yogesh69 commited on
Commit
b2b05e9
·
verified ·
1 Parent(s): c19fef3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -242
app.py CHANGED
@@ -1,56 +1,50 @@
1
  import gradio as gr
2
  import os
3
-
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_community.vectorstores import Chroma
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain_community.embeddings import HuggingFaceEmbeddings
9
- from langchain_community.llms import HuggingFacePipeline
10
  from langchain.chains import ConversationChain
11
  from langchain.memory import ConversationBufferMemory
12
- from langchain_community.llms import HuggingFaceEndpoint
13
-
14
  from pathlib import Path
15
  import chromadb
16
  from unidecode import unidecode
17
-
18
- from transformers import AutoTokenizer
19
- import transformers
20
- import torch
21
- import tqdm
22
- import accelerate
23
  import re
24
 
25
-
26
-
27
- # default_persist_directory = './chroma_HF/'
28
- list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
29
- "google/gemma-7b-it","google/gemma-2b-it", \
30
- "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
31
- "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
32
- "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
33
- "google/flan-t5-xxl"
34
- ]
35
- list_llm_simple = [os.path.basename(llm) for llm in list_llm]
 
 
 
 
 
 
 
 
36
 
37
  # Load PDF document and create doc splits
38
  def load_doc(list_file_path, chunk_size, chunk_overlap):
39
- # Processing for one document only
40
- # loader = PyPDFLoader(file_path)
41
- # pages = loader.load()
42
  loaders = [PyPDFLoader(x) for x in list_file_path]
43
  pages = []
44
  for loader in loaders:
45
  pages.extend(loader.load())
46
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
47
  text_splitter = RecursiveCharacterTextSplitter(
48
- chunk_size = chunk_size,
49
- chunk_overlap = chunk_overlap)
50
  doc_splits = text_splitter.split_documents(pages)
51
  return doc_splits
52
 
53
-
54
  # Create vector database
55
  def create_db(splits, collection_name):
56
  embedding = HuggingFaceEmbeddings()
@@ -60,102 +54,16 @@ def create_db(splits, collection_name):
60
  embedding=embedding,
61
  client=new_client,
62
  collection_name=collection_name,
63
- # persist_directory=default_persist_directory
64
  )
65
  return vectordb
66
 
67
-
68
- # Load vector database
69
- def load_db():
70
- embedding = HuggingFaceEmbeddings()
71
- vectordb = Chroma(
72
- # persist_directory=default_persist_directory,
73
- embedding_function=embedding)
74
- return vectordb
75
-
76
-
77
- # Initialize langchain LLM chain
78
- def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
79
- progress(0.1, desc="Initializing HF tokenizer...")
80
- # HuggingFacePipeline uses local model
81
- # Note: it will download model locally...
82
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
83
- # progress(0.5, desc="Initializing HF pipeline...")
84
- # pipeline=transformers.pipeline(
85
- # "text-generation",
86
- # model=llm_model,
87
- # tokenizer=tokenizer,
88
- # torch_dtype=torch.bfloat16,
89
- # trust_remote_code=True,
90
- # device_map="auto",
91
- # # max_length=1024,
92
- # max_new_tokens=max_tokens,
93
- # do_sample=True,
94
- # top_k=top_k,
95
- # num_return_sequences=1,
96
- # eos_token_id=tokenizer.eos_token_id
97
- # )
98
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
99
 
