Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain_community.llms import HuggingFacePipeline
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
-
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
from unidecode import unidecode
|
17 |
-
|
18 |
-
from transformers import AutoTokenizer
|
19 |
-
import transformers
|
20 |
-
import torch
|
21 |
-
import tqdm
|
22 |
-
import accelerate
|
23 |
import re
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Load PDF document and create doc splits
|
38 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
39 |
-
# Processing for one document only
|
40 |
-
# loader = PyPDFLoader(file_path)
|
41 |
-
# pages = loader.load()
|
42 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
43 |
pages = []
|
44 |
for loader in loaders:
|
45 |
pages.extend(loader.load())
|
46 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
47 |
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
-
chunk_size
|
49 |
-
chunk_overlap
|
50 |
doc_splits = text_splitter.split_documents(pages)
|
51 |
return doc_splits
|
52 |
|
53 |
-
|
54 |
# Create vector database
|
55 |
def create_db(splits, collection_name):
|
56 |
embedding = HuggingFaceEmbeddings()
|
@@ -60,102 +54,16 @@ def create_db(splits, collection_name):
|
|
60 |
embedding=embedding,
|
61 |
client=new_client,
|
62 |
collection_name=collection_name,
|
63 |
-
# persist_directory=default_persist_directory
|
64 |
)
|
65 |
return vectordb
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
vectordb = Chroma(
|
72 |
-
# persist_directory=default_persist_directory,
|
73 |
-
embedding_function=embedding)
|
74 |
-
return vectordb
|
75 |
-
|
76 |
-
|
77 |
-
# Initialize langchain LLM chain
|
78 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
79 |
-
progress(0.1, desc="Initializing HF tokenizer...")
|
80 |
-
# HuggingFacePipeline uses local model
|
81 |
-
# Note: it will download model locally...
|
82 |
-
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
83 |
-
# progress(0.5, desc="Initializing HF pipeline...")
|
84 |
-
# pipeline=transformers.pipeline(
|
85 |
-
# "text-generation",
|
86 |
-
# model=llm_model,
|
87 |
-
# tokenizer=tokenizer,
|
88 |
-
# torch_dtype=torch.bfloat16,
|
89 |
-
# trust_remote_code=True,
|
90 |
-
# device_map="auto",
|
91 |
-
# # max_length=1024,
|
92 |
-
# max_new_tokens=max_tokens,
|
93 |
-
# do_sample=True,
|
94 |
-
# top_k=top_k,
|
95 |
-
# num_return_sequences=1,
|
96 |
-
# eos_token_id=tokenizer.eos_token_id
|
97 |
-
# )
|
98 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
99 |
|
100 |
-
#
|
101 |
-
|
102 |
-
# Use of trust_remote_code as model_kwargs
|
103 |
-
# Warning: langchain issue
|
104 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
105 |
-
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
106 |
-
llm = HuggingFaceEndpoint(
|
107 |
-
repo_id=llm_model,
|
108 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
109 |
-
temperature = temperature,
|
110 |
-
max_new_tokens = max_tokens,
|
111 |
-
top_k = top_k,
|
112 |
-
load_in_8bit = True,
|
113 |
-
)
|
114 |
-
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
115 |
-
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
116 |
-
llm = HuggingFaceEndpoint(
|
117 |
-
repo_id=llm_model,
|
118 |
-
temperature = temperature,
|
119 |
-
max_new_tokens = max_tokens,
|
120 |
-
top_k = top_k,
|
121 |
-
)
|
122 |
-
elif llm_model == "microsoft/phi-2":
|
123 |
-
# raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
124 |
-
llm = HuggingFaceEndpoint(
|
125 |
-
repo_id=llm_model,
|
126 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
127 |
-
temperature = temperature,
|
128 |
-
max_new_tokens = max_tokens,
|
129 |
-
top_k = top_k,
|
130 |
-
trust_remote_code = True,
|
131 |
-
torch_dtype = "auto",
|
132 |
-
)
|
133 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
134 |
-
llm = HuggingFaceEndpoint(
|
135 |
-
repo_id=llm_model,
|
136 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
137 |
-
temperature = temperature,
|
138 |
-
max_new_tokens = 250,
|
139 |
-
top_k = top_k,
|
140 |
-
)
|
141 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
142 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
143 |
-
llm = HuggingFaceEndpoint(
|
144 |
-
repo_id=llm_model,
|
145 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
146 |
-
temperature = temperature,
|
147 |
-
max_new_tokens = max_tokens,
|
148 |
-
top_k = top_k,
|
149 |
-
)
|
150 |
-
else:
|
151 |
-
llm = HuggingFaceEndpoint(
|
152 |
-
repo_id=llm_model,
|
153 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
154 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
155 |
-
temperature = temperature,
|
156 |
-
max_new_tokens = max_tokens,
|
157 |
-
top_k = top_k,
|
158 |
-
)
|
159 |
|
160 |
progress(0.75, desc="Defining buffer memory...")
