Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
106,200
106,200
A Survey on Dropout Methods and Experimental Verification in Recommendation
Overfitting is a common problem in machine learning, which means the model too closely fits the training data while performing poorly in the test data. Among various methods of coping with overfitting, dropout is one of the representative ways. From randomly dropping neurons to dropping neural structures, dropout has achieved great success in improving model performances. Although various dropout methods have been designed and widely applied in past years, their effectiveness, application scenarios, and contributions have not been comprehensively summarized and empirically compared by far. It is the right time to make a comprehensive survey. In this paper, we systematically review previous dropout methods and classify them into three major categories according to the stage where dropout operation is performed. Specifically, more than seventy dropout methods published in top AI conferences or journals (e.g., TKDE, KDD, TheWebConf, SIGIR) are involved. The designed taxonomy is easy to understand and capable of including new dropout methods. Then, we further discuss their application scenarios, connections, and contributions. To verify the effectiveness of distinct dropout methods, extensive experiments are conducted on recommendation scenarios with abundant heterogeneous information. Finally, we propose some open problems and potential research directions about dropout that worth to be further explored.
106,201
106,201
A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts
Despite continuous improvements, precipitation forecasts are still not as accurate and reliable as those of other meteorological variables. A major contributing factor to this is that several key processes affecting precipitation distribution and intensity occur below the resolved scale of global weather models. Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems, i.e., learning to add fine-scale structure to coarse images. Leinonen et al. (2020) previously applied a GAN to produce ensembles of reconstructed high-resolution atmospheric fields, given coarsened input data. In this paper, we demonstrate this approach can be extended to the more challenging problem of increasing the accuracy and resolution of comparatively low-resolution input from a weather forecasting model, using high-resolution radar measurements as a "ground truth". The neural network must learn to add resolution and structure whilst accounting for non-negligible forecast error. We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps. Our model compares favourably to the best existing downscaling methods in both pixel-wise and pooled CRPS scores, power spectrum information and rank histograms (used to assess calibration). We test our models and show that they perform in a range of scenarios, including heavy rainfall.
106,202
106,202
Automating Reinforcement Learning with Example-based Resets
Deep reinforcement learning has enabled robots to learn motor skills from environmental interactions with minimal to no prior knowledge. However, existing reinforcement learning algorithms assume an episodic setting, in which the agent resets to a fixed initial state distribution at the end of each episode, to successfully train the agents from repeated trials. Such reset mechanism, while trivial for simulated tasks, can be challenging to provide for real-world robotics tasks. Resets in robotic systems often require extensive human supervision and task-specific workarounds, which contradicts the goal of autonomous robot learning. In this paper, we propose an extension to conventional reinforcement learning towards greater autonomy by introducing an additional agent that learns to reset in a self-supervised manner. The reset agent preemptively triggers a reset to prevent manual resets and implicitly imposes a curriculum for the forward agent. We apply our method to learn from scratch on a suite of simulated and real-world continuous control tasks and demonstrate that the reset agent successfully learns to reduce manual resets whilst also allowing the forward policy to improve gradually over time.
106,203
106,203
Spread Spurious Attribute: Improving Worst-group Accuracy with Spurious Attribute Estimation
The paradigm of worst-group loss minimization has shown its promise in avoiding to learn spurious correlations, but requires costly additional supervision on spurious attributes. To resolve this, recent works focus on developing weaker forms of supervision -- e.g., hyperparameters discovered with a small number of validation samples with spurious attribute annotation -- but none of the methods retain comparable performance to methods using full supervision on the spurious attribute. In this paper, instead of searching for weaker supervisions, we ask: Given access to a fixed number of samples with spurious attribute annotations, what is the best achievable worst-group loss if we "fully exploit" them? To this end, we propose a pseudo-attribute-based algorithm, coined Spread Spurious Attribute (SSA), for improving the worst-group accuracy. In particular, we leverage samples both with and without spurious attribute annotations to train a model to predict the spurious attribute, then use the pseudo-attribute predicted by the trained model as supervision on the spurious attribute to train a new robust model having minimal worst-group loss. Our experiments on various benchmark datasets show that our algorithm consistently outperforms the baseline methods using the same number of validation samples with spurious attribute annotations. We also demonstrate that the proposed SSA can achieve comparable performances to methods using full (100%) spurious attribute supervision, by using a much smaller number of annotated samples -- from 0.6% and up to 1.5%, depending on the dataset.
106,204
106,204
Split Hierarchical Variational Compression
Variational autoencoders (VAEs) have witnessed great success in performing the compression of image datasets. This success, made possible by the bits-back coding framework, has produced competitive compression performance across many benchmarks. However, despite this, VAE architectures are currently limited by a combination of coding practicalities and compression ratios. That is, not only do state-of-the-art methods, such as normalizing flows, often demonstrate out-performance, but the initial bits required in coding makes single and parallel image compression challenging. To remedy this, we introduce Split Hierarchical Variational Compression (SHVC). SHVC introduces two novelties. Firstly, we propose an efficient autoregressive prior, the autoregressive sub-pixel convolution, that allows a generalisation between per-pixel autoregressions and fully factorised probability models. Secondly, we define our coding framework, the autoregressive initial bits, that flexibly supports parallel coding and avoids -- for the first time -- many of the practicalities commonly associated with bits-back coding. In our experiments, we demonstrate SHVC is able to achieve state-of-the-art compression performance across full-resolution lossless image compression tasks, with up to 100x fewer model parameters than competing VAE approaches.
106,205
106,205
Complex-Valued Autoencoders for Object Discovery
Object-centric representations form the basis of human perception, and enable us to reason about the world and to systematically generalize to new settings. Currently, most works on unsupervised object discovery focus on slot-based approaches, which explicitly separate the latent representations of individual objects. While the result is easily interpretable, it usually requires the design of involved architectures. In contrast to this, we propose a comparatively simple approach - the Complex AutoEncoder (CAE) - that creates distributed object-centric representations. Following a coding scheme theorized to underlie object representations in biological neurons, its complex-valued activations represent two messages: their magnitudes express the presence of a feature, while the relative phase differences between neurons express which features should be bound together to create joint object representations. In contrast to previous approaches using complex-valued activations for object discovery, we present a fully unsupervised approach that is trained end-to-end - resulting in significant improvements in performance and efficiency on simple multi-object datasets. Further, we show that the CAE achieves competitive or better unsupervised object discovery performance compared to a state-of-the-art slot-based approach while being up to 100 times faster to train.
106,206
106,206
P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior
Monocular depth estimation is vital for scene understanding and downstream tasks. We focus on the supervised setup, in which ground-truth depth is available only at training time. Based on knowledge about the high regularity of real 3D scenes, we propose a method that learns to selectively leverage information from coplanar pixels to improve the predicted depth. In particular, we introduce a piecewise planarity prior which states that for each pixel, there is a seed pixel which shares the same planar 3D surface with the former. Motivated by this prior, we design a network with two heads. The first head outputs pixel-level plane coefficients, while the second one outputs a dense offset vector field that identifies the positions of seed pixels. The plane coefficients of seed pixels are then used to predict depth at each position. The resulting prediction is adaptively fused with the initial prediction from the first head via a learned confidence to account for potential deviations from precise local planarity. The entire architecture is trained end-to-end thanks to the differentiability of the proposed modules and it learns to predict regular depth maps, with sharp edges at occlusion boundaries. An extensive evaluation of our method shows that we set the new state of the art in supervised monocular depth estimation, surpassing prior methods on NYU Depth-v2 and on the Garg split of KITTI. Our method delivers depth maps that yield plausible 3D reconstructions of the input scenes. Code is available at: https://github.com/SysCV/P3Depth
106,207
106,207
A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data
This paper investigates the possibility of high resolution mapping of PM2.5 concentration over Tehran city using high resolution satellite AOD (MAIAC) retrievals. For this purpose, a framework including three main stages, data preprocessing; regression modeling; and model deployment was proposed. The output of the framework was a machine learning model trained to predict PM2.5 from MAIAC AOD retrievals and meteorological data. The results of model testing revealed the efficiency and capability of the developed framework for high resolution mapping of PM2.5, which was not realized in former investigations performed over the city. Thus, this study, for the first time, realized daily, 1 km resolution mapping of PM2.5 in Tehran with R2 around 0.74 and RMSE better than 9.0 mg/m3. Keywords: MAIAC; MODIS; AOD; Machine learning; Deep learning; PM2.5; Regression
106,208
106,208
Self-supervised learning -- A way to minimize time and effort for precision agriculture?
Machine learning, satellites or local sensors are key factors for a sustainable and resource-saving optimisation of agriculture and proved its values for the management of agricultural land. Up to now, the main focus was on the enlargement of data which were evaluated by means of supervised learning methods. Nevertheless, the need for labels is also a limiting and time-consuming factor, while in contrast, ongoing technological development is already providing an ever-increasing amount of unlabeled data. Self-supervised learning (SSL) could overcome this limitation and incorporate existing unlabeled data. Therefore, a crop type data set was utilized to conduct experiments with SSL and compare it to supervised methods. A unique feature of our data set from 2016 to 2018 was a divergent climatological condition in 2018 that reduced yields and affected the spectral fingerprint of the plants. Our experiments focused on predicting 2018 using SLL without or a few labels to clarify whether new labels should be collected for an unknown year. Despite these challenging conditions, the results showed that SSL contributed to higher accuracies. We believe that the results will encourage further improvements in the field of precision farming, why the SSL framework and data will be published (Marszalek, 2021).
106,209
106,209
GP-BART: a novel Bayesian additive regression trees approach using Gaussian processes
The Bayesian additive regression trees (BART) model is an ensemble method extensively and successfully used in regression tasks due to its consistently strong predictive performance and its ability to quantify uncertainty. BART combines "weak" tree models through a set of shrinkage priors, whereby each tree explains a small portion of the variability in the data. However, the lack of smoothness and the absence of a covariance structure over the observations in standard BART can yield poor performance in cases where such assumptions would be necessary. We propose Gaussian processes Bayesian additive regression trees (GP-BART) as an extension of BART which assumes Gaussian process (GP) priors for the predictions of each terminal node among all trees. We illustrate our model on simulated and real data and compare its performance to traditional modelling approaches, outperforming them in many scenarios. An implementation of our method is available in the R package rGPBART available at: https://github.com/MateusMaiaDS/gpbart
106,210
106,210
MetaAudio: A Few-Shot Audio Classification Benchmark
Currently available benchmarks for few-shot learning (machine learning with few training examples) are limited in the domains they cover, primarily focusing on image classification. This work aims to alleviate this reliance on image-based benchmarks by offering the first comprehensive, public and fully reproducible audio based alternative, covering a variety of sound domains and experimental settings. We compare the few-shot classification performance of a variety of techniques on seven audio datasets (spanning environmental sounds to human-speech). Extending this, we carry out in-depth analyses of joint training (where all datasets are used during training) and cross-dataset adaptation protocols, establishing the possibility of a generalised audio few-shot classification algorithm. Our experimentation shows gradient-based meta-learning methods such as MAML and Meta-Curvature consistently outperform both metric and baseline methods. We also demonstrate that the joint training routine helps overall generalisation for the environmental sound databases included, as well as being a somewhat-effective method of tackling the cross-dataset/domain setting.
106,211
106,211
SemanticCAP: Chromatin Accessibility Prediction Enhanced by Features Learning from a Language Model
A large number of inorganic and organic compounds are able to bind DNA and form complexes, among which drug-related molecules are important. Chromatin accessibility changes not only directly affects drug-DNA interactions, but also promote or inhibit the expression of critical genes associated with drug resistance by affecting the DNA binding capacity of TFs and transcriptional regulators. However, Biological experimental techniques for measuring it are expensive and time consuming. In recent years, several kinds of computational methods have been proposed to identify accessible regions of the genome. Existing computational models mostly ignore the contextual information of bases in gene sequences. To address these issues, we proposed a new solution named SemanticCAP. It introduces a gene language model which models the context of gene sequences, thus being able to provide an effective representation of a certain site in gene sequences. Basically, we merge the features provided by the gene language model into our chromatin accessibility model. During the process, we designed some methods to make feature fusion smoother. Compared with other systems under public benchmarks, our model proved to have better performance.
