|
import gradio as gr |
|
import os |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from pathlib import Path |
|
import chromadb |
|
from unidecode import unidecode |
|
import re |
|
|
|
|
|
muril_tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased") |
|
muril_model = AutoModelForMaskedLM.from_pretrained("google/muril-base-cased") |
|
|
|
|
|
def initialize_muril_pipeline(temperature, max_tokens, top_k): |
|
muril_pipeline = pipeline( |
|
"text-generation", |
|
model=muril_model, |
|
tokenizer=muril_tokenizer, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
max_new_tokens=max_tokens, |
|
do_sample=True, |
|
top_k=top_k, |
|
num_return_sequences=1, |
|
eos_token_id=muril_tokenizer.eos_token_id |
|
) |
|
return muril_pipeline |
|
|
|
|
|
def load_doc(list_file_path, chunk_size, chunk_overlap): |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
def create_db(splits, collection_name): |
|
embedding = HuggingFaceEmbeddings() |
|
new_client = chromadb.EphemeralClient() |
|
vectordb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embedding, |
|
client=new_client, |
|
collection_name=collection_name, |
|
) |
|
return vectordb |
|
|
|
|
|
def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
progress(0.1, desc="Initializing MuRIL model...") |
|
muril_pipeline = initialize_muril_pipeline(temperature, max_tokens, top_k) |
|
|
|
|
|
llm = HuggingFacePipeline(pipeline=muril_pipeline, model_kwargs={'temperature': temperature}) |
|
|
|
progress(0.75, desc="Defining buffer memory...") |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
retriever = vector_db.as_retriever() |
|
progress(0.8, desc="Defining retrieval chain...") |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
progress(0.9, desc="Done!") |
|
return qa_chain |
|
|
|
|
|
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
qa_chain = initialize_llmchain(llm_temperature, max_tokens, top_k, vector_db, progress) |
|
return qa_chain, "Complete!" |
|
|
|
|
|
def demo(): |
|
with gr.Blocks(theme="base") as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
collection_name = gr.State() |
|
|
|
gr.Markdown( |
|
"""<center><h2>BookMyDarshan: Your Personalized Spiritual Assistant</h2></center> |
|
<h3>Explore Sacred Texts and Enhance Your Spiritual Journey</h3>""") |
|
|
|
gr.Markdown( |
|
"""<b>About BookMyDarshan.in:</b> We are a Hyderabad-based startup dedicated to providing pilgrims with exceptional temple darshan experiences. |
|
Our platform offers a comprehensive suite of spiritual and religious services, customized to meet your devotional needs.<br><br> |
|
<b>Note:</b> This spiritual assistant uses state-of-the-art AI to help you explore and understand your uploaded spiritual documents. |
|
With a blend of technology and tradition, this tool assists in connecting you more deeply with your faith.<br>""") |
|
|
|
with gr.Tab("Step 1: Upload PDF"): |
|
document = gr.Files(label="Upload your PDF documents", file_count="multiple", file_types=["pdf"], interactive=True) |
|
|
|
with gr.Tab("Step 2: Process Document"): |
|
db_btn = gr.Radio(["ChromaDB"], label="Select Vector Database", value="ChromaDB", info="Choose your vector database") |
|
with gr.Accordion("Advanced Options: Text Splitter", open=False): |
|
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk Size", info="Adjust chunk size for text splitting") |
|
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk Overlap", info="Adjust overlap between chunks") |
|
db_progress = gr.Textbox(label="Vector Database Initialization Status", value="None", interactive=False) |
|
generate_db_btn = gr.Button("Generate Vector Database") |
|
|
|
with gr.Tab("Step 3 - Initialize QA chain"): |
|
with gr.Row(): |
|
with gr.Accordion("Advanced options - LLM model", open=False): |
|
with gr.Row(): |
|
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) |
|
with gr.Row(): |
|
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True) |
|
with gr.Row(): |
|
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) |
|
with gr.Row(): |
|
llm_progress = gr.Textbox(value="None", label="QA chain initialization") |
|
with gr.Row(): |
|
qachain_btn = gr.Button("Initialize Question Answering chain") |
|
|
|
with gr.Tab("Step 4: Chatbot"): |
|
chatbot = gr.Chatbot(label="Chat with your PDF", height=300) |
|
with gr.Accordion("Advanced: Document References", open=False): |
|
with gr.Row(): |
|
doc_source1 = gr.Textbox(label="Reference 1", lines=2) |
|
source1_page = gr.Number(label="Page", interactive=True) |
|
with gr.Row(): |
|
doc_source2 = gr.Textbox(label="Reference 2", lines=2) |
|
source2_page = gr.Number(label="Page", interactive=True) |
|
with gr.Row(): |
|
doc_source3 = gr.Textbox(label="Reference 3", lines=2) |
|
source3_page = gr.Number(label="Page", interactive=True) |
|
msg = gr.Textbox(placeholder="Type your question here...", label="Ask a Question", container=True) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
clear_btn = gr.Button("Clear Conversation") |
|
|
|
|
|
generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress]) |
|
qachain_btn.click( |
|
initialize_LLM, |
|
inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], |
|
outputs=[qa_chain, llm_progress] |
|
).then( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
|
|
msg.submit( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
submit_btn.click( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
clear_btn.click( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
demo.launch() |
|
|