|
161 |
memory = ConversationBufferMemory(
|
@@ -163,123 +71,25 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
163 |
output_key='answer',
|
164 |
return_messages=True
|
165 |
)
|
166 |
-
|
167 |
-
retriever=vector_db.as_retriever()
|
168 |
progress(0.8, desc="Defining retrieval chain...")
|
169 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
170 |
llm,
|
171 |
retriever=retriever,
|
172 |
chain_type="stuff",
|
173 |
memory=memory,
|
174 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
175 |
return_source_documents=True,
|
176 |
-
#return_generated_question=False,
|
177 |
verbose=False,
|
178 |
)
|
179 |
progress(0.9, desc="Done!")
|
180 |
return qa_chain
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
def create_collection_name(filepath):
|
186 |
-
# Extract filename without extension
|
187 |
-
collection_name = Path(filepath).stem
|
188 |
-
# Fix potential issues from naming convention
|
189 |
-
## Remove space
|
190 |
-
collection_name = collection_name.replace(" ","-")
|
191 |
-
## ASCII transliterations of Unicode text
|
192 |
-
collection_name = unidecode(collection_name)
|
193 |
-
## Remove special characters
|
194 |
-
#collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
|
195 |
-
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
196 |
-
## Limit length to 50 characters
|
197 |
-
collection_name = collection_name[:50]
|
198 |
-
## Minimum length of 3 characters
|
199 |
-
if len(collection_name) < 3:
|
200 |
-
collection_name = collection_name + 'xyz'
|
201 |
-
## Enforce start and end as alphanumeric character
|
202 |
-
if not collection_name[0].isalnum():
|
203 |
-
collection_name = 'A' + collection_name[1:]
|
204 |
-
if not collection_name[-1].isalnum():
|
205 |
-
collection_name = collection_name[:-1] + 'Z'
|
206 |
-
print('Filepath: ', filepath)
|
207 |
-
print('Collection name: ', collection_name)
|
208 |
-
return collection_name
|
209 |
-
|
210 |
-
|
211 |
-
# Initialize database
|
212 |
-
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
213 |
-
# Create list of documents (when valid)
|
214 |
-
list_file_path = [x.name for x in list_file_obj if x is not None]
|
215 |
-
# Create collection_name for vector database
|
216 |
-
progress(0.1, desc="Creating collection name...")
|
217 |
-
collection_name = create_collection_name(list_file_path[0])
|
218 |
-
progress(0.25, desc="Loading document...")
|
219 |
-
# Load document and create splits
|
220 |
-
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
221 |
-
# Create or load vector database
|
222 |
-
progress(0.5, desc="Generating vector database...")
|
223 |
-
# global vector_db
|
224 |
-
vector_db = create_db(doc_splits, collection_name)
|
225 |
-
progress(0.9, desc="Done!")
|
226 |
-
return vector_db, collection_name, "Complete!"