106,212
106,212
Positive and Negative Critiquing for VAE-based Recommenders
Providing explanations for recommended items allows users to refine the recommendations by critiquing parts of the explanations. As a result of revisiting critiquing from the perspective of multimodal generative models, recent work has proposed M&Ms-VAE, which achieves state-of-the-art performance in terms of recommendation, explanation, and critiquing. M&Ms-VAE and similar models allow users to negatively critique (i.e., explicitly disagree). However, they share a significant drawback: users cannot positively critique (i.e., highlight a desired feature). We address this deficiency with M&Ms-VAE+, an extension of M&Ms-VAE that enables positive and negative critiquing. In addition to modeling users' interactions and keyphrase-usage preferences, we model their keyphrase-usage dislikes. Moreover, we design a novel critiquing module that is trained in a self-supervised fashion. Our experiments on two datasets show that M&Ms-VAE+ matches or exceeds M&Ms-VAE in recommendation and explanation performance. Furthermore, our results demonstrate that representing positive and negative critiques differently enables M&Ms-VAE+ to significantly outperform M&Ms-VAE and other models in positive and negative multi-step critiquing.
106,213
106,213
Hybrid Predictive Coding: Inferring, Fast and Slow
Predictive coding is an influential model of cortical neural activity. It proposes that perceptual beliefs are furnished by sequentially minimising "prediction errors" - the differences between predicted and observed data. Implicit in this proposal is the idea that perception requires multiple cycles of neural activity. This is at odds with evidence that several aspects of visual perception - including complex forms of object recognition - arise from an initial "feedforward sweep" that occurs on fast timescales which preclude substantial recurrent activity. Here, we propose that the feedforward sweep can be understood as performing amortized inference and recurrent processing can be understood as performing iterative inference. We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner by describing both in terms of a dual optimization of a single objective function. We show that the resulting scheme can be implemented in a biologically plausible neural architecture that approximates Bayesian inference utilising local Hebbian update rules. We demonstrate that our hybrid predictive coding model combines the benefits of both amortized and iterative inference -- obtaining rapid and computationally cheap perceptual inference for familiar data while maintaining the context-sensitivity, precision, and sample efficiency of iterative inference schemes. Moreover, we show how our model is inherently sensitive to its uncertainty and adaptively balances iterative and amortized inference to obtain accurate beliefs using minimum computational expense. Hybrid predictive coding offers a new perspective on the functional relevance of the feedforward and recurrent activity observed during visual perception and offers novel insights into distinct aspects of visual phenomenology.
106,214
106,214
Optimising Communication Overhead in Federated Learning Using NSGA-II
Federated learning is a training paradigm according to which a server-based model is cooperatively trained using local models running on edge devices and ensuring data privacy. These devices exchange information that induces a substantial communication load, which jeopardises the functioning efficiency. The difficulty of reducing this overhead stands in achieving this without decreasing the model's efficiency (contradictory relation). To do so, many works investigated the compression of the pre/mid/post-trained models and the communication rounds, separately, although they jointly contribute to the communication overload. Our work aims at optimising communication overhead in federated learning by (I) modelling it as a multi-objective problem and (II) applying a multi-objective optimization algorithm (NSGA-II) to solve it. To the best of the author's knowledge, this is the first work that \texttt{(I)} explores the add-in that evolutionary computation could bring for solving such a problem, and \texttt{(II)} considers both the neuron and devices features together. We perform the experimentation by simulating a server/client architecture with 4 slaves. We investigate both convolutional and fully-connected neural networks with 12 and 3 layers, 887,530 and 33,400 weights, respectively. We conducted the validation on the \texttt{MNIST} dataset containing 70,000 images. The experiments have shown that our proposal could reduce communication by 99% and maintain an accuracy equal to the one obtained by the FedAvg Algorithm that uses 100% of communications.
106,215
106,215
Penalised FTRL With Time-Varying Constraints
In this paper we extend the classical Follow-The-Regularized-Leader (FTRL) algorithm to encompass time-varying constraints, through adaptive penalization. We establish sufficient conditions for the proposed Penalized FTRL algorithm to achieve $O(\sqrt{t})$ regret and violation with respect to strong benchmark $\hat{X}^{max}_t$. Lacking prior knowledge of the constraints, this is probably the largest benchmark set that we can reasonably hope for. Our sufficient conditions are necessary in the sense that when they are violated there exist examples where $O(\sqrt{t})$ regret and violation is not achieved. Compared to the best existing primal-dual algorithms, Penalized FTRL substantially extends the class of problems for which $O(\sqrt{t})$ regret and violation performance is achievable.
106,216
106,216
Abstractive summarization of hospitalisation histories with transformer networks
In this paper we present a novel approach to abstractive summarization of patient hospitalisation histories. We applied an encoder-decoder framework with Longformer neural network as an encoder and BERT as a decoder. Our experiments show improved quality on some summarization tasks compared with pointer-generator networks. We also conducted a study with experienced physicians evaluating the results of our model in comparison with PGN baseline and human-generated abstracts, which showed the effectiveness of our model.
106,217
106,217
Model Based Meta Learning of Critics for Policy Gradients
Being able to seamlessly generalize across different tasks is fundamental for robots to act in our world. However, learning representations that generalize quickly to new scenarios is still an open research problem in reinforcement learning. In this paper we present a framework to meta-learn the critic for gradient-based policy learning. Concretely, we propose a model-based bi-level optimization algorithm that updates the critics parameters such that the policy that is learned with the updated critic gets closer to solving the meta-training tasks. We illustrate that our algorithm leads to learned critics that resemble the ground truth Q function for a given task. Finally, after meta-training, the learned critic can be used to learn new policies for new unseen task and environment settings via model-free policy gradient optimization, without requiring a model. We present results that show the generalization capabilities of our learned critic to new tasks and dynamics when used to learn a new policy in a new scenario.
106,218
106,218
SNUG: Self-Supervised Neural Dynamic Garments
We present a self-supervised method to learn dynamic 3D deformations of garments worn by parametric human bodies. State-of-the-art data-driven approaches to model 3D garment deformations are trained using supervised strategies that require large datasets, usually obtained by expensive physics-based simulation methods or professional multi-camera capture setups. In contrast, we propose a new training scheme that removes the need for ground-truth samples, enabling self-supervised training of dynamic 3D garment deformations. Our key contribution is to realize that physics-based deformation models, traditionally solved in a frame-by-frame basis by implicit integrators, can be recasted as an optimization problem. We leverage such optimization-based scheme to formulate a set of physics-based loss terms that can be used to train neural networks without precomputing ground-truth data. This allows us to learn models for interactive garments, including dynamic deformations and fine wrinkles, with two orders of magnitude speed up in training time compared to state-of-the-art supervised methods
106,219
106,219
Neural Computing with Coherent Laser Networks
We show that a coherent network of lasers exhibits emergent neural computing capabilities. The proposed scheme is built on harnessing the collective behavior of laser networks for storing a number of phase patterns as stable fixed points of the governing dynamical equations and retrieving such patterns through proper excitation conditions, thus exhibiting an associative memory property. The associative memory functionality is first discussed in the strong pumping regime of a network of passive dissipatively coupled lasers which simulate the classical XY model. It is discussed that despite the large storage capacity of the network, the large overlap between fixed-point patterns effectively limits pattern retrieval to only two images. Next, we show that this restriction can be uplifted by using nonreciprocal coupling between lasers and this allows for utilizing a large storage capacity. This work opens new possibilities for neural computation with coherent laser networks as novel analog processors. In addition, the underlying dynamical model discussed here suggests a novel energy-based recurrent neural network that handles continuous data as opposed to Hopfield networks and Boltzmann machines which are intrinsically binary systems.
106,220
106,220
A Set Membership Approach to Discovering Feature Relevance and Explaining Neural Classifier Decisions
Neural classifiers are non linear systems providing decisions on the classes of patterns, for a given problem they have learned. The output computed by a classifier for each pattern constitutes an approximation of the output of some unknown function, mapping pattern data to their respective classes. The lack of knowledge of such a function along with the complexity of neural classifiers, especially when these are deep learning architectures, do not permit to obtain information on how specific predictions have been made. Hence, these powerful learning systems are considered as black boxes and in critical applications their use tends to be considered inappropriate. Gaining insight on such a black box operation constitutes a one way approach in interpreting operation of neural classifiers and assessing the validity of their decisions. In this paper we tackle this problem introducing a novel methodology for discovering which features are considered relevant by a trained neural classifier and how they affect the classifier's output, thus obtaining an explanation on its decision. Although, feature relevance has received much attention in the machine learning literature here we reconsider it in terms of nonlinear parameter estimation targeted by a set membership approach which is based on interval analysis. Hence, the proposed methodology builds on sound mathematical approaches and the results obtained constitute a reliable estimation of the classifier's decision premises.
106,221
106,221
Normalizing Flow-based Day-Ahead Wind Power Scenario Generation for Profitable and Reliable Delivery Commitments by Wind Farm Operators
We present a specialized scenario generation method that utilizes forecast information to generate scenarios for the particular usage in day-ahead scheduling problems. In particular, we use normalizing flows to generate wind power generation scenarios by sampling from a conditional distribution that uses day-ahead wind speed forecasts to tailor the scenarios to the specific day. We apply the generated scenarios in a simple stochastic day-ahead bidding problem of a wind electricity producer and run a statistical analysis focusing on whether the scenarios yield profitable and reliable decisions. Compared to conditional scenarios generated from Gaussian copulas and Wasserstein-generative adversarial networks, the normalizing flow scenarios identify the daily trends more accurately and with a lower spread while maintaining a diverse variety. In the stochastic day-ahead bidding problem, the conditional scenarios from all methods lead to significantly more profitable and reliable results compared to an unconditional selection of historical scenarios. The obtained profits using the normalizing flow scenarios are consistently closest to the perfect foresight solution, in particular, for small sets of only five scenarios.
106,222
106,222
Continuously Discovering Novel Strategies via Reward-Switching Policy Optimization
We present Reward-Switching Policy Optimization (RSPO), a paradigm to discover diverse strategies in complex RL environments by iteratively finding novel policies that are both locally optimal and sufficiently different from existing ones. To encourage the learning policy to consistently converge towards a previously undiscovered local optimum, RSPO switches between extrinsic and intrinsic rewards via a trajectory-based novelty measurement during the optimization process. When a sampled trajectory is sufficiently distinct, RSPO performs standard policy optimization with extrinsic rewards. For trajectories with high likelihood under existing policies, RSPO utilizes an intrinsic diversity reward to promote exploration. Experiments show that RSPO is able to discover a wide spectrum of strategies in a variety of domains, ranging from single-agent particle-world tasks and MuJoCo continuous control to multi-agent stag-hunt games and StarCraftII challenges.
106,223
106,223
Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors
Robustness of machine learning models on ever-changing real-world data is critical, especially for applications affecting human well-being such as content moderation. New kinds of abusive language continually emerge in online discussions in response to current events (e.g., COVID-19), and the deployed abuse detection systems should be updated regularly to remain accurate. In this paper, we show that general abusive language classifiers tend to be fairly reliable in detecting out-of-domain explicitly abusive utterances but fail to detect new types of more subtle, implicit abuse. Next, we propose an interpretability technique, based on the Testing Concept Activation Vector (TCAV) method from computer vision, to quantify the sensitivity of a trained model to the human-defined concepts of explicit and implicit abusive language, and use that to explain the generalizability of the model on new data, in this case, COVID-related anti-Asian hate speech. Extending this technique, we introduce a novel metric, Degree of Explicitness, for a single instance and show that the new metric is beneficial in suggesting out-of-domain unlabeled examples to effectively enrich the training data with informative, implicitly abusive texts.
106,224
106,224
Multilingual and Multimodal Abuse Detection
The presence of abusive content on social media platforms is undesirable as it severely impedes healthy and safe social media interactions. While automatic abuse detection has been widely explored in textual domain, audio abuse detection still remains unexplored. In this paper, we attempt abuse detection in conversational audio from a multimodal perspective in a multilingual social media setting. Our key hypothesis is that along with the modelling of audio, incorporating discriminative information from other modalities can be highly beneficial for this task. Our proposed method, MADA, explicitly focuses on two modalities other than the audio itself, namely, the underlying emotions expressed in the abusive audio and the semantic information encapsulated in the corresponding textual form. Observations prove that MADA demonstrates gains over audio-only approaches on the ADIMA dataset. We test the proposed approach on 10 different languages and observe consistent gains in the range 0.6%-5.2% by leveraging multiple modalities. We also perform extensive ablation experiments for studying the contributions of every modality and observe the best results while leveraging all the modalities together. Additionally, we perform experiments to empirically confirm that there is a strong correlation between underlying emotions and abusive behaviour.
106,225
106,225
Multi-Agent Distributed Reinforcement Learning for Making Decentralized Offloading Decisions
We formulate computation offloading as a decentralized decision-making problem with autonomous agents. We design an interaction mechanism that incentivizes agents to align private and system goals by balancing between competition and cooperation. The mechanism provably has Nash equilibria with optimal resource allocation in the static case. For a dynamic environment, we propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information, and a reward signal that reduces information need to a great extent. Empirical results confirm that through learning, agents significantly improve both system and individual performance, e.g., 40% offloading failure rate reduction, 32% communication overhead reduction, up to 38% computation resource savings in low contention, 18% utilization increase with reduced load variation in high contention, and improvement in fairness. Results also confirm the algorithm's good convergence and generalization property in significantly different environments.
