Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
105,900
105,900
Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks via Born Machines
Near-term noisy intermediate-scale quantum circuits can efficiently implement implicit probabilistic models in discrete spaces, supporting distributions that are practically infeasible to sample from using classical means. One of the possible applications of such models, also known as Born machines, is probabilistic inference, which is at the core of Bayesian methods. This paper studies the use of Born machines for the problem of training binary Bayesian neural networks. In the proposed approach, a Born machine is used to model the variational distribution of the binary weights of the neural network, and data from multiple tasks is used to reduce training data requirements on new tasks. The method combines gradient-based meta-learning and variational inference via Born machines, and is shown in a prototypical regression problem to outperform conventional joint learning strategies.
105,901
105,901
Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data
This paper studies a novel pre-training technique with unpaired speech data, Speech2C, for encoder-decoder based automatic speech recognition (ASR). Within a multi-task learning framework, we introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes, derived from an offline clustering model. One is to predict the pseudo codes via masked language modeling in encoder output, like HuBERT model, while the other lets the decoder learn to reconstruct pseudo codes autoregressively instead of generating textual scripts. In this way, the decoder learns to reconstruct original speech information with codes before learning to generate correct text. Comprehensive experiments on the LibriSpeech corpus show that the proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training, and also outperforms significantly the state-of-the-art wav2vec 2.0 and HuBERT on fine-tuning subsets of 10h and 100h.
105,902
105,902
Doubly-Robust Estimation for Correcting Position-Bias in Click Feedback for Unbiased Learning to Rank
Clicks on rankings suffer from position bias: generally items on lower ranks are less likely to be examined - and thus clicked - by users, in spite of their actual preferences between items. The prevalent approach to unbiased click-based learning-to-rank (LTR) is based on counterfactual inverse-propensity-scoring (IPS) estimation. In contrast with general reinforcement learning, counterfactual doubly-robust (DR) estimation has not been applied to click-based LTR in previous literature. In this paper, we introduce a novel DR estimator that is the first DR approach specifically designed for position-bias. The difficulty with position bias is that the treatment - user examination - is not directly observable in click data. As a solution, our estimator uses the expected treatment per rank, instead of the actual treatment that existing DR estimators use. Our novel DR estimator has more robust unbiasedness conditions than the existing IPS approach, and in addition, provides enormous decreases in variance: our experimental results indicate it requires several orders of magnitude fewer datapoints to converge at optimal performance. For the unbiased LTR field, our DR estimator contributes both increases in state-of-the-art performance and the most robust theoretical guarantees of all known LTR estimators.
105,903
105,903
Neural Q-learning for solving elliptic PDEs
Solving high-dimensional partial differential equations (PDEs) is a major challenge in scientific computing. We develop a new numerical method for solving elliptic-type PDEs by adapting the Q-learning algorithm in reinforcement learning. Our "Q-PDE" algorithm is mesh-free and therefore has the potential to overcome the curse of dimensionality. Using a neural tangent kernel (NTK) approach, we prove that the neural network approximator for the PDE solution, trained with the Q-PDE algorithm, converges to the trajectory of an infinite-dimensional ordinary differential equation (ODE) as the number of hidden units $\rightarrow \infty$. For monotone PDE (i.e. those given by monotone operators, which may be nonlinear), despite the lack of a spectral gap in the NTK, we then prove that the limit neural network, which satisfies the infinite-dimensional ODE, converges in $L^2$ to the PDE solution as the training time $\rightarrow \infty$. More generally, we can prove that any fixed point of the wide-network limit for the Q-PDE algorithm is a solution of the PDE (not necessarily under the monotone condition). The numerical performance of the Q-PDE algorithm is studied for several elliptic PDEs.
105,904
105,904
Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors
We investigate the use of prior knowledge of human and animal movement to learn reusable locomotion skills for real legged robots. Our approach builds upon previous work on imitating human or dog Motion Capture (MoCap) data to learn a movement skill module. Once learned, this skill module can be reused for complex downstream tasks. Importantly, due to the prior imposed by the MoCap data, our approach does not require extensive reward engineering to produce sensible and natural looking behavior at the time of reuse. This makes it easy to create well-regularized, task-oriented controllers that are suitable for deployment on real robots. We demonstrate how our skill module can be used for imitation, and train controllable walking and ball dribbling policies for both the ANYmal quadruped and OP3 humanoid. These policies are then deployed on hardware via zero-shot simulation-to-reality transfer. Accompanying videos are available at https://bit.ly/robot-npmp.
105,905
105,905
Online Learning for Traffic Routing under Unknown Preferences
In transportation networks, users typically choose routes in a decentralized and self-interested manner to minimize their individual travel costs, which, in practice, often results in inefficient overall outcomes for society. As a result, there has been a growing interest in designing road tolling schemes to cope with these efficiency losses and steer users toward a system-efficient traffic pattern. However, the efficacy of road tolling schemes often relies on having access to complete information on users' trip attributes, such as their origin-destination (O-D) travel information and their values of time, which may not be available in practice. Motivated by this practical consideration, we propose an online learning approach to set tolls in a traffic network to drive heterogeneous users with different values of time toward a system-efficient traffic pattern. In particular, we develop a simple yet effective algorithm that adjusts tolls at each time period solely based on the observed aggregate flows on the roads of the network without relying on any additional trip attributes of users, thereby preserving user privacy. In the setting where the O-D pairs and values of time of users are drawn i.i.d. at each period, we show that our approach obtains an expected regret and road capacity violation of $O(\sqrt{T})$, where $T$ is the number of periods over which tolls are updated. Our regret guarantee is relative to an offline oracle that has complete information on users' trip attributes. We further establish a $\Omega(\sqrt{T})$ lower bound on the regret of any algorithm, which establishes that our algorithm is optimal up to constants. Finally, we demonstrate the superior performance of our approach relative to several benchmarks on a real-world transportation network, thereby highlighting its practical applicability.
105,906
105,906
Predicting extreme events from data using deep machine learning: when and where
We develop a deep convolutional neural network (DCNN) based framework for model-free prediction of the occurrence of extreme events both in time ("when") and in space ("where") in nonlinear physical systems of spatial dimension two. The measurements or data are a set of two-dimensional snapshots or images. For a desired time horizon of prediction, a proper labeling scheme can be designated to enable successful training of the DCNN and subsequent prediction of extreme events in time. Given that an extreme event has been predicted to occur within the time horizon, a space-based labeling scheme can be applied to predict, within certain resolution, the location at which the event will occur. We use synthetic data from the 2D complex Ginzburg-Landau equation and empirical wind speed data of the North Atlantic ocean to demonstrate and validate our machine-learning based prediction framework. The trade-offs among the prediction horizon, spatial resolution, and accuracy are illustrated, and the detrimental effect of spatially biased occurrence of extreme event on prediction accuracy is discussed. The deep learning framework is viable for predicting extreme events in the real world.
105,907
105,907
Preventing Over-Smoothing for Hypergraph Neural Networks
In recent years, hypergraph learning has attracted great attention due to its capacity in representing complex and high-order relationships. However, current neural network approaches designed for hypergraphs are mostly shallow, thus limiting their ability to extract information from high-order neighbors. In this paper, we show both theoretically and empirically, that the performance of hypergraph neural networks does not improve as the number of layers increases, which is known as the over-smoothing problem. To tackle this issue, we develop a new deep hypergraph convolutional network called Deep-HGCN, which can maintain the heterogeneity of node representation in deep layers. Specifically, we prove that a $k$-layer Deep-HGCN simulates a polynomial filter of order $k$ with arbitrary coefficients, which can relieve the problem of over-smoothing. Experimental results on various datasets demonstrate the superior performance of the proposed model comparing to the state-of-the-art hypergraph learning approaches.
105,908
105,908
Recovering models of open quantum systems from data via polynomial optimization: Towards globally convergent quantum system identification
Current quantum devices suffer imperfections as a result of fabrication, as well as noise and dissipation as a result of coupling to their immediate environments. Because of this, it is often difficult to obtain accurate models of their dynamics from first principles. An alternative is to extract such models from time-series measurements of their behavior. Here, we formulate this system-identification problem as a polynomial optimization problem. Recent advances in optimization have provided globally convergent solvers for this class of problems, which using our formulation prove estimates of the Kraus map or the Lindblad equation. We include an overview of the state-of-the-art algorithms, bounds, and convergence rates, and illustrate the use of this approach to modeling open quantum systems.
105,909
105,909
Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$
Recent neural network-based language models have benefited greatly from scaling up the size of training datasets and the number of parameters in the models themselves. Scaling can be complicated due to various factors including the need to distribute computation on supercomputer clusters (e.g., TPUs), prevent bottlenecks when infeeding data, and ensure reproducible results. In this work, we present two software libraries that ease these issues: $\texttt{t5x}$ simplifies the process of building and training large language models at scale while maintaining ease of use, and $\texttt{seqio}$ provides a task-based API for simple creation of fast and reproducible training data and evaluation pipelines. These open-source libraries have been used to train models with hundreds of billions of parameters on datasets with multiple terabytes of training data. Along with the libraries, we release configurations and instructions for T5-like encoder-decoder models as well as GPT-like decoder-only architectures. $\texttt{t5x}$ and $\texttt{seqio}$ are open source and available at https://github.com/google-research/t5x and https://github.com/google/seqio, respectively.
105,910
105,910
Learning from many trajectories
We initiate a study of supervised learning from many independent sequences ("trajectories") of non-independent covariates, reflecting tasks in sequence modeling, control, and reinforcement learning. Conceptually, our multi-trajectory setup sits between two traditional settings in statistical learning theory: learning from independent examples and learning from a single auto-correlated sequence. Our conditions for efficient learning generalize the former setting--trajectories must be non-degenerate in ways that extend standard requirements for independent examples. They do not require that trajectories be ergodic, long, nor strictly stable. For linear least-squares regression, given $n$-dimensional examples produced by $m$ trajectories, each of length $T$, we observe a notable change in statistical efficiency as the number of trajectories increases from a few (namely $m \lesssim n$) to many (namely $m \gtrsim n$). Specifically, we establish that the worst-case error rate this problem is $\Theta(n / m T)$ whenever $m \gtrsim n$. Meanwhile, when $m \lesssim n$, we establish a (sharp) lower bound of $\Omega(n^2 / m^2 T)$ on the worst-case error rate, realized by a simple, marginally unstable linear dynamical system. A key upshot is that, in domains where trajectories regularly reset, the error rate eventually behaves as if all of the examples were independent altogether, drawn from their marginals. As a corollary of our analysis, we also improve guarantees for the linear system identification problem.
105,911
105,911
CatIss: An Intelligent Tool for Categorizing Issues Reports using Transformers
Users use Issue Tracking Systems to keep track and manage issue reports in their repositories. An issue is a rich source of software information that contains different reports including a problem, a request for new features, or merely a question about the software product. As the number of these issues increases, it becomes harder to manage them manually. Thus, automatic approaches are proposed to help facilitate the management of issue reports. This paper describes CatIss, an automatic CATegorizer of ISSue reports which is built upon the Transformer-based pre-trained RoBERTa model. CatIss classifies issue reports into three main categories of Bug reports, Enhancement/feature requests, and Questions. First, the datasets provided for the NLBSE tool competition are cleaned and preprocessed. Then, the pre-trained RoBERTa model is fine-tuned on the preprocessed dataset. Evaluating CatIss on about 80 thousand issue reports from GitHub, indicates that it performs very well surpassing the competition baseline, TicketTagger, and achieving 87.2% F1-score (micro average). Additionally, as CatIss is trained on a wide set of repositories, it is a generic prediction model, hence applicable for any unseen software project or projects with little historical data. Scripts for cleaning the datasets, training CatIss, and evaluating the model are publicly available.
