|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import pytorch_lightning as pl |
|
from tqdm import tqdm |
|
from torchvision.transforms import v2 |
|
from torchvision.utils import make_grid, save_image |
|
from einops import rearrange |
|
|
|
from diffusers import ( |
|
DiffusionPipeline, |
|
EulerAncestralDiscreteScheduler, |
|
DDPMScheduler, |
|
UNet2DConditionModel, |
|
ControlNetModel, |
|
) |
|
|
|
from .modules import Dino_v2, UNet2p5DConditionModel |
|
import math |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
class HunyuanPaint(pl.LightningModule): |
|
def __init__( |
|
self, |
|
stable_diffusion_config, |
|
control_net_config=None, |
|
num_view=6, |
|
view_size=320, |
|
drop_cond_prob=0.1, |
|
with_normal_map=None, |
|
with_position_map=None, |
|
pbr_settings=["albedo", "mr"], |
|
**kwargs, |
|
): |
|
"""Initializes the HunyuanPaint Lightning Module. |
|
|
|
Args: |
|
stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline |
|
control_net_config: Configuration for ControlNet (optional) |
|
num_view: Number of views to process |
|
view_size: Size of input views (height/width) |
|
drop_cond_prob: Probability of dropping conditioning input during training |
|
with_normal_map: Flag indicating whether normal maps are used |
|
with_position_map: Flag indicating whether position maps are used |
|
pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness) |
|
**kwargs: Additional keyword arguments |
|
""" |
|
super(HunyuanPaint, self).__init__() |
|
|
|
self.num_view = num_view |
|
self.view_size = view_size |
|
self.drop_cond_prob = drop_cond_prob |
|
self.pbr_settings = pbr_settings |
|
|
|
|
|
pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config) |
|
pipeline.set_pbr_settings(self.pbr_settings) |
|
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( |
|
pipeline.scheduler.config, timestep_spacing="trailing" |
|
) |
|
|
|
self.with_normal_map = with_normal_map |
|
self.with_position_map = with_position_map |
|
|
|
self.pipeline = pipeline |
|
|
|
self.pipeline.vae.use_slicing = True |
|
|
|
train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config) |
|
|
|
if isinstance(self.pipeline.unet, UNet2DConditionModel): |
|
self.pipeline.unet = UNet2p5DConditionModel( |
|
self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings |
|
) |
|
self.train_scheduler = train_sched |
|
|
|
self.register_schedule() |
|
|
|
pipeline.set_learned_parameters() |
|
|
|
if control_net_config is not None: |
|
pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet) |
|
self.pipeline.add_controlnet( |
|
ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path), |
|
conditioning_scale=0.75, |
|
) |
|
|
|
self.unet = pipeline.unet |
|
|
|
self.pipeline.set_progress_bar_config(disable=True) |
|
self.pipeline.vae = self.pipeline.vae.bfloat16() |
|
self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16() |
|
|
|
if self.unet.use_dino: |
|
self.dino_v2 = Dino_v2("facebook/dinov2-giant") |
|
self.dino_v2 = self.dino_v2.bfloat16() |
|
|
|
self.validation_step_outputs = [] |
|
|
|
def register_schedule(self): |
|
|
|
self.num_timesteps = self.train_scheduler.config.num_train_timesteps |
|
|
|
betas = self.train_scheduler.betas.detach().cpu() |
|
|
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0) |
|
|
|
self.register_buffer("betas", betas.float()) |
|
self.register_buffer("alphas_cumprod", alphas_cumprod.float()) |
|
self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float()) |
|
|
|
|
|
self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float()) |
|
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float()) |
|
|
|
self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float()) |
|
self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float()) |
|
|
|
def on_fit_start(self): |
|
device = torch.device(f"cuda:{self.local_rank}") |
|
self.pipeline.to(device) |
|
if self.global_rank == 0: |
|
os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True) |
|
|
|
def prepare_batch_data(self, batch): |
|
"""Preprocesses a batch of input data for training/inference. |
|
|
|
Args: |
|
batch: Raw input batch dictionary |
|
|
|
Returns: |
|
tuple: Contains: |
|
- cond_imgs: Primary conditioning images (B, 1, C, H, W) |
|
- cond_imgs_another: Secondary conditioning images (B, 1, C, H, W) |
|
- target_imgs: Dictionary of target PBR images resized and clamped |
|
- images_normal: Preprocessed normal maps (if available) |
|
- images_position: Preprocessed position maps (if available) |
|
""" |
|
|
|
images_cond = batch["images_cond"].to(self.device) |
|
cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...] |
|
|
|
cond_size = self.view_size |
|
cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1) |
|
cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp( |
|
0, 1 |
|
) |
|
|
|
target_imgs = {} |
|
for pbr_token in self.pbr_settings: |
|
target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device) |
|
target_imgs[pbr_token] = v2.functional.resize( |
|
target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True |
|
).clamp(0, 1) |
|
|
|
images_normal = None |
|
if "images_normal" in batch: |
|
images_normal = batch["images_normal"] |
|
images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp( |
|
0, 1 |
|
) |
|
images_normal = [images_normal] |
|
|
|
images_position = None |
|
if "images_position" in batch: |
|
images_position = batch["images_position"] |
|
images_position = v2.functional.resize( |
|
images_position, self.view_size, interpolation=3, antialias=True |
|
).clamp(0, 1) |
|
images_position = [images_position] |
|
|
|
return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position |
|
|
|
@torch.no_grad() |
|
def forward_text_encoder(self, prompts): |
|
device = next(self.pipeline.vae.parameters()).device |
|
text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0] |
|
return text_embeds |
|
|
|
@torch.no_grad() |
|
def encode_images(self, images): |
|
"""Encodes input images into latent representations using the VAE. |
|
|
|
Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W) |
|
Maintains original batch structure in output latents. |
|
|
|
Args: |
|
images: Input images tensor |
|
|
|
Returns: |
|
torch.Tensor: Latent representations with original batch dimensions preserved |
|
""" |
|
|
|
B = images.shape[0] |
|
image_ndims = images.ndim |
|
if image_ndims != 5: |
|
N_pbrs, N = images.shape[1:3] |
|
images = ( |
|
rearrange(images, "b n c h w -> (b n) c h w") |
|
if image_ndims == 5 |
|
else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w") |
|
) |
|
dtype = next(self.pipeline.vae.parameters()).dtype |
|
|
|
images = (images - 0.5) * 2.0 |
|
posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist |
|
latents = posterior.sample() * self.pipeline.vae.config.scaling_factor |
|
|
|
latents = ( |
|
rearrange(latents, "(b n) c h w -> b n c h w", b=B) |
|
if image_ndims == 5 |
|
else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs) |
|
) |
|
|
|
return latents |
|
|
|
def forward_unet(self, latents, t, **cached_condition): |
|
"""Runs the UNet model to predict noise/latent residuals. |
|
|
|
Args: |
|
latents: Noisy latent representations (B, C, H, W) |
|
t: Timestep tensor (B,) |
|
**cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc) |
|
|
|
Returns: |
|
torch.Tensor: UNet output (predicted noise or velocity) |
|
""" |
|
|
|
dtype = next(self.unet.parameters()).dtype |
|
latents = latents.to(dtype) |
|
shading_embeds = cached_condition["shading_embeds"] |
|
pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition) |
|
return pred_noise[0] |
|
|
|
def predict_start_from_z_and_v(self, x_t, t, v): |
|
""" |
|
Predicts clean image (x0) from noisy latents (x_t) and |
|
velocity prediction (v) using the v-prediction formula. |
|
|
|
Args: |
|
x_t: Noisy latents at timestep t |
|
t: Current timestep |
|
v: Predicted velocity (v) from UNet |
|
|
|
Returns: |
|
torch.Tensor: Predicted clean image (x0) |
|
""" |
|
|
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t |
|
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v |
|
) |
|
|
|
def get_v(self, x, noise, t): |
|
"""Computes the target velocity (v) for v-prediction training. |
|
|
|
Args: |
|
x: Clean latents (x0) |
|
noise: Added noise |
|
t: Current timestep |
|
|
|
Returns: |
|
torch.Tensor: Target velocity |
|
""" |
|
|
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise |
|
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x |
|
) |
|
|
|
def training_step(self, batch, batch_idx): |
|
"""Performs a single training step with both conditioning paths. |
|
|
|
Implements: |
|
1. Dual-conditioning path training (main ref + secondary ref) |
|
2. Velocity-prediction with consistency loss |
|
3. Conditional dropout for robust learning |
|
4. PBR-specific losses (albedo/metallic-roughness) |
|
|
|
Args: |
|
batch: Input batch from dataloader |
|
batch_idx: Index of current batch |
|
|
|
Returns: |
|
torch.Tensor: Combined loss value |
|
""" |
|
|
|
cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch) |
|
|
|
B, N_ref = cond_imgs.shape[:2] |
|
_, N_gen, _, H, W = target_imgs["albedo"].shape |
|
N_pbrs = len(self.pbr_settings) |
|
t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device) |
|
t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen) |
|
t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)") |
|
|
|
all_target_pbrs = [] |
|
for pbr_token in self.pbr_settings: |
|
all_target_pbrs.append(target_imgs[pbr_token]) |
|
