Image-to-3D
Hunyuan3D-2
Diffusers
Safetensors
English
Chinese
text-to-3d
Huiwenshi commited on
Commit
a7e7314
·
verified ·
1 Parent(s): 6e9aaf2

Upload hunyuan3d-paintpbr-v2-1/unet/model.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. hunyuan3d-paintpbr-v2-1/unet/model.py +622 -0
hunyuan3d-paintpbr-v2-1/unet/model.py ADDED
@@ -0,0 +1,622 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
2
+ # except for the third-party components listed below.
3
+ # Hunyuan 3D does not impose any additional limitations beyond what is outlined
4
+ # in the repsective licenses of these third-party components.
5
+ # Users must comply with all terms and conditions of original licenses of these third-party
6
+ # components and must ensure that the usage of the third party components adheres to
7
+ # all relevant laws and regulations.
8
+
9
+ # For avoidance of doubts, Hunyuan 3D means the large language models and
10
+ # their software and algorithms, including trained model weights, parameters (including
11
+ # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
12
+ # fine-tuning enabling code and other elements of the foregoing made publicly available
13
+ # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
14
+
15
+ import os
16
+
17
+ # import ipdb
18
+ import numpy as np
19
+ import torch
20
+ import torch.nn as nn
21
+ import torch.nn.functional as F
22
+ import pytorch_lightning as pl
23
+ from tqdm import tqdm
24
+ from torchvision.transforms import v2
25
+ from torchvision.utils import make_grid, save_image
26
+ from einops import rearrange
27
+
28
+ from diffusers import (
29
+ DiffusionPipeline,
30
+ EulerAncestralDiscreteScheduler,
31
+ DDPMScheduler,
32
+ UNet2DConditionModel,
33
+ ControlNetModel,
34
+ )
35
+
36
+ from .modules import Dino_v2, UNet2p5DConditionModel
37
+ import math
38
+
39
+
40
+ def extract_into_tensor(a, t, x_shape):
41
+ b, *_ = t.shape
42
+ out = a.gather(-1, t)
43
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
44
+
45
+
46
+ class HunyuanPaint(pl.LightningModule):
47
+ def __init__(
48
+ self,
49
+ stable_diffusion_config,
50
+ control_net_config=None,
51
+ num_view=6,
52
+ view_size=320,
53
+ drop_cond_prob=0.1,
54
+ with_normal_map=None,
55
+ with_position_map=None,
56
+ pbr_settings=["albedo", "mr"],
57
+ **kwargs,
58
+ ):
59
+ """Initializes the HunyuanPaint Lightning Module.
60
+
61
+ Args:
62
+ stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline
63
+ control_net_config: Configuration for ControlNet (optional)
64
+ num_view: Number of views to process
65
+ view_size: Size of input views (height/width)
66
+ drop_cond_prob: Probability of dropping conditioning input during training
67
+ with_normal_map: Flag indicating whether normal maps are used
68
+ with_position_map: Flag indicating whether position maps are used
69
+ pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness)
70
+ **kwargs: Additional keyword arguments
71
+ """
72
+ super(HunyuanPaint, self).__init__()
73
+
74
+ self.num_view = num_view
75
+ self.view_size = view_size
76
+ self.drop_cond_prob = drop_cond_prob
77
+ self.pbr_settings = pbr_settings
78
+
79
+ # init modules
80
+ pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config)
81
+ pipeline.set_pbr_settings(self.pbr_settings)
82
+ pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
83
+ pipeline.scheduler.config, timestep_spacing="trailing"
84
+ )
85
+
86
+ self.with_normal_map = with_normal_map
87
+ self.with_position_map = with_position_map
88
+
89
+ self.pipeline = pipeline
90
+
91
+ self.pipeline.vae.use_slicing = True
92
+
93
+ train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config)
94
+
95
+ if isinstance(self.pipeline.unet, UNet2DConditionModel):
96
+ self.pipeline.unet = UNet2p5DConditionModel(
97
+ self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings
98
+ )
99
+ self.train_scheduler = train_sched # use ddpm scheduler during training
100
+
101
+ self.register_schedule()
102
+
103
+ pipeline.set_learned_parameters()
104
+
105
+ if control_net_config is not None:
106
+ pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet)
107
+ self.pipeline.add_controlnet(
108
+ ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path),
109
+ conditioning_scale=0.75,
110
+ )
111
+
112
+ self.unet = pipeline.unet
113
+
114
+ self.pipeline.set_progress_bar_config(disable=True)
115
+ self.pipeline.vae = self.pipeline.vae.bfloat16()
116
+ self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16()
117
+
118
+ if self.unet.use_dino:
119
+ self.dino_v2 = Dino_v2("facebook/dinov2-giant")
120
+ self.dino_v2 = self.dino_v2.bfloat16()
121
+
122
+ self.validation_step_outputs = []
123
+
124
+ def register_schedule(self):
125
+
126
+ self.num_timesteps = self.train_scheduler.config.num_train_timesteps
127
+
128
+ betas = self.train_scheduler.betas.detach().cpu()
129
+
130
+ alphas = 1.0 - betas
131
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
132
+ alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
133
+
134
+ self.register_buffer("betas", betas.float())
135
+ self.register_buffer("alphas_cumprod", alphas_cumprod.float())
136
+ self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float())
137
+
138
+ # calculations for diffusion q(x_t | x_{t-1}) and others
139
+ self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
140
+ self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())
141
+
142
+ self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float())
143
+ self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float())
144
+
145
+ def on_fit_start(self):
146
+ device = torch.device(f"cuda:{self.local_rank}")
147
+ self.pipeline.to(device)
148
+ if self.global_rank == 0:
149
+ os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True)
150
+
151
+ def prepare_batch_data(self, batch):
152
+ """Preprocesses a batch of input data for training/inference.