106,226
106,226
Learning to Bid Long-Term: Multi-Agent Reinforcement Learning with Long-Term and Sparse Reward in Repeated Auction Games
We propose a multi-agent distributed reinforcement learning algorithm that balances between potentially conflicting short-term reward and sparse, delayed long-term reward, and learns with partial information in a dynamic environment. We compare different long-term rewards to incentivize the algorithm to maximize individual payoff and overall social welfare. We test the algorithm in two simulated auction games, and demonstrate that 1) our algorithm outperforms two benchmark algorithms in a direct competition, with cost to social welfare, and 2) our algorithm's aggressive competitive behavior can be guided with the long-term reward signal to maximize both individual payoff and overall social welfare.
106,227
106,227
Deep surrogate accelerated delayed-acceptance HMC for Bayesian inference of spatio-temporal heat fluxes in rotating disc systems
We study the Bayesian inverse problem of inferring the Biot number, a spatio-temporal heat-flux parameter in a PDE model. This is an ill-posed problem where standard optimisation yields unphysical inferences. We introduce a training scheme that uses temperature data to adaptively train a neural-network surrogate to simulate the parametric forward model. This approach approximates forward and inverse solution together, by simultaneously identifying an approximate posterior distribution over the Biot number, and weighting the forward training loss according to this approximation. Utilising random Chebyshev series, we outline how to approximate an arbitrary Gaussian process prior, and using the surrogate we apply Hamiltonian Monte Carlo (HMC) to efficiently sample from the corresponding posterior distribution. We derive convergence of the surrogate posterior to the true posterior distribution in the Hellinger metric as our adaptive loss function approaches zero. Furthermore, we describe how this surrogate-accelerated HMC approach can be combined with a traditional PDE solver in a delayed-acceptance scheme to a-priori control the posterior accuracy, thus overcoming a major limitation of deep learning-based surrogate approaches, which do not achieve guaranteed accuracy a-priori due to their non-convex training. Biot number calculations are involved turbo-machinery design, which is safety critical and highly regulated, therefore it is important that our results have such mathematical guarantees. Our approach achieves fast mixing in high-dimensional parameter spaces, whilst retaining the convergence guarantees of a traditional PDE solver, and without the burden of evaluating this solver for proposals that are likely to be rejected. Numerical results compare the accuracy and efficiency of the adaptive and general training regimes, as well as various Markov chain Monte Carlo proposals strategies.
106,228
106,228
Deep Clustering via Center-Oriented Margin Free-Triplet Loss for Skin Lesion Detection in Highly Imbalanced Datasets
Melanoma is a fatal skin cancer that is curable and has dramatically increasing survival rate when diagnosed at early stages. Learning-based methods hold significant promise for the detection of melanoma from dermoscopic images. However, since melanoma is a rare disease, existing databases of skin lesions predominantly contain highly imbalanced numbers of benign versus malignant samples. In turn, this imbalance introduces substantial bias in classification models due to the statistical dominance of the majority class. To address this issue, we introduce a deep clustering approach based on the latent-space embedding of dermoscopic images. Clustering is achieved using a novel center-oriented margin-free triplet loss (COM-Triplet) enforced on image embeddings from a convolutional neural network backbone. The proposed method aims to form maximally-separated cluster centers as opposed to minimizing classification error, so it is less sensitive to class imbalance. To avoid the need for labeled data, we further propose to implement COM-Triplet based on pseudo-labels generated by a Gaussian mixture model. Comprehensive experiments show that deep clustering with COM-Triplet loss outperforms clustering with triplet loss, and competing classifiers in both supervised and unsupervised settings.
106,229
106,229
Cancer Subtyping via Embedded Unsupervised Learning on Transcriptomics Data
Cancer is one of the deadliest diseases worldwide. Accurate diagnosis and classification of cancer subtypes are indispensable for effective clinical treatment. Promising results on automatic cancer subtyping systems have been published recently with the emergence of various deep learning methods. However, such automatic systems often overfit the data due to the high dimensionality and scarcity. In this paper, we propose to investigate automatic subtyping from an unsupervised learning perspective by directly constructing the underlying data distribution itself, hence sufficient data can be generated to alleviate the issue of overfitting. Specifically, we bypass the strong Gaussianity assumption that typically exists but fails in the unsupervised learning subtyping literature due to small-sized samples by vector quantization. Our proposed method better captures the latent space features and models the cancer subtype manifestation on a molecular basis, as demonstrated by the extensive experimental results.
106,230
106,230
Design Guidelines for Inclusive Speaker Verification Evaluation Datasets
Speaker verification (SV) provides billions of voice-enabled devices with access control, and ensures the security of voice-driven technologies. As a type of biometrics, it is necessary that SV is unbiased, with consistent and reliable performance across speakers irrespective of their demographic, social and economic attributes. Current SV evaluation practices are insufficient for evaluating bias: they are over-simplified and aggregate users, not representative of real-life usage scenarios, and consequences of errors are not accounted for. This paper proposes design guidelines for constructing SV evaluation datasets that address these short-comings. We propose a schema for grading the difficulty of utterance pairs, and present an algorithm for generating inclusive SV datasets. We empirically validate our proposed method in a set of experiments on the VoxCeleb1 dataset. Our results confirm that the count of utterance pairs/speaker, and the difficulty grading of utterance pairs have a significant effect on evaluation performance and variability. Our work contributes to the development of SV evaluation practices that are inclusive and fair.
106,231
106,231
Lost in Latent Space: Disentangled Models and the Challenge of Combinatorial Generalisation
Recent research has shown that generative models with highly disentangled representations fail to generalise to unseen combination of generative factor values. These findings contradict earlier research which showed improved performance in out-of-training distribution settings when compared to entangled representations. Additionally, it is not clear if the reported failures are due to (a) encoders failing to map novel combinations to the proper regions of the latent space or (b) novel combinations being mapped correctly but the decoder/downstream process is unable to render the correct output for the unseen combinations. We investigate these alternatives by testing several models on a range of datasets and training settings. We find that (i) when models fail, their encoders also fail to map unseen combinations to correct regions of the latent space and (ii) when models succeed, it is either because the test conditions do not exclude enough examples, or because excluded generative factors determine independent parts of the output image. Based on these results, we argue that to generalise properly, models not only need to capture factors of variation, but also understand how to invert the generative process that was used to generate the data.
106,232
106,232
SwapMix: Diagnosing and Regularizing the Over-Reliance on Visual Context in Visual Question Answering
While Visual Question Answering (VQA) has progressed rapidly, previous works raise concerns about robustness of current VQA models. In this work, we study the robustness of VQA models from a novel perspective: visual context. We suggest that the models over-rely on the visual context, i.e., irrelevant objects in the image, to make predictions. To diagnose the model's reliance on visual context and measure their robustness, we propose a simple yet effective perturbation technique, SwapMix. SwapMix perturbs the visual context by swapping features of irrelevant context objects with features from other objects in the dataset. Using SwapMix we are able to change answers to more than 45 % of the questions for a representative VQA model. Additionally, we train the models with perfect sight and find that the context over-reliance highly depends on the quality of visual representations. In addition to diagnosing, SwapMix can also be applied as a data augmentation strategy during training in order to regularize the context over-reliance. By swapping the context object features, the model reliance on context can be suppressed effectively. Two representative VQA models are studied using SwapMix: a co-attention model MCAN and a large-scale pretrained model LXMERT. Our experiments on the popular GQA dataset show the effectiveness of SwapMix for both diagnosing model robustness and regularizing the over-reliance on visual context. The code for our method is available at https://github.com/vipulgupta1011/swapmix
106,233
106,233
Aggregating distribution forecasts from deep ensembles
The importance of accurately quantifying forecast uncertainty has motivated much recent research on probabilistic forecasting. In particular, a variety of deep learning approaches has been proposed, with forecast distributions obtained as output of neural networks. These neural network-based methods are often used in the form of an ensemble based on multiple model runs from different random initializations, resulting in a collection of forecast distributions that need to be aggregated into a final probabilistic prediction. With the aim of consolidating findings from the machine learning literature on ensemble methods and the statistical literature on forecast combination, we address the question of how to aggregate distribution forecasts based on such deep ensembles. Using theoretical arguments, simulation experiments and a case study on wind gust forecasting, we systematically compare probability- and quantile-based aggregation methods for three neural network-based approaches with different forecast distribution types as output. Our results show that combining forecast distributions can substantially improve the predictive performance. We propose a general quantile aggregation framework for deep ensembles that shows superior performance compared to a linear combination of the forecast densities. Finally, we investigate the effects of the ensemble size and derive recommendations of aggregating distribution forecasts from deep ensembles in practice.
106,234
106,234
Is it worth the effort? Understanding and contextualizing physical metrics in soccer
We present a framework that gives a deep insight into the link between physical and technical-tactical aspects of soccer and it allows associating physical performance with value generation thanks to a top-down approach. First, we estimate physical indicators from tracking data. Then, we contextualize each player's run to understand better the purpose and circumstances in which it is done, adding a new dimension to the creation of team and player profiles. Finally, we assess the value-added by off-ball high-intensity runs by linking with a possession-value model. This novel approach allows answering practical questions from very different profiles of practitioners within a soccer club, from analysts, coaches, and scouts to physical coaches and readaptation physiotherapists.
106,235
106,235
Learning new physics efficiently with nonparametric methods
We present a machine learning approach for model-independent new physics searches. The corresponding algorithm is powered by recent large-scale implementations of kernel methods, nonparametric learning algorithms that can approximate any continuous function given enough data. Based on the original proposal by D'Agnolo and Wulzer (arXiv:1806.02350), the model evaluates the compatibility between experimental data and a reference model, by implementing a hypothesis testing procedure based on the likelihood ratio. Model-independence is enforced by avoiding any prior assumption about the presence or shape of new physics components in the measurements. We show that our approach has dramatic advantages compared to neural network implementations in terms of training times and computational resources, while maintaining comparable performances. In particular, we conduct our tests on higher dimensional datasets, a step forward with respect to previous studies.
106,236
106,236
Learning Generalizable Dexterous Manipulation from Human Grasp Affordance
Dexterous manipulation with a multi-finger hand is one of the most challenging problems in robotics. While recent progress in imitation learning has largely improved the sample efficiency compared to Reinforcement Learning, the learned policy can hardly generalize to manipulate novel objects, given limited expert demonstrations. In this paper, we propose to learn dexterous manipulation using large-scale demonstrations with diverse 3D objects in a category, which are generated from a human grasp affordance model. This generalizes the policy to novel object instances within the same category. To train the policy, we propose a novel imitation learning objective jointly with a geometric representation learning objective using our demonstrations. By experimenting with relocating diverse objects in simulation, we show that our approach outperforms baselines with a large margin when manipulating novel objects. We also ablate the importance on 3D object representation learning for manipulation. We include videos, code, and additional information on the project website - https://kristery.github.io/ILAD/ .
106,237
106,237
SAFARI: Sparsity enabled Federated Learning with Limited and Unreliable Communications
Federated learning (FL) enables edge devices to collaboratively learn a model in a distributed fashion. Many existing researches have focused on improving communication efficiency of high-dimensional models and addressing bias caused by local updates. However, most of FL algorithms are either based on reliable communications or assume fixed and known unreliability characteristics. In practice, networks could suffer from dynamic channel conditions and non-deterministic disruptions, with time-varying and unknown characteristics. To this end, in this paper we propose a sparsity enabled FL framework with both communication efficiency and bias reduction, termed as SAFARI. It makes novel use of a similarity among client models to rectify and compensate for bias that is resulted from unreliable communications. More precisely, sparse learning is implemented on local clients to mitigate communication overhead, while to cope with unreliable communications, a similarity-based compensation method is proposed to provide surrogates for missing model updates. We analyze SAFARI under bounded dissimilarity and with respect to sparse models. It is demonstrated that SAFARI under unreliable communications is guaranteed to converge at the same rate as the standard FedAvg with perfect communications. Implementations and evaluations on CIFAR-10 dataset validate the effectiveness of SAFARI by showing that it can achieve the same convergence speed and accuracy as FedAvg with perfect communications, with up to 80% of the model weights being pruned and a high percentage of client updates missing in each round.
