on the learned features is not well studied. In this paper, we look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features. We study several popular cost-sensitive approaches for handling data imbalance and analyze the feature maps of the convolutional neural networks from multiple perspectives: analyzing the alignment of salient features with pathologies and analyzing the pathology-related concepts encoded by the networks. Our study reveals differences and insights regarding the trained models that are not reflected by quantitative metrics such as AUROC and AP and show up only by looking at the models through a lens.
106,163
106,163
Gan-Based Joint Activity Detection and Channel Estimation For Grant-free Random Access
Joint activity detection and channel estimation (JADCE) for grant-free random access is a critical issue that needs to be addressed to support massive connectivity in IoT networks. However, the existing model-free learning method can only achieve either activity detection or channel estimation, but not both. In this paper, we propose a novel model-free learning method based on generative adversarial network (GAN) to tackle the JADCE problem. We adopt the U-net architecture to build the generator rather than the standard GAN architecture, where a pre-estimated value that contains the activity information is adopted as input to the generator. By leveraging the properties of the pseudoinverse, the generator is refined by using an affine projection and a skip connection to ensure the output of the generator is consistent with the measurement. Moreover, we build a two-layer fully-connected neural network to design pilot matrix for reducing the impact of receiver noise. Simulation results show that the proposed method outperforms the existing methods in high SNR regimes, as both data consistency projection and pilot matrix optimization improve the learning ability.
106,164
106,164
A high-order tensor completion algorithm based on Fully-Connected Tensor Network weighted optimization
Tensor completion aimes at recovering missing data, and it is one of the popular concerns in deep learning and signal processing. Among the higher-order tensor decomposition algorithms, the recently proposed fully-connected tensor network decomposition (FCTN) algorithm is the most advanced. In this paper, by leveraging the superior expression of the fully-connected tensor network (FCTN) decomposition, we propose a new tensor completion method named the fully connected tensor network weighted optization(FCTN-WOPT). The algorithm performs a composition of the completed tensor by initialising the factors from the FCTN decomposition. We build a loss function with the weight tensor, the completed tensor and the incomplete tensor together, and then update the completed tensor using the lbfgs gradient descent algorithm to reduce the spatial memory occupation and speed up iterations. Finally we test the completion with synthetic data and real data (both image data and video data) and the results show the advanced performance of our FCTN-WOPT when it is applied to higher-order tensor completion.
106,165
106,165
Robust Stuttering Detection via Multi-task and Adversarial Learning
By automatic detection and identification of stuttering, speech pathologists can track the progression of disfluencies of persons who stutter (PWS). In this paper, we investigate the impact of multi-task (MTL) and adversarial learning (ADV) to learn robust stutter features. This is the first-ever preliminary study where MTL and ADV have been employed in stuttering identification (SI). We evaluate our system on the SEP-28k stuttering dataset consisting of 20 hours (approx) of data from 385 podcasts. Our methods show promising results and outperform the baseline in various disfluency classes. We achieve up to 10%, 6.78%, and 2% improvement in repetitions, blocks, and interjections respectively over the baseline.
106,166
106,166
Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer's disease detection
Convolutional neural networks have enabled significant improvements in medical image-based disease classification. It has, however, become increasingly clear that these models are susceptible to performance degradation due to spurious correlations and dataset shifts, which may lead to underperformance on underrepresented patient groups, among other problems. In this paper, we compare two classification schemes on the ADNI MRI dataset: a very simple logistic regression model that uses manually selected volumetric features as inputs, and a convolutional neural network trained on 3D MRI data. We assess the robustness of the trained models in the face of varying dataset splits, training set sex composition, and stage of disease. In contrast to earlier work on diagnosing lung diseases based on chest x-ray data, we do not find a strong dependence of model performance for male and female test subjects on the sex composition of the training dataset. Moreover, in our analysis, the low-dimensional model with manually selected features outperforms the 3D CNN, thus emphasizing the need for automatic robust feature extraction methods and the value of manual feature specification (based on prior knowledge) for robustness.
106,167
106,167
Experimental quantum adversarial learning with programmable superconducting qubits
Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 $\mu$s, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices.