153
+
154
+ Args:
155
+ batch: Raw input batch dictionary
156
+
157
+ Returns:
158
+ tuple: Contains:
159
+ - cond_imgs: Primary conditioning images (B, 1, C, H, W)
160
+ - cond_imgs_another: Secondary conditioning images (B, 1, C, H, W)
161
+ - target_imgs: Dictionary of target PBR images resized and clamped
162
+ - images_normal: Preprocessed normal maps (if available)
163
+ - images_position: Preprocessed position maps (if available)
164
+ """
165
+
166
+ images_cond = batch["images_cond"].to(self.device) # (B, M, C, H, W), where M is the number of reference images
167
+ cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...]
168
+
169
+ cond_size = self.view_size
170
+ cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1)
171
+ cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp(
172
+ 0, 1
173
+ )
174
+
175
+ target_imgs = {}
176
+ for pbr_token in self.pbr_settings:
177
+ target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device)
178
+ target_imgs[pbr_token] = v2.functional.resize(
179
+ target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True
180
+ ).clamp(0, 1)
181
+
182
+ images_normal = None
183
+ if "images_normal" in batch:
184
+ images_normal = batch["images_normal"] # (B, N, C, H, W)
185
+ images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp(
186
+ 0, 1
187
+ )
188
+ images_normal = [images_normal]
189
+
190
+ images_position = None
191
+ if "images_position" in batch:
192
+ images_position = batch["images_position"] # (B, N, C, H, W)
193
+ images_position = v2.functional.resize(
194
+ images_position, self.view_size, interpolation=3, antialias=True
195
+ ).clamp(0, 1)
196
+ images_position = [images_position]
197
+
198
+ return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position
199
+
200
+ @torch.no_grad()
201
+ def forward_text_encoder(self, prompts):
202
+ device = next(self.pipeline.vae.parameters()).device
203
+ text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0]
204
+ return text_embeds
205
+
206
+ @torch.no_grad()
207
+ def encode_images(self, images):
208
+ """Encodes input images into latent representations using the VAE.
209
+
210
+ Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W)
211
+ Maintains original batch structure in output latents.
212
+
213
+ Args:
214
+ images: Input images tensor
215
+
216
+ Returns:
217
+ torch.Tensor: Latent representations with original batch dimensions preserved
218
+ """
219
+
220
+ B = images.shape[0]
221
+ image_ndims = images.ndim
222
+ if image_ndims != 5:
223
+ N_pbrs, N = images.shape[1:3]
224
+ images = (
225
+ rearrange(images, "b n c h w -> (b n) c h w")
226
+ if image_ndims == 5
227
+ else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
228
+ )
229
+ dtype = next(self.pipeline.vae.parameters()).dtype
230
+
231
+ images = (images - 0.5) * 2.0
232
+ posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist
233
+ latents = posterior.sample() * self.pipeline.vae.config.scaling_factor
234
+
235
+ latents = (
236
+ rearrange(latents, "(b n) c h w -> b n c h w", b=B)
237
+ if image_ndims == 5
238
+ else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
239
+ )
240
+
241
+ return latents
242
+
243
+ def forward_unet(self, latents, t, **cached_condition):
244
+ """Runs the UNet model to predict noise/latent residuals.