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0) |
|
gen_latents = self.encode_images(all_target_pbrs) |
|
ref_latents = self.encode_images(cond_imgs) |
|
ref_latents_another = self.encode_images(cond_imgs_another) |
|
|
|
all_shading_tokens = [] |
|
for token in self.pbr_settings: |
|
if token in ["albedo", "mr"]: |
|
all_shading_tokens.append( |
|
getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1) |
|
) |
|
shading_embeds = torch.stack(all_shading_tokens, dim=1) |
|
|
|
if self.unet.use_dino: |
|
dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...]) |
|
dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...]) |
|
|
|
gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w") |
|
noise = torch.randn_like(gen_latents).to(self.device) |
|
latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device) |
|
latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs) |
|
|
|
cached_condition = {} |
|
|
|
if normal_imgs is not None: |
|
normal_embeds = self.encode_images(normal_imgs[0]) |
|
cached_condition["embeds_normal"] = normal_embeds |
|
|
|
if position_imgs is not None: |
|
position_embeds = self.encode_images(position_imgs[0]) |
|
cached_condition["embeds_position"] = position_embeds |
|
cached_condition["position_maps"] = position_imgs[0] |
|
|
|
for b in range(B): |
|
prob = np.random.rand() |
|
if prob < self.drop_cond_prob: |
|
if "normal_imgs" in cached_condition: |
|
cached_condition["embeds_normal"][b, ...] = torch.zeros_like( |
|
cached_condition["embeds_normal"][b, ...] |
|
) |
|
if "position_imgs" in cached_condition: |
|
cached_condition["embeds_position"][b, ...] = torch.zeros_like( |
|
cached_condition["embeds_position"][b, ...] |
|
) |
|
|
|
prob = np.random.rand() |
|
if prob < self.drop_cond_prob: |
|
if "position_maps" in cached_condition: |
|
cached_condition["position_maps"][b, ...] = torch.zeros_like( |
|
cached_condition["position_maps"][b, ...] |
|
) |
|
|
|
prob = np.random.rand() |
|
if prob < self.drop_cond_prob: |
|
dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...]) |
|
prob = np.random.rand() |
|
if prob < self.drop_cond_prob: |
|
dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...]) |
|
|
|
|
|
prob = np.random.rand() |
|
cached_condition["mva_scale"] = 1.0 |
|
cached_condition["ref_scale"] = 1.0 |
|
if prob < self.drop_cond_prob: |
|
cached_condition["mva_scale"] = 0.0 |
|
cached_condition["ref_scale"] = 0.0 |
|
elif prob > 1.0 - self.drop_cond_prob: |
|
prob = np.random.rand() |
|
if prob < 0.5: |
|
cached_condition["mva_scale"] = 0.0 |
|
else: |
|
cached_condition["ref_scale"] = 0.0 |
|
else: |
|
pass |
|
|
|
if self.train_scheduler.config.prediction_type == "v_prediction": |
|
|
|
cached_condition["shading_embeds"] = shading_embeds |
|
cached_condition["ref_latents"] = ref_latents |
|
cached_condition["dino_hidden_states"] = dino_hidden_states |
|
v_pred = self.forward_unet(latents_noisy, t, **cached_condition) |
|
v_pred_albedo, v_pred_mr = torch.split( |
|
rearrange( |
|
v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view |
|
), |
|
1, |
|
dim=1, |
|
) |
|
v_target = self.get_v(gen_latents, noise, t) |
|
v_target_albedo, v_target_mr = torch.split( |
|
rearrange( |
|
v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view |
|
), |
|
1, |
|
dim=1, |
|
) |
|
|
|
albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo) |
|
mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr) |
|
|
|
cached_condition["ref_latents"] = ref_latents_another |
|
cached_condition["dino_hidden_states"] = dino_hidden_states_another |
|
v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition) |
|
v_pred_another_albedo, v_pred_another_mr = torch.split( |
|
rearrange( |
|
v_pred_another, |
|
"(b n_pbr n) c h w -> b n_pbr n c h w", |
|
n_pbr=len(self.pbr_settings), |
|
n=self.num_view, |
|
), |
|
1, |
|
dim=1, |
|
) |
|
|
|
albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo) |
|
mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr) |
|
|
|
consistency_loss, _ = self.compute_loss(v_pred_another, v_pred) |
|
|
|
albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5 |
|
mr_loss = (mr_loss_1 + mr_loss_2) * 0.5 |
|
|
|
log_loss_dict = {} |
|
log_loss_dict.update({f"train/albedo_loss": albedo_loss}) |
|
log_loss_dict.update({f"train/mr_loss": mr_loss}) |
|
log_loss_dict.update({f"train/cons_loss": consistency_loss}) |
|
|
|
loss_dict = log_loss_dict |
|
|
|
elif self.train_scheduler.config.prediction_type == "epsilon": |
|
e_pred = self.forward_unet(latents_noisy, t, **cached_condition) |
|
loss, loss_dict = self.compute_loss(e_pred, noise) |
|
else: |
|
raise f"No {self.train_scheduler.config.prediction_type}" |
|
|
|
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) |
|