106,168
106,168
Deep learning for the rare-event rational design of 3D printed multi-material mechanical metamaterials
Emerging multi-material 3D printing techniques have paved the way for the rational design of metamaterials with not only complex geometries but also arbitrary distributions of multiple materials within those geometries. Varying the spatial distribution of multiple materials gives rise to many interesting and potentially unique combinations of anisotropic elastic properties. While the availability of a design approach to cover a large portion of all possible combinations of elastic properties is interesting in itself, it is even more important to find the extremely rare designs that lead to highly unusual combinations of material properties (e.g., double-auxeticity and high elastic moduli). Here, we used a random distribution of a hard phase and a soft phase within a regular lattice to study the resulting anisotropic mechanical properties of the network in general and the abovementioned rare designs in particular. The primary challenge to take up concerns the huge number of design parameters and the extreme rarity of such designs. We, therefore, used computational models and deep learning algorithms to create a mapping from the space of design parameters to the space of mechanical properties, thereby (i) reducing the computational time required for evaluating each designand (ii) making the process of evaluating the different designs highly parallelizable. Furthermore, we selected ten designs to be fabricated using polyjet multi-material 3D printing techniques, mechanically tested them, and characterized their behavior using digital image correlation (DIC, 3 designs) to validate the accuracy of our computational models. The results of our simulations show that deep learning-based algorithms can accurately predict the mechanical properties of the different designs, which match the various deformation mechanisms observed in the experiments.
106,169
106,169
The First Principles of Deep Learning and Compression
The deep learning revolution incited by the 2012 Alexnet paper has been transformative for the field of computer vision. Many problems which were severely limited using classical solutions are now seeing unprecedented success. The rapid proliferation of deep learning methods has led to a sharp increase in their use in consumer and embedded applications. One consequence of consumer and embedded applications is lossy multimedia compression which is required to engineer the efficient storage and transmission of data in these real-world scenarios. As such, there has been increased interest in a deep learning solution for multimedia compression which would allow for higher compression ratios and increased visual quality. The deep learning approach to multimedia compression, so called Learned Multimedia Compression, involves computing a compressed representation of an image or video using a deep network for the encoder and the decoder. While these techniques have enjoyed impressive academic success, their industry adoption has been essentially non-existent. Classical compression techniques like JPEG and MPEG are too entrenched in modern computing to be easily replaced. This dissertation takes an orthogonal approach and leverages deep learning to improve the compression fidelity of these classical algorithms. This allows the incredible advances in deep learning to be used for multimedia compression without threatening the ubiquity of the classical methods. The key insight of this work is that methods which are motivated by first principles, i.e., the underlying engineering decisions that were made when the compression algorithms were developed, are more effective than general methods. By encoding prior knowledge into the design of the algorithm, the flexibility, performance, and/or accuracy are improved at the cost of generality...
106,170
106,170
The Fast Johnson-Lindenstrauss Transform is Even Faster
The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP'09) embeds a set of $n$ points in $d$-dimensional Euclidean space into optimal $k=O(\varepsilon^{-2} \ln n)$ dimensions, while preserving all pairwise distances to within a factor $(1 \pm \varepsilon)$. The Fast JL transform supports computing the embedding of a data point in $O(d \ln d +k \ln^2 n)$ time, where the $d \ln d$ term comes from multiplication with a $d \times d$ Hadamard matrix and the $k \ln^2 n$ term comes from multiplication with a sparse $k \times d$ matrix. Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality reduction techniques for many tradeoffs between $\varepsilon, d$ and $n$. In this work, we give a surprising new analysis of the Fast JL transform, showing that the $k \ln^2 n$ term in the embedding time can be improved to $(k \ln^2 n)/\alpha$ for an $\alpha = \Omega(\min\{\varepsilon^{-1}\ln(1/\varepsilon), \ln n\})$. The improvement follows by using an even sparser matrix. We also complement our improved analysis with a lower bound showing that our new analysis is in fact tight.
106,171
106,171
Towards Infield Navigation: leveraging simulated data for crop row detection
Agricultural datasets for crop row detection are often bound by their limited number of images. This restricts the researchers from developing deep learning based models for precision agricultural tasks involving crop row detection. We suggest the utilization of small real-world datasets along with additional data generated by simulations to yield similar crop row detection performance as that of a model trained with a large real world dataset. Our method could reach the performance of a deep learning based crop row detection model trained with real-world data by using 60% less labelled real-world data. Our model performed well against field variations such as shadows, sunlight and grow stages. We introduce an automated pipeline to generate labelled images for crop row detection in simulation domain. An extensive comparison is done to analyze the contribution of simulated data towards reaching robust crop row detection in various real-world field scenarios.
