cedricbonhomme commited on
Commit
7762f07
·
verified ·
1 Parent(s): cd3b0d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -25
README.md CHANGED
@@ -33,32 +33,29 @@ It is a classification model and is aimed to assist in classifying vulnerabiliti
33
  ## How to get started with the model
34
 
35
  ```python
36
- >>> from transformers import AutoModelForSequenceClassification, AutoTokenizer
37
- ... import torch
38
- ...
39
- ... labels = ["low", "medium", "high", "critical"]
40
- ...
41
- ... model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
42
- ... tokenizer = AutoTokenizer.from_pretrained(model_name)
43
- ... model = AutoModelForSequenceClassification.from_pretrained(model_name)
44
- ... model.eval()
45
- ...
46
- ... test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
47
  that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
48
- ... inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
49
- ...
50
- ... # Run inference
51
- ... with torch.no_grad():
52
- ... outputs = model(**inputs)
53
- ... predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
54
- ...
55
- ... # Print results
56
- ... print("Predictions:", predictions)
57
- ... predicted_class = torch.argmax(predictions, dim=-1).item()
58
- ... print("Predicted severity:", labels[predicted_class])
59
- ...
60
- Predictions: tensor([[4.9335e-04, 3.4782e-02, 2.6257e-01, 7.0215e-01]])
61
- Predicted severity: critical
62
  ```
63
 
64
  ### Training hyperparameters
 
33
  ## How to get started with the model
34
 
35
  ```python
36
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
37
+ import torch
38
+
39
+ labels = ["low", "medium", "high", "critical"]
40
+
41
+ model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
44
+ model.eval()
45
+
46
+ test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
47
  that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
48
+ inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
49
+
50
+ # Run inference
51
+ with torch.no_grad():
52
+ outputs = model(**inputs)
53
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
54
+
55
+ # Print results
56
+ print("Predictions:", predictions)
57
+ predicted_class = torch.argmax(predictions, dim=-1).item()
58
+ print("Predicted severity:", labels[predicted_class])
 
 
 
59
  ```
60
 
61
  ### Training hyperparameters