File size: 25,514 Bytes
a7e7314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
# import ipdb
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from tqdm import tqdm
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from einops import rearrange
from diffusers import (
DiffusionPipeline,
EulerAncestralDiscreteScheduler,
DDPMScheduler,
UNet2DConditionModel,
ControlNetModel,
)
from .modules import Dino_v2, UNet2p5DConditionModel
import math
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
class HunyuanPaint(pl.LightningModule):
def __init__(
self,
stable_diffusion_config,
control_net_config=None,
num_view=6,
view_size=320,
drop_cond_prob=0.1,
with_normal_map=None,
with_position_map=None,
pbr_settings=["albedo", "mr"],
**kwargs,
):
"""Initializes the HunyuanPaint Lightning Module.
Args:
stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline
control_net_config: Configuration for ControlNet (optional)
num_view: Number of views to process
view_size: Size of input views (height/width)
drop_cond_prob: Probability of dropping conditioning input during training
with_normal_map: Flag indicating whether normal maps are used
with_position_map: Flag indicating whether position maps are used
pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness)
**kwargs: Additional keyword arguments
"""
super(HunyuanPaint, self).__init__()
self.num_view = num_view
self.view_size = view_size
self.drop_cond_prob = drop_cond_prob
self.pbr_settings = pbr_settings
# init modules
pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config)
pipeline.set_pbr_settings(self.pbr_settings)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing="trailing"
)
self.with_normal_map = with_normal_map
self.with_position_map = with_position_map
self.pipeline = pipeline
self.pipeline.vae.use_slicing = True
train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config)
if isinstance(self.pipeline.unet, UNet2DConditionModel):
self.pipeline.unet = UNet2p5DConditionModel(
self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings
)
self.train_scheduler = train_sched # use ddpm scheduler during training
self.register_schedule()
pipeline.set_learned_parameters()
if control_net_config is not None:
pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet)
self.pipeline.add_controlnet(
ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path),
conditioning_scale=0.75,
)
self.unet = pipeline.unet
self.pipeline.set_progress_bar_config(disable=True)
self.pipeline.vae = self.pipeline.vae.bfloat16()
self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16()
if self.unet.use_dino:
self.dino_v2 = Dino_v2("facebook/dinov2-giant")
self.dino_v2 = self.dino_v2.bfloat16()
self.validation_step_outputs = []
def register_schedule(self):
self.num_timesteps = self.train_scheduler.config.num_train_timesteps
betas = self.train_scheduler.betas.detach().cpu()
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
self.register_buffer("betas", betas.float())
self.register_buffer("alphas_cumprod", alphas_cumprod.float())
self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float())
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())
self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float())
self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float())
def on_fit_start(self):
device = torch.device(f"cuda:{self.local_rank}")
self.pipeline.to(device)
if self.global_rank == 0:
os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True)
def prepare_batch_data(self, batch):
"""Preprocesses a batch of input data for training/inference.
Args:
batch: Raw input batch dictionary
Returns:
tuple: Contains:
- cond_imgs: Primary conditioning images (B, 1, C, H, W)
- cond_imgs_another: Secondary conditioning images (B, 1, C, H, W)
- target_imgs: Dictionary of target PBR images resized and clamped
- images_normal: Preprocessed normal maps (if available)
- images_position: Preprocessed position maps (if available)
"""
images_cond = batch["images_cond"].to(self.device) # (B, M, C, H, W), where M is the number of reference images
cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...]
cond_size = self.view_size
cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1)
cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp(
0, 1
)
target_imgs = {}
for pbr_token in self.pbr_settings:
target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device)
target_imgs[pbr_token] = v2.functional.resize(
target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True
).clamp(0, 1)
images_normal = None
if "images_normal" in batch:
images_normal = batch["images_normal"] # (B, N, C, H, W)
images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp(
0, 1
)
images_normal = [images_normal]
images_position = None
if "images_position" in batch:
images_position = batch["images_position"] # (B, N, C, H, W)
images_position = v2.functional.resize(
images_position, self.view_size, interpolation=3, antialias=True
).clamp(0, 1)
images_position = [images_position]
return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position
@torch.no_grad()
def forward_text_encoder(self, prompts):
device = next(self.pipeline.vae.parameters()).device
text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0]
return text_embeds
@torch.no_grad()
def encode_images(self, images):
"""Encodes input images into latent representations using the VAE.
Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W)
Maintains original batch structure in output latents.
Args:
images: Input images tensor
Returns:
torch.Tensor: Latent representations with original batch dimensions preserved
"""
B = images.shape[0]
image_ndims = images.ndim
if image_ndims != 5:
N_pbrs, N = images.shape[1:3]
images = (
rearrange(images, "b n c h w -> (b n) c h w")
if image_ndims == 5
else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
)
dtype = next(self.pipeline.vae.parameters()).dtype
images = (images - 0.5) * 2.0
posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist
latents = posterior.sample() * self.pipeline.vae.config.scaling_factor
latents = (
rearrange(latents, "(b n) c h w -> b n c h w", b=B)
if image_ndims == 5
else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
)
return latents
def forward_unet(self, latents, t, **cached_condition):
"""Runs the UNet model to predict noise/latent residuals.
Args:
latents: Noisy latent representations (B, C, H, W)
t: Timestep tensor (B,)
**cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc)
Returns:
torch.Tensor: UNet output (predicted noise or velocity)
"""
dtype = next(self.unet.parameters()).dtype
latents = latents.to(dtype)
shading_embeds = cached_condition["shading_embeds"]
pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition)
return pred_noise[0]
def predict_start_from_z_and_v(self, x_t, t, v):
"""
Predicts clean image (x0) from noisy latents (x_t) and
velocity prediction (v) using the v-prediction formula.
Args:
x_t: Noisy latents at timestep t
t: Current timestep
v: Predicted velocity (v) from UNet
Returns:
torch.Tensor: Predicted clean image (x0)
"""
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def get_v(self, x, noise, t):
"""Computes the target velocity (v) for v-prediction training.
Args:
x: Clean latents (x0)
noise: Added noise
t: Current timestep
Returns:
torch.Tensor: Target velocity
"""
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
)
def training_step(self, batch, batch_idx):
"""Performs a single training step with both conditioning paths.
Implements:
1. Dual-conditioning path training (main ref + secondary ref)
2. Velocity-prediction with consistency loss
3. Conditional dropout for robust learning
4. PBR-specific losses (albedo/metallic-roughness)
Args:
batch: Input batch from dataloader
batch_idx: Index of current batch
Returns:
torch.Tensor: Combined loss value
"""
cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
B, N_ref = cond_imgs.shape[:2]
_, N_gen, _, H, W = target_imgs["albedo"].shape
N_pbrs = len(self.pbr_settings)
t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device)
t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen)
t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)")
all_target_pbrs = []
for pbr_token in self.pbr_settings:
all_target_pbrs.append(target_imgs[pbr_token])
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
gen_latents = self.encode_images(all_target_pbrs) #! B, N_pbrs N C H W
ref_latents = self.encode_images(cond_imgs) #! B, M, C, H, W
ref_latents_another = self.encode_images(cond_imgs_another) #! B, M, C, H, W
all_shading_tokens = []
for token in self.pbr_settings:
if token in ["albedo", "mr"]:
all_shading_tokens.append(
getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1)
)
shading_embeds = torch.stack(all_shading_tokens, dim=1)
if self.unet.use_dino:
dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...])
dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...])
gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w")
noise = torch.randn_like(gen_latents).to(self.device)
latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device)
latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs)
cached_condition = {}
if normal_imgs is not None:
normal_embeds = self.encode_images(normal_imgs[0])
cached_condition["embeds_normal"] = normal_embeds #! B, N, C, H, W
if position_imgs is not None:
position_embeds = self.encode_images(position_imgs[0])
cached_condition["embeds_position"] = position_embeds #! B, N, C, H, W
cached_condition["position_maps"] = position_imgs[0] #! B, N, C, H, W
for b in range(B):
prob = np.random.rand()
if prob < self.drop_cond_prob:
if "normal_imgs" in cached_condition:
cached_condition["embeds_normal"][b, ...] = torch.zeros_like(
cached_condition["embeds_normal"][b, ...]
)
if "position_imgs" in cached_condition:
cached_condition["embeds_position"][b, ...] = torch.zeros_like(
cached_condition["embeds_position"][b, ...]
)
prob = np.random.rand()
if prob < self.drop_cond_prob:
if "position_maps" in cached_condition:
cached_condition["position_maps"][b, ...] = torch.zeros_like(
cached_condition["position_maps"][b, ...]
)
prob = np.random.rand()
if prob < self.drop_cond_prob:
dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...])
prob = np.random.rand()
if prob < self.drop_cond_prob:
dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...])
# MVA & Ref Attention
prob = np.random.rand()
cached_condition["mva_scale"] = 1.0
cached_condition["ref_scale"] = 1.0
if prob < self.drop_cond_prob:
cached_condition["mva_scale"] = 0.0
cached_condition["ref_scale"] = 0.0
elif prob > 1.0 - self.drop_cond_prob:
prob = np.random.rand()
if prob < 0.5:
cached_condition["mva_scale"] = 0.0
else:
cached_condition["ref_scale"] = 0.0
else:
pass
if self.train_scheduler.config.prediction_type == "v_prediction":
cached_condition["shading_embeds"] = shading_embeds
cached_condition["ref_latents"] = ref_latents
cached_condition["dino_hidden_states"] = dino_hidden_states
v_pred = self.forward_unet(latents_noisy, t, **cached_condition)
v_pred_albedo, v_pred_mr = torch.split(
rearrange(
v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
),
1,
dim=1,
)
v_target = self.get_v(gen_latents, noise, t)
v_target_albedo, v_target_mr = torch.split(
rearrange(
v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
),
1,
dim=1,
)
albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo)
mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr)
cached_condition["ref_latents"] = ref_latents_another
cached_condition["dino_hidden_states"] = dino_hidden_states_another
v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition)
v_pred_another_albedo, v_pred_another_mr = torch.split(
rearrange(
v_pred_another,
"(b n_pbr n) c h w -> b n_pbr n c h w",
n_pbr=len(self.pbr_settings),
n=self.num_view,
),
1,
dim=1,
)
albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo)
mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr)
consistency_loss, _ = self.compute_loss(v_pred_another, v_pred)
albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5
mr_loss = (mr_loss_1 + mr_loss_2) * 0.5
log_loss_dict = {}
log_loss_dict.update({f"train/albedo_loss": albedo_loss})
log_loss_dict.update({f"train/mr_loss": mr_loss})
log_loss_dict.update({f"train/cons_loss": consistency_loss})
loss_dict = log_loss_dict
elif self.train_scheduler.config.prediction_type == "epsilon":
e_pred = self.forward_unet(latents_noisy, t, **cached_condition)
loss, loss_dict = self.compute_loss(e_pred, noise)
else:
raise f"No {self.train_scheduler.config.prediction_type}"
# logging
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
lr = self.optimizers().param_groups[0]["lr"]
self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss
def compute_loss(self, noise_pred, noise_gt):
loss = F.mse_loss(noise_pred, noise_gt)
prefix = "train"
loss_dict = {}
loss_dict.update({f"{prefix}/loss": loss})
return loss, loss_dict
@torch.no_grad()
def validation_step(self, batch, batch_idx):
"""Performs validation on a single batch.
Generates predicted images using:
1. Reference conditioning images
2. Optional normal/position maps
3. Frozen DINO features (if enabled)
4. Text prompt conditioning
Compares predictions against ground truth targets and prepares visualization.
Stores results for epoch-level aggregation.
Args:
batch: Input batch from validation dataloader
batch_idx: Index of current batch
"""
# [Validation image generation and comparison logic...]
# Key steps:
# 1. Preprocess conditioning images to PIL format
# 2. Set up conditioning inputs (normal maps, position maps, DINO features)
# 3. Run pipeline inference with fixed prompt ("high quality")
# 4. Decode latent outputs to image space
# 5. Arrange predictions and ground truths for visualization
cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch)
resolution = self.view_size
image_pils = []
for i in range(cond_imgs_tensor.shape[0]):
image_pils.append([])
for j in range(cond_imgs_tensor.shape[1]):
image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...]))
outputs, gts = [], []
for idx in range(len(image_pils)):
cond_imgs = image_pils[idx]
cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings))
if normal_imgs is not None:
cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0)
if position_imgs is not None:
cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0)
if self.pipeline.unet.use_dino:
dino_hidden_states = self.dino_v2([cond_imgs][0])
cached_condition["dino_hidden_states"] = dino_hidden_states
latent = self.pipeline(
cond_imgs,
prompt="high quality",
num_inference_steps=30,
output_type="latent",
height=resolution,
width=resolution,
**cached_condition,
).images
image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[
0
] # [-1, 1]
image = (image * 0.5 + 0.5).clamp(0, 1)
image = rearrange(
image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view
)
image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2)
image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w")
image = rearrange(
image,
"(b n_pbr n) c h w -> b c (n_pbr h) (n w)",
b=1,
n_pbr=len(self.pbr_settings),
n=self.num_view + 1,
)
outputs.append(image)
all_target_pbrs = []
for pbr_token in self.pbr_settings:
all_target_pbrs.append(target_imgs[pbr_token])
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0)
all_target_pbrs = torch.cat(
(cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2
)
all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)")
gts = all_target_pbrs
outputs = torch.cat(outputs, dim=0).to(self.device)
images = torch.cat([gts, outputs], dim=-2)
self.validation_step_outputs.append(images)
@torch.no_grad()
def on_validation_epoch_end(self):
"""Aggregates validation results at epoch end.
Gathers outputs from all GPUs (if distributed training),
creates a unified visualization grid, and saves to disk.
Only rank 0 process performs saving.
"""
# [Result aggregation and visualization...]
# Key steps:
# 1. Gather validation outputs from all processes
# 2. Create image grid combining ground truths and predictions
# 3. Save visualization with step-numbered filename
# 4. Clear memory for next validation cycle
images = torch.cat(self.validation_step_outputs, dim=0)
all_images = self.all_gather(images)
all_images = rearrange(all_images, "r b c h w -> (r b) c h w")
if self.global_rank == 0:
grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1))
save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png"))
self.validation_step_outputs.clear() # free memory
def configure_optimizers(self):
lr = self.learning_rate
optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr)
def lr_lambda(step):
warm_up_step = 1000
T_step = 9000
gamma = 0.9
min_lr = 0.1 if step >= warm_up_step else 0.0
max_lr = 1.0
normalized_step = step % (warm_up_step + T_step)
current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step))
if current_max_lr < min_lr:
current_max_lr = min_lr
if normalized_step < warm_up_step:
lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr)
else:
step_wc_wp = normalized_step - warm_up_step
ratio = step_wc_wp / T_step
lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio))
return lr_step
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
lr_scheduler_config = {
"scheduler": lr_scheduler,
"interval": "step",
"frequency": 1,
"monitor": "val_loss",
"strict": False,
"name": None,
}
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}
|