File size: 1,769 Bytes
2a7e8e8 7076d2e 2a7e8e8 38d2e45 5457689 d5ddb8f 122bcbf d5ddb8f 82a36b9 2a7e8e8 d5ddb8f 7762f07 d5ddb8f 7762f07 d5ddb8f 7762f07 d5ddb8f 7762f07 d5ddb8f 7762f07 25373ed 2a7e8e8 ac0ee23 d5ddb8f 2a7e8e8 b35fc4c b62e75e e244c56 d5ddb8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vulnerability-severity-classification-roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4990
- Accuracy: 0.8299
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.6397 | 1.0 | 27570 | 0.6414 | 0.7408 |
| 0.5842 | 2.0 | 55140 | 0.5563 | 0.7780 |
| 0.5479 | 3.0 | 82710 | 0.5279 | 0.7994 |
| 0.5495 | 4.0 | 110280 | 0.5049 | 0.8165 |
| 0.2945 | 5.0 | 137850 | 0.4990 | 0.8299 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|