End of training
Browse files- README.md +14 -41
- emissions.csv +1 -1
README.md
CHANGED
@@ -9,8 +9,6 @@ metrics:
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
12 |
-
datasets:
|
13 |
-
- CIRCL/vulnerability-scores
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,47 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# vulnerability-severity-classification-roberta-base
|
20 |
|
21 |
-
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on
|
22 |
-
|
23 |
-
You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
|
24 |
-
|
25 |
It achieves the following results on the evaluation set:
|
26 |
-
- Loss: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
## How to get started with the model
|
35 |
-
|
36 |
-
```python
|
37 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
38 |
-
import torch
|
39 |
-
|
40 |
-
labels = ["low", "medium", "high", "critical"]
|
41 |
-
|
42 |
-
model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
|
43 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
45 |
-
model.eval()
|
46 |
|
47 |
-
|
48 |
-
that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
|
49 |
-
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
|
50 |
|
51 |
-
|
52 |
-
with torch.no_grad():
|
53 |
-
outputs = model(**inputs)
|
54 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
55 |
|
56 |
-
|
57 |
-
print("Predictions:", predictions)
|
58 |
-
predicted_class = torch.argmax(predictions, dim=-1).item()
|
59 |
-
print("Predicted severity:", labels[predicted_class])
|
60 |
-
```
|
61 |
|
|
|
62 |
|
63 |
## Training procedure
|
64 |
|
@@ -77,11 +50,11 @@ The following hyperparameters were used during training:
|
|
77 |
|
78 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
79 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
@@ -89,4 +62,4 @@ The following hyperparameters were used during training:
|
|
89 |
- Transformers 4.51.3
|
90 |
- Pytorch 2.7.1+cu126
|
91 |
- Datasets 3.6.0
|
92 |
-
- Tokenizers 0.21.1
|
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
16 |
|
17 |
# vulnerability-severity-classification-roberta-base
|
18 |
|
19 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
|
|
|
|
|
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4990
|
22 |
+
- Accuracy: 0.8299
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
## Intended uses & limitations
|
|
|
|
|
29 |
|
30 |
+
More information needed
|
|
|
|
|
|
|
31 |
|
32 |
+
## Training and evaluation data
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
More information needed
|
35 |
|
36 |
## Training procedure
|
37 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
53 |
+
| 0.6397 | 1.0 | 27570 | 0.6414 | 0.7408 |
|
54 |
+
| 0.5842 | 2.0 | 55140 | 0.5563 | 0.7780 |
|
55 |
+
| 0.5479 | 3.0 | 82710 | 0.5279 | 0.7994 |
|
56 |
+
| 0.5495 | 4.0 | 110280 | 0.5049 | 0.8165 |
|
57 |
+
| 0.2945 | 5.0 | 137850 | 0.4990 | 0.8299 |
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
62 |
- Transformers 4.51.3
|
63 |
- Pytorch 2.7.1+cu126
|
64 |
- Datasets 3.6.0
|
65 |
+
- Tokenizers 0.21.1
|
emissions.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
-
2025-06-
|
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2025-06-18T23:42:08,codecarbon,fd3bbc0c-068d-4cfe-842b-8b0f8d81c5c0,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,33130.226311398204,0.5970321391866981,1.8020768514379078e-05,42.5,409.9852129719489,94.34468364715576,0.39088772689889145,4.4132374397538,0.8676886633416917,5.6718138299943766,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
|