self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False) |
|
lr = self.optimizers().param_groups[0]["lr"] |
|
self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) |
|
|
|
return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss |
|
|
|
def compute_loss(self, noise_pred, noise_gt): |
|
loss = F.mse_loss(noise_pred, noise_gt) |
|
prefix = "train" |
|
loss_dict = {} |
|
loss_dict.update({f"{prefix}/loss": loss}) |
|
return loss, loss_dict |
|
|
|
@torch.no_grad() |
|
def validation_step(self, batch, batch_idx): |
|
"""Performs validation on a single batch. |
|
|
|
Generates predicted images using: |
|
1. Reference conditioning images |
|
2. Optional normal/position maps |
|
3. Frozen DINO features (if enabled) |
|
4. Text prompt conditioning |
|
|
|
Compares predictions against ground truth targets and prepares visualization. |
|
Stores results for epoch-level aggregation. |
|
|
|
Args: |
|
batch: Input batch from validation dataloader |
|
batch_idx: Index of current batch |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch) |
|
resolution = self.view_size |
|
image_pils = [] |
|
for i in range(cond_imgs_tensor.shape[0]): |
|
image_pils.append([]) |
|
for j in range(cond_imgs_tensor.shape[1]): |
|
image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...])) |
|
|
|
outputs, gts = [], [] |
|
for idx in range(len(image_pils)): |
|
cond_imgs = image_pils[idx] |
|
|
|
cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings)) |
|
if normal_imgs is not None: |
|
cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0) |
|
if position_imgs is not None: |
|
cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0) |
|
if self.pipeline.unet.use_dino: |
|
dino_hidden_states = self.dino_v2([cond_imgs][0]) |
|
cached_condition["dino_hidden_states"] = dino_hidden_states |
|
|
|
latent = self.pipeline( |
|
cond_imgs, |
|
prompt="high quality", |
|
num_inference_steps=30, |
|
output_type="latent", |
|
height=resolution, |
|
width=resolution, |
|
**cached_condition, |
|
).images |
|
|
|
image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[ |
|
0 |
|
] |
|
image = (image * 0.5 + 0.5).clamp(0, 1) |
|
|
|
image = rearrange( |
|
image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view |
|
) |
|
image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2) |
|
image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w") |
|
image = rearrange( |
|
image, |
|
"(b n_pbr n) c h w -> b c (n_pbr h) (n w)", |
|
b=1, |
|
n_pbr=len(self.pbr_settings), |
|
n=self.num_view + 1, |
|
) |
|
outputs.append(image) |
|
|
|
all_target_pbrs = [] |
|
for pbr_token in self.pbr_settings: |
|
all_target_pbrs.append(target_imgs[pbr_token]) |
|
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0) |
|
all_target_pbrs = torch.cat( |
|
(cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2 |
|
) |
|
all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)") |
|
gts = all_target_pbrs |
|
outputs = torch.cat(outputs, dim=0).to(self.device) |
|
images = torch.cat([gts, outputs], dim=-2) |
|
self.validation_step_outputs.append(images) |
|
|
|
@torch.no_grad() |
|
def on_validation_epoch_end(self): |
|
"""Aggregates validation results at epoch end. |
|
|
|
Gathers outputs from all GPUs (if distributed training), |
|
creates a unified visualization grid, and saves to disk. |
|
Only rank 0 process performs saving. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = torch.cat(self.validation_step_outputs, dim=0) |
|
all_images = self.all_gather(images) |
|
all_images = rearrange(all_images, "r b c h w -> (r b) c h w") |
|
|
|
if self.global_rank == 0: |
|
grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1)) |
|
save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png")) |
|
|
|
self.validation_step_outputs.clear() |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr) |
|
|
|
def lr_lambda(step): |
|
warm_up_step = 1000 |
|
T_step = 9000 |
|
gamma = 0.9 |
|
min_lr = 0.1 if step >= warm_up_step else 0.0 |
|
max_lr = 1.0 |
|
normalized_step = step % (warm_up_step + T_step) |
|
current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step)) |
|
if current_max_lr < min_lr: |
|
current_max_lr = min_lr |
|
if normalized_step < warm_up_step: |
|
lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr) |
|
else: |
|
step_wc_wp = normalized_step - warm_up_step |
|
ratio = step_wc_wp / T_step |
|
lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio)) |
|
return lr_step |
|
|
|
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda) |
|
|
|
lr_scheduler_config = { |
|
"scheduler": lr_scheduler, |
|
"interval": "step", |
|
"frequency": 1, |
|
"monitor": "val_loss", |
|
"strict": False, |
|
"name": None, |
|
} |
|
|
|
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config} |
|
|