245
+
246
+ Args:
247
+ latents: Noisy latent representations (B, C, H, W)
248
+ t: Timestep tensor (B,)
249
+ **cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc)
250
+
251
+ Returns:
252
+ torch.Tensor: UNet output (predicted noise or velocity)
253
+ """
254
+
255
+ dtype = next(self.unet.parameters()).dtype
256
+ latents = latents.to(dtype)
257
+ shading_embeds = cached_condition["shading_embeds"]
258
+ pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition)
259
+ return pred_noise[0]
260
+
261
+ def predict_start_from_z_and_v(self, x_t, t, v):
262
+ """
263
+ Predicts clean image (x0) from noisy latents (x_t) and
264
+ velocity prediction (v) using the v-prediction formula.
265
+
266
+ Args:
267
+ x_t: Noisy latents at timestep t
268
+ t: Current timestep
269
+ v: Predicted velocity (v) from UNet
270
+
271
+ Returns:
272
+ torch.Tensor: Predicted clean image (x0)
273
+ """
274
+
275
+ return (
276
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
277
+ - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
278
+ )
279
+
280
+ def get_v(self, x, noise, t):
281
+ """Computes the target velocity (v) for v-prediction training.
282
+
283
+ Args:
284
+ x: Clean latents (x0)
285
+ noise: Added noise
286
+ t: Current timestep
287
+
288
+ Returns:
289
+ torch.Tensor: Target velocity
290
+ """
291
+
292
+ return (
293
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
294
+ - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
295
+ )
296
+
297
+ def training_step(self, batch, batch_idx):
298
+ """Performs a single training step with both conditioning paths.
299
+
300
+ Implements:
301
+ 1. Dual-conditioning path training (main ref + secondary ref)
302
+ 2. Velocity-prediction with consistency loss
303
+ 3. Conditional dropout for robust learning
304
+ 4. PBR-specific losses (albedo/metallic-roughness)
305
+
306
+ Args:
307
+ batch: Input batch from dataloader
308
+ batch_idx: Index of current batch
309
+
310
+ Returns:
311
+ torch.Tensor: Combined loss value
312
+ """
313
+
314
+ cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
315
+
316
+ B, N_ref = cond_imgs.shape[:2]
317
+ _, N_gen, _, H, W = target_imgs["albedo"].shape
318
+ N_pbrs = len(self.pbr_settings)
319
+ t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device)
320
+ t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen)
321
+ t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)")
322
+
323
+ all_target_pbrs = []
324
+ for pbr_token in self.pbr_settings:
325
+ all_target_pbrs.append(target_imgs[pbr_token])
326
+ all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
327
+ gen_latents = self.encode_images(all_target_pbrs) #! B, N_pbrs N C H W
328
+ ref_latents = self.encode_images(cond_imgs) #! B, M, C, H, W
329
+ ref_latents_another = self.encode_images(cond_imgs_another) #! B, M, C, H, W
330
+
331
+ all_shading_tokens = []
332
+ for token in self.pbr_settings:
333
+ if token in ["albedo", "mr"]:
334
+ all_shading_tokens.append(
335
+ getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1)
336
+ )
337
+ shading_embeds = torch.stack(all_shading_tokens, dim=1)
338
+
339
+ if self.unet.use_dino:
340
+ dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...])
341
+ dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...])
342
+
343
+ gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
344
+ noise = torch.randn_like(gen_latents).to(self.device)
345
+ latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device)
346
+ latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
347
+
348
+ cached_condition = {}
349
+
350
+ if normal_imgs is not None:
351
+ normal_embeds = self.encode_images(normal_imgs[0])
352
+ cached_condition["embeds_normal"] = normal_embeds #! B, N, C, H, W
353
+
354
+ if position_imgs is not None:
355
+ position_embeds = self.encode_images(position_imgs[0])
356
+ cached_condition["embeds_position"] = position_embeds #! B, N, C, H, W
357
+ cached_condition["position_maps"] = position_imgs[0] #! B, N, C, H, W
358
+
359
+ for b in range(B):
360
+ prob = np.random.rand()
361
+ if prob < self.drop_cond_prob:
362
+ if "normal_imgs" in cached_condition:
363
+ cached_condition["embeds_normal"][b, ...] = torch.zeros_like(
364
+ cached_condition["embeds_normal"][b, ...]
365
+ )
366
+ if "position_imgs" in cached_condition:
367
+ cached_condition["embeds_position"][b, ...] = torch.zeros_like(
368
+ cached_condition["embeds_position"][b, ...]
369
+ )
370
+
371
+ prob = np.random.rand()
372
+ if prob < self.drop_cond_prob:
373
+ if "position_maps" in cached_condition:
374
+ cached_condition["position_maps"][b, ...] = torch.zeros_like(
375
+ cached_condition["position_maps"][b, ...]