106,238
106,238
Nearly minimax robust estimator of the mean vector by iterative spectral dimension reduction
We study the problem of robust estimation of the mean vector of a sub-Gaussian distribution. We introduce an estimator based on spectral dimension reduction (SDR) and establish a finite sample upper bound on its error that is minimax-optimal up to a logarithmic factor. Furthermore, we prove that the breakdown point of the SDR estimator is equal to $1/2$, the highest possible value of the breakdown point. In addition, the SDR estimator is equivariant by similarity transforms and has low computational complexity. More precisely, in the case of $n$ vectors of dimension $p$ -- at most $\varepsilon n$ out of which are adversarially corrupted -- the SDR estimator has a squared error of order $\big(\frac{r_\Sigma}{n} + \varepsilon^2\log(1/\varepsilon)\big){\log p}$ and a running time of order $p^3 + n p^2$. Here, $r_\Sigma\le p$ is the effective rank of the covariance matrix of the reference distribution. Another advantage of the SDR estimator is that it does not require knowledge of the contamination rate and does not involve sample splitting. We also investigate extensions of the proposed algorithm and of the obtained results in the case of (partially) unknown covariance matrix.
106,239
106,239
A lightweight and accurate YOLO-like network for small target detection in Aerial Imagery
Despite the breakthrough deep learning performances achieved for automatic object detection, small target detection is still a challenging problem, especially when looking at fast and accurate solutions suitable for mobile or edge applications. In this work we present YOLO-S, a simple, fast and efficient network for small target detection. The architecture exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation, and reshape-passthrough layer to alleviate the vanishing gradient problem, promote feature reuse across network and combine low-level positional information with more meaningful high-level information. To verify the performances of YOLO-S, we build "AIRES", a novel dataset for cAr detectIon fRom hElicopter imageS acquired in Europe, and set up experiments on both AIRES and VEDAI datasets, benchmarking this architecture with four baseline detectors. Furthermore, in order to handle efficiently the issue of data insufficiency and domain gap when dealing with a transfer learning strategy, we introduce a transitional learning task over a combined dataset based on DOTAv2 and VEDAI and demonstrate that can enhance the overall accuracy with respect to more general features transferred from COCO data. YOLO-S is from 25% to 50% faster than YOLOv3 and only 15-25% slower than Tiny-YOLOv3, outperforming also YOLOv3 in terms of accuracy in a wide range of experiments. Further simulations performed on SARD dataset demonstrate also its applicability to different scenarios such as for search and rescue operations. Besides, YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
106,240
106,240
Can language models learn from explanations in context?
Large language models can perform new tasks by adapting to a few in-context examples. For humans, rapid learning from examples can benefit from explanations that connect examples to task principles. We therefore investigate whether explanations of few-shot examples can allow language models to adapt more effectively. We annotate a set of 40 challenging tasks from BIG-Bench with explanations of answers to a small subset of questions, as well as a variety of matched control explanations. We evaluate the effects of various zero-shot and few-shot prompts that include different types of explanations, instructions, and controls on the performance of a range of large language models. We analyze these results using statistical multilevel modeling techniques that account for the nested dependencies among conditions, tasks, prompts, and models. We find that explanations of examples can improve performance. Adding untuned explanations to a few-shot prompt offers a modest improvement in performance; about 1/3 the effect size of adding few-shot examples, but twice the effect size of task instructions. We then show that explanations tuned for performance on a small validation set offer substantially larger benefits; building a prompt by selecting examples and explanations together substantially improves performance over selecting examples alone. Hand-tuning explanations can substantially improve performance on challenging tasks. Furthermore, even untuned explanations outperform carefully matched controls, suggesting that the benefits are due to the link between an example and its explanation, rather than lower-level features of the language used. However, only large models can benefit from explanations. In summary, explanations can support the in-context learning abilities of large language models on challenging tasks.
106,241
106,241
Multi-Scale Representation Learning on Proteins
Proteins are fundamental biological entities mediating key roles in cellular function and disease. This paper introduces a multi-scale graph construction of a protein -- HoloProt -- connecting surface to structure and sequence. The surface captures coarser details of the protein, while sequence as primary component and structure -- comprising secondary and tertiary components -- capture finer details. Our graph encoder then learns a multi-scale representation by allowing each level to integrate the encoding from level(s) below with the graph at that level. We test the learned representation on different tasks, (i.) ligand binding affinity (regression), and (ii.) protein function prediction (classification). On the regression task, contrary to previous methods, our model performs consistently and reliably across different dataset splits, outperforming all baselines on most splits. On the classification task, it achieves a performance close to the top-performing model while using 10x fewer parameters. To improve the memory efficiency of our construction, we segment the multiplex protein surface manifold into molecular superpixels and substitute the surface with these superpixels at little to no performance loss.
106,242
106,242
MGDCF: Distance Learning via Markov Graph Diffusion for Neural Collaborative Filtering
Collaborative filtering (CF) is widely used by personalized recommendation systems, which aims to predict the preference of users with historical user-item interactions. In recent years, Graph Neural Networks (GNNs) have been utilized to build CF models and have shown promising performance. Recent state-of-the-art GNN-based CF approaches simply attribute their performance improvement to the high-order neighbor aggregation ability of GNNs. However, we observe that some powerful deep GNNs such as JKNet and DropEdge, can effectively exploit high-order neighbor information on other graph tasks but perform poorly on CF tasks, which conflicts with the explanation of these GNN-based CF research. Different from these research, we investigate the GNN-based CF from the perspective of Markov processes for distance learning with a unified framework named Markov Graph Diffusion Collaborative Filtering (MGDCF). We design a Markov Graph Diffusion Network (MGDN) as MGDCF's GNN encoder, which learns vertex representations by trading off two types of distances via a Markov process. We show the theoretical equivalence between MGDN's output and the optimal solution of a distance loss function, which can boost the optimization of CF models. MGDN can generalize state-of-the-art models such as LightGCN and APPNP, which are heterogeneous GNNs. In addition, MGDN can be extended to homogeneous GNNs with our sparsification technique. For optimizing MGDCF, we propose the InfoBPR loss function, which extends the widely used BPR loss to exploit multiple negative samples for better performance. We conduct experiments to perform detailed analysis on MGDCF. The source code is publicly available at https://github.com/hujunxianligong/MGDCF.
106,243
106,243
IFTT-PIN: Demonstrating the Self-Calibration Paradigm on a PIN-Entry Task
We demonstrate IFTT-PIN, a self-calibrating version of the PIN-entry method introduced in Roth et al. (2004) [1]. In [1], digits are split into two sets and assigned a color respectively. To communicate their digit, users press the button with the same color that is assigned to their digit, which can be identified by elimination after a few iterations. IFTT-PIN uses the same principle but does not pre-assign colors to each button. Instead, users are free to choose which button to use for each color. IFTT-PIN infers both the user's PIN and their preferred button-to-color mapping at the same time, a process called self-calibration. Different versions of IFTT-PIN can be tested at https://jgrizou.github.io/IFTT-PIN/ and a video introduction at https://youtu.be/5I1ibPJdLHM.
106,244
106,244
Test Against High-Dimensional Uncertainties: Accelerated Evaluation of Autonomous Vehicles with Deep Importance Sampling
Evaluating the performance of autonomous vehicles (AV) and their complex subsystems to high precision under naturalistic circumstances remains a challenge, especially when failure or dangerous cases are rare. Rarity does not only require an enormous sample size for a naive method to achieve high confidence estimation, but it also causes dangerous underestimation of the true failure rate and it is extremely hard to detect. Meanwhile, the state-of-the-art approach that comes with a correctness guarantee can only compute an upper bound for the failure rate under certain conditions, which could limit its practical uses. In this work, we present Deep Importance Sampling (Deep IS) framework that utilizes a deep neural network to obtain an efficient IS that is on par with the state-of-the-art, capable of reducing the required sample size 43 times smaller than the naive sampling method to achieve 10% relative error and while producing an estimate that is much less conservative. Our high-dimensional experiment estimating the misclassification rate of one of the state-of-the-art traffic sign classifiers further reveals that this efficiency still holds true even when the target is very small, achieving over 600 times efficiency boost. This highlights the potential of Deep IS in providing a precise estimate even against high-dimensional uncertainties.
106,245
106,245
Challenges and Opportunities of Edge AI for Next-Generation Implantable BMIs
Neuroscience and neurotechnology are currently being revolutionized by artificial intelligence (AI) and machine learning. AI is widely used to study and interpret neural signals (analytical applications), assist people with disabilities (prosthetic applications), and treat underlying neurological symptoms (therapeutic applications). In this brief, we will review the emerging opportunities of on-chip AI for the next-generation implantable brain-machine interfaces (BMIs), with a focus on state-of-the-art prosthetic BMIs. Major technological challenges for the effectiveness of AI models will be discussed. Finally, we will present algorithmic and IC design solutions to enable a new generation of AI-enhanced and high-channel-count BMIs.
106,246
106,246
Too Big to Fail? Active Few-Shot Learning Guided Logic Synthesis
Generating sub-optimal synthesis transformation sequences ("synthesis recipe") is an important problem in logic synthesis. Manually crafted synthesis recipes have poor quality. State-of-the art machine learning (ML) works to generate synthesis recipes do not scale to large netlists as the models need to be trained from scratch, for which training data is collected using time consuming synthesis runs. We propose a new approach, Bulls-Eye, that fine-tunes a pre-trained model on past synthesis data to accurately predict the quality of a synthesis recipe for an unseen netlist. This approach on achieves 2x-10x run-time improvement and better quality-of-result (QoR) than state-of-the-art machine learning approaches.
106,247
106,247
Jump-Start Reinforcement Learning
Reinforcement learning (RL) provides a theoretical framework for continuously improving an agent's behavior via trial and error. However, efficiently learning policies from scratch can be very difficult, particularly for tasks with exploration challenges. In such settings, it might be desirable to initialize RL with an existing policy, offline data, or demonstrations. However, naively performing such initialization in RL often works poorly, especially for value-based methods. In this paper, we present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy, and is compatible with any RL approach. In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks: a guide-policy, and an exploration-policy. By using the guide-policy to form a curriculum of starting states for the exploration-policy, we are able to efficiently improve performance on a set of simulated robotic tasks. We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms, particularly in the small-data regime. In addition, we provide an upper bound on the sample complexity of JSRL and show that with the help of a guide-policy, one can improve the sample complexity for non-optimism exploration methods from exponential in horizon to polynomial.
106,248
106,248
Data-driven Influence Based Clustering of Dynamical Systems
Community detection is a challenging and relevant problem in various disciplines of science and engineering like power systems, gene-regulatory networks, social networks, financial networks, astronomy etc. Furthermore, in many of these applications the underlying system is dynamical in nature and because of the complexity of the systems involved, deriving a mathematical model which can be used for clustering and community detection, is often impossible. Moreover, while clustering dynamical systems, it is imperative that the dynamical nature of the underlying system is taken into account. In this paper, we propose a novel approach for clustering dynamical systems purely from time-series data which inherently takes into account the dynamical evolution of the underlying system. In particular, we define a \emph{distance/similarity} measure between the states of the system which is a function of the influence that the states have on each other, and use the proposed measure for clustering of the dynamical system. For data-driven computation we leverage the Koopman operator framework which takes into account the nonlinearities (if present) of the underlying system, thus making the proposed framework applicable to a wide range of application areas. We illustrate the efficacy of the proposed approach by clustering three different dynamical systems, namely, a linear system, which acts like a proof of concept, the highly non-linear IEEE 39 bus transmission network and dynamic variables obtained from atmospheric data over the Amazon rain forest.
106,249
106,249
Hear No Evil: Towards Adversarial Robustness of Automatic Speech Recognition via Multi-Task Learning
As automatic speech recognition (ASR) systems are now being widely deployed in the wild, the increasing threat of adversarial attacks raises serious questions about the security and reliability of using such systems. On the other hand, multi-task learning (MTL) has shown success in training models that can resist adversarial attacks in the computer vision domain. In this work, we investigate the impact of performing such multi-task learning on the adversarial robustness of ASR models in the speech domain. We conduct extensive MTL experimentation by combining semantically diverse tasks such as accent classification and ASR, and evaluate a wide range of adversarial settings. Our thorough analysis reveals that performing MTL with semantically diverse tasks consistently makes it harder for an adversarial attack to succeed. We also discuss in detail the serious pitfalls and their related remedies that have a significant impact on the robustness of MTL models. Our proposed MTL approach shows considerable absolute improvements in adversarially targeted WER ranging from 17.25 up to 59.90 compared to single-task learning baselines (attention decoder and CTC respectively). Ours is the first in-depth study that uncovers adversarial robustness gains from multi-task learning for ASR.