106,172
106,172
A Unit-Consistent Tensor Completion with Applications in Recommender Systems
In this paper we introduce a new consistency-based approach for defining and solving nonnegative/positive matrix and tensor completion problems. The novelty of the framework is that instead of artificially making the problem well-posed in the form of an application-arbitrary optimization problem, e.g., minimizing a bulk structural measure such as rank or norm, we show that a single property/constraint - preserving unit-scale consistency - guarantees both existence of a solution and, under relatively weak support assumptions, uniqueness. The framework and solution algorithms also generalize directly to tensors of arbitrary dimension while maintaining computational complexity that is linear in problem size for fixed dimension d. In the context of recommender system (RS) applications, we prove that two reasonable properties that should be expected to hold for any solution to the RS problem are sufficient to permit uniqueness guarantees to be established within our framework. This is remarkable because it obviates the need for heuristic-based statistical or AI methods despite what appear to be distinctly human/subjective variables at the heart of the problem. Key theoretical contributions include a general unit-consistent tensor-completion framework with proofs of its properties, including algorithms with optimal runtime complexity, e.g., O(1) term-completion with preprocessing complexity that is linear in the number of known terms of the matrix/tensor.
106,173
106,173
Achieving Long-Term Fairness in Sequential Decision Making
In this paper, we propose a framework for achieving long-term fair sequential decision making. By conducting both the hard and soft interventions, we propose to take path-specific effects on the time-lagged causal graph as a quantitative tool for measuring long-term fairness. The problem of fair sequential decision making is then formulated as a constrained optimization problem with the utility as the objective and the long-term and short-term fairness as constraints. We show that such an optimization problem can be converted to a performative risk optimization. Finally, repeated risk minimization (RRM) is used for model training, and the convergence of RRM is theoretically analyzed. The empirical evaluation shows the effectiveness of the proposed algorithm on synthetic and semi-synthetic temporal datasets.
106,174
106,174
Lifelong Self-Adaptation: Self-Adaptation Meets Lifelong Machine Learning
In the past years, machine learning (ML) has become a popular approach to support self-adaptation. While ML techniques enable dealing with several problems in self-adaptation, such as scalable decision-making, they are also subject to inherent challenges. In this paper, we focus on one such challenge that is particularly important for self-adaptation: ML techniques are designed to deal with a set of predefined tasks associated with an operational domain; they have problems to deal with new emerging tasks, such as concept shift in input data that is used for learning. To tackle this challenge, we present \textit{lifelong self-adaptation}: a novel approach to self-adaptation that enhances self-adaptive systems that use ML techniques with a lifelong ML layer. The lifelong ML layer tracks the running system and its environment, associates this knowledge with the current tasks, identifies new tasks based on differentiations, and updates the learning models of the self-adaptive system accordingly. We present a reusable architecture for lifelong self-adaptation and apply it to the case of concept drift caused by unforeseen changes of the input data of a learning model that is used for decision-making in self-adaptation. We validate lifelong self-adaptation for two types of concept drift using two cases.
106,175
106,175
Deep Q-learning of global optimizer of multiply model parameters for viscoelastic imaging
Objective: Estimation of the global optima of multiple model parameters is valuable in imaging to form a reliable diagnostic image. Given non convexity of the objective function, it is challenging to avoid from different local minima. Methods: We first formulate the global searching of multiply parameters to be a k-D move in the parametric space, and convert parameters updating to be state-action decision-making problem. We proposed a novel Deep Q-learning of Model Parameters (DQMP) method for global optimization of model parameters by updating the parameter configurations through actions that maximize a Q-value, which employs a Deep Reward Network designed to learn global reward values from both visible curve fitting errors and hidden parameter errors. Results: The DQMP method was evaluated by viscoelastic imaging on soft matter by Kelvin-Voigt fractional derivative (KVFD) modeling. In comparison to other methods, imaging of parameters by DQMP yielded the smallest errors (< 2%) to the ground truth images. DQMP was applied to viscoelastic imaging on biological tissues, which indicated a great potential of imaging on physical parameters in diagnostic applications. Conclusions: DQMP method is able to achieve global optima, yielding accurate model parameter estimates in viscoelastic imaging. Assessment of DQMP by simulation imaging and ultrasound breast imaging demonstrated the consistency, reliability of the imaged parameters, and powerful global searching ability of DQMP. Significance: DQMP method is promising for imaging of multiple parameters, and can be generalized to global optimization for many other complex nonconvex functions and imaging of physical parameters.