376
+ )
377
+
378
+ prob = np.random.rand()
379
+ if prob < self.drop_cond_prob:
380
+ dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...])
381
+ prob = np.random.rand()
382
+ if prob < self.drop_cond_prob:
383
+ dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...])
384
+
385
+ # MVA & Ref Attention
386
+ prob = np.random.rand()
387
+ cached_condition["mva_scale"] = 1.0
388
+ cached_condition["ref_scale"] = 1.0
389
+ if prob < self.drop_cond_prob:
390
+ cached_condition["mva_scale"] = 0.0
391
+ cached_condition["ref_scale"] = 0.0
392
+ elif prob > 1.0 - self.drop_cond_prob:
393
+ prob = np.random.rand()
394
+ if prob < 0.5:
395
+ cached_condition["mva_scale"] = 0.0
396
+ else:
397
+ cached_condition["ref_scale"] = 0.0
398
+ else:
399
+ pass
400
+
401
+ if self.train_scheduler.config.prediction_type == "v_prediction":
402
+
403
+ cached_condition["shading_embeds"] = shading_embeds
404
+ cached_condition["ref_latents"] = ref_latents
405
+ cached_condition["dino_hidden_states"] = dino_hidden_states
406
+ v_pred = self.forward_unet(latents_noisy, t, **cached_condition)
407
+ v_pred_albedo, v_pred_mr = torch.split(
408
+ rearrange(
409
+ v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
410
+ ),
411
+ 1,
412
+ dim=1,
413
+ )
414
+ v_target = self.get_v(gen_latents, noise, t)
415
+ v_target_albedo, v_target_mr = torch.split(
416
+ rearrange(
417
+ v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
418
+ ),
419
+ 1,
420
+ dim=1,
421
+ )
422
+
423
+ albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo)
424
+ mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr)
425
+
426
+ cached_condition["ref_latents"] = ref_latents_another
427
+ cached_condition["dino_hidden_states"] = dino_hidden_states_another
428
+ v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition)
429
+ v_pred_another_albedo, v_pred_another_mr = torch.split(
430
+ rearrange(
431
+ v_pred_another,
432
+ "(b n_pbr n) c h w -> b n_pbr n c h w",
433
+ n_pbr=len(self.pbr_settings),
434
+ n=self.num_view,
435
+ ),
436
+ 1,
437
+ dim=1,
438
+ )
439
+
440
+ albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo)
441
+ mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr)
442
+
443
+ consistency_loss, _ = self.compute_loss(v_pred_another, v_pred)
444
+
445
+ albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5
446
+ mr_loss = (mr_loss_1 + mr_loss_2) * 0.5
447
+
448
+ log_loss_dict = {}
449
+ log_loss_dict.update({f"train/albedo_loss": albedo_loss})
450
+ log_loss_dict.update({f"train/mr_loss": mr_loss})
451
+ log_loss_dict.update({f"train/cons_loss": consistency_loss})
452
+
453
+ loss_dict = log_loss_dict
454
+
455
+ elif self.train_scheduler.config.prediction_type == "epsilon":
456
+ e_pred = self.forward_unet(latents_noisy, t, **cached_condition)
457
+ loss, loss_dict = self.compute_loss(e_pred, noise)
458
+ else:
459
+ raise f"No {self.train_scheduler.config.prediction_type}"
460
+
461
+ # logging
462
+ self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
463
+ self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
464
+ lr = self.optimizers().param_groups[0]["lr"]
465
+ self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
466
+
467
+ return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss
468
+
469
+ def compute_loss(self, noise_pred, noise_gt):
470
+ loss = F.mse_loss(noise_pred, noise_gt)
471
+ prefix = "train"
472
+ loss_dict = {}
473
+ loss_dict.update({f"{prefix}/loss": loss})
474
+ return loss, loss_dict
475
+
476
+ @torch.no_grad()
477
+ def validation_step(self, batch, batch_idx):
478
+ """Performs validation on a single batch.
479
+
480
+ Generates predicted images using:
481
+ 1. Reference conditioning images
482
+ 2. Optional normal/position maps
483
+ 3. Frozen DINO features (if enabled)
484
+ 4. Text prompt conditioning
485
+
486
+ Compares predictions against ground truth targets and prepares visualization.
487
+ Stores results for epoch-level aggregation.
488
+
489
+ Args:
490
+ batch: Input batch from validation dataloader
491
+ batch_idx: Index of current batch
492
+ """
493
+ # [Validation image generation and comparison logic...]