106,250
106,250
Learning Speech Emotion Representations in the Quaternion Domain
The modeling of human emotion expression in speech signals is an important, yet challenging task. The high resource demand of speech emotion recognition models, combined with the the general scarcity of emotion-labelled data are obstacles to the development and application of effective solutions in this field. In this paper, we present an approach to jointly circumvent these difficulties. Our method, named RH-emo, is a novel semi-supervised architecture aimed at extracting quaternion embeddings from real-valued monoaural spectrograms, enabling the use of quaternion-valued networks for speech emotion recognition tasks. RH-emo is a hybrid real/quaternion autoencoder network that consists of a real-valued encoder in parallel to a real-valued emotion classifier and a quaternion-valued decoder. On the one hand, the classifier permits to optimize each latent axis of the embeddings for the classification of a specific emotion-related characteristic: valence, arousal, dominance and overall emotion. On the other hand, the quaternion reconstruction enables the latent dimension to develop intra-channel correlations that are required for an effective representation as a quaternion entity. We test our approach on speech emotion recognition tasks using four popular datasets: Iemocap, Ravdess, EmoDb and Tess, comparing the performance of three well-established real-valued CNN architectures (AlexNet, ResNet-50, VGG) and their quaternion-valued equivalent fed with the embeddings created with RH-emo. We obtain a consistent improvement in the test accuracy for all datasets, while drastically reducing the resources' demand of models. Moreover, we performed additional experiments and ablation studies that confirm the effectiveness of our approach. The RH-emo repository is available at: https://github.com/ispamm/rhemo.
106,251
106,251
ObjectFolder 2.0: A Multisensory Object Dataset for Sim2Real Transfer
Objects play a crucial role in our everyday activities. Though multisensory object-centric learning has shown great potential lately, the modeling of objects in prior work is rather unrealistic. ObjectFolder 1.0 is a recent dataset that introduces 100 virtualized objects with visual, acoustic, and tactile sensory data. However, the dataset is small in scale and the multisensory data is of limited quality, hampering generalization to real-world scenarios. We present ObjectFolder 2.0, a large-scale, multisensory dataset of common household objects in the form of implicit neural representations that significantly enhances ObjectFolder 1.0 in three aspects. First, our dataset is 10 times larger in the amount of objects and orders of magnitude faster in rendering time. Second, we significantly improve the multisensory rendering quality for all three modalities. Third, we show that models learned from virtual objects in our dataset successfully transfer to their real-world counterparts in three challenging tasks: object scale estimation, contact localization, and shape reconstruction. ObjectFolder 2.0 offers a new path and testbed for multisensory learning in computer vision and robotics. The dataset is available at https://github.com/rhgao/ObjectFolder.
106,252
106,252
Learning Pneumatic Non-Prehensile Manipulation with a Mobile Blower
We investigate pneumatic non-prehensile manipulation (i.e., blowing) as a means of efficiently moving scattered objects into a target receptacle. Due to the chaotic nature of aerodynamic forces, a blowing controller must (i) continually adapt to unexpected changes from its actions, (ii) maintain fine-grained control, since the slightest misstep can result in large unintended consequences (e.g., scatter objects already in a pile), and (iii) infer long-range plans (e.g., move the robot to strategic blowing locations). We tackle these challenges in the context of deep reinforcement learning, introducing a multi-frequency version of the spatial action maps framework. This allows for efficient learning of vision-based policies that effectively combine high-level planning and low-level closed-loop control for dynamic mobile manipulation. Experiments show that our system learns efficient behaviors for the task, demonstrating in particular that blowing achieves better downstream performance than pushing, and that our policies improve performance over baselines. Moreover, we show that our system naturally encourages emergent specialization between the different subpolicies spanning low-level fine-grained control and high-level planning. On a real mobile robot equipped with a miniature air blower, we show that our simulation-trained policies transfer well to a real environment and can generalize to novel objects.
106,253
106,253
Action-Conditioned Contrastive Policy Pretraining
Deep visuomotor policy learning achieves promising results in control tasks such as robotic manipulation and autonomous driving, where the action is generated from the visual input by the neural policy. However, it requires a huge number of online interactions with the training environment, which limits its real-world application. Compared to the popular unsupervised feature learning for visual recognition, feature pretraining for visuomotor control tasks is much less explored. In this work, we aim to pretrain policy representations for driving tasks using hours-long uncurated YouTube videos. A new contrastive policy pretraining method is developed to learn action-conditioned features from video frames with action pseudo labels. Experiments show that the resulting action-conditioned features bring substantial improvements to the downstream reinforcement learning and imitation learning tasks, outperforming the weights pretrained from previous unsupervised learning methods. Code and models will be made publicly available.
106,254
106,254
SE(3)-Equivariant Attention Networks for Shape Reconstruction in Function Space
We propose the first SE(3)-equivariant coordinate-based network for learning occupancy fields from point clouds. In contrast to previous shape reconstruction methods that align the input to a regular grid, we operate directly on the irregular, unoriented point cloud. We leverage attention mechanisms in order to preserve the set structure (permutation equivariance and variable length) of the input. At the same time, attention layers enable local shape modelling, a crucial property for scalability to large scenes. In contrast to architectures that create a global signature for the shape, we operate on local tokens. Given an unoriented, sparse, noisy point cloud as input, we produce equivariant features for each point. These serve as keys and values for the subsequent equivariant cross-attention blocks that parametrize the occupancy field. By querying an arbitrary point in space, we predict its occupancy score. We show that our method outperforms previous SO(3)-equivariant methods, as well as non-equivariant methods trained on SO(3)-augmented datasets. More importantly, local modelling together with SE(3)-equivariance create an ideal setting for SE(3) scene reconstruction. We show that by training only on single objects and without any pre-segmentation, we can reconstruct a novel scene with single-object performance.
106,255
106,255
Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification
The automatic early diagnosis of prodromal stages of Alzheimer's disease is of great relevance for patient treatment to improve quality of life. We address this problem as a multi-modal classification task. Multi-modal data provides richer and complementary information. However, existing techniques only consider either lower order relations between the data and single/multi-modal imaging data. In this work, we introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis. Our framework allows for higher-order relations among multi-modal imaging and non-imaging data whilst requiring a tiny labelled set. Firstly, we introduce a dual embedding strategy for constructing a robust hypergraph that preserves the data semantics. We achieve this by enforcing perturbation invariance at the image and graph levels using a contrastive based mechanism. Secondly, we present a dynamically adjusted hypergraph diffusion model, via a semi-explicit flow, to improve the predictive uncertainty. We demonstrate, through our experiments, that our framework is able to outperform current techniques for Alzheimer's disease diagnosis.
106,256
106,256
Comment on "Black Box Prediction Methods in Sports Medicine Deserve a Red Card for Reckless Practice: A Change of Tactics is Needed to Advance Athlete Care"
In this paper we examine the claims made by Bullock et. al. on the applicability of black-box injury risk approaches in the sports injury domain. Overall, we agree that transparency is necessary for Machine Learning models to be useful in this field. However, there are areas of research that address precisely the concerns of the authors and strongly temper their conclusions. In the following we look at how these issues are being tackled by the Machine Learning community.
106,257
106,257
Zero-shot Blind Image Denoising via Implicit Neural Representations
Recent denoising algorithms based on the "blind-spot" strategy show impressive blind image denoising performances, without utilizing any external dataset. While the methods excel in recovering highly contaminated images, we observe that such algorithms are often less effective under a low-noise or real noise regime. To address this gap, we propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs), based on our two findings: (1) INR tends to fit the low-frequency clean image signal faster than the high-frequency noise, and (2) INR layers that are closer to the output play more critical roles in fitting higher-frequency parts. Building on these observations, we propose a denoising algorithm that maximizes the innate denoising capability of INRs by penalizing the growth of deeper layer weights. We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
106,258
106,258
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses
Dataset bias and spurious correlations can significantly impair generalization in deep neural networks. Many prior efforts have addressed this problem using either alternative loss functions or sampling strategies that focus on rare patterns. We propose a new direction: modifying the network architecture to impose inductive biases that make the network robust to dataset bias. Specifically, we propose OccamNets, which are biased to favor simpler solutions by design. OccamNets have two inductive biases. First, they are biased to use as little network depth as needed for an individual example. Second, they are biased toward using fewer image locations for prediction. While OccamNets are biased toward simpler hypotheses, they can learn more complex hypotheses if necessary. In experiments, OccamNets outperform or rival state-of-the-art methods run on architectures that do not incorporate these inductive biases. Furthermore, we demonstrate that when the state-of-the-art debiasing methods are combined with OccamNets results further improve.
106,259
106,259
Imaging Conductivity from Current Density Magnitude using Neural Networks
Conductivity imaging represents one of the most important tasks in medical imaging. In this work we develop a neural network based reconstruction technique for imaging the conductivity from the magnitude of the internal current density. It is achieved by formulating the problem as a relaxed weighted least-gradient problem, and then approximating its minimizer by standard fully connected feedforward neural networks. We derive bounds on two components of the generalization error, i.e., approximation error and statistical error, explicitly in terms of properties of the neural networks (e.g., depth, total number of parameters, and the bound of the network parameters). We illustrate the performance and distinct features of the approach on several numerical experiments. Numerically, it is observed that the approach enjoys remarkable robustness with respect to the presence of data noise.
106,260
106,260
Predicting and Explaining Mobile UI Tappability with Vision Modeling and Saliency Analysis
We use a deep learning based approach to predict whether a selected element in a mobile UI screenshot will be perceived by users as tappable, based on pixels only instead of view hierarchies required by previous work. To help designers better understand model predictions and to provide more actionable design feedback than predictions alone, we additionally use ML interpretability techniques to help explain the output of our model. We use XRAI to highlight areas in the input screenshot that most strongly influence the tappability prediction for the selected region, and use k-Nearest Neighbors to present the most similar mobile UIs from the dataset with opposing influences on tappability perception.
106,261
106,261
Improving Voice Trigger Detection with Metric Learning
Voice trigger detection is an important task, which enables activating a voice assistant when a target user speaks a keyword phrase. A detector is typically trained on speech data independent of speaker information and used for the voice trigger detection task. However, such a speaker independent voice trigger detector typically suffers from performance degradation on speech from underrepresented groups, such as accented speakers. In this work, we propose a novel voice trigger detector that can use a small number of utterances from a target speaker to improve detection accuracy. Our proposed model employs an encoder-decoder architecture. While the encoder performs speaker independent voice trigger detection, similar to the conventional detector, the decoder predicts a personalized embedding for each utterance. A personalized voice trigger score is then obtained as a similarity score between the embeddings of enrollment utterances and a test utterance. The personalized embedding allows adapting to target speaker's speech when computing the voice trigger score, hence improving voice trigger detection accuracy. Experimental results show that the proposed approach achieves a 38% relative reduction in a false rejection rate (FRR) compared to a baseline speaker independent voice trigger model.
106,262
106,262
Configuration Path Control
Reinforcement learning methods often produce brittle policies -- policies that perform well during training, but generalize poorly beyond their direct training experience, thus becoming unstable under small disturbances. To address this issue, we propose a method for stabilizing a control policy in the space of configuration paths. It is applied post-training and relies purely on the data produced during training, as well as on an instantaneous control-matrix estimation. The approach is evaluated empirically on a planar bipedal walker subjected to a variety of perturbations. The control policies obtained via reinforcement learning are compared against their stabilized counterparts. Across different experiments, we find two- to four-fold increase in stability, when measured in terms of the perturbation amplitudes. We also provide a zero-dynamics interpretation of our approach.
106,263
106,263
Generative Enriched Sequential Learning (ESL) Approach for Molecular Design via Augmented Domain Knowledge
Deploying generative machine learning techniques to generate novel chemical structures based on molecular fingerprint representation has been well established in molecular design. Typically, sequential learning (SL) schemes such as hidden Markov models (HMM) and, more recently, in the sequential deep learning context, recurrent neural network (RNN) and long short-term memory (LSTM) were used extensively as generative models to discover unprecedented molecules. To this end, emission probability between two states of atoms plays a central role without considering specific chemical or physical properties. Lack of supervised domain knowledge can mislead the learning procedure to be relatively biased to the prevalent molecules observed in the training data that are not necessarily of interest. We alleviated this drawback by augmenting the training data with domain knowledge, e.g. quantitative estimates of the drug-likeness score (QEDs). As such, our experiments demonstrated that with this subtle trick called enriched sequential learning (ESL), specific patterns of particular interest can be learnt better, which led to generating de novo molecules with ameliorated QEDs.