105,912
105,912
Adversarial Examples in Random Neural Networks with General Activations
A substantial body of empirical work documents the lack of robustness in deep learning models to adversarial examples. Recent theoretical work proved that adversarial examples are ubiquitous in two-layers networks with sub-exponential width and ReLU or smooth activations, and multi-layer ReLU networks with sub-exponential width. We present a result of the same type, with no restriction on width and for general locally Lipschitz continuous activations. More precisely, given a neural network $f(\,\cdot\,;{\boldsymbol \theta})$ with random weights ${\boldsymbol \theta}$, and feature vector ${\boldsymbol x}$, we show that an adversarial example ${\boldsymbol x}'$ can be found with high probability along the direction of the gradient $\nabla_{{\boldsymbol x}}f({\boldsymbol x};{\boldsymbol \theta})$. Our proof is based on a Gaussian conditioning technique. Instead of proving that $f$ is approximately linear in a neighborhood of ${\boldsymbol x}$, we characterize the joint distribution of $f({\boldsymbol x};{\boldsymbol \theta})$ and $f({\boldsymbol x}';{\boldsymbol \theta})$ for ${\boldsymbol x}' = {\boldsymbol x}-s({\boldsymbol x})\nabla_{{\boldsymbol x}}f({\boldsymbol x};{\boldsymbol \theta})$.
105,913
105,913
Improved Relation Networks for End-to-End Speaker Verification and Identification
Speaker identification systems in a real-world scenario are tasked to identify a speaker amongst a set of enrolled speakers given just a few samples for each enrolled speaker. This paper demonstrates the effectiveness of meta-learning and relation networks for this use case. We propose improved relation networks for speaker verification and few-shot (unseen) speaker identification. The use of relation networks facilitates joint training of the frontend speaker encoder and the backend model. Inspired by the use of prototypical networks in speaker verification and to increase the discriminability of the speaker embeddings, we train the model to classify samples in the current episode amongst all speakers present in the training set. Furthermore, we propose a new training regime for faster model convergence by extracting more information from a given meta-learning episode with negligible extra computation. We evaluate the proposed techniques on VoxCeleb, SITW and VCTK datasets on the tasks of speaker verification and unseen speaker identification. The proposed approach outperforms the existing approaches consistently on both tasks.
105,914
105,914
A Derivation of Nesterov's Accelerated Gradient Algorithm from Optimal Control Theory
Nesterov's accelerated gradient algorithm is derived from first principles. The first principles are founded on the recently-developed optimal control theory for optimization. This theory frames an optimization problem as an optimal control problem whose trajectories generate various continuous-time algorithms. The algorithmic trajectories satisfy the necessary conditions for optimal control. The necessary conditions produce a controllable dynamical system for accelerated optimization. Stabilizing this system via a quadratic control Lyapunov function generates an ordinary differential equation. An Euler discretization of the resulting differential equation produces Nesterov's algorithm. In this context, this result solves the purported mystery surrounding the algorithm.
105,915
105,915
Performative Power
We introduce the notion of performative power, which measures the ability of a firm operating an algorithmic system, such as a digital content recommendation platform, to steer a population. We relate performative power to the economic theory of market power. Traditional economic concepts are well known to struggle with identifying anti-competitive patterns in digital platforms--a core challenge is the difficulty of defining the market, its participants, products, and prices. Performative power sidesteps the problem of market definition by focusing on a directly observable statistical measure instead. High performative power enables a platform to profit from steering participant behavior, whereas low performative power ensures that learning from historical data is close to optimal. Our first general result shows that under low performative power, a firm cannot do better than standard supervised learning on observed data. We draw an analogy with a firm being a price-taker, an economic condition that arises under perfect competition in classical market models. We then contrast this with a market where performative power is concentrated and show that the equilibrium state can differ significantly. We go on to study performative power in a concrete setting of strategic classification where participants can switch between competing firms. We show that monopolies maximize performative power and disutility for the participant, while competition and outside options decrease performative power. We end on a discussion of connections to measures of market power in economics and of the relationship with ongoing antitrust debates.
105,916
105,916
Bayesian optimization with known experimental and design constraints for chemistry applications
Optimization strategies driven by machine learning, such as Bayesian optimization, are being explored across experimental sciences as an efficient alternative to traditional design of experiment. When combined with automated laboratory hardware and high-performance computing, these strategies enable next-generation platforms for autonomous experimentation. However, the practical application of these approaches is hampered by a lack of flexible software and algorithms tailored to the unique requirements of chemical research. One such aspect is the pervasive presence of constraints in the experimental conditions when optimizing chemical processes or protocols, and in the chemical space that is accessible when designing functional molecules or materials. Although many of these constraints are known a priori, they can be interdependent, non-linear, and result in non-compact optimization domains. In this work, we extend our experiment planning algorithms Phoenics and Gryffin such that they can handle arbitrary known constraints via an intuitive and flexible interface. We benchmark these extended algorithms on continuous and discrete test functions with a diverse set of constraints, demonstrating their flexibility and robustness. In addition, we illustrate their practical utility in two simulated chemical research scenarios: the optimization of the synthesis of o-xylenyl Buckminsterfullerene adducts under constrained flow conditions, and the design of redox active molecules for flow batteries under synthetic accessibility constraints. The tools developed constitute a simple, yet versatile strategy to enable model-based optimization with known experimental constraints, contributing to its applicability as a core component of autonomous platforms for scientific discovery.
105,917
105,917
Automatic Detection of Expressed Emotion from Five-Minute Speech Samples: Challenges and Opportunities
We present a novel feasibility study on the automatic recognition of Expressed Emotion (EE), a family environment concept based on caregivers speaking freely about their relative/family member. We describe an automated approach for determining the \textit{degree of warmth}, a key component of EE, from acoustic and text features acquired from a sample of 37 recorded interviews. These recordings, collected over 20 years ago, are derived from a nationally representative birth cohort of 2,232 British twin children and were manually coded for EE. We outline the core steps of extracting usable information from recordings with highly variable audio quality and assess the efficacy of four machine learning approaches trained with different combinations of acoustic and text features. Despite the challenges of working with this legacy data, we demonstrated that the degree of warmth can be predicted with an $F_{1}$-score of \textbf{61.5\%}. In this paper, we summarise our learning and provide recommendations for future work using real-world speech samples.
105,918
105,918
VL-InterpreT: An Interactive Visualization Tool for Interpreting Vision-Language Transformers
Breakthroughs in transformer-based models have revolutionized not only the NLP field, but also vision and multimodal systems. However, although visualization and interpretability tools have become available for NLP models, internal mechanisms of vision and multimodal transformers remain largely opaque. With the success of these transformers, it is increasingly critical to understand their inner workings, as unraveling these black-boxes will lead to more capable and trustworthy models. To contribute to this quest, we propose VL-InterpreT, which provides novel interactive visualizations for interpreting the attentions and hidden representations in multimodal transformers. VL-InterpreT is a task agnostic and integrated tool that (1) tracks a variety of statistics in attention heads throughout all layers for both vision and language components, (2) visualizes cross-modal and intra-modal attentions through easily readable heatmaps, and (3) plots the hidden representations of vision and language tokens as they pass through the transformer layers. In this paper, we demonstrate the functionalities of VL-InterpreT through the analysis of KD-VLP, an end-to-end pretraining vision-language multimodal transformer-based model, in the tasks of Visual Commonsense Reasoning (VCR) and WebQA, two visual question answering benchmarks. Furthermore, we also present a few interesting findings about multimodal transformer behaviors that were learned through our tool.
105,919
105,919
Dual Temperature Helps Contrastive Learning Without Many Negative Samples: Towards Understanding and Simplifying MoCo
Contrastive learning (CL) is widely known to require many negative samples, 65536 in MoCo for instance, for which the performance of a dictionary-free framework is often inferior because the negative sample size (NSS) is limited by its mini-batch size (MBS). To decouple the NSS from the MBS, a dynamic dictionary has been adopted in a large volume of CL frameworks, among which arguably the most popular one is MoCo family. In essence, MoCo adopts a momentum-based queue dictionary, for which we perform a fine-grained analysis of its size and consistency. We point out that InfoNCE loss used in MoCo implicitly attract anchors to their corresponding positive sample with various strength of penalties and identify such inter-anchor hardness-awareness property as a major reason for the necessity of a large dictionary. Our findings motivate us to simplify MoCo v2 via the removal of its dictionary as well as momentum. Based on an InfoNCE with the proposed dual temperature, our simplified frameworks, SimMoCo and SimCo, outperform MoCo v2 by a visible margin. Moreover, our work bridges the gap between CL and non-CL frameworks, contributing to a more unified understanding of these two mainstream frameworks in SSL. Code is available at: https://bit.ly/3LkQbaT.
105,920
105,920
Generation and Simulation of Synthetic Datasets with Copulas
This paper proposes a new method to generate synthetic data sets based on copula models. Our goal is to produce surrogate data resembling real data in terms of marginal and joint distributions. We present a complete and reliable algorithm for generating a synthetic data set comprising numeric or categorical variables. Applying our methodology to two datasets shows better performance compared to other methods such as SMOTE and autoencoders.
105,921
105,921
Continuous Scene Representations for Embodied AI
We propose Continuous Scene Representations (CSR), a scene representation constructed by an embodied agent navigating within a space, where objects and their relationships are modeled by continuous valued embeddings. Our method captures feature relationships between objects, composes them into a graph structure on-the-fly, and situates an embodied agent within the representation. Our key insight is to embed pair-wise relationships between objects in a latent space. This allows for a richer representation compared to discrete relations (e.g., [support], [next-to]) commonly used for building scene representations. CSR can track objects as the agent moves in a scene, update the representation accordingly, and detect changes in room configurations. Using CSR, we outperform state-of-the-art approaches for the challenging downstream task of visual room rearrangement, without any task specific training. Moreover, we show the learned embeddings capture salient spatial details of the scene and show applicability to real world data. A summery video and code is available at https://prior.allenai.org/projects/csr.
105,922
105,922
LEAD1.0: A Large-scale Annotated Dataset for Energy Anomaly Detection in Commercial Buildings
Modern buildings are densely equipped with smart energy meters, which periodically generate a massive amount of time-series data yielding few million data points every day. This data can be leveraged to discover the underlying loads, infer their energy consumption patterns, inter-dependencies on environmental factors, and the building's operational properties. Furthermore, it allows us to simultaneously identify anomalies present in the electricity consumption profiles, which is a big step towards saving energy and achieving global sustainability. However, to date, the lack of large-scale annotated energy consumption datasets hinders the ongoing research in anomaly detection. We contribute to this effort by releasing a well-annotated version of a publicly available ASHRAE Great Energy Predictor III data set containing 1,413 smart electricity meter time series spanning over one year. In addition, we benchmark the performance of eight state-of-the-art anomaly detection methods on our dataset and compare their performance.
105,923
105,923
Generating High Fidelity Data from Low-density Regions using Diffusion Models
Our work focuses on addressing sample deficiency from low-density regions of data manifold in common image datasets. We leverage diffusion process based generative models to synthesize novel images from low-density regions. We observe that uniform sampling from diffusion models predominantly samples from high-density regions of the data manifold. Therefore, we modify the sampling process to guide it towards low-density regions while simultaneously maintaining the fidelity of synthetic data. We rigorously demonstrate that our process successfully generates novel high fidelity samples from low-density regions. We further examine generated samples and show that the model does not memorize low-density data and indeed learns to generate novel samples from low-density regions.
105,924
105,924
R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis
Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis -- the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized implementation tricks.
105,925
105,925
Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement by Re-Synthesis
Since facial actions such as lip movements contain significant information about speech content, it is not surprising that audio-visual speech enhancement methods are more accurate than their audio-only counterparts. Yet, state-of-the-art approaches still struggle to generate clean, realistic speech without noise artifacts and unnatural distortions in challenging acoustic environments. In this paper, we propose a novel audio-visual speech enhancement framework for high-fidelity telecommunications in AR/VR. Our approach leverages audio-visual speech cues to generate the codes of a neural speech codec, enabling efficient synthesis of clean, realistic speech from noisy signals. Given the importance of speaker-specific cues in speech, we focus on developing personalized models that work well for individual speakers. We demonstrate the efficacy of our approach on a new audio-visual speech dataset collected in an unconstrained, large vocabulary setting, as well as existing audio-visual datasets, outperforming speech enhancement baselines on both quantitative metrics and human evaluation studies. Please see the supplemental video for qualitative results at https://github.com/facebookresearch/facestar/releases/download/paper_materials/video.mp4.