|
227 |
-
|
228 |
-
|
229 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
230 |
-
# print("llm_option",llm_option)
|
231 |
-
llm_name = list_llm[llm_option]
|
232 |
-
print("llm_name: ",llm_name)
|
233 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
234 |
return qa_chain, "Complete!"
|
235 |
|
236 |
-
|
237 |
-
def format_chat_history(message, chat_history):
|
238 |
-
formatted_chat_history = []
|
239 |
-
for user_message, bot_message in chat_history:
|
240 |
-
formatted_chat_history.append(f"User: {user_message}")
|
241 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
242 |
-
return formatted_chat_history
|
243 |
-
|
244 |
-
|
245 |
-
def conversation(qa_chain, message, history):
|
246 |
-
formatted_chat_history = format_chat_history(message, history)
|
247 |
-
#print("formatted_chat_history",formatted_chat_history)
|
248 |
-
|
249 |
-
# Generate response using QA chain
|
250 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
251 |
-
response_answer = response["answer"]
|
252 |
-
if response_answer.find("Helpful Answer:") != -1:
|
253 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
254 |
-
response_sources = response["source_documents"]
|
255 |
-
response_source1 = response_sources[0].page_content.strip()
|
256 |
-
response_source2 = response_sources[1].page_content.strip()
|
257 |
-
response_source3 = response_sources[2].page_content.strip()
|
258 |
-
# Langchain sources are zero-based
|
259 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
260 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
261 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
262 |
-
# print ('chat response: ', response_answer)
|
263 |
-
# print('DB source', response_sources)
|
264 |
-
|
265 |
-
# Append user message and response to chat history
|
266 |
-
new_history = history + [(message, response_answer)]
|
267 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
268 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
269 |
-
|
270 |
-
|
271 |
-
def upload_file(file_obj):
|
272 |
-
list_file_path = []
|
273 |
-
for idx, file in enumerate(file_obj):
|
274 |
-
file_path = file_obj.name
|
275 |
-
list_file_path.append(file_path)
|
276 |
-
# print(file_path)
|
277 |
-
# initialize_database(file_path, progress)
|
278 |
-
return list_file_path
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
def demo():
|
284 |
with gr.Blocks(theme="base") as demo:
|
285 |
vector_db = gr.State()
|
@@ -309,23 +119,18 @@ def demo():
|
|
309 |
|
310 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
311 |
with gr.Row():
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
with gr.Row():
|
320 |
-
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
321 |
with gr.Row():
|
322 |
-
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
323 |
with gr.Row():
|
324 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
with gr.Tab("Step 4: Chatbot"):
|
330 |
chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
|
331 |
with gr.Accordion("Advanced: Document References", open=False):
|
@@ -347,7 +152,7 @@ def demo():
|
|
347 |
generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
348 |
qachain_btn.click(
|
349 |
initialize_LLM,
|
350 |
-
inputs=[
|
351 |
outputs=[qa_chain, llm_progress]
|
352 |
).then(
|
353 |
lambda: [None, "", 0, "", 0, "", 0],
|
@@ -375,9 +180,5 @@ def demo():
|
|
375 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
376 |
queue=False
|
377 |
)
|
378 |
-
demo.queue().launch(debug=True)
|
379 |
-
|
380 |
-
|
381 |
-
if __name__ == "__main__":
|
382 |
-
demo()
|
383 |
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
9 |
from langchain.chains import ConversationChain
|
10 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
11 |
from pathlib import Path
|
12 |
import chromadb
|
13 |
from unidecode import unidecode
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
import re
|
15 |
|
16 |
+
# Define MuRIL model and tokenizer
|
17 |
+
muril_tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased")
|
18 |
+
muril_model = AutoModelForMaskedLM.from_pretrained("google/muril-base-cased")
|
19 |
+
|
20 |
+
# Function to initialize MuRIL pipeline
|
21 |
+
def initialize_muril_pipeline(temperature, max_tokens, top_k):
|
22 |
+
muril_pipeline = pipeline(
|
23 |
+
"text-generation",
|
24 |
+
model=muril_model,
|
25 |
+
tokenizer=muril_tokenizer,
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
device_map="auto",
|
28 |
+
max_new_tokens=max_tokens,
|
29 |
+
do_sample=True,
|
30 |
+
top_k=top_k,
|
31 |
+
num_return_sequences=1,
|
32 |
+
eos_token_id=muril_tokenizer.eos_token_id
|
33 |
+
)
|
34 |
+
return muril_pipeline
|
35 |
|
36 |
# Load PDF document and create doc splits
|
37 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
38 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
39 |
pages = []
|
40 |
for loader in loaders:
|
41 |
pages.extend(loader.load())
|
|
|
42 |
text_splitter = RecursiveCharacterTextSplitter(
|
43 |
+
chunk_size=chunk_size,
|
44 |
+
chunk_overlap=chunk_overlap)
|
45 |
doc_splits = text_splitter.split_documents(pages)
|
46 |
return doc_splits
|
47 |
|
|
|
48 |
# Create vector database
|
49 |
def create_db(splits, collection_name):
|
50 |
embedding = HuggingFaceEmbeddings()
|
|
|
54 |
embedding=embedding,
|
55 |
client=new_client,
|
56 |
collection_name=collection_name,
|
|
|
57 |
)
|
58 |
return vectordb
|
59 |
|
60 |
+
# Initialize langchain LLM chain using MuRIL
|
61 |
+
def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
62 |
+
progress(0.1, desc="Initializing MuRIL model...")
|
63 |
+
muril_pipeline = initialize_muril_pipeline(temperature, max_tokens, top_k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# Integrate pipeline with langchain
|
66 |
+
llm = HuggingFacePipeline(pipeline=muril_pipeline, model_kwargs={'temperature': temperature})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
progress(0.75, desc="Defining buffer memory...")
|
69 |
memory = ConversationBufferMemory(
|
|
|
71 |
output_key='answer',
|
72 |
return_messages=True
|
73 |
)
|
74 |
+
retriever = vector_db.as_retriever()
|
|
|
75 |
progress(0.8, desc="Defining retrieval chain...")
|
76 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
77 |
llm,
|
78 |
retriever=retriever,
|
79 |
chain_type="stuff",
|
80 |
memory=memory,
|
|
|
81 |
return_source_documents=True,
|
|
|
82 |
verbose=False,
|
83 |
)
|
84 |
progress(0.9, desc="Done!")
|
85 |
return qa_chain
|
86 |
|
87 |
+
# Initialize the LLM chain for your chatbot
|
88 |
+
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
89 |
+
qa_chain = initialize_llmchain(llm_temperature, max_tokens, top_k, vector_db, progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
return qa_chain, "Complete!"
|
91 |
|
92 |
+
# Demo function with Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def demo():
|
94 |
with gr.Blocks(theme="base") as demo:
|
95 |
vector_db = gr.State()
|
|
|
119 |
|
120 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
121 |
with gr.Row():
|
122 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
123 |
+
with gr.Row():
|
124 |
+
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
125 |
+
with gr.Row():
|
126 |
+
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
127 |
+
with gr.Row():
|
128 |
+
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
|
|
|
|
129 |
with gr.Row():
|
130 |
+
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
131 |
with gr.Row():
|
132 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
133 |
|
|
|
|
|
|
|
134 |
with gr.Tab("Step 4: Chatbot"):
|
135 |
chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
|
136 |
with gr.Accordion("Advanced: Document References", open=False):
|
|
|
152 |
generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
153 |
qachain_btn.click(
|
154 |
initialize_LLM,
|
155 |
+
inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
156 |
outputs=[qa_chain, llm_progress]
|
157 |
).then(
|
158 |
lambda: [None, "", 0, "", 0, "", 0],
|
|
|
180 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
181 |
queue=False
|
182 |
)
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
demo.launch()
|