tomaarsen HF staff commited on
Commit
a5163d9
·
verified ·
1 Parent(s): 6763dcd

Add new CrossEncoder model

Browse files
Files changed (8) hide show
  1. README.md +426 -0
  2. config.json +33 -0
  3. merges.txt +0 -0
  4. model.safetensors +3 -0
  5. special_tokens_map.json +15 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +58 -0
  8. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - text-classification
8
+ - generated_from_trainer
9
+ - dataset_size:5749
10
+ - loss:BinaryCrossEntropyLoss
11
+ base_model: distilbert/distilroberta-base
12
+ datasets:
13
+ - sentence-transformers/stsb
14
+ pipeline_tag: text-classification
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - pearson
18
+ - spearman
19
+ co2_eq_emissions:
20
+ emissions: 2.6550346776830636
21
+ energy_consumed: 0.006830514578476734
22
+ source: codecarbon
23
+ training_type: fine-tuning
24
+ on_cloud: false
25
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
26
+ ram_total_size: 31.777088165283203
27
+ hours_used: 0.031
28
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
29
+ model-index:
30
+ - name: CrossEncoder based on distilbert/distilroberta-base
31
+ results:
32
+ - task:
33
+ type: cross-encoder-correlation
34
+ name: Cross Encoder Correlation
35
+ dataset:
36
+ name: stsb validation
37
+ type: stsb-validation
38
+ metrics:
39
+ - type: pearson
40
+ value: 0.877295960646044
41
+ name: Pearson
42
+ - type: spearman
43
+ value: 0.8754151440157509
44
+ name: Spearman
45
+ - task:
46
+ type: cross-encoder-correlation
47
+ name: Cross Encoder Correlation
48
+ dataset:
49
+ name: stsb test
50
+ type: stsb-test
51
+ metrics:
52
+ - type: pearson
53
+ value: 0.8503341584157813
54
+ name: Pearson
55
+ - type: spearman
56
+ value: 0.8388642249054395
57
+ name: Spearman
58
+ ---
59
+
60
+ # CrossEncoder based on distilbert/distilroberta-base
61
+
62
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
63
+
64
+ ## Model Details
65
+
66
+ ### Model Description
67
+ - **Model Type:** Cross Encoder
68
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
69
+ - **Maximum Sequence Length:** 514 tokens
70
+ - **Training Dataset:**
71
+ - [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
72
+ - **Language:** en
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
79
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
80
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
+
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import CrossEncoder
95
+
96
+ # Download from the 🤗 Hub
97
+ model = CrossEncoder("tomaarsen/reranker-distilroberta-base-stsb")
98
+ # Get scores for pairs...
99
+ pairs = [
100
+ ['A man with a hard hat is dancing.', 'A man wearing a hard hat is dancing.'],
101
+ ['A young child is riding a horse.', 'A child is riding a horse.'],
102
+ ['A man is feeding a mouse to a snake.', 'The man is feeding a mouse to the snake.'],
103
+ ['A woman is playing the guitar.', 'A man is playing guitar.'],
104
+ ['A woman is playing the flute.', 'A man is playing a flute.'],
105
+ ]
106
+ scores = model.predict(pairs)
107
+ print(scores.shape)
108
+ # [5]
109
+
110
+ # ... or rank different texts based on similarity to a single text
111
+ ranks = model.rank(
112
+ 'A man with a hard hat is dancing.',
113
+ [
114
+ 'A man wearing a hard hat is dancing.',
115
+ 'A child is riding a horse.',
116
+ 'The man is feeding a mouse to the snake.',
117
+ 'A man is playing guitar.',
118
+ 'A man is playing a flute.',
119
+ ]
120
+ )
121
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
122
+ ```
123
+
124
+ <!--
125
+ ### Direct Usage (Transformers)
126
+
127
+ <details><summary>Click to see the direct usage in Transformers</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Downstream Usage (Sentence Transformers)
134
+
135
+ You can finetune this model on your own dataset.