105,926
105,926
A 23 MW data centre is all you need
The field of machine learning has achieved striking progress in recent years, witnessing breakthrough results on language modelling, protein folding and nitpickingly fine-grained dog breed classification. Some even succeeded at playing computer games and board games, a feat both of engineering and of setting their employers' expectations. The central contribution of this work is to carefully examine whether this progress, and technology more broadly, can be expected to continue indefinitely. Through a rigorous application of statistical theory and failure to extrapolate beyond the training data, we answer firmly in the negative and provide details: technology will peak at 3:07 am (BST) on 20th July, 2032. We then explore the implications of this finding, discovering that individuals awake at this ungodly hour with access to a sufficiently powerful computer possess an opportunity for myriad forms of long-term linguistic 'lock in'. All we need is a large (>> 1W) data centre to seize this pivotal moment. By setting our analogue alarm clocks, we propose a tractable algorithm to ensure that, for the future of humanity, the British spelling of colour becomes the default spelling across more than 80% of the global word processing software market.
105,927
105,927
TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing
Recent advances like StyleGAN have promoted the growth of controllable facial editing. To address its core challenge of attribute decoupling in a single latent space, attempts have been made to adopt dual-space GAN for better disentanglement of style and content representations. Nonetheless, these methods are still incompetent to obtain plausible editing results with high controllability, especially for complicated attributes. In this study, we highlight the importance of interaction in a dual-space GAN for more controllable editing. We propose TransEditor, a novel Transformer-based framework to enhance such interaction. Besides, we develop a new dual-space editing and inversion strategy to provide additional editing flexibility. Extensive experiments demonstrate the superiority of the proposed framework in image quality and editing capability, suggesting the effectiveness of TransEditor for highly controllable facial editing.
105,928
105,928
A Closer Look at Rehearsal-Free Continual Learning
Continual learning describes a setting where machine learning models learn novel concepts from continuously shifting training data, while simultaneously avoiding degradation of knowledge on previously seen classes (a phenomenon known as the catastrophic forgetting problem) which may disappear from the training data for extended periods of time. Current approaches for continual learning of a single expanding task (aka class-incremental continual learning) require extensive rehearsal of previously seen data to avoid this degradation of knowledge. Unfortunately, rehearsal comes at a sharp cost to memory and computation, and it may also violate data-privacy. Instead, we explore combining knowledge distillation and parameter regularization in new ways to achieve strong continual learning performance without rehearsal. Specifically, we take a deep dive into common continual learning techniques: prediction distillation, feature distillation, L2 parameter regularization, and EWC parameter regularization. We first disprove the common assumption that parameter regularization techniques fail for rehearsal-free continual learning of a single, expanding task. Next, we explore how to leverage knowledge from a pre-trained model in rehearsal-free continual learning and find that vanilla L2 parameter regularization outperforms EWC parameter regularization and feature distillation. We then highlight the impact of the rehearsal-free continual learning settings with a classifier expansion benchmark, showing that a strategy based on our findings combined with a positive/negative label balancing heuristic can close the performance gap between the upper bound and the existing strategies by up to roughly 50%. Finally, we show that a simple method consisting of pre-training, L2 regularization, and prediction distillation can even outperform rehearsal-based methods on the common CIFAR-100 benchmark.
105,929
105,929
MyStyle: A Personalized Generative Prior
We introduce MyStyle, a personalized deep generative prior trained with a few shots of an individual. MyStyle allows to reconstruct, enhance and edit images of a specific person, such that the output is faithful to the person's key facial characteristics. Given a small reference set of portrait images of a person (~100), we tune the weights of a pretrained StyleGAN face generator to form a local, low-dimensional, personalized manifold in the latent space. We show that this manifold constitutes a personalized region that spans latent codes associated with diverse portrait images of the individual. Moreover, we demonstrate that we obtain a personalized generative prior, and propose a unified approach to apply it to various ill-posed image enhancement problems, such as inpainting and super-resolution, as well as semantic editing. Using the personalized generative prior we obtain outputs that exhibit high-fidelity to the input images and are also faithful to the key facial characteristics of the individual in the reference set. We demonstrate our method with fair-use images of numerous widely recognizable individuals for whom we have the prior knowledge for a qualitative evaluation of the expected outcome. We evaluate our approach against few-shots baselines and show that our personalized prior, quantitatively and qualitatively, outperforms state-of-the-art alternatives.
105,930
105,930
DiffSkill: Skill Abstraction from Differentiable Physics for Deformable Object Manipulations with Tools
We consider the problem of sequential robotic manipulation of deformable objects using tools. Previous works have shown that differentiable physics simulators provide gradients to the environment state and help trajectory optimization to converge orders of magnitude faster than model-free reinforcement learning algorithms for deformable object manipulation. However, such gradient-based trajectory optimization typically requires access to the full simulator states and can only solve short-horizon, single-skill tasks due to local optima. In this work, we propose a novel framework, named DiffSkill, that uses a differentiable physics simulator for skill abstraction to solve long-horizon deformable object manipulation tasks from sensory observations. In particular, we first obtain short-horizon skills using individual tools from a gradient-based optimizer, using the full state information in a differentiable simulator; we then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input. Finally, we plan over the skills by finding the intermediate goals and then solve long-horizon tasks. We show the advantages of our method in a new set of sequential deformable object manipulation tasks compared to previous reinforcement learning algorithms and compared to the trajectory optimizer.
105,931
105,931
Reproducibility Issues for BERT-based Evaluation Metrics
Reproducibility is of utmost concern in machine learning and natural language processing (NLP). In the field of natural language generation (especially machine translation), the seminal paper of Post (2018) has pointed out problems of reproducibility of the dominant metric, BLEU, at the time of publication. Nowadays, BERT-based evaluation metrics considerably outperform BLEU. In this paper, we ask whether results and claims from four recent BERT-based metrics can be reproduced. We find that reproduction of claims and results often fails because of (i) heavy undocumented preprocessing involved in the metrics, (ii) missing code and (iii) reporting weaker results for the baseline metrics. (iv) In one case, the problem stems from correlating not to human scores but to a wrong column in the csv file, inflating scores by 5 points. Motivated by the impact of preprocessing, we then conduct a second study where we examine its effects more closely (for one of the metrics). We find that preprocessing can have large effects, especially for highly inflectional languages. In this case, the effect of preprocessing may be larger than the effect of the aggregation mechanism (e.g., greedy alignment vs. Word Mover Distance).
105,932
105,932
Graph-based Active Learning for Semi-supervised Classification of SAR Data
We present a novel method for classification of Synthetic Aperture Radar (SAR) data by combining ideas from graph-based learning and neural network methods within an active learning framework. Graph-based methods in machine learning are based on a similarity graph constructed from the data. When the data consists of raw images composed of scenes, extraneous information can make the classification task more difficult. In recent years, neural network methods have been shown to provide a promising framework for extracting patterns from SAR images. These methods, however, require ample training data to avoid overfitting. At the same time, such training data are often unavailable for applications of interest, such as automatic target recognition (ATR) and SAR data. We use a Convolutional Neural Network Variational Autoencoder (CNNVAE) to embed SAR data into a feature space, and then construct a similarity graph from the embedded data and apply graph-based semi-supervised learning techniques. The CNNVAE feature embedding and graph construction requires no labeled data, which reduces overfitting and improves the generalization performance of graph learning at low label rates. Furthermore, the method easily incorporates a human-in-the-loop for active learning in the data-labeling process. We present promising results and compare them to other standard machine learning methods on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset for ATR with small amounts of labeled data.
105,933
105,933
Data Sampling Affects the Complexity of Online SGD over Dependent Data
Conventional machine learning applications typically assume that data samples are independently and identically distributed (i.i.d.). However, practical scenarios often involve a data-generating process that produces highly dependent data samples, which are known to heavily bias the stochastic optimization process and slow down the convergence of learning. In this paper, we conduct a fundamental study on how different stochastic data sampling schemes affect the sample complexity of online stochastic gradient descent (SGD) over highly dependent data. Specifically, with a $\phi$-mixing model of data dependence, we show that online SGD with proper periodic data-subsampling achieves an improved sample complexity over the standard online SGD in the full spectrum of the data dependence level. Interestingly, even subsampling a subset of data samples can accelerate the convergence of online SGD over highly dependent data. Moreover, we show that online SGD with mini-batch sampling can further substantially improve the sample complexity over online SGD with periodic data-subsampling over highly dependent data. Numerical experiments validate our theoretical results.
105,934
105,934
Improving Adversarial Transferability via Neuron Attribution-Based Attacks
Deep neural networks (DNNs) are known to be vulnerable to adversarial examples. It is thus imperative to devise effective attack algorithms to identify the deficiencies of DNNs beforehand in security-sensitive applications. To efficiently tackle the black-box setting where the target model's particulars are unknown, feature-level transfer-based attacks propose to contaminate the intermediate feature outputs of local models, and then directly employ the crafted adversarial samples to attack the target model. Due to the transferability of features, feature-level attacks have shown promise in synthesizing more transferable adversarial samples. However, existing feature-level attacks generally employ inaccurate neuron importance estimations, which deteriorates their transferability. To overcome such pitfalls, in this paper, we propose the Neuron Attribution-based Attack (NAA), which conducts feature-level attacks with more accurate neuron importance estimations. Specifically, we first completely attribute a model's output to each neuron in a middle layer. We then derive an approximation scheme of neuron attribution to tremendously reduce the computation overhead. Finally, we weight neurons based on their attribution results and launch feature-level attacks. Extensive experiments confirm the superiority of our approach to the state-of-the-art benchmarks.
105,935
105,935
Leveraging Privacy Profiles to Empower Users in the Digital Society
Privacy and ethics of citizens are at the core of the concerns raised by our increasingly digital society. Profiling users is standard practice for software applications triggering the need for users, also enforced by laws, to properly manage privacy settings. Users need to manage software privacy settings properly to protect personally identifiable information and express personal ethical preferences. AI technologies that empower users to interact with the digital world by reflecting their personal ethical preferences can be key enablers of a trustworthy digital society. We focus on the privacy dimension and contribute a step in the above direction through an empirical study on an existing dataset collected from the fitness domain. We find out which set of questions is appropriate to differentiate users according to their preferences. The results reveal that a compact set of semantic-driven questions (about domain-independent privacy preferences) helps distinguish users better than a complex domain-dependent one. This confirms the study's hypothesis that moral attitudes are the relevant piece of information to collect. Based on the outcome, we implement a recommender system to provide users with suitable recommendations related to privacy choices. We then show that the proposed recommender system provides relevant settings to users, obtaining high accuracy.
105,936
105,936
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
We introduce a new class of attacks on machine learning models. We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak significant private details of training points belonging to other parties. Our active inference attacks connect two independent lines of work targeting the integrity and privacy of machine learning training data. Our attacks are effective across membership inference, attribute inference, and data extraction. For example, our targeted attacks can poison <0.1% of the training dataset to boost the performance of inference attacks by 1 to 2 orders of magnitude. Further, an adversary who controls a significant fraction of the training data (e.g., 50%) can launch untargeted attacks that enable 8x more precise inference on all other users' otherwise-private data points. Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty computation protocols for machine learning, if parties can arbitrarily select their share of training data.
105,937
105,937
Efficient Active Learning with Abstention
The goal of active learning is to achieve the same accuracy achievable by passive learning, while using much fewer labels. Exponential savings in label complexity are provably guaranteed in very special cases, but fundamental lower bounds show that such improvements are impossible in general. This suggests a need to explore alternative goals for active learning. Learning with abstention is one such alternative. In this setting, the active learning algorithm may abstain from prediction in certain cases and incur an error that is marginally smaller than $\frac{1}{2}$. We develop the first computationally efficient active learning algorithm with abstention. Furthermore, the algorithm is guaranteed to only abstain on hard examples (where the true label distribution is close to a fair coin), a novel property we term "proper abstention" that also leads to a host of other desirable characteristics. The option to abstain reduces the label complexity by an exponential factor, with no assumptions on the distribution, relative to passive learning algorithms and/or active learning that are not allowed to abstain. A key feature of the algorithm is that it avoids the undesirable "noise-seeking" behavior often seen in active learning. We also explore extensions that achieve constant label complexity and deal with model misspecification.
