cedricbonhomme commited on
Commit
5457689
·
verified ·
1 Parent(s): ac0ee23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -11
README.md CHANGED
@@ -9,31 +9,51 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
  # vulnerability-severity-classification-roberta-base
18
 
19
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
20
  It achieves the following results on the evaluation set:
21
  - Loss: 0.5372
22
  - Accuracy: 0.8138
23
 
24
  ## Model description
25
 
26
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- ## Intended uses & limitations
 
29
 
30
- More information needed
 
 
 
31
 
32
- ## Training and evaluation data
33
 
34
- More information needed
 
 
 
 
35
 
36
- ## Training procedure
37
 
38
  ### Training hyperparameters
39
 
@@ -62,4 +82,4 @@ The following hyperparameters were used during training:
62
  - Transformers 4.49.0
63
  - Pytorch 2.6.0+cu124
64
  - Datasets 3.3.2
65
- - Tokenizers 0.21.0
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
+ datasets:
13
+ - CIRCL/vulnerability-scores
14
  ---
15
 
 
 
 
16
  # vulnerability-severity-classification-roberta-base
17
 
18
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/FacebookAI/roberta-base) on a the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
19
+
20
  It achieves the following results on the evaluation set:
21
  - Loss: 0.5372
22
  - Accuracy: 0.8138
23
 
24
  ## Model description
25
 
26
+ It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
27
+
28
+
29
+ ## How to get started with the model
30
+
31
+ ```python
32
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
33
+ import torch
34
+
35
+ labels = ["low", "medium", "high", "critical"]
36
+
37
+ model_name = "CIRCL/vulnerability-severity-classification-roberta-base"
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
40
+ model.eval()
41
 
42
+ test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
43
+ inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
44
 
45
+ # Run inference
46
+ with torch.no_grad():
47
+ outputs = model(**inputs)
48
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
49
 
 
50
 
51
+ # Print results
52
+ print("Predictions:", predictions)
53
+ predicted_class = torch.argmax(predictions, dim=-1).item()
54
+ print("Predicted severity:", labels[predicted_class])
55
+ ```
56
 
 
57
 
58
  ### Training hyperparameters
59
 
 
82
  - Transformers 4.49.0
83
  - Pytorch 2.6.0+cu124
84
  - Datasets 3.3.2
85
+ - Tokenizers 0.21.0