# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import os # import ipdb import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import pytorch_lightning as pl from tqdm import tqdm from torchvision.transforms import v2 from torchvision.utils import make_grid, save_image from einops import rearrange from diffusers import ( DiffusionPipeline, EulerAncestralDiscreteScheduler, DDPMScheduler, UNet2DConditionModel, ControlNetModel, ) from .modules import Dino_v2, UNet2p5DConditionModel import math def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) class HunyuanPaint(pl.LightningModule): def __init__( self, stable_diffusion_config, control_net_config=None, num_view=6, view_size=320, drop_cond_prob=0.1, with_normal_map=None, with_position_map=None, pbr_settings=["albedo", "mr"], **kwargs, ): """Initializes the HunyuanPaint Lightning Module. Args: stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline control_net_config: Configuration for ControlNet (optional) num_view: Number of views to process view_size: Size of input views (height/width) drop_cond_prob: Probability of dropping conditioning input during training with_normal_map: Flag indicating whether normal maps are used with_position_map: Flag indicating whether position maps are used pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness) **kwargs: Additional keyword arguments """ super(HunyuanPaint, self).__init__() self.num_view = num_view self.view_size = view_size self.drop_cond_prob = drop_cond_prob self.pbr_settings = pbr_settings # init modules pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config) pipeline.set_pbr_settings(self.pbr_settings) pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( pipeline.scheduler.config, timestep_spacing="trailing" ) self.with_normal_map = with_normal_map self.with_position_map = with_position_map self.pipeline = pipeline self.pipeline.vae.use_slicing = True train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config) if isinstance(self.pipeline.unet, UNet2DConditionModel): self.pipeline.unet = UNet2p5DConditionModel( self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings ) self.train_scheduler = train_sched # use ddpm scheduler during training self.register_schedule() pipeline.set_learned_parameters() if control_net_config is not None: pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet) self.pipeline.add_controlnet( ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path), conditioning_scale=0.75, ) self.unet = pipeline.unet self.pipeline.set_progress_bar_config(disable=True) self.pipeline.vae = self.pipeline.vae.bfloat16() self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16() if self.unet.use_dino: self.dino_v2 = Dino_v2("facebook/dinov2-giant") self.dino_v2 = self.dino_v2.bfloat16() self.validation_step_outputs = [] def register_schedule(self): self.num_timesteps = self.train_scheduler.config.num_train_timesteps betas = self.train_scheduler.betas.detach().cpu() alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0) self.register_buffer("betas", betas.float()) self.register_buffer("alphas_cumprod", alphas_cumprod.float()) self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float()) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float()) self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float()) self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float()) self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float()) def on_fit_start(self): device = torch.device(f"cuda:{self.local_rank}") self.pipeline.to(device) if self.global_rank == 0: os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True) def prepare_batch_data(self, batch): """Preprocesses a batch of input data for training/inference. Args: batch: Raw input batch dictionary Returns: tuple: Contains: - cond_imgs: Primary conditioning images (B, 1, C, H, W) - cond_imgs_another: Secondary conditioning images (B, 1, C, H, W) - target_imgs: Dictionary of target PBR images resized and clamped - images_normal: Preprocessed normal maps (if available) - images_position: Preprocessed position maps (if available) """ images_cond = batch["images_cond"].to(self.device) # (B, M, C, H, W), where M is the number of reference images cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...] cond_size = self.view_size cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1) cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp( 0, 1 ) target_imgs = {} for pbr_token in self.pbr_settings: target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device) target_imgs[pbr_token] = v2.functional.resize( target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True ).clamp(0, 1) images_normal = None if "images_normal" in batch: images_normal = batch["images_normal"] # (B, N, C, H, W) images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp( 0, 1 ) images_normal = [images_normal] images_position = None if "images_position" in batch: images_position = batch["images_position"] # (B, N, C, H, W) images_position = v2.functional.resize( images_position, self.view_size, interpolation=3, antialias=True ).clamp(0, 1) images_position = [images_position] return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position @torch.no_grad() def forward_text_encoder(self, prompts): device = next(self.pipeline.vae.parameters()).device text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0] return text_embeds @torch.no_grad() def encode_images(self, images): """Encodes input images into latent representations using the VAE. Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W) Maintains original batch structure in output latents. Args: images: Input images tensor Returns: torch.Tensor: Latent representations with original batch dimensions preserved """ B = images.shape[0] image_ndims = images.ndim if image_ndims != 5: N_pbrs, N = images.shape[1:3] images = ( rearrange(images, "b n c h w -> (b n) c h w") if image_ndims == 5 else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w") ) dtype = next(self.pipeline.vae.parameters()).dtype images = (images - 0.5) * 2.0 posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist latents = posterior.sample() * self.pipeline.vae.config.scaling_factor latents = ( rearrange(latents, "(b n) c h w -> b n c h w", b=B) if image_ndims == 5 else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs) ) return latents def forward_unet(self, latents, t, **cached_condition): """Runs the UNet model to predict noise/latent residuals. Args: latents: Noisy latent representations (B, C, H, W) t: Timestep tensor (B,) **cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc) Returns: torch.Tensor: UNet output (predicted noise or velocity) """ dtype = next(self.unet.parameters()).dtype latents = latents.to(dtype) shading_embeds = cached_condition["shading_embeds"] pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition) return pred_noise[0] def predict_start_from_z_and_v(self, x_t, t, v): """ Predicts clean image (x0) from noisy latents (x_t) and velocity prediction (v) using the v-prediction formula. Args: x_t: Noisy latents at timestep t t: Current timestep v: Predicted velocity (v) from UNet Returns: torch.Tensor: Predicted clean image (x0) """ return ( extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v ) def get_v(self, x, noise, t): """Computes the target velocity (v) for v-prediction training. Args: x: Clean latents (x0) noise: Added noise t: Current timestep Returns: torch.Tensor: Target velocity """ return ( extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x ) def training_step(self, batch, batch_idx): """Performs a single training step with both conditioning paths. Implements: 1. Dual-conditioning path training (main ref + secondary ref) 2. Velocity-prediction with consistency loss 3. Conditional dropout for robust learning 4. PBR-specific losses (albedo/metallic-roughness) Args: batch: Input batch from dataloader batch_idx: Index of current batch Returns: torch.Tensor: Combined loss value """ cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch) B, N_ref = cond_imgs.shape[:2] _, N_gen, _, H, W = target_imgs["albedo"].shape N_pbrs = len(self.pbr_settings) t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device) t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen) t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)") all_target_pbrs = [] for pbr_token in self.pbr_settings: all_target_pbrs.append(target_imgs[pbr_token]) all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0) gen_latents = self.encode_images(all_target_pbrs) #! B, N_pbrs N C H W ref_latents = self.encode_images(cond_imgs) #! B, M, C, H, W ref_latents_another = self.encode_images(cond_imgs_another) #! B, M, C, H, W all_shading_tokens = [] for token in self.pbr_settings: if token in ["albedo", "mr"]: all_shading_tokens.append( getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1) ) shading_embeds = torch.stack(all_shading_tokens, dim=1) if self.unet.use_dino: dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...]) dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...]) gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w") noise = torch.randn_like(gen_latents).to(self.device) latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device) latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs) cached_condition = {} if normal_imgs is not None: normal_embeds = self.encode_images(normal_imgs[0]) cached_condition["embeds_normal"] = normal_embeds #! B, N, C, H, W if position_imgs is not None: position_embeds = self.encode_images(position_imgs[0]) cached_condition["embeds_position"] = position_embeds #! B, N, C, H, W cached_condition["position_maps"] = position_imgs[0] #! B, N, C, H, W for b in range(B): prob = np.random.rand() if prob < self.drop_cond_prob: if "normal_imgs" in cached_condition: cached_condition["embeds_normal"][b, ...] = torch.zeros_like( cached_condition["embeds_normal"][b, ...] ) if "position_imgs" in cached_condition: cached_condition["embeds_position"][b, ...] = torch.zeros_like( cached_condition["embeds_position"][b, ...] ) prob = np.random.rand() if prob < self.drop_cond_prob: if "position_maps" in cached_condition: cached_condition["position_maps"][b, ...] = torch.zeros_like( cached_condition["position_maps"][b, ...] ) prob = np.random.rand() if prob < self.drop_cond_prob: dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...]) prob = np.random.rand() if prob < self.drop_cond_prob: dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...]) # MVA & Ref Attention prob = np.random.rand() cached_condition["mva_scale"] = 1.0 cached_condition["ref_scale"] = 1.0 if prob < self.drop_cond_prob: cached_condition["mva_scale"] = 0.0 cached_condition["ref_scale"] = 0.0 elif prob > 1.0 - self.drop_cond_prob: prob = np.random.rand() if prob < 0.5: cached_condition["mva_scale"] = 0.0 else: cached_condition["ref_scale"] = 0.0 else: pass if self.train_scheduler.config.prediction_type == "v_prediction": cached_condition["shading_embeds"] = shading_embeds cached_condition["ref_latents"] = ref_latents cached_condition["dino_hidden_states"] = dino_hidden_states v_pred = self.forward_unet(latents_noisy, t, **cached_condition) v_pred_albedo, v_pred_mr = torch.split( rearrange( v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view ), 1, dim=1, ) v_target = self.get_v(gen_latents, noise, t) v_target_albedo, v_target_mr = torch.split( rearrange( v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view ), 1, dim=1, ) albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo) mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr) cached_condition["ref_latents"] = ref_latents_another cached_condition["dino_hidden_states"] = dino_hidden_states_another v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition) v_pred_another_albedo, v_pred_another_mr = torch.split( rearrange( v_pred_another, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view, ), 1, dim=1, ) albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo) mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr) consistency_loss, _ = self.compute_loss(v_pred_another, v_pred) albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5 mr_loss = (mr_loss_1 + mr_loss_2) * 0.5 log_loss_dict = {} log_loss_dict.update({f"train/albedo_loss": albedo_loss}) log_loss_dict.update({f"train/mr_loss": mr_loss}) log_loss_dict.update({f"train/cons_loss": consistency_loss}) loss_dict = log_loss_dict elif self.train_scheduler.config.prediction_type == "epsilon": e_pred = self.forward_unet(latents_noisy, t, **cached_condition) loss, loss_dict = self.compute_loss(e_pred, noise) else: raise f"No {self.train_scheduler.config.prediction_type}" # logging self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False) lr = self.optimizers().param_groups[0]["lr"] self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss def compute_loss(self, noise_pred, noise_gt): loss = F.mse_loss(noise_pred, noise_gt) prefix = "train" loss_dict = {} loss_dict.update({f"{prefix}/loss": loss}) return loss, loss_dict @torch.no_grad() def validation_step(self, batch, batch_idx): """Performs validation on a single batch. Generates predicted images using: 1. Reference conditioning images 2. Optional normal/position maps 3. Frozen DINO features (if enabled) 4. Text prompt conditioning Compares predictions against ground truth targets and prepares visualization. Stores results for epoch-level aggregation. Args: batch: Input batch from validation dataloader batch_idx: Index of current batch """ # [Validation image generation and comparison logic...] # Key steps: # 1. Preprocess conditioning images to PIL format # 2. Set up conditioning inputs (normal maps, position maps, DINO features) # 3. Run pipeline inference with fixed prompt ("high quality") # 4. Decode latent outputs to image space # 5. Arrange predictions and ground truths for visualization cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch) resolution = self.view_size image_pils = [] for i in range(cond_imgs_tensor.shape[0]): image_pils.append([]) for j in range(cond_imgs_tensor.shape[1]): image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...])) outputs, gts = [], [] for idx in range(len(image_pils)): cond_imgs = image_pils[idx] cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings)) if normal_imgs is not None: cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0) if position_imgs is not None: cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0) if self.pipeline.unet.use_dino: dino_hidden_states = self.dino_v2([cond_imgs][0]) cached_condition["dino_hidden_states"] = dino_hidden_states latent = self.pipeline( cond_imgs, prompt="high quality", num_inference_steps=30, output_type="latent", height=resolution, width=resolution, **cached_condition, ).images image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[ 0 ] # [-1, 1] image = (image * 0.5 + 0.5).clamp(0, 1) image = rearrange( image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view ) image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2) image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w") image = rearrange( image, "(b n_pbr n) c h w -> b c (n_pbr h) (n w)", b=1, n_pbr=len(self.pbr_settings), n=self.num_view + 1, ) outputs.append(image) all_target_pbrs = [] for pbr_token in self.pbr_settings: all_target_pbrs.append(target_imgs[pbr_token]) all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0) all_target_pbrs = torch.cat( (cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2 ) all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)") gts = all_target_pbrs outputs = torch.cat(outputs, dim=0).to(self.device) images = torch.cat([gts, outputs], dim=-2) self.validation_step_outputs.append(images) @torch.no_grad() def on_validation_epoch_end(self): """Aggregates validation results at epoch end. Gathers outputs from all GPUs (if distributed training), creates a unified visualization grid, and saves to disk. Only rank 0 process performs saving. """ # [Result aggregation and visualization...] # Key steps: # 1. Gather validation outputs from all processes # 2. Create image grid combining ground truths and predictions # 3. Save visualization with step-numbered filename # 4. Clear memory for next validation cycle images = torch.cat(self.validation_step_outputs, dim=0) all_images = self.all_gather(images) all_images = rearrange(all_images, "r b c h w -> (r b) c h w") if self.global_rank == 0: grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1)) save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png")) self.validation_step_outputs.clear() # free memory def configure_optimizers(self): lr = self.learning_rate optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr) def lr_lambda(step): warm_up_step = 1000 T_step = 9000 gamma = 0.9 min_lr = 0.1 if step >= warm_up_step else 0.0 max_lr = 1.0 normalized_step = step % (warm_up_step + T_step) current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step)) if current_max_lr < min_lr: current_max_lr = min_lr if normalized_step < warm_up_step: lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr) else: step_wc_wp = normalized_step - warm_up_step ratio = step_wc_wp / T_step lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio)) return lr_step lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda) lr_scheduler_config = { "scheduler": lr_scheduler, "interval": "step", "frequency": 1, "monitor": "val_loss", "strict": False, "name": None, } return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}