105,938
105,938
AKF-SR: Adaptive Kalman Filtering-based Successor Representation
Recent studies in neuroscience suggest that Successor Representation (SR)-based models provide adaptation to changes in the goal locations or reward function faster than model-free algorithms, together with lower computational cost compared to that of model-based algorithms. However, it is not known how such representation might help animals to manage uncertainty in their decision-making. Existing methods for SR learning do not capture uncertainty about the estimated SR. In order to address this issue, the paper presents a Kalman filter-based SR framework, referred to as Adaptive Kalman Filtering-based Successor Representation (AKF-SR). First, Kalman temporal difference approach, which is a combination of the Kalman filter and the temporal difference method, is used within the AKF-SR framework to cast the SR learning procedure into a filtering problem to benefit from the uncertainty estimation of the SR, and also decreases in memory requirement and sensitivity to model's parameters in comparison to deep neural network-based algorithms. An adaptive Kalman filtering approach is then applied within the proposed AKF-SR framework in order to tune the measurement noise covariance and measurement mapping function of Kalman filter as the most important parameters affecting the filter's performance. Moreover, an active learning method that exploits the estimated uncertainty of the SR to form the behaviour policy leading to more visits to less certain values is proposed to improve the overall performance of an agent in terms of received rewards while interacting with its environment.
105,939
105,939
SELFIES and the future of molecular string representations
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, SMILES, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, SMILES has several shortcomings -- most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100\% robustness: SELFIES (SELF-referencIng Embedded Strings). SELFIES has since simplified and enabled numerous new applications in chemistry. In this manuscript, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete Future Projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.
105,940
105,940
SimPO: Simultaneous Prediction and Optimization
Many machine learning (ML) models are integrated within the context of a larger system as part of a key component for decision making processes. Concretely, predictive models are often employed in estimating the parameters for the input values that are utilized for optimization models as isolated processes. Traditionally, the predictive models are built first, then the model outputs are used to generate decision values separately. However, it is often the case that the prediction values that are trained independently of the optimization process produce sub-optimal solutions. In this paper, we propose a formulation for the Simultaneous Prediction and Optimization (SimPO) framework. This framework introduces the use of a joint weighted loss of a decision-driven predictive ML model and an optimization objective function, which is optimized end-to-end directly through gradient-based methods.
105,941
105,941
rfPhen2Gen: A machine learning based association study of brain imaging phenotypes to genotypes
Imaging genetic studies aim to find associations between genetic variants and imaging quantitative traits. Traditional genome-wide association studies (GWAS) are based on univariate statistical tests, but when multiple traits are analyzed together they suffer from a multiple-testing problem and from not taking into account correlations among the traits. An alternative approach to multi-trait GWAS is to reverse the functional relation between genotypes and traits, by fitting a multivariate regression model to predict genotypes from multiple traits simultaneously. However, current reverse genotype prediction approaches are mostly based on linear models. Here, we evaluated random forest regression (RFR) as a method to predict SNPs from imaging QTs and identify biologically relevant associations. We learned machine learning models to predict 518,484 SNPs using 56 brain imaging QTs. We observed that genotype regression error is a better indicator of permutation p-value significance than genotype classification accuracy. SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest, but not ridge regression. Moreover, random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders. Feature selection identified well-known brain regions associated with AD,like the hippocampus and amygdala, as important predictors of the most significant SNPs. In summary, our results indicate that non-linear methods like random forests may offer additional insights into phenotype-genotype associations compared to traditional linear multi-variate GWAS methods.
105,942
105,942
Efficient Maximal Coding Rate Reduction by Variational Forms
The principle of Maximal Coding Rate Reduction (MCR$^2$) has recently been proposed as a training objective for learning discriminative low-dimensional structures intrinsic to high-dimensional data to allow for more robust training than standard approaches, such as cross-entropy minimization. However, despite the advantages that have been shown for MCR$^2$ training, MCR$^2$ suffers from a significant computational cost due to the need to evaluate and differentiate a significant number of log-determinant terms that grows linearly with the number of classes. By taking advantage of variational forms of spectral functions of a matrix, we reformulate the MCR$^2$ objective to a form that can scale significantly without compromising training accuracy. Experiments in image classification demonstrate that our proposed formulation results in a significant speed up over optimizing the original MCR$^2$ objective directly and often results in higher quality learned representations. Further, our approach may be of independent interest in other models that require computation of log-determinant forms, such as in system identification or normalizing flow models.
105,943
105,943
Support-vector-machine with Bayesian optimization for lithofacies classification using elastic properties
We investigate an applicability of Bayesian-optimization (BO) to optimize hyperparameters associated with support-vector-machine (SVM) in order to classify facies using elastic properties derived from well data in the East Central Graben, UKCS. The cross-plot products of the field dataset appear to be successfully classified with non-linear boundaries. Although there are a few factors to be predetermined in the BO scheme such as an iteration number to deal with a trade-off between the prediction accuracy and the computational cost, this approach effectively reduces possible human subjectivity connected to the architecture of the SVM. Our proposed workflow might be beneficial in resource-exploration and development in terms of subsurface objective technical evaluations.
105,944
105,944
A quantum learning approach based on Hidden Markov Models for failure scenarios generation
Finding the failure scenarios of a system is a very complex problem in the field of Probabilistic Safety Assessment (PSA). In order to solve this problem we will use the Hidden Quantum Markov Models (HQMMs) to create a generative model. Therefore, in this paper, we will study and compare the results of HQMMs and classical Hidden Markov Models HMM on a real datasets generated from real small systems in the field of PSA. As a quality metric we will use Description accuracy DA and we will show that the quantum approach gives better results compared with the classical approach, and we will give a strategy to identify the probable and no-probable failure scenarios of a system.
105,945
105,945
Speech and the n-Back task as a lens into depression. How combining both may allow us to isolate different core symptoms of depression
Embedded in any speech signal is a rich combination of cognitive, neuromuscular and physiological information. This richness makes speech a powerful signal in relation to a range of different health conditions, including major depressive disorders (MDD). One pivotal issue in speech-depression research is the assumption that depressive severity is the dominant measurable effect. However, given the heterogeneous clinical profile of MDD, it may actually be the case that speech alterations are more strongly associated with subsets of key depression symptoms. This paper presents strong evidence in support of this argument. First, we present a novel large, cross-sectional, multi-modal dataset collected at Thymia. We then present a set of machine learning experiments that demonstrate that combining speech with features from an n-Back working memory assessment improves classifier performance when predicting the popular eight-item Patient Health Questionnaire depression scale (PHQ-8). Finally, we present a set of experiments that highlight the association between different speech and n-Back markers at the PHQ-8 item level. Specifically, we observe that somatic and psychomotor symptoms are more strongly associated with n-Back performance scores, whilst the other items: anhedonia, depressed mood, change in appetite, feelings of worthlessness and trouble concentrating are more strongly associated with speech changes.
105,946
105,946
Investigating Top-$k$ White-Box and Transferable Black-box Attack
Existing works have identified the limitation of top-$1$ attack success rate (ASR) as a metric to evaluate the attack strength but exclusively investigated it in the white-box setting, while our work extends it to a more practical black-box setting: transferable attack. It is widely reported that stronger I-FGSM transfers worse than simple FGSM, leading to a popular belief that transferability is at odds with the white-box attack strength. Our work challenges this belief with empirical finding that stronger attack actually transfers better for the general top-$k$ ASR indicated by the interest class rank (ICR) after attack. For increasing the attack strength, with an intuitive interpretation of the logit gradient from the geometric perspective, we identify that the weakness of the commonly used losses lie in prioritizing the speed to fool the network instead of maximizing its strength. To this end, we propose a new normalized CE loss that guides the logit to be updated in the direction of implicitly maximizing its rank distance from the ground-truth class. Extensive results in various settings have verified that our proposed new loss is simple yet effective for top-$k$ attack. Code is available at: \url{https://bit.ly/3uCiomP}
105,947
105,947
Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing
Automatic teeth segmentation in panoramic x-ray images is an important research subject of the image analysis in dentistry. In this study, we propose a post-processing stage to obtain a segmentation map in which the objects in the image are separated, and apply this technique to tooth instance segmentation with U-Net network. The post-processing consists of grayscale morphological and filtering operations, which are applied to the sigmoid output of the network before binarization. A dice overlap score of 95.4 - 0.3% is obtained in overall teeth segmentation. The proposed post-processing stages reduce the mean error of tooth count to 6.15%, whereas the error without post-processing is 26.81%. The performances of both segmentation and tooth counting are the highest in the literature, to our knowledge. Moreover, this is achieved by using a relatively small training dataset, which consists of 105 images. Although the aim in this study is to segment tooth instances, the presented method is applicable to similar problems in other domains, such as separating the cell instances
105,948
105,948
Scalable Whitebox Attacks on Tree-based Models
Adversarial robustness is one of the essential safety criteria for guaranteeing the reliability of machine learning models. While various adversarial robustness testing approaches were introduced in the last decade, we note that most of them are incompatible with non-differentiable models such as tree ensembles. Since tree ensembles are widely used in industry, this reveals a crucial gap between adversarial robustness research and practical applications. This paper proposes a novel whitebox adversarial robustness testing approach for tree ensemble models. Concretely, the proposed approach smooths the tree ensembles through temperature controlled sigmoid functions, which enables gradient descent-based adversarial attacks. By leveraging sampling and the log-derivative trick, the proposed approach can scale up to testing tasks that were previously unmanageable. We compare the approach against both random perturbations and blackbox approaches on multiple public datasets (and corresponding models). Our results show that the proposed method can 1) successfully reveal the adversarial vulnerability of tree ensemble models without causing computational pressure for testing and 2) flexibly balance the search performance and time complexity to meet various testing criteria.
105,949
105,949
Visual-Tactile Multimodality for Following Deformable Linear Objects Using Reinforcement Learning
Manipulation of deformable objects is a challenging task for a robot. It will be problematic to use a single sensory input to track the behaviour of such objects: vision can be subjected to occlusions, whereas tactile inputs cannot capture the global information that is useful for the task. In this paper, we study the problem of using vision and tactile inputs together to complete the task of following deformable linear objects, for the first time. We create a Reinforcement Learning agent using different sensing modalities and investigate how its behaviour can be boosted using visual-tactile fusion, compared to using a single sensing modality. To this end, we developed a benchmark in simulation for manipulating the deformable linear objects using multimodal sensing inputs. The policy of the agent uses distilled information, e.g., the pose of the object in both visual and tactile perspectives, instead of the raw sensing signals, so that it can be directly transferred to real environments. In this way, we disentangle the perception system and the learned control policy. Our extensive experiments show that the use of both vision and tactile inputs, together with proprioception, allows the agent to complete the task in up to 92% of cases, compared to 77% when only one of the signals is given. Our results can provide valuable insights for the future design of tactile sensors and for deformable objects manipulation.
105,950
105,950
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition
In many machine learning tasks, input features with varying degrees of predictive capability are acquired at varying costs. In order to optimize the performance-cost trade-off, one would select features to observe a priori. However, given the changing context with previous observations, the subset of predictive features to select may change dynamically. Therefore, we face the challenging new problem of foresight dynamic selection (FDS): finding a dynamic and light-weight policy to decide which features to observe next, before actually observing them, for overall performance-cost trade-offs. To tackle FDS, this paper proposes a Bayesian learning framework of Variational Foresight Dynamic Selection (VFDS). VFDS learns a policy that selects the next feature subset to observe, by optimizing a variational Bayesian objective that characterizes the trade-off between model performance and feature cost. At its core is an implicit variational distribution on binary gates that are dependent on previous observations, which will select the next subset of features to observe. We apply VFDS on the Human Activity Recognition (HAR) task where the performance-cost trade-off is critical in its practice. Extensive results demonstrate that VFDS selects different features under changing contexts, notably saving sensory costs while maintaining or improving the HAR accuracy. Moreover, the features that VFDS dynamically select are shown to be interpretable and associated with the different activity types. We will release the code.