106,264
106,264
Adversarial Robustness through the Lens of Convolutional Filters
Deep learning models are intrinsically sensitive to distribution shifts in the input data. In particular, small, barely perceivable perturbations to the input data can force models to make wrong predictions with high confidence. An common defense mechanism is regularization through adversarial training which injects worst-case perturbations back into training to strengthen the decision boundaries, and to reduce overfitting. In this context, we perform an investigation of 3x3 convolution filters that form in adversarially-trained models. Filters are extracted from 71 public models of the linf-RobustBench CIFAR-10/100 and ImageNet1k leaderboard and compared to filters extracted from models built on the same architectures but trained without robust regularization. We observe that adversarially-robust models appear to form more diverse, less sparse, and more orthogonal convolution filters than their normal counterparts. The largest differences between robust and normal models are found in the deepest layers, and the very first convolution layer, which consistently and predominantly forms filters that can partially eliminate perturbations, irrespective of the architecture. Data & Project website: https://github.com/paulgavrikov/cvpr22w_RobustnessThroughTheLens
106,265
106,265
Training-Free Robust Multimodal Learning via Sample-Wise Jacobian Regularization
Multimodal fusion emerges as an appealing technique to improve model performances on many tasks. Nevertheless, the robustness of such fusion methods is rarely involved in the present literature. In this paper, we propose a training-free robust late-fusion method by exploiting conditional independence assumption and Jacobian regularization. Our key is to minimize the Frobenius norm of a Jacobian matrix, where the resulting optimization problem is relaxed to a tractable Sylvester equation. Furthermore, we provide a theoretical error bound of our method and some insights about the function of the extra modality. Several numerical experiments on AV-MNIST, RAVDESS, and VGGsound demonstrate the efficacy of our method under both adversarial attacks and random corruptions.
106,266
106,266
Discovering and forecasting extreme events via active learning in neural operators
Extreme events in society and nature, such as pandemic spikes or rogue waves, can have catastrophic consequences. Characterizing extremes is difficult as they occur rarely, arise from seemingly benign conditions, and belong to complex and often unknown infinite-dimensional systems. Such challenges render attempts at characterizing them as moot. We address each of these difficulties by combining novel training schemes in Bayesian experimental design (BED) with an ensemble of deep neural operators (DNOs). This model-agnostic framework pairs a BED scheme that actively selects data for quantifying extreme events with an ensemble of DNOs that approximate infinite-dimensional nonlinear operators. We find that not only does this framework clearly beat Gaussian processes (GPs) but that 1) shallow ensembles of just two members perform best; 2) extremes are uncovered regardless of the state of initial data (i.e. with or without extremes); 3) our method eliminates "double-descent" phenomena; 4) the use of batches of suboptimal acquisition points compared to step-by-step global optima does not hinder BED performance; and 5) Monte Carlo acquisition outperforms standard minimizers in high-dimensions. Together these conclusions form the foundation of an AI-assisted experimental infrastructure that can efficiently infer and pinpoint critical situations across many domains, from physical to societal systems.
106,267
106,267
Pareto-optimal clustering with the primal deterministic information bottleneck
At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the Deterministic Information Bottleneck (DIB) formulation of lossy compression, which can be interpreted as a clustering problem. To this end, we introduce the {\it primal} DIB problem, which we show results in a much richer frontier than its previously studied dual counterpart. We present an algorithm for mapping out the Pareto frontier of the primal DIB trade-off that is also applicable to most other two-objective clustering problems. We study general properties of the Pareto frontier, and give both analytic and numerical evidence for logarithmic sparsity of the frontier in general. We provide evidence that our algorithm has polynomial scaling despite the super-exponential search space; and additionally propose a modification to the algorithm that can be used where sampling noise is expected to be significant. Finally, we use our algorithm to map the DIB frontier of three different tasks: compressing the English alphabet, extracting informative color classes from natural images, and compressing a group theory inspired dataset, revealing interesting features of frontier, and demonstrating how the structure of the frontier can be used for model selection with a focus on points previously hidden by the cloak of the convex hull.
106,268
106,268
Privacy-Preserving Federated Learning via System Immersion and Random Matrix Encryption
Federated learning (FL) has emerged as a privacy solution for collaborative distributed learning where clients train AI models directly on their devices instead of sharing their data with a centralized (potentially adversarial) server. Although FL preserves local data privacy to some extent, it has been shown that information about clients' data can still be inferred from model updates. In recent years, various privacy-preserving schemes have been developed to address this privacy leakage. However, they often provide privacy at the expense of model performance or system efficiency and balancing these tradeoffs is a crucial challenge when implementing FL schemes. In this manuscript, we propose a Privacy-Preserving Federated Learning (PPFL) framework built on the synergy of matrix encryption and system immersion tools from control theory. The idea is to immerse the learning algorithm, a Stochastic Gradient Decent (SGD), into a higher-dimensional system (the so-called target system) and design the dynamics of the target system so that: the trajectories of the original SGD are immersed/embedded in its trajectories, and it learns on encrypted data (here we use random matrix encryption). Matrix encryption is reformulated at the server as a random change of coordinates that maps original parameters to a higher-dimensional parameter space and enforces that the target SGD converges to an encrypted version of the original SGD optimal solution. The server decrypts the aggregated model using the left inverse of the immersion map. We show that our algorithm provides the same level of accuracy and convergence rate as the standard FL with a negligible computation cost while revealing no information about the clients' data.
106,269
106,269
Deep Graphic FBSDEs for Opinion Dynamics Stochastic Control
In this paper, we present a scalable deep learning approach to solve opinion dynamics stochastic optimal control problems with mean field term coupling in the dynamics and cost function. Our approach relies on the probabilistic representation of the solution of the Hamilton-Jacobi-Bellman partial differential equation. Grounded on the nonlinear version of the Feynman-Kac lemma, the solutions of the Hamilton-Jacobi-Bellman partial differential equation are linked to the solution of Forward-Backward Stochastic Differential Equations. These equations can be solved numerically using a novel deep neural network with architecture tailored to the problem in consideration. The resulting algorithm is tested on a polarized opinion consensus experiment. The large-scale (10K) agents experiment validates the scalability and generalizability of our algorithm. The proposed framework opens up the possibility for future applications on extremely large-scale problems.
106,270
106,270
In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative Small-Molecule Creation
Proteins in complex with small molecule ligands represent the core of structure-based drug discovery. However, three-dimensional representations are absent from most deep-learning-based generative models. We here present a graph-based generative modeling technology that encodes explicit 3D protein-ligand contacts within a relational graph architecture. The models combine a conditional variational autoencoder that allows for activity-specific molecule generation with putative contact generation that provides predictions of molecular interactions within the target binding pocket. We show that molecules generated with our 3D procedure are more compatible with the binding pocket of the dopamine D2 receptor than those produced by a comparable ligand-based 2D generative method, as measured by docking scores, expected stereochemistry, and recoverability in commercial chemical databases. Predicted protein-ligand contacts were found among highest-ranked docking poses with a high recovery rate. This work shows how the structural context of a protein target can be used to enhance molecule generation.
106,271
106,271
Service resource allocation problem in the IoT driven personalized healthcare information platform
With real-time monitoring of the personalized healthcare condition, the IoT wearables collect the health data and transfer it to the healthcare information platform. The platform processes the data into healthcare recommendations and then delivers them to the users. The IoT structures in the personalized healthcare information service allows the users to engage in the loop in servitization more convenient in the COVID-19 pandemic. However, the uncertainty of the engagement behavior among the individual may result in inefficient of the service resource allocation. This paper seeks an efficient way to allocate the service resource by controlling the service capacity and pushing the service to the active users automatically. In this study, we propose a deep reinforcement learning method to solve the service resource allocation problem based on the proximal policy optimization (PPO) algorithm. Experimental results using the real world (open source) sport dataset reveal that our proposed proximal policy optimization adapts well to the users' changing behavior and with improved performance over fixed service resource policies.
106,272
106,272
Emphasis on the Minimization of False Negatives or False Positives in Binary Classification
The minimization of specific cases in binary classification, such as false negatives or false positives, grows increasingly important as humans begin to implement more machine learning into current products. While there are a few methods to put a bias towards the reduction of specific cases, these methods aren't very effective, hence their minimal use in models. To this end, a new method is introduced to reduce the False Negatives or False positives without drastically changing the overall performance or F1 score of the model. This method involving the careful change to the real value of the input after pre-training the model. Presenting the results of this method being applied on various datasets, some being more complex than others. Through experimentation on multiple model architectures on these datasets, the best model was found. In all the models, an increase in the recall or precision, minimization of False Negatives or False Positives respectively, was shown without a large drop in F1 score.
106,273
106,273
Prosodic Alignment for off-screen automatic dubbing
The goal of automatic dubbing is to perform speech-to-speech translation while achieving audiovisual coherence. This entails isochrony, i.e., translating the original speech by also matching its prosodic structure into phrases and pauses, especially when the speaker's mouth is visible. In previous work, we introduced a prosodic alignment model to address isochrone or on-screen dubbing. In this work, we extend the prosodic alignment model to also address off-screen dubbing that requires less stringent synchronization constraints. We conduct experiments on four dubbing directions - English to French, Italian, German and Spanish - on a publicly available collection of TED Talks and on publicly available YouTube videos. Empirical results show that compared to our previous work the extended prosodic alignment model provides significantly better subjective viewing experience on videos in which on-screen and off-screen automatic dubbing is applied for sentences with speakers mouth visible and not visible, respectively.
106,274
106,274
Continuous LWE is as Hard as LWE & Applications to Learning Gaussian Mixtures
We show direct and conceptually simple reductions between the classical learning with errors (LWE) problem and its continuous analog, CLWE (Bruna, Regev, Song and Tang, STOC 2021). This allows us to bring to bear the powerful machinery of LWE-based cryptography to the applications of CLWE. For example, we obtain the hardness of CLWE under the classical worst-case hardness of the gap shortest vector problem. Previously, this was known only under quantum worst-case hardness of lattice problems. More broadly, with our reductions between the two problems, any future developments to LWE will also apply to CLWE and its downstream applications. As a concrete application, we show an improved hardness result for density estimation for mixtures of Gaussians. In this computational problem, given sample access to a mixture of Gaussians, the goal is to output a function that estimates the density function of the mixture. Under the (plausible and widely believed) exponential hardness of the classical LWE problem, we show that Gaussian mixture density estimation in $\mathbb{R}^n$ with roughly $\log n$ Gaussian components given $\mathsf{poly}(n)$ samples requires time quasi-polynomial in $n$. Under the (conservative) polynomial hardness of LWE, we show hardness of density estimation for $n^{\epsilon}$ Gaussians for any constant $\epsilon > 0$, which improves on Bruna, Regev, Song and Tang (STOC 2021), who show hardness for at least $\sqrt{n}$ Gaussians under polynomial (quantum) hardness assumptions. Our key technical tool is a reduction from classical LWE to LWE with $k$-sparse secrets where the multiplicative increase in the noise is only $O(\sqrt{k})$, independent of the ambient dimension $n$.
106,275
106,275
DouZero+: Improving DouDizhu AI by Opponent Modeling and Coach-guided Learning
Recent years have witnessed the great breakthrough of deep reinforcement learning (DRL) in various perfect and imperfect information games. Among these games, DouDizhu, a popular card game in China, is very challenging due to the imperfect information, large state space, elements of collaboration and a massive number of possible moves from turn to turn. Recently, a DouDizhu AI system called DouZero has been proposed. Trained using traditional Monte Carlo method with deep neural networks and self-play procedure without the abstraction of human prior knowledge, DouZero has outperformed all the existing DouDizhu AI programs. In this work, we propose to enhance DouZero by introducing opponent modeling into DouZero. Besides, we propose a novel coach network to further boost the performance of DouZero and accelerate its training process. With the integration of the above two techniques into DouZero, our DouDizhu AI system achieves better performance and ranks top in the Botzone leaderboard among more than 400 AI agents, including DouZero.
106,276
106,276
FairNeuron: Improving Deep Neural Network Fairness with Adversary Games on Selective Neurons
With Deep Neural Network (DNN) being integrated into a growing number of critical systems with far-reaching impacts on society, there are increasing concerns on their ethical performance, such as fairness. Unfortunately, model fairness and accuracy in many cases are contradictory goals to optimize. To solve this issue, there has been a number of work trying to improve model fairness by using an adversarial game in model level. This approach introduces an adversary that evaluates the fairness of a model besides its prediction accuracy on the main task, and performs joint-optimization to achieve a balanced result. In this paper, we noticed that when performing backward propagation based training, such contradictory phenomenon has shown on individual neuron level. Based on this observation, we propose FairNeuron, a DNN model automatic repairing tool, to mitigate fairness concerns and balance the accuracy-fairness trade-off without introducing another model. It works on detecting neurons with contradictory optimization directions from accuracy and fairness training goals, and achieving a trade-off by selective dropout. Comparing with state-of-the-art methods, our approach is lightweight, making it scalable and more efficient. Our evaluation on 3 datasets shows that FairNeuron can effectively improve all models' fairness while maintaining a stable utility.
