cedricbonhomme commited on
Commit
d5ddb8f
·
verified ·
1 Parent(s): efdba3c

End of training

Browse files
Files changed (2) hide show
  1. README.md +14 -41
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,47 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
24
-
25
  It achieves the following results on the evaluation set:
26
- - Loss: 0.4963
27
- - Accuracy: 0.8298
28
 
29
  ## Model description
30
 
31
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
32
-
33
-
34
- ## How to get started with the model
35
-
36
- ```python
37
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
38
- import torch
39
-
40
- labels = ["low", "medium", "high", "critical"]
41
-
42
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
43
- tokenizer = AutoTokenizer.from_pretrained(model_name)
44
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
45
- model.eval()
46
 
47
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
48
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
49
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
50
 
51
- # Run inference
52
- with torch.no_grad():
53
- outputs = model(**inputs)
54
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
55
 
56
- # Print results
57
- print("Predictions:", predictions)
58
- predicted_class = torch.argmax(predictions, dim=-1).item()
59
- print("Predicted severity:", labels[predicted_class])
60
- ```
61
 
 
62
 
63
  ## Training procedure
64
 
@@ -77,11 +50,11 @@ The following hyperparameters were used during training:
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
79
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
80
- | 0.5857 | 1.0 | 27531 | 0.6245 | 0.7464 |
81
- | 0.6164 | 2.0 | 55062 | 0.5566 | 0.7777 |
82
- | 0.467 | 3.0 | 82593 | 0.5368 | 0.8013 |
83
- | 0.4208 | 4.0 | 110124 | 0.4849 | 0.8209 |
84
- | 0.2856 | 5.0 | 137655 | 0.4963 | 0.8298 |
85
 
86
 
87
  ### Framework versions
@@ -89,4 +62,4 @@ The following hyperparameters were used during training:
89
  - Transformers 4.51.3
90
  - Pytorch 2.7.1+cu126
91
  - Datasets 3.6.0
92
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.4990
22
+ - Accuracy: 0.8299
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
 
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.6397 | 1.0 | 27570 | 0.6414 | 0.7408 |
54
+ | 0.5842 | 2.0 | 55140 | 0.5563 | 0.7780 |
55
+ | 0.5479 | 3.0 | 82710 | 0.5279 | 0.7994 |
56
+ | 0.5495 | 4.0 | 110280 | 0.5049 | 0.8165 |
57
+ | 0.2945 | 5.0 | 137850 | 0.4990 | 0.8299 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.1+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-06-16T14:44:40,codecarbon,7763bc2c-bc4c-4fc4-a8ea-0dcc6b436120,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33047.8632072201,0.5968847629335973,1.8061221059617357e-05,42.5,421.01472704061246,94.34468364715576,0.3899190281900055,4.414954220571673,0.8655405047281302,5.670413753489804,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-06-18T23:42:08,codecarbon,fd3bbc0c-068d-4cfe-842b-8b0f8d81c5c0,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33130.226311398204,0.5970321391866981,1.8020768514379078e-05,42.5,409.9852129719489,94.34468364715576,0.39088772689889145,4.4132374397538,0.8676886633416917,5.6718138299943766,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0