metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: How do I know if a girl likes me at school?
- text: What are some five star hotel in Jaipur?
- text: Is it normal to fantasize your wife having sex with another man?
- text: >-
What is the Sahara, and how do the average temperatures there compare to
the ones in the Simpson Desert?
- text: >-
What are Hillary Clinton's most recognized accomplishments while Secretary
of State?
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- dot_mcc
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- euclidean_mcc
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- manhattan_mcc
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- max_mcc
- active_dims
- sparsity_ratio
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 1.4164940270091377
energy_consumed: 0.02527693261851813
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: AMD Ryzen 9 6900HX with Radeon Graphics
ram_total_size: 30.6114501953125
hours_used: 0.222
hardware_used: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
model-index:
- name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
results:
- task:
type: sparse-binary-classification
name: Sparse Binary Classification
dataset:
name: quora duplicates dev
type: quora_duplicates_dev
metrics:
- type: cosine_accuracy
value: 0.758
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8166326284408569
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6792899408284023
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5695896148681641
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5487571701720841
name: Cosine Precision
- type: cosine_recall
value: 0.8913043478260869
name: Cosine Recall
- type: cosine_ap
value: 0.6887627674706448
name: Cosine Ap
- type: cosine_mcc
value: 0.508171027288805
name: Cosine Mcc
- type: dot_accuracy
value: 0.765
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 51.6699104309082
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6762028608582575
name: Dot F1
- type: dot_f1_threshold
value: 46.524925231933594
name: Dot F1 Threshold
- type: dot_precision
value: 0.5816554809843401
name: Dot Precision
- type: dot_recall
value: 0.8074534161490683
name: Dot Recall
- type: dot_ap
value: 0.6335823489360819
name: Dot Ap
- type: dot_mcc
value: 0.4996270089694481
name: Dot Mcc
- type: euclidean_accuracy
value: 0.677
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: -14.272356986999512
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.48599545798637395
name: Euclidean F1
- type: euclidean_f1_threshold
value: -0.6444530487060547
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.3213213213213213
name: Euclidean Precision
- type: euclidean_recall
value: 0.9968944099378882
name: Euclidean Recall
- type: euclidean_ap
value: 0.2032823056922341
name: Euclidean Ap
- type: euclidean_mcc
value: -0.04590966956831287
name: Euclidean Mcc
- type: manhattan_accuracy
value: 0.677
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: -161.77682495117188
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.48599545798637395
name: Manhattan F1
- type: manhattan_f1_threshold
value: -3.0494537353515625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.3213213213213213
name: Manhattan Precision
- type: manhattan_recall
value: 0.9968944099378882
name: Manhattan Recall
- type: manhattan_ap
value: 0.20444314945561334
name: Manhattan Ap
- type: manhattan_mcc
value: -0.04590966956831287
name: Manhattan Mcc
- type: max_accuracy
value: 0.765
name: Max Accuracy
- type: max_accuracy_threshold
value: 51.6699104309082
name: Max Accuracy Threshold
- type: max_f1
value: 0.6792899408284023
name: Max F1
- type: max_f1_threshold
value: 46.524925231933594
name: Max F1 Threshold
- type: max_precision
value: 0.5816554809843401
name: Max Precision
- type: max_recall
value: 0.9968944099378882
name: Max Recall
- type: max_ap
value: 0.6887627674706448
name: Max Ap
- type: max_mcc
value: 0.508171027288805
name: Max Mcc
- type: active_dims
value: 78.32280731201172
name: Active Dims
- type: sparsity_ratio
value: 0.9974338900690646
name: Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.52
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.13999999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.10400000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.07600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.42
name: Dot Recall@3
- type: dot_recall@5
value: 0.52
name: Dot Recall@5
- type: dot_recall@10
value: 0.76
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.45321847177875746
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3601269841269841
name: Dot Mrr@10
- type: dot_map@100
value: 0.37334906504034243
name: Dot Map@100
- type: query_active_dims
value: 74.76000213623047
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9975506191554868
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 103.06523895263672
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9966232475279261