106,277
106,277
Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
We design fast algorithms for repeatedly sampling from strongly Rayleigh distributions, which include random spanning tree distributions and determinantal point processes. For a graph $G=(V, E)$, we show how to approximately sample uniformly random spanning trees from $G$ in $\widetilde{O}(\lvert V\rvert)$ time per sample after an initial $\widetilde{O}(\lvert E\rvert)$ time preprocessing. For a determinantal point process on subsets of size $k$ of a ground set of $n$ elements, we show how to approximately sample in $\widetilde{O}(k^\omega)$ time after an initial $\widetilde{O}(nk^{\omega-1})$ time preprocessing, where $\omega<2.372864$ is the matrix multiplication exponent. We even improve the state of the art for obtaining a single sample from determinantal point processes, from the prior runtime of $\widetilde{O}(\min\{nk^2, n^\omega\})$ to $\widetilde{O}(nk^{\omega-1})$. In our main technical result, we achieve the optimal limit on domain sparsification for strongly Rayleigh distributions. In domain sparsification, sampling from a distribution $\mu$ on $\binom{[n]}{k}$ is reduced to sampling from related distributions on $\binom{[t]}{k}$ for $t\ll n$. We show that for strongly Rayleigh distributions, we can can achieve the optimal $t=\widetilde{O}(k)$. Our reduction involves sampling from $\widetilde{O}(1)$ domain-sparsified distributions, all of which can be produced efficiently assuming convenient access to approximate overestimates for marginals of $\mu$. Having access to marginals is analogous to having access to the mean and covariance of a continuous distribution, or knowing "isotropy" for the distribution, the key assumption behind the Kannan-Lov\'asz-Simonovits (KLS) conjecture and optimal samplers based on it. We view our result as a moral analog of the KLS conjecture and its consequences for sampling, for discrete strongly Rayleigh measures.
106,278
106,278
Greedier is Better: Selecting Multiple Neighbors per Iteration for Sparse Subspace Clustering
Sparse subspace clustering (SSC) using greedy-based neighbor selection, such as orthogonal matching pursuit (OMP), has been known as a popular computationally-efficient alternative to the popular L1-minimization based methods. This paper proposes a new SSC scheme using generalized OMP (GOMP), a soup-up of OMP whereby multiple neighbors are identified per iteration, along with a new stopping rule requiring nothing more than a knowledge of the ambient signal dimension. Compared to conventional OMP, which identifies one neighbor per iteration, the proposed GOMP method involves fewer iterations, thereby enjoying lower algorithmic complexity; advantageously, the proposed stopping rule is free from off-line estimation of subspace dimension and noise power. Under the semi-random model, analytic performance guarantees, in terms of neighbor recovery rates, are established to justify the advantage of the proposed GOMP. The results show that, with a high probability, GOMP (i) is halted by the proposed stopping rule, and (ii) can retrieve more true neighbors than OMP, consequently yielding higher final data clustering accuracy. Computer simulations using both synthetic data and real human face data are provided to validate our analytic study and evidence the effectiveness of the proposed approach.
106,279
106,279
PAGP: A physics-assisted Gaussian process framework with active learning for forward and inverse problems of partial differential equations
In this work, a Gaussian process regression(GPR) model incorporated with given physical information in partial differential equations(PDEs) is developed: physics-assisted Gaussian processes(PAGP). The targets of this model can be divided into two types of problem: finding solutions or discovering unknown coefficients of given PDEs with initial and boundary conditions. We introduce three different models: continuous time, discrete time and hybrid models. The given physical information is integrated into Gaussian process model through our designed GP loss functions. Three types of loss function are provided in this paper based on two different approaches to train the standard GP model. The first part of the paper introduces the continuous time model which treats temporal domain the same as spatial domain. The unknown coefficients in given PDEs can be jointly learned with GP hyper-parameters by minimizing the designed loss function. In the discrete time models, we first choose a time discretization scheme to discretize the temporal domain. Then the PAGP model is applied at each time step together with the scheme to approximate PDE solutions at given test points of final time. To discover unknown coefficients in this setting, observations at two specific time are needed and a mixed mean square error function is constructed to obtain the optimal coefficients. In the last part, a novel hybrid model combining the continuous and discrete time models is presented. It merges the flexibility of continuous time model and the accuracy of the discrete time model. The performance of choosing different models with different GP loss functions is also discussed. The effectiveness of the proposed PAGP methods is illustrated in our numerical section.
106,280
106,280
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
We introduce a general framework for nonlinear stochastic gradient descent (SGD) for the scenarios when gradient noise exhibits heavy tails. The proposed framework subsumes several popular nonlinearity choices, like clipped, normalized, signed or quantized gradient, but we also consider novel nonlinearity choices. We establish for the considered class of methods strong convergence guarantees assuming a strongly convex cost function with Lipschitz continuous gradients under very general assumptions on the gradient noise. Most notably, we show that, for a nonlinearity with bounded outputs and for the gradient noise that may not have finite moments of order greater than one, the nonlinear SGD's mean squared error (MSE), or equivalently, the expected cost function's optimality gap, converges to zero at rate~$O(1/t^\zeta)$, $\zeta \in (0,1)$. In contrast, for the same noise setting, the linear SGD generates a sequence with unbounded variances. Furthermore, for the nonlinearities that can be decoupled component wise, like, e.g., sign gradient or component-wise clipping, we show that the nonlinear SGD asymptotically (locally) achieves a $O(1/t)$ rate in the weak convergence sense and explicitly quantify the corresponding asymptotic variance. Experiments show that, while our framework is more general than existing studies of SGD under heavy-tail noise, several easy-to-implement nonlinearities from our framework are competitive with state of the art alternatives on real data sets with heavy tail noises.
106,281
106,281
Consensual Aggregation on Random Projected High-dimensional Features for Regression
In this paper, we present a study of a kernel-based consensual aggregation on randomly projected high-dimensional features of predictions for regression. The aggregation scheme is composed of two steps: the high-dimensional features of predictions, given by a large number of regression estimators, are randomly projected into a smaller subspace using Johnson-Lindenstrauss Lemma in the first step, and a kernel-based consensual aggregation is implemented on the projected features in the second step. We theoretically show that the performance of the aggregation scheme is close to the performance of the aggregation implemented on the original high-dimensional features, with high probability. Moreover, we numerically illustrate that the aggregation scheme upholds its performance on very large and highly correlated features of predictions given by different types of machines. The aggregation scheme allows us to flexibly merge a large number of redundant machines, plainly constructed without model selection or cross-validation. The efficiency of the proposed method is illustrated through several experiments evaluated on different types of synthetic and real datasets.
106,282
106,282
Efficient Test-Time Model Adaptation without Forgetting
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and testing data by adapting a given model w.r.t. any testing sample. This task is particularly important for deep models when the test environment changes frequently. Although some recent attempts have been made to handle this task, we still face two practical challenges: 1) existing methods have to perform backward computation for each test sample, resulting in unbearable prediction cost to many applications; 2) while existing TTA solutions can significantly improve the test performance on out-of-distribution data, they often suffer from severe performance degradation on in-distribution data after TTA (known as catastrophic forgetting). In this paper, we point out that not all the test samples contribute equally to model adaptation, and high-entropy ones may lead to noisy gradients that could disrupt the model. Motivated by this, we propose an active sample selection criterion to identify reliable and non-redundant samples, on which the model is updated to minimize the entropy loss for test-time adaptation. Furthermore, to alleviate the forgetting issue, we introduce a Fisher regularizer to constrain important model parameters from drastic changes, where the Fisher importance is estimated from test samples with generated pseudo labels. Extensive experiments on CIFAR-10-C, ImageNet-C, and ImageNet-R verify the effectiveness of our proposed method.
106,283
106,283
Data-Driven Approach for Log Instruction Quality Assessment
In the current IT world, developers write code while system operators run the code mostly as a black box. The connection between both worlds is typically established with log messages: the developer provides hints to the (unknown) operator, where the cause of an occurred issue is, and vice versa, the operator can report bugs during operation. To fulfil this purpose, developers write log instructions that are structured text commonly composed of a log level (e.g., "info", "error"), static text ("IP {} cannot be reached"), and dynamic variables (e.g. IP {}). However, as opposed to well-adopted coding practices, there are no widely adopted guidelines on how to write log instructions with good quality properties. For example, a developer may assign a high log level (e.g., "error") for a trivial event that can confuse the operator and increase maintenance costs. Or the static text can be insufficient to hint at a specific issue. In this paper, we address the problem of log quality assessment and provide the first step towards its automation. We start with an in-depth analysis of quality log instruction properties in nine software systems and identify two quality properties: 1) correct log level assignment assessing the correctness of the log level, and 2) sufficient linguistic structure assessing the minimal richness of the static text necessary for verbose event description. Based on these findings, we developed a data-driven approach that adapts deep learning methods for each of the two properties. An extensive evaluation on large-scale open-source systems shows that our approach correctly assesses log level assignments with an accuracy of 0.88, and the sufficient linguistic structure with an F1 score of 0.99, outperforming the baselines. Our study shows the potential of the data-driven methods in assessing instructions quality and aid developers in comprehending and writing better code.
106,284
106,284
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction
Stock market plays an important role in the economic development. Due to the complex volatility of the stock market, the research and prediction on the change of the stock price, can avoid the risk for the investors. The traditional time series model ARIMA can not describe the nonlinearity, and can not achieve satisfactory results in the stock prediction. As neural networks are with strong nonlinear generalization ability, this paper proposes an attention-based CNN-LSTM and XGBoost hybrid model to predict the stock price. The model constructed in this paper integrates the time series model, the Convolutional Neural Networks with Attention mechanism, the Long Short-Term Memory network, and XGBoost regressor in a non-linear relationship, and improves the prediction accuracy. The model can fully mine the historical information of the stock market in multiple periods. The stock data is first preprocessed through ARIMA. Then, the deep learning architecture formed in pretraining-finetuning framework is adopted. The pre-training model is the Attention-based CNN-LSTM model based on sequence-to-sequence framework. The model first uses convolution to extract the deep features of the original stock data, and then uses the Long Short-Term Memory networks to mine the long-term time series features. Finally, the XGBoost model is adopted for fine-tuning. The results show that the hybrid model is more effective and the prediction accuracy is relatively high, which can help investors or institutions to make decisions and achieve the purpose of expanding return and avoiding risk. Source code is available at https://github.com/zshicode/Attention-CLX-stock-prediction.
106,285
106,285
Bridging the Gap of AutoGraph between Academia and Industry: Analysing AutoGraph Challenge at KDD Cup 2020
Graph structured data is ubiquitous in daily life and scientific areas and has attracted increasing attention. Graph Neural Networks (GNNs) have been proved to be effective in modeling graph structured data and many variants of GNN architectures have been proposed. However, much human effort is often needed to tune the architecture depending on different datasets. Researchers naturally adopt Automated Machine Learning on Graph Learning, aiming to reduce the human effort and achieve generally top-performing GNNs, but their methods focus more on the architecture search. To understand GNN practitioners' automated solutions, we organized AutoGraph Challenge at KDD Cup 2020, emphasizing on automated graph neural networks for node classification. We received top solutions especially from industrial tech companies like Meituan, Alibaba and Twitter, which are already open sourced on Github. After detailed comparisons with solutions from academia, we quantify the gaps between academia and industry on modeling scope, effectiveness and efficiency, and show that (1) academia AutoML for Graph solutions focus on GNN architecture search while industrial solutions, especially the winning ones in the KDD Cup, tend to obtain an overall solution (2) by neural architecture search only, academia solutions achieve on average 97.3% accuracy of industrial solutions (3) academia solutions are cheap to obtain with several GPU hours while industrial solutions take a few months' labors. Academic solutions also contain much fewer parameters.
106,286
106,286
Federated Reinforcement Learning with Environment Heterogeneity
We study a Federated Reinforcement Learning (FedRL) problem in which $n$ agents collaboratively learn a single policy without sharing the trajectories they collected during agent-environment interaction. We stress the constraint of environment heterogeneity, which means $n$ environments corresponding to these $n$ agents have different state transitions. To obtain a value function or a policy function which optimizes the overall performance in all environments, we propose two federated RL algorithms, \texttt{QAvg} and \texttt{PAvg}. We theoretically prove that these algorithms converge to suboptimal solutions, while such suboptimality depends on how heterogeneous these $n$ environments are. Moreover, we propose a heuristic that achieves personalization by embedding the $n$ environments into $n$ vectors. The personalization heuristic not only improves the training but also allows for better generalization to new environments.