136
+
137
+ <details><summary>Click to expand</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Out-of-Scope Use
144
+
145
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
146
+ -->
147
+
148
+ ## Evaluation
149
+
150
+ ### Metrics
151
+
152
+ #### Cross Encoder Correlation
153
+
154
+ * Datasets: `stsb-validation` and `stsb-test`
155
+ * Evaluated with [<code>CECorrelationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CECorrelationEvaluator)
156
+
157
+ | Metric | stsb-validation | stsb-test |
158
+ |:-------------|:----------------|:-----------|
159
+ | pearson | 0.8773 | 0.8503 |
160
+ | **spearman** | **0.8754** | **0.8389** |
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Dataset
177
+
178
+ #### stsb
179
+
180
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
181
+ * Size: 5,749 training samples
182
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
183
+ * Approximate statistics based on the first 1000 samples:
184
+ | | sentence1 | sentence2 | score |
185
+ |:--------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
186
+ | type | string | string | float |
187
+ | details | <ul><li>min: 16 characters</li><li>mean: 31.92 characters</li><li>max: 113 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 31.51 characters</li><li>max: 94 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
188
+ * Samples:
189
+ | sentence1 | sentence2 | score |
190
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
191
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
192
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
193
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
194
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss)
195
+
196
+ ### Evaluation Dataset
197
+
198
+ #### stsb
199
+
200
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
201
+ * Size: 1,500 evaluation samples
202
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
203
+ * Approximate statistics based on the first 1000 samples:
204
+ | | sentence1 | sentence2 | score |
205
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
206
+ | type | string | string | float |
207
+ | details | <ul><li>min: 12 characters</li><li>mean: 57.37 characters</li><li>max: 144 characters</li></ul> | <ul><li>min: 17 characters</li><li>mean: 56.84 characters</li><li>max: 141 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
208
+ * Samples:
209
+ | sentence1 | sentence2 | score |
210
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
211
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
212
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
213
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
214
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss)
215
+
216
+ ### Training Hyperparameters
217
+ #### Non-Default Hyperparameters
218
+
219
+ - `eval_strategy`: steps
220
+ - `per_device_train_batch_size`: 64
221
+ - `per_device_eval_batch_size`: 64
222
+ - `num_train_epochs`: 4
223
+ - `warmup_ratio`: 0.1
224
+ - `bf16`: True
225
+
226
+ #### All Hyperparameters
227
+ <details><summary>Click to expand</summary>
228
+
229
+ - `overwrite_output_dir`: False
230
+ - `do_predict`: False
231
+ - `eval_strategy`: steps
232
+ - `prediction_loss_only`: True
233
+ - `per_device_train_batch_size`: 64
234
+ - `per_device_eval_batch_size`: 64
235
+ - `per_gpu_train_batch_size`: None
236
+ - `per_gpu_eval_batch_size`: None
237
+ - `gradient_accumulation_steps`: 1
238
+ - `eval_accumulation_steps`: None
239
+ - `torch_empty_cache_steps`: None
240
+ - `learning_rate`: 5e-05
241
+ - `weight_decay`: 0.0
242
+ - `adam_beta1`: 0.9
243
+ - `adam_beta2`: 0.999
244
+ - `adam_epsilon`: 1e-08
245
+ - `max_grad_norm`: 1.0
246
+ - `num_train_epochs`: 4
247
+ - `max_steps`: -1
248
+ - `lr_scheduler_type`: linear
249
+ - `lr_scheduler_kwargs`: {}
250
+ - `warmup_ratio`: 0.1
251
+ - `warmup_steps`: 0
252
+ - `log_level`: passive
253
+ - `log_level_replica`: warning
254
+ - `log_on_each_node`: True
255
+ - `logging_nan_inf_filter`: True
256
+ - `save_safetensors`: True
257
+ - `save_on_each_node`: False
258
+ - `save_only_model`: False
259
+ - `restore_callback_states_from_checkpoint`: False
260
+ - `no_cuda`: False
261
+ - `use_cpu`: False
262
+ - `use_mps_device`: False
263
+ - `seed`: 42
264
+ - `data_seed`: None
265
+ - `jit_mode_eval`: False
266
+ - `use_ipex`: False
267
+ - `bf16`: True
268
+ - `fp16`: False
269
+ - `fp16_opt_level`: O1
270
+ - `half_precision_backend`: auto
271
+ - `bf16_full_eval`: False
272
+ - `fp16_full_eval`: False
273
+ - `tf32`: None
274
+ - `local_rank`: 0
275
+ - `ddp_backend`: None
276
+ - `tpu_num_cores`: None
277
+ - `tpu_metrics_debug`: False
278
+ - `debug`: []
279
+ - `dataloader_drop_last`: False
280
+ - `dataloader_num_workers`: 0
281
+ - `dataloader_prefetch_factor`: None
282
+ - `past_index`: -1
283
+ - `disable_tqdm`: False
284
+ - `remove_unused_columns`: True
285
+ - `label_names`: None
286
+ - `load_best_model_at_end`: False
287
+ - `ignore_data_skip`: False
288
+ - `fsdp`: []
289
+ - `fsdp_min_num_params`: 0
290
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
291
+ - `fsdp_transformer_layer_cls_to_wrap`: None