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.52
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.13999999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.10400000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.07600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.42
name: Dot Recall@3
- type: dot_recall@5
value: 0.52
name: Dot Recall@5
- type: dot_recall@10
value: 0.76
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.45321847177875746
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3601269841269841
name: Dot Mrr@10
- type: dot_map@100
value: 0.37334906504034243
name: Dot Map@100
- type: query_active_dims
value: 74.76000213623047
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9975506191554868
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 103.06523895263672
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9966232475279261
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.12400000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.06400000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.36
name: Dot Recall@1
- type: dot_recall@3
value: 0.52
name: Dot Recall@3
- type: dot_recall@5
value: 0.6
name: Dot Recall@5
- type: dot_recall@10
value: 0.61
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4828377104499333
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4536666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.445384784044708
name: Dot Map@100
- type: query_active_dims
value: 74.73999786376953
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9975512745605213
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 141.31478881835938
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9953700678586476
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.12400000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.06400000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.36
name: Dot Recall@1
- type: dot_recall@3
value: 0.52
name: Dot Recall@3
- type: dot_recall@5
value: 0.6
name: Dot Recall@5
- type: dot_recall@10
value: 0.61
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4828377104499333
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4536666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.445384784044708
name: Dot Map@100
- type: query_active_dims
value: 74.73999786376953
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9975512745605213
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 141.31478881835938
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9953700678586476
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.54
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.58
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.30666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.26
name: Dot Precision@5
- type: dot_precision@10
value: 0.198
name: Dot Precision@10
- type: dot_recall@1
value: 0.011597172822497613
name: Dot Recall@1
- type: dot_recall@3
value: 0.06058581579610722
name: Dot Recall@3
- type: dot_recall@5
value: 0.08260772201759854
name: Dot Recall@5
- type: dot_recall@10
value: 0.09800124609193644
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2466972614666078
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.42200000000000004
name: Dot Mrr@10
- type: dot_map@100
value: 0.09401937795309984
name: Dot Map@100
- type: query_active_dims
value: 79.69999694824219
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9973887688569477
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 202.17269897460938
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9933761647672298
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.54
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.58
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.30666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.26
name: Dot Precision@5
- type: dot_precision@10
value: 0.198
name: Dot Precision@10
- type: dot_recall@1
value: 0.011597172822497613
name: Dot Recall@1
- type: dot_recall@3
value: 0.06058581579610722
name: Dot Recall@3
- type: dot_recall@5
value: 0.08260772201759854
name: Dot Recall@5
- type: dot_recall@10
value: 0.09800124609193644
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2466972614666078
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.42200000000000004
name: Dot Mrr@10
- type: dot_map@100
value: 0.09401937795309984
name: Dot Map@100
- type: query_active_dims
value: 79.69999694824219
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9973887688569477
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 202.17269897460938
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9933761647672298
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.94
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.98
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.98
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.94
name: Dot Precision@1
- type: dot_precision@3
value: 0.3933333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.24799999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.13199999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.8173333333333332