100
- # HuggingFaceHub uses HF inference endpoints
101
- progress(0.5, desc="Initializing HF Hub...")
102
- # Use of trust_remote_code as model_kwargs
103
- # Warning: langchain issue
104
- # URL: https://github.com/langchain-ai/langchain/issues/6080
105
- if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
106
- llm = HuggingFaceEndpoint(
107
- repo_id=llm_model,
108
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
109
- temperature = temperature,
110
- max_new_tokens = max_tokens,
111
- top_k = top_k,
112
- load_in_8bit = True,
113
- )
114
- elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
115
- raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
116
- llm = HuggingFaceEndpoint(
117
- repo_id=llm_model,
118
- temperature = temperature,
119
- max_new_tokens = max_tokens,
120
- top_k = top_k,
121
- )
122
- elif llm_model == "microsoft/phi-2":
123
- # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
124
- llm = HuggingFaceEndpoint(
125
- repo_id=llm_model,
126
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
127
- temperature = temperature,
128
- max_new_tokens = max_tokens,
129
- top_k = top_k,
130
- trust_remote_code = True,
131
- torch_dtype = "auto",
132
- )
133
- elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
134
- llm = HuggingFaceEndpoint(
135
- repo_id=llm_model,
136
- # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
137
- temperature = temperature,
138
- max_new_tokens = 250,
139
- top_k = top_k,
140
- )
141
- elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
142
- raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
143
- llm = HuggingFaceEndpoint(
144
- repo_id=llm_model,
145
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
146
- temperature = temperature,
147
- max_new_tokens = max_tokens,
148
- top_k = top_k,
149
- )
150
- else:
151
- llm = HuggingFaceEndpoint(
152
- repo_id=llm_model,
153
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
154
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
155
- temperature = temperature,
156
- max_new_tokens = max_tokens,
157
- top_k = top_k,
158
- )
159
 
160
  progress(0.75, desc="Defining buffer memory...")
161
  memory = ConversationBufferMemory(
@@ -163,123 +71,25 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
163
  output_key='answer',
164
  return_messages=True
165
  )
166
- # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
167
- retriever=vector_db.as_retriever()
168
  progress(0.8, desc="Defining retrieval chain...")
169
  qa_chain = ConversationalRetrievalChain.from_llm(
170
  llm,
171
  retriever=retriever,
172
  chain_type="stuff",
173
  memory=memory,
174
- # combine_docs_chain_kwargs={"prompt": your_prompt})
175
  return_source_documents=True,
176
- #return_generated_question=False,
177
  verbose=False,
178
  )
179
  progress(0.9, desc="Done!")
180
  return qa_chain
181
 
182
-
183
- # Generate collection name for vector database
184
- # - Use filepath as input, ensuring unicode text
185
- def create_collection_name(filepath):
186
- # Extract filename without extension
187
- collection_name = Path(filepath).stem
188
- # Fix potential issues from naming convention
189
- ## Remove space
190
- collection_name = collection_name.replace(" ","-")
191
- ## ASCII transliterations of Unicode text
192
- collection_name = unidecode(collection_name)
193
- ## Remove special characters
194
- #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
195
- collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
196
- ## Limit length to 50 characters
197
- collection_name = collection_name[:50]
198
- ## Minimum length of 3 characters
199
- if len(collection_name) < 3:
200
- collection_name = collection_name + 'xyz'
201
- ## Enforce start and end as alphanumeric character
202
- if not collection_name[0].isalnum():
203
- collection_name = 'A' + collection_name[1:]
204
- if not collection_name[-1].isalnum():
205
- collection_name = collection_name[:-1] + 'Z'
206
- print('Filepath: ', filepath)
207
- print('Collection name: ', collection_name)
208
- return collection_name
209
-
210
-
211
- # Initialize database
212
- def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
213
- # Create list of documents (when valid)
214
- list_file_path = [x.name for x in list_file_obj if x is not None]
215
- # Create collection_name for vector database
216
- progress(0.1, desc="Creating collection name...")
217
- collection_name = create_collection_name(list_file_path[0])
218
- progress(0.25, desc="Loading document...")
219
- # Load document and create splits
220
- doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
221
- # Create or load vector database
222
- progress(0.5, desc="Generating vector database...")
223
- # global vector_db
224
- vector_db = create_db(doc_splits, collection_name)
225
- progress(0.9, desc="Done!")
226
- return vector_db, collection_name, "Complete!"
227
-
228
-
229
- def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
230
- # print("llm_option",llm_option)
231
- llm_name = list_llm[llm_option]
232
- print("llm_name: ",llm_name)
233
- qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
234
  return qa_chain, "Complete!"
235
 
236
-
237
- def format_chat_history(message, chat_history):
238
- formatted_chat_history = []
239
- for user_message, bot_message in chat_history:
240
- formatted_chat_history.append(f"User: {user_message}")
241
- formatted_chat_history.append(f"Assistant: {bot_message}")
242
- return formatted_chat_history
243
-
244
-
245
- def conversation(qa_chain, message, history):
246
- formatted_chat_history = format_chat_history(message, history)
247
- #print("formatted_chat_history",formatted_chat_history)
248
-
249
- # Generate response using QA chain
250
- response = qa_chain({"question": message, "chat_history": formatted_chat_history})
251
- response_answer = response["answer"]
252
- if response_answer.find("Helpful Answer:") != -1:
253
- response_answer = response_answer.split("Helpful Answer:")[-1]
254
- response_sources = response["source_documents"]
255
- response_source1 = response_sources[0].page_content.strip()
256
- response_source2 = response_sources[1].page_content.strip()
257
- response_source3 = response_sources[2].page_content.strip()
258
- # Langchain sources are zero-based
259
- response_source1_page = response_sources[0].metadata["page"] + 1
260
- response_source2_page = response_sources[1].metadata["page"] + 1
261
- response_source3_page = response_sources[2].metadata["page"] + 1
262
- # print ('chat response: ', response_answer)
263
- # print('DB source', response_sources)
264
-
265
- # Append user message and response to chat history
266
- new_history = history + [(message, response_answer)]
267
- # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
268
- return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
269
-
270
-
271
- def upload_file(file_obj):
272
- list_file_path = []
273
- for idx, file in enumerate(file_obj):
274
- file_path = file_obj.name
275
- list_file_path.append(file_path)
276
- # print(file_path)
277
- # initialize_database(file_path, progress)
278
- return list_file_path
279
-
280
-
281
-
282
-
283
  def demo():
284
  with gr.Blocks(theme="base") as demo:
285
  vector_db = gr.State()
@@ -309,23 +119,18 @@ def demo():
309
 
310
  with gr.Tab("Step 3 - Initialize QA chain"):
311
  with gr.Row():
312
- llm_btn = gr.Radio(list_llm_simple, \
313
- label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
314
- with gr.Accordion("Advanced options - LLM model", open=False):
315
- with gr.Row():
316
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
317
- with gr.Row():
318
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
319
- with gr.Row():
320
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
321
  with gr.Row():
322
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
323
  with gr.Row():
324
  qachain_btn = gr.Button("Initialize Question Answering chain")
325
 
326
-
327
-
328
-
329
  with gr.Tab("Step 4: Chatbot"):
330
  chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
331
  with gr.Accordion("Advanced: Document References", open=False):
@@ -347,7 +152,7 @@ def demo():
347
  generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
348
  qachain_btn.click(
349
  initialize_LLM,
350
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
351
  outputs=[qa_chain, llm_progress]
352
  ).then(
353
  lambda: [None, "", 0, "", 0, "", 0],
@@ -375,9 +180,5 @@ def demo():
375
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
376
  queue=False
377
  )
378
- demo.queue().launch(debug=True)
379
-
380
-
381
- if __name__ == "__main__":
382
- demo()
383
 
 
 
1
  import gradio as gr
2
  import os
3
+ from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_community.vectorstores import Chroma
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain_community.embeddings import HuggingFaceEmbeddings
 
9
  from langchain.chains import ConversationChain
10
  from langchain.memory import ConversationBufferMemory
 
 
11
  from pathlib import Path
12
  import chromadb
13
  from unidecode import unidecode
 
 
 
 
 
 
14
  import re
15
 
16
+ # Define MuRIL model and tokenizer
17
+ muril_tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased")
18
+ muril_model = AutoModelForMaskedLM.from_pretrained("google/muril-base-cased")
19
+
20
+ # Function to initialize MuRIL pipeline
21
+ def initialize_muril_pipeline(temperature, max_tokens, top_k):
22
+ muril_pipeline = pipeline(
23
+ "text-generation",
24
+ model=muril_model,
25
+ tokenizer=muril_tokenizer,
26
+ torch_dtype=torch.bfloat16,
27
+ device_map="auto",
28
+ max_new_tokens=max_tokens,
29
+ do_sample=True,
30
+ top_k=top_k,
31
+ num_return_sequences=1,
32
+ eos_token_id=muril_tokenizer.eos_token_id
33
+ )
34
+ return muril_pipeline
35
 
36
  # Load PDF document and create doc splits
37
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
38
  loaders = [PyPDFLoader(x) for x in list_file_path]
39
  pages = []
40
  for loader in loaders:
41
  pages.extend(loader.load())
 
42
  text_splitter = RecursiveCharacterTextSplitter(
43
+ chunk_size=chunk_size,
44
+ chunk_overlap=chunk_overlap)
45
  doc_splits = text_splitter.split_documents(pages)
46
  return doc_splits
47
 
 
48
  # Create vector database
49
  def create_db(splits, collection_name):
50
  embedding = HuggingFaceEmbeddings()
 
54
  embedding=embedding,
55
  client=new_client,
56
  collection_name=collection_name,
 
57
  )
58
  return vectordb
59
 
60
+ # Initialize langchain LLM chain using MuRIL
61
+ def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
62
+ progress(0.1, desc="Initializing MuRIL model...")
63
+ muril_pipeline = initialize_muril_pipeline(temperature, max_tokens, top_k)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ # Integrate pipeline with langchain
66
+ llm = HuggingFacePipeline(pipeline=muril_pipeline, model_kwargs={'temperature': temperature})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  progress(0.75, desc="Defining buffer memory...")
69
  memory = ConversationBufferMemory(
 
71
  output_key='answer',
72
  return_messages=True
73
  )
74
+ retriever = vector_db.as_retriever()
 
75
  progress(0.8, desc="Defining retrieval chain...")
76
  qa_chain = ConversationalRetrievalChain.from_llm(
77
  llm,
78
  retriever=retriever,
79
  chain_type="stuff",
80
  memory=memory,
 
81
  return_source_documents=True,
 
82
  verbose=False,
83
  )
84
  progress(0.9, desc="Done!")
85
  return qa_chain
86
 
87
+ # Initialize the LLM chain for your chatbot
88
+ def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
89
+ qa_chain = initialize_llmchain(llm_temperature, max_tokens, top_k, vector_db, progress)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  return qa_chain, "Complete!"
91
 
92
+ # Demo function with Gradio UI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  def demo():
94
  with gr.Blocks(theme="base") as demo:
95
  vector_db = gr.State()
 
119
 
120
  with gr.Tab("Step 3 - Initialize QA chain"):
121
  with gr.Row():
122
+ with gr.Accordion("Advanced options - LLM model", open=False):
123
+ with gr.Row():
124
+ slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
125
+ with gr.Row():
126
+ slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
127
+ with gr.Row():
128
+ slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
 
 
129
  with gr.Row():
130
+ llm_progress = gr.Textbox(value="None", label="QA chain initialization")
131
  with gr.Row():
132
  qachain_btn = gr.Button("Initialize Question Answering chain")
133
 
 
 
 
134
  with gr.Tab("Step 4: Chatbot"):
135
  chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
136
  with gr.Accordion("Advanced: Document References", open=False):
 
152
  generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
153
  qachain_btn.click(
154
  initialize_LLM,
155
+ inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db],
156
  outputs=[qa_chain, llm_progress]
157
  ).then(
158
  lambda: [None, "", 0, "", 0, "", 0],
 
180
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
181
  queue=False
182
  )
 
 
 
 
 
183
 
184
+ demo.launch()