105,951
105,951
Effect of Balancing Data Using Synthetic Data on the Performance of Machine Learning Classifiers for Intrusion Detection in Computer Networks
Attacks on computer networks have increased significantly in recent days, due in part to the availability of sophisticated tools for launching such attacks as well as thriving underground cyber-crime economy to support it. Over the past several years, researchers in academia and industry used machine learning (ML) techniques to design and implement Intrusion Detection Systems (IDSes) for computer networks. Many of these researchers used datasets collected by various organizations to train ML models for predicting intrusions. In many of the datasets used in such systems, data are imbalanced (i.e., not all classes have equal amount of samples). With unbalanced data, the predictive models developed using ML algorithms may produce unsatisfactory classifiers which would affect accuracy in predicting intrusions. Traditionally, researchers used over-sampling and under-sampling for balancing data in datasets to overcome this problem. In this work, in addition to over-sampling, we also use a synthetic data generation method, called Conditional Generative Adversarial Network (CTGAN), to balance data and study their effect on various ML classifiers. To the best of our knowledge, no one else has used CTGAN to generate synthetic samples to balance intrusion detection datasets. Based on extensive experiments using a widely used dataset NSL-KDD, we found that training ML models on dataset balanced with synthetic samples generated by CTGAN increased prediction accuracy by up to $8\%$, compared to training the same ML models over unbalanced data. Our experiments also show that the accuracy of some ML models trained over data balanced with random over-sampling decline compared to the same ML models trained over unbalanced data.
105,952
105,952
DBCal: Density Based Calibration of classifier predictions for uncertainty quantification
Measurement of uncertainty of predictions from machine learning methods is important across scientific domains and applications. We present, to our knowledge, the first such technique that quantifies the uncertainty of predictions from a classifier and accounts for both the classifier's belief and performance. We prove that our method provides an accurate estimate of the probability that the outputs of two neural networks are correct by showing an expected calibration error of less than 0.2% on a binary classifier, and less than 3% on a semantic segmentation network with extreme class imbalance. We empirically show that the uncertainty returned by our method is an accurate measurement of the probability that the classifier's prediction is correct and, therefore has broad utility in uncertainty propagation.
105,953
105,953
Filter-based Discriminative Autoencoders for Children Speech Recognition
Children speech recognition is indispensable but challenging due to the diversity of children's speech. In this paper, we propose a filter-based discriminative autoencoder for acoustic modeling. To filter out the influence of various speaker types and pitches, auxiliary information of the speaker and pitch features is input into the encoder together with the acoustic features to generate phonetic embeddings. In the training phase, the decoder uses the auxiliary information and the phonetic embedding extracted by the encoder to reconstruct the input acoustic features. The autoencoder is trained by simultaneously minimizing the ASR loss and feature reconstruction error. The framework can make the phonetic embedding purer, resulting in more accurate senone (triphone-state) scores. Evaluated on the test set of the CMU Kids corpus, our system achieves a 7.8% relative WER reduction compared to the baseline system. In the domain adaptation experiment, our system also outperforms the baseline system on the British-accent PF-STAR task.
105,954
105,954
A Unified Framework for Domain Adaptive Pose Estimation
While pose estimation is an important computer vision task, it requires expensive annotation and suffers from domain shift. In this paper, we investigate the problem of domain adaptive 2D pose estimation that transfers knowledge learned on a synthetic source domain to a target domain without supervision. While several domain adaptive pose estimation models have been proposed recently, they are not generic but only focus on either human pose or animal pose estimation, and thus their effectiveness is somewhat limited to specific scenarios. In this work, we propose a unified framework that generalizes well on various domain adaptive pose estimation problems. We propose to align representations using both input-level and output-level cues (pixels and pose labels, respectively), which facilitates the knowledge transfer from the source domain to the unlabeled target domain. Our experiments show that our method achieves state-of-the-art performance under various domain shifts. Our method outperforms existing baselines on human pose estimation by up to 4.5 percent points (pp), hand pose estimation by up to 7.4 pp, and animal pose estimation by up to 4.8 pp for dogs and 3.3 pp for sheep. These results suggest that our method is able to mitigate domain shift on diverse tasks and even unseen domains and objects (e.g., trained on horse and tested on dog).
105,955
105,955
Comparative Analysis of Interval Reachability for Robust Implicit and Feedforward Neural Networks
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs). INNs are a class of implicit learning models that use implicit equations as layers and have been shown to exhibit several notable benefits over traditional deep neural networks. We first establish that tight inclusion functions of neural networks, which provide the tightest rectangular over-approximation of an input-output map, lead to sharper robustness guarantees than the well-studied robustness measures of local Lipschitz constants. Like Lipschitz constants, tight inclusions functions are computationally challenging to obtain, and we thus propose using mixed monotonicity and contraction theory to obtain computationally efficient estimates of tight inclusion functions for INNs. We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs. We design a novel optimization problem for training robust INNs and we provide empirical evidence that suitably-trained INNs can be more robust than comparably-trained feedforward networks.
105,956
105,956
A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues from Digital Image Correlation Measurements
We present a data-driven workflow to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios, without postulating a specific constitutive model form nor possessing knowledges on the material microstructure. To this end, a material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve anterior leaflet, with which we build a neural operator learning model. The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material microstructure properties learned implicitly from the data and naturally embedded in the network parameters. Using various combinations of loading protocols, we compare the predictivity of this framework with finite element analysis based on the phenomenological Fung-type model. From in-distribution tests, the predictivity of our approach presents good generalizability to different loading conditions and outperforms the conventional constitutive modeling at approximately one order of magnitude. When tested on out-of-distribution loading ratios, the neural operator learning approach becomes less effective. To improve the generalizability of our framework, we propose a physics-guided neural operator learning model via imposing partial physics knowledge. This method is shown to improve the model's extrapolative performance in the small-deformation regime. Our results demonstrate that with sufficient data coverage and/or guidance from partial physics constraints, the data-driven approach can be a more effective method for modeling biological materials than the traditional constitutive modeling.
105,957
105,957
Federated Learning Framework Coping with Hierarchical Heterogeneity in Cooperative ITS
In this paper, we introduce a federated learning framework coping with Hierarchical Heterogeneity (H2-Fed), which can notably enhance the conventional pre-trained deep learning model. The framework exploits data from connected public traffic agents in vehicular networks without affecting user data privacy. By coordinating existing traffic infrastructure, including roadside units and road traffic clouds, the model parameters are efficiently disseminated by vehicular communications and hierarchically aggregated. Considering the individual heterogeneity of data distribution, computational and communication capabilities across traffic agents and roadside units, we employ a novel method that addresses the heterogeneity of different aggregation layers of the framework architecture, i.e., aggregation in layers of roadside units and cloud. The experiment results indicate that our method can well balance the learning accuracy and stability according to the knowledge of heterogeneity in current communication networks. Compared to other baseline approaches, the evaluation on a Non-IID MNIST dataset shows that our framework is more general and capable especially in application scenarios with low communication quality. Even when 90% of the agents are timely disconnected, the pre-trained deep learning model can still be forced to converge stably, and its accuracy can be enhanced from 68% to over 90% after convergence.
105,958
105,958
Perception Prioritized Training of Diffusion Models
Diffusion models learn to restore noisy data, which is corrupted with different levels of noise, by optimizing the weighted sum of the corresponding loss terms, i.e., denoising score matching loss. In this paper, we show that restoring data corrupted with certain noise levels offers a proper pretext task for the model to learn rich visual concepts. We propose to prioritize such noise levels over other levels during training, by redesigning the weighting scheme of the objective function. We show that our simple redesign of the weighting scheme significantly improves the performance of diffusion models regardless of the datasets, architectures, and sampling strategies.
105,959
105,959
Rethinking Position Bias Modeling with Knowledge Distillation for CTR Prediction
Click-through rate (CTR) Prediction is of great importance in real-world online ads systems. One challenge for the CTR prediction task is to capture the real interest of users from their clicked items, which is inherently biased by presented positions of items, i.e., more front positions tend to obtain higher CTR values. A popular line of existing works focuses on explicitly estimating position bias by result randomization which is expensive and inefficient, or by inverse propensity weighting (IPW) which relies heavily on the quality of the propensity estimation. Another common solution is modeling position as features during offline training and simply adopting fixed value or dropout tricks when serving. However, training-inference inconsistency can lead to sub-optimal performance. Furthermore, post-click information such as position values is informative while less exploited in CTR prediction. This work proposes a simple yet efficient knowledge distillation framework to alleviate the impact of position bias and leverage position information to improve CTR prediction. We demonstrate the performance of our proposed method on a real-world production dataset and online A/B tests, achieving significant improvements over competing baseline models. The proposed method has been deployed in the real world online ads systems, serving main traffic on one of the world's largest e-commercial platforms.
105,960
105,960
Fusing Interpretable Knowledge of Neural Network Learning Agents For Swarm-Guidance
Neural-based learning agents make decisions using internal artificial neural networks. In certain situations, it becomes pertinent that this knowledge is re-interpreted in a friendly form to both the human and the machine. These situations include: when agents are required to communicate the knowledge they learn to each other in a transparent way in the presence of an external human observer, in human-machine teaming settings where humans and machines need to collaborate on a task, or where there is a requirement to verify the knowledge exchanged between the agents. We propose an interpretable knowledge fusion framework suited for neural-based learning agents, and propose a Priority on Weak State Areas (PoWSA) retraining technique. We first test the proposed framework on a synthetic binary classification task before evaluating it on a shepherding-based multi-agent swarm guidance task. Results demonstrate that the proposed framework increases the success rate on the swarm-guidance environment by 11% and better stability in return for a modest increase in computational cost of 14.5% to achieve interpretability. Moreover, the framework presents the knowledge learnt by an agent in a human-friendly representation, leading to a better descriptive visual representation of an agent's knowledge.
105,961
105,961
i-Razor: A Neural Input Razor for Feature Selection and Dimension Search in Large-Scale Recommender Systems
Input features play a crucial role in the predictive performance of DNN-based industrial recommender systems with thousands of categorical and continuous fields from users, items, contexts, and their interactions. Noisy features and inappropriate embedding dimension assignments can impair the performance of recommender systems and introduce unnecessary complexity in model training and online serving. Optimizing the input configuration of DNN models, including feature selection and embedding dimension assignment, has become one of the essential topics in feature engineering. Typically, feature selection and embedding dimension search are optimized sequentially, i.e., feature selection is performed first, followed by embedding dimension search to determine the optimal dimension size for each selected feature. In contrast, this paper studies the joint optimization of feature selection and embedding dimension search. To this end, we propose a differentiable neural \textbf{i}nput \textbf{razor}, namely \textbf{i-Razor}. Specifically, inspired by recent advances in neural architecture search, we introduce an end-to-end differentiable model to learn the relative importance between different embedding regions of each feature. Furthermore, a flexible pruning algorithm is proposed to simultaneously achieve feature filtering and dimension size derivation. Extensive experiments on two large-scale public datasets in the Click-Through-Rate (CTR) prediction task demonstrate the efficacy and superiority of i-Razor in balancing model complexity and performance.
105,962
105,962
Selecting task with optimal transport self-supervised learning for few-shot classification
Few-Shot classification aims at solving problems that only a few samples are available in the training process. Due to the lack of samples, researchers generally employ a set of training tasks from other domains to assist the target task, where the distribution between assistant tasks and the target task is usually different. To reduce the distribution gap, several lines of methods have been proposed, such as data augmentation and domain alignment. However, one common drawback of these algorithms is that they ignore the similarity task selection before training. The fundamental problem is to push the auxiliary tasks close to the target task. In this paper, we propose a novel task selecting algorithm, named Optimal Transport Task Selecting (OTTS), to construct a training set by selecting similar tasks for Few-Shot learning. Specifically, the OTTS measures the task similarity by calculating the optimal transport distance and completes the model training via a self-supervised strategy. By utilizing the selected tasks with OTTS, the training process of Few-Shot learning become more stable and effective. Other proposed methods including data augmentation and domain alignment can be used in the meantime with OTTS. We conduct extensive experiments on a variety of datasets, including MiniImageNet, CIFAR, CUB, Cars, and Places, to evaluate the effectiveness of OTTS. Experimental results validate that our OTTS outperforms the typical baselines, i.e., MAML, matchingnet, protonet, by a large margin (averagely 1.72\% accuracy improvement).