name: Dot Recall@1
- type: dot_recall@3
value: 0.9279999999999999
name: Dot Recall@3
- type: dot_recall@5
value: 0.946
name: Dot Recall@5
- type: dot_recall@10
value: 0.97
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9467235239993945
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.96
name: Dot Mrr@10
- type: dot_map@100
value: 0.9290737327188939
name: Dot Map@100
- type: query_active_dims
value: 76.58000183105469
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9974909900455063
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 77.59056854248047
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9974578805929336
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.94
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.98
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.98
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.94
name: Dot Precision@1
- type: dot_precision@3
value: 0.3933333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.24799999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.13199999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.8173333333333332
name: Dot Recall@1
- type: dot_recall@3
value: 0.9279999999999999
name: Dot Recall@3
- type: dot_recall@5
value: 0.946
name: Dot Recall@5
- type: dot_recall@10
value: 0.97
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9467235239993945
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.96
name: Dot Mrr@10
- type: dot_map@100
value: 0.9290737327188939
name: Dot Map@100
- type: query_active_dims
value: 76.58000183105469
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9974909900455063
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 77.59056854248047
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9974578805929336
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.47
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.61
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.665
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.735
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.47
name: Dot Precision@1
- type: dot_precision@3
value: 0.255
name: Dot Precision@3
- type: dot_precision@5
value: 0.184
name: Dot Precision@5
- type: dot_precision@10
value: 0.1175
name: Dot Precision@10
- type: dot_recall@1
value: 0.3522326265389577
name: Dot Recall@1
- type: dot_recall@3
value: 0.4821464539490268
name: Dot Recall@3
- type: dot_recall@5
value: 0.5371519305043997
name: Dot Recall@5
- type: dot_recall@10
value: 0.6095003115229841
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5323692419236733
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5489484126984127
name: Dot Mrr@10
- type: dot_map@100
value: 0.46045673993926106
name: Dot Map@100
- type: query_active_dims
value: 76.44499969482422
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9974954131546155
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 122.79780664247188
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9959767444255792
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.4359811616954475
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6088540031397174
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6659026687598116
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7383987441130299
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4359811616954475
name: Dot Precision@1
- type: dot_precision@3
value: 0.2725170068027211
name: Dot Precision@3
- type: dot_precision@5
value: 0.2089481946624804
name: Dot Precision@5
- type: dot_precision@10
value: 0.14605965463108322
name: Dot Precision@10
- type: dot_recall@1
value: 0.2532746332292894
name: Dot Recall@1
- type: dot_recall@3
value: 0.3813452238818861
name: Dot Recall@3
- type: dot_recall@5
value: 0.4363867898661836
name: Dot Recall@5
- type: dot_recall@10
value: 0.5099503000039356
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4684519639817077
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5328029827315542
name: Dot Mrr@10
- type: dot_map@100
value: 0.39738635557561647
name: Dot Map@100
- type: query_active_dims
value: 90.39137197532713
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9970384846348428
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 152.36685474307478
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9950079662295042
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.18
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.32
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.48
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.18
name: Dot Precision@1
- type: dot_precision@3
value: 0.10666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.08400000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.054000000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.085
name: Dot Recall@1
- type: dot_recall@3
value: 0.14666666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.17833333333333332
