metadata
language:
- en
tags:
- sentence-transformers
- cross-encoder
- text-classification
- generated_from_trainer
- dataset_size:5749
- loss:BinaryCrossEntropyLoss
base_model: distilbert/distilroberta-base
datasets:
- sentence-transformers/stsb
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
- pearson
- spearman
co2_eq_emissions:
emissions: 2.6550346776830636
energy_consumed: 0.006830514578476734
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.031
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on distilbert/distilroberta-base
results:
- task:
type: cross-encoder-correlation
name: Cross Encoder Correlation
dataset:
name: stsb validation
type: stsb-validation
metrics:
- type: pearson
value: 0.877295960646044
name: Pearson
- type: spearman
value: 0.8754151440157509
name: Spearman
- task:
type: cross-encoder-correlation
name: Cross Encoder Correlation
dataset:
name: stsb test
type: stsb-test
metrics:
- type: pearson
value: 0.8503341584157813
name: Pearson
- type: spearman
value: 0.8388642249054395
name: Spearman
CrossEncoder based on distilbert/distilroberta-base
This is a Cross Encoder model finetuned from distilbert/distilroberta-base on the stsb dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 514 tokens
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-distilroberta-base-stsb")
# Get scores for pairs...
pairs = [
['A man with a hard hat is dancing.', 'A man wearing a hard hat is dancing.'],
['A young child is riding a horse.', 'A child is riding a horse.'],
['A man is feeding a mouse to a snake.', 'The man is feeding a mouse to the snake.'],
['A woman is playing the guitar.', 'A man is playing guitar.'],
['A woman is playing the flute.', 'A man is playing a flute.'],
]
scores = model.predict(pairs)
print(scores.shape)
# [5]
# ... or rank different texts based on similarity to a single text
ranks = model.rank(
'A man with a hard hat is dancing.',
[
'A man wearing a hard hat is dancing.',
'A child is riding a horse.',
'The man is feeding a mouse to the snake.',
'A man is playing guitar.',
'A man is playing a flute.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Correlation
- Datasets:
stsb-validation
andstsb-test
- Evaluated with
CECorrelationEvaluator
Metric | stsb-validation | stsb-test |
---|---|---|
pearson | 0.8773 | 0.8503 |
spearman | 0.8754 | 0.8389 |
Training Details
Training Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 16 characters
- mean: 31.92 characters
- max: 113 characters
- min: 16 characters
- mean: 31.51 characters
- max: 94 characters
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.
An air plane is taking off.
1.0
A man is playing a large flute.
A man is playing a flute.
0.76
A man is spreading shreded cheese on a pizza.
A man is spreading shredded cheese on an uncooked pizza.
0.76
- Loss:
BinaryCrossEntropyLoss
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 12 characters
- mean: 57.37 characters
- max: 144 characters
- min: 17 characters
- mean: 56.84 characters
- max: 141 characters
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
BinaryCrossEntropyLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 4warmup_ratio
: 0.1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | stsb-validation_spearman | stsb-test_spearman |
---|---|---|---|---|---|
-1 | -1 | - | - | -0.0150 | - |
0.2222 | 20 | 0.6905 | - | - | - |
0.4444 | 40 | 0.6548 | - | - | - |
0.6667 | 60 | 0.5906 | - | - | - |
0.8889 | 80 | 0.5631 | 0.5475 | 0.8589 | - |
1.1111 | 100 | 0.5517 | - | - | - |
1.3333 | 120 | 0.5473 | - | - | - |
1.5556 | 140 | 0.5454 | - | - | - |
1.7778 | 160 | 0.5402 | 0.5346 | 0.8760 | - |
2.0 | 180 | 0.542 | - | - | - |
2.2222 | 200 | 0.5229 | - | - | - |
2.4444 | 220 | 0.524 | - | - | - |
2.6667 | 240 | 0.5286 | 0.5373 | 0.8744 | - |
2.8889 | 260 | 0.5236 | - | - | - |
3.1111 | 280 | 0.5269 | - | - | - |
3.3333 | 300 | 0.5209 | - | - | - |
3.5556 | 320 | 0.5115 | 0.5409 | 0.8754 | - |
3.7778 | 340 | 0.5149 | - | - | - |
4.0 | 360 | 0.5084 | - | - | - |
-1 | -1 | - | - | - | 0.8389 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.007 kWh
- Carbon Emitted: 0.003 kg of CO2
- Hours Used: 0.031 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}