106,176
106,176
Compliance Checking with NLI: Privacy Policies vs. Regulations
A privacy policy is a document that states how a company intends to handle and manage their customers' personal data. One of the problems that arises with these privacy policies is that their content might violate data privacy regulations. Because of the enormous number of privacy policies that exist, the only realistic way to check for legal inconsistencies in all of them is through an automated method. In this work, we use Natural Language Inference (NLI) techniques to compare privacy regulations against sections of privacy policies from a selection of large companies. Our NLI model uses pre-trained embeddings, along with BiLSTM in its attention mechanism. We tried two versions of our model: one that was trained on the Stanford Natural Language Inference (SNLI) and the second on the Multi-Genre Natural Language Inference (MNLI) dataset. We found that our test accuracy was higher on our model trained on the SNLI, but when actually doing NLI tasks on real world privacy policies, the model trained on MNLI generalized and performed much better.
106,177
106,177
Probabilistic Embeddings with Laplacian Graph Priors
We introduce probabilistic embeddings using Laplacian priors (PELP). The proposed model enables incorporating graph side-information into static word embeddings. We theoretically show that the model unifies several previously proposed embedding methods under one umbrella. PELP generalises graph-enhanced, group, dynamic, and cross-lingual static word embeddings. PELP also enables any combination of these previous models in a straightforward fashion. Furthermore, we empirically show that our model matches the performance of previous models as special cases. In addition, we demonstrate its flexibility by applying it to the comparison of political sociolects over time. Finally, we provide code as a TensorFlow implementation enabling flexible estimation in different settings.
106,178
106,178
Bayesian Sequential Stacking Algorithm for Concurrently Designing Molecules and Synthetic Reaction Networks
In the last few years, de novo molecular design using machine learning has made great technical progress but its practical deployment has not been as successful. This is mostly owing to the cost and technical difficulty of synthesizing such computationally designed molecules. To overcome such barriers, various methods for synthetic route design using deep neural networks have been studied intensively in recent years. However, little progress has been made in designing molecules and their synthetic routes simultaneously. Here, we formulate the problem of simultaneously designing molecules with the desired set of properties and their synthetic routes within the framework of Bayesian inference. The design variables consist of a set of reactants in a reaction network and its network topology. The design space is extremely large because it consists of all combinations of purchasable reactants, often in the order of millions or more. In addition, the designed reaction networks can adopt any topology beyond simple multistep linear reaction routes. To solve this hard combinatorial problem, we present a powerful sequential Monte Carlo algorithm that recursively designs a synthetic reaction network by sequentially building up single-step reactions. In a case study of designing drug-like molecules based on commercially available compounds, compared with heuristic combinatorial search methods, the proposed method shows overwhelming performance in terms of computational efficiency and coverage and novelty with respect to existing compounds.
106,179
106,179
Multilingual Abusiveness Identification on Code-Mixed Social Media Text
Social Media platforms have been seeing adoption and growth in their usage over time. This growth has been further accelerated with the lockdown in the past year when people's interaction, conversation, and expression were limited physically. It is becoming increasingly important to keep the platform safe from abusive content for better user experience. Much work has been done on English social media content but text analysis on non-English social media is relatively underexplored. Non-English social media content have the additional challenges of code-mixing, transliteration and using different scripture in same sentence. In this work, we propose an approach for abusiveness identification on the multilingual Moj dataset which comprises of Indic languages. Our approach tackles the common challenges of non-English social media content and can be extended to other languages as well.
106,180
106,180
Automatic Text Summarization Methods: A Comprehensive Review
One of the most pressing issues that have arisen due to the rapid growth of the Internet is known as information overloading. Simplifying the relevant information in the form of a summary will assist many people because the material on any topic is plentiful on the Internet. Manually summarising massive amounts of text is quite challenging for humans. So, it has increased the need for more complex and powerful summarizers. Researchers have been trying to improve approaches for creating summaries since the 1950s, such that the machine-generated summary matches the human-created summary. This study provides a detailed state-of-the-art analysis of text summarization concepts such as summarization approaches, techniques used, standard datasets, evaluation metrics and future scopes for research. The most commonly accepted approaches are extractive and abstractive, studied in detail in this work. Evaluating the summary and increasing the development of reusable resources and infrastructure aids in comparing and replicating findings, adding competition to improve the outcomes. Different evaluation methods of generated summaries are also discussed in this study. Finally, at the end of this study, several challenges and research opportunities related to text summarization research are mentioned that may be useful for potential researchers working in this area.