292
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
293
+ - `deepspeed`: None
294
+ - `label_smoothing_factor`: 0.0
295
+ - `optim`: adamw_torch
296
+ - `optim_args`: None
297
+ - `adafactor`: False
298
+ - `group_by_length`: False
299
+ - `length_column_name`: length
300
+ - `ddp_find_unused_parameters`: None
301
+ - `ddp_bucket_cap_mb`: None
302
+ - `ddp_broadcast_buffers`: False
303
+ - `dataloader_pin_memory`: True
304
+ - `dataloader_persistent_workers`: False
305
+ - `skip_memory_metrics`: True
306
+ - `use_legacy_prediction_loop`: False
307
+ - `push_to_hub`: False
308
+ - `resume_from_checkpoint`: None
309
+ - `hub_model_id`: None
310
+ - `hub_strategy`: every_save
311
+ - `hub_private_repo`: None
312
+ - `hub_always_push`: False
313
+ - `gradient_checkpointing`: False
314
+ - `gradient_checkpointing_kwargs`: None
315
+ - `include_inputs_for_metrics`: False
316
+ - `include_for_metrics`: []
317
+ - `eval_do_concat_batches`: True
318
+ - `fp16_backend`: auto
319
+ - `push_to_hub_model_id`: None
320
+ - `push_to_hub_organization`: None
321
+ - `mp_parameters`:
322
+ - `auto_find_batch_size`: False
323
+ - `full_determinism`: False
324
+ - `torchdynamo`: None
325
+ - `ray_scope`: last
326
+ - `ddp_timeout`: 1800
327
+ - `torch_compile`: False
328
+ - `torch_compile_backend`: None
329
+ - `torch_compile_mode`: None
330
+ - `dispatch_batches`: None
331
+ - `split_batches`: None
332
+ - `include_tokens_per_second`: False
333
+ - `include_num_input_tokens_seen`: False
334
+ - `neftune_noise_alpha`: None
335
+ - `optim_target_modules`: None
336
+ - `batch_eval_metrics`: False
337
+ - `eval_on_start`: False
338
+ - `use_liger_kernel`: False
339
+ - `eval_use_gather_object`: False
340
+ - `average_tokens_across_devices`: False
341
+ - `prompts`: None
342
+ - `batch_sampler`: batch_sampler
343
+ - `multi_dataset_batch_sampler`: proportional
344
+
345
+ </details>
346
+
347
+ ### Training Logs
348
+ | Epoch | Step | Training Loss | Validation Loss | stsb-validation_spearman | stsb-test_spearman |
349
+ |:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------:|
350
+ | -1 | -1 | - | - | -0.0150 | - |
351
+ | 0.2222 | 20 | 0.6905 | - | - | - |
352
+ | 0.4444 | 40 | 0.6548 | - | - | - |
353
+ | 0.6667 | 60 | 0.5906 | - | - | - |
354
+ | 0.8889 | 80 | 0.5631 | 0.5475 | 0.8589 | - |
355
+ | 1.1111 | 100 | 0.5517 | - | - | - |
356
+ | 1.3333 | 120 | 0.5473 | - | - | - |
357
+ | 1.5556 | 140 | 0.5454 | - | - | - |
358
+ | 1.7778 | 160 | 0.5402 | 0.5346 | 0.8760 | - |
359
+ | 2.0 | 180 | 0.542 | - | - | - |
360
+ | 2.2222 | 200 | 0.5229 | - | - | - |
361
+ | 2.4444 | 220 | 0.524 | - | - | - |
362
+ | 2.6667 | 240 | 0.5286 | 0.5373 | 0.8744 | - |
363
+ | 2.8889 | 260 | 0.5236 | - | - | - |
364
+ | 3.1111 | 280 | 0.5269 | - | - | - |
365
+ | 3.3333 | 300 | 0.5209 | - | - | - |
366
+ | 3.5556 | 320 | 0.5115 | 0.5409 | 0.8754 | - |
367
+ | 3.7778 | 340 | 0.5149 | - | - | - |
368
+ | 4.0 | 360 | 0.5084 | - | - | - |
369
+ | -1 | -1 | - | - | - | 0.8389 |
370
+
371
+
372
+ ### Environmental Impact
373
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
374
+ - **Energy Consumed**: 0.007 kWh
375
+ - **Carbon Emitted**: 0.003 kg of CO2
376
+ - **Hours Used**: 0.031 hours
377
+
378
+ ### Training Hardware
379
+ - **On Cloud**: No
380
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
381
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
382
+ - **RAM Size**: 31.78 GB
383
+
384
+ ### Framework Versions
385
+ - Python: 3.11.6
386
+ - Sentence Transformers: 3.5.0.dev0
387
+ - Transformers: 4.49.0.dev0
388
+ - PyTorch: 2.5.0+cu121
389
+ - Accelerate: 1.3.0
390
+ - Datasets: 2.20.0
391
+ - Tokenizers: 0.21.0
392
+
393
+ ## Citation
394
+
395
+ ### BibTeX
396
+
397
+ #### Sentence Transformers
398
+ ```bibtex
399
+ @inproceedings{reimers-2019-sentence-bert,
400
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
401
+ author = "Reimers, Nils and Gurevych, Iryna",
402
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
403
+ month = "11",
404
+ year = "2019",
405
+ publisher = "Association for Computational Linguistics",
406
+ url = "https://arxiv.org/abs/1908.10084",
407
+ }
408
+ ```
409
+
410
+ <!--
411
+ ## Glossary
412
+
413
+ *Clearly define terms in order to be accessible across audiences.*
414
+ -->
415
+
416
+ <!--
417
+ ## Model Card Authors
418
+
419
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
420
+ -->
421
+
422
+ <!--
423
+ ## Model Card Contact
424
+
425
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
426
+ -->
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 514,
23
+ "model_type": "roberta",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 6,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "absolute",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.49.0.dev0",
30
+ "type_vocab_size": 1,
31
+ "use_cache": true,
32
+ "vocab_size": 50265
33
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e29ec4b72ade7e7fdfe85e95990ed91adc188897fe9469bf3eef8e330dbe3ccd
3
+ size 328489204
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 514,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff