Add new SparseEncoder model
Browse files- 1_SpladePooling/config.json +5 -0
- README.md +2014 -0
- config.json +23 -0
- config_sentence_transformers.json +11 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
1_SpladePooling/config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pooling_strategy": "max",
|
3 |
+
"activation_function": "relu",
|
4 |
+
"word_embedding_dimension": 30522
|
5 |
+
}
|
README.md
ADDED
@@ -0,0 +1,2014 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sparse-encoder
|
8 |
+
- sparse
|
9 |
+
- splade
|
10 |
+
- generated_from_trainer
|
11 |
+
- dataset_size:99000
|
12 |
+
- loss:SpladeLoss
|
13 |
+
- loss:SparseMultipleNegativesRankingLoss
|
14 |
+
- loss:FlopsLoss
|
15 |
+
base_model: distilbert/distilbert-base-uncased
|
16 |
+
widget:
|
17 |
+
- text: How do I know if a girl likes me at school?
|
18 |
+
- text: What are some five star hotel in Jaipur?
|
19 |
+
- text: Is it normal to fantasize your wife having sex with another man?
|
20 |
+
- text: What is the Sahara, and how do the average temperatures there compare to the
|
21 |
+
ones in the Simpson Desert?
|
22 |
+
- text: What are Hillary Clinton's most recognized accomplishments while Secretary
|
23 |
+
of State?
|
24 |
+
datasets:
|
25 |
+
- sentence-transformers/quora-duplicates
|
26 |
+
pipeline_tag: feature-extraction
|
27 |
+
library_name: sentence-transformers
|
28 |
+
metrics:
|
29 |
+
- cosine_accuracy
|
30 |
+
- cosine_accuracy_threshold
|
31 |
+
- cosine_f1
|
32 |
+
- cosine_f1_threshold
|
33 |
+
- cosine_precision
|
34 |
+
- cosine_recall
|
35 |
+
- cosine_ap
|
36 |
+
- cosine_mcc
|
37 |
+
- dot_accuracy
|
38 |
+
- dot_accuracy_threshold
|
39 |
+
- dot_f1
|
40 |
+
- dot_f1_threshold
|
41 |
+
- dot_precision
|
42 |
+
- dot_recall
|
43 |
+
- dot_ap
|
44 |
+
- dot_mcc
|
45 |
+
- euclidean_accuracy
|
46 |
+
- euclidean_accuracy_threshold
|
47 |
+
- euclidean_f1
|
48 |
+
- euclidean_f1_threshold
|
49 |
+
- euclidean_precision
|
50 |
+
- euclidean_recall
|
51 |
+
- euclidean_ap
|
52 |
+
- euclidean_mcc
|
53 |
+
- manhattan_accuracy
|
54 |
+
- manhattan_accuracy_threshold
|
55 |
+
- manhattan_f1
|
56 |
+
- manhattan_f1_threshold
|
57 |
+
- manhattan_precision
|
58 |
+
- manhattan_recall
|
59 |
+
- manhattan_ap
|
60 |
+
- manhattan_mcc
|
61 |
+
- max_accuracy
|
62 |
+
- max_accuracy_threshold
|
63 |
+
- max_f1
|
64 |
+
- max_f1_threshold
|
65 |
+
- max_precision
|
66 |
+
- max_recall
|
67 |
+
- max_ap
|
68 |
+
- max_mcc
|
69 |
+
- active_dims
|
70 |
+
- sparsity_ratio
|
71 |
+
- dot_accuracy@1
|
72 |
+
- dot_accuracy@3
|
73 |
+
- dot_accuracy@5
|
74 |
+
- dot_accuracy@10
|
75 |
+
- dot_precision@1
|
76 |
+
- dot_precision@3
|
77 |
+
- dot_precision@5
|
78 |
+
- dot_precision@10
|
79 |
+
- dot_recall@1
|
80 |
+
- dot_recall@3
|
81 |
+
- dot_recall@5
|
82 |
+
- dot_recall@10
|
83 |
+
- dot_ndcg@10
|
84 |
+
- dot_mrr@10
|
85 |
+
- dot_map@100
|
86 |
+
- query_active_dims
|
87 |
+
- query_sparsity_ratio
|
88 |
+
- corpus_active_dims
|
89 |
+
- corpus_sparsity_ratio
|
90 |
+
co2_eq_emissions:
|
91 |
+
emissions: 1.4164940270091377
|
92 |
+
energy_consumed: 0.02527693261851813
|
93 |
+
source: codecarbon
|
94 |
+
training_type: fine-tuning
|
95 |
+
on_cloud: false
|
96 |
+
cpu_model: AMD Ryzen 9 6900HX with Radeon Graphics
|
97 |
+
ram_total_size: 30.6114501953125
|
98 |
+
hours_used: 0.222
|
99 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
|
100 |
+
model-index:
|
101 |
+
- name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
102 |
+
results:
|
103 |
+
- task:
|
104 |
+
type: sparse-binary-classification
|
105 |
+
name: Sparse Binary Classification
|
106 |
+
dataset:
|
107 |
+
name: quora duplicates dev
|
108 |
+
type: quora_duplicates_dev
|
109 |
+
metrics:
|
110 |
+
- type: cosine_accuracy
|
111 |
+
value: 0.758
|
112 |
+
name: Cosine Accuracy
|
113 |
+
- type: cosine_accuracy_threshold
|
114 |
+
value: 0.8166326284408569
|
115 |
+
name: Cosine Accuracy Threshold
|
116 |
+
- type: cosine_f1
|
117 |
+
value: 0.6792899408284023
|
118 |
+
name: Cosine F1
|
119 |
+
- type: cosine_f1_threshold
|
120 |
+
value: 0.5695896148681641
|
121 |
+
name: Cosine F1 Threshold
|
122 |
+
- type: cosine_precision
|
123 |
+
value: 0.5487571701720841
|
124 |
+
name: Cosine Precision
|
125 |
+
- type: cosine_recall
|
126 |
+
value: 0.8913043478260869
|
127 |
+
name: Cosine Recall
|
128 |
+
- type: cosine_ap
|
129 |
+
value: 0.6887627674706448
|
130 |
+
name: Cosine Ap
|
131 |
+
- type: cosine_mcc
|
132 |
+
value: 0.508171027288805
|
133 |
+
name: Cosine Mcc
|
134 |
+
- type: dot_accuracy
|
135 |
+
value: 0.765
|
136 |
+
name: Dot Accuracy
|
137 |
+
- type: dot_accuracy_threshold
|
138 |
+
value: 51.6699104309082
|
139 |
+
name: Dot Accuracy Threshold
|
140 |
+
- type: dot_f1
|
141 |
+
value: 0.6762028608582575
|
142 |
+
name: Dot F1
|
143 |
+
- type: dot_f1_threshold
|
144 |
+
value: 46.524925231933594
|
145 |
+
name: Dot F1 Threshold
|
146 |
+
- type: dot_precision
|
147 |
+
value: 0.5816554809843401
|
148 |
+
name: Dot Precision
|
149 |
+
- type: dot_recall
|
150 |
+
value: 0.8074534161490683
|
151 |
+
name: Dot Recall
|
152 |
+
- type: dot_ap
|
153 |
+
value: 0.6335823489360819
|
154 |
+
name: Dot Ap
|
155 |
+
- type: dot_mcc
|
156 |
+
value: 0.4996270089694481
|
157 |
+
name: Dot Mcc
|
158 |
+
- type: euclidean_accuracy
|
159 |
+
value: 0.677
|
160 |
+
name: Euclidean Accuracy
|
161 |
+
- type: euclidean_accuracy_threshold
|
162 |
+
value: -14.272356986999512
|
163 |
+
name: Euclidean Accuracy Threshold
|
164 |
+
- type: euclidean_f1
|
165 |
+
value: 0.48599545798637395
|
166 |
+
name: Euclidean F1
|
167 |
+
- type: euclidean_f1_threshold
|
168 |
+
value: -0.6444530487060547
|
169 |
+
name: Euclidean F1 Threshold
|
170 |
+
- type: euclidean_precision
|
171 |
+
value: 0.3213213213213213
|
172 |
+
name: Euclidean Precision
|
173 |
+
- type: euclidean_recall
|
174 |
+
value: 0.9968944099378882
|
175 |
+
name: Euclidean Recall
|
176 |
+
- type: euclidean_ap
|
177 |
+
value: 0.2032823056922341
|
178 |
+
name: Euclidean Ap
|
179 |
+
- type: euclidean_mcc
|
180 |
+
value: -0.04590966956831287
|
181 |
+
name: Euclidean Mcc
|
182 |
+
- type: manhattan_accuracy
|
183 |
+
value: 0.677
|
184 |
+
name: Manhattan Accuracy
|
185 |
+
- type: manhattan_accuracy_threshold
|
186 |
+
value: -161.77682495117188
|
187 |
+
name: Manhattan Accuracy Threshold
|
188 |
+
- type: manhattan_f1
|
189 |
+
value: 0.48599545798637395
|
190 |
+
name: Manhattan F1
|
191 |
+
- type: manhattan_f1_threshold
|
192 |
+
value: -3.0494537353515625
|
193 |
+
name: Manhattan F1 Threshold
|
194 |
+
- type: manhattan_precision
|
195 |
+
value: 0.3213213213213213
|
196 |
+
name: Manhattan Precision
|
197 |
+
- type: manhattan_recall
|
198 |
+
value: 0.9968944099378882
|
199 |
+
name: Manhattan Recall
|
200 |
+
- type: manhattan_ap
|
201 |
+
value: 0.20444314945561334
|
202 |
+
name: Manhattan Ap
|
203 |
+
- type: manhattan_mcc
|
204 |
+
value: -0.04590966956831287
|
205 |
+
name: Manhattan Mcc
|
206 |
+
- type: max_accuracy
|
207 |
+
value: 0.765
|
208 |
+
name: Max Accuracy
|
209 |
+
- type: max_accuracy_threshold
|
210 |
+
value: 51.6699104309082
|
211 |
+
name: Max Accuracy Threshold
|
212 |
+
- type: max_f1
|
213 |
+
value: 0.6792899408284023
|
214 |
+
name: Max F1
|
215 |
+
- type: max_f1_threshold
|
216 |
+
value: 46.524925231933594
|
217 |
+
name: Max F1 Threshold
|
218 |
+
- type: max_precision
|
219 |
+
value: 0.5816554809843401
|
220 |
+
name: Max Precision
|
221 |
+
- type: max_recall
|
222 |
+
value: 0.9968944099378882
|
223 |
+
name: Max Recall
|
224 |
+
- type: max_ap
|
225 |
+
value: 0.6887627674706448
|
226 |
+
name: Max Ap
|
227 |
+
- type: max_mcc
|
228 |
+
value: 0.508171027288805
|
229 |
+
name: Max Mcc
|
230 |
+
- type: active_dims
|
231 |
+
value: 78.32280731201172
|
232 |
+
name: Active Dims
|
233 |
+
- type: sparsity_ratio
|
234 |
+
value: 0.9974338900690646
|
235 |
+
name: Sparsity Ratio
|
236 |
+
- task:
|
237 |
+
type: sparse-information-retrieval
|
238 |
+
name: Sparse Information Retrieval
|
239 |
+
dataset:
|
240 |
+
name: NanoMSMARCO
|
241 |
+
type: NanoMSMARCO
|
242 |
+
metrics:
|
243 |
+
- type: dot_accuracy@1
|
244 |
+
value: 0.22
|
245 |
+
name: Dot Accuracy@1
|
246 |
+
- type: dot_accuracy@3
|
247 |
+
value: 0.42
|
248 |
+
name: Dot Accuracy@3
|
249 |
+
- type: dot_accuracy@5
|
250 |
+
value: 0.52
|
251 |
+
name: Dot Accuracy@5
|
252 |
+
- type: dot_accuracy@10
|
253 |
+
value: 0.76
|
254 |
+
name: Dot Accuracy@10
|
255 |
+
- type: dot_precision@1
|
256 |
+
value: 0.22
|
257 |
+
name: Dot Precision@1
|
258 |
+
- type: dot_precision@3
|
259 |
+
value: 0.13999999999999999
|
260 |
+
name: Dot Precision@3
|
261 |
+
- type: dot_precision@5
|
262 |
+
value: 0.10400000000000001
|
263 |
+
name: Dot Precision@5
|
264 |
+
- type: dot_precision@10
|
265 |
+
value: 0.07600000000000001
|
266 |
+
name: Dot Precision@10
|
267 |
+
- type: dot_recall@1
|
268 |
+
value: 0.22
|
269 |
+
name: Dot Recall@1
|
270 |
+
- type: dot_recall@3
|
271 |
+
value: 0.42
|
272 |
+
name: Dot Recall@3
|
273 |
+
- type: dot_recall@5
|
274 |
+
value: 0.52
|
275 |
+
name: Dot Recall@5
|
276 |
+
- type: dot_recall@10
|
277 |
+
value: 0.76
|
278 |
+
name: Dot Recall@10
|
279 |
+
- type: dot_ndcg@10
|
280 |
+
value: 0.45321847177875746
|
281 |
+
name: Dot Ndcg@10
|
282 |
+
- type: dot_mrr@10
|
283 |
+
value: 0.3601269841269841
|
284 |
+
name: Dot Mrr@10
|
285 |
+
- type: dot_map@100
|
286 |
+
value: 0.37334906504034243
|
287 |
+
name: Dot Map@100
|
288 |
+
- type: query_active_dims
|
289 |
+
value: 74.76000213623047
|
290 |
+
name: Query Active Dims
|
291 |
+
- type: query_sparsity_ratio
|
292 |
+
value: 0.9975506191554868
|
293 |
+
name: Query Sparsity Ratio
|
294 |
+
- type: corpus_active_dims
|
295 |
+
value: 103.06523895263672
|
296 |
+
name: Corpus Active Dims
|
297 |
+
- type: corpus_sparsity_ratio
|
298 |
+
value: 0.9966232475279261
|
299 |
+
name: Corpus Sparsity Ratio
|
300 |
+
- type: dot_accuracy@1
|
301 |
+
value: 0.22
|
302 |
+
name: Dot Accuracy@1
|
303 |
+
- type: dot_accuracy@3
|
304 |
+
value: 0.42
|
305 |
+
name: Dot Accuracy@3
|
306 |
+
- type: dot_accuracy@5
|
307 |
+
value: 0.52
|
308 |
+
name: Dot Accuracy@5
|
309 |
+
- type: dot_accuracy@10
|
310 |
+
value: 0.76
|
311 |
+
name: Dot Accuracy@10
|
312 |
+
- type: dot_precision@1
|
313 |
+
value: 0.22
|
314 |
+
name: Dot Precision@1
|
315 |
+
- type: dot_precision@3
|
316 |
+
value: 0.13999999999999999
|
317 |
+
name: Dot Precision@3
|
318 |
+
- type: dot_precision@5
|
319 |
+
value: 0.10400000000000001
|
320 |
+
name: Dot Precision@5
|
321 |
+
- type: dot_precision@10
|
322 |
+
value: 0.07600000000000001
|
323 |
+
name: Dot Precision@10
|
324 |
+
- type: dot_recall@1
|
325 |
+
value: 0.22
|
326 |
+
name: Dot Recall@1
|
327 |
+
- type: dot_recall@3
|
328 |
+
value: 0.42
|
329 |
+
name: Dot Recall@3
|
330 |
+
- type: dot_recall@5
|
331 |
+
value: 0.52
|
332 |
+
name: Dot Recall@5
|
333 |
+
- type: dot_recall@10
|
334 |
+
value: 0.76
|
335 |
+
name: Dot Recall@10
|
336 |
+
- type: dot_ndcg@10
|
337 |
+
value: 0.45321847177875746
|
338 |
+
name: Dot Ndcg@10
|
339 |
+
- type: dot_mrr@10
|
340 |
+
value: 0.3601269841269841
|
341 |
+
name: Dot Mrr@10
|
342 |
+
- type: dot_map@100
|
343 |
+
value: 0.37334906504034243
|
344 |
+
name: Dot Map@100
|
345 |
+
- type: query_active_dims
|
346 |
+
value: 74.76000213623047
|
347 |
+
name: Query Active Dims
|
348 |
+
- type: query_sparsity_ratio
|
349 |
+
value: 0.9975506191554868
|
350 |
+
name: Query Sparsity Ratio
|
351 |
+
- type: corpus_active_dims
|
352 |
+
value: 103.06523895263672
|
353 |
+
name: Corpus Active Dims
|
354 |
+
- type: corpus_sparsity_ratio
|
355 |
+
value: 0.9966232475279261
|
356 |
+
name: Corpus Sparsity Ratio
|
357 |
+
- task:
|
358 |
+
type: sparse-information-retrieval
|
359 |
+
name: Sparse Information Retrieval
|
360 |
+
dataset:
|
361 |
+
name: NanoNQ
|
362 |
+
type: NanoNQ
|
363 |
+
metrics:
|
364 |
+
- type: dot_accuracy@1
|
365 |
+
value: 0.38
|
366 |
+
name: Dot Accuracy@1
|
367 |
+
- type: dot_accuracy@3
|
368 |
+
value: 0.54
|
369 |
+
name: Dot Accuracy@3
|
370 |
+
- type: dot_accuracy@5
|
371 |
+
value: 0.62
|
372 |
+
name: Dot Accuracy@5
|
373 |
+
- type: dot_accuracy@10
|
374 |
+
value: 0.62
|
375 |
+
name: Dot Accuracy@10
|
376 |
+
- type: dot_precision@1
|
377 |
+
value: 0.38
|
378 |
+
name: Dot Precision@1
|
379 |
+
- type: dot_precision@3
|
380 |
+
value: 0.18
|
381 |
+
name: Dot Precision@3
|
382 |
+
- type: dot_precision@5
|
383 |
+
value: 0.12400000000000003
|
384 |
+
name: Dot Precision@5
|
385 |
+
- type: dot_precision@10
|
386 |
+
value: 0.06400000000000002
|
387 |
+
name: Dot Precision@10
|
388 |
+
- type: dot_recall@1
|
389 |
+
value: 0.36
|
390 |
+
name: Dot Recall@1
|
391 |
+
- type: dot_recall@3
|
392 |
+
value: 0.52
|
393 |
+
name: Dot Recall@3
|
394 |
+
- type: dot_recall@5
|
395 |
+
value: 0.6
|
396 |
+
name: Dot Recall@5
|
397 |
+
- type: dot_recall@10
|
398 |
+
value: 0.61
|
399 |
+
name: Dot Recall@10
|
400 |
+
- type: dot_ndcg@10
|
401 |
+
value: 0.4828377104499333
|
402 |
+
name: Dot Ndcg@10
|
403 |
+
- type: dot_mrr@10
|
404 |
+
value: 0.4536666666666666
|
405 |
+
name: Dot Mrr@10
|
406 |
+
- type: dot_map@100
|
407 |
+
value: 0.445384784044708
|
408 |
+
name: Dot Map@100
|
409 |
+
- type: query_active_dims
|
410 |
+
value: 74.73999786376953
|
411 |
+
name: Query Active Dims
|
412 |
+
- type: query_sparsity_ratio
|
413 |
+
value: 0.9975512745605213
|
414 |
+
name: Query Sparsity Ratio
|
415 |
+
- type: corpus_active_dims
|
416 |
+
value: 141.31478881835938
|
417 |
+
name: Corpus Active Dims
|
418 |
+
- type: corpus_sparsity_ratio
|
419 |
+
value: 0.9953700678586476
|
420 |
+
name: Corpus Sparsity Ratio
|
421 |
+
- type: dot_accuracy@1
|
422 |
+
value: 0.38
|
423 |
+
name: Dot Accuracy@1
|
424 |
+
- type: dot_accuracy@3
|
425 |
+
value: 0.54
|
426 |
+
name: Dot Accuracy@3
|
427 |
+
- type: dot_accuracy@5
|
428 |
+
value: 0.62
|
429 |
+
name: Dot Accuracy@5
|
430 |
+
- type: dot_accuracy@10
|
431 |
+
value: 0.62
|
432 |
+
name: Dot Accuracy@10
|
433 |
+
- type: dot_precision@1
|
434 |
+
value: 0.38
|
435 |
+
name: Dot Precision@1
|
436 |
+
- type: dot_precision@3
|
437 |
+
value: 0.18
|
438 |
+
name: Dot Precision@3
|
439 |
+
- type: dot_precision@5
|
440 |
+
value: 0.12400000000000003
|
441 |
+
name: Dot Precision@5
|
442 |
+
- type: dot_precision@10
|
443 |
+
value: 0.06400000000000002
|
444 |
+
name: Dot Precision@10
|
445 |
+
- type: dot_recall@1
|
446 |
+
value: 0.36
|
447 |
+
name: Dot Recall@1
|
448 |
+
- type: dot_recall@3
|
449 |
+
value: 0.52
|
450 |
+
name: Dot Recall@3
|
451 |
+
- type: dot_recall@5
|
452 |
+
value: 0.6
|
453 |
+
name: Dot Recall@5
|
454 |
+
- type: dot_recall@10
|
455 |
+
value: 0.61
|
456 |
+
name: Dot Recall@10
|
457 |
+
- type: dot_ndcg@10
|
458 |
+
value: 0.4828377104499333
|
459 |
+
name: Dot Ndcg@10
|
460 |
+
- type: dot_mrr@10
|
461 |
+
value: 0.4536666666666666
|
462 |
+
name: Dot Mrr@10
|
463 |
+
- type: dot_map@100
|
464 |
+
value: 0.445384784044708
|
465 |
+
name: Dot Map@100
|
466 |
+
- type: query_active_dims
|
467 |
+
value: 74.73999786376953
|
468 |
+
name: Query Active Dims
|
469 |
+
- type: query_sparsity_ratio
|
470 |
+
value: 0.9975512745605213
|
471 |
+
name: Query Sparsity Ratio
|
472 |
+
- type: corpus_active_dims
|
473 |
+
value: 141.31478881835938
|
474 |
+
name: Corpus Active Dims
|
475 |
+
- type: corpus_sparsity_ratio
|
476 |
+
value: 0.9953700678586476
|
477 |
+
name: Corpus Sparsity Ratio
|
478 |
+
- task:
|
479 |
+
type: sparse-information-retrieval
|
480 |
+
name: Sparse Information Retrieval
|
481 |
+
dataset:
|
482 |
+
name: NanoNFCorpus
|
483 |
+
type: NanoNFCorpus
|
484 |
+
metrics:
|
485 |
+
- type: dot_accuracy@1
|
486 |
+
value: 0.34
|
487 |
+
name: Dot Accuracy@1
|
488 |
+
- type: dot_accuracy@3
|
489 |
+
value: 0.5
|
490 |
+
name: Dot Accuracy@3
|
491 |
+
- type: dot_accuracy@5
|
492 |
+
value: 0.54
|
493 |
+
name: Dot Accuracy@5
|
494 |
+
- type: dot_accuracy@10
|
495 |
+
value: 0.58
|
496 |
+
name: Dot Accuracy@10
|
497 |
+
- type: dot_precision@1
|
498 |
+
value: 0.34
|
499 |
+
name: Dot Precision@1
|
500 |
+
- type: dot_precision@3
|
501 |
+
value: 0.30666666666666664
|
502 |
+
name: Dot Precision@3
|
503 |
+
- type: dot_precision@5
|
504 |
+
value: 0.26
|
505 |
+
name: Dot Precision@5
|
506 |
+
- type: dot_precision@10
|
507 |
+
value: 0.198
|
508 |
+
name: Dot Precision@10
|
509 |
+
- type: dot_recall@1
|
510 |
+
value: 0.011597172822497613
|
511 |
+
name: Dot Recall@1
|
512 |
+
- type: dot_recall@3
|
513 |
+
value: 0.06058581579610722
|
514 |
+
name: Dot Recall@3
|
515 |
+
- type: dot_recall@5
|
516 |
+
value: 0.08260772201759854
|
517 |
+
name: Dot Recall@5
|
518 |
+
- type: dot_recall@10
|
519 |
+
value: 0.09800124609193644
|
520 |
+
name: Dot Recall@10
|
521 |
+
- type: dot_ndcg@10
|
522 |
+
value: 0.2466972614666078
|
523 |
+
name: Dot Ndcg@10
|
524 |
+
- type: dot_mrr@10
|
525 |
+
value: 0.42200000000000004
|
526 |
+
name: Dot Mrr@10
|
527 |
+
- type: dot_map@100
|
528 |
+
value: 0.09401937795309984
|
529 |
+
name: Dot Map@100
|
530 |
+
- type: query_active_dims
|
531 |
+
value: 79.69999694824219
|
532 |
+
name: Query Active Dims
|
533 |
+
- type: query_sparsity_ratio
|
534 |
+
value: 0.9973887688569477
|
535 |
+
name: Query Sparsity Ratio
|
536 |
+
- type: corpus_active_dims
|
537 |
+
value: 202.17269897460938
|
538 |
+
name: Corpus Active Dims
|
539 |
+
- type: corpus_sparsity_ratio
|
540 |
+
value: 0.9933761647672298
|
541 |
+
name: Corpus Sparsity Ratio
|
542 |
+
- type: dot_accuracy@1
|
543 |
+
value: 0.34
|
544 |
+
name: Dot Accuracy@1
|
545 |
+
- type: dot_accuracy@3
|
546 |
+
value: 0.5
|
547 |
+
name: Dot Accuracy@3
|
548 |
+
- type: dot_accuracy@5
|
549 |
+
value: 0.54
|
550 |
+
name: Dot Accuracy@5
|
551 |
+
- type: dot_accuracy@10
|
552 |
+
value: 0.58
|
553 |
+
name: Dot Accuracy@10
|
554 |
+
- type: dot_precision@1
|
555 |
+
value: 0.34
|
556 |
+
name: Dot Precision@1
|
557 |
+
- type: dot_precision@3
|
558 |
+
value: 0.30666666666666664
|
559 |
+
name: Dot Precision@3
|
560 |
+
- type: dot_precision@5
|
561 |
+
value: 0.26
|
562 |
+
name: Dot Precision@5
|
563 |
+
- type: dot_precision@10
|
564 |
+
value: 0.198
|
565 |
+
name: Dot Precision@10
|
566 |
+
- type: dot_recall@1
|
567 |
+
value: 0.011597172822497613
|
568 |
+
name: Dot Recall@1
|
569 |
+
- type: dot_recall@3
|
570 |
+
value: 0.06058581579610722
|
571 |
+
name: Dot Recall@3
|
572 |
+
- type: dot_recall@5
|
573 |
+
value: 0.08260772201759854
|
574 |
+
name: Dot Recall@5
|
575 |
+
- type: dot_recall@10
|
576 |
+
value: 0.09800124609193644
|
577 |
+
name: Dot Recall@10
|
578 |
+
- type: dot_ndcg@10
|
579 |
+
value: 0.2466972614666078
|
580 |
+
name: Dot Ndcg@10
|
581 |
+
- type: dot_mrr@10
|
582 |
+
value: 0.42200000000000004
|
583 |
+
name: Dot Mrr@10
|
584 |
+
- type: dot_map@100
|
585 |
+
value: 0.09401937795309984
|
586 |
+
name: Dot Map@100
|
587 |
+
- type: query_active_dims
|
588 |
+
value: 79.69999694824219
|
589 |
+
name: Query Active Dims
|
590 |
+
- type: query_sparsity_ratio
|
591 |
+
value: 0.9973887688569477
|
592 |
+
name: Query Sparsity Ratio
|
593 |
+
- type: corpus_active_dims
|
594 |
+
value: 202.17269897460938
|
595 |
+
name: Corpus Active Dims
|
596 |
+
- type: corpus_sparsity_ratio
|
597 |
+
value: 0.9933761647672298
|
598 |
+
name: Corpus Sparsity Ratio
|
599 |
+
- task:
|
600 |
+
type: sparse-information-retrieval
|
601 |
+
name: Sparse Information Retrieval
|
602 |
+
dataset:
|
603 |
+
name: NanoQuoraRetrieval
|
604 |
+
type: NanoQuoraRetrieval
|
605 |
+
metrics:
|
606 |
+
- type: dot_accuracy@1
|
607 |
+
value: 0.94
|
608 |
+
name: Dot Accuracy@1
|
609 |
+
- type: dot_accuracy@3
|
610 |
+
value: 0.98
|
611 |
+
name: Dot Accuracy@3
|
612 |
+
- type: dot_accuracy@5
|
613 |
+
value: 0.98
|
614 |
+
name: Dot Accuracy@5
|
615 |
+
- type: dot_accuracy@10
|
616 |
+
value: 0.98
|
617 |
+
name: Dot Accuracy@10
|
618 |
+
- type: dot_precision@1
|
619 |
+
value: 0.94
|
620 |
+
name: Dot Precision@1
|
621 |
+
- type: dot_precision@3
|
622 |
+
value: 0.3933333333333333
|
623 |
+
name: Dot Precision@3
|
624 |
+
- type: dot_precision@5
|
625 |
+
value: 0.24799999999999997
|
626 |
+
name: Dot Precision@5
|
627 |
+
- type: dot_precision@10
|
628 |
+
value: 0.13199999999999998
|
629 |
+
name: Dot Precision@10
|
630 |
+
- type: dot_recall@1
|
631 |
+
value: 0.8173333333333332
|
632 |
+
name: Dot Recall@1
|
633 |
+
- type: dot_recall@3
|
634 |
+
value: 0.9279999999999999
|
635 |
+
name: Dot Recall@3
|
636 |
+
- type: dot_recall@5
|
637 |
+
value: 0.946
|
638 |
+
name: Dot Recall@5
|
639 |
+
- type: dot_recall@10
|
640 |
+
value: 0.97
|
641 |
+
name: Dot Recall@10
|
642 |
+
- type: dot_ndcg@10
|
643 |
+
value: 0.9467235239993945
|
644 |
+
name: Dot Ndcg@10
|
645 |
+
- type: dot_mrr@10
|
646 |
+
value: 0.96
|
647 |
+
name: Dot Mrr@10
|
648 |
+
- type: dot_map@100
|
649 |
+
value: 0.9290737327188939
|
650 |
+
name: Dot Map@100
|
651 |
+
- type: query_active_dims
|
652 |
+
value: 76.58000183105469
|
653 |
+
name: Query Active Dims
|
654 |
+
- type: query_sparsity_ratio
|
655 |
+
value: 0.9974909900455063
|
656 |
+
name: Query Sparsity Ratio
|
657 |
+
- type: corpus_active_dims
|
658 |
+
value: 77.59056854248047
|
659 |
+
name: Corpus Active Dims
|
660 |
+
- type: corpus_sparsity_ratio
|
661 |
+
value: 0.9974578805929336
|
662 |
+
name: Corpus Sparsity Ratio
|
663 |
+
- type: dot_accuracy@1
|
664 |
+
value: 0.94
|
665 |
+
name: Dot Accuracy@1
|
666 |
+
- type: dot_accuracy@3
|
667 |
+
value: 0.98
|
668 |
+
name: Dot Accuracy@3
|
669 |
+
- type: dot_accuracy@5
|
670 |
+
value: 0.98
|
671 |
+
name: Dot Accuracy@5
|
672 |
+
- type: dot_accuracy@10
|
673 |
+
value: 0.98
|
674 |
+
name: Dot Accuracy@10
|
675 |
+
- type: dot_precision@1
|
676 |
+
value: 0.94
|
677 |
+
name: Dot Precision@1
|
678 |
+
- type: dot_precision@3
|
679 |
+
value: 0.3933333333333333
|
680 |
+
name: Dot Precision@3
|
681 |
+
- type: dot_precision@5
|
682 |
+
value: 0.24799999999999997
|
683 |
+
name: Dot Precision@5
|
684 |
+
- type: dot_precision@10
|
685 |
+
value: 0.13199999999999998
|
686 |
+
name: Dot Precision@10
|
687 |
+
- type: dot_recall@1
|
688 |
+
value: 0.8173333333333332
|
689 |
+
name: Dot Recall@1
|
690 |
+
- type: dot_recall@3
|
691 |
+
value: 0.9279999999999999
|
692 |
+
name: Dot Recall@3
|
693 |
+
- type: dot_recall@5
|
694 |
+
value: 0.946
|
695 |
+
name: Dot Recall@5
|
696 |
+
- type: dot_recall@10
|
697 |
+
value: 0.97
|
698 |
+
name: Dot Recall@10
|
699 |
+
- type: dot_ndcg@10
|
700 |
+
value: 0.9467235239993945
|
701 |
+
name: Dot Ndcg@10
|
702 |
+
- type: dot_mrr@10
|
703 |
+
value: 0.96
|
704 |
+
name: Dot Mrr@10
|
705 |
+
- type: dot_map@100
|
706 |
+
value: 0.9290737327188939
|
707 |
+
name: Dot Map@100
|
708 |
+
- type: query_active_dims
|
709 |
+
value: 76.58000183105469
|
710 |
+
name: Query Active Dims
|
711 |
+
- type: query_sparsity_ratio
|
712 |
+
value: 0.9974909900455063
|
713 |
+
name: Query Sparsity Ratio
|
714 |
+
- type: corpus_active_dims
|
715 |
+
value: 77.59056854248047
|
716 |
+
name: Corpus Active Dims
|
717 |
+
- type: corpus_sparsity_ratio
|
718 |
+
value: 0.9974578805929336
|
719 |
+
name: Corpus Sparsity Ratio
|
720 |
+
- task:
|
721 |
+
type: sparse-nano-beir
|
722 |
+
name: Sparse Nano BEIR
|
723 |
+
dataset:
|
724 |
+
name: NanoBEIR mean
|
725 |
+
type: NanoBEIR_mean
|
726 |
+
metrics:
|
727 |
+
- type: dot_accuracy@1
|
728 |
+
value: 0.47
|
729 |
+
name: Dot Accuracy@1
|
730 |
+
- type: dot_accuracy@3
|
731 |
+
value: 0.61
|
732 |
+
name: Dot Accuracy@3
|
733 |
+
- type: dot_accuracy@5
|
734 |
+
value: 0.665
|
735 |
+
name: Dot Accuracy@5
|
736 |
+
- type: dot_accuracy@10
|
737 |
+
value: 0.735
|
738 |
+
name: Dot Accuracy@10
|
739 |
+
- type: dot_precision@1
|
740 |
+
value: 0.47
|
741 |
+
name: Dot Precision@1
|
742 |
+
- type: dot_precision@3
|
743 |
+
value: 0.255
|
744 |
+
name: Dot Precision@3
|
745 |
+
- type: dot_precision@5
|
746 |
+
value: 0.184
|
747 |
+
name: Dot Precision@5
|
748 |
+
- type: dot_precision@10
|
749 |
+
value: 0.1175
|
750 |
+
name: Dot Precision@10
|
751 |
+
- type: dot_recall@1
|
752 |
+
value: 0.3522326265389577
|
753 |
+
name: Dot Recall@1
|
754 |
+
- type: dot_recall@3
|
755 |
+
value: 0.4821464539490268
|
756 |
+
name: Dot Recall@3
|
757 |
+
- type: dot_recall@5
|
758 |
+
value: 0.5371519305043997
|
759 |
+
name: Dot Recall@5
|
760 |
+
- type: dot_recall@10
|
761 |
+
value: 0.6095003115229841
|
762 |
+
name: Dot Recall@10
|
763 |
+
- type: dot_ndcg@10
|
764 |
+
value: 0.5323692419236733
|
765 |
+
name: Dot Ndcg@10
|
766 |
+
- type: dot_mrr@10
|
767 |
+
value: 0.5489484126984127
|
768 |
+
name: Dot Mrr@10
|
769 |
+
- type: dot_map@100
|
770 |
+
value: 0.46045673993926106
|
771 |
+
name: Dot Map@100
|
772 |
+
- type: query_active_dims
|
773 |
+
value: 76.44499969482422
|
774 |
+
name: Query Active Dims
|
775 |
+
- type: query_sparsity_ratio
|
776 |
+
value: 0.9974954131546155
|
777 |
+
name: Query Sparsity Ratio
|
778 |
+
- type: corpus_active_dims
|
779 |
+
value: 122.79780664247188
|
780 |
+
name: Corpus Active Dims
|
781 |
+
- type: corpus_sparsity_ratio
|
782 |
+
value: 0.9959767444255792
|
783 |
+
name: Corpus Sparsity Ratio
|
784 |
+
- type: dot_accuracy@1
|
785 |
+
value: 0.4359811616954475
|
786 |
+
name: Dot Accuracy@1
|
787 |
+
- type: dot_accuracy@3
|
788 |
+
value: 0.6088540031397174
|
789 |
+
name: Dot Accuracy@3
|
790 |
+
- type: dot_accuracy@5
|
791 |
+
value: 0.6659026687598116
|
792 |
+
name: Dot Accuracy@5
|
793 |
+
- type: dot_accuracy@10
|
794 |
+
value: 0.7383987441130299
|
795 |
+
name: Dot Accuracy@10
|
796 |
+
- type: dot_precision@1
|
797 |
+
value: 0.4359811616954475
|
798 |
+
name: Dot Precision@1
|
799 |
+
- type: dot_precision@3
|
800 |
+
value: 0.2725170068027211
|
801 |
+
name: Dot Precision@3
|
802 |
+
- type: dot_precision@5
|
803 |
+
value: 0.2089481946624804
|
804 |
+
name: Dot Precision@5
|
805 |
+
- type: dot_precision@10
|
806 |
+
value: 0.14605965463108322
|
807 |
+
name: Dot Precision@10
|
808 |
+
- type: dot_recall@1
|
809 |
+
value: 0.2532746332292894
|
810 |
+
name: Dot Recall@1
|
811 |
+
- type: dot_recall@3
|
812 |
+
value: 0.3813452238818861
|
813 |
+
name: Dot Recall@3
|
814 |
+
- type: dot_recall@5
|
815 |
+
value: 0.4363867898661836
|
816 |
+
name: Dot Recall@5
|
817 |
+
- type: dot_recall@10
|
818 |
+
value: 0.5099503000039356
|
819 |
+
name: Dot Recall@10
|
820 |
+
- type: dot_ndcg@10
|
821 |
+
value: 0.4684519639817077
|
822 |
+
name: Dot Ndcg@10
|
823 |
+
- type: dot_mrr@10
|
824 |
+
value: 0.5328029827315542
|
825 |
+
name: Dot Mrr@10
|
826 |
+
- type: dot_map@100
|
827 |
+
value: 0.39738635557561647
|
828 |
+
name: Dot Map@100
|
829 |
+
- type: query_active_dims
|
830 |
+
value: 90.39137197532713
|
831 |
+
name: Query Active Dims
|
832 |
+
- type: query_sparsity_ratio
|
833 |
+
value: 0.9970384846348428
|
834 |
+
name: Query Sparsity Ratio
|
835 |
+
- type: corpus_active_dims
|
836 |
+
value: 152.36685474307478
|
837 |
+
name: Corpus Active Dims
|
838 |
+
- type: corpus_sparsity_ratio
|
839 |
+
value: 0.9950079662295042
|
840 |
+
name: Corpus Sparsity Ratio
|
841 |
+
- task:
|
842 |
+
type: sparse-information-retrieval
|
843 |
+
name: Sparse Information Retrieval
|
844 |
+
dataset:
|
845 |
+
name: NanoClimateFEVER
|
846 |
+
type: NanoClimateFEVER
|
847 |
+
metrics:
|
848 |
+
- type: dot_accuracy@1
|
849 |
+
value: 0.18
|
850 |
+
name: Dot Accuracy@1
|
851 |
+
- type: dot_accuracy@3
|
852 |
+
value: 0.32
|
853 |
+
name: Dot Accuracy@3
|
854 |
+
- type: dot_accuracy@5
|
855 |
+
value: 0.4
|
856 |
+
name: Dot Accuracy@5
|
857 |
+
- type: dot_accuracy@10
|
858 |
+
value: 0.48
|
859 |
+
name: Dot Accuracy@10
|
860 |
+
- type: dot_precision@1
|
861 |
+
value: 0.18
|
862 |
+
name: Dot Precision@1
|
863 |
+
- type: dot_precision@3
|
864 |
+
value: 0.10666666666666666
|
865 |
+
name: Dot Precision@3
|
866 |
+
- type: dot_precision@5
|
867 |
+
value: 0.08400000000000002
|
868 |
+
name: Dot Precision@5
|
869 |
+
- type: dot_precision@10
|
870 |
+
value: 0.054000000000000006
|
871 |
+
name: Dot Precision@10
|
872 |
+
- type: dot_recall@1
|
873 |
+
value: 0.085
|
874 |
+
name: Dot Recall@1
|
875 |
+
- type: dot_recall@3
|
876 |
+
value: 0.14666666666666667
|
877 |
+
name: Dot Recall@3
|
878 |
+
- type: dot_recall@5
|
879 |
+
value: 0.17833333333333332
|
880 |
+
name: Dot Recall@5
|
881 |
+
- type: dot_recall@10
|
882 |
+
value: 0.215
|
883 |
+
name: Dot Recall@10
|
884 |
+
- type: dot_ndcg@10
|
885 |
+
value: 0.1845115403570178
|
886 |
+
name: Dot Ndcg@10
|
887 |
+
- type: dot_mrr@10
|
888 |
+
value: 0.2674126984126984
|
889 |
+
name: Dot Mrr@10
|
890 |
+
- type: dot_map@100
|
891 |
+
value: 0.1475834110231865
|
892 |
+
name: Dot Map@100
|
893 |
+
- type: query_active_dims
|
894 |
+
value: 89.86000061035156
|
895 |
+
name: Query Active Dims
|
896 |
+
- type: query_sparsity_ratio
|
897 |
+
value: 0.9970558940891701
|
898 |
+
name: Query Sparsity Ratio
|
899 |
+
- type: corpus_active_dims
|
900 |
+
value: 221.75527954101562
|
901 |
+
name: Corpus Active Dims
|
902 |
+
- type: corpus_sparsity_ratio
|
903 |
+
value: 0.992734575730915
|
904 |
+
name: Corpus Sparsity Ratio
|
905 |
+
- task:
|
906 |
+
type: sparse-information-retrieval
|
907 |
+
name: Sparse Information Retrieval
|
908 |
+
dataset:
|
909 |
+
name: NanoDBPedia
|
910 |
+
type: NanoDBPedia
|
911 |
+
metrics:
|
912 |
+
- type: dot_accuracy@1
|
913 |
+
value: 0.6
|
914 |
+
name: Dot Accuracy@1
|
915 |
+
- type: dot_accuracy@3
|
916 |
+
value: 0.84
|
917 |
+
name: Dot Accuracy@3
|
918 |
+
- type: dot_accuracy@5
|
919 |
+
value: 0.84
|
920 |
+
name: Dot Accuracy@5
|
921 |
+
- type: dot_accuracy@10
|
922 |
+
value: 0.92
|
923 |
+
name: Dot Accuracy@10
|
924 |
+
- type: dot_precision@1
|
925 |
+
value: 0.6
|
926 |
+
name: Dot Precision@1
|
927 |
+
- type: dot_precision@3
|
928 |
+
value: 0.5266666666666666
|
929 |
+
name: Dot Precision@3
|
930 |
+
- type: dot_precision@5
|
931 |
+
value: 0.456
|
932 |
+
name: Dot Precision@5
|
933 |
+
- type: dot_precision@10
|
934 |
+
value: 0.4220000000000001
|
935 |
+
name: Dot Precision@10
|
936 |
+
- type: dot_recall@1
|
937 |
+
value: 0.04570544957623723
|
938 |
+
name: Dot Recall@1
|
939 |
+
- type: dot_recall@3
|
940 |
+
value: 0.15367137863132574
|
941 |
+
name: Dot Recall@3
|
942 |
+
- type: dot_recall@5
|
943 |
+
value: 0.1908008582920462
|
944 |
+
name: Dot Recall@5
|
945 |
+
- type: dot_recall@10
|
946 |
+
value: 0.293554014064817
|
947 |
+
name: Dot Recall@10
|
948 |
+
- type: dot_ndcg@10
|
949 |
+
value: 0.5070720730882787
|
950 |
+
name: Dot Ndcg@10
|
951 |
+
- type: dot_mrr@10
|
952 |
+
value: 0.7147222222222225
|
953 |
+
name: Dot Mrr@10
|
954 |
+
- type: dot_map@100
|
955 |
+
value: 0.3906658166774757
|
956 |
+
name: Dot Map@100
|
957 |
+
- type: query_active_dims
|
958 |
+
value: 69.5199966430664
|
959 |
+
name: Query Active Dims
|
960 |
+
- type: query_sparsity_ratio
|
961 |
+
value: 0.997722298779796
|
962 |
+
name: Query Sparsity Ratio
|
963 |
+
- type: corpus_active_dims
|
964 |
+
value: 135.93350219726562
|
965 |
+
name: Corpus Active Dims
|
966 |
+
- type: corpus_sparsity_ratio
|
967 |
+
value: 0.9955463763122578
|
968 |
+
name: Corpus Sparsity Ratio
|
969 |
+
- task:
|
970 |
+
type: sparse-information-retrieval
|
971 |
+
name: Sparse Information Retrieval
|
972 |
+
dataset:
|
973 |
+
name: NanoFEVER
|
974 |
+
type: NanoFEVER
|
975 |
+
metrics:
|
976 |
+
- type: dot_accuracy@1
|
977 |
+
value: 0.58
|
978 |
+
name: Dot Accuracy@1
|
979 |
+
- type: dot_accuracy@3
|
980 |
+
value: 0.76
|
981 |
+
name: Dot Accuracy@3
|
982 |
+
- type: dot_accuracy@5
|
983 |
+
value: 0.8
|
984 |
+
name: Dot Accuracy@5
|
985 |
+
- type: dot_accuracy@10
|
986 |
+
value: 0.86
|
987 |
+
name: Dot Accuracy@10
|
988 |
+
- type: dot_precision@1
|
989 |
+
value: 0.58
|
990 |
+
name: Dot Precision@1
|
991 |
+
- type: dot_precision@3
|
992 |
+
value: 0.26666666666666666
|
993 |
+
name: Dot Precision@3
|
994 |
+
- type: dot_precision@5
|
995 |
+
value: 0.16799999999999998
|
996 |
+
name: Dot Precision@5
|
997 |
+
- type: dot_precision@10
|
998 |
+
value: 0.09
|
999 |
+
name: Dot Precision@10
|
1000 |
+
- type: dot_recall@1
|
1001 |
+
value: 0.5466666666666666
|
1002 |
+
name: Dot Recall@1
|
1003 |
+
- type: dot_recall@3
|
1004 |
+
value: 0.7466666666666667
|
1005 |
+
name: Dot Recall@3
|
1006 |
+
- type: dot_recall@5
|
1007 |
+
value: 0.7866666666666667
|
1008 |
+
name: Dot Recall@5
|
1009 |
+
- type: dot_recall@10
|
1010 |
+
value: 0.8466666666666667
|
1011 |
+
name: Dot Recall@10
|
1012 |
+
- type: dot_ndcg@10
|
1013 |
+
value: 0.7069849294263234
|
1014 |
+
name: Dot Ndcg@10
|
1015 |
+
- type: dot_mrr@10
|
1016 |
+
value: 0.6765000000000001
|
1017 |
+
name: Dot Mrr@10
|
1018 |
+
- type: dot_map@100
|
1019 |
+
value: 0.6651380090497737
|
1020 |
+
name: Dot Map@100
|
1021 |
+
- type: query_active_dims
|
1022 |
+
value: 89.87999725341797
|
1023 |
+
name: Query Active Dims
|
1024 |
+
- type: query_sparsity_ratio
|
1025 |
+
value: 0.9970552389340994
|
1026 |
+
name: Query Sparsity Ratio
|
1027 |
+
- type: corpus_active_dims
|
1028 |
+
value: 221.215576171875
|
1029 |
+
name: Corpus Active Dims
|
1030 |
+
- type: corpus_sparsity_ratio
|
1031 |
+
value: 0.9927522581688004
|
1032 |
+
name: Corpus Sparsity Ratio
|
1033 |
+
- task:
|
1034 |
+
type: sparse-information-retrieval
|
1035 |
+
name: Sparse Information Retrieval
|
1036 |
+
dataset:
|
1037 |
+
name: NanoFiQA2018
|
1038 |
+
type: NanoFiQA2018
|
1039 |
+
metrics:
|
1040 |
+
- type: dot_accuracy@1
|
1041 |
+
value: 0.28
|
1042 |
+
name: Dot Accuracy@1
|
1043 |
+
- type: dot_accuracy@3
|
1044 |
+
value: 0.42
|
1045 |
+
name: Dot Accuracy@3
|
1046 |
+
- type: dot_accuracy@5
|
1047 |
+
value: 0.46
|
1048 |
+
name: Dot Accuracy@5
|
1049 |
+
- type: dot_accuracy@10
|
1050 |
+
value: 0.5
|
1051 |
+
name: Dot Accuracy@10
|
1052 |
+
- type: dot_precision@1
|
1053 |
+
value: 0.28
|
1054 |
+
name: Dot Precision@1
|
1055 |
+
- type: dot_precision@3
|
1056 |
+
value: 0.18
|
1057 |
+
name: Dot Precision@3
|
1058 |
+
- type: dot_precision@5
|
1059 |
+
value: 0.136
|
1060 |
+
name: Dot Precision@5
|
1061 |
+
- type: dot_precision@10
|
1062 |
+
value: 0.08399999999999999
|
1063 |
+
name: Dot Precision@10
|
1064 |
+
- type: dot_recall@1
|
1065 |
+
value: 0.14183333333333334
|
1066 |
+
name: Dot Recall@1
|
1067 |
+
- type: dot_recall@3
|
1068 |
+
value: 0.24288888888888888
|
1069 |
+
name: Dot Recall@3
|
1070 |
+
- type: dot_recall@5
|
1071 |
+
value: 0.27715873015873016
|
1072 |
+
name: Dot Recall@5
|
1073 |
+
- type: dot_recall@10
|
1074 |
+
value: 0.3288730158730159
|
1075 |
+
name: Dot Recall@10
|
1076 |
+
- type: dot_ndcg@10
|
1077 |
+
value: 0.28813286680239514
|
1078 |
+
name: Dot Ndcg@10
|
1079 |
+
- type: dot_mrr@10
|
1080 |
+
value: 0.3561904761904763
|
1081 |
+
name: Dot Mrr@10
|
1082 |
+
- type: dot_map@100
|
1083 |
+
value: 0.2415362537997973
|
1084 |
+
name: Dot Map@100
|
1085 |
+
- type: query_active_dims
|
1086 |
+
value: 82.86000061035156
|
1087 |
+
name: Query Active Dims
|
1088 |
+
- type: query_sparsity_ratio
|
1089 |
+
value: 0.9972852368583202
|
1090 |
+
name: Query Sparsity Ratio
|
1091 |
+
- type: corpus_active_dims
|
1092 |
+
value: 130.93699645996094
|
1093 |
+
name: Corpus Active Dims
|
1094 |
+
- type: corpus_sparsity_ratio
|
1095 |
+
value: 0.9957100780925245
|
1096 |
+
name: Corpus Sparsity Ratio
|
1097 |
+
- task:
|
1098 |
+
type: sparse-information-retrieval
|
1099 |
+
name: Sparse Information Retrieval
|
1100 |
+
dataset:
|
1101 |
+
name: NanoHotpotQA
|
1102 |
+
type: NanoHotpotQA
|
1103 |
+
metrics:
|
1104 |
+
- type: dot_accuracy@1
|
1105 |
+
value: 0.78
|
1106 |
+
name: Dot Accuracy@1
|
1107 |
+
- type: dot_accuracy@3
|
1108 |
+
value: 0.84
|
1109 |
+
name: Dot Accuracy@3
|
1110 |
+
- type: dot_accuracy@5
|
1111 |
+
value: 0.92
|
1112 |
+
name: Dot Accuracy@5
|
1113 |
+
- type: dot_accuracy@10
|
1114 |
+
value: 0.98
|
1115 |
+
name: Dot Accuracy@10
|
1116 |
+
- type: dot_precision@1
|
1117 |
+
value: 0.78
|
1118 |
+
name: Dot Precision@1
|
1119 |
+
- type: dot_precision@3
|
1120 |
+
value: 0.3733333333333333
|
1121 |
+
name: Dot Precision@3
|
1122 |
+
- type: dot_precision@5
|
1123 |
+
value: 0.28400000000000003
|
1124 |
+
name: Dot Precision@5
|
1125 |
+
- type: dot_precision@10
|
1126 |
+
value: 0.16
|
1127 |
+
name: Dot Precision@10
|
1128 |
+
- type: dot_recall@1
|
1129 |
+
value: 0.39
|
1130 |
+
name: Dot Recall@1
|
1131 |
+
- type: dot_recall@3
|
1132 |
+
value: 0.56
|
1133 |
+
name: Dot Recall@3
|
1134 |
+
- type: dot_recall@5
|
1135 |
+
value: 0.71
|
1136 |
+
name: Dot Recall@5
|
1137 |
+
- type: dot_recall@10
|
1138 |
+
value: 0.8
|
1139 |
+
name: Dot Recall@10
|
1140 |
+
- type: dot_ndcg@10
|
1141 |
+
value: 0.7143331285788386
|
1142 |
+
name: Dot Ndcg@10
|
1143 |
+
- type: dot_mrr@10
|
1144 |
+
value: 0.8361904761904762
|
1145 |
+
name: Dot Mrr@10
|
1146 |
+
- type: dot_map@100
|
1147 |
+
value: 0.6181181734895289
|
1148 |
+
name: Dot Map@100
|
1149 |
+
- type: query_active_dims
|
1150 |
+
value: 91.9800033569336
|
1151 |
+
name: Query Active Dims
|
1152 |
+
- type: query_sparsity_ratio
|
1153 |
+
value: 0.9969864359033833
|
1154 |
+
name: Query Sparsity Ratio
|
1155 |
+
- type: corpus_active_dims
|
1156 |
+
value: 152.01571655273438
|
1157 |
+
name: Corpus Active Dims
|
1158 |
+
- type: corpus_sparsity_ratio
|
1159 |
+
value: 0.9950194706587794
|
1160 |
+
name: Corpus Sparsity Ratio
|
1161 |
+
- task:
|
1162 |
+
type: sparse-information-retrieval
|
1163 |
+
name: Sparse Information Retrieval
|
1164 |
+
dataset:
|
1165 |
+
name: NanoSCIDOCS
|
1166 |
+
type: NanoSCIDOCS
|
1167 |
+
metrics:
|
1168 |
+
- type: dot_accuracy@1
|
1169 |
+
value: 0.36
|
1170 |
+
name: Dot Accuracy@1
|
1171 |
+
- type: dot_accuracy@3
|
1172 |
+
value: 0.58
|
1173 |
+
name: Dot Accuracy@3
|
1174 |
+
- type: dot_accuracy@5
|
1175 |
+
value: 0.68
|
1176 |
+
name: Dot Accuracy@5
|
1177 |
+
- type: dot_accuracy@10
|
1178 |
+
value: 0.76
|
1179 |
+
name: Dot Accuracy@10
|
1180 |
+
- type: dot_precision@1
|
1181 |
+
value: 0.36
|
1182 |
+
name: Dot Precision@1
|
1183 |
+
- type: dot_precision@3
|
1184 |
+
value: 0.2733333333333333
|
1185 |
+
name: Dot Precision@3
|
1186 |
+
- type: dot_precision@5
|
1187 |
+
value: 0.21199999999999997
|
1188 |
+
name: Dot Precision@5
|
1189 |
+
- type: dot_precision@10
|
1190 |
+
value: 0.15199999999999997
|
1191 |
+
name: Dot Precision@10
|
1192 |
+
- type: dot_recall@1
|
1193 |
+
value: 0.07566666666666666
|
1194 |
+
name: Dot Recall@1
|
1195 |
+
- type: dot_recall@3
|
1196 |
+
value: 0.16966666666666666
|
1197 |
+
name: Dot Recall@3
|
1198 |
+
- type: dot_recall@5
|
1199 |
+
value: 0.21766666666666665
|
1200 |
+
name: Dot Recall@5
|
1201 |
+
- type: dot_recall@10
|
1202 |
+
value: 0.31066666666666665
|
1203 |
+
name: Dot Recall@10
|
1204 |
+
- type: dot_ndcg@10
|
1205 |
+
value: 0.30291194083231554
|
1206 |
+
name: Dot Ndcg@10
|
1207 |
+
- type: dot_mrr@10
|
1208 |
+
value: 0.4943888888888889
|
1209 |
+
name: Dot Mrr@10
|
1210 |
+
- type: dot_map@100
|
1211 |
+
value: 0.21666464487074008
|
1212 |
+
name: Dot Map@100
|
1213 |
+
- type: query_active_dims
|
1214 |
+
value: 94.30000305175781
|
1215 |
+
name: Query Active Dims
|
1216 |
+
- type: query_sparsity_ratio
|
1217 |
+
value: 0.996910425167035
|
1218 |
+
name: Query Sparsity Ratio
|
1219 |
+
- type: corpus_active_dims
|
1220 |
+
value: 199.64630126953125
|
1221 |
+
name: Corpus Active Dims
|
1222 |
+
- type: corpus_sparsity_ratio
|
1223 |
+
value: 0.9934589377737524
|
1224 |
+
name: Corpus Sparsity Ratio
|
1225 |
+
- task:
|
1226 |
+
type: sparse-information-retrieval
|
1227 |
+
name: Sparse Information Retrieval
|
1228 |
+
dataset:
|
1229 |
+
name: NanoArguAna
|
1230 |
+
type: NanoArguAna
|
1231 |
+
metrics:
|
1232 |
+
- type: dot_accuracy@1
|
1233 |
+
value: 0.1
|
1234 |
+
name: Dot Accuracy@1
|
1235 |
+
- type: dot_accuracy@3
|
1236 |
+
value: 0.34
|
1237 |
+
name: Dot Accuracy@3
|
1238 |
+
- type: dot_accuracy@5
|
1239 |
+
value: 0.42
|
1240 |
+
name: Dot Accuracy@5
|
1241 |
+
- type: dot_accuracy@10
|
1242 |
+
value: 0.44
|
1243 |
+
name: Dot Accuracy@10
|
1244 |
+
- type: dot_precision@1
|
1245 |
+
value: 0.1
|
1246 |
+
name: Dot Precision@1
|
1247 |
+
- type: dot_precision@3
|
1248 |
+
value: 0.1133333333333333
|
1249 |
+
name: Dot Precision@3
|
1250 |
+
- type: dot_precision@5
|
1251 |
+
value: 0.084
|
1252 |
+
name: Dot Precision@5
|
1253 |
+
- type: dot_precision@10
|
1254 |
+
value: 0.044000000000000004
|
1255 |
+
name: Dot Precision@10
|
1256 |
+
- type: dot_recall@1
|
1257 |
+
value: 0.1
|
1258 |
+
name: Dot Recall@1
|
1259 |
+
- type: dot_recall@3
|
1260 |
+
value: 0.34
|
1261 |
+
name: Dot Recall@3
|
1262 |
+
- type: dot_recall@5
|
1263 |
+
value: 0.42
|
1264 |
+
name: Dot Recall@5
|
1265 |
+
- type: dot_recall@10
|
1266 |
+
value: 0.44
|
1267 |
+
name: Dot Recall@10
|
1268 |
+
- type: dot_ndcg@10
|
1269 |
+
value: 0.2781554838544819
|
1270 |
+
name: Dot Ndcg@10
|
1271 |
+
- type: dot_mrr@10
|
1272 |
+
value: 0.22466666666666665
|
1273 |
+
name: Dot Mrr@10
|
1274 |
+
- type: dot_map@100
|
1275 |
+
value: 0.2332757160696607
|
1276 |
+
name: Dot Map@100
|
1277 |
+
- type: query_active_dims
|
1278 |
+
value: 189.10000610351562
|
1279 |
+
name: Query Active Dims
|
1280 |
+
- type: query_sparsity_ratio
|
1281 |
+
value: 0.9938044687077021
|
1282 |
+
name: Query Sparsity Ratio
|
1283 |
+
- type: corpus_active_dims
|
1284 |
+
value: 164.03329467773438
|
1285 |
+
name: Corpus Active Dims
|
1286 |
+
- type: corpus_sparsity_ratio
|
1287 |
+
value: 0.9946257357093985
|
1288 |
+
name: Corpus Sparsity Ratio
|
1289 |
+
- task:
|
1290 |
+
type: sparse-information-retrieval
|
1291 |
+
name: Sparse Information Retrieval
|
1292 |
+
dataset:
|
1293 |
+
name: NanoSciFact
|
1294 |
+
type: NanoSciFact
|
1295 |
+
metrics:
|
1296 |
+
- type: dot_accuracy@1
|
1297 |
+
value: 0.52
|
1298 |
+
name: Dot Accuracy@1
|
1299 |
+
- type: dot_accuracy@3
|
1300 |
+
value: 0.62
|
1301 |
+
name: Dot Accuracy@3
|
1302 |
+
- type: dot_accuracy@5
|
1303 |
+
value: 0.64
|
1304 |
+
name: Dot Accuracy@5
|
1305 |
+
- type: dot_accuracy@10
|
1306 |
+
value: 0.76
|
1307 |
+
name: Dot Accuracy@10
|
1308 |
+
- type: dot_precision@1
|
1309 |
+
value: 0.52
|
1310 |
+
name: Dot Precision@1
|
1311 |
+
- type: dot_precision@3
|
1312 |
+
value: 0.21333333333333332
|
1313 |
+
name: Dot Precision@3
|
1314 |
+
- type: dot_precision@5
|
1315 |
+
value: 0.14
|
1316 |
+
name: Dot Precision@5
|
1317 |
+
- type: dot_precision@10
|
1318 |
+
value: 0.08399999999999999
|
1319 |
+
name: Dot Precision@10
|
1320 |
+
- type: dot_recall@1
|
1321 |
+
value: 0.475
|
1322 |
+
name: Dot Recall@1
|
1323 |
+
- type: dot_recall@3
|
1324 |
+
value: 0.58
|
1325 |
+
name: Dot Recall@3
|
1326 |
+
- type: dot_recall@5
|
1327 |
+
value: 0.615
|
1328 |
+
name: Dot Recall@5
|
1329 |
+
- type: dot_recall@10
|
1330 |
+
value: 0.74
|
1331 |
+
name: Dot Recall@10
|
1332 |
+
- type: dot_ndcg@10
|
1333 |
+
value: 0.6020710919940331
|
1334 |
+
name: Dot Ndcg@10
|
1335 |
+
- type: dot_mrr@10
|
1336 |
+
value: 0.5799047619047619
|
1337 |
+
name: Dot Mrr@10
|
1338 |
+
- type: dot_map@100
|
1339 |
+
value: 0.5551340236204781
|
1340 |
+
name: Dot Map@100
|
1341 |
+
- type: query_active_dims
|
1342 |
+
value: 82.45999908447266
|
1343 |
+
name: Query Active Dims
|
1344 |
+
- type: query_sparsity_ratio
|
1345 |
+
value: 0.9972983422094073
|
1346 |
+
name: Query Sparsity Ratio
|
1347 |
+
- type: corpus_active_dims
|
1348 |
+
value: 194.24940490722656
|
1349 |
+
name: Corpus Active Dims
|
1350 |
+
- type: corpus_sparsity_ratio
|
1351 |
+
value: 0.9936357576532591
|
1352 |
+
name: Corpus Sparsity Ratio
|
1353 |
+
- task:
|
1354 |
+
type: sparse-information-retrieval
|
1355 |
+
name: Sparse Information Retrieval
|
1356 |
+
dataset:
|
1357 |
+
name: NanoTouche2020
|
1358 |
+
type: NanoTouche2020
|
1359 |
+
metrics:
|
1360 |
+
- type: dot_accuracy@1
|
1361 |
+
value: 0.3877551020408163
|
1362 |
+
name: Dot Accuracy@1
|
1363 |
+
- type: dot_accuracy@3
|
1364 |
+
value: 0.7551020408163265
|
1365 |
+
name: Dot Accuracy@3
|
1366 |
+
- type: dot_accuracy@5
|
1367 |
+
value: 0.8367346938775511
|
1368 |
+
name: Dot Accuracy@5
|
1369 |
+
- type: dot_accuracy@10
|
1370 |
+
value: 0.9591836734693877
|
1371 |
+
name: Dot Accuracy@10
|
1372 |
+
- type: dot_precision@1
|
1373 |
+
value: 0.3877551020408163
|
1374 |
+
name: Dot Precision@1
|
1375 |
+
- type: dot_precision@3
|
1376 |
+
value: 0.4693877551020407
|
1377 |
+
name: Dot Precision@3
|
1378 |
+
- type: dot_precision@5
|
1379 |
+
value: 0.4163265306122449
|
1380 |
+
name: Dot Precision@5
|
1381 |
+
- type: dot_precision@10
|
1382 |
+
value: 0.33877551020408164
|
1383 |
+
name: Dot Precision@10
|
1384 |
+
- type: dot_recall@1
|
1385 |
+
value: 0.02376760958202688
|
1386 |
+
name: Dot Recall@1
|
1387 |
+
- type: dot_recall@3
|
1388 |
+
value: 0.08934182714819683
|
1389 |
+
name: Dot Recall@3
|
1390 |
+
- type: dot_recall@5
|
1391 |
+
value: 0.12879429112534482
|
1392 |
+
name: Dot Recall@5
|
1393 |
+
- type: dot_recall@10
|
1394 |
+
value: 0.21659229068805946
|
1395 |
+
name: Dot Recall@10
|
1396 |
+
- type: dot_ndcg@10
|
1397 |
+
value: 0.37622550913382224
|
1398 |
+
name: Dot Ndcg@10
|
1399 |
+
- type: dot_mrr@10
|
1400 |
+
value: 0.5806689342403627
|
1401 |
+
name: Dot Mrr@10
|
1402 |
+
- type: dot_map@100
|
1403 |
+
value: 0.2560796141253303
|
1404 |
+
name: Dot Map@100
|
1405 |
+
- type: query_active_dims
|
1406 |
+
value: 79.12245178222656
|
1407 |
+
name: Query Active Dims
|
1408 |
+
- type: query_sparsity_ratio
|
1409 |
+
value: 0.9974076911151881
|
1410 |
+
name: Query Sparsity Ratio
|
1411 |
+
- type: corpus_active_dims
|
1412 |
+
value: 135.00782775878906
|
1413 |
+
name: Corpus Active Dims
|
1414 |
+
- type: corpus_sparsity_ratio
|
1415 |
+
value: 0.9955767044178366
|
1416 |
+
name: Corpus Sparsity Ratio
|
1417 |
+
---
|
1418 |
+
|
1419 |
+
# splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
1420 |
+
|
1421 |
+
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
1422 |
+
## Model Details
|
1423 |
+
|
1424 |
+
### Model Description
|
1425 |
+
- **Model Type:** SPLADE Sparse Encoder
|
1426 |
+
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
|
1427 |
+
- **Maximum Sequence Length:** 256 tokens
|
1428 |
+
- **Output Dimensionality:** 30522 dimensions
|
1429 |
+
- **Similarity Function:** Dot Product
|
1430 |
+
- **Training Dataset:**
|
1431 |
+
- [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
|
1432 |
+
- **Language:** en
|
1433 |
+
- **License:** apache-2.0
|
1434 |
+
|
1435 |
+
### Model Sources
|
1436 |
+
|
1437 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
1438 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
1439 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
1440 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
1441 |
+
|
1442 |
+
### Full Model Architecture
|
1443 |
+
|
1444 |
+
```
|
1445 |
+
SparseEncoder(
|
1446 |
+
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
1447 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
1448 |
+
)
|
1449 |
+
```
|
1450 |
+
|
1451 |
+
## Usage
|
1452 |
+
|
1453 |
+
### Direct Usage (Sentence Transformers)
|
1454 |
+
|
1455 |
+
First install the Sentence Transformers library:
|
1456 |
+
|
1457 |
+
```bash
|
1458 |
+
pip install -U sentence-transformers
|
1459 |
+
```
|
1460 |
+
|
1461 |
+
Then you can load this model and run inference.
|
1462 |
+
```python
|
1463 |
+
from sentence_transformers import SparseEncoder
|
1464 |
+
|
1465 |
+
# Download from the 🤗 Hub
|
1466 |
+
model = SparseEncoder("arthurbresnu/splade-distilbert-base-uncased-quora-duplicates")
|
1467 |
+
# Run inference
|
1468 |
+
sentences = [
|
1469 |
+
'What accomplishments did Hillary Clinton achieve during her time as Secretary of State?',
|
1470 |
+
"What are Hillary Clinton's most recognized accomplishments while Secretary of State?",
|
1471 |
+
'What are Hillary Clinton’s qualifications to be President?',
|
1472 |
+
]
|
1473 |
+
embeddings = model.encode(sentences)
|
1474 |
+
print(embeddings.shape)
|
1475 |
+
# (3, 30522)
|
1476 |
+
|
1477 |
+
# Get the similarity scores for the embeddings
|
1478 |
+
similarities = model.similarity(embeddings, embeddings)
|
1479 |
+
print(similarities.shape)
|
1480 |
+
# [3, 3]
|
1481 |
+
```
|
1482 |
+
|
1483 |
+
<!--
|
1484 |
+
### Direct Usage (Transformers)
|
1485 |
+
|
1486 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
1487 |
+
|
1488 |
+
</details>
|
1489 |
+
-->
|
1490 |
+
|
1491 |
+
<!--
|
1492 |
+
### Downstream Usage (Sentence Transformers)
|
1493 |
+
|
1494 |
+
You can finetune this model on your own dataset.
|
1495 |
+
|
1496 |
+
<details><summary>Click to expand</summary>
|
1497 |
+
|
1498 |
+
</details>
|
1499 |
+
-->
|
1500 |
+
|
1501 |
+
<!--
|
1502 |
+
### Out-of-Scope Use
|
1503 |
+
|
1504 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
1505 |
+
-->
|
1506 |
+
|
1507 |
+
## Evaluation
|
1508 |
+
|
1509 |
+
### Metrics
|
1510 |
+
|
1511 |
+
#### Sparse Binary Classification
|
1512 |
+
|
1513 |
+
* Dataset: `quora_duplicates_dev`
|
1514 |
+
* Evaluated with [<code>SparseBinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseBinaryClassificationEvaluator)
|
1515 |
+
|
1516 |
+
| Metric | Value |
|
1517 |
+
|:-----------------------------|:-----------|
|
1518 |
+
| cosine_accuracy | 0.758 |
|
1519 |
+
| cosine_accuracy_threshold | 0.8166 |
|
1520 |
+
| cosine_f1 | 0.6793 |
|
1521 |
+
| cosine_f1_threshold | 0.5696 |
|
1522 |
+
| cosine_precision | 0.5488 |
|
1523 |
+
| cosine_recall | 0.8913 |
|
1524 |
+
| cosine_ap | 0.6888 |
|
1525 |
+
| cosine_mcc | 0.5082 |
|
1526 |
+
| dot_accuracy | 0.765 |
|
1527 |
+
| dot_accuracy_threshold | 51.6699 |
|
1528 |
+
| dot_f1 | 0.6762 |
|
1529 |
+
| dot_f1_threshold | 46.5249 |
|
1530 |
+
| dot_precision | 0.5817 |
|
1531 |
+
| dot_recall | 0.8075 |
|
1532 |
+
| dot_ap | 0.6336 |
|
1533 |
+
| dot_mcc | 0.4996 |
|
1534 |
+
| euclidean_accuracy | 0.677 |
|
1535 |
+
| euclidean_accuracy_threshold | -14.2724 |
|
1536 |
+
| euclidean_f1 | 0.486 |
|
1537 |
+
| euclidean_f1_threshold | -0.6445 |
|
1538 |
+
| euclidean_precision | 0.3213 |
|
1539 |
+
| euclidean_recall | 0.9969 |
|
1540 |
+
| euclidean_ap | 0.2033 |
|
1541 |
+
| euclidean_mcc | -0.0459 |
|
1542 |
+
| manhattan_accuracy | 0.677 |
|
1543 |
+
| manhattan_accuracy_threshold | -161.7768 |
|
1544 |
+
| manhattan_f1 | 0.486 |
|
1545 |
+
| manhattan_f1_threshold | -3.0495 |
|
1546 |
+
| manhattan_precision | 0.3213 |
|
1547 |
+
| manhattan_recall | 0.9969 |
|
1548 |
+
| manhattan_ap | 0.2044 |
|
1549 |
+
| manhattan_mcc | -0.0459 |
|
1550 |
+
| max_accuracy | 0.765 |
|
1551 |
+
| max_accuracy_threshold | 51.6699 |
|
1552 |
+
| max_f1 | 0.6793 |
|
1553 |
+
| max_f1_threshold | 46.5249 |
|
1554 |
+
| max_precision | 0.5817 |
|
1555 |
+
| max_recall | 0.9969 |
|
1556 |
+
| **max_ap** | **0.6888** |
|
1557 |
+
| max_mcc | 0.5082 |
|
1558 |
+
| active_dims | 78.3228 |
|
1559 |
+
| sparsity_ratio | 0.9974 |
|
1560 |
+
|
1561 |
+
#### Sparse Information Retrieval
|
1562 |
+
|
1563 |
+
* Datasets: `NanoMSMARCO`, `NanoNQ`, `NanoNFCorpus`, `NanoQuoraRetrieval`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
|
1564 |
+
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
|
1565 |
+
|
1566 |
+
| Metric | NanoMSMARCO | NanoNQ | NanoNFCorpus | NanoQuoraRetrieval | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|
1567 |
+
|:----------------------|:------------|:-----------|:-------------|:-------------------|:-----------------|:------------|:----------|:-------------|:-------------|:------------|:------------|:------------|:---------------|
|
1568 |
+
| dot_accuracy@1 | 0.22 | 0.38 | 0.34 | 0.94 | 0.18 | 0.6 | 0.58 | 0.28 | 0.78 | 0.36 | 0.1 | 0.52 | 0.3878 |
|
1569 |
+
| dot_accuracy@3 | 0.42 | 0.54 | 0.5 | 0.98 | 0.32 | 0.84 | 0.76 | 0.42 | 0.84 | 0.58 | 0.34 | 0.62 | 0.7551 |
|
1570 |
+
| dot_accuracy@5 | 0.52 | 0.62 | 0.54 | 0.98 | 0.4 | 0.84 | 0.8 | 0.46 | 0.92 | 0.68 | 0.42 | 0.64 | 0.8367 |
|
1571 |
+
| dot_accuracy@10 | 0.76 | 0.62 | 0.58 | 0.98 | 0.48 | 0.92 | 0.86 | 0.5 | 0.98 | 0.76 | 0.44 | 0.76 | 0.9592 |
|
1572 |
+
| dot_precision@1 | 0.22 | 0.38 | 0.34 | 0.94 | 0.18 | 0.6 | 0.58 | 0.28 | 0.78 | 0.36 | 0.1 | 0.52 | 0.3878 |
|
1573 |
+
| dot_precision@3 | 0.14 | 0.18 | 0.3067 | 0.3933 | 0.1067 | 0.5267 | 0.2667 | 0.18 | 0.3733 | 0.2733 | 0.1133 | 0.2133 | 0.4694 |
|
1574 |
+
| dot_precision@5 | 0.104 | 0.124 | 0.26 | 0.248 | 0.084 | 0.456 | 0.168 | 0.136 | 0.284 | 0.212 | 0.084 | 0.14 | 0.4163 |
|
1575 |
+
| dot_precision@10 | 0.076 | 0.064 | 0.198 | 0.132 | 0.054 | 0.422 | 0.09 | 0.084 | 0.16 | 0.152 | 0.044 | 0.084 | 0.3388 |
|
1576 |
+
| dot_recall@1 | 0.22 | 0.36 | 0.0116 | 0.8173 | 0.085 | 0.0457 | 0.5467 | 0.1418 | 0.39 | 0.0757 | 0.1 | 0.475 | 0.0238 |
|
1577 |
+
| dot_recall@3 | 0.42 | 0.52 | 0.0606 | 0.928 | 0.1467 | 0.1537 | 0.7467 | 0.2429 | 0.56 | 0.1697 | 0.34 | 0.58 | 0.0893 |
|
1578 |
+
| dot_recall@5 | 0.52 | 0.6 | 0.0826 | 0.946 | 0.1783 | 0.1908 | 0.7867 | 0.2772 | 0.71 | 0.2177 | 0.42 | 0.615 | 0.1288 |
|
1579 |
+
| dot_recall@10 | 0.76 | 0.61 | 0.098 | 0.97 | 0.215 | 0.2936 | 0.8467 | 0.3289 | 0.8 | 0.3107 | 0.44 | 0.74 | 0.2166 |
|
1580 |
+
| **dot_ndcg@10** | **0.4532** | **0.4828** | **0.2467** | **0.9467** | **0.1845** | **0.5071** | **0.707** | **0.2881** | **0.7143** | **0.3029** | **0.2782** | **0.6021** | **0.3762** |
|
1581 |
+
| dot_mrr@10 | 0.3601 | 0.4537 | 0.422 | 0.96 | 0.2674 | 0.7147 | 0.6765 | 0.3562 | 0.8362 | 0.4944 | 0.2247 | 0.5799 | 0.5807 |
|
1582 |
+
| dot_map@100 | 0.3733 | 0.4454 | 0.094 | 0.9291 | 0.1476 | 0.3907 | 0.6651 | 0.2415 | 0.6181 | 0.2167 | 0.2333 | 0.5551 | 0.2561 |
|
1583 |
+
| query_active_dims | 74.76 | 74.74 | 79.7 | 76.58 | 89.86 | 69.52 | 89.88 | 82.86 | 91.98 | 94.3 | 189.1 | 82.46 | 79.1225 |
|
1584 |
+
| query_sparsity_ratio | 0.9976 | 0.9976 | 0.9974 | 0.9975 | 0.9971 | 0.9977 | 0.9971 | 0.9973 | 0.997 | 0.9969 | 0.9938 | 0.9973 | 0.9974 |
|
1585 |
+
| corpus_active_dims | 103.0652 | 141.3148 | 202.1727 | 77.5906 | 221.7553 | 135.9335 | 221.2156 | 130.937 | 152.0157 | 199.6463 | 164.0333 | 194.2494 | 135.0078 |
|
1586 |
+
| corpus_sparsity_ratio | 0.9966 | 0.9954 | 0.9934 | 0.9975 | 0.9927 | 0.9955 | 0.9928 | 0.9957 | 0.995 | 0.9935 | 0.9946 | 0.9936 | 0.9956 |
|
1587 |
+
|
1588 |
+
#### Sparse Nano BEIR
|
1589 |
+
|
1590 |
+
* Dataset: `NanoBEIR_mean`
|
1591 |
+
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
1592 |
+
```json
|
1593 |
+
{
|
1594 |
+
"dataset_names": [
|
1595 |
+
"msmarco",
|
1596 |
+
"nq",
|
1597 |
+
"nfcorpus",
|
1598 |
+
"quoraretrieval"
|
1599 |
+
]
|
1600 |
+
}
|
1601 |
+
```
|
1602 |
+
|
1603 |
+
| Metric | Value |
|
1604 |
+
|:----------------------|:-----------|
|
1605 |
+
| dot_accuracy@1 | 0.47 |
|
1606 |
+
| dot_accuracy@3 | 0.61 |
|
1607 |
+
| dot_accuracy@5 | 0.665 |
|
1608 |
+
| dot_accuracy@10 | 0.735 |
|
1609 |
+
| dot_precision@1 | 0.47 |
|
1610 |
+
| dot_precision@3 | 0.255 |
|
1611 |
+
| dot_precision@5 | 0.184 |
|
1612 |
+
| dot_precision@10 | 0.1175 |
|
1613 |
+
| dot_recall@1 | 0.3522 |
|
1614 |
+
| dot_recall@3 | 0.4821 |
|
1615 |
+
| dot_recall@5 | 0.5372 |
|
1616 |
+
| dot_recall@10 | 0.6095 |
|
1617 |
+
| **dot_ndcg@10** | **0.5324** |
|
1618 |
+
| dot_mrr@10 | 0.5489 |
|
1619 |
+
| dot_map@100 | 0.4605 |
|
1620 |
+
| query_active_dims | 76.445 |
|
1621 |
+
| query_sparsity_ratio | 0.9975 |
|
1622 |
+
| corpus_active_dims | 122.7978 |
|
1623 |
+
| corpus_sparsity_ratio | 0.996 |
|
1624 |
+
|
1625 |
+
#### Sparse Nano BEIR
|
1626 |
+
|
1627 |
+
* Dataset: `NanoBEIR_mean`
|
1628 |
+
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
1629 |
+
```json
|
1630 |
+
{
|
1631 |
+
"dataset_names": [
|
1632 |
+
"climatefever",
|
1633 |
+
"dbpedia",
|
1634 |
+
"fever",
|
1635 |
+
"fiqa2018",
|
1636 |
+
"hotpotqa",
|
1637 |
+
"msmarco",
|
1638 |
+
"nfcorpus",
|
1639 |
+
"nq",
|
1640 |
+
"quoraretrieval",
|
1641 |
+
"scidocs",
|
1642 |
+
"arguana",
|
1643 |
+
"scifact",
|
1644 |
+
"touche2020"
|
1645 |
+
]
|
1646 |
+
}
|
1647 |
+
```
|
1648 |
+
|
1649 |
+
| Metric | Value |
|
1650 |
+
|:----------------------|:-----------|
|
1651 |
+
| dot_accuracy@1 | 0.436 |
|
1652 |
+
| dot_accuracy@3 | 0.6089 |
|
1653 |
+
| dot_accuracy@5 | 0.6659 |
|
1654 |
+
| dot_accuracy@10 | 0.7384 |
|
1655 |
+
| dot_precision@1 | 0.436 |
|
1656 |
+
| dot_precision@3 | 0.2725 |
|
1657 |
+
| dot_precision@5 | 0.2089 |
|
1658 |
+
| dot_precision@10 | 0.1461 |
|
1659 |
+
| dot_recall@1 | 0.2533 |
|
1660 |
+
| dot_recall@3 | 0.3813 |
|
1661 |
+
| dot_recall@5 | 0.4364 |
|
1662 |
+
| dot_recall@10 | 0.51 |
|
1663 |
+
| **dot_ndcg@10** | **0.4685** |
|
1664 |
+
| dot_mrr@10 | 0.5328 |
|
1665 |
+
| dot_map@100 | 0.3974 |
|
1666 |
+
| query_active_dims | 90.3914 |
|
1667 |
+
| query_sparsity_ratio | 0.997 |
|
1668 |
+
| corpus_active_dims | 152.3669 |
|
1669 |
+
| corpus_sparsity_ratio | 0.995 |
|
1670 |
+
|
1671 |
+
<!--
|
1672 |
+
## Bias, Risks and Limitations
|
1673 |
+
|
1674 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
1675 |
+
-->
|
1676 |
+
|
1677 |
+
<!--
|
1678 |
+
### Recommendations
|
1679 |
+
|
1680 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
1681 |
+
-->
|
1682 |
+
|
1683 |
+
## Training Details
|
1684 |
+
|
1685 |
+
### Training Dataset
|
1686 |
+
|
1687 |
+
#### quora-duplicates
|
1688 |
+
|
1689 |
+
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
1690 |
+
* Size: 99,000 training samples
|
1691 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
1692 |
+
* Approximate statistics based on the first 1000 samples:
|
1693 |
+
| | anchor | positive | negative |
|
1694 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
1695 |
+
| type | string | string | string |
|
1696 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 14.1 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.83 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.21 tokens</li><li>max: 75 tokens</li></ul> |
|
1697 |
+
* Samples:
|
1698 |
+
| anchor | positive | negative |
|
1699 |
+
|:----------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
1700 |
+
| <code>What are the best GMAT coaching institutes in Delhi NCR?</code> | <code>Which are the best GMAT coaching institutes in Delhi/NCR?</code> | <code>What are the best GMAT coaching institutes in Delhi-Noida Area?</code> |
|
1701 |
+
| <code>Is a third world war coming?</code> | <code>Is World War 3 more imminent than expected?</code> | <code>Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?</code> |
|
1702 |
+
| <code>Should I build iOS or Android apps first?</code> | <code>Should people choose Android or iOS first to build their App?</code> | <code>How much more effort is it to build your app on both iOS and Android?</code> |
|
1703 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
1704 |
+
```json
|
1705 |
+
{
|
1706 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
|
1707 |
+
"lambda_corpus": 3e-05,
|
1708 |
+
"lambda_query": 5e-05
|
1709 |
+
}
|
1710 |
+
```
|
1711 |
+
|
1712 |
+
### Evaluation Dataset
|
1713 |
+
|
1714 |
+
#### quora-duplicates
|
1715 |
+
|
1716 |
+
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
1717 |
+
* Size: 1,000 evaluation samples
|
1718 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
1719 |
+
* Approximate statistics based on the first 1000 samples:
|
1720 |
+
| | anchor | positive | negative |
|
1721 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
1722 |
+
| type | string | string | string |
|
1723 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 14.05 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.56 tokens</li><li>max: 60 tokens</li></ul> |
|
1724 |
+
* Samples:
|
1725 |
+
| anchor | positive | negative |
|
1726 |
+
|:-------------------------------------------------------------------|:------------------------------------------------------------|:-----------------------------------------------------------------|
|
1727 |
+
| <code>What happens if we use petrol in diesel vehicles?</code> | <code>Why can't we use petrol in diesel?</code> | <code>Why are diesel engines noisier than petrol engines?</code> |
|
1728 |
+
| <code>Why is Saltwater taffy candy imported in Switzerland?</code> | <code>Why is Saltwater taffy candy imported in Laos?</code> | <code>Is salt a consumer product?</code> |
|
1729 |
+
| <code>Which is your favourite film in 2016?</code> | <code>What movie is the best movie of 2016?</code> | <code>What will the best movie of 2017 be?</code> |
|
1730 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
1731 |
+
```json
|
1732 |
+
{
|
1733 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
|
1734 |
+
"lambda_corpus": 3e-05,
|
1735 |
+
"lambda_query": 5e-05
|
1736 |
+
}
|
1737 |
+
```
|
1738 |
+
|
1739 |
+
### Training Hyperparameters
|
1740 |
+
#### Non-Default Hyperparameters
|
1741 |
+
|
1742 |
+
- `eval_strategy`: steps
|
1743 |
+
- `per_device_train_batch_size`: 12
|
1744 |
+
- `per_device_eval_batch_size`: 12
|
1745 |
+
- `learning_rate`: 2e-05
|
1746 |
+
- `num_train_epochs`: 1
|
1747 |
+
- `bf16`: True
|
1748 |
+
- `load_best_model_at_end`: True
|
1749 |
+
- `batch_sampler`: no_duplicates
|
1750 |
+
|
1751 |
+
#### All Hyperparameters
|
1752 |
+
<details><summary>Click to expand</summary>
|
1753 |
+
|
1754 |
+
- `overwrite_output_dir`: False
|
1755 |
+
- `do_predict`: False
|
1756 |
+
- `eval_strategy`: steps
|
1757 |
+
- `prediction_loss_only`: True
|
1758 |
+
- `per_device_train_batch_size`: 12
|
1759 |
+
- `per_device_eval_batch_size`: 12
|
1760 |
+
- `per_gpu_train_batch_size`: None
|
1761 |
+
- `per_gpu_eval_batch_size`: None
|
1762 |
+
- `gradient_accumulation_steps`: 1
|
1763 |
+
- `eval_accumulation_steps`: None
|
1764 |
+
- `torch_empty_cache_steps`: None
|
1765 |
+
- `learning_rate`: 2e-05
|
1766 |
+
- `weight_decay`: 0.0
|
1767 |
+
- `adam_beta1`: 0.9
|
1768 |
+
- `adam_beta2`: 0.999
|
1769 |
+
- `adam_epsilon`: 1e-08
|
1770 |
+
- `max_grad_norm`: 1.0
|
1771 |
+
- `num_train_epochs`: 1
|
1772 |
+
- `max_steps`: -1
|
1773 |
+
- `lr_scheduler_type`: linear
|
1774 |
+
- `lr_scheduler_kwargs`: {}
|
1775 |
+
- `warmup_ratio`: 0.0
|
1776 |
+
- `warmup_steps`: 0
|
1777 |
+
- `log_level`: passive
|
1778 |
+
- `log_level_replica`: warning
|
1779 |
+
- `log_on_each_node`: True
|
1780 |
+
- `logging_nan_inf_filter`: True
|
1781 |
+
- `save_safetensors`: True
|
1782 |
+
- `save_on_each_node`: False
|
1783 |
+
- `save_only_model`: False
|
1784 |
+
- `restore_callback_states_from_checkpoint`: False
|
1785 |
+
- `no_cuda`: False
|
1786 |
+
- `use_cpu`: False
|
1787 |
+
- `use_mps_device`: False
|
1788 |
+
- `seed`: 42
|
1789 |
+
- `data_seed`: None
|
1790 |
+
- `jit_mode_eval`: False
|
1791 |
+
- `use_ipex`: False
|
1792 |
+
- `bf16`: True
|
1793 |
+
- `fp16`: False
|
1794 |
+
- `fp16_opt_level`: O1
|
1795 |
+
- `half_precision_backend`: auto
|
1796 |
+
- `bf16_full_eval`: False
|
1797 |
+
- `fp16_full_eval`: False
|
1798 |
+
- `tf32`: None
|
1799 |
+
- `local_rank`: 0
|
1800 |
+
- `ddp_backend`: None
|
1801 |
+
- `tpu_num_cores`: None
|
1802 |
+
- `tpu_metrics_debug`: False
|
1803 |
+
- `debug`: []
|
1804 |
+
- `dataloader_drop_last`: False
|
1805 |
+
- `dataloader_num_workers`: 0
|
1806 |
+
- `dataloader_prefetch_factor`: None
|
1807 |
+
- `past_index`: -1
|
1808 |
+
- `disable_tqdm`: False
|
1809 |
+
- `remove_unused_columns`: True
|
1810 |
+
- `label_names`: None
|
1811 |
+
- `load_best_model_at_end`: True
|
1812 |
+
- `ignore_data_skip`: False
|
1813 |
+
- `fsdp`: []
|
1814 |
+
- `fsdp_min_num_params`: 0
|
1815 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
1816 |
+
- `tp_size`: 0
|
1817 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
1818 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
1819 |
+
- `deepspeed`: None
|
1820 |
+
- `label_smoothing_factor`: 0.0
|
1821 |
+
- `optim`: adamw_torch
|
1822 |
+
- `optim_args`: None
|
1823 |
+
- `adafactor`: False
|
1824 |
+
- `group_by_length`: False
|
1825 |
+
- `length_column_name`: length
|
1826 |
+
- `ddp_find_unused_parameters`: None
|
1827 |
+
- `ddp_bucket_cap_mb`: None
|
1828 |
+
- `ddp_broadcast_buffers`: False
|
1829 |
+
- `dataloader_pin_memory`: True
|
1830 |
+
- `dataloader_persistent_workers`: False
|
1831 |
+
- `skip_memory_metrics`: True
|
1832 |
+
- `use_legacy_prediction_loop`: False
|
1833 |
+
- `push_to_hub`: False
|
1834 |
+
- `resume_from_checkpoint`: None
|
1835 |
+
- `hub_model_id`: None
|
1836 |
+
- `hub_strategy`: every_save
|
1837 |
+
- `hub_private_repo`: None
|
1838 |
+
- `hub_always_push`: False
|
1839 |
+
- `gradient_checkpointing`: False
|
1840 |
+
- `gradient_checkpointing_kwargs`: None
|
1841 |
+
- `include_inputs_for_metrics`: False
|
1842 |
+
- `include_for_metrics`: []
|
1843 |
+
- `eval_do_concat_batches`: True
|
1844 |
+
- `fp16_backend`: auto
|
1845 |
+
- `push_to_hub_model_id`: None
|
1846 |
+
- `push_to_hub_organization`: None
|
1847 |
+
- `mp_parameters`:
|
1848 |
+
- `auto_find_batch_size`: False
|
1849 |
+
- `full_determinism`: False
|
1850 |
+
- `torchdynamo`: None
|
1851 |
+
- `ray_scope`: last
|
1852 |
+
- `ddp_timeout`: 1800
|
1853 |
+
- `torch_compile`: False
|
1854 |
+
- `torch_compile_backend`: None
|
1855 |
+
- `torch_compile_mode`: None
|
1856 |
+
- `dispatch_batches`: None
|
1857 |
+
- `split_batches`: None
|
1858 |
+
- `include_tokens_per_second`: False
|
1859 |
+
- `include_num_input_tokens_seen`: False
|
1860 |
+
- `neftune_noise_alpha`: None
|
1861 |
+
- `optim_target_modules`: None
|
1862 |
+