name: Dot Recall@5
- type: dot_recall@10
value: 0.215
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.1845115403570178
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.2674126984126984
name: Dot Mrr@10
- type: dot_map@100
value: 0.1475834110231865
name: Dot Map@100
- type: query_active_dims
value: 89.86000061035156
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9970558940891701
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 221.75527954101562
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.992734575730915
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.6
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.84
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.84
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6
name: Dot Precision@1
- type: dot_precision@3
value: 0.5266666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.456
name: Dot Precision@5
- type: dot_precision@10
value: 0.4220000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.04570544957623723
name: Dot Recall@1
- type: dot_recall@3
value: 0.15367137863132574
name: Dot Recall@3
- type: dot_recall@5
value: 0.1908008582920462
name: Dot Recall@5
- type: dot_recall@10
value: 0.293554014064817
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5070720730882787
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7147222222222225
name: Dot Mrr@10
- type: dot_map@100
value: 0.3906658166774757
name: Dot Map@100
- type: query_active_dims
value: 69.5199966430664
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.997722298779796
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 135.93350219726562
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9955463763122578
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.58
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.76
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.86
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.58
name: Dot Precision@1
- type: dot_precision@3
value: 0.26666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.16799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09
name: Dot Precision@10
- type: dot_recall@1
value: 0.5466666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.7466666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.7866666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.8466666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7069849294263234
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6765000000000001
name: Dot Mrr@10
- type: dot_map@100
value: 0.6651380090497737
name: Dot Map@100
- type: query_active_dims
value: 89.87999725341797
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9970552389340994
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 221.215576171875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9927522581688004
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.46
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.5
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.136
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.14183333333333334
name: Dot Recall@1
- type: dot_recall@3
value: 0.24288888888888888
name: Dot Recall@3
- type: dot_recall@5
value: 0.27715873015873016
name: Dot Recall@5
- type: dot_recall@10
value: 0.3288730158730159
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.28813286680239514
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3561904761904763
name: Dot Mrr@10
- type: dot_map@100
value: 0.2415362537997973
name: Dot Map@100
- type: query_active_dims
value: 82.86000061035156
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9972852368583202
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 130.93699645996094
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9957100780925245
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.78
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.84
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.92
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.78
name: Dot Precision@1
- type: dot_precision@3
value: 0.3733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.28400000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.16
name: Dot Precision@10
- type: dot_recall@1
value: 0.39
name: Dot Recall@1
- type: dot_recall@3
value: 0.56
name: Dot Recall@3
- type: dot_recall@5
value: 0.71
name: Dot Recall@5
- type: dot_recall@10
value: 0.8
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7143331285788386
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8361904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.6181181734895289
name: Dot Map@100
- type: query_active_dims
value: 91.9800033569336
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9969864359033833
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 152.01571655273438
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9950194706587794
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.68