106,181
106,181
Robust Portfolio Design and Stock Price Prediction Using an Optimized LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio with weights allocated to the stocks in a way that optimizes its return and the risk. This paper presents a systematic approach towards building two types of portfolios, optimum risk, and eigen, for four critical economic sectors of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Sector-wise portfolios are built based on their ten most significant stocks. An LSTM model is also designed for predicting future stock prices. Six months after the construction of the portfolios, i.e., on Jul 1, 2021, the actual returns and the LSTM-predicted returns for the portfolios are computed. A comparison of the predicted and the actual returns indicate a high accuracy level of the LSTM model.
106,182
106,182
Dual Quaternion Ambisonics Array for Six-Degree-of-Freedom Acoustic Representation
Spatial audio methods are gaining a growing interest due to the spread of immersive audio experiences and applications, such as virtual and augmented reality. For these purposes, 3D audio signals are often acquired through arrays of Ambisonics microphones, each comprising four capsules that decompose the sound field in spherical harmonics. In this paper, we propose a dual quaternion representation of the spatial sound field acquired through an array of two First Order Ambisonics (FOA) microphones. The audio signals are encapsulated in a dual quaternion that leverages quaternion algebra properties to exploit correlations among them. This augmented representation with 6 degrees of freedom (6DOF) involves a more accurate coverage of the sound field, resulting in a more precise sound localization and a more immersive audio experience. We evaluate our approach on a sound event localization and detection (SELD) benchmark. We show that our dual quaternion SELD model with temporal convolution blocks (DualQSELD-TCN) achieves better results with respect to real and quaternion-valued baselines thanks to our augmented representation of the sound field. Full code is available at: https://github.com/ispamm/DualQSELD-TCN.
106,183
106,183
A Data-Driven Framework for Identifying Investment Opportunities in Private Equity
The core activity of a Private Equity (PE) firm is to invest into companies in order to provide the investors with profit, usually within 4-7 years. To invest into a company or not is typically done manually by looking at various performance indicators of the company and then making a decision often based on instinct. This process is rather unmanageable given the large number of companies to potentially invest. Moreover, as more data about company performance indicators becomes available and the number of different indicators one may want to consider increases, manual crawling and assessment of investment opportunities becomes inefficient and ultimately impossible. To address these issues, this paper proposes a framework for automated data-driven screening of investment opportunities and thus the recommendation of businesses to invest in. The framework draws on data from several sources to assess the financial and managerial position of a company, and then uses an explainable artificial intelligence (XAI) engine to suggest investment recommendations. The robustness of the model is validated using different AI algorithms, class imbalance-handling methods, and features extracted from the available data sources.
106,184
106,184
A Survey on Graph Representation Learning Methods
Graphs representation learning has been a very active research area in recent years. The goal of graph representation learning is to generate graph representation vectors that capture the structure and features of large graphs accurately. This is especially important because the quality of the graph representation vectors will affect the performance of these vectors in downstream tasks such as node classification, link prediction and anomaly detection. Many techniques are proposed for generating effective graph representation vectors. Two of the most prevalent categories of graph representation learning are graph embedding methods without using graph neural nets (GNN), which we denote as non-GNN based graph embedding methods, and graph neural nets (GNN) based methods. Non-GNN graph embedding methods are based on techniques such as random walks, temporal point processes and neural network learning methods. GNN-based methods, on the other hand, are the application of deep learning on graph data. In this survey, we provide an overview of these two categories and cover the current state-of-the-art methods for both static and dynamic graphs. Finally, we explore some open and ongoing research directions for future work.
106,185
106,185
Models and Mechanisms for Fairness in Location Data Processing
Location data use has become pervasive in the last decade due to the advent of mobile apps, as well as novel areas such as smart health, smart cities, etc. At the same time, significant concerns have surfaced with respect to fairness in data processing. Individuals from certain population segments may be unfairly treated when being considered for loan or job applications, access to public resources, or other types of services. In the case of location data, fairness is an important concern, given that an individual's whereabouts are often correlated with sensitive attributes, e.g., race, income, education. While fairness has received significant attention recently, e.g., in the case of machine learning, there is little focus on the challenges of achieving fairness when dealing with location data. Due to their characteristics and specific type of processing algorithms, location data pose important fairness challenges that must be addressed in a comprehensive and effective manner. In this paper, we adapt existing fairness models to suit the specific properties of location data and spatial processing. We focus on individual fairness, which is more difficult to achieve, and more relevant for most location data processing scenarios. First, we devise a novel building block to achieve fairness in the form of fair polynomials. Then, we propose two mechanisms based on fair polynomials that achieve individual fairness, corresponding to two common interaction types based on location data. Extensive experimental results on real data show that the proposed mechanisms achieve individual location fairness without sacrificing utility.