105,963
105,963
Predicting Intervention Approval in Clinical Trials through Multi-Document Summarization
Clinical trials offer a fundamental opportunity to discover new treatments and advance the medical knowledge. However, the uncertainty of the outcome of a trial can lead to unforeseen costs and setbacks. In this study, we propose a new method to predict the effectiveness of an intervention in a clinical trial. Our method relies on generating an informative summary from multiple documents available in the literature about the intervention under study. Specifically, our method first gathers all the abstracts of PubMed articles related to the intervention. Then, an evidence sentence, which conveys information about the effectiveness of the intervention, is extracted automatically from each abstract. Based on the set of evidence sentences extracted from the abstracts, a short summary about the intervention is constructed. Finally, the produced summaries are used to train a BERT-based classifier, in order to infer the effectiveness of an intervention. To evaluate our proposed method, we introduce a new dataset which is a collection of clinical trials together with their associated PubMed articles. Our experiments, demonstrate the effectiveness of producing short informative summaries and using them to predict the effectiveness of an intervention.
105,964
105,964
Preventing Distillation-based Attacks on Neural Network IP
Neural networks (NNs) are already deployed in hardware today, becoming valuable intellectual property (IP) as many hours are invested in their training and optimization. Therefore, attackers may be interested in copying, reverse engineering, or even modifying this IP. The current practices in hardware obfuscation, including the widely studied logic locking technique, are insufficient to protect the actual IP of a well-trained NN: its weights. Simply hiding the weights behind a key-based scheme is inefficient (resource-hungry) and inadequate (attackers can exploit knowledge distillation). This paper proposes an intuitive method to poison the predictions that prevent distillation-based attacks; this is the first work to consider such a poisoning approach in hardware-implemented NNs. The proposed technique obfuscates a NN so an attacker cannot train the NN entirely or accurately. We elaborate a threat model which highlights the difference between random logic obfuscation and the obfuscation of NN IP. Based on this threat model, our security analysis shows that the poisoning successfully and significantly reduces the accuracy of the stolen NN model on various representative datasets. Moreover, the accuracy and prediction distributions are maintained, no functionality is disturbed, nor are high overheads incurred. Finally, we highlight that our proposed approach is flexible and does not require manipulation of the NN toolchain.
105,965
105,965
GrowliFlower: An image time series dataset for GROWth analysis of cauLIFLOWER
This article presents GrowliFlower, a georeferenced, image-based UAV time series dataset of two monitored cauliflower fields of size 0.39 and 0.60 ha acquired in 2020 and 2021. The dataset contains RGB and multispectral orthophotos from which about 14,000 individual plant coordinates are derived and provided. The coordinates enable the dataset users the extraction of complete and incomplete time series of image patches showing individual plants. The dataset contains collected phenotypic traits of 740 plants, including the developmental stage as well as plant and cauliflower size. As the harvestable product is completely covered by leaves, plant IDs and coordinates are provided to extract image pairs of plants pre and post defoliation, to facilitate estimations of cauliflower head size. Moreover, the dataset contains pixel-accurate leaf and plant instance segmentations, as well as stem annotations to address tasks like classification, detection, segmentation, instance segmentation, and similar computer vision tasks. The dataset aims to foster the development and evaluation of machine learning approaches. It specifically focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to foster the development of automation in agriculture. Two baseline results of instance segmentation at plant and leaf level based on the labeled instance segmentation data are presented. The entire data set is publicly available.
105,966
105,966
Scalable Semi-Modular Inference with Variational Meta-Posteriors
The Cut posterior and related Semi-Modular Inference are Generalised Bayes methods for Modular Bayesian evidence combination. Analysis is broken up over modular sub-models of the joint posterior distribution. Model-misspecification in multi-modular models can be hard to fix by model elaboration alone and the Cut posterior and SMI offer a way round this. Information entering the analysis from misspecified modules is controlled by an influence parameter $\eta$ related to the learning rate. This paper contains two substantial new methods. First, we give variational methods for approximating the Cut and SMI posteriors which are adapted to the inferential goals of evidence combination. We parameterise a family of variational posteriors using a Normalising Flow for accurate approximation and end-to-end training. Secondly, we show that analysis of models with multiple cuts is feasible using a new Variational Meta-Posterior. This approximates a family of SMI posteriors indexed by $\eta$ using a single set of variational parameters.
105,967
105,967
Building Decision Forest via Deep Reinforcement Learning
Ensemble learning methods whose base classifier is a decision tree usually belong to the bagging or boosting. However, no previous work has ever built the ensemble classifier by maximizing long-term returns to the best of our knowledge. This paper proposes a decision forest building method called MA-H-SAC-DF for binary classification via deep reinforcement learning. First, the building process is modeled as a decentralized partial observable Markov decision process, and a set of cooperative agents jointly constructs all base classifiers. Second, the global state and local observations are defined based on informations of the parent node and the current location. Last, the state-of-the-art deep reinforcement method Hybrid SAC is extended to a multi-agent system under the CTDE architecture to find an optimal decision forest building policy. The experiments indicate that MA-H-SAC-DF has the same performance as random forest, Adaboost, and GBDT on balanced datasets and outperforms them on imbalanced datasets.
105,968
105,968
Graph-in-Graph (GiG): Learning interpretable latent graphs in non-Euclidean domain for biological and healthcare applications
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain. Two prominent examples are molecule property prediction and brain connectome analysis. Importantly, recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task in healthcare applications. These relationships are naturally modeled by a (possibly unknown) graph structure between input samples. In this work, we propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications that exploits the graph representation of the input data samples and their latent relation. We assume an initially unknown latent-graph structure between graph-valued input data and propose to learn end-to-end a parametric model for message passing within and across input graph samples, along with the latent structure connecting the input graphs. Further, we introduce a degree distribution loss that helps regularize the predicted latent relationships structure. This regularization can significantly improve the downstream task. Moreover, the obtained latent graph can represent patient population models or networks of molecule clusters, providing a level of interpretability and knowledge discovery in the input domain of particular value in healthcare.
105,969
105,969
On the Efficiency of Integrating Self-supervised Learning and Meta-learning for User-defined Few-shot Keyword Spotting
User-defined keyword spotting is a task to detect new spoken terms defined by users. This can be viewed as a few-shot learning problem since it is unreasonable for users to define their desired keywords by providing many examples. To solve this problem, previous works try to incorporate self-supervised learning models or apply meta-learning algorithms. But it is unclear whether self-supervised learning and meta-learning are complementary and which combination of the two types of approaches is most effective for few-shot keyword discovery. In this work, we systematically study these questions by utilizing various self-supervised learning models and combining them with a wide variety of meta-learning algorithms. Our result shows that HuBERT combined with Matching network achieves the best result and is robust to the changes of few-shot examples.
105,970
105,970
Extracting Rules from Neural Networks with Partial Interpretations
We investigate the problem of extracting rules, expressed in Horn logic, from neural network models. Our work is based on the exact learning model, in which a learner interacts with a teacher (the neural network model) via queries in order to learn an abstract target concept, which in our case is a set of Horn rules. We consider partial interpretations to formulate the queries. These can be understood as a representation of the world where part of the knowledge regarding the truthiness of propositions is unknown. We employ Angluin s algorithm for learning Horn rules via queries and evaluate our strategy empirically.
105,971
105,971
Deep Page-Level Interest Network in Reinforcement Learning for Ads Allocation
A mixed list of ads and organic items is usually displayed in feed and how to allocate the limited slots to maximize the overall revenue is a key problem. Meanwhile, modeling user preference with historical behavior is essential in recommendation and advertising (e.g., CTR prediction and ads allocation). Most previous works for user behavior modeling only model user's historical point-level positive feedback (i.e., click), which neglect the page-level information of feedback and other types of feedback. To this end, we propose Deep Page-level Interest Network (DPIN) to model the page-level user preference and exploit multiple types of feedback. Specifically, we introduce four different types of page-level feedback as input, and capture user preference for item arrangement under different receptive fields through the multi-channel interaction module. Through extensive offline and online experiments on Meituan food delivery platform, we demonstrate that DPIN can effectively model the page-level user preference and increase the revenue for the platform.
105,972
105,972
Autoencoder Attractors for Uncertainty Estimation
The reliability assessment of a machine learning model's prediction is an important quantity for the deployment in safety critical applications. Not only can it be used to detect novel sceneries, either as out-of-distribution or anomaly sample, but it also helps to determine deficiencies in the training data distribution. A lot of promising research directions have either proposed traditional methods like Gaussian processes or extended deep learning based approaches, for example, by interpreting them from a Bayesian point of view. In this work we propose a novel approach for uncertainty estimation based on autoencoder models: The recursive application of a previously trained autoencoder model can be interpreted as a dynamical system storing training examples as attractors. While input images close to known samples will converge to the same or similar attractor, input samples containing unknown features are unstable and converge to different training samples by potentially removing or changing characteristic features. The use of dropout during training and inference leads to a family of similar dynamical systems, each one being robust on samples close to the training distribution but unstable on new features. Either the model reliably removes these features or the resulting instability can be exploited to detect problematic input samples. We evaluate our approach on several dataset combinations as well as on an industrial application for occupant classification in the vehicle interior for which we additionally release a new synthetic dataset.
105,973
105,973
Autoencoder for Synthetic to Real Generalization: From Simple to More Complex Scenes
Learning on synthetic data and transferring the resulting properties to their real counterparts is an important challenge for reducing costs and increasing safety in machine learning. In this work, we focus on autoencoder architectures and aim at learning latent space representations that are invariant to inductive biases caused by the domain shift between simulated and real images showing the same scenario. We train on synthetic images only, present approaches to increase generalizability and improve the preservation of the semantics to real datasets of increasing visual complexity. We show that pre-trained feature extractors (e.g. VGG) can be sufficient for generalization on images of lower complexity, but additional improvements are required for visually more complex scenes. To this end, we demonstrate a new sampling technique, which matches semantically important parts of the image, while randomizing the other parts, leads to salient feature extraction and a neglection of unimportant parts. This helps the generalization to real data and we further show that our approach outperforms fine-tuned classification models.
105,974
105,974
DAG-WGAN: Causal Structure Learning With Wasserstein Generative Adversarial Networks
The combinatorial search space presents a significant challenge to learning causality from data. Recently, the problem has been formulated into a continuous optimization framework with an acyclicity constraint, allowing for the exploration of deep generative models to better capture data sample distributions and support the discovery of Directed Acyclic Graphs (DAGs) that faithfully represent the underlying data distribution. However, so far no study has investigated the use of Wasserstein distance for causal structure learning via generative models. This paper proposes a new model named DAG-WGAN, which combines the Wasserstein-based adversarial loss, an auto-encoder architecture together with an acyclicity constraint. DAG-WGAN simultaneously learns causal structures and improves its data generation capability by leveraging the strength from the Wasserstein distance metric. Compared with other models, it scales well and handles both continuous and discrete data. Our experiments have evaluated DAG-WGAN against the state-of-the-art and demonstrated its good performance.
105,975
105,975
ECOTS: Early Classification in Open Time Series
Learning to predict ahead of time events in open time series is challenging. While Early Classification of Time Series (ECTS) tackles the problem of balancing online the accuracy of the prediction with the cost of delaying the decision when the individuals are time series of finite length with a unique label for the whole time series. Surprisingly, this trade-off has never been investigated for open time series with undetermined length and with different classes for each subsequence of the same time series. In this paper, we propose a principled method to adapt any technique for ECTS to the Early Classification in Open Time Series (ECOTS). We show how the classifiers must be constructed and what the decision triggering system becomes in this new scenario. We address the challenge of decision making in the predictive maintenance field. We illustrate our methodology by transforming two state-of-the-art ECTS algorithms for the ECOTS scenario and report numerical experiments on a real dataset for predictive maintenance that demonstrate the practicality of the novel approach.