106,287
106,287
Failure Identification from Unstable Log Data using Deep Learning
The reliability of cloud platforms is of significant relevance because society increasingly relies on complex software systems running on the cloud. To improve it, cloud providers are automating various maintenance tasks, with failure identification frequently being considered. The precondition for automation is the availability of observability tools, with system logs commonly being used. The focus of this paper is log-based failure identification. This problem is challenging because of the instability of the log data and the incompleteness of the explicit logging failure coverage within the code. To address the two challenges, we present CLog as a method for failure identification. The key idea presented herein based is on our observation that by representing the log data as sequences of subprocesses instead of sequences of log events, the effect of the unstable log data is reduced. CLog introduces a novel subprocess extraction method that uses context-aware neural network and clustering methods to extract meaningful subprocesses. The direct modeling of log event contexts allows the identification of failures with respect to the abrupt context changes, addressing the challenge of insufficient logging failure coverage. Our experimental results demonstrate that the learned subprocesses representations reduce the instability in the input, allowing CLog to outperform the baselines on the failure identification subproblems - 1) failure detection by 9-24% on F1 score and 2) failure type identification by 7% on the macro averaged F1 score. Further analysis shows the existent negative correlation between the instability in the input event sequences and the detection performance in a model-agnostic manner.
106,288
106,288
Spatio-Temporal Dynamic Graph Relation Learning for Urban Metro Flow Prediction
Urban metro flow prediction is of great value for metro operation scheduling, passenger flow management and personal travel planning. However, it faces two main challenges. First, different metro stations, e.g. transfer stations and non-transfer stations, have unique traffic patterns. Second, it is challenging to model complex spatio-temporal dynamic relation of metro stations. To address these challenges, we develop a spatio-temporal dynamic graph relational learning model (STDGRL) to predict urban metro station flow. First, we propose a spatio-temporal node embedding representation module to capture the traffic patterns of different stations. Second, we employ a dynamic graph relationship learning module to learn dynamic spatial relationships between metro stations without a predefined graph adjacency matrix. Finally, we provide a transformer-based long-term relationship prediction module for long-term metro flow prediction. Extensive experiments are conducted based on metro data in Beijing, Shanghai, Chongqing and Hangzhou. Experimental results show the advantages of our method beyond 11 baselines for urban metro flow prediction.
106,289
106,289
CHIEF: Clustering with Higher-order Motifs in Big Networks
Clustering a group of vertices in networks facilitates applications across different domains, such as social computing and Internet of Things. However, challenges arises for clustering networks with increased scale. This paper proposes a solution which consists of two motif clustering techniques: standard acceleration CHIEF-ST and approximate acceleration CHIEF-AP. Both algorithms first find the maximal k-edge-connected subgraphs within the target networks to lower the network scale, then employ higher-order motifs in clustering. In the first procedure, we propose to lower the network scale by optimizing the network structure with maximal k-edge-connected subgraphs. For CHIEF-ST, we illustrate that all target motifs will be kept after this procedure when the minimum node degree of the target motif is equal or greater than k. For CHIEF-AP, we prove that the eigenvalues of the adjacency matrix and the Laplacian matrix are relatively stable after this step. That is, CHIEF-ST has no influence on motif clustering, whereas CHIEF-AP introduces limited yet acceptable impact. In the second procedure, we employ higher-order motifs, i.e., heterogeneous four-node motifs clustering in higher-order dense networks. The contributions of CHIEF are two-fold: (1) improved efficiency of motif clustering for big networks; (2) verification of higher-order motif significance. The proposed solutions are found to outperform baseline approaches according to experiments on real and synthetic networks, which demonstrates CHIEF's strength in large network analysis. Meanwhile, higher-order motifs are proved to perform better than traditional triangle motifs in clustering.
106,290
106,290
CAIPI in Practice: Towards Explainable Interactive Medical Image Classification
Would you trust physicians if they cannot explain their decisions to you? Medical diagnostics using machine learning gained enormously in importance within the last decade. However, without further enhancements many state-of-the-art machine learning methods are not suitable for medical application. The most important reasons are insufficient data set quality and the black-box behavior of machine learning algorithms such as Deep Learning models. Consequently, end-users cannot correct the model's decisions and the corresponding explanations. The latter is crucial for the trustworthiness of machine learning in the medical domain. The research field explainable interactive machine learning searches for methods that address both shortcomings. This paper extends the explainable and interactive CAIPI algorithm and provides an interface to simplify human-in-the-loop approaches for image classification. The interface enables the end-user (1) to investigate and (2) to correct the model's prediction and explanation, and (3) to influence the data set quality. After CAIPI optimization with only a single counterexample per iteration, the model achieves an accuracy of $97.48\%$ on the Medical MNIST and $95.02\%$ on the Fashion MNIST. This accuracy is approximately equal to state-of-the-art Deep Learning optimization procedures. Besides, CAIPI reduces the labeling effort by approximately $80\%$.
106,291
106,291
Accelerating Backward Aggregation in GCN Training with Execution Path Preparing on GPUs
The emerging Graph Convolutional Network (GCN) has now been widely used in many domains, and it is challenging to improve the efficiencies of applications by accelerating the GCN trainings. For the sparsity nature and exploding scales of input real-world graphs, state-of-the-art GCN training systems (e.g., GNNAdvisor) employ graph processing techniques to accelerate the message exchanging (i.e. aggregations) among the graph vertices. Nevertheless, these systems treat both the aggregation stages of forward and backward propagation phases as all-active graph processing procedures that indiscriminately conduct computation on all vertices of an input graph. In this paper, we first point out that in a GCN training problem with a given training set, the aggregation stages of its backward propagation phase (called as backward aggregations in this paper) can be converted to partially-active graph processing procedures, which conduct computation on only partial vertices of the input graph. By leveraging such a finding, we propose an execution path preparing method that collects and coalesces the data used during backward propagations of GCN training conducted on GPUs. The experimental results show that compared with GNNAdvisor, our approach improves the performance of the backward aggregation of GCN trainings on typical real-world graphs by 1.48x~5.65x. Moreover, the execution path preparing can be conducted either before the training (during preprocessing) or on-the-fly with the training. When used during preprocessing, our approach improves the overall GCN training by 1.05x~1.37x. And when used on-the-fly, our approach improves the overall GCN training by 1.03x~1.35x.
106,292
106,292
Double Descent in Random Feature Models: Precise Asymptotic Analysis for General Convex Regularization
We prove rigorous results on the double descent phenomenon in random features (RF) model by employing the powerful Convex Gaussian Min-Max Theorem (CGMT) in a novel multi-level manner. Using this technique, we provide precise asymptotic expressions for the generalization of RF regression under a broad class of convex regularization terms including arbitrary separable functions. We further compute our results for the combination of $\ell_1$ and $\ell_2$ regularization case, known as elastic net, and present numerical studies about it. We numerically demonstrate the predictive capacity of our framework, and show experimentally that the predicted test error is accurate even in the non-asymptotic regime.
106,293
106,293
Beyond Separability: Analyzing the Linear Transferability of Contrastive Representations to Related Subpopulations
Contrastive learning is a highly effective method for learning representations from unlabeled data. Recent works show that contrastive representations can transfer across domains, leading to simple state-of-the-art algorithms for unsupervised domain adaptation. In particular, a linear classifier trained to separate the representations on the source domain can also predict classes on the target domain accurately, even though the representations of the two domains are far from each other. We refer to this phenomenon as linear transferability. This paper analyzes when and why contrastive representations exhibit linear transferability in a general unsupervised domain adaptation setting. We prove that linear transferability can occur when data from the same class in different domains (e.g., photo dogs and cartoon dogs) are more related with each other than data from different classes in different domains (e.g., photo dogs and cartoon cats) are. Our analyses are in a realistic regime where the source and target domains can have unbounded density ratios and be weakly related, and they have distant representations across domains.
106,294
106,294
Learning to Adapt Clinical Sequences with Residual Mixture of Experts
Clinical event sequences in Electronic Health Records (EHRs) record detailed information about the patient condition and patient care as they occur in time. Recent years have witnessed increased interest of machine learning community in developing machine learning models solving different types of problems defined upon information in EHRs. More recently, neural sequential models, such as RNN and LSTM, became popular and widely applied models for representing patient sequence data and for predicting future events or outcomes based on such data. However, a single neural sequential model may not properly represent complex dynamics of all patients and the differences in their behaviors. In this work, we aim to alleviate this limitation by refining a one-fits-all model using a Mixture-of-Experts (MoE) architecture. The architecture consists of multiple (expert) RNN models covering patient sub-populations and refining the predictions of the base model. That is, instead of training expert RNN models from scratch we define them on the residual signal that attempts to model the differences from the population-wide model. The heterogeneity of various patient sequences is modeled through multiple experts that consist of RNN. Particularly, instead of directly training MoE from scratch, we augment MoE based on the prediction signal from pretrained base GRU model. With this way, the mixture of experts can provide flexible adaptation to the (limited) predictive power of the single base RNN model. We experiment with the newly proposed model on real-world EHRs data and the multivariate clinical event prediction task. We implement RNN using Gated Recurrent Units (GRU). We show 4.1% gain on AUPRC statistics compared to a single RNN prediction.
106,295
106,295
Customizable End-to-end Optimization of Online Neural Network-supported Dereverberation for Hearing Devices
This work focuses on online dereverberation for hearing devices using the weighted prediction error (WPE) algorithm. WPE filtering requires an estimate of the target speech power spectral density (PSD). Recently deep neural networks (DNNs) have been used for this task. However, these approaches optimize the PSD estimate which only indirectly affects the WPE output, thus potentially resulting in limited dereverberation. In this paper, we propose an end-to-end approach specialized for online processing, that directly optimizes the dereverberated output signal. In addition, we propose to adapt it to the needs of different types of hearing-device users by modifying the optimization target as well as the WPE algorithm characteristics used in training. We show that the proposed end-to-end approach outperforms the traditional and conventional DNN-supported WPEs on a noise-free version of the WHAMR! dataset.
106,296
106,296
VNIbCReg: VICReg with Neighboring-Invariance and better-Covariance Evaluated on Non-stationary Seismic Signal Time Series
One of the latest self-supervised learning (SSL) methods, VICReg, showed a great performance both in the linear evaluation and the fine-tuning evaluation. However, VICReg is proposed in computer vision and it learns by pulling representations of random crops of an image while maintaining the representation space by the variance and covariance loss. However, VICReg would be ineffective on non-stationary time series where different parts/crops of input should be differently encoded to consider the non-stationarity. Another recent SSL proposal, Temporal Neighborhood Coding (TNC) is effective for encoding non-stationary time series. This study shows that a combination of a VICReg-style method and TNC is very effective for SSL on non-stationary time series, where a non-stationary seismic signal time series is used as an evaluation dataset.
106,297
106,297
Fundamental limits to learning closed-form mathematical models from data
Given a finite and noisy dataset generated with a closed-form mathematical model, when is it possible to learn the true generating model from the data alone? This is the question we investigate here. We show that this model-learning problem displays a transition from a low-noise phase in which the true model can be learned, to a phase in which the observation noise is too high for the true model to be learned by any method. Both in the low-noise phase and in the high-noise phase, probabilistic model selection leads to optimal generalization to unseen data. This is in contrast to standard machine learning approaches, including artificial neural networks, which are limited, in the low-noise phase, by their ability to interpolate. In the transition region between the learnable and unlearnable phases, generalization is hard for all approaches including probabilistic model selection.
106,298
106,298
Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck
Adversarial examples, generated by carefully crafted perturbation, have attracted considerable attention in research fields. Recent works have argued that the existence of the robust and non-robust features is a primary cause of the adversarial examples, and investigated their internal interactions in the feature space. In this paper, we propose a way of explicitly distilling feature representation into the robust and non-robust features, using Information Bottleneck. Specifically, we inject noise variation to each feature unit and evaluate the information flow in the feature representation to dichotomize feature units either robust or non-robust, based on the noise variation magnitude. Through comprehensive experiments, we demonstrate that the distilled features are highly correlated with adversarial prediction, and they have human-perceptible semantic information by themselves. Furthermore, we present an attack mechanism intensifying the gradient of non-robust features that is directly related to the model prediction, and validate its effectiveness of breaking model robustness.
106,299
106,299
Neural Network-augmented Kalman Filtering for Robust Online Speech Dereverberation in Noisy Reverberant Environments
In this paper, a neural network-augmented algorithm for noise-robust online dereverberation with a Kalman filtering variant of the weighted prediction error (WPE) method is proposed. The filter stochastic variations are predicted by a deep neural network (DNN) trained end-to-end using the filter residual error and signal characteristics. The presented framework allows for robust dereverberation on a single-channel noisy reverberant dataset similar to WHAMR!. The Kalman filtering WPE introduces distortions in the enhanced signal when predicting the filter variations from the residual error only, if the target speech power spectral density is not perfectly known and the observation is noisy. The proposed approach avoids these distortions by correcting the filter variations estimation in a data-driven way, increasing the robustness of the method to noisy scenarios. Furthermore, it yields a strong dereverberation and denoising performance compared to a DNN-supported recursive least squares variant of WPE, especially for highly noisy inputs.