cedricbonhomme commited on
Commit
25373ed
·
verified ·
1 Parent(s): c8d39fc

End of training

Browse files
Files changed (3) hide show
  1. README.md +15 -38
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,45 +16,24 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
-
24
  It achieves the following results on the evaluation set:
25
- - Loss: 0.5058
26
- - Accuracy: 0.8269
27
 
28
  ## Model description
29
 
30
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
31
-
32
-
33
- ## How to get started with the model
34
-
35
- ```python
36
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
37
- import torch
38
 
39
- labels = ["low", "medium", "high", "critical"]
40
 
41
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
42
- tokenizer = AutoTokenizer.from_pretrained(model_name)
43
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
44
- model.eval()
45
 
46
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
47
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
48
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
49
 
50
- # Run inference
51
- with torch.no_grad():
52
- outputs = model(**inputs)
53
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
54
 
55
- # Print results
56
- print("Predictions:", predictions)
57
- predicted_class = torch.argmax(predictions, dim=-1).item()
58
- print("Predicted severity:", labels[predicted_class])
59
- ```
60
 
61
  ### Training hyperparameters
62
 
@@ -73,11 +50,11 @@ The following hyperparameters were used during training:
73
 
74
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
75
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
76
- | 0.6291 | 1.0 | 27084 | 0.6327 | 0.7463 |
77
- | 0.6025 | 2.0 | 54168 | 0.5640 | 0.7770 |
78
- | 0.5139 | 3.0 | 81252 | 0.5181 | 0.8016 |
79
- | 0.3072 | 4.0 | 108336 | 0.4975 | 0.8182 |
80
- | 0.2318 | 5.0 | 135420 | 0.5058 | 0.8269 |
81
 
82
 
83
  ### Framework versions
@@ -85,4 +62,4 @@ The following hyperparameters were used during training:
85
  - Transformers 4.51.3
86
  - Pytorch 2.7.0+cu126
87
  - Datasets 3.6.0
88
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5068
22
+ - Accuracy: 0.8288
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
 
 
33
 
34
+ More information needed
 
 
 
35
 
36
+ ## Training procedure
 
 
 
 
37
 
38
  ### Training hyperparameters
39
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.7177 | 1.0 | 27141 | 0.6449 | 0.7401 |
54
+ | 0.449 | 2.0 | 54282 | 0.5911 | 0.7727 |
55
+ | 0.4575 | 3.0 | 81423 | 0.5174 | 0.8015 |
56
+ | 0.4397 | 4.0 | 108564 | 0.4977 | 0.8193 |
57
+ | 0.3868 | 5.0 | 135705 | 0.5068 | 0.8288 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.0+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-05-15T16:29:02,codecarbon,a0427070-b2ac-42a3-a26a-afd32efc7e56,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,34918.766422379005,0.7132912489415533,2.0427160579315703e-05,42.5,592.3660989009531,94.34468364715576,0.4118040232016034,5.450364638621572,0.9141083675371564,6.776277029360299,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-05-19T14:31:46,codecarbon,b0549cdd-487c-4c25-aced-7547e421e1c7,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,30200.185689591046,0.5953149219658064,1.9712293430400685e-05,42.5,183.42897859440293,94.34468364715576,0.3562902715484039,4.508317828318042,0.7908921420590646,5.655500241925523,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aeadfd5adfe6be8c83a349ca6c3264c18956ecefcdcb648168e554efb2f9f8a3
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9d79bbe2bf2afe98192880aeb68050576c5e37de34265ddfae9feef4ff95ac1
3
  size 498618976