105,976
105,976
Probing Speech Emotion Recognition Transformers for Linguistic Knowledge
Large, pre-trained neural networks consisting of self-attention layers (transformers) have recently achieved state-of-the-art results on several speech emotion recognition (SER) datasets. These models are typically pre-trained in self-supervised manner with the goal to improve automatic speech recognition performance -- and thus, to understand linguistic information. In this work, we investigate the extent in which this information is exploited during SER fine-tuning. Using a reproducible methodology based on open-source tools, we synthesise prosodically neutral speech utterances while varying the sentiment of the text. Valence predictions of the transformer model are very reactive to positive and negative sentiment content, as well as negations, but not to intensifiers or reducers, while none of those linguistic features impact arousal or dominance. These findings show that transformers can successfully leverage linguistic information to improve their valence predictions, and that linguistic analysis should be included in their testing.
105,977
105,977
CTAB-GAN+: Enhancing Tabular Data Synthesis
While data sharing is crucial for knowledge development, privacy concerns and strict regulation (e.g., European General Data Protection Regulation (GDPR)) limit its full effectiveness. Synthetic tabular data emerges as alternative to enable data sharing while fulfilling regulatory and privacy constraints. State-of-the-art tabular data synthesizers draw methodologies from Generative Adversarial Networks (GAN). As GANs improve the synthesized data increasingly resemble the real data risking to leak privacy. Differential privacy (DP) provides theoretical guarantees on privacy loss but degrades data utility. Striking the best trade-off remains yet a challenging research question. We propose CTAB-GAN+ a novel conditional tabular GAN. CTAB-GAN+ improves upon state-of-the-art by (i) adding downstream losses to conditional GANs for higher utility synthetic data in both classification and regression domains; (ii) using Wasserstein loss with gradient penalty for better training convergence; (iii) introducing novel encoders targeting mixed continuous-categorical variables and variables with unbalanced or skewed data; and (iv) training with DP stochastic gradient descent to impose strict privacy guarantees. We extensively evaluate CTAB-GAN+ on data similarity and analysis utility against state-of-the-art tabular GANs. The results show that CTAB-GAN+ synthesizes privacy-preserving data with at least 48.16% higher utility across multiple datasets and learning tasks under different privacy budgets.
105,978
105,978
Structured Pruning Learns Compact and Accurate Models
The growing size of neural language models has led to increased attention in model compression. The two predominant approaches are pruning, which gradually removes weights from a pre-trained model, and distillation, which trains a smaller compact model to match a larger one. Pruning methods can significantly reduce the model size but hardly achieve large speedups as distillation. However, distillation methods require large amounts of unlabeled data and are expensive to train. In this work, we propose a task-specific structured pruning method CoFi (Coarse- and Fine-grained Pruning), which delivers highly parallelizable subnetworks and matches the distillation methods in both accuracy and latency, without resorting to any unlabeled data. Our key insight is to jointly prune coarse-grained (e.g., layers) and fine-grained (e.g., heads and hidden units) modules, which controls the pruning decision of each parameter with masks of different granularity. We also devise a layerwise distillation strategy to transfer knowledge from unpruned to pruned models during optimization. Our experiments on GLUE and SQuAD datasets show that CoFi yields models with over 10x speedups with a small accuracy drop, showing its effectiveness and efficiency compared to previous pruning and distillation approaches.
105,979
105,979
Synthetic Photovoltaic and Wind Power Forecasting Data
Photovoltaic and wind power forecasts in power systems with a high share of renewable energy are essential in several applications. These include stable grid operation, profitable power trading, and forward-looking system planning. However, there is a lack of publicly available datasets for research on machine learning based prediction methods. This paper provides an openly accessible time series dataset with realistic synthetic power data. Other publicly and non-publicly available datasets often lack precise geographic coordinates, timestamps, or static power plant information, e.g., to protect business secrets. On the opposite, this dataset provides these. The dataset comprises 120 photovoltaic and 273 wind power plants with distinct sides all over Germany from 500 days in hourly resolution. This large number of available sides allows forecasting experiments to include spatial correlations and run experiments in transfer and multi-task learning. It includes side-specific, power source-dependent, non-synthetic input features from the ICON-EU weather model. A simulation of virtual power plants with physical models and actual meteorological measurements provides realistic synthetic power measurement time series. These time series correspond to the power output of virtual power plants at the location of the respective weather measurements. Since the synthetic time series are based exclusively on weather measurements, possible errors in the weather forecast are comparable to those in actual power data. In addition to the data description, we evaluate the quality of weather-prediction-based power forecasts by comparing simplified physical models and a machine learning model. This experiment shows that forecasts errors on the synthetic power data are comparable to real-world historical power measurements.
105,980
105,980
Oil reservoir recovery factor assessment using Bayesian networks based on advanced approaches to analogues clustering
The work focuses on the modelling and imputation of oil and gas reservoirs parameters, specifically, the problem of predicting the oil recovery factor (RF) using Bayesian networks (BNs). Recovery forecasting is critical for the oil and gas industry as it directly affects a company's profit. However, current approaches to forecasting the RF are complex and computationally expensive. In addition, they require vast amount of data and are difficult to constrain in the early stages of reservoir development. To address this problem, we propose a BN approach and describe ways to improve parameter predictions' accuracy. Various training hyperparameters for BNs were considered, and the best ones were used. The approaches of structure and parameter learning, data discretization and normalization, subsampling on analogues of the target reservoir, clustering of networks and data filtering were considered. Finally, a physical model of a synthetic oil reservoir was used to validate BNs' predictions of the RF. All approaches to modelling based on BNs provide full coverage of the confidence interval for the RF predicted by the physical model, but at the same time require less time and data for modelling, which demonstrates the possibility of using in the early stages of reservoirs development. The main result of the work can be considered the development of a methodology for studying the parameters of reservoirs based on Bayesian networks built on small amounts of data and with minimal involvement of expert knowledge. The methodology was tested on the example of the problem of the recovery factor imputation.
105,981
105,981
Transformers for 1D Signals in Parkinson's Disease Detection from Gait
This paper focuses on the detection of Parkinson's disease based on the analysis of a patient's gait. The growing popularity and success of Transformer networks in natural language processing and image recognition motivated us to develop a novel method for this problem based on an automatic features extraction via Transformers. The use of Transformers in 1D signal is not really widespread yet, but we show in this paper that they are effective in extracting relevant features from 1D signals. As Transformers require a lot of memory, we decoupled temporal and spatial information to make the model smaller. Our architecture used temporal Transformers, dimension reduction layers to reduce the dimension of the data, a spatial Transformer, two fully connected layers and an output layer for the final prediction. Our model outperforms the current state-of-the-art algorithm with 95.2\% accuracy in distinguishing a Parkinsonian patient from a healthy one on the Physionet dataset. A key learning from this work is that Transformers allow for greater stability in results. The source code and pre-trained models are released in https://github.com/DucMinhDimitriNguyen/Transformers-for-1D-signals-in-Parkinson-s-disease-detection-from-gait.git
105,982
105,982
Inverse Design and Experimental Verification of a Bianisotropic Metasurface Using Optimization and Machine Learning
Electromagnetic metasurfaces have attracted significant interest recently due to their low profile and advantageous applications. Practically, many metasurface designs start with a set of constraints for the radiated far-field, such as main-beam direction(s) and side lobe levels, and end with a non-uniform physical structure for the surface. This problem is quite challenging, since the required tangential field transformations are not completely known when only constraints are placed on the scattered fields. Hence, the required surface properties cannot be solved for analytically. Moreover, the translation of the desired surface properties to the physical unit cells can be time-consuming and difficult, as it is often a one-to-many mapping in a large solution space. Here, we divide the inverse design process into two steps: a macroscopic and microscopic design step. In the former, we use an iterative optimization process to find the surface properties that radiate a far-field pattern that complies with specified constraints. This iterative process exploits non-radiating currents to ensure a passive and lossless design. In the microscopic step, these optimized surface properties are realized with physical unit cells using machine learning surrogate models. The effectiveness of this end-to-end synthesis process is demonstrated through measurement results of a beam-splitting prototype.
105,983
105,983
Zero-Shot Cross-lingual Aphasia Detection using Automatic Speech Recognition
Aphasia is a common speech and language disorder, typically caused by a brain injury or a stroke, that affects millions of people worldwide. Detecting and assessing Aphasia in patients is a difficult, time-consuming process, and numerous attempts to automate it have been made, the most successful using machine learning models trained on aphasic speech data. Like in many medical applications, aphasic speech data is scarce and the problem is exacerbated in so-called "low resource" languages, which are, for this task, most languages excluding English. We attempt to leverage available data in English and achieve zero-shot aphasia detection in low-resource languages such as Greek and French, by using language-agnostic linguistic features. Current cross-lingual aphasia detection approaches rely on manually extracted transcripts. We propose an end-to-end pipeline using pre-trained Automatic Speech Recognition (ASR) models that share cross-lingual speech representations and are fine-tuned for our desired low-resource languages. To further boost our ASR model's performance, we also combine it with a language model. We show that our ASR-based end-to-end pipeline offers comparable results to previous setups using human-annotated transcripts.
105,984
105,984
Simulator-based explanation and debugging of hazard-triggering events in DNN-based safety-critical systems
When Deep Neural Networks (DNNs) are used in safety-critical systems, engineers should determine the safety risks associated with DNN errors observed during testing. For DNNs processing images, engineers visually inspect all error-inducing images to determine common characteristics among them. Such characteristics correspond to hazard-triggering events (e.g., low illumination) that are essential inputs for safety analysis. Though informative, such activity is expensive and error-prone. To support such safety analysis practices, we propose SEDE, a technique that generates readable descriptions for commonalities in error-inducing, real-world images and improves the DNN through effective retraining. SEDE leverages the availability of simulators, which are commonly used for cyber-physical systems. SEDE relies on genetic algorithms to drive simulators towards the generation of images that are similar to error-inducing, real-world images in the test set; it then leverages rule learning algorithms to derive expressions that capture commonalities in terms of simulator parameter values. The derived expressions are then used to generate additional images to retrain and improve the DNN. With DNNs performing in-car sensing tasks, SEDE successfully characterized hazard-triggering events leading to a DNN accuracy drop. Also, SEDE enabled retraining to achieve significant improvements in DNN accuracy, up to 18 percentage points.
105,985
105,985
Proper Reuse of Image Classification Features Improves Object Detection
A common practice in transfer learning is to initialize the downstream model weights by pre-training on a data-abundant upstream task. In object detection specifically, the feature backbone is typically initialized with Imagenet classifier weights and fine-tuned on the object detection task. Recent works show this is not strictly necessary under longer training regimes and provide recipes for training the backbone from scratch. We investigate the opposite direction of this end-to-end training trend: we show that an extreme form of knowledge preservation -- freezing the classifier-initialized backbone -- consistently improves many different detection models, and leads to considerable resource savings. We hypothesize and corroborate experimentally that the remaining detector components capacity and structure is a crucial factor in leveraging the frozen backbone. Immediate applications of our findings include performance improvements on hard cases like detection of long-tail object classes and computational and memory resource savings that contribute to making the field more accessible to researchers with access to fewer computational resources.
105,986
105,986
Robust and Accurate -- Compositional Architectures for Randomized Smoothing
Randomized Smoothing (RS) is considered the state-of-the-art approach to obtain certifiably robust models for challenging tasks. However, current RS approaches drastically decrease standard accuracy on unperturbed data, severely limiting their real-world utility. To address this limitation, we propose a compositional architecture, ACES, which certifiably decides on a per-sample basis whether to use a smoothed model yielding predictions with guarantees or a more accurate standard model without guarantees. This, in contrast to prior approaches, enables both high standard accuracies and significant provable robustness. On challenging tasks such as ImageNet, we obtain, e.g., $80.0\%$ natural accuracy and $28.2\%$ certifiable accuracy against $\ell_2$ perturbations with $r=1.0$. We release our code and models at https://github.com/eth-sri/aces.
105,987
105,987
Accelerating Federated Edge Learning via Topology Optimization
Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning. However, it consumes excessive learning time due to the existence of straggler devices. In this paper, a novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning and to improve the communication-and-computation efficiency. Specifically, a problem of jointly optimizing the aggregation topology and computing speed is formulated to minimize the weighted summation of energy consumption and latency. To solve the mixed-integer nonlinear problem, we propose a novel solution method of penalty-based successive convex approximation, which converges to a stationary point of the primal problem under mild conditions. To facilitate real-time decision making, an imitation-learning based method is developed, where deep neural networks (DNNs) are trained offline to mimic the penalty-based method, and the trained imitation DNNs are deployed at the edge devices for online inference. Thereby, an efficient imitate-learning based approach is seamlessly integrated into the TOFEL framework. Simulation results demonstrate that the proposed TOFEL scheme accelerates the federated learning process, and achieves a higher energy efficiency. Moreover, we apply the scheme to 3D object detection with multi-vehicle point cloud datasets in the CARLA simulator. The results confirm the superior learning performance of the TOFEL scheme over conventional designs with the same resource and deadline constraints.
105,988
105,988
Provable concept learning for interpretable predictions using variational inference
In safety critical applications, practitioners are reluctant to trust neural networks when no interpretable explanations are available. Many attempts to provide such explanations revolve around pixel level attributions or use previously known concepts. In this paper we aim to provide explanations by provably identifying \emph{high-level, previously unknown concepts}. To this end, we propose a probabilistic modeling framework to derive (C)oncept (L)earning and (P)rediction (CLAP) -- a VAE-based classifier that uses visually interpretable concepts as linear predictors. Assuming that the data generating mechanism involves predictive concepts, we prove that our method is able to identify them while attaining optimal classification accuracy. We use synthetic experiments for validation, and also show that on real-world (PlantVillage and ChestXRay) datasets, CLAP effectively discovers interpretable factors for classifying diseases.
105,989
105,989
A Global Modeling Approach for Load Forecasting in Distribution Networks
Efficient load forecasting is needed to ensure better observability in the distribution networks, whereas such forecasting is made possible by an increasing number of smart meter installations. Because distribution networks include a large amount of different loads at various aggregation levels, such as individual consumers, transformer stations and feeders loads, it is impractical to develop individual (or so-called local) forecasting models for each load separately. Furthermore, such local models ignore the strong dependencies between different loads that might be present due to their spatial proximity and the characteristics of the distribution network. To address these issues, this paper proposes a global modeling approach based on deep learning for efficient forecasting of a large number of loads in distribution networks. In this way, the computational burden of training a large amount of local forecasting models can be largely reduced, and the cross-series information shared among different loads can be utilized. Additionally, an unsupervised localization mechanism and optimal ensemble construction strategy are also proposed to localize/personalize the forecasting model to different groups of loads and to improve the forecasting accuracy further. Comprehensive experiments are conducted on real-world smart meter data to demonstrate the superiority of the proposed approach compared to competing methods.
105,990
105,990
Physics Informed Shallow Machine Learning for Wind Speed Prediction
The ability to predict wind is crucial for both energy production and weather forecasting. Mechanistic models that form the basis of traditional forecasting perform poorly near the ground. In this paper, we take an alternative data-driven approach based on supervised learning. We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in two central and north west regions of Italy (Abruzzo and Liguria). We train supervised learning algorithms using the past history of wind to predict its value at a future time (horizon). Using data from a single location and time horizon we compare systematically several algorithms where we vary the input/output variables, the memory of the input and the linear vs non-linear learning model. We then compare performance of the best algorithms across all locations and forecasting horizons. We find that the optimal design as well as its performance vary with the location. We demonstrate that the presence of a reproducible diurnal cycle provides a rationale to understand this variation. We conclude with a systematic comparison with state of the art algorithms and show that, when the model is accurately designed, shallow algorithms are competitive with more complex deep architectures.
105,991
105,991
Separate and conquer heuristic allows robust mining of contrast sets from various types of data
Identifying differences between groups is one of the most important knowledge discovery problems. The procedure, also known as contrast sets mining, is applied in a wide range of areas like medicine, industry, or economics. In the paper we present RuleKit-CS, an algorithm for contrast set mining based on a sequential covering - a well established heuristic for decision rule induction. Multiple passes accompanied with an attribute penalization scheme allow generating contrast sets describing same examples with different attributes, unlike the standard sequential covering. The ability to identify contrast sets in regression and survival data sets, the feature not provided by the existing algorithms, further extends the usability of RuleKit-CS. Experiments on wide range of data sets confirmed RuleKit-CS to be a useful tool for discovering differences between defined groups. The algorithm is a part of the RuleKit suite available at GitHub under GNU AGPL 3 licence (https://github.com/adaa-polsl/RuleKit). Keywords: Contrast sets, Sequential covering, Rule induction, Regression, Survival, Knowledge discovery
105,992
105,992
Evaluating the Text-to-SQL Capabilities of Large Language Models
We perform an empirical evaluation of Text-to-SQL capabilities of the Codex language model. We find that, without any finetuning, Codex is a strong baseline on the Spider benchmark; we also analyze the failure modes of Codex in this setting. Furthermore, we demonstrate on the GeoQuery and Scholar benchmarks that a small number of in-domain examples provided in the prompt enables Codex to perform better than state-of-the-art models finetuned on such few-shot examples.
105,993
105,993
Learning Disentangled Representations of Negation and Uncertainty
Negation and uncertainty modeling are long-standing tasks in natural language processing. Linguistic theory postulates that expressions of negation and uncertainty are semantically independent from each other and the content they modify. However, previous works on representation learning do not explicitly model this independence. We therefore attempt to disentangle the representations of negation, uncertainty, and content using a Variational Autoencoder. We find that simply supervising the latent representations results in good disentanglement, but auxiliary objectives based on adversarial learning and mutual information minimization can provide additional disentanglement gains.
105,994
105,994
Estimating the Jacobian matrix of an unknown multivariate function from sample values by means of a neural network
We describe, implement and test a novel method for training neural networks to estimate the Jacobian matrix $J$ of an unknown multivariate function $F$. The training set is constructed from finitely many pairs $(x,F(x))$ and it contains no explicit information about $J$. The loss function for backpropagation is based on linear approximations and on a nearest neighbor search in the sample data. We formally establish an upper bound on the uniform norm of the error, in operator norm, between the estimated Jacobian matrix provided by the algorithm and the actual Jacobian matrix, under natural assumptions on the function, on the training set and on the loss of the neural network during training. The Jacobian matrix of a multivariate function contains a wealth of information about the function and it has numerous applications in science and engineering. The method given here represents a step in moving from black-box approximations of functions by neural networks to approximations that provide some structural information about the function in question.
105,995
105,995
Semi-FairVAE: Semi-supervised Fair Representation Learning with Adversarial Variational Autoencoder
Adversarial learning is a widely used technique in fair representation learning to remove the biases on sensitive attributes from data representations. It usually requires to incorporate the sensitive attribute labels as prediction targets. However, in many scenarios the sensitive attribute labels of many samples can be unknown, and it is difficult to train a strong discriminator based on the scarce data with observed attribute labels, which may lead to generate unfair representations. In this paper, we propose a semi-supervised fair representation learning approach based on adversarial variational autoencoder, which can reduce the dependency of adversarial fair models on data with labeled sensitive attributes. More specifically, we use a bias-aware model to capture inherent bias information on sensitive attribute by accurately predicting sensitive attributes from input data, and we use a bias-free model to learn debiased fair representations by using adversarial learning to remove bias information from them. The hidden representations learned by the two models are regularized to be orthogonal. In addition, the soft labels predicted by the two models are further integrated into a semi-supervised variational autoencoder to reconstruct the input data, and we apply an additional entropy regularization to encourage the attribute labels inferred from the bias-free model to be high-entropy. In this way, the bias-aware model can better capture attribute information while the bias-free model is less discriminative on sensitive attributes if the input data is well reconstructed. Extensive experiments on two datasets for different tasks validate that our approach can achieve good representation learning fairness under limited data with sensitive attribute labels.
105,996
105,996
Hierarchical model reduction driven by machine learning for parametric advection-diffusion-reaction problems in the presence of noisy data
We propose a new approach to generate a reliable reduced model for a parametric elliptic problem, in the presence of noisy data. The reference model reduction procedure is the directional HiPOD method, which combines Hierarchical Model reduction with a standard Proper Orthogonal Decomposition, according to an offline/online paradigm. In this paper we show that directional HiPOD looses in terms of accuracy when problem data are affected by noise. This is due to the interpolation driving the online phase, since it replicates, by definition, the noise trend. To overcome this limit, we replace interpolation with Machine Learning fitting models which better discriminate relevant physical features in the data from irrelevant unstructured noise. The numerical assessment, although preliminary, confirms the potentialities of the new approach.
105,997
105,997
A Novel Multimodal Approach for Studying the Dynamics of Curiosity in Small Group Learning
Curiosity is a vital metacognitive skill in educational contexts, leading to creativity, and a love of learning. And while many school systems increasingly undercut curiosity by teaching to the test, teachers are increasingly interested in how to evoke curiosity in their students to prepare them for a world in which lifelong learning and reskilling will be more and more important. One aspect of curiosity that has received little attention, however, is the role of peers in eliciting curiosity. We present what we believe to be the first theoretical framework that articulates an integrated socio-cognitive account of curiosity that ties observable behaviors in peers to underlying curiosity states. We make a bipartite distinction between individual and interpersonal functions that contribute to curiosity, and multimodal behaviors that fulfill these functions. We validate the proposed framework by leveraging a longitudinal latent variable modeling approach. Findings confirm a positive predictive relationship between the latent variables of individual and interpersonal functions and curiosity, with the interpersonal functions exercising a comparatively stronger influence. Prominent behavioral realizations of these functions are also discovered in a data-driven manner. We instantiate the proposed theoretical framework in a set of strategies and tactics that can be incorporated into learning technologies to indicate, evoke, and scaffold curiosity. This work is a step towards designing learning technologies that can recognize and evoke moment-by-moment curiosity during learning in social contexts and towards a more complete multimodal learning analytics. The underlying rationale is applicable more generally for developing computer support for other metacognitive and socio-emotional skills.
105,998
105,998
Unified and Effective Ensemble Knowledge Distillation
Ensemble knowledge distillation can extract knowledge from multiple teacher models and encode it into a single student model. Many existing methods learn and distill the student model on labeled data only. However, the teacher models are usually learned on the same labeled data, and their predictions have high correlations with groudtruth labels. Thus, they cannot provide sufficient knowledge complementary to task labels for student teaching. Distilling on unseen unlabeled data has the potential to enhance the knowledge transfer from the teachers to the student. In this paper, we propose a unified and effective ensemble knowledge distillation method that distills a single student model from an ensemble of teacher models on both labeled and unlabeled data. Since different teachers may have diverse prediction correctness on the same sample, on labeled data we weight the predictions of different teachers according to their correctness. In addition, we weight the distillation loss based on the overall prediction correctness of the teacher ensemble to distill high-quality knowledge. On unlabeled data, there is no groundtruth to evaluate prediction correctness. Fortunately, the disagreement among teachers is an indication of sample hardness, and thereby we weight the distillation loss based on teachers' disagreement to emphasize knowledge distillation on important samples. Extensive experiments on four datasets show the effectiveness of our proposed ensemble distillation method.
105,999
105,999
1-D CNN based Acoustic Scene Classification via Reducing Layer-wise Dimensionality
This paper presents an alternate representation framework to commonly used time-frequency representation for acoustic scene classification (ASC). A raw audio signal is represented using a pre-trained convolutional neural network (CNN) using its various intermediate layers. The study assumes that the representations obtained from the intermediate layers lie in low-dimensions intrinsically. To obtain low-dimensional embeddings, principal component analysis is performed, and the study analyzes that only a few principal components are significant. However, the appropriate number of significant components are not known. To address this, an automatic dictionary learning framework is utilized that approximates the underlying subspace. Further, the low-dimensional embeddings are aggregated in a late-fusion manner in the ensemble framework to incorporate hierarchical information learned at various intermediate layers. The experimental evaluation is performed on publicly available DCASE 2017 and 2018 ASC datasets on a pre-trained 1-D CNN, SoundNet. Empirically, it is observed that deeper layers show more compression ratio than others. At 70% compression ratio across different datasets, the performance is similar to that obtained without performing any dimensionality reduction. The proposed framework outperforms the time-frequency representation based methods.