--- language: - en tags: - sentence-transformers - cross-encoder - text-classification - generated_from_trainer - dataset_size:5749 - loss:BinaryCrossEntropyLoss base_model: distilbert/distilroberta-base datasets: - sentence-transformers/stsb pipeline_tag: text-classification library_name: sentence-transformers metrics: - pearson - spearman co2_eq_emissions: emissions: 2.6550346776830636 energy_consumed: 0.006830514578476734 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.031 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: CrossEncoder based on distilbert/distilroberta-base results: - task: type: cross-encoder-correlation name: Cross Encoder Correlation dataset: name: stsb validation type: stsb-validation metrics: - type: pearson value: 0.877295960646044 name: Pearson - type: spearman value: 0.8754151440157509 name: Spearman - task: type: cross-encoder-correlation name: Cross Encoder Correlation dataset: name: stsb test type: stsb-test metrics: - type: pearson value: 0.8503341584157813 name: Pearson - type: spearman value: 0.8388642249054395 name: Spearman --- # CrossEncoder based on distilbert/distilroberta-base This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) - **Maximum Sequence Length:** 514 tokens - **Training Dataset:** - [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("tomaarsen/reranker-distilroberta-base-stsb") # Get scores for pairs... pairs = [ ['A man with a hard hat is dancing.', 'A man wearing a hard hat is dancing.'], ['A young child is riding a horse.', 'A child is riding a horse.'], ['A man is feeding a mouse to a snake.', 'The man is feeding a mouse to the snake.'], ['A woman is playing the guitar.', 'A man is playing guitar.'], ['A woman is playing the flute.', 'A man is playing a flute.'], ] scores = model.predict(pairs) print(scores.shape) # [5] # ... or rank different texts based on similarity to a single text ranks = model.rank( 'A man with a hard hat is dancing.', [ 'A man wearing a hard hat is dancing.', 'A child is riding a horse.', 'The man is feeding a mouse to the snake.', 'A man is playing guitar.', 'A man is playing a flute.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` ## Evaluation ### Metrics #### Cross Encoder Correlation * Datasets: `stsb-validation` and `stsb-test` * Evaluated with [CECorrelationEvaluator](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CECorrelationEvaluator) | Metric | stsb-validation | stsb-test | |:-------------|:----------------|:-----------| | pearson | 0.8773 | 0.8503 | | **spearman** | **0.8754** | **0.8389** | ## Training Details ### Training Dataset #### stsb * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 5,749 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| | A plane is taking off. | An air plane is taking off. | 1.0 | | A man is playing a large flute. | A man is playing a flute. | 0.76 | | A man is spreading shreded cheese on a pizza. | A man is spreading shredded cheese on an uncooked pizza. | 0.76 | * Loss: [BinaryCrossEntropyLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss) ### Evaluation Dataset #### stsb * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 1,500 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------|:------------------------------------------------------|:------------------| | A man with a hard hat is dancing. | A man wearing a hard hat is dancing. | 1.0 | | A young child is riding a horse. | A child is riding a horse. | 0.95 | | A man is feeding a mouse to a snake. | The man is feeding a mouse to the snake. | 1.0 | * Loss: [BinaryCrossEntropyLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `bf16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | stsb-validation_spearman | stsb-test_spearman | |:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------:| | -1 | -1 | - | - | -0.0150 | - | | 0.2222 | 20 | 0.6905 | - | - | - | | 0.4444 | 40 | 0.6548 | - | - | - | | 0.6667 | 60 | 0.5906 | - | - | - | | 0.8889 | 80 | 0.5631 | 0.5475 | 0.8589 | - | | 1.1111 | 100 | 0.5517 | - | - | - | | 1.3333 | 120 | 0.5473 | - | - | - | | 1.5556 | 140 | 0.5454 | - | - | - | | 1.7778 | 160 | 0.5402 | 0.5346 | 0.8760 | - | | 2.0 | 180 | 0.542 | - | - | - | | 2.2222 | 200 | 0.5229 | - | - | - | | 2.4444 | 220 | 0.524 | - | - | - | | 2.6667 | 240 | 0.5286 | 0.5373 | 0.8744 | - | | 2.8889 | 260 | 0.5236 | - | - | - | | 3.1111 | 280 | 0.5269 | - | - | - | | 3.3333 | 300 | 0.5209 | - | - | - | | 3.5556 | 320 | 0.5115 | 0.5409 | 0.8754 | - | | 3.7778 | 340 | 0.5149 | - | - | - | | 4.0 | 360 | 0.5084 | - | - | - | | -1 | -1 | - | - | - | 0.8389 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.007 kWh - **Carbon Emitted**: 0.003 kg of CO2 - **Hours Used**: 0.031 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.5.0.dev0 - Transformers: 4.49.0.dev0 - PyTorch: 2.5.0+cu121 - Accelerate: 1.3.0 - Datasets: 2.20.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```