106,186
106,186
Policy Learning with Competing Agents
Decision makers often aim to learn a treatment assignment policy under a capacity constraint on the number of agents that they can treat. When agents can respond strategically to such policies, competition arises, complicating the estimation of the effect of the policy. In this paper, we study capacity-constrained treatment assignment in the presence of such interference. We consider a dynamic model where heterogeneous agents myopically best respond to the previous treatment assignment policy. When the number of agents is large but finite, we show that the threshold for receiving treatment under a given policy converges to the policy's mean-field equilibrium threshold. Based on this result, we develop a consistent estimator for the policy effect and demonstrate in simulations that it can be used for learning optimal capacity-constrained policies in the presence of strategic behavior.
106,187
106,187
MonoTrack: Shuttle trajectory reconstruction from monocular badminton video
Trajectory estimation is a fundamental component of racket sport analytics, as the trajectory contains information not only about the winning and losing of each point, but also how it was won or lost. In sports such as badminton, players benefit from knowing the full 3D trajectory, as the height of shuttlecock or ball provides valuable tactical information. Unfortunately, 3D reconstruction is a notoriously hard problem, and standard trajectory estimators can only track 2D pixel coordinates. In this work, we present the first complete end-to-end system for the extraction and segmentation of 3D shuttle trajectories from monocular badminton videos. Our system integrates badminton domain knowledge such as court dimension, shot placement, physical laws of motion, along with vision-based features such as player poses and shuttle tracking. We find that significant engineering efforts and model improvements are needed to make the overall system robust, and as a by-product of our work, improve state-of-the-art results on court recognition, 2D trajectory estimation, and hit recognition.
106,188
106,188
Learning to Adapt to Domain Shifts with Few-shot Samples in Anomalous Sound Detection
Anomaly detection has many important applications, such as monitoring industrial equipment. Despite recent advances in anomaly detection with deep-learning methods, it is unclear how existing solutions would perform under out-of-distribution scenarios, e.g., due to shifts in machine load or environmental noise. Grounded in the application of machine health monitoring, we propose a framework that adapts to new conditions with few-shot samples. Building upon prior work, we adopt a classification-based approach for anomaly detection and show its equivalence to mixture density estimation of the normal samples. We incorporate an episodic training procedure to match the few-shot setting during inference. We define multiple auxiliary classification tasks based on meta-information and leverage gradient-based meta-learning to improve generalization to different shifts. We evaluate our proposed method on a recently-released dataset of audio measurements from different machine types. It improved upon two baselines by around 10% and is on par with best-performing model reported on the dataset.
106,189
106,189
An Exploration of Active Learning for Affective Digital Phenotyping
Some of the most severe bottlenecks preventing widespread development of machine learning models for human behavior include a dearth of labeled training data and difficulty of acquiring high quality labels. Active learning is a paradigm for using algorithms to computationally select a useful subset of data points to label using metrics for model uncertainty and data similarity. We explore active learning for naturalistic computer vision emotion data, a particularly heterogeneous and complex data space due to inherently subjective labels. Using frames collected from gameplay acquired from a therapeutic smartphone game for children with autism, we run a simulation of active learning using gameplay prompts as metadata to aid in the active learning process. We find that active learning using information generated during gameplay slightly outperforms random selection of the same number of labeled frames. We next investigate a method to conduct active learning with subjective data, such as in affective computing, and where multiple crowdsourced labels can be acquired for each image. Using the Child Affective Facial Expression (CAFE) dataset, we simulate an active learning process for crowdsourcing many labels and find that prioritizing frames using the entropy of the crowdsourced label distribution results in lower categorical cross-entropy loss compared to random frame selection. Collectively, these results demonstrate pilot evaluations of two novel active learning approaches for subjective affective data collected in noisy settings.
106,190
106,190
Domain-Aware Contrastive Knowledge Transfer for Multi-domain Imbalanced Data
In many real-world machine learning applications, samples belong to a set of domains e.g., for product reviews each review belongs to a product category. In this paper, we study multi-domain imbalanced learning (MIL), the scenario that there is imbalance not only in classes but also in domains. In the MIL setting, different domains exhibit different patterns and there is a varying degree of similarity and divergence among domains posing opportunities and challenges for transfer learning especially when faced with limited or insufficient training data. We propose a novel domain-aware contrastive knowledge transfer method called DCMI to (1) identify the shared domain knowledge to encourage positive transfer among similar domains (in particular from head domains to tail domains); (2) isolate the domain-specific knowledge to minimize the negative transfer from dissimilar domains. We evaluated the performance of DCMI on three different datasets showing significant improvements in different MIL scenarios.
106,191
106,191
Online No-regret Model-Based Meta RL for Personalized Navigation
The interaction between a vehicle navigation system and the driver of the vehicle can be formulated as a model-based reinforcement learning problem, where the navigation systems (agent) must quickly adapt to the characteristics of the driver (environmental dynamics) to provide the best sequence of turn-by-turn driving instructions. Most modern day navigation systems (e.g, Google maps, Waze, Garmin) are not designed to personalize their low-level interactions for individual users across a wide range of driving styles (e.g., vehicle type, reaction time, level of expertise). Towards the development of personalized navigation systems that adapt to a variety of driving styles, we propose an online no-regret model-based RL method that quickly conforms to the dynamics of the current user. As the user interacts with it, the navigation system quickly builds a user-specific model, from which navigation commands are optimized using model predictive control. By personalizing the policy in this way, our method is able to give well-timed driving instructions that match the user's dynamics. Our theoretical analysis shows that our method is a no-regret algorithm and we provide the convergence rate in the agnostic setting. Our empirical analysis with 60+ hours of real-world user data using a driving simulator shows that our method can reduce the number of collisions by more than 60%.
106,192
106,192
Nonlocal optimization of binary neural networks
We explore training Binary Neural Networks (BNNs) as a discrete variable inference problem over a factor graph. We study the behaviour of this conversion in an under-parameterized BNN setting and propose stochastic versions of Belief Propagation (BP) and Survey Propagation (SP) message passing algorithms to overcome the intractability of their current formulation. Compared to traditional gradient methods for BNNs, our results indicate that both stochastic BP and SP find better configurations of the parameters in the BNN.
106,193
106,193
Fault-Tolerant Deep Learning: A Hierarchical Perspective
With the rapid advancements of deep learning in the past decade, it can be foreseen that deep learning will be continuously deployed in more and more safety-critical applications such as autonomous driving and robotics. In this context, reliability turns out to be critical to the deployment of deep learning in these applications and gradually becomes a first-class citizen among the major design metrics like performance and energy efficiency. Nevertheless, the back-box deep learning models combined with the diverse underlying hardware faults make resilient deep learning extremely challenging. In this special session, we conduct a comprehensive survey of fault-tolerant deep learning design approaches with a hierarchical perspective and investigate these approaches from model layer, architecture layer, circuit layer, and cross layer respectively.
106,194
106,194
Digital Twin Virtualization with Machine Learning for IoT and Beyond 5G Networks: Research Directions for Security and Optimal Control
Digital twin (DT) technologies have emerged as a solution for real-time data-driven modeling of cyber physical systems (CPS) using the vast amount of data available by Internet of Things (IoT) networks. In this position paper, we elucidate unique characteristics and capabilities of a DT framework that enables realization of such promises as online learning of a physical environment, real-time monitoring of assets, Monte Carlo heuristic search for predictive prevention, on-policy, and off-policy reinforcement learning in real-time. We establish a conceptual layered architecture for a DT framework with decentralized implementation on cloud computing and enabled by artificial intelligence (AI) services for modeling, event detection, and decision-making processes. The DT framework separates the control functions, deployed as a system of logically centralized process, from the physical devices under control, much like software-defined networking (SDN) in fifth generation (5G) wireless networks. We discuss the moment of the DT framework in facilitating implementation of network-based control processes and its implications for critical infrastructure. To clarify the significance of DT in lowering the risk of development and deployment of innovative technologies on existing system, we discuss the application of implementing zero trust architecture (ZTA) as a necessary security framework in future data-driven communication networks.
106,195
106,195
GAIL-PT: A Generic Intelligent Penetration Testing Framework with Generative Adversarial Imitation Learning
Penetration testing (PT) is an efficient network testing and vulnerability mining tool by simulating a hacker's attack for valuable information applied in some areas. Compared with manual PT, intelligent PT has become a dominating mainstream due to less time-consuming and lower labor costs. Unfortunately, RL-based PT is still challenged in real exploitation scenarios because the agent's action space is usually high-dimensional discrete, thus leading to algorithm convergence difficulty. Besides, most PT methods still rely on the decisions of security experts. Addressing the challenges, for the first time, we introduce expert knowledge to guide the agent to make better decisions in RL-based PT and propose a Generative Adversarial Imitation Learning-based generic intelligent Penetration testing framework, denoted as GAIL-PT, to solve the problems of higher labor costs due to the involvement of security experts and high-dimensional discrete action space. Specifically, first, we manually collect the state-action pairs to construct an expert knowledge base when the pre-trained RL / DRL model executes successful penetration testings. Second, we input the expert knowledge and the state-action pairs generated online by the different RL / DRL models into the discriminator of GAIL for training. At last, we apply the output reward of the discriminator to guide the agent to perform the action with a higher penetration success rate to improve PT's performance. Extensive experiments conducted on the real target host and simulated network scenarios show that GAIL-PT achieves the SOTA penetration performance against DeepExploit in exploiting actual target Metasploitable2 and Q-learning in optimizing penetration path, not only in small-scale with or without honey-pot network environments but also in the large-scale virtual network environment.
106,196
106,196
Bimodal Distributed Binarized Neural Networks
Binary Neural Networks (BNNs) are an extremely promising method to reduce deep neural networks' complexity and power consumption massively. Binarization techniques, however, suffer from ineligible performance degradation compared to their full-precision counterparts. Prior work mainly focused on strategies for sign function approximation during forward and backward phases to reduce the quantization error during the binarization process. In this work, we propose a Bi-Modal Distributed binarization method (\methodname{}). That imposes bi-modal distribution of the network weights by kurtosis regularization. The proposed method consists of a training scheme that we call Weight Distribution Mimicking (WDM), which efficiently imitates the full-precision network weight distribution to their binary counterpart. Preserving this distribution during binarization-aware training creates robust and informative binary feature maps and significantly reduces the generalization error of the BNN. Extensive evaluations on CIFAR-10 and ImageNet demonstrate the superiority of our method over current state-of-the-art schemes. Our source code, experimental settings, training logs, and binary models are available at \url{https://github.com/BlueAnon/BD-BNN}.
106,197
106,197
Fact Checking with Insufficient Evidence
Automating the fact checking (FC) process relies on information obtained from external sources. In this work, we posit that it is crucial for FC models to make veracity predictions only when there is sufficient evidence and otherwise indicate when it is not enough. To this end, we are the first to study what information FC models consider sufficient by introducing a novel task and advancing it with three main contributions. First, we conduct an in-depth empirical analysis of the task with a new fluency-preserving method for omitting information from the evidence at the constituent and sentence level. We identify when models consider the remaining evidence (in)sufficient for FC, based on three trained models with different Transformer architectures and three FC datasets. Second, we ask annotators whether the omitted evidence was important for FC, resulting in a novel diagnostic dataset, SufficientFacts, for FC with omitted evidence. We find that models are least successful in detecting missing evidence when adverbial modifiers are omitted (21% accuracy), whereas it is easiest for omitted date modifiers (63% accuracy). Finally, we propose a novel data augmentation strategy for contrastive self-learning of missing evidence by employing the proposed omission method combined with tri-training. It improves performance for Evidence Sufficiency Prediction by up to 17.8 F1 score, which in turn improves FC performance by up to 2.6 F1 score.
106,198
106,198
LatentGAN Autoencoder: Learning Disentangled Latent Distribution
In autoencoder, the encoder generally approximates the latent distribution over the dataset, and the decoder generates samples using this learned latent distribution. There is very little control over the latent vector as using the random latent vector for generation will lead to trivial outputs. This work tries to address this issue by using the LatentGAN generator to directly learn to approximate the latent distribution of the autoencoder and show meaningful results on MNIST, 3D Chair, and CelebA datasets, an additional information-theoretic constrain is used which successfully learns to control autoencoder latent distribution. With this, our model also achieves an error rate of 2.38 on MNIST unsupervised image classification, which is better as compared to InfoGAN and AAE.
106,199
106,199
RL4ReAl: Reinforcement Learning for Register Allocation
We propose a novel solution for the Register Allocation problem, leveraging multi-agent hierarchical Reinforcement Learning. We formalize the constraints that precisely define the problem for a given instruction-set architecture, while ensuring that the generated code preserves semantic correctness. We also develop a gRPC based framework providing a modular and efficient compiler interface for training and inference. Experimental results match or outperform the LLVM register allocators, targeting Intel x86 and ARM AArch64.