- `batch_eval_metrics`: False
|
1863 |
+
- `eval_on_start`: False
|
1864 |
+
- `use_liger_kernel`: False
|
1865 |
+
- `eval_use_gather_object`: False
|
1866 |
+
- `average_tokens_across_devices`: False
|
1867 |
+
- `prompts`: None
|
1868 |
+
- `batch_sampler`: no_duplicates
|
1869 |
+
- `multi_dataset_batch_sampler`: proportional
|
1870 |
+
|
1871 |
+
</details>
|
1872 |
+
|
1873 |
+
### Training Logs
|
1874 |
+
| Epoch | Step | Training Loss | Validation Loss | quora_duplicates_dev_max_ap | NanoMSMARCO_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
|
1875 |
+
|:-------:|:--------:|:-------------:|:---------------:|:---------------------------:|:-----------------------:|:------------------:|:------------------------:|:------------------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
|
1876 |
+
| 0.0242 | 200 | 8.3389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1877 |
+
| 0.0485 | 400 | 0.4397 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1878 |
+
| 0.0727 | 600 | 0.3737 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1879 |
+
| 0.0970 | 800 | 0.2666 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1880 |
+
| 0.1212 | 1000 | 0.288 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1881 |
+
| 0.1455 | 1200 | 0.1977 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1882 |
+
| 0.1697 | 1400 | 0.2707 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1883 |
+
| 0.1939 | 1600 | 0.1951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1884 |
+
| 0.2 | 1650 | - | 0.1669 | 0.6472 | 0.3052 | 0.2793 | 0.1711 | 0.9281 | 0.4209 | - | - | - | - | - | - | - | - | - |
|
1885 |
+
| 0.2182 | 1800 | 0.2178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1886 |
+
| 0.2424 | 2000 | 0.2174 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1887 |
+
| 0.2667 | 2200 | 0.1832 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1888 |
+
| 0.2909 | 2400 | 0.1879 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1889 |
+
| 0.3152 | 2600 | 0.1723 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1890 |
+
| 0.3394 | 2800 | 0.1543 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1891 |
+
| 0.3636 | 3000 | 0.1559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1892 |
+
| 0.3879 | 3200 | 0.1575 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1893 |
+
| 0.4 | 3300 | - | 0.1149 | 0.6749 | 0.3894 | 0.4467 | 0.2360 | 0.9292 | 0.5003 | - | - | - | - | - | - | - | - | - |
|
1894 |
+
| 0.4121 | 3400 | 0.1395 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1895 |
+
| 0.4364 | 3600 | 0.1596 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1896 |
+
| 0.4606 | 3800 | 0.1595 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1897 |
+
| 0.4848 | 4000 | 0.1211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1898 |
+
| 0.5091 | 4200 | 0.1163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1899 |
+
| 0.5333 | 4400 | 0.1182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1900 |
+
| 0.5576 | 4600 | 0.1337 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1901 |
+
| 0.5818 | 4800 | 0.1362 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1902 |
+
| 0.6 | 4950 | - | 0.1001 | 0.6802 | 0.4093 | 0.4269 | 0.2341 | 0.9365 | 0.5017 | - | - | - | - | - | - | - | - | - |
|
1903 |
+
| 0.6061 | 5000 | 0.1112 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1904 |
+
| 0.6303 | 5200 | 0.1064 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1905 |
+
| 0.6545 | 5400 | 0.119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1906 |
+
| 0.6788 | 5600 | 0.1077 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1907 |
+
| 0.7030 | 5800 | 0.1398 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1908 |
+
| 0.7273 | 6000 | 0.09 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1909 |
+
| 0.7515 | 6200 | 0.0903 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1910 |
+
| 0.7758 | 6400 | 0.1082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1911 |
+
| 0.8 | 6600 | 0.1122 | 0.0901 | 0.6941 | 0.4451 | 0.4757 | 0.2542 | 0.9411 | 0.5290 | - | - | - | - | - | - | - | - | - |
|
1912 |
+
| 0.8242 | 6800 | 0.0708 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1913 |
+
| 0.8485 | 7000 | 0.1291 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1914 |
+
| 0.8727 | 7200 | 0.1165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1915 |
+
| 0.8970 | 7400 | 0.0735 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1916 |
+
| 0.9212 | 7600 | 0.0775 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1917 |
+
| 0.9455 | 7800 | 0.0945 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1918 |
+
| 0.9697 | 8000 | 0.0912 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1919 |
+
| 0.9939 | 8200 | 0.104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1920 |
+
| **1.0** | **8250** | **-** | **0.0686** | **0.6888** | **0.4532** | **0.4828** | **0.2467** | **0.9467** | **0.5324** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** |
|
1921 |
+
| -1 | -1 | - | - | - | 0.4532 | 0.4828 | 0.2467 | 0.9467 | 0.4685 | 0.1845 | 0.5071 | 0.7070 | 0.2881 | 0.7143 | 0.3029 | 0.2782 | 0.6021 | 0.3762 |
|
1922 |
+
|
1923 |
+
* The bold row denotes the saved checkpoint.
|
1924 |
+
|
1925 |
+
### Environmental Impact
|
1926 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
1927 |
+
- **Energy Consumed**: 0.025 kWh
|
1928 |
+
- **Carbon Emitted**: 0.001 kg of CO2
|
1929 |
+
- **Hours Used**: 0.222 hours
|
1930 |
+
|
1931 |
+
### Training Hardware
|
1932 |
+
- **On Cloud**: No
|
1933 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
|
1934 |
+
- **CPU Model**: AMD Ryzen 9 6900HX with Radeon Graphics
|
1935 |
+
- **RAM Size**: 30.61 GB
|
1936 |
+
|
1937 |
+
### Framework Versions
|
1938 |
+
- Python: 3.12.9
|
1939 |
+
- Sentence Transformers: 4.2.0.dev0
|
1940 |
+
- Transformers: 4.50.3
|
1941 |
+
- PyTorch: 2.6.0+cu124
|
1942 |
+
- Accelerate: 1.6.0
|
1943 |
+
- Datasets: 3.5.0
|
1944 |
+
- Tokenizers: 0.21.1
|
1945 |
+
|
1946 |
+
## Citation
|
1947 |
+
|
1948 |
+
### BibTeX
|
1949 |
+
|
1950 |
+
#### Sentence Transformers
|
1951 |
+
```bibtex
|
1952 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1953 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1954 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1955 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1956 |
+
month = "11",
|
1957 |
+
year = "2019",
|
1958 |
+
publisher = "Association for Computational Linguistics",
|
1959 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1960 |
+
}
|
1961 |
+
```
|
1962 |
+
|
1963 |
+
#### SpladeLoss
|
1964 |
+
```bibtex
|
1965 |
+
@misc{formal2022distillationhardnegativesampling,
|
1966 |
+
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
1967 |
+
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
1968 |
+
year={2022},
|
1969 |
+
eprint={2205.04733},
|
1970 |
+
archivePrefix={arXiv},
|
1971 |
+
primaryClass={cs.IR},
|
1972 |
+
url={https://arxiv.org/abs/2205.04733},
|
1973 |
+
}
|
1974 |
+
```
|
1975 |
+
|
1976 |
+
#### SparseMultipleNegativesRankingLoss
|
1977 |
+
```bibtex
|
1978 |
+
@misc{henderson2017efficient,
|
1979 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1980 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1981 |
+
year={2017},
|
1982 |
+
eprint={1705.00652},
|
1983 |
+
archivePrefix={arXiv},
|
1984 |
+
primaryClass={cs.CL}
|
1985 |
+
}
|
1986 |
+
```
|
1987 |
+
|
1988 |
+
#### FlopsLoss
|
1989 |
+
```bibtex
|
1990 |
+
@article{paria2020minimizing,
|
1991 |
+
title={Minimizing flops to learn efficient sparse representations},
|
1992 |
+
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
1993 |
+
journal={arXiv preprint arXiv:2004.05665},
|
1994 |
+
year={2020}
|
1995 |
+
}
|
1996 |
+
```
|
1997 |
+
|
1998 |
+
<!--
|
1999 |
+
## Glossary
|
2000 |
+
|
2001 |
+
*Clearly define terms in order to be accessible across audiences.*
|
2002 |
+
-->
|
2003 |
+
|
2004 |
+
<!--
|
2005 |
+
## Model Card Authors
|
2006 |
+
|
2007 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
2008 |
+
-->
|
2009 |
+
|
2010 |
+
<!--
|
2011 |
+
## Model Card Contact
|
2012 |
+
|
2013 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
2014 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"hidden_dim": 3072,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"max_position_embeddings": 512,
|
12 |
+
"model_type": "distilbert",
|
13 |
+
"n_heads": 12,
|
14 |
+
"n_layers": 6,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"qa_dropout": 0.1,
|
17 |
+
"seq_classif_dropout": 0.2,
|
18 |
+
"sinusoidal_pos_embds": false,
|
19 |
+
"tie_weights_": true,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.50.3",
|
22 |
+
"vocab_size": 30522
|
23 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SparseEncoder",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "4.2.0.dev0",
|
5 |
+
"transformers": "4.50.3",
|
6 |
+
"pytorch": "2.6.0+cu124"
|
7 |
+
},
|
8 |
+
"prompts": {},
|
9 |
+
"default_prompt_name": null,
|
10 |
+
"similarity_fn_name": "dot"
|
11 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e450cb6daf517870f7376c395db7dbdc955ea2445888e66ffe642a1fca1e7d49
|
3 |
+
size 267954768
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_SpladePooling",
|
12 |
+
"type": "sentence_transformers.sparse_encoder.models.SpladePooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|