494
+ # Key steps:
495
+ # 1. Preprocess conditioning images to PIL format
496
+ # 2. Set up conditioning inputs (normal maps, position maps, DINO features)
497
+ # 3. Run pipeline inference with fixed prompt ("high quality")
498
+ # 4. Decode latent outputs to image space
499
+ # 5. Arrange predictions and ground truths for visualization
500
+
501
+ cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
502
+ resolution = self.view_size
503
+ image_pils = []
504
+ for i in range(cond_imgs_tensor.shape[0]):
505
+ image_pils.append([])
506
+ for j in range(cond_imgs_tensor.shape[1]):
507
+ image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...]))
508
+
509
+ outputs, gts = [], []
510
+ for idx in range(len(image_pils)):
511
+ cond_imgs = image_pils[idx]
512
+
513
+ cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings))
514
+ if normal_imgs is not None:
515
+ cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0)
516
+ if position_imgs is not None:
517
+ cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0)
518
+ if self.pipeline.unet.use_dino:
519
+ dino_hidden_states = self.dino_v2([cond_imgs][0])
520
+ cached_condition["dino_hidden_states"] = dino_hidden_states
521
+
522
+ latent = self.pipeline(
523
+ cond_imgs,
524
+ prompt="high quality",
525
+ num_inference_steps=30,
526
+ output_type="latent",
527
+ height=resolution,
528
+ width=resolution,
529
+ **cached_condition,
530
+ ).images
531
+
532
+ image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[
533
+ 0
534
+ ] # [-1, 1]
535
+ image = (image * 0.5 + 0.5).clamp(0, 1)
536
+
537
+ image = rearrange(
538
+ image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
539
+ )
540
+ image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2)
541
+ image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w")
542
+ image = rearrange(
543
+ image,
544
+ "(b n_pbr n) c h w -> b c (n_pbr h) (n w)",
545
+ b=1,
546
+ n_pbr=len(self.pbr_settings),
547
+ n=self.num_view + 1,
548
+ )
549
+ outputs.append(image)
550
+
551
+ all_target_pbrs = []
552
+ for pbr_token in self.pbr_settings:
553
+ all_target_pbrs.append(target_imgs[pbr_token])
554
+ all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
555
+ all_target_pbrs = torch.cat(
556
+ (cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2
557
+ )
558
+ all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)")
559
+ gts = all_target_pbrs
560
+ outputs = torch.cat(outputs, dim=0).to(self.device)
561
+ images = torch.cat([gts, outputs], dim=-2)
562
+ self.validation_step_outputs.append(images)
563
+
564
+ @torch.no_grad()
565
+ def on_validation_epoch_end(self):
566
+ """Aggregates validation results at epoch end.
567
+
568
+ Gathers outputs from all GPUs (if distributed training),
569
+ creates a unified visualization grid, and saves to disk.
570
+ Only rank 0 process performs saving.
571
+ """
572
+ # [Result aggregation and visualization...]
573
+ # Key steps:
574
+ # 1. Gather validation outputs from all processes
575
+ # 2. Create image grid combining ground truths and predictions
576
+ # 3. Save visualization with step-numbered filename
577
+ # 4. Clear memory for next validation cycle
578
+
579
+ images = torch.cat(self.validation_step_outputs, dim=0)
580
+ all_images = self.all_gather(images)
581
+ all_images = rearrange(all_images, "r b c h w -> (r b) c h w")
582
+
583
+ if self.global_rank == 0:
584
+ grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1))
585
+ save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png"))
586
+
587
+ self.validation_step_outputs.clear() # free memory
588
+
589
+ def configure_optimizers(self):
590
+ lr = self.learning_rate
591
+ optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr)
592
+
593
+ def lr_lambda(step):
594
+ warm_up_step = 1000
595
+ T_step = 9000
596
+ gamma = 0.9
597
+ min_lr = 0.1 if step >= warm_up_step else 0.0
598
+ max_lr = 1.0
599
+ normalized_step = step % (warm_up_step + T_step)
600
+ current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step))
601
+ if current_max_lr < min_lr:
602
+ current_max_lr = min_lr
603
+ if normalized_step < warm_up_step:
604
+ lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr)
605
+ else:
606
+ step_wc_wp = normalized_step - warm_up_step
607
+ ratio = step_wc_wp / T_step
608
+ lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio))
609
+ return lr_step
610
+
611
+ lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
612
+
613
+ lr_scheduler_config = {
614
+ "scheduler": lr_scheduler,
615
+ "interval": "step",
616
+ "frequency": 1,
617
+ "monitor": "val_loss",
618
+ "strict": False,
619
+ "name": None,
620
+ }
621
+
622
+ return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}