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.2733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.21199999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.15199999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.07566666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.16966666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.21766666666666665
name: Dot Recall@5
- type: dot_recall@10
value: 0.31066666666666665
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.30291194083231554
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4943888888888889
name: Dot Mrr@10
- type: dot_map@100
value: 0.21666464487074008
name: Dot Map@100
- type: query_active_dims
value: 94.30000305175781
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.996910425167035
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 199.64630126953125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9934589377737524
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.1
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.34
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.42
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.44
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.1
name: Dot Precision@1
- type: dot_precision@3
value: 0.1133333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.084
name: Dot Precision@5
- type: dot_precision@10
value: 0.044000000000000004
name: Dot Precision@10
- type: dot_recall@1
value: 0.1
name: Dot Recall@1
- type: dot_recall@3
value: 0.34
name: Dot Recall@3
- type: dot_recall@5
value: 0.42
name: Dot Recall@5
- type: dot_recall@10
value: 0.44
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2781554838544819
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.22466666666666665
name: Dot Mrr@10
- type: dot_map@100
value: 0.2332757160696607
name: Dot Map@100
- type: query_active_dims
value: 189.10000610351562
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9938044687077021
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 164.03329467773438
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9946257357093985
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.52
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.52
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.475
name: Dot Recall@1
- type: dot_recall@3
value: 0.58
name: Dot Recall@3
- type: dot_recall@5
value: 0.615
name: Dot Recall@5
- type: dot_recall@10
value: 0.74
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6020710919940331
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5799047619047619
name: Dot Mrr@10
- type: dot_map@100
value: 0.5551340236204781
name: Dot Map@100
- type: query_active_dims
value: 82.45999908447266
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9972983422094073
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 194.24940490722656
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9936357576532591
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.3877551020408163
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7551020408163265
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8367346938775511
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9591836734693877
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3877551020408163
name: Dot Precision@1
- type: dot_precision@3
value: 0.4693877551020407
name: Dot Precision@3
- type: dot_precision@5
value: 0.4163265306122449
name: Dot Precision@5
- type: dot_precision@10
value: 0.33877551020408164
name: Dot Precision@10
- type: dot_recall@1
value: 0.02376760958202688
name: Dot Recall@1
- type: dot_recall@3
value: 0.08934182714819683
name: Dot Recall@3
- type: dot_recall@5
value: 0.12879429112534482
name: Dot Recall@5
- type: dot_recall@10
value: 0.21659229068805946
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.37622550913382224
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5806689342403627
name: Dot Mrr@10
- type: dot_map@100
value: 0.2560796141253303
name: Dot Map@100
- type: query_active_dims
value: 79.12245178222656
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9974076911151881
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 135.00782775878906
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9955767044178366
name: Corpus Sparsity Ratio
splade-distilbert-base-uncased trained on Quora Duplicates Questions
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-distilbert-base-uncased-quora-duplicates")
# Run inference
sentences = [
'What accomplishments did Hillary Clinton achieve during her time as Secretary of State?',
"What are Hillary Clinton's most recognized accomplishments while Secretary of State?",
'What are Hillary Clinton’s qualifications to be President?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Binary Classification
- Dataset:
quora_duplicates_dev
- Evaluated with
SparseBinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.758 |
cosine_accuracy_threshold | 0.8166 |
cosine_f1 | 0.6793 |
cosine_f1_threshold | 0.5696 |
cosine_precision | 0.5488 |
cosine_recall | 0.8913 |
cosine_ap | 0.6888 |
cosine_mcc | 0.5082 |
dot_accuracy | 0.765 |
dot_accuracy_threshold | 51.6699 |
dot_f1 | 0.6762 |
dot_f1_threshold | 46.5249 |
dot_precision | 0.5817 |
dot_recall | 0.8075 |
dot_ap | 0.6336 |
dot_mcc | 0.4996 |
euclidean_accuracy | 0.677 |
euclidean_accuracy_threshold | -14.2724 |
euclidean_f1 | 0.486 |
euclidean_f1_threshold | -0.6445 |
euclidean_precision | 0.3213 |
euclidean_recall | 0.9969 |
euclidean_ap | 0.2033 |
euclidean_mcc | -0.0459 |
manhattan_accuracy | 0.677 |
manhattan_accuracy_threshold | -161.7768 |
manhattan_f1 | 0.486 |
manhattan_f1_threshold | -3.0495 |
manhattan_precision | 0.3213 |
manhattan_recall | 0.9969 |
manhattan_ap | 0.2044 |
manhattan_mcc | -0.0459 |
max_accuracy | 0.765 |
max_accuracy_threshold | 51.6699 |
max_f1 | 0.6793 |
max_f1_threshold | 46.5249 |
max_precision | 0.5817 |
max_recall | 0.9969 |
max_ap | 0.6888 |
max_mcc | 0.5082 |
active_dims | 78.3228 |
sparsity_ratio | 0.9974 |
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNQ
,NanoNFCorpus
,NanoQuoraRetrieval
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNQ | NanoNFCorpus | NanoQuoraRetrieval | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.22 | 0.38 | 0.34 | 0.94 | 0.18 | 0.6 | 0.58 | 0.28 | 0.78 | 0.36 | 0.1 | 0.52 | 0.3878 |
dot_accuracy@3 | 0.42 | 0.54 | 0.5 | 0.98 | 0.32 | 0.84 | 0.76 | 0.42 | 0.84 | 0.58 | 0.34 | 0.62 | 0.7551 |
dot_accuracy@5 | 0.52 | 0.62 | 0.54 | 0.98 | 0.4 | 0.84 | 0.8 | 0.46 | 0.92 | 0.68 | 0.42 | 0.64 | 0.8367 |
dot_accuracy@10 | 0.76 | 0.62 | 0.58 | 0.98 | 0.48 | 0.92 | 0.86 | 0.5 | 0.98 | 0.76 | 0.44 | 0.76 | 0.9592 |
dot_precision@1 | 0.22 | 0.38 | 0.34 | 0.94 | 0.18 | 0.6 | 0.58 | 0.28 | 0.78 | 0.36 | 0.1 | 0.52 | 0.3878 |
dot_precision@3 | 0.14 | 0.18 | 0.3067 | 0.3933 | 0.1067 | 0.5267 | 0.2667 | 0.18 | 0.3733 | 0.2733 | 0.1133 | 0.2133 | 0.4694 |
dot_precision@5 | 0.104 | 0.124 | 0.26 | 0.248 | 0.084 | 0.456 | 0.168 | 0.136 | 0.284 | 0.212 | 0.084 | 0.14 | 0.4163 |
dot_precision@10 | 0.076 | 0.064 | 0.198 | 0.132 | 0.054 | 0.422 | 0.09 | 0.084 | 0.16 | 0.152 | 0.044 | 0.084 | 0.3388 |
dot_recall@1 | 0.22 | 0.36 | 0.0116 | 0.8173 | 0.085 | 0.0457 | 0.5467 | 0.1418 | 0.39 | 0.0757 | 0.1 | 0.475 | 0.0238 |
dot_recall@3 | 0.42 | 0.52 | 0.0606 | 0.928 | 0.1467 | 0.1537 | 0.7467 | 0.2429 | 0.56 | 0.1697 | 0.34 | 0.58 | 0.0893 |
dot_recall@5 | 0.52 | 0.6 | 0.0826 | 0.946 | 0.1783 | 0.1908 | 0.7867 | 0.2772 | 0.71 | 0.2177 | 0.42 | 0.615 | 0.1288 |
dot_recall@10 | 0.76 | 0.61 | 0.098 | 0.97 | 0.215 | 0.2936 | 0.8467 | 0.3289 | 0.8 | 0.3107 | 0.44 | 0.74 | 0.2166 |
dot_ndcg@10 | 0.4532 | 0.4828 | 0.2467 | 0.9467 | 0.1845 | 0.5071 | 0.707 | 0.2881 | 0.7143 | 0.3029 | 0.2782 | 0.6021 | 0.3762 |
dot_mrr@10 | 0.3601 | 0.4537 | 0.422 | 0.96 | 0.2674 | 0.7147 | 0.6765 | 0.3562 | 0.8362 | 0.4944 | 0.2247 | 0.5799 | 0.5807 |
dot_map@100 | 0.3733 | 0.4454 | 0.094 | 0.9291 | 0.1476 | 0.3907 | 0.6651 | 0.2415 | 0.6181 | 0.2167 | 0.2333 | 0.5551 | 0.2561 |
query_active_dims | 74.76 | 74.74 | 79.7 | 76.58 | 89.86 | 69.52 | 89.88 | 82.86 | 91.98 | 94.3 | 189.1 | 82.46 | 79.1225 |
query_sparsity_ratio | 0.9976 | 0.9976 | 0.9974 | 0.9975 | 0.9971 | 0.9977 | 0.9971 | 0.9973 | 0.997 | 0.9969 | 0.9938 | 0.9973 | 0.9974 |
corpus_active_dims | 103.0652 | 141.3148 | 202.1727 | 77.5906 | 221.7553 | 135.9335 | 221.2156 | 130.937 | 152.0157 | 199.6463 | 164.0333 | 194.2494 | 135.0078 |
corpus_sparsity_ratio | 0.9966 | 0.9954 | 0.9934 | 0.9975 | 0.9927 | 0.9955 | 0.9928 | 0.9957 | 0.995 | 0.9935 | 0.9946 | 0.9936 | 0.9956 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nq", "nfcorpus", "quoraretrieval" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.47 |
dot_accuracy@3 | 0.61 |
dot_accuracy@5 | 0.665 |
dot_accuracy@10 | 0.735 |
dot_precision@1 | 0.47 |
dot_precision@3 | 0.255 |
dot_precision@5 | 0.184 |
dot_precision@10 | 0.1175 |
dot_recall@1 | 0.3522 |
dot_recall@3 | 0.4821 |
dot_recall@5 | 0.5372 |
dot_recall@10 | 0.6095 |
dot_ndcg@10 | 0.5324 |
dot_mrr@10 | 0.5489 |
dot_map@100 | 0.4605 |
query_active_dims | 76.445 |
query_sparsity_ratio | 0.9975 |
corpus_active_dims | 122.7978 |
corpus_sparsity_ratio | 0.996 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.436 |
dot_accuracy@3 | 0.6089 |
dot_accuracy@5 | 0.6659 |
dot_accuracy@10 | 0.7384 |
dot_precision@1 | 0.436 |
dot_precision@3 | 0.2725 |
dot_precision@5 | 0.2089 |
dot_precision@10 | 0.1461 |
dot_recall@1 | 0.2533 |
dot_recall@3 | 0.3813 |
dot_recall@5 | 0.4364 |
dot_recall@10 | 0.51 |
dot_ndcg@10 | 0.4685 |
dot_mrr@10 | 0.5328 |
dot_map@100 | 0.3974 |
query_active_dims | 90.3914 |
query_sparsity_ratio | 0.997 |
corpus_active_dims | 152.3669 |
corpus_sparsity_ratio | 0.995 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 99,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.1 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.83 tokens
- max: 41 tokens
- min: 6 tokens
- mean: 15.21 tokens
- max: 75 tokens
- Samples:
anchor positive negative What are the best GMAT coaching institutes in Delhi NCR?
Which are the best GMAT coaching institutes in Delhi/NCR?
What are the best GMAT coaching institutes in Delhi-Noida Area?
Is a third world war coming?
Is World War 3 more imminent than expected?
Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
Should I build iOS or Android apps first?
Should people choose Android or iOS first to build their App?
How much more effort is it to build your app on both iOS and Android?
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 3e-05, "lambda_query": 5e-05 }
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.05 tokens
- max: 40 tokens
- min: 6 tokens
- mean: 14.14 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 14.56 tokens
- max: 60 tokens
- Samples:
anchor positive negative What happens if we use petrol in diesel vehicles?
Why can't we use petrol in diesel?
Why are diesel engines noisier than petrol engines?
Why is Saltwater taffy candy imported in Switzerland?
Why is Saltwater taffy candy imported in Laos?
Is salt a consumer product?
Which is your favourite film in 2016?
What movie is the best movie of 2016?
What will the best movie of 2017 be?
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 3e-05, "lambda_query": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | quora_duplicates_dev_max_ap | NanoMSMARCO_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0242 | 200 | 8.3389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0485 | 400 | 0.4397 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0727 | 600 | 0.3737 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0970 | 800 | 0.2666 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1212 | 1000 | 0.288 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1455 | 1200 | 0.1977 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1697 | 1400 | 0.2707 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1939 | 1600 | 0.1951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2 | 1650 | - | 0.1669 | 0.6472 | 0.3052 | 0.2793 | 0.1711 | 0.9281 | 0.4209 | - | - | - | - | - | - | - | - | - |
0.2182 | 1800 | 0.2178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2424 | 2000 | 0.2174 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2667 | 2200 | 0.1832 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2909 | 2400 | 0.1879 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3152 | 2600 | 0.1723 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3394 | 2800 | 0.1543 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3636 | 3000 | 0.1559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3879 | 3200 | 0.1575 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4 | 3300 | - | 0.1149 | 0.6749 | 0.3894 | 0.4467 | 0.2360 | 0.9292 | 0.5003 | - | - | - | - | - | - | - | - | - |
0.4121 | 3400 | 0.1395 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4364 | 3600 | 0.1596 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4606 | 3800 | 0.1595 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4848 | 4000 | 0.1211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5091 | 4200 | 0.1163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5333 | 4400 | 0.1182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5576 | 4600 | 0.1337 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5818 | 4800 | 0.1362 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6 | 4950 | - | 0.1001 | 0.6802 | 0.4093 | 0.4269 | 0.2341 | 0.9365 | 0.5017 | - | - | - | - | - | - | - | - | - |
0.6061 | 5000 | 0.1112 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6303 | 5200 | 0.1064 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6545 | 5400 | 0.119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6788 | 5600 | 0.1077 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7030 | 5800 | 0.1398 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7273 | 6000 | 0.09 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7515 | 6200 | 0.0903 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7758 | 6400 | 0.1082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8 | 6600 | 0.1122 | 0.0901 | 0.6941 | 0.4451 | 0.4757 | 0.2542 | 0.9411 | 0.5290 | - | - | - | - | - | - | - | - | - |
0.8242 | 6800 | 0.0708 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8485 | 7000 | 0.1291 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8727 | 7200 | 0.1165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8970 | 7400 | 0.0735 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9212 | 7600 | 0.0775 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9455 | 7800 | 0.0945 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9697 | 8000 | 0.0912 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9939 | 8200 | 0.104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0 | 8250 | - | 0.0686 | 0.6888 | 0.4532 | 0.4828 | 0.2467 | 0.9467 | 0.5324 | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | - | 0.4532 | 0.4828 | 0.2467 | 0.9467 | 0.4685 | 0.1845 | 0.5071 | 0.7070 | 0.2881 | 0.7143 | 0.3029 | 0.2782 | 0.6021 | 0.3762 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.025 kWh
- Carbon Emitted: 0.001 kg of CO2
- Hours Used: 0.222 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
- CPU Model: AMD Ryzen 9 6900HX with Radeon Graphics
- RAM Size